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Preface

Applied problems often require solving boundary value problems for partial differen-
tial equations. Elaboration of approximate solution methods for such problems rests
on the development and examination of numerical methods for boundary value prob-
lems formulated for basic (fundamental, model) mathematical physics equations. If
one considers second-order equations, then such equations are elliptic, parabolic and
hyperbolic equations.

The solution of a boundary value problem is to be found from the equation and
from some additional conditions. For time-independent equations, to be specified are
boundary conditions, and for time-dependent equations, in addition, initial conditions.
Such classical problems are treated in all tutorials on mathematical physics equations
and partial differential equations.

The above boundary value problems belong to the class of direct mathematical
physics problems. A typical inverse problem is the problem in which it is required
to find equation coefficients from some additional information about the solution; in
the latter case, the problem is called a coefficient inverse problem. In boundary inverse
problems, to be reconstructed are unknown boundary conditions, and so on.

Inverse mathematical physics problems often belong to the class of classically ill-
posed problems. First of all, ill-posedness here is a consequence of lacking continuous
dependence of solution on input data. In this case, one has to narrow the class of ad-
missible solutions and, to determine a stable solution, apply some special regularizing
procedures.

Numerical solution of direct mathematical physics problems is presently a well-
studied matter. In solving multi-dimensional boundary value problems, difference
methods and the finite element method are widely used. At present, tutorials and
monographs on numerical solution methods for inverse problems are few in number.
The latter was the primary motivation behind writing the present book.

By no means being a comprehensive guide, this book treats some particular in-
verse problems for time-dependent and time-independent equations often encountered
in mathematical physics. Rather a complete and closed consideration of basic difficul-
ties in approximate solution of inverse problems is given. A minimum mathematical
apparatus is used, related with some basic properties of operators in finite-dimensional
spaces.

A predominant contribution to the scope of problems dealt with in the theory and so-
lution practice of inverse mathematical physics problems was made by Russian math-
ematicians, and the pioneer here was Andrei Nikolaevich Tikhonov. His ideas, under-
lying the modern applied mathematics, are now developed by his numerous disciples.
Our work pays tribute to A. N. Tikhonov.





Main definitions and notations

A, B, C , D, S — difference operators;

E — unit (identity) operator;

A∗ — adjoint operator;

A−1 — operator inverse to A;

A > 0 — positive operator ((Ay, y) > 0 if y �= 0);

A ≥ 0 — non-negative operator ((Ay, y) ≥ 0);

A ≥ δE , δ > 0 — positive definite operator;

A0 = (A + A∗)/2 — self-adjoint part of A;

A1 = (A − A∗)/2 — skew-symmetric part of A;

H — Hilbert space of mesh functions;

(· , · ) — scalar product in H ;

‖ · ‖ — norm in H ;

(y, v)A = (Ay, v) — scalar product in HA (A = A∗ > 0);

‖·‖A — norm in HA;

L2(ω) — Hilbert space of mesh functions;

‖·‖ — norm in L2;

‖A‖ — norm of difference operator A;

M , Mβ — positive constants;

� — computation domain;

∂� — boundary of �;

ω — set of internal nodes;

∂ω — set of boundary nodes;

h, hβ — mesh size in space;

τ — time step;

σ — weighting parameter of difference scheme;

yx = y(x + h) − y(x)

h
— right-hand difference derivative at the point x ;



viii Main definitions and notations

yx̄ = y(x) − y(x − h)

h
— left-hand difference derivative at the point x ;

y◦
x = (yx + yx̄)/2 — central difference derivative at the point x ;

yx̄x = yx − yx̄

h
— second difference derivative at the point x ;

y = yn = y(x, tn) — magnitude of mesh function at the point x at the time tn = nτ ,
n = 0, 1, . . . ;

α — regularization parameter;

δ — typical input-data inaccuracy;
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1 Inverse mathematical physics problems

We associate direct mathematical physics problems with classical boundary value
problems often encountered in mathematical physics. In a direct problem, it is required
to find a solution that satisfies some given partial differential equation and some initial
and boundary conditions. In inverse problems, the master equation and/or initial con-
ditions and/or boundary conditions are not fully specified but, instead, some additional
information is available. So separating out inverse mathematical physics problems,
we can speak of coefficient inverse problems (in which the equation is not specified
completely as some equation coefficients are unknown), boundary inverse problems
(in which boundary conditions are unknown), and evolutionary inverse problems (in
which initial conditions are unknown). Very often, inverse problems are problems
ill-posed in the classical sense. A typical feature here is the violated requirement of
solution continuity on input data. An ill-posed problem can be moved up into the class
of well-posed problems by narrowing the class of admissible solutions.

1.1 Boundary value problems

The core of applied mathematical models is made up by partial differential equations.
Here, the solution can be found from mathematical physics equations and some ad-
ditional relations. Such additional relations are, first of all, boundary and initial con-
ditions. In courses on mathematical physics equations, equations most important for
applications are second-order equations. Among such equations are elliptic, parabolic,
and hyperbolic equations.

1.1.1 Stationary mathematical physics problems

As an example, consider several two-dimensional boundary value problems. The so-
lution u(x), x = (x1, x2) is to be found in some bounded domain � with a sufficiently
smooth boundary ∂�. This solution is defined by the second-order elliptic equation

−
2∑

α=1

∂

∂xα

(
k(x)

∂u
∂xα

)
+ q(x)u = f (x), x ∈ �. (1.1)

Normally, the constraints imposed on the equation coefficients look as

k(x) ≥ κ > 0, q(x) ≥ 0, x ∈ �.

A typical example of an elliptic equation (1.1) is given by the Poisson equation

−�u ≡ −
2∑

α=1

∂2u
∂x2

α

= f (x), x ∈ �, (1.2)
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i. e., in (1.1) we have k(x) = 1 and q(x) = 0.
For equation (1.1), we consider first-kind boundary conditions

u(x) = μ(x), x ∈ ∂�. (1.3)

On the boundary of � or on a part of the boundary, second- or third-kind boundary
conditions can also be given. In the case of third-kind boundary conditions, we have

k(x)
∂u
∂n

+ σ(x)u = μ(x), x ∈ ∂�, (1.4)

where n is the external normal to �.
Many key features of stationary mathematical physics problems for second-order

elliptic equations can be figured out considering simplest boundary value problems for
the second-order ordinary differential equation. A prototype of (1.1) is the equation

− d
dx

(
k(x)

du
dx

)
+ q(x)u = f (x), 0 < x < l (1.5)

with variable coefficients

k(x) ≥ κ > 0, q(x) ≥ 0.

For the unknown function u(x) to be uniquely determined, equation (1.5) must
be supplemented with two boundary conditions given at the end points of the seg-
ment [0, l]. Here, either the function u(x) (first-kind boundary condition), the flux

w(x) = −k(x)
du
dx

(x) (second-kind boundary condition), or a linear combination of
the above conditions (third-kind boundary condition) can be considered:

u(0) = μ1, u(l) = μ2, (1.6)

−k(0)
du
dx

(0) = μ1, k(l)
du
dx

(l) = μ2, (1.7)

−k(0)
du
dx

(0) + σ1u(0) = μ1, k(l)
du
dx

(l) + σ2u(l) = μ2. (1.8)

1.1.2 Nonstationary mathematical physics problems

A fundamental time-dependent equation in mathematical physics is the one-
dimensional second-order parabolic equation. In a rectangle

QT = � × [0, T ], � = {x | 0 ≤ x ≤ l}, 0 ≤ t ≤ T

we consider the equation

∂u
∂t

= ∂

∂x

(
k(x)

∂u
∂x

)
+ f (x, t), 0 < x < l, 0 < t ≤ T . (1.9)
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This equation is supplemented (the first boundary value problem) with the boundary
conditions

u(0, t) = 0, u(l, t) = 0, 0 < t ≤ T (1.10)

and with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ l. (1.11)

For simplicity, here we have restricted ourselves to homogeneous boundary conditions
and to the case in which the coefficient k depends on the spatial variable only and, in
addition, k(x) ≥ κ > 0.

Instead of first-kind conditions (1.10), other boundary conditions can be considered.
For instance, in many applied problems one has to formulate third-type boundary con-
ditions:

−k(0)
du
dx

(0, t) + σ1(t)u(0, t) = μ1(t),

k(l)
du
dx

(l, t) + σ2(t)u(l, t) = μ2(t),
0 < t ≤ T . (1.12)

Among other nonstationary boundary value problems, the second-order hyperbolic
equation is to be considered. In the spatially one-dimensional case, we seek the solu-
tion of the following equation:

∂2u
∂t2

= ∂

∂x

(
k(x)

∂u
∂x

)
+ f (x, t), 0 < x < l, 0 < t ≤ T . (1.13)

For the solution to be defined completely, in addition to (1.10) the following two
initial conditions are to be considered:

u(x, 0) = u0(x),
∂u
∂t

(0, t) = u1(x), 0 ≤ x ≤ l. (1.14)

Particular attention must be given to multi-dimensional nonstationary mathematical
physics problems. An example here is the two-dimensional parabolic equation. We
seek, in some domain �, a function u(x, t) which satisfies the equation

∂u
∂t

=
2∑

α=1

∂

∂xα

(
k(x)

∂u
∂xα

)
− q(x, t)u + f (x, t),

x ∈ �, 0 ≤ t ≤ T

(1.15)

and the conditions

u(x, t) = 0, x ∈ ∂�, 0 < t ≤ T, (1.16)

u(x, 0) = u0(x), x ∈ �. (1.17)

In a similar way, other nonstationary multidimensional boundary value problems for
partial differential equations can be formulated.
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1.2 Well-posed problems for partial differential equations

Here, we introduce the notion of well-posed boundary value problem, related with
the existence of a unique solution that continuously depends on input data. Results
on stability of classical boundary value problems for partial differential equations are
presented.

1.2.1 The notion of well-posedness

Boundary and initial conditions are formulated to identify, among the whole set of
possible solutions of a partial differential equation, a desired solution. These additional
conditions must be not too numerous (solutions must exist), nor they must be few
in number (solutions must be not numerous). With this circumstance, the notion of
well-posed statement of a problem is related. Let us dwell first on the notion of well-
posedness of a problem according to J. Hadamard (well-posedness in the classical
sense).

A problem is well-posed if:

1) the solution of the problem does exist;

2) the solution is unique;

3) the solution continuously depends on input data.

It is the third condition for well-posedness that is of primary significance here. This
condition provides for smallness of the solution changes resulting from small input-
data variation. The input data are the equation coefficients, the right-hand side and
the boundary and initial conditions, taken from an experiment and always known to
some limited accuracy. In fact, solution stability with respect to small perturbations of
initial and boundary conditions, coefficients, and right-hand side justifies the problem
statement itself, as well as its cognitive essence, and makes the whole study valuable.

In consideration of boundary value problems for mathematical physics equations,
the existence, uniqueness and stability theorems taken as a whole provide a complete
study of well-posedness of a posed problem. Of course, conditions for well-posedness
must be rendered concrete considering each particular problem. The latter is related
with the fact that the solution of the problem and the input data are considered as
elements in a certain fully defined functional space. That is why a given problem can
be ill-posed with one choice of spaces and well-posed with another choice of spaces.
Hence, a statement that this or that problem is a well- (ill-)posed one is never global:
such statements must be supplemented with necessary amendments.

1.2.2 Boundary value problem for the parabolic equation

Some fundamental points in a consideration of well- or ill-posedness of a boundary
value mathematical physics problem can be illustrated with the example of a sim-
plest boundary value problem for the one-dimensional parabolic equation (1.9)–(1.11).



Section 1.2 Well-posed problems for partial differential equations 5

Here, we do not touch on points concerning the solution existence; instead, we restrict
ourselves to the uniqueness problem and to the property of continuous dependence of
solution on input data. We assume that problem (1.9)–(1.11) indeed has a classical
solution u(x, t) (for instance, this solution is doubly differentiable with respect to x
and continuously differentiable with respect to t).

We write problem (1.9)–(1.11) as a Cauchy problem for a first-order operator dif-
ferential equation. For functions given in the domain � = (0, 1) and vanishing at
the boundary points of this domain (at the boundary ∂�), we define a Hilbert space
H = L2(�) in which the scalar product is defined as

(v, w) =
∫

�

v(x)w(x) dx .

For the norm in H we use

‖v‖ = (v, v)1/2 =
( ∫

�

v2(x) dx
)1/2

.

For functions satisfying the boundary conditions (1.10), we define the operator

Au = − ∂

∂x

(
k(x)

∂u
∂x

)
, 0 < x < l. (1.18)

With the notation introduced, equation (1.9) supplemented with conditions (1.10) at
the boundary ∂� can be written as an operator differential equation for the function
u(t) ∈ H:

du
dt

+ Au = f (t), 0 < t ≤ T . (1.19)

The initial condition (1.11) can be written as

u(0) = u0. (1.20)

The following main properties of the operator A defined by (1.18) are worthy of
note. The operator A is a self-adjoint operator non-negative in H:

A∗ = A ≥ 0. (1.21)

The property of self-adjointness stems from the expression

(Av, w) =
∫ l

0
Av(x)w(x) dx =

∫ l

0
k(x)

∂v

∂x
∂w

∂x
dx = (v,A∗w),

derived with regard to the fact that the functions v(x) and w(x) vanish at the points
x ∈ ∂�. For the functions u(x) = 0, x ∈ ∂�, we have

(Av, v) =
∫ l

0
k(x)

(∂v

∂x

)2
dx ≥ 0
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and, hence, A ≥ 0.
Let us derive now a simplest a priori estimate for the solution of problem (1.19),

(1.20). In consideration of problems for evolutionary equations, the Gronwall lemma
is of significance. Here, we restrict ourselves to this lemma formulated in its simplest
form.

Lemma 1.1 For a function g(t) satisfying the inequality

dg
dt

≤ ag(t) + b(t), t > 0

with a = const and b(t) ≥ 0, the following estimate holds:

g(t) ≤ exp (at)
(

g(0) +
∫ t

0
exp (−aθ)b(θ) dθ

)
.

Theorem 1.2 For the solution of problem (1.19), (1.20), the following a priori esti-
mate holds:

‖u(t)‖ ≤ ‖u0‖ +
∫ t

0
‖ f (θ)‖ dθ. (1.22)

Proof. From scalarwise multiplying equation (1.19) by u(t) we obtain the equality

(du
dt

, u
)

+ (Au, u) = ( f, u).

Taking the Cauchy–Bunyakowsky (Schwarz) inequality into account, we obtain:

(du
dt

, u
)

= 1
2

d
dt

‖u‖2 = ‖u‖ d
dt

‖u‖,

( f, u) ≤ ‖ f ‖ ‖u‖.
From the latter equality and from the non-negativeness of A it follows that

d
dt

‖u‖ ≤ ‖ f ‖.

The latter inequality yields the estimate (1.22) (in the Gronwall lemma, we have a =
0).

The well-posedness of the problem is related to the existence of a unique solution
and with stability of this solution with respect to small input-data perturbations.

Corollary 1.3 The solution of problem (1.19), (1.20) is unique.
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Suppose that we have two solutions u1(t) and u2(t). Then, the difference u(t) =
u1(t) − u2(t) satisfies equation (1.19) with f (t) = 0, 0 < t ≤ T and with the
homogeneous initial condition (u0 = 0). From the a priori estimate (1.20) it readily
follows that u(t) = 0 at all times in the interval 0 ≤ t ≤ T .

In the problem of interest, it is necessary to take into account, first of all, the initial
conditions. In this case, we speak of solution stability with respect to initial data.
The input data here are the equation coefficients (coefficient stability ). In particular,
it makes sense to examine the dependence of solution on the right-hand side of the
equation or, in other words, solution stability with respect to the right-hand side. Let
us show, for instance, that the obtained a priori estimate (1.22) guarantees both solution
stability with respect to input data and solution stability with respect to the right-hand
side.

Apart from problem (1.19), (1.20), consider a problem with perturbed initial condi-
tion and with perturbed right-hand side:

dũ
dt

+ Aũ = f̃ (t), 0 < t ≤ T . (1.23)

The initial condition (1.11) can be written as

ũ(0) = ũ0. (1.24)

Corollary 1.4 Suppose we have

‖u0 − ũ0‖ ≤ ε, ‖ f (t) − f̃ (t)‖ ≤ ε, 0 ≤ t ≤ T,

where ε > 0. Then,
‖u(t) − ũ(t)‖ ≤ Mε,

where M = 1 + T .

The latter inequality guarantees continuous dependence of the solution of problem
(1.19), (1.20) on the right-hand side and on the initial conditions. For δu(t) = u(t) −
ũ(t), from (1.19), (1.20), (1.23), and (1.24) we obtain the problem

dδu
dt

+ Aδu = δ f (t), 0 < t ≤ T . (1.25)

The initial condition (1.11) can be written as

δu(0) = δu0, (1.26)

where
δu0 = u0 − ũ0, δ f (t) = f (t) − f̃ (t).

For the solution of problem (1.25), (1.26), there holds the a priori estimate (see
(1.22))

‖δu(t)‖ ≤ ‖δu0‖ +
∫ t

0
‖δ f (θ)‖ dθ,
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and, hence,
‖δu(t)‖ ≤ (1 + T )ε.

Estimates of the coefficient stability of the solution of problem (1.18)–(1.20) (with
respect to k(x)) are more difficult to obtain.

1.2.3 Boundary value problem for the elliptic equation

In consideration of elliptic boundary value problems, primary attention is normally
paid to a priori estimates of solution stability with respect to boundary conditions and
right-hand side. As an example of a stationary mathematical physics problem, consider
the Dirichlet problem for the Poisson equation (1.2), (1.3).

Similarly to the above case of a parabolic problem, we can try to derive a priori esti-
mates of solutions of boundary value problems for the second-order elliptic equations
in Hilbert spaces. Here, worthy of noting is the possibility to obtain a priori estimates
in other norms. Our consideration is based on using the well-known maximum princi-
ple.

Theorem 1.5 (Maximum principle) Suppose that in problem (1.2), (1.3) we have
f (x) ≤ 0 ( f (x) ≥ 0) in a bounded domain �. Then, the solution u(x) attains its
maximum (minimum) value at the boundary of the domain, i.e.,

max
x∈�

u(x) = max
x∈∂�

μ(x), min
x∈�

u(x) = min
x∈∂�

μ(x). (1.27)

A trivial corollary resulting from the maximum principle is the simple statement
about uniqueness of the solution of the Dirichlet problem for the Poisson equation.

Corollary 1.6 The solution of problem (1.2), (1.3) is unique.

Based on Theorem 1.5, we can also derive a priori estimates showing that the so-
lution of problem (1.2), (1.3) is stable with respect to the right-hand side and with
respect to boundary conditions in homogeneous norm. We use the settings

‖u(x)‖C(�) = max
x∈�

|u(x)|.

Theorem 1.7 For the solution of problem (1.2), (1.3) the following a priori estimate
holds:

‖u(x)‖C(�) ≤ ‖μ(x)‖C(∂�) + M‖ f (x)‖C(�). (1.28)

Here, the constant M depends on the diameter of �.

Proof. We choose a function v(x) that satisfies the conditions

−�v ≥ 1, x ∈ �, (1.29)

v(x) ≥ 0, x ∈ ∂�. (1.30)
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Consider the functions

w+(x) = v(x)‖ f (x)‖C(�) + ‖μ(x)‖C(∂�) + u(x),

w−(x) = v(x)‖ f (x)‖C(�) + ‖μ(x)‖C(∂�) − u(x).
(1.31)

Taking into account statement (1.27) and inequality (1.30), we readily obtain that
w±(x) ≥ 0 on the boundary of �. Inside the domain �, equalities (1.2) and (1.29)
yield

−�w± = −‖ f (x)‖C(�) �v ± f (x).

With regard to (1.29), we have −�w±(x) ≥ 0. Based on the maximum principle, we
obtain that w(x) ≥ 0 everywhere in �.

Since the functions w±(x) are non-negative functions, then it readily follows from
(1.31) that

‖u(x)‖C(�) ≤ ‖μ(x)‖C(∂�) + ‖v(x)‖C(�)‖ f (x)‖C(�).

In this way, we have derived the a priori estimate (1.28) with M = ‖v(x)‖C(�).
Render concrete the magnitude of M and its dependence on the calculation domain.

We assume that the whole bounded domain � lies in a circle of radius R centered at
x(0) = (x (0)

1 , x (0)

1 ).
We put

v(x) = c(R2 − (x1 − x (0)

1 )2 − (x2 − x (0)

2 )2)

with some still undetermined positive constant c. Apparently, v(x) ≥ 0, x ∈ ∂� and

−�v = 4c.

Hence, with c = 1/4 the conditions (1.29) and (1.30) are fulfilled and, therefore, the
constant M in (1.28) is given by

M = max
x∈�

1
4

(R2 − (x1 − x (0)

1 )2 − (x2 − x (0)

2 )2) = R2

4
.

This constant depends just on the diameter of �.

The a priori estimate (1.28) guarantees solution stability of problem (1.2), (1.3)
with respect to the right-hand side and boundary conditions. Similarly, the case of
more general boundary value problems for the second-order elliptic equation (1.1)
with third-kind boundary conditions (1.4) can be considered.

1.3 Ill-posed problems

Inverse mathematical physics problems are often assigned to the class of problems
incorrect in the classical sense. As an example of well-posed problems, below we
consider the inverted-time problem for the second-order parabolic equation, for which
continuous dependence of the solution on the input data is lacking. Upon narrowing
the class of solutions, stability appears; hence, this problem belongs to the class of
conditionally well-posed problems (Tikhonov well-posed problems).
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1.3.1 Example of an ill-posed problem

Problems in which some of the three conditions for well-posed statement (existence,
uniqueness or stability) are not fulfilled belong to the class of ill-posed problems. Here,
the determining role is played by continuous dependence of solution on input data.
Consider several examples of ill-posed mathematical physics problems.

For elliptic equations, well-posed problems are problems with given boundary con-
ditions (see, for instance, (1.1), (1.4)). One can consider a Cauchy problem for elliptic
equations in which conditions are given not on the whole boundary ∂�, but only on
some part of the boundary � ⊂ ∂�. The solution u(x) is to be determined from
equation (1.1) and from the following two conditions given on �:

u(x) = μ(x),
∂u
∂n

(x) = ν(x), x ∈ �. (1.32)

Ill-posedness of the Cauchy problem (1.1), (1.32) is a consequence of solution insta-
bility with respect to initial conditions. Continuous dependence takes place only if the
solution and the initial data are analytic functions. In functional spaces whose norms
involve a finite number of derivatives there is no continuous dependence of solution
on input data.

For parabolic equations, well-posed problems are problems with given boundary
and initial conditions (see (1.9)–(1.11)). By specifying the end-time solution, we ob-
tain an inverted-time problem in which from a given state it is required to reconstruct
the pre-history of the process. Let us dwell on the following simple inverted-time
problem:

∂u
∂t

= ∂2u
∂x2

, 0 < x < l, 0 ≤ t < T, (1.33)

u(0, t) = 0, u(l, t) = 0, 0 ≤ t < T, (1.34)

u(x, T ) = uT (x), 0 ≤ x ≤ l. (1.35)

To explain the ill-posedness of the problem, consider the solution of problem (1.33)–
(1.35) with the condition

uT (x) = 1
k p

√
2
l

sin
(πkx

l

)
, (1.36)

where k and p are positive integer numbers. In the Hilbert space norm H =
L2(�), � = (0, l), we have

‖uT (x)‖2 =
∫

�

u2
T (x)dx = 1

k2p
→ 0

as k → ∞; i.e., here, the initial condition is indefinitely small.
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The exact solution of problem (1.33)–(1.36) is

u(x, t) = uT (x) exp
((

π
k
l

)2
(T − t)

)
.

It follows from the latter representation that in the interval 0 ≤ t < T

‖u(x, t)‖ = 1
k p

exp
((

π
k
l

)2
(T − t)

)
→ ∞

as k → ∞. Thus, perturbations in the initial condition, however small, increase indef-
initely at t < T .

1.3.2 The notion of conditionally well-posed problems

The necessity to solve nonstationary problems similar to that presented above requires
more exact determination of problem solution. In problems conditionally well-posed
according to Tikhonov, we have to do not just with a solution, but with a solution that
belongs to some class of solutions. Making the class of admissible solutions narrower
allows one in some cases to pass to a well-posed problem.

We say that a problem is Tikhonov well-posed if:

1) the solution of the problem is a priori known to exist in some class;

2) in this class, the solution is unique;

3) the solution continuously depends on input data.

The fundamental difference here consists in separating out the class of admissible
solutions. The classes of a priori restrictions differ widely. In consideration of ill-posed
problems, the problem statement itself undergoes substantial changes: the condition
that the solution belongs to a certain set is to be included into the problem statement.

1.3.3 Condition for well-posedness of the inverted-time problem

Previously, we have established continuous dependence of the solution of the evolu-
tionary problem (1.18)–(1.20). Now, consider an ill-posed Cauchy problem (the initial
condition (1.20)) for the equation

du
dt

− Au = f (t), 0 < t ≤ T (1.37)

in which the operator A is defined by (1.18).
Let us derive an estimate of the solution of problem (1.18), (1.20), (1.37) with

f (t) = 0 from which conditional well-posedness of the problem follows. In our
investigation, we lean upon self-adjointness of the operator A and on the fact that A is
a time-independent (constant) operator. We introduce the setting

�(t) = ‖u‖2 = (u, u). (1.38)
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Direct differentiation of (1.38) with allowance for (1.37) yields:

d�

dt
= 2

(
u,

∂u
∂t

)
= 2(u,Au). (1.39)

Taking the self-adjointness of A into account, after repeated differentiation we obtain:

d2�

dt2
= 4

(
Au,

∂u
∂t

)
= 4

∥∥∥∂u
∂t

∥∥∥2
. (1.40)

It follows from (1.38)–(1.40) and from the Cauchy–Bunyakowsky inequality that

�
d2�

dt2
−
(d�

dt

)2
= 4

(
‖u‖2

∥∥∥∂u
∂t

∥∥∥2
−
(

u,
∂u
∂t

)2)
≥ 0. (1.41)

Inequality (1.41) is equivalent to

d2

dt2
ln �(t) ≥ 0, (1.42)

i. e. the function ln �(t) is a convex function. From (1.42) we obtain

ln �(t) ≤ t
T

ln �(T ) +
(

1 − t
T

)
ln �(0).

From that it follows
�(t) ≤ (�(T ))t/T (�(0))1−t/T .

With regard to (1.38), we obtain the desired estimate for the solution of problem (1.20),
(1.37):

‖u(t)‖ ≤ ‖u(T )‖t/T ‖u(0)‖1−t/T . (1.43)

Consider now the solution of problem (1.20, (1.37) in the class of solutions bounded
in H , i.e.,

‖u(t)‖ ≤ M, 0 < t ≤ T . (1.44)

In the class of a priori constraints (1.44), from (1.43) we obtain the following estimate:

‖u(t)‖ ≤ Mt/T ‖u(0)‖1−t/T . (1.45)

The latter means that for the problem (1.20), (1.37) in the class of bounded solutions
there takes place continuous dependence of solution on initial data in the interval 0 <

t < T . On that basis, it makes sense to construct algorithms allowing approximate
solution of the ill-posed problem (1.20), (1.37) and such that, this way or another,
these algorithms can be used to separate out the class of bounded solutions. Besides,
typical of the approximate solution must be an estimate of type (1.45) that admits the
growth of the solution norm in time.
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1.4 Classification of inverse mathematical physics problems

A boundary value problem for a partial differential equation is characterized by setting
a master equation, a calculation domain, and boundary and initial conditions. That is
why among inverse problems in heat transfer one can distinguish coefficient inverse
problems, geometric inverse problems, boundary value inverse problems, and evolu-
tionary inverse problems.

1.4.1 Direct and inverse problems

In treating data of full-scale experiments, additional indirect measurements are nor-
mally used to draw a conclusion about internal inter-relations in the phenomenon or
process under study. If the structure of a mathematical model of the process is known,
then one can pose a problem on identification of the mathematical model, in which,
for instance, coefficients of the differential equation need to be determined. We assign
such problems to the class of inverse mathematical physics problems.

Problems encountered in mathematical physics can be classed considering different
characteristics. For instance, we can distinguish stationary problems for steady, time-
independent processes and phenomena. Nonstationary problems describe dynamic
processes, whose solution undergoes time variation. The demarcation line between
direct and inverse mathematical physics problems is less obvious.

From the general methodological standpoint, we can call direct problems those
problems for which causes are given and the quantities to be found are consequences.
In view of this, inverse problems are problems in which consequences are known and
causes are unknown. Yet, in practice such demarcation is not always easy to make.

In traditional courses on mathematical physics, for partial differential equations it is
common practice to formulate well-posed boundary value problems, which are classed
to direct problems. For second-order elliptic equations, additional conditions on the
solution (of the first, second, or third kind) are given on the domain boundary. From
the standpoint of cause-effect relations, the boundary conditions are causes, and the
solution is a consequence. For parabolic equations, in addition, an initial condition has
to be considered, and in the case of second-order hyperbolic equations the initial state
is to be specified by setting the solution and its time derivative.

In order not to overload the consideration with subtle terminological points, we
can say that it is the classical mathematical physics problems considered above that
we assign to the class of direct problems. These problems are characterized by the
necessity to find a solution from an equation with given coefficients and given right-
hand side, and from additional boundary and initial conditions.

Under inverse mathematical physics problems, we mean problems that cannot be
assigned to direct problems. In these problems, it is often required to determine not
only the solution, but also some lacking coefficients and/or conditions. It is the neces-
sity to determine not only the solution but also some parts of the mathematical model
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that serves an indicator that the problem of interest is an inverse problem.
From this point of view, inverse problems are characterized, first of all, by the lack

of some elements, elements in short that otherwise would allow one to assign the
problem of interest to the class of direct mathematical physics problems or, in other
words, elements making the problem an inverse problem. On the other hand, we must
compensate for the lacking information. That is why in inverse problems one has to
require additional information allowing him to hope that the solution can be uniquely
found.

Using the noted indicators, one can classify inverse mathematical physics problems.
It is natural to consider, first of all, those main characteristics that make a problem an
inverse problem. For direct mathematical physics problems, the solution is defined by
the equation (by the coefficients and by the right-hand side), by boundary conditions,
and (in the case of nonstationary problems) by initial conditions. Inverse problems
can be classified considering indications showing that some of the above-mentioned
conditions are not specified.

1.4.2 Coefficient inverse problems

We distinguish coefficient inverse problems, in which equation coefficients and/or the
right-hand side are unknown. As a typical example, consider the following parabolic
equation:

∂u
∂t

= ∂

∂x

(
k(x)

∂u
∂x

)
+ f (x, t), 0 < x < l, 0 < t ≤ T . (1.46)

In a simplest direct problem, it is required to find a function u(x, t) that satisfies
equation (1.46) and the conditions

u(0, t) = 0, u(l, t) = 0, 0 < t ≤ T, (1.47)

u(x, 0) = u0(x), 0 ≤ x ≤ l. (1.48)

In applied problems, unknown properties of a medium are often to be determined.
In the case under consideration, we can pose an identification problem for k(x). In
the simplest case of a homogeneous medium the unknown quantity is the value of
k(x) = const, whereas for a piecewise-homogeneous medium, several values of the
coefficient are to be determined. In the case of spatially dependent properties of the
medium, a coefficient problem on reconstruction of k = k(u) is of interest.

The list of possible statements of coefficient inverse problems is by no means ex-
hausted by the above problems and can be continued. Typical here is the problem for
equation (1.46) in which it is required to find two unknown functions {u(x, t), k(x)}.
The main specific feature of this inverse coefficient problem is its nonlinearity.

As a special problem, one can isolate a problem in which it is required to find the un-
known right-hand side f (x, t) of parabolic equation (1.46). More specific statements
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are related, for instance, with a particular case of

f (x, t) = η(t)ψ(x). (1.49)

Of interest here is the unknown time dependence of the source (right-hand side) with
known spatial distribution: in the representation (1.49), the function η(t) is unknown,
and the function ψ(x) is given.

If coefficients and/or the right-hand side of (1.46) are unknown, then, apart from
the conditions (1.47) and (1.48), one has to use some additional conditions. Such
conditions must be not few in number in order to make it possible to uniquely found
the solution of the inverse problem. If a coefficient is sought in the class of one-
dimensional functions, then additional data must also be given in the same class.

Let us, for instance, consider the inverse problem (1.46)–(1.49) in which two func-
tions, {u(x, y) and η(t)}, are to be found. Apart from the solution of the boundary
value problem (1.46)–(1.48), it is requited to find how the right-hand side depends on
time. In this case, additional information can have the form

u(x∗, t) = ϕ(t), 0 < x∗ < l, 0 < t ≤ T, (1.50)

i.e., the solution at each time is known not only on the boundary, but also at some
internal point x∗ of the calculation domain �.

In the case of inverse problems of type (1.46)–(1.50), primary attention must be
paid to uniqueness problems for their solutions. This matter is especially important in
the case in which nonlinear problems are treated (an example here is the problem on
determination of two functions {u(x, t), k(x)}).

1.4.3 Boundary value inverse problems

In the cases in which direct measurements at the boundary are unfeasible, we deal
with boundary value inverse problems. Here, missing boundary conditions can be
identified, for instance, from measurements performed inside the domain. Consider,
as an example, such an inverse problem for the parabolic equation (1.46).

We assume that measurements are unfeasible at the right end point of the segment
[0, l] but, instead, the solution is known at some internal point x∗, i.e., instead of
conditions (1.47), the following conditions are given:

u(0, t) = 0, u(x∗, t) = ϕ(t), 0 < t ≤ T . (1.51)

A typical statement of a boundary value inverse problem consists in determining the
flux on some part of the boundary inaccessible for measurements (in the case un-
der consideration, at x = l). This case corresponds to finding the pair of functions

{u(x, t), k(x)
∂u
∂x

(l, t)} from the conditions (1.46), (1.48), (1.51).
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1.4.4 Evolutionary inverse problems

The direct problem for nonstationary mathematical physics problems consists in set-
ting some initial conditions (see, for instance, (1.48)). We assign to evolutionary in-
verse problems inverse problems in which initial conditions (lacking in formulation of
the problem as a direct problem) need to be identified.

As applied to the direct problem (1.46)–(1.48), a simplest evolutionary inverse prob-
lem can be formulated as follows. Initial conditions (1.48) are not specified; instead,
the solution at the end time t = T is known:

u(x, T ) = uT (x), 0 < x < l. (1.52)

It is required to find the solution of equation (1.46) at preceding times (retrospective
inverse problem).

One can pose an inverse problem in which it is required to identify the initial state
using additional information about the solution at internal points (additional condition
of type (1.50)).

1.5 Exercises

Exercise 1.1 On the function set v(0) = 0, v(l) = 0, we define the operator

Au = − ∂

∂x

(
k(x)

∂u
∂x

)
, 0 < x < l.

Establish positive definiteness of A, i.e., derive the estimate (Av, v) ≥ δ(v, v), where
δ > 0.

Exercise 1.2 Prove the Friedrichs inequality, which states that

∫
�

u2(x) dx ≤ M0

2∑
α=1

∫
�

( ∂u
∂xα

)2
dx,

provided that u(x) = 0, x ∈ ∂�.

Exercise 1.3 Prove the Gronwall lemma (Lemma 1.1).

Exercise 1.4 Show that for the solution of problem (1.18)–(1.20) the following a priori
estimate holds:

‖u(t)‖2 ≤ exp(t)
(
‖u0‖2 +

∫ t

0
exp(−θ)‖ f (θ)‖2

)
dθ.

Exercise 1.5 Let A ≥ δE , δ = const > 0. Then, for the solution of problem (1.19),
(1.20) we have

‖u(t)‖ ≤ exp(−δt)
(
‖u0‖ +

∫ t

0
exp(δθ)‖ f (θ)‖

)
dθ.
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Exercise 1.6 Consider the Cauchy problem for the second-order evolution equation

d2u
dt2

+ Au = f (t), 0 < t ≤ T,

u(0) = u0,
du
dt

(0) = u1,

with A = A∗ > 0. Obtain the following estimate of solution stability with respect to
initial data and the right-hand side:

‖u(t)‖2
∗ ≤ exp(t)

(
‖u0‖2

A + ‖v0‖2 +
∫ t

0
exp (−θ)‖ f (θ)‖2 dθ

)
,

where
‖u‖2

∗ =
∥∥∥du

dt

∥∥∥2
+ ‖u‖2

A

and ‖v‖2
D = (Dv, v) for the self-adjoint, positive operator D.

Exercise 1.7 Prove the maximum principle (Theorem 1.5).

Exercise 1.8 Prove the maximum principle for the parabolic equation, which states
that the solution of the boundary value problem

∂u
∂t

= ∂

∂x

(
k(x)

∂u
∂x

)
, 0 < x < l, 0 < t ≤ T,

u(0, t) = μ0(t), u(l, t) = μ1(t), 0 < t ≤ T,

u(x, 0) = u0(x), 0 ≤ x ≤ l

assumes its maximum and minimum values either at boundary points or at the initial
time, i.e.,

min
0<x<l, 0<t≤T

{μ0(t), μ1(t), u0(x)} ≤ u(x, t)

≤ max
0<x<l, 0<t≤T

{μ0(t), μ1(t), u0(x)}.
Exercise 1.9 Consider the boundary value problem

−
2∑

α=1

∂

∂xα

(
k(x)

∂u
∂xα

)
+ q(x)u = f (x), x ∈ �,

u(x) = 0, x ∈ ∂�,

where
k(x) ≥ κ > 0, q(x) ≥ 0, x ∈ �.

Invoking the Friedrichs inequality (Exercise 1.5.2), derive the following estimate for
solution stability with respect to the right-hand side:

‖u‖ ≤ M1‖ f ‖, ‖u‖2 =
∫

�

u2(x) dx.
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Exercise 1.10 Taken the problem

−
2∑

α=1

∂2u
∂x2

α

= 0,

u(0, x2) = 0, u(l, x2) = 0,

u(x1, 0) = u0(x1),
∂u
∂x2

(x1, 0) = u1(x1)

as an example, show that the Cauchy problem for elliptic equations is ill-posed (exam-
ple by J. Hadamard).

Exercise 1.11 Examine whether the boundary inverse problem for the parabolic equa-
tion

∂u
∂t

= ∂2u
∂x2

, 0 < x < l, 0 < t ≤ T,

u(0, t) = μ0(t),
∂u
∂x

(0, t) = μ1(t), 0 < t ≤ T,

u(x, 0) = u0(x), 0 ≤ x ≤ l

is a well- or ill-posed problem.

Exercise 1.12 Prove that for any solution of the equation

d2u
dt2

− Au = 0, 0 ≤ t ≤ T

with a self-adjoint operator A there holds the estimate

‖u(t)‖2 ≤ exp(2t (T − t))(‖u(T )‖2 + χ)t/T (‖u(0)‖2 + χ)1−t/T − χ,

χ = 1
2

(
(Au(0), u(0)) −

(∂u
∂t

(0),
∂u
∂t

(0)
))

,

which simultaneously proves that the Cauchy problem for this equation is a condition-
ally well-posed problem in the class of bounded solutions.



2 Boundary value problems for ordinary differ-

ential equations

We start discussing the matter of numerical solution of mathematical physics problems
with the boundary value problem for the second-order ordinary differential equation.
Various approaches are used in approximation of the differential problem, primary
attention being paid to finite-difference approximations. Based on an estimate of sta-
bility of the finite-difference solution with respect to the right-hand side and boundary
conditions, we examine the convergence of approximate solution to the exact solu-
tion. In solving finite-difference problems arising on discretization of one-dimensional
problems, direct linear algebra methods are used. We present a FORTRAN 77 program
that solves boundary value problems for the second-order ordinary differential equa-
tion and give computation data obtained for several model problems.

2.1 Finite-difference problem

Below, the approaches to the approximation of boundary value mathematical physics
problems are illustrated with the example of a boundary value problem for the second-
order ordinary differential equation.

2.1.1 Model differential problem

As a basic equation, consider the second-order ordinary differential equation

− d
dx

(
k(x)

du
dx

)
+ q(x)u = f (x), 0 < x < l (2.1)

with variable coefficients

k(x) ≥ κ > 0, q(x) ≥ 0.

Elliptic equations of second order, prototyped by equation (2.1), simulate many
physico-mechanical processes.

For the unknown function u(x) to be uniquely found, equation (2.1) must be sup-
plemented with two boundary conditions given at the end points of the segment [0, l].
Here, the function u(x) (first-kind boundary condition), the flux w(x) = −k(x) du

dx (x)

(second-kind boundary condition), or a linear combination of the above conditions
(third-kind boundary condition) can be considered:

u(0) = μ1, u(l) = μ2, (2.2)

−k(0)
du
dx

(0) = μ1, k(l)
du
dx

(l) = μ2, (2.3)
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−k(0)
du
dx

(0) + σ1u(0) = μ1, k(l)
du
dx

(l) + σ2u(l) = μ2. (2.4)

In the case of problems with discontinuous coefficients (contact of two media), ad-
ditional conditions need to be formulated. Of such additional conditions, a simplest
one (ideal-contact condition) for equation (2.1) is given by the requirement that the
solution and the flux both must be continuous at the contact point x = x∗:

[u(x)] = 0,
[
k(x)

du
dx

]
= 0, x = x∗.

Here, we use the setting

[g(x)] = g(x + 0) − g(x − 0).

Worthy of being considered at length here are problems with a non-self-adjoint op-
erator; in one of such cases, for instance, we have:

− d
dx

(
k(x)

du
dx

)
+ v(x)

du
dx

+ q(x)u = f (x), 0 < x < l. (2.5)

The convection-diffusion-reaction equation (2.5) is a model one in consideration of
processes dealt with in continuum mechanics.

In the description of deformed plates and shells, and also in hydrodynamic prob-
lems, mathematical models involve fourth-order elliptic equations. The consideration
of such models can be started with the boundary value problem for the fourth-order
ordinary differential equation. A simplest such problem is the problem for the equation

d4u
dx4

(x) = f (x), 0 < x < l. (2.6)

Here, two pairs of boundary conditions are considered at the end points of the segment.
For instance, equation (2.6) is supplemented with first-kind conditions:

u(0) = μ1, u(l) = μ2, (2.7)

du
dx

(0) = ν1,
du
dx

(l) = ν2. (2.8)

In other statements of boundary value problems for equation (2.6) boundary conditions
at the end points can also involve the second and/or third derivative.

2.1.2 Difference scheme

We denote as ω̄ an uniform grid, with a step size h over the interval �̄ = [0, l]:

ω̄ = {x | x = xi = ih, i = 0, 1, . . . , N , Nh = l}.
Here, ω is the set of inner nodal points, and ∂ω is the set of boundary nodal points.
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For a sufficiently smooth function u(x), the Taylor series expansion in a vicinity of
an arbitrary internal node x = xi yields:

ui±1 = ui ± h
du
dx

(xi ) + h2

2
d2u
dx2

(xi ) ± h3

6
d3u
dx3

(xi ) + O(h4).

Here we use the setting ui = u(xi ). Hence, for the left difference derivative we have:

ux̄ ≡ ui − ui−1

h
= du

dx
(xi ) − h

2
d2u
dx2

(xi ) + O(h2). (2.9)

The subscript i is omitted here. In this way, the left difference derivative ux̄ approx-
imates the first derivative du/dx accurate to O(h) at each of the internal nodes if
u(x) ∈ C (2)(�).

In a similar manner, for the right difference derivative we obtain:

ux ≡ ui+1 − ui

h
= du

dx
(xi ) + h

2
d2u
dx2

(xi ) + O(h2). (2.10)

With a three-point approximation pattern (involving the nodes xi−1, xi , and xi+1), one
can use the central difference derivative

u ◦
x ≡ ui+1 − ui−1

2h
= du

dx
(xi ) + h2

3
d3u
dx3

(xi ) + O(h3) (2.11)

that approximates the derivative du/dx accurate to the second order if u(x) ∈ C (3)(�).
For the second derivative d2u/dx2, similar manipulations yield:

ux̄x = ux − ux̄

h
= ui+1 − 2ui + ui−1

h2
.

The latter difference operator approximates the second derivative accurate to the sec-
ond order at the node x = xi if u(x) ∈ C (4)(�).

Difference schemes for problem (2.1), (2.2) with sufficiently smooth coefficients
can be constructed based on immediate replacement of differential operators with their
difference analogues.

Dwell now at greater length on the approximation of the one-dimensional operator

Au = − d
dx

(
k(x)

du
dx

)
+ q(x)u. (2.12)

Consider the difference expression

(aux̄)x = ai+1

h
ux − ai

h
ux̄ .
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Taking into account the representations (2.9), (2.10) for the local approximation inac-
curacy of first derivatives with directed differences, we obtain:

(aux̄)x = ai+1 − ai

h
du
dx

(xi ) + ai+1 + ai

2
d2u
dx2

(xi )

+ ai+1 − ai

6
h

d3u
dx3

(xi ) + O(h2). (2.13)

To find the coefficients ai , compare (2.13) with the differential expression

d
dx

(
k(x)

du
dx

)
= dk

dx
du
dx

+ k(x)
d2u
dx2

.

It seems reasonable to choose the coefficients ai so that we have

ai+1 − ai

h
= dk

dx
(xi ) + O(h2), (2.14)

ai+1 + ai

2
= k(xi ) + O(h2). (2.15)

In this case, the difference operator

Ay = −(ayx̄)x + cy, x ∈ ω (2.16)

with, for instance, c(x) = q(x), x ∈ ω, approximates the difference operator (2.12)
accurate to O(h2).

In particular, conditions (2.15) and (2.16) are satisfied with the following formulas
for the coefficients ai :

ai = ki−1/2 = k(xi − 0.5h),

ai = ki−1 + ki

2
,

ai = 2
( 1

ki−1
+ 1

ki

)−1
.

(2.17)

Alternative (other than (2.16) and (2.17)) possibilities in constructing the difference
operator A will be outlined below.

To the differential problem (2.1), (2.2), we put into correspondence the difference
problem

−(ayx̄)x + cy = ϕ, x ∈ ω, (2.18)

y0 = μ1, yN = μ2, (2.19)

with c(x) = q(x), ϕ(x) = f (x), x ∈ ω, for instance.
Boundary value mathematical physics problems can be conveniently considered

with homogeneous boundary conditions. The same in full measure applies to finite-
difference problems. The transition from inhomogeneous to homogeneous boundary
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conditions itself is not always obvious in differential problems. For finite-difference
problems, the situation is simpler in a sense: inhomogeneous boundary conditions can
be included into the right-hand side of the finite-difference equation at near-boundary
nodes. By way of example, consider the finite-difference problem (2.18), (2.19).

We consider the set of mesh functions vanishing at boundary nodes, i.e. such that
y0 = 0, yN = 0. Hence, we have to do with a mesh function y(x) that approximates
the function u(x) only at internal nodes of the calculation grid. For x ∈ ω, instead of
the difference problem (2.18), (2.19), we use the operator equation

Ay = ϕ, x ∈ ω. (2.20)

At near-boundary nodes, we use approximations of type

−1
h

(
a2

y2 − y1

h
− a1

y1 − μ1

h

)
+ c1 y1 = f1.

Hence,
(Ay)1 = ϕ1,

where
ϕ1 = f1 + a1μ1

h2
.

Thus, the difference problem (2.20) with the operator A defined by (2.16) and act-
ing on the set of mesh functions vanishing at ∂ω is put into correspondence to the
differential problem (2.1), (2.2). Here, the right-hand side of (2.20),

ϕ(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1 + a1μ1

h2
, x = x1,

f (x), x = xi , i = 2, 3, . . . , N − 2,

fN−1 + aN−1μ2

h2
, x = xN−1,

looks unusual only at near-boundary nodes.

2.1.3 Finite element method schemes

Stationary mathematical physics problems can be discretized using the finite element
method (FEM). For the model one-dimensional equation (2.1) with the homogeneous
boundary conditions

u(0) = 0, u(l) = 0, (2.21)

we construct a finite element scheme based on the Galerkin method. Using simplest
piecewise linear elements, we represent the approximate solution as

y(x) =
N−1∑
i=1

yiwi (x), (2.22)
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wi(x)

xxi+1xi_1 xi
Figure 2.1 Piecewise linear trial functions

where the trial functions wi (x) have the form (see Figure 2.1)

wi (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < xi−1,

x − xi−1

h
, xi−1 ≤ x ≤ xi ,

xi+1 − x
h

, xi ≤ x ≤ xi+1,

0, x > xi+1.

The expansion coefficient can be found from a system of linear equations obtained
by multiplying the initial equation (2.1) by a verifying function wi (x) and integrating
the resulting equation over the entire domain. In view of the finiteness of the trial
functions, we obtain:∫ xi+1

xi−1

k(x)
dy
dx

dwi

dx
dx +

∫ xi+1

xi−1

q(x)y(x)wi (x) dx =
∫ xi+1

xi−1

f (x)wi (x) dx .

Substitution of (2.22) yields the three-point difference equation (2.20). For A, we
obtain representation (2.16) with a mesh function ai that depends not only on k(x), but
also on q(x):

ai = 1
h

∫ xi

xi−1

k(x) dx − 1
h

∫ xi

xi−1

q(x)(x − xi−1)(xi − x) dx . (2.23)

For smooth coefficients k(x), application of simplest quadrature formulas yields
(2.17).

For the right-hand side and for the coefficient ci in (2.16) we obtain:

ci = 1
h2

( ∫ xi

xi−1

q(x)(x − xi−1) dx +
∫ xi

xi−1

q(x)(xi+1 − x) dx
)
, (2.24)

ϕi = 1
h2

( ∫ xi

xi−1

f (x)(x − xi−1) dx +
∫ xi

xi−1

f (x)(xi+1 − x) dx
)
. (2.25)
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Even in the simplest case of constant coefficients k(x) and q(x), we arrive at an un-
usual approximation of the lowest term in A.

Difference schemes with basis functions chosen in the form of piecewise polyno-
mials of higher degree (quadratic, cubic, etc.) can be constructed in a similar manner.
In the treatment of convection-diffusion problems (see equation (2.5)), FEM schemes
based on the Petrov–Galerkin method have gained acceptance, in which trial and ver-
ifying functions differ from each other. Along this line, in particular, finite element
analogues of ordinary difference schemes with directed differences can be constructed.

2.1.4 Balance method

Normally, differential equations reflect one or another law of conservation for elemen-
tary volumes (integral conservation laws) on contraction of the volumes to zero. In
fact, construction of a discrete problem implies a reverse transition from a differential
to an integral model. One can reasonably demand that, upon such a transition, the con-
servation laws remained fulfilled. Difference schemes expressing conservation laws
on a grid are called conservative difference schemes.

Construction of conservative finite-difference schemes can be reasonably started
from conservation laws (balances) for individual meshes of the difference scheme.
This construction method for conservative difference schemes received the name
integro-interpolation method (balance method). This approach is also known as finite-
volume method. The integro-interpolation method was proposed by A. N. Tikhonov
and A. A. Samarskii in the early 50ths.

Consider the integro-interpolation method as applied to construction of a difference
scheme for the model one-dimensional problem (2.1), (2.2). Let us consider Q(x) =
−k(x)du/dx . We choose the control volumes as the segments xi−1/2 ≤ x ≤ xi+1/2,
where xi−1/2 = (i − 1/2)h. Integration of (2.1) over the control volume xi−1/2 ≤ x ≤
xi+1/2 yields:

Qi+1/2 − Qi−1/2 +
∫ xi+1/2

xi−1/2

q(x)u(x) dx =
∫ xi+1/2

xi−1/2

f (x) dx . (2.26)

The balance relation (2.26) reflects a conservation law for the segment xi−1/2 ≤
x ≤ xi+1/2. The quantity Qi±1/2 is the flux through the section xi±1/2. Unbalance
between these fluxes is caused by distributed sources (right-hand side of (2.26)) and
by additional sources (integral in the left-hand side of the equation).

To derive a difference equation from the balance relation (2.26), one has to use
some completion of mesh functions. We seek the solution itself at integer nodes (y(x),
x = xi ), and fluxes, at half-integer nodes (Q(x), x = xi+1/2). We express the fluxes
at half-integer nodes in terms of the values of u(x) at nodal points. To this end, we
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integrate the relation
du
dx

= − 1
k(x)

Q(x) over the segment xi−1 ≤ x ≤ xi :

ui−1 − ui =
∫ xi

xi−1

Q(x)

k(x)
dx ≈ Qi−1/2

∫ xi

xi−1

dx
k(x)

.

We denote

ai =
(1

h

∫ xi

xi−1

dx
k(x)

)−1
. (2.27)

Then, we obtain

Qi−1/2 ≈ −ai ux̄,i , Qi+1/2 ≈ −ai+1ux,i .

For the right-hand side, we have:

ϕi = 1
h

∫ xi+1/2

xi−1/2

f (x) dx .

In view of the chosen completion, we put∫ xi+1/2

xi−1/2

q(x)u(x) dx ≈ ci ui ,

where

ci = 1
h

∫ xi+1/2

xi−1/2

q(x) dx .

Finally, in calculating the mesh function ai by formulas (2.27) (compare (2.17)) we
arrive at the difference scheme (2.16).

The above conservative schemes belong to the class of homogeneous difference
schemes (here, the coefficients of the difference equation are calculated at all grid
nodes by one and the same formulas). In much the same manner to the balance
method, difference schemes for more general problems can be constructed, including
problems with boundary conditions (2.3), (2.4), problems specified on non-uniform
grids, multi-dimensional problems, etc. That is why the integro-interpolation method
is distinguished as a generic one in construction of discrete analogues of mathematical
physics problems.

2.2 Convergence of difference schemes

The key point in consideration of discrete analogues of boundary value problems is
examination of closeness of approximate solution to the exact solution. Based on
a priori estimates of solution stability for the difference problem, here we give an
estimate for the rate of convergence in mesh Hilbert spaces in numerical solution of
the model boundary value problem (2.1), (2.2).
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2.2.1 Difference identities

Recall some notions in use in the theory of difference schemes. We assume that a
uniform grid

ω̄ = {x | x = xi = ih, i = 0, 1, . . . , N , Nh = l},

is introduced over the segment [0, l]. Here, ω is the set of internal nodes:

ω = {x | x = xi = ih, i = 1, 2, . . . , N − 1, Nh = l}.

For other parts of ω̄ we use the following settings:

ω+ = {x | x = xi = ih, i = 1, 2, . . . , N , Nh = l},
ω− = {x | x = xi = ih, i = 0, 1, . . . , N − 1, Nh = l}.

On the set of nodes ω and ω± we define the scalar products

(y, w) ≡
∑
x∈ω

y(x)w(x)h,

(y, w)± ≡
∑
x∈ω±

y(x)w(x)h.

Let us also give difference analogues to the differentiation formula for the product
of two functions and to the integration-by-parts formula. With the previously intro-
duced definitions of the operators of the right and left difference derivatives, one can
immediately check the validity of the following equalities:

(yw)x̄,i = yi−1wx̄,i + wi yx̄,i = yiwx̄,i + wi−1 yx̄,i ,

(yw)x,i = yi+1wx,i + wi yx,i = yiwx,i + wi+1 yx,i .
(2.28)

These equalities give the difference analogue of the differentiation formula

d
dx

(yw) = y
dw

dx
+ w

dy
dx

.

The analogues for the integration-by-parts formula

∫ b

a

dy
dx

w dx = y(b)w(b) − y(a)w(a) −
∫ b

a
y

dw

dx
dx

are the finite-difference identities

(yx , w) = −(y, wx̄)
+ + yNwN − y1w0,

(yx̄ , w) = −(y, wx)
− + yN−1wN − y0w0.

(2.29)
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Replacing yi with ai yx̄,i in (2.29), we obtain the first Green difference formula:

((ayx̄)x , w) = −(ayx̄ , wx̄)
+ + aN yx̄,NwN − a1 yx,0w0. (2.30)

The second Green difference formula is

((ayx̄)x , w) − (y, (awx̄)x)

= aN (yx̄,NwN − yNwx̄,N ) − a1(yx,0w0 − y0wx,0). (2.31)

Formulas (2.30) and (2.31) take a simpler form,

((ayx̄)x , w) = −(ayx̄ , wx̄)
+, (2.32)

((ayx̄)x , w) = (y, (awx̄)x), (2.33)

for mesh functions y(x) and w(x) vanishing at x = 0 and x = l (on ∂ω).

2.2.2 Properties of the operator A

For the model problem (2.1), (2.2), we have constructed the difference scheme (2.20),
in which the difference operator A is defined on the set of mesh functions y(x), x ∈ ω̄

vanishing on ∂ω by (see (2.16))

Ay = −(ayx̄)x + cy, x ∈ ω, (2.34)

where, for instance, a(x) = k(x − 0.5h), c(x) = q(x), x ∈ ω+. We introduce the
norm in the mesh Hilbert space H by the relation ‖y‖ = (y, y)1/2.

Like in the differential case, the difference operator A in H is a self-adjoint operator:

A = A∗. (2.35)

The equality (Ay, w) = (y, Aw) readily follows from (2.33).
With the usual constraints k(x) ≥ κ > 0, q(x) ≥ 0, the following lower estimate

for A holds:
A ≥ κλ0 E . (2.36)

Here λ0 is the lowest eigenvalue of the difference operator of the second derivative. In
the case of a uniform grid, we have:

λ0 = 4
h2

sin2 πh
2l

≥ 8
l2

.

Let us obtain such a lower estimate for A based on the following difference Friedrichs
inequality.

Lemma 2.1 For all mesh functions vanishing on ∂ω, the following inequality holds:

‖y‖2 ≤ M0(‖yx̄‖+)2, ‖w‖+ ≡ ((w, w)+)1/2, M0 = l2/8. (2.37)
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Proof. For such a mesh function yi = y(xi ) we have:

yi =
i∑

k=1

yx̄,i h, (2.38)

yi = −
N∑

k=i+1

yx̄,i h. (2.39)

To estimate the right-hand sides of (2.38) and (2.39), we use the inequality

∣∣∣∑
k

akbk

∣∣∣2 ≤
∑

k

a2
k

∑
k

b2
k .

We put ak = yx̄,i h1/2 and bk = h1/2; then, from (2.38) and (2.39) we obtain:

y2
i ≤ xi

i∑
k=1

(yx̄,k)
2h, (2.40)

y2
i ≤ (l − xi )

N∑
k=i+1

(yx̄,k)
2h. (2.41)

Let us consider n = (N −1)/2 if, for instance, N is an odd number. The case in which
N is even will be considered separately. From (2.40) and (2.41) we have:

y2
i ≤ xi

n∑
k=1

(yx̄,k)
2h, 1 ≤ i ≤ n,

y2
i ≤ (l − xi )

N∑
k=n+1

(yx̄,k)
2h, n + 1 < i ≤ N .

We multiply each of the above inequalities by h and add the inequalities together:

N∑
i=1

y2
i h ≤

n∑
i=1

xi h
n∑

k=1

(yx̄,k)
2h +

N∑
i=n+1

(l − xi )

N∑
k=n+1

(yx̄,k)
2h. (2.42)

Taking into account that

n∑
i=1

xi h = xnxn+1

2
<

l2

8
,

N∑
i=n+1

(l − xi )h <
l2

8
,

from (2.42) we obtain the estimate (2.37).
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The above proof can be extended, with no substantial changes, to the case of a
non-uniform grid. The same note applies to multi-dimensional problems provided that
rectangular or general irregular grids are used.

For the difference operator (2.34) with bounded coefficients k(x) and q(x) as for
an operator in the finite-dimensional space H , the following upper estimate is useful.
Note that it is not valid for the differential operator A (unbounded operator).

Lemma 2.2 The estimate

(Ay, y) ≤ M1(y, y) (A ≤ M1 E), (2.43)

with the constant

M1 = 4
h2

max
1≤i≤N−1

ai + ai+1

2
+ max

1≤i≤N−1
ci

holds.

Proof. Indeed, we have:

(Ay, y) = (a(yx̄)
2, 1) + (cy, y) =

N∑
i=1

ai

h
(yi − yi−1)

2 +
N∑

i=1

ci y2
i h.

We use the inequality (a + b)2 ≤ 2a2 + 2b2, the condition for positiveness of the
mesh functions a(x), c(x), x ∈ ω, and the conditions y(x) = 0, x /∈ ω; then, we
obtain:

(Ay, y) ≤
N∑

i=1

2
h

(ai + ai+1)y2
i +

N∑
i=1

ci y2
i h.

This yield the desired estimate (2.43).

2.2.3 Accuracy of difference schemes

To approximately solve the problem (2.1), (2.2), we use the difference scheme

Ay = ϕ(x), x ∈ ω, (2.44)

y0 = μ1, yN = μ2. (2.45)

To examine the accuracy of (2.44), consider the problem for the inaccuracy

z(x) = y(x) − u(x), x ∈ ω̄.

For this inaccuracy, from (2.44) and (2.45) we obtain the difference problem

Az = ψ(x), x ∈ ω, (2.46)
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which, in view of the exact approximation of boundary conditions (2.2), is considered
on the set of mesh functions z(x) vanishing at the boundary. In (2.46) ψ(x) is the
approximation inaccuracy:

ψ(x) = ϕ(x) − Au, x ∈ ω. (2.47)

Considering the case of sufficiently smooth coefficients and a sufficiently smooth
right-hand side of (2.1), in using (2.34) for the approximation inaccuracy we obtain:

ψ(x) = O(h2), x ∈ ω. (2.48)

Let us formulate now a simplest statement concerning the accuracy of the difference
scheme (2.44), (2.45) used to solve the model one-dimensional problem (2.1), (2.2).

Theorem 2.3 For the inaccuracy of the difference solution found by formulas (2.44),
(2.45), the following a priori estimate holds:

‖zx̄‖+ ≤ M1/2
0

κ
‖ψ‖. (2.49)

Proof. We scalarwise multiply the equation (2.46) for the inaccuracy by z(x), x ∈ ω

to find that
(Az, z) = (ψ, z). (2.50)

For the left-hand side of this equality, we have

(Az, z) ≥ κ(‖zx̄‖+)2,

whereas the right-hand side can be estimated from below using the Friedrichs inequal-
ity (2.37):

(ψ, z) ≤ ‖ψ‖‖z‖ ≤ M1/2
0 ‖ψ‖‖zx̄‖+.

Substitution into (2.50) yields the desired estimate (2.49).

From the expression (2.48) for the local approximation inaccuracy and from the a
priori estimate (2.49), convergence of the difference solution to the exact solution with
the second-order accuracy follows.

2.3 Solution of the difference problem

On discretization of one-dimensional convection-diffusion problems, we arrive at
three-point difference problems. The difference solutions can be found using tradi-
tional direct linear algebra methods. Below, the sweep method (Thomas algorithm) is
outlined, presenting, as everybody knows, the classical Gauss algorithm for matrices
with special banded structure.
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2.3.1 The sweep method

Consider, as a model problem, the problem (2.1), (2.2). On a uniform grid ω̄ with
a step size h, we put into correspondence to this differential problem for equation
(2.1) the difference problem (2.34), (2.44), (2.45). We write the difference problem as
follows:

−αi yi−1 + γi yi − βi yi+1 = ϕi , i = 1, 2, . . . , N − 1, (2.51)

y0 = μ1, yN = μ2. (2.52)

From (2.34) and (2.44) we obtain the following expressions for the coefficients:

αi = 1
h2

ki−1/2, βi = 1
h2

ki+1/2,

γi = 1
h2

(ki−1/2 + ki+1/2) + ci , i = 1, 2, . . . , N − 1.

To find the solution of (2.51), (2.52) by the sweep method (Thomas algorithm), we
use the representation

yi = ξi+1 yi+1 + ϑi+1, i = 0, 1, . . . , N − 1 (2.53)

with still undetermined coefficients ξi , ϑi . Substitution of yi−1 = ξi yi + ϑi into (2.51)
yields:

(γi − αiξi )yi − βi yi+1 = ϕi + αiϑi , i = 1, 2, . . . , N − 1.

Now, we use representation (2.53) and obtain

((γi − αiξi )ξi+1 − βi )yi+1 = ϕi + αiϑi + (γi − αiξi )ϑi+1,

i = 1, 2, . . . , N − 1.

This equality is fulfilled with arbitrary yi+1 if

(γi − αiξi )ξi+1 − βi = 0,

ϕi + αiϑi + (γi − αiξi )ϑi+1 = 0, i = 1, 2, . . . , N − 1.

From here, we obtain the following recurrence formulas for the sweep coefficients
ξi , ϑi :

ξi+1 = βi

γi − αiξi
, i = 1, 2, . . . , N − 1, (2.54)

ϑi+1 = ϕi + αiϑi

γi − αiξi
, i = 1, 2, . . . , N − 1. (2.55)

To start the calculations, we write the boundary condition (2.52) at the left end in the
form of (2.53), i.e. as y0 = ξ1 y1 + ϑ1, so that

ξ1 = 0, ϑ1 = μ1. (2.56)

After the sweep coefficients are calculated by the recurrence formulas (2.54)–(2.56),
we can found, using formula (2.53) and the second boundary condition (2.52), the
solution itself.
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2.3.2 Correctness of the sweep algorithm

Let us formulate conditions sufficient for the use of the above sweep-method formulas.
We do not consider here the whole scope of problems that arise in substantiation of
the sweep method. Here, we restrict ourselves just to the matter of correctness of
the method, which is equivalent in the case of interest to the requirement of nonzero
denominator in (2.54), (2.55).

Lemma 2.4 Let the following conditions be fulfilled for system (2.51), (2.52):

|αi | > 0, |βi | > 0, i = 1, 2, . . . , N − 1, (2.57)

|γi | ≥ |αi | + |βi |, i = 1, 2, . . . , N − 1. (2.58)

Then, algorithm (2.53)–(2.56) is correct, i.e. in the formulas (2.54), (2.55) we have
γi − αiξi �= 0.

Proof. We are going to show that

|ξi | ≤ 1, i = 1, 2, . . . , N − 1. (2.59)

In view of (2.57), (2.58), under such constraints on the sweep coefficients we have:

|γi − αiξi | ≥ | |γi | − |αi | |ξi | | ≥ | |γi | − |αi | | ≥ |βi | > 0.

We will prove (2.59) by induction. For i = 1, inequality (2.59) holds. Suppose that
inequality (2.59) holds for i ; then, by (2.54) we obtain for i + 1:

|ξi+1| = |βi |
|γi − αiξi | ≤ |βi |

|βi | ≤ 1.

Provided that inequality (2.59) takes place, we also have: γi − αiξi �= 0.

For our model problem (2.1), (2.2), in using the difference scheme (2.51), (2.52)
conditions (2.57), (2.58) for sweep correctness will be fulfilled if

αi > 0, βi > 0, γi ≥ αi + βi , i = 1, 2, . . . , N − 1.

These conditions fulfilled, the maximum principle holds for the difference solution of
problem (2.51), (2.52), i.e., the difference scheme is monotone. This matter will be
discussed in more detail below.
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2.3.3 The Gauss method

There exist a variety of versions of the sweep method more accurately taking into
account particular specific features of particular problems. For instance, one can ad-
here the classical direct solution method for systems of linear algebraic equations, the
Gauss method (LU-decomposition, compact scheme of the Gauss method).

In matrix form, the difference problem (2.51), (2.52) looks as

Ay = ϕ, x ∈ ω (2.60)

with a properly defined right-hand side (see (2.20)). In view of the established proper-
ties of the operator A, the matrix A is a positive-definite matrix. In the latter case, the
major (corner) minors of the matrix are all positive and, hence, an LU-decomposition
A = LU takes place.

In the notation of (2.60), for the matrix A we have the following representation:

A =

⎡
⎢⎢⎢⎢⎢⎣

γ1 −β1 0 . . . 0
−α2 γ2 −β2 . . . 0

0 −α3 γ3 . . . 0
...

...
...

. . .
...

0 0 0 . . . γN−1

⎤
⎥⎥⎥⎥⎥⎦ .

In view of the banded structure of the initial matrix A, for the elements of the LU-
decomposition we can conveniently put

L =

⎡
⎢⎢⎢⎢⎢⎣

ξ−1
2 0 0 . . . 0

−α2 ξ−1
3 0 . . . 0

0 −α3 ξ−1
4 . . . 0

...
...

...
. . .

...

0 0 0 . . . ξ−1
N

⎤
⎥⎥⎥⎥⎥⎦ , U =

⎡
⎢⎢⎢⎢⎢⎣

1 −ξ2β1 0 . . . 0
0 1 −ξ3β2 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦ .

The diagonal elements of L are given by the following recurrence relations:

ξi+1 = 1
γi − βi−1αiξi

, i = 1, 2, . . . , N − 1, ξ1 = 0. (2.61)

The solution of the equation Lϑ = ϕ is given by

ϑi+1 = ϕi + αiϑi

γi − βi−1αiξi
, i = 1, 2, . . . , N − 1, ϑ1 = 0. (2.62)

Now, from the system U y = ϑ we obtain the solution of problem (2.60):

yi = ξi+1βi yi+1 + ϑi+1, i = 0, 1, . . . , N − 1, yN = 0. (2.63)
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Formulas (2.61)–(2.63) for the LU-decomposition stem from the above-described
sweep algorithm (2.53)–(2.56) on the substitution

ξi �−→ βi−1ξi , i = 1, 2, . . . , N .

And vice versa (which is more correct), sweep formulas (2.53)–(2.56) follow from
the formulas of the Gauss-method compact scheme applied to the difference problem
(2.51), (2.52).

2.4 Program realization and computational examples

The matter of numerical solution of a boundary value problem for the convection-
diffusion equation is considered, the problem being a model one in continuum me-
chanics. Two types of difference schemes are constructed, with central differences
of second approximation order and directed differences of first order used to approx-
imate the convective-transfer operator. A program that solves the model problem and
computational results obtained are presented.

2.4.1 Problem statement

In the theoretical consideration of approximate solution methods for boundary value
problems for ordinary differential equations, we have restricted ourselves to the case of
the simplest boundary value problem (2.1), (2.2). The matter of practical implementa-
tion of the numerical methods will be illustrated below for an example of a somewhat
more general problem for an equation of type (2.5).

Consider the boundary value Dirichlet problem for the convection-diffusion equa-
tion:

− d
dx

(
k(x)

du
dx

)
+ v(x)

du
dx

= f (x), 0 < x < l, (2.64)

u(0) = μ1, u(l) = μ2 (2.65)

with k(x) ≥ κ > 0.
In many practical problems, the prevailing contribution can be either due to the dif-

fusion term (the term with diffusivity k(x) in (2.64)) or due to convective transfer (the
term with velocity v(x)). The importance of convective transfer can be evaluated by
the Peclet number, that arises when one nondimensionalizes the convection-diffusion
equation:

Pe = v0l
k0

. (2.66)

Here v0 is the characteristic velocity, and k0 is the characteristic diffusivity. In the
equation of motion for a continuum medium, an analogous parameter is the Reynolds
number.
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Figure 2.2 Exact solution of the convection-diffusion problem

In the case of Pe � 1, we have a process with dominating diffusion, whereas in the
case of Pe � 1 convection prevails. In the former case, we arrive at regularly per-
turbed problems (small parameter Pe−1 at low-order derivatives), whereas in the case
of strongly dominating convection, we obtain singularly perturbed problems (small
parameter Pe−1 at hogh-order derivatives). Typical for singularly perturbed problems
is the occurrence of regions where the solution displays considerable variations, such
regions, for instance, being boundary layers and internal transition layers.

Computational algorithms for approximate solution of convection-diffusion prob-
lems can be understood considering the problem with constant coefficients and homo-
geneous boundary conditions:

k(x) = κ, v(x) = 1, f (x) = 1, μ1 = 0, μ2 = 0. (2.67)

The exact solution of problem (2.64), (2.65), (2.66) is

u(x) = x − l
exp (x/κ) − 1
exp (l/κ) − 1

.

Specific features inherent to the problem with dominating convection (low diffusion
coefficients) can be figured out considering Figure 2.2 that shows the solution of the
problem with l = 1 and κ = 1, 0.1, and 0.01. As the diffusion coefficient decreases,
near the right boundary there forms a boundary layer (region with large solution gra-
dients).
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2.4.2 Difference schemes

In consideration of one-dimensional convection-diffusion problems (2.64), (2.65), we
choose using difference schemes written at the internal nodes in the form (2.51), (2.52).
Consider the difference schemes (2.51), (2.52) in which

αi > 0, βi > 0, γi > 0, i = 1, 2, . . . , N − 1. (2.68)

Let us formulate a criterion for monotonicity of the difference scheme or, in other
words, formulate conditions under which the difference scheme (2.51), (2.52) satisfies
the difference principle of maximum.

Theorem 2.5 (Maximum principle) Let in the difference scheme (2.51), (2.52),
(2.68) μ1 ≥ 0, μ2 ≥ 0 and ϕi ≥ 0 for all i = 1, 2, . . . , N − 1 (or, alternatively,
μ1 ≤ 0, μ2 ≤ 0 and ϕi ≤ 0 for i = 1, 2, . . . , N − 1). Then, provided that

γi ≥ αi + βi , i = 1, 2, . . . , N − 1, (2.69)

we have: yi ≥ 0, i = 1, 2, . . . , N − 1 (yi ≤ 0, i = 1, 2, . . . , N − 1).

Proof. Let us follow the line of reasoning assuming the opposite. Let conditions (2.69)
be fulfilled, but the difference solution of problem (2.51) with non-negative right-hand
side and non-negative boundary conditions be not non-negative at all nodes of the grid.
We designate as k the grid node at which the solution assumes the least negative value.
If such a value is attained at several nodes, then we choose the node where yk−1 > yk .
We write the difference equation at this node:

−αk yk−1 + γk yk − βk yk+1 = ϕk .

The right-hand side is non-negative, and for the left-hand side, in view of (2.68) and
(2.69), we have:

− αk yk−1 + γk yk − βk yk+1

= αk(yk − yk−1) + (γk − αk − βk)yk + βk(yk − yk+1) > 0.

The obtained contradiction shows that yi ≥ 0 at all nodes i = 1, 2, . . . , N − 1.

To approximately solve the problem (2.64), (2.65), we use the simplest difference
scheme with central-difference approximation of the convective term. At the inter-
nal nodes of the computational grid, we approximate the differential equation (2.64),
accurate to the second order, with the difference equation

−(ayx̄)x + by◦
x = ϕ, x ∈ ω, (2.70)

where, for instance, a(x) = k(x − 0.5h) and b(x) = v(x) in problems with smooth
coefficients.
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We write the difference scheme (2.52), (2.70) in the form (2.51), (2.52) with

αi = vi

2h
+ 1

h2
ki−1/2, βi = − vi

2h
+ 1

h2
ki+1/2,

γi = 1
h2

(ki−1/2 + ki+1/2), i = 1, 2, . . . , N − 1.

The sufficient conditions for monotonicity (2.68), (2.69) (conditions for the max-
imum principle) for the scheme with the convection term approximated with cen-
tral differences will be fulfilled only in the case of sufficiently small grid steps (low
convective-transfer coefficients). Disregarding the sign of velocity, we write the con-
straints as

Pei ≡ |vi |h
min{ki−1/2, ki+1/2} < 2. (2.71)

Here Pei is the mesh Peclet number. Hence, to obtain a monotone difference scheme,
we have to use a sufficiently fine computation grid. With constraints (2.71), we may
speak only of conditional monotonicity of the difference scheme (2.52), (2.70).

Absolutely monotone difference schemes for convection-diffusion problems can be
constructed using first-order approximations of the convection term with directed dif-
ferences. We use the settings

b(x) = b+(x) + b−(x),

b+(x) = 1
2

(b(x) + |b(x)|) ≥ 0, b−(x) = 1
2

(b(x) − |b(x)|) ≤ 0

for the non-positive and non-negative parts of the mesh function b(x), x ∈ ω. Instead
of (2.70), we use the difference scheme

−(ayx̄)x + b+yx̄ + b−yx = ϕ, x ∈ ω. (2.72)

For scheme (2.52), (2.72), we have representation (2.5), (2.52) with coefficients

αi = v+
i

h
+ 1

h2
ki−1/2, βi = −v−

i

h
+ 1

h2
ki+1/2,

γi = |vi |
h

+ 1
h2

(ki−1/2 + ki+1/2), i = 1, 2, . . . , N − 1.

We see immediately that, here, sufficient conditions for monotonicity (conditions
(2.68) and (2.69)) are fulfilled.

The scheme with directed differences is monotone with any grid steps. Its defi-
ciencies are related with the fact that, unlike the scheme with central differences, this
scheme has first approximation order.
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2.4.3 Program

Realization of the difference schemes (2.52), (2.70) and (2.52), (2.72) implies numer-
ical solution of a system of linear algebraic equations with a tridiagonal matrix. As it
was noted previously, such problems can be solved using the sweep algorithm. This
algorithm is correct under the condition of diagonal prevalence (see Lemma 2.4). For
non-monotone difference schemes of type (2.52), (2.70), one has to use more general
algorithms. Here we speak of non-monotone sweep, which can be considered as the
Gauss method with the choice of major element in solving the tridiagonal system of
linear algebraic equations.

We use the subroutine SGTSL from the well-known linear algebra package LIN-
PACK.

SUBROUTINE SGTSL (N, C, D, E, B, INFO)
C***BEGIN PROLOGUE SGTSL
C***PURPOSE Solve a tridiagonal linear system.
C***LIBRARY SLATEC (LINPACK)
C***CATEGORY D2A2A
C***TYPE SINGLE PRECISION (SGTSL-S, DGTSL-D, CGTSL-C)
C***KEYWORDS LINEAR ALGEBRA, LINPACK, MATRIX, SOLVE, TRIDIAGONAL
C***AUTHOR Dongarra, J., (ANL)
C***DESCRIPTION
C
C SGTSL given a general tridiagonal matrix and a right hand
C side will find the solution.
C
C On Entry
C
C N INTEGER
C is the rank of the tridiagonal matrix.
C
C C REAL(N)
C is the subdiagonal of the tridiagonal matrix.
C C(2) through C(N) should contain the subdiagonal.
C On output, C is destroyed.
C
C D REAL(N)
C is the diagonal of the tridiagonal matrix.
C On output, D is destroyed.
C
C E REAL(N)
C is the superdiagonal of the tridiagonal matrix.
C E(1) through E(N-1) should contain the superdiagonal.
C On output, E is destroyed.
C
C B REAL(N)
C is the right hand side vector.
C
C On Return
C
C B is the solution vector.
C
C INFO INTEGER
C = 0 normal value.
C = K if the Kth element of the diagonal becomes
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C exactly zero. The subroutine returns when
C this is detected.
C
C***REFERENCES J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W.
C Stewart, LINPACK Users’ Guide, SIAM, 1979.
C***ROUTINES CALLED (NONE)
C***REVISION HISTORY (YYMMDD)
C 780814 DATE WRITTEN
C 890831 Modified array declarations. (WRB)
C 890831 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 900326 Removed duplicate information from DESCRIPTION section.
C (WRB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE SGTSL

INTEGER N,INFO
REAL C(*),D(*),E(*),B(*)

C

INTEGER K,KB,KP1,NM1,NM2
REAL T

C***FIRST EXECUTABLE STATEMENT SGTSL
INFO = 0
C(1) = D(1)
NM1 = N - 1
IF (NM1 .LT. 1) GO TO 40

D(1) = E(1)
E(1) = 0.0E0
E(N) = 0.0E0

C
DO 30 K = 1, NM1

KP1 = K + 1
C
C FIND THE LARGEST OF THE TWO ROWS
C

IF (ABS(C(KP1)) .LT. ABS(C(K))) GO TO 10
C
C INTERCHANGE ROW
C

T = C(KP1)
C(KP1) = C(K)
C(K) = T
T = D(KP1)
D(KP1) = D(K)
D(K) = T
T = E(KP1)
E(KP1) = E(K)
E(K) = T
T = B(KP1)
B(KP1) = B(K)
B(K) = T

10 CONTINUE
C
C ZERO ELEMENTS
C

IF (C(K) .NE. 0.0E0) GO TO 20
INFO = K
GO TO 100

20 CONTINUE
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T = -C(KP1)/C(K)
C(KP1) = D(KP1) + T*D(K)
D(KP1) = E(KP1) + T*E(K)
E(KP1) = 0.0E0
B(KP1) = B(KP1) + T*B(K)

30 CONTINUE
40 CONTINUE

IF (C(N) .NE. 0.0E0) GO TO 50
INFO = N

GO TO 90
50 CONTINUE

C
C BACK SOLVE
C

NM2 = N - 2
B(N) = B(N)/C(N)
IF (N .EQ. 1) GO TO 80

B(NM1) = (B(NM1) - D(NM1)*B(N))/C(NM1)
IF (NM2 .LT. 1) GO TO 70
DO 60 KB = 1, NM2

K = NM2 - KB + 1
B(K) = (B(K) - D(K)*B(K+1) - E(K)*B(K+2))/C(K)

60 CONTINUE

70 CONTINUE
80 CONTINUE
90 CONTINUE
100 CONTINUE

C
RETURN
END

Below we present a program solving the difference convection-diffusion problem in
which the convective term in (2.64) is approximated in two ways.

Program PROBLEM1

C
C PROBLEM1 - ONE-DIMENSIONAL STATIONARY

CONVECTION-DIFFUSION PROBLEM
C

REAL KAPPA
PARAMETER ( KAPPA = 0.01, ISCHEME = 0, N = 20 )
DIMENSION Y(N+1), X(N+1), PHI(N+1)
+ ,ALPHA(N+1), BETA(N+1), GAMMA(N+1)

C
C PARAMETERS:
C
C XL, XR - LEFT AND RIGHT END POINTS OF SEGMENT;
C KAPPA - DIFFUSIVITY
C ISCHEME - CENTRAL-DIFFERENCE APPROXIMATIONS (ISCHEME = 0),
C SCHEME WITH DIRECTED DIFFERENCES;
C N + 1 - NUMBER OF NODES;
C Y(N+1) - EXACT SOLUTION
C
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XL = 0.
XR = 1.

C
OPEN ( 01, FILE = ’RESULT.DAT’ ) ! FILE TO STORE

THE COMPUTED DATA
C
C MESH
C

H = (XR - XL)/N
DO I = 1, N+1

X(I) = XL + (I-1)*H
END DO

C
C BOUNDARY CONDITION AT THE LEFT END
C

GAMMA(1) = 1.
BETA(1) = 0.
PHI(1) = 0.

C
C BOUNDARY CONDITION AT THE RIGHT END
C

ALPHA(N+1) = 0.
GAMMA(N+1) = 1.
PHI(N+1) = 0.

C
C ELEMENTS OF THE TRIDIAGONAL MATRIX
C

IF (ISCHEME.EQ.0) THEN
C
C SCHEME WITH CENTRAL-DIFFERENCE APPROXIMATIONS
C

DO I = 2,N
ALPHA(I) = V(X(I))/(2.*H) + KAPPA/(H*H)
BETA(I) = - V(X(I))/(2.*H) + KAPPA/(H*H)
GAMMA(I) = ALPHA(I) + BETA(I)
PHI(I) = F(X(I))

END DO
ELSE

C

C SCHEME WITH DIRECTED DIFFERENCE APPROXIMATIONS
C

DO I = 2,N
VP = 0.5*(V(X(I)) + ABS(V(X(I))))
VM = 0.5*(V(X(I)) - ABS(V(X(I))))
ALPHA(I) = VP/H + KAPPA/(H*H)
BETA(I) = - VM/H + KAPPA/(H*H)
GAMMA(I) = ALPHA(I) + BETA(I)
PHI(I) = F(X(I))

END DO
END IF

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

DO I = 1,N+1
ALPHA(I) = - ALPHA(I)
BETA(I) = - BETA(I)

END DO
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CALL SGTSL (N+1, ALPHA, GAMMA, BETA, PHI, INFO)

IF (INFO.NE.0) STOP ! POOR MATRIX
C
C EXACT SOLUTION
C

AL = XR - XL
DO I = 1,N+1

Y(I) = X(I) - AL*EXP((X(I)-AL)/(2.*KAPPA)) *
+ SINH(X(I)/(2.*KAPPA)) / SINH(AL/(2.*KAPPA))
END DO

C
C APPROXIMATE-SOLUTION INACCURACY
C

EC = 0.
EL2 = 0.
DO I = 1,N+1

AA = ABS(PHI(I) - Y(I))
IF (AA.GT.EC) EC = AA
EL2 = EL2 + AA*AA

END DO
EL2 = SQRT(EL2*H)
WRITE (01,*) KAPPA
WRITE (01,*) N+1, EC, EL2
WRITE (01,*) X
WRITE (01,*) Y
WRITE (01,*) PHI

CLOSE (01)
STOP

END

FUNCTION F(X)
C
C RIGHT-HAND SIDE OF THE EQUATION
C

F = 1.
RETURN
END

FUNCTION V(X)
C
C CONVECTIVE-TRANSFER COEFFICIENT
C

V = 1.
RETURN
END

2.4.4 Computational experiments

Let us illustrate convergence of the above difference schemes with computational data
obtained on a sequence of consecutively refined grids. The calculations were per-
formed for problem (2.64), (2.65) with parameters given as in (2.67). The approximate
solution is compared with the exact solution in the mesh norms in L2(ω) and C(ω).
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Table 2.1 shows data obtained for the convection-controlled problem (κ = 0.01)
solved by scheme (2.72).

N 10 20 40 80 160

C 0.1599 0.2036 0.1579 0.09219 0.05070
L2 0.03631 0.03451 0.02339 0.01340 0.007199

Table 2.1 Accuracy of the scheme with directed differences

Theoretical conclusions about the convergence behavior of the schemes with the
grid step tending to zero find confirmation here. The scheme with directed differences
converges with the first order but, in the case of interest, this asymptotic convergence
is achieved with sufficiently fine grids (starting from the grid with N = 80). Figure 2.3
shows plots of the approximate solution.

Figure 2.3 Approximate solution (scheme with directed differences)

Analogous data obtained for scheme (2.70) are given in Table 2.2.

N 10 20 40 80 160

C 0.4353 0.1932 0.05574 0.01212 0.003003
L2 0.1074 0.03056 0.007142 0.001677 0.0004062

Table 2.2 Accuracy of the scheme with central-difference approximations
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The inaccuracy decreases approximately fourfold on the twofold refined grid
(second-order convergence). It should be noted that, in this example, the condition
for monotonicity (2.71) becomes violated on grids with N = 10, 20, 40. Violation
of this condition results in a substantially distorted solution behavior (see Figure 2.4).
We may even say that, here, non-monotone schemes cannot be used.

Figure 2.4 Scheme with central-difference approximations

2.5 Exercises

Exercise 2.1 On the solutions of equation (2.1), approximate the third-kind boundary
conditions (2.4) accurate to the second order.

Exercise 2.2 On the non-uniform grid

ω̄ = {x | x = xi = xi−1 + hi , i = 1, 2, . . . , N , x0 = 0, xN = l}

construct and examine the difference scheme

− 2
hi+1 + hi

(
ai+1

yi+1 − yi

hi+1
− ai

yi − yi−1

hi

)
+ ci yi = ϕi , i = 1, 2, . . . , N − 1,

y0 = μ1, yN = μ2

making it possible to solve approximately problem (2.1), (2.2).
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Exercise 2.3 Approximate the first-kind boundary conditions (2.4) accurate to the sec-
ond order so that to solve equation (2.1) on the half-step extended grid

xi = x0 + ih, i = 0, 1, . . . , N , x0 = −h/2, xN = l + h/2.

Exercise 2.4 Show that the difference scheme

−(ayx̄)x = ϕ(x), x ∈ ω,

where

ai =
(1

h

∫ xi

xi−1

dx
k(x)

)−1
,

ϕi = 1
h2

(
ai+1

∫ xi+1

xi

dx
k(x)

∫ x

xi

f (s) ds + ai

∫ xi

xi−1

dx
k(x)

∫ xi

x
f (s) ds

)
for the approximate solution of the equation

− d
dx

(
k(x)

du
dx

)
= f (x), 0 < x < l

with boundary conditions (2.2) is a perfectly accurate scheme.

Exercise 2.5 Construct an absolutely monotone difference scheme of second approx-
imation order for the boundary value problem (2.64), (2.65) by passing to the equation

− d
dx

(
k̃(x)

du
dx

)
+ q̃(x)u = f̃ (x), 0 < x < l.

Exercise 2.6 For the boundary value problem (2.1) with homogeneous boundary con-
ditions

u(0) = 0, u(l) = 0,

construct a finite element scheme with solution representation in the form (2.22) based
on minimization of the functional (the Ritz method)

J (v) = 1
2

∫ l

0

(
k(x)

(dv

dx

)2
+ q(x)v2(x)

)
dx −

∫ l

0
f (x)v(x) dx .

Exercise 2.7 Prove the difference Friedrichs inequality (Lemma 2.1) in the case of
even N .

Exercise 2.8 Prove the difference Friedrichs inequality for mesh functions given on
the non-uniform grid

ω̄ = {x | x = xi = xi−1 + hi , i = 1, 2, . . . , N , x0 = 0, xN = l},

where hi > 0, i = 1, 2, . . . , N .
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Exercise 2.9 Prove that for any mesh function y(x) given on the uniform grid ω̄ and
vanishing at x = 0 and x = l there holds the following inequality (embedding theorem
for mesh functions):

‖y(x)‖∞ ≤
√

l
2

‖yx‖+.

Exercise 2.10 Find eigenfunctions and eigenvalues of the difference problem

yxx + λy = 0, x ∈ ω,

y0 = 0, yN = 0.

Exercise 2.11 Suppose that in solving the boundary value problem

− d
dx

(
k(x)

du
dx

)
= 0,

u(0) = 1, u(1) = 0

one uses the difference scheme

−k(x)yxx − k ◦
x y◦

x = 0.

Show that this scheme diverges in the class of discontinuous coefficients. Perform
numerical experiments.

Exercise 2.12 Let the following conditions be fulfilled:

|αi | > 0, |βi | > 0, δi = |γi | − |αi | − |βi | > 0,

i = 1, 2, . . . , N − 1.

Prove that under such conditions for the solution of the problem

−αi yi−1 + γi yi − βi yi+1 = ϕi , i = 1, 2, . . . , N − 1,

y0 = 0, yN = 0

there holds the estimate
‖y‖∞ ≤ ‖ϕ/δ‖∞.

Exercise 2.13 Let in the difference scheme (2.51), (2.52), (2.68) μ1 ≥ 0, μ2 ≥ 0
and ϕi ≥ 0 for all i = 1, 2, . . . , N − 1 (or μ1 ≤ 0, μ2 ≤ 0 and ϕi ≤ 0 for i =
1, 2, . . . , N − 1). Then, under the conditions

γi ≥ αi+1 + βi−1, i = 2, 3, . . . , N − 2,

γ1 > α2, γN−1 > βN−2

(see Theorem 2.5) we have yi ≥ 0, i = 1, 2, . . . , N − 1 (yi ≤ 0, i = 1, 2, . . . , N − 1).



48 Chapter 2 Boundary value problems for ordinary differential equations

Exercise 2.14 Construct a sweep method for solving the system of linear equations

−α0 yN + γ0 y0 − β0 y1 = ϕ0,

−αi yi−1 + γi yi − βi yi+1 = ϕi , i = 1, 2, . . . , N − 1.

−αN yN−1 + γN yN − βN y0 = ϕN

that arises, for instance, when one solves the boundary value problem for equation
(2.1) with periodic boundary conditions.

Exercise 2.15 To numerically solve the problem (2.64), (2.65), (2.67), construct a
difference scheme on a piecewise-constant grid using uniform grids on the segments
[0, x∗] and [x∗, l] with grid densening in the vicinity of x = l. Write a program
and perform computational experiments to examine the rate of convergence of the
difference scheme.



3 Boundary value problems for

elliptic equations

Among stationary mathematical physics problems, problems most important for appli-
cations are boundary value problems for second-order elliptic equations. For a model
two-dimensional problem, we consider the matter of construction of its discrete ana-
logues with the use of regular rectangular grids on the basis of finite-difference ap-
proximations. The convergence of approximate solution to the exact solution is exam-
ined in mesh Hilbert spaces using the properties of positive definiteness of the elliptic
difference operator. The convergence in the homogeneous norm is considered based
on the maximum principle for elliptic difference equations. In solving the difference
equations that arise upon discretization of boundary value problems for elliptic equa-
tions, most frequently used are iteration methods. Here, alternate-triangular iteration
methods deserve a detailed consideration. We present a program that solves the Dirich-
let problem for the second-order elliptic equation with variable coefficients and give
examples of performed calculations.

3.1 The difference elliptic problem

We consider the matter of approximation for model boundary value problems involv-
ing second-order elliptic equations. The present approach is primarily based on using
the integro-interpolation method (balance method). It is shown that it is possible to
construct an appropriate difference problem on the basis of finite element approxima-
tion. We briefly discuss the issue of finite-difference approximation of boundary value
problems in irregular domains.

3.1.1 Boundary value problems

In the present consideration, primary attention will be paid to two-dimensional bound-
ary value problems in which the calculation domain has a simplest form:

� = {
x | x = (x1, x2), 0 < xα < lα, α = 1, 2

}
,

i.e., is shaped as a rectangle. The main object in the present consideration is the
second-order elliptic equation

−
2∑

α=1

∂

∂xα

(
k(x)

∂u
∂xα

)
+ q(x)u = f (x), x ∈ �. (3.1)

The following constraints are imposed on the equation coefficients:

k(x) ≥ κ > 0, q(x) ≥ 0, x ∈ �.
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A typical simplest example of the second-order elliptic equation is given by the
Poisson equation:

−�u ≡ −
2∑

α=1

∂2u
∂x2

α

= f (x), x ∈ �. (3.2)

In the latter case, in (3.1) we have k(x) = 1 and q(x) = 0.
Equation (3.1) is to be supplemented with some boundary conditions. In the case of

the Dirichlet problem, the boundary conditions are

u(x) = μ(x), x ∈ ∂�. (3.3)

In more complex cases, second- or third-order boundary conditions can be given on
the domain boundary or on a part of the boundary, for instance,

k(x)
∂u
∂n

+ σ(x)u = μ(x), x ∈ ∂�, (3.4)

where, recall, n is the external normal to �.

3.1.2 Difference problem

We use a grid uniform in both directions. For grids over particular directions xα,
α = 1, 2 we use the notation

ωα = {
xα | xα = iαhα, iα = 0, 1, . . . , Nα, Nαhα = lα

}
.

Here,

ωα = {
xα | xα = iαhα, iα = 1, 2, . . . , Nα − 1, Nαhα = lα

}
,

ω+
α = {

xα | xα = iαhα, iα = 1, 2, . . . , Nα, Nαhα = lα
}
.

For a grid in the rectangle �, we put

ω = ω1 × ω2 = {
x | x = (x1, x2), xα ∈ ωα, α = 1, 2

}
,

ω = ω1 × ω2.

If the coefficients in (2.1) are smooth, then the difference scheme can be constructed
based on immediate passage from differential to difference operators. Similarly to
the one-dimensional case, for the boundary value problem (3.1), (3.3), we put into
correspondence to the differential equation the difference equation

Ay = ϕ(x), x ∈ ω, (3.5)

with

A =
2∑

α=1

A(α), x ∈ ω, (3.6)
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Figure 3.1 Control volume

A(α)y = −(a(α)yx̄α
)xα

+ θαc(x)y, α = 1, 2, x ∈ ω,

where θ1 + θ2 = 1.
For the coefficients at higher-order derivatives we put

a(1)(x) = k(x1 − 0.5h1, x2), x1 ∈ ω+
1 , x2 ∈ ω2,

a(2)(x) = k(x1, x2 − 0.5h2), x1 ∈ ω1, x2 ∈ ω+
2 .

For the lowest coefficient and for the right-hand side in (3.5), (3.6) we have:

c(x) = q(x), ϕ(x) = f (x), x ∈ ω.

To approximate the boundary conditions (3.3) at the boundary nodes of ∂ω (ω =
ω ∪ ∂ω), we use

y(x) = μ(x), x ∈ ∂ω. (3.7)

The most efficient approach to the construction of difference schemes implies using
the integro-interpolation method. First of all, the latter is the case with irregular grids
(triangular ones, for instance), but also with simplest rectangular grids. In the case of
the uniform rectangular grid under consideration, equation (3.1) is integrated over a
control volume around each inner node x of ω (see Figure 3.1):

�x = {
s | s = (s1, s2), x1 − 0.5h1 ≤ s1 ≤ x1 + 0.5h1,

x2 − 0.5h2 ≤ s2 ≤ x2 + 0.5h2
}
.

Like in the one-dimensional case, we arrive at the difference scheme (3.5), (3.6) with

a(1)(x) = 1
h2

∫ x2+0.5h2

x2−0.5h2

( 1
h1

∫ x1

x1−h1

ds1

k(s)

)−1
ds2,
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a(2)(x) = 1
h1

∫ x1+0.5h1

x1−0.5h1

( 1
h2

∫ x2

x2−h2

ds2

k(s)

)−1
ds1.

The right-hand side and the lower terms are approximated with the expressions

ϕ(x) = 1
h1h2

∫ x1+0.5h1

x1−0.5h1

∫ x2+0.5h2

x2−0.5h2

f (x) dx,

c(x) = 1
h1h2

∫ x1+0.5h1

x1−0.5h1

∫ x2+0.5h2

x2−0.5h2

q(x) dx.

In a similar manner, difference schemes for irregular grids can be constructed.

3.1.3 Problems in irregular domains

Certain difficulties arise in numerical solution of boundary value problems for elliptic
equations in complex irregular calculation domains. So far we have dealt with prob-
lems in a rectangular region of a (regular calculation domain). We will not discuss
here the latter scope of rather complex problems at much length; instead, we only give
a short summary of major lines in this field.

Traditionally, in the approximate solution of stationary mathematical physics prob-
lems irregular calculation grids are widely used. Among irregular grids, two main
classes of grids can be distinguished.

Structured grids. A most important example of such grids are irregular quadrangular
grids, which in many respects inherit the properties of standard rectangular grids
or, in other words, present grids topologically equivalent to rectangular grids.

Unstructured grids. Here, the mesh pattern has a variable structure. It is impossible
to relate the calculation grid with some regular rectangular grid. In particular,
the scheme can be written at each point with different numbers of neighbors.

Approximation on structured grids can be constructed based on the noted closeness
of such grids to standard rectangular grids. The latter can be most easily done by
introducing new independent variables.

A second possibility bears no relation with formal introduction of new coordinates
and can be realized through approximation of the initial problem on such an irregular
grid. Of course, in the case of irregular grids the use of simplest approaches for the
construction of difference schemes on the basis of undetermined coefficients, although
possible, seems not to be a structurally reasonable strategy. In the latter case, one can
use the balance method. In both cases, i.e., in the case of general unstructured grids
and in the case of structured grids, one can construct difference schemes using finite
element approximations.

In a number of cases, for irregular grids it is possible to construct a matched grid
formed by the nodes of an ordinary non-uniform rectangular grid and by the boundary
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Figure 3.2 Method of fictitious domains

nodes. For the boundary to be formed by nodes, one has to use strongly non-uniform
grids. Problems related with construction of difference schemes on a matched grid can
be solved in the ordinary way.

A matched difference scheme can be constructed only for rather a narrow class of
calculation domains. That is why, normally, other approaches are used to solve the
problem related with calculation-domain irregularity. A simplest method here implies
using an ordinary rectangular grid in the calculation domain with a boundary condition
transferred to the node adjacent to the boundary. In fact, we deal here with the passage
from the initial problem (3.1), (3.3) to the problem in another domain whose boundary
is adapted to the grid (approximation of boundary).

The most natural and rather universal method here is an approach using a grid
formed by the nodes of a regular (uniform) grid (inner nodes) and additional irreg-
ular boundary nodes at the domain boundary. The latter nodes are formed by intersec-
tions of the lines drawn through the nodes of the regular grid and the boundary of the
calculation domain.

More convenient in the approximate solution of boundary value problems in irregu-
lar domains is the method of fictitious domains. This method is based on extension of
the initial calculation domain to some regular domain �0 (� ⊂ �0), for instance, to
a rectangle in two-dimensional problems (Figure 3.2). Afterwards, the problem in �0

can be solved by ordinary difference methods. It is also necessary to so extend the
solution of the initial problem into the fictitious domain �1 = �0 \ � that the differ-
ence solution of the problem in the extended domain �0 would give an approximate
solution in the initial domain �.

The problem in the extended domain involves small (high) coefficients of the differ-
ential equation. As a result, it becomes necessary to examine the matter of accuracy
and computational realization of various iteration methods for solving resulting prob-
lems.
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A method alternative to the method of fictitious domains in approximate solution
of boundary value problems in irregular calculation domains is the decomposition
method, in which partition of the calculation domain into simple subdomains is used.
This approach has been widely discussed in literature as applied to the development of
solution algorithms for boundary value problems using advanced parallel computers.

In each of the subdomains, individual boundary value problems are to be solved, and
the solutions are to be matched via boundary conditions. In the subdomains, special
grids can be used, matched or not with the grids in other subdomains. That is why
difference domain-decomposition schemes can be regarded on the difference level as
difference methods on composite grids.

3.2 Approximate-solution inaccuracy

Let us outline possible approaches for the examination of the rate of convergence of
approximate solution to the exact solution. The present consideration is based on the
examination of the properties of self-adjointness, positive definiteness, and monotonic-
ity of elliptic difference operators.

3.2.1 Elliptic difference operators

Note some basic properties of difference operators that arise in approximate solution of
the model problem (3.1), (3.3). Like in the previous consideration for one-dimensional
problems, let us reformulate (by modifying the right-hand side at boundary nodes) the
difference problem (3.5), (3.7) so that to obtain a problem with homogeneous boundary
conditions.

For mesh functions vanishing on the set of boundary nodes ∂ω, we define a Hilbert
space H = L2(ω) with the scalar product and the norm defined as

(y, w) ≡
∑
x∈ω

y(x)w(x)h1h2, ‖y‖ ≡ (y, y)1/2.

As a most important property, we distinguish the property of self-adjointness of the
elliptic difference operator (3.5). The latter property of A stems, with regard to (3.6),
from self-adjointness of the one-dimensional operators A(α), α = 1, 2. Taking the
latter into account, we obtain:

(Ay, w) =
∑

x2∈ω2

h2

∑
x1∈ω1

A(1)y(x)w(x)h1 +
∑

x1∈ω1

h1

∑
x2∈ω2

A(2)y(x)w(x)h2

=
∑

x2∈ω2

h2

∑
x1∈ω1

w(x)A(1)y(x)h1 +
∑

x1∈ω1

h1

∑
x2∈ω2

w(x)A(2)y(x)h2

= (y, Aw).
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For two-dimensional mesh functions vanishing on ∂ω, we define the following dif-
ference analogue to the norm in W 1

2 (ω):

‖∇ y‖2 ≡
∑

x1∈ω+
1

∑
x2∈ω2

(yx̄1)
2h1h2 +

∑
x1∈ω1

∑
x2∈ω+

2

(yx̄2)
2h1h2.

Since

(Ay, y) = (A(1)y, y) + (A(2)y, y)

=
∑

x2∈ω2

h2

∑
x1∈ω+

1

a(1)(yx̄1)
2h1 +

∑
x1∈ω1

h1

∑
x2∈ω+

2

a(2)(yx̄2)
2h2

and aα(x) ≥ κ , α = 1, 2, then for the two-dimensional difference operator (3.6) the
following inequality holds:

(Ay, y) ≥ κ‖∇ y‖2. (3.8)

To estimate the two-dimensional difference operator of diffusion transport, we use
the Friedrichs inequality for two-dimensional mesh functions.

Lemma 3.1 For mesh functions y(x) vanishing on ∂ω the following inequality holds:

‖y‖2 ≤ M0‖∇ y‖2, M−1
0 = 8

l2
1

+ 8
l2
2
. (3.9)

Proof. We take into account the Friedrichs inequality for one-dimensional mesh func-
tions (Lemma 2.1); then, we obtain the inequality

∑
x1∈ω+

1

∑
x2∈ω2

(yx̄1)
2h1h2 +

∑
x1∈ω1

∑
x2∈ω+

2

(yx̄2)
2h1h2 ≥

( 8
l2
1

+ 8
l2
2

) ∑
x1∈ω1

∑
x2∈ω2

y2h1h2.

The latter inequality yields (3.9).

From (3.8) and (3.9), the following lower estimate for A follows:

A ≥ κλ0 E, λ0 = M−1
0 . (3.10)

Let us give now an upper estimate of the elliptic difference operator of interest.

Lemma 3.2 For the difference operator A there holds the inequality

A ≤ M1 E (3.11)

with the constant

M1 = 4
h2

1
max
x∈ω

a(1)(x) + a(1)(x1 + h1, x2)

2

+ 4
h2

2
max
x∈ω

a(2)(x) + a(2)(x1, x2 + h2)

2
+ max

x∈ω
c(x).

Proof. This statement can be proved analogously to the one-dimensional case (see
Lemma 2.2).
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3.2.2 Convergence of difference solution

Based on the established properties of the elliptic difference operator, one can derive
desired a priori estimates. Considering the problem for the approximate-solution inac-
curacy, these estimates allow one to draw a conclusion about the rate of convergence
in difference schemes for problem (3.1), (3.3). In the present monograph, such an ex-
amination was performed previously for one-dimensional stationary problems. Here
we give, with some minor changes, an analogous consideration for two-dimensional
problems.

With regard to (3.5), the problem for the difference-solution inaccuracy

z(x) = y(x) − u(x), x ∈ ω̄

has the form
Az = ψ(x), x ∈ ω. (3.12)

Here, as usually, ψ(x) is the approximation inaccuracy:

ψ(x) = ϕ(x) − Au, x ∈ ω.

We assume that the boundary value problem (3.1), (3.3) has a sufficiently smooth
classical solution. It should be noted in this connection that, apart from the smoothness
of equation coefficients, boundary conditions and the right-hand side, for the difference
problem in the rectangle � certain matching conditions at the corners must be fulfilled.
Under such conditions, on a uniform rectangular grid the approximation inaccuracy
(3.5), (3.6) is of the second order:

ψ(x) = O(|h|2), |h|2 ≡ h2
1 + h2

2, x ∈ ω. (3.13)

Theorem 3.3 For the difference scheme (3.5), the following a priori estimate for the
inaccuracy holds:

‖∇z‖ ≤ M1/2
0

κ
‖ψ‖. (3.14)

Proof. We scalarwise multiply equation (3.12) for the inaccuracy by z(x), x ∈ ω;
then, we obtain

(Az, z) = (ψ, z).

For the right-hand side, by virtue of (3.9) we have:

(ψ, z) ≤ ‖ψ‖‖z‖ ≤ M1/2
0 ‖ψ‖ ‖∇z‖.

With (3.8), for the left-hand side we have:

(Az, z) ≥ κ‖∇z‖2;
from that, estimate (3.14) follows.

Under conditions (3.13), Theorem 3.3 guarantees that the approximate solution con-
verges to the exact solution accurate to the second order in the mesh analogue of the
Sobolev space W 1

2 (�).
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3.2.3 Maximum principle

For the solution of the boundary value problem (3.1), (3.3), the maximum principle
is valid. Apart from the fact that the maximum principle can be used to examine the
convergence of difference schemes in the homogeneous norm, it would be highly desir-
able if this important property would also be retained for the solution of the difference
problem (3.5), (3.7).

Let us formulate the maximum principle for the difference schemes. We write the
difference equation (3.5), (3.7) as

Sy(x) = ϕ(x), x ∈ ω, (3.15)

where the linear operator S is defined by

Sv(x) = A(x)v(x) −
∑

ξ∈W ′(x)

B(x, ξ)v(ξ). (3.16)

Here W(x) is the mesh pattern, and W ′ ≡ W \ {x} is the vicinity of the node x ∈ ω.
Suppose that for the second-order elliptic equations under consideration the mesh

pattern W for inner nodes in the calculation grid involves nodes (x1 ± h1, x2),
(x1, x2 ± h2) (the mesh pattern is a five-point one at least), and the coefficients sat-
isfy the conditions

A(x) > 0, B(x, ξ) > 0, ξ ∈ W ′(x),

D(x) = A(x) −
∑

ξ∈W ′(x)

B(x, ξ) > 0, x ∈ ω. (3.17)

With conditions (3.17) satisfied, the maximum principle holds for the difference
equation (3.15), (3.16).

Theorem 3.4 Suppose that the mesh function y(x) satisfies equation (3.15), (3.16),
with conditions (3.17) fulfilled for the coefficients of this equation, and boundary con-
ditions (3.7). With the conditions

μ(x) ≤ 0 (μ(x) ≥ 0),

ϕ(x) ≤ 0 (ϕ(x) ≥ 0), x ∈ ω

fulfilled, for the difference solution we have y(x) ≤ 0 (y(x) ≥ 0), x ∈ ω.

Based on the maximum principle, comparison theorems for the solutions of elliptic
difference equations can be proved. Consider, for instance, the problem

Sw(x) = φ(x), x ∈ ω,

w(x) = ν(x), x ∈ ∂ω
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and let

|ϕ(x)| ≤ φ(x), x ∈ ω,

|μ(x)| ≤ ν(x), x ∈ ∂ω.

Then, the following estimate is valid for the solution of problem (3.15), (3.7):

|y(x)| ≤ w(x), x ∈ ω.

Invoking such estimates, one can immediately see that for the solution of the homo-
geneous equation (3.15) (ϕ(x) = 0, x ∈ ω) with the boundary conditions (3.7) the
following a priori stability estimate holds:

max
x∈ω

|y(x)| ≤ max
x∈∂ω

|μ(x)|.

With similar a priori estimates, convergence of difference schemes in the homoge-
neous norm can be proved. Let us illustrate this statement with a simple example.

To approximately solve the Dirichlet problem for the Poisson equation (3.2), (3.3),
we use the difference equation

−yx1x1 − yx2x2 = ϕ(x), x ∈ ω, (3.18)

supplemented with the boundary conditions (3.7). For the inaccuracy z(x) = y(x) −
u(x), x ∈ ω, we obtain the problem

−zx1x1 − zx2x2 = ψ(x), x ∈ ω,

z(x) = 0, x ∈ ∂ω,

where ψ(x) = O(h2
1+h2

2) is the approximation inaccuracy. We choose as a majorizing
function the function

w(x) = 1
4

(l2
1 + l2

2 − x2
1 − x2

2)‖ψ(x)‖∞,

where
‖v(x)‖∞ = max

x∈ω
|v(x)|.

Then, we obtain the following estimate for the inaccuracy:

‖y(x) − u(x)‖∞ ≤ 1
4

(l2
1 + l2

2)‖ψ(x)‖∞.

Hence, the difference scheme (3.18), (3.7) converges in L∞(ω) with the second order.



Section 3.3 Iteration solution methods for difference problems 59

3.3 Iteration solution methods for difference problems

In the numerical solution of stationary mathematical physics problems, iteration meth-
ods are used which can be regarded as relaxation methods. Below, we give basic
notions in use in the theory of iteration solution methods for operator equations of in-
terest in finite-difference Hilbert spaces. We discuss the choice of iteration parameters
and the operator of transition (reconditioner) to a next iteration approximation.

3.3.1 Direct solution methods for difference problems

Upon approximation, the initial differential problem is replaced with a difference prob-
lem. The resultant difference (mesh) equations lead to a system of linear algebraic
equations for unknown values of the mesh function. These values can be found us-
ing direct or iterative linear algebra methods that to the largest possible extent take
specific features of particular difference problems into account. A specific feature of
difference problems consists in the fact that the resultant matrix of the linear system
is a sparse matrix that contains many zero elements and has a banded structure. In the
case of multi-dimensional problems the matrix is of a very high order equal to the total
number of grid nodes.

First of all, consider available possibilities in the construction of time-efficient di-
rect methods for solving a sufficiently broad range of elliptic difference problems with
separable variables. The classical approach to the solution of simplest linear mathe-
matical physics problems is related with the use of the variable separation method. It
can be expected that an analogous idea will also receive development in the case of
difference equations. Consider the difference problem for the Poisson equation (3.18)
with homogeneous boundary conditions

y(x) = 0, x ∈ ∂ω. (3.19)

As it was noted above, modifying the right-hand side, one can always pass on the dif-
ference level from the problem with inhomogeneous boundary conditions to a problem
with homogeneous boundary conditions.

To apply the Fourier method to this two-dimensional problem, consider the eigen-
value problem for the difference operator of the second derivative with respect to x1:

−vx1x1 + λv = 0, x1 ∈ ω1,

v0 = 0, vN1 = 0.

We denote the eigenvalues and the eigenfunctions as λk and v(k)(x1), k =
1, 2, . . . , N1 − 1:

λk = 4
h2

1
sin2 kπh1

2l1
,

v(k)(x1) =
√

2
l1

sin
kπx1

l1
, k = 1, 2, . . . , N1 − 1.
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We seek the approximate solution of (3.18), (3.19) as the expansion

y(x) =
N1−1∑
k=1

c(k)(x2)v
(k)(x1), x ∈ ω. (3.20)

Let ϕ(k)(x2) be the right-hand side Fourier coefficients:

ϕ(k)(x2) =
N1−1∑
k=1

ϕ(x)v(k)(x1)h1. (3.21)

For c(k)(x2), we obtain the following three-point problems:

−c(k)

x2x2
− λc(k) = ϕ(k)(x2), x2 ∈ ω2, (3.22)

c(k)

0 = 0, c(k)
N2

= 0. (3.23)

At each k = 1, 2, . . . , N1 − 1, the difference problem (3.22), (3.23) can be solved
by the sweep method.

Thus, the Fourier method involves the determination of eigenfunctions and eigen-
values of a one-dimensional difference problem, the calculation of the right-hand side
Fourier coefficients by formula (3.21), the solution of problems (3.22), (3.23) for the
expansion coefficients and, finally, finding the solution of the problem by summation
formulas (3.20).

Efficient computation algorithms for the variable separation method use the
fast Fourier transform (FFT). In this case, one can calculate the right-hand side
Fourier coefficients and reconstruct the solution with the computation cost Q =
O(N1 N1 log N1). In the case of problems with constant coefficients one can use
the Fourier transform over both variables (expansion in eigenfunctions of the two-
dimensional difference operator).

3.3.2 Iteration methods

Multi-dimensional elliptic difference problems with variable coefficients can be solved
using iteration methods. Define the main notions used in the theory of iterative solution
methods for systems of linear equations.

In a finite-dimensional Hilbert space H , we seek the function y ∈ H as the solution
of the operator equation

Ay = ϕ. (3.24)

Here, the operator A is considered as a linear positive operator that acts in H , and ϕ is
a given element in H .

Iteration method is a method in which, starting from some initial approximation
y0 ∈ H , we determine, in succession, approximate solutions y1, y2, . . . , yk, . . . , of
equation (3.24), where k is the iteration number. The values yk+1 are being calculated
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from the previously found values of yk, yk−1, . . . . If for the calculation yk+1 only the
values yk obtained at the previous iteration are used, then the iteration method is called
one-sweep (two-layer) method. Accordingly, if the values of yk and yk−1 are used, the
iteration method is called three-layer method.

Any two-layer iteration method can be written as

Bk
yk+1 − yk

τk+1
+ Ayk = ϕ, k = 0, 1, . . . . (3.25)

In the theory of difference schemes (3.25), they distinguish the canonical form of the
two-layer iteration method. Given y0, one can find all subsequent approximations
by formula (3.25). Considering notation (3.25), one can explicitly trace the relation
between this method and difference schemes intended for approximate solution of
non-stationary problems.

The accuracy of an approximate solution can be adequately characterized by the
inaccuracy zk = yk − y. We consider convergence of the iteration method in the
energy space HD generated by a self-adjoint operator D positively defined in H . In
HD, the scalar product and the norm are

(y, w)D = (Dy, w), ‖y‖D = ((y, y)D)1/2.

The iteration method converges in HD if ‖zk‖D → 0 as k → ∞. As a convergence
measure for iterations, they use the relative inaccuracy ε, so that at the nth iteration

‖yn − y‖D ≤ ε‖y0 − y‖D. (3.26)

Since the exact solution y is unknown, the accuracy of the approximate solution is
judged considering the discrepancy

rk = Ayk − ϕ = Ayk − Ay,

which can be calculated immediately. For instance, the iterative process is continued
unless we have

‖rn‖ ≤ ε‖r0‖. (3.27)

The use of convergence criterion (3.27) implies that in (3.26) we choose D = A∗ A.
We denote as n(ε) the minimum number of iterations that guarantees the accuracy ε to
be achieved (fulfillment of (3.26) or (3.27)).

To construct the iteration method, we have to strive for minimization of the com-
putational work on finding the approximate solution of problem (3.24) with desired
accuracy. Let Qk be the total number of arithmetic operations required for the approx-
imation yk to be found, and assume that n ≥ n(ε) iterations have been made. Then,
the computation costs can be evaluated as

Q(ε) =
n∑

k=1

Qk .
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As applied to the two-layer iteration method (3.25), the quantity Q(ε) can be mini-
mized through a proper choice of Bk and τk+1. Normally, the operators Bk are consid-
ered based on this or that reasoning, and the iteration method (3.25) can be optimized
through a proper choice of iteration parameters.

In the theory of iteration methods, two approaches to the choice of iteration pa-
rameters have gained acceptance. The first one is related with invoking some a priori
information about the operators of the iteration scheme (Bk and A in (3.25)). In the sec-
ond approach (variation-type iteration methods), iteration parameters are calculated at
each iteration by minimizing some functional, no a priori information about the oper-
ators being explicitly used. First, dwell on the general description of iteration methods
without specifying the structure of difference operators Bk .

As a basic problem, below we consider the problem (3.24) with a self-adjoint op-
erator A positively defined in a finite-difference Hilbert space H (A = A∗ > 0). We
examine the iteration process

B
yk+1 − yk

τk+1
+ Ayk = ϕ, k = 0, 1, . . . , (3.28)

i.e., here, in contrast to the general case (3.25), the operator B is constant (not varied
in the course of iterations).

3.3.3 Examples of simplest iteration methods

Simple iteration method refers to the case in which the iteration parameter in (3.28) is
a constant (τk+1 = τ ), i.e., here, we consider the iterative process

B
yk+1 − yk

τ
+ Ayk = ϕ, k = 0, 1, . . . (3.29)

under the assumption that

A = A∗ > 0, B = B∗ > 0. (3.30)

The iteration method (3.29) is called stationary.
Let a priori information about the operators B and A be given as a two-sided oper-

ator inequality
γ1 B ≤ A ≤ γ2 B, γ1 > 0, (3.31)

i.e., the operators B and A are energetically equivalent with some energy equivalence
constants γα, α = 1, 2. The following basic statement about the rate of convergence
in the iteration method under consideration is valid:

Theorem 3.5 The iteration method (3.29)–(3.31) converges in HD, D = A, B if 0 <

τ < 2/γ2. The optimum value of the iteration parameter is

τ = τ0 = 2
γ1 + γ2

(3.32)
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and, in the latter case, the following estimate holds for the total number of iterations n
required for an accuracy ε to be achieved:

n ≥ n0(ε) = ln ε

ln ρ0
. (3.33)

Here,

ρ0 = 1 − ξ

1 + ξ
, ξ = γ1

γ2
.

Note that, generally speaking, n0(ε) in (3.33) is not an integer number, and n is the
minimum integer number that satisfies the inequality n ≥ n0(ε). Theorem 3.5 shows
how can the iteration process (3.29), (3.30) be optimized through a proper choice of B
made according to (3.31), i.e. the operator B must be close to A in energy.

The optimal choice of iteration parameters in (3.28) requires finding the roots of
Chebyshev polynomials, and this method therefore is called the Chebyshev iteration
method (Richardson method). We define the set Mn as follows:

Mn =
{

− cos
(2i − 1

2n
π
)
, i = 1, 2, . . . , n

}
. (3.34)

For the iteration parameters τk , we use the formula

τk = τ0

1 + ρ0μk
, μk ∈ Mn, k = 1, 2, . . . , n. (3.35)

The following key statement about the rate of convergence of the iteration method
with the Chebyshev set of iteration parameters can be formulated.

Theorem 3.6 The Chebyshev iteration method (3.28), (3.30), (3.31), (3.34), (3.35)
converges in HD, D = A, B, and for the total number n of iterations required for an
accuracy ε to be achieved, the following estimate holds:

n ≥ n0(ε) = ln (2ε−1)

ln ρ−1
1

, (3.36)

where

ρ1 = 1 − ξ 1/2

1 + ξ 1/2
, ξ = γ1

γ2
.

In the Chebyshev method, iteration parameters are calculated (see (3.34) and (3.35))
from some given total number of iterations n. Apparently, the degenerate case n = 1
gives the simple iteration method considered above. Practical realization of the Cheby-
shev iteration method is related with the problem of computational stability. The latter
stems from the fact that the norm of the transition operator at individual iterations ex-
ceeds unity, and the local inaccuracy may therefore increase till the occurrence of an
emergency termination of the program. The problem of computational stability can be
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solved using special ordering of iteration parameters (achieved by choosing μk from
the set Mn). The optimal sequences of iteration parameters τk can be calculated from
the given number of iterations n using various algorithms.

Also, worthy of noting is the widely used three-layered Chebyshev iteration method
in which iteration parameters are calculated by recurrence formulas. In this case, the
inaccuracy decreases monotonically, and it becomes unnecessary to pre-choose the
total number of iterations n, as it was the case with method (3.34), (3.35).

3.3.4 Variation-type iteration methods

Above, we have considered iteration methods for solving the problem (3.24) with a pri-
ori information about the operators B and A given in the form of energy equivalence
constants γ1 and γ2 (see (3.31)). From these constants, optimum values of iteration
parameters could be found (see (3.32), (3.35)). Estimation of these constants may turn
out to be a difficult problem and, therefore, it makes sense to try construct iteration
methods in which iteration parameters could be calculated without such a priori infor-
mation. Such methods are known as variation-type iteration methods. Let us begin
with a consideration of the two-layer iteration method (3.28) under the assumption of
(3.30).

We denote the discrepancy as rk = Ayk − ϕ, and the correction, as wk = B−1rk .
Then, the iteration process (3.28) can be written as

yk+1 = yk − τk+1wk, k = 0, 1, . . . .

It seems reasonable to choose the iteration parameter τk+1 from the condition of
minimum norm of the inaccuracy of zk+1 in HD. Direct calculations show that the
minimum norm is attained with

τk+1 = (Dwk, zk)

(Dwk, wk)
. (3.37)

The choice of a most appropriate iteration method can be achieved through the
choice of D = D∗ > 0. The latter choice must obey, in particular, the condition
that calculation of iteration parameters is indeed possible. Formula (3.37) involves an
uncomputable quantity zk , and the simplest choice D = B (see Theorem 3.5) cannot
be made here. The second noted possibility D = A leads us to the steepest descend
method, in which case

τk+1 = (wk, rk)

(Awk, wk)
. (3.38)

Among other possible choices of D, the case of D = AB−1 A is worth noting minimum
correction method, in which

τk+1 = (Awk, wk)

(B−1 Awk, Awk)
.
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The two-layer variation-type iteration method converges not slower than the sim-
ple iteration method. Let us formulate the latter result with reference to the steepest
descend method.

Theorem 3.7 The iteration method (3.28), (3.30), (3.31), (3.38) converges in HA, and
for the total number n of iterations required for an accuracy ε to be achieved, esti-
mate (3.33) holds.

In the computational practice, the most widely used are three-layered variation-type
iteration methods. In the rate of convergence, these methods are at least as efficient as
the iteration methods with the Chebyshev set of iteration parameters.

In the three-layered (two-sweep) iteration method a next approximation is to be
found from the two previous approximations. For the method to be realized, two initial
approximations, y0 and y1, are necessary. Normally, the approximation y0 can be
given arbitrarily, and the approximation y1 can be found using the two-layer iteration
method. The three-layered method can be written in the following canonical form for
the three-layer iteration method:

Byk+1 = αk+1(B − τk+1 A)yk + (1 − αk+1)Byk−1 + αk+1τk+1ϕ,

k = 1, 2, . . . ,

By1 = (B − τ1 A)y0 + τ1ϕ.

(3.39)

Here, αk+1 and τk+1 are iteration parameters.
Calculations by formula (3.39) are based on the representation

yk+1 = αk+1 yk + (1 − αk+1)yk−1 − αk+1τk+1wk,

where, recall, wk = B−1rk .
In the conjugate gradient method intended for calculation of iteration parameters in

the three-layer iteration method (3.39), the following formulas are used:

τk+1 = (wk, rk)

(Awk, wk)
, k = 0, 1, . . . ,

αk+1 =
(

1 − τk+1

τk

(wk, rk)

(wk−1, rk−1)

1
αk

)−1
, k = 1, 2, . . . , α1 = 1.

(3.40)

The conjugate gradient method is a method that has gained a most widespread use in
computational practice.

Theorem 3.8 Let conditions (3.30), (3.31) be fulfilled. Then the conjugate gradient
method (3.39), (3.40) converges in HA, and for the total number n of iterations re-
quired for an accuracy ε to be achieved, estimate (3.36) holds.

We gave some reference results concerning iteration solution methods for problem
(3.24) with self-adjoint operators A and B (conditions (3.30)). In many applied prob-
lems one has to treat more general problems with non-self-adjoint operators. A typical
example here is convection-diffusion problems dealt with in continuum mechanics.
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3.3.5 Iteration methods with diagonal reconditioner

A second main point in the theory of iteration methods is the choice of reconditioner
for the operator B in (3.28). We will outline here some major possibilities available
along this line. We will not consider general problems (3.24) with non-self-adjoint
operators, inviting the reader to address special literature.

A simplest class of iteration methods for solving problem (3.24) can be identified
considering the choice of the diagonal operator B. In the latter case, we have

B = b(x)E, (3.41)

and the next iteration approximation can be calculated by explicit formulas. To this
class of methods, the Jacobi iteration method belongs, which arises when we choose
as B the diagonal part of A and τk = τ = 1.

The problem of the optimal choice of B in the class of operators (3.41) has been
already solved. The ratio ξ = γ1/γ2 in the two-sided operator equality (3.31) for
A = A∗ > 0 will be maximal if we choose, as B, the diagonal part of A. In this
respect, the Jacobi method is optimal.

An estimate of efficiency in the used iteration method attaches concrete meaning to
the energy equivalence constants γ1 and γ2. Let us illustrate the latter with the example
of solution of the difference Dirichlet problem for the Poisson equation (3.18), (3.19).

On the basis of Lemmas 3.1 and 3.2, we have:

γ1 E ≤ A ≤ γ2 E,

where
γ1 = 8

l2
1

+ 8
l2
2
, γ2 = 4

h2
1

+ 4
h2

2
. (3.42)

For the problem under consideration, we have

b(x) = 2
h2

1
+ 2

h2
2

(3.43)

and therefore
ξ = γ1

γ2
= O(|h|2), |h|2 = h2

1 + h2
2.

For the number of iterations in the simple iteration method with the optimal value
τ = τ0 = 2/(γ1 + γ2) and for the number of iterations in the steepest descend method
with the operator B chosen according to (3.41), (3.43) with allowance for (3.33),
(3.42), the following estimate holds:

n0(ε) = O
( 1
|h|2 ln

1
ε

)
. (3.44)

Thus, the number of iterations varies in proportion to the total number of nodes (un-
knowns).
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For the Chebyshev iteration method and for the conjugate gradient method, instead
of (3.44), we have the estimate

n0(ε) = O
( 1
|h| ln

1
ε

)
. (3.45)

Compared to the simple iteration method, the method with the Chebyshev set of
iteration parameters converges much faster.

3.3.6 Alternate-triangular iteration methods

Consider the problem (3.24) in the case in which the self-adjoint, positive operator A
can be represented as

A = A1 + A2, A1 = A∗
2. (3.46)

Let the operator D correspond to the diagonal part of A, and the operator L to the
subdiagonal matrix. Then, by virtue of A = L + D + L∗, the decomposition (3.46)
for the operators Aα, α = 1, 2 yields

A1 = 1
2

D + L , A2 = 1
2

D + L∗. (3.47)

For the model problem (3.18), (3.19), we have:

Dy = d(x)E, d(x) = 2
h2

1
+ 2

h2
2
. (3.48)

For Aα, α = 1, 2, the expansions (3.46), (3.47) have the following representations on
the set of mesh functions vanishing on γh:

A1 y = 1
h1

yx̄1 + 1
h2

yx̄2, A2 y = − 1
h1

yx1 − 1
h2

yx2 . (3.49)

In the alternate-triangular method, the operator B is a factorized operator chosen as
the product of two triangular matrices and one diagonal matrix:

B = (D + ωA1) D−1 (D + ωA2), (3.50)

where ω is a numerical parameter.
The rate of convergence in the iteration method (3.29), (3.30), (3.50) is defined by

the energy equivalence constants γ1 and γ2 in the two-sided inequality (3.31). Find
these constants if a priori information is given in the form of inequalities

δ1 D ≤ A, A1 D−1 A2 ≤ δ2

4
A, δ1 > 0. (3.51)

For the operator B, we have

B = (D + ωA1) D−1 (D + ωA2)

= D + ω (A1 + A2) + ω2 A1 D−1 A2. (3.52)
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With inequalities (3.51) taken into account, we obtain

B ≤
( 1
δ1

+ ω + ω2 δ2

4

)
A.

Hence, we have the following expression for γ1:

γ1 = δ1

1 + ωδ + ω2δ1δ2/4
. (3.53)

To evaluate the constant γ2, we represent the operator B, based on (3.52), in the
form

B = D − ω (A1 + A2) + ω2 A1 D−1 A2 + 2ω (A1 + A2)

= (D − ωA1) D−1 (D − ωA2) + 2ωA.

Since the operator D is positive, we obtain (By, y) ≥ 2ω (Ay, y), i. e. A ≤ γ2 B,
where

γ2 = 1
2ω

. (3.54)

Now we can choose the value of ω in (3.50) based on the maximum condition for
ξ = ξ(ω) = γ1/γ2. In view of (3.53) and (3.54), we obtain

ξ(ω) = γ1

γ2
= 2ωδ1

1 + ωδ + ω2δ1δ2/4
.

The maximum of ξ(ω) is attained at

ω = ω0 = 2 (δ1δ2)
−1/2, (3.55)

to equal

ξ = ξ(ω0) = 2η1/2

1 + η1/2
, η = δ1

δ2
. (3.56)

Based on the obtained estimates, the following statement about the convergence of
the alternate-triangular iteration method with the optimal value of ω can be formulated:

Theorem 3.9 The alternate-triangular iteration method (3.29), (3.46), (3.50), (3.51),
(3.55) with the Chebyshev set of iteration parameters converges in HA and HB, and
for the total number of iterations the estimate (3.36) with ξ given by (3.56) holds.

Remark 3.10 Taking the smallness of η into account, for the total number of iterations
we can obtain a simpler expression:

n0(ε) = ln(2ε−1)

2
√

2 η1/4
, η = δ1

δ2
. (3.57)
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Remark 3.11 The alternate-triangular method can be realized as a conjugate gradient
method. In the latter case the total number of iterations obeys the estimate (3.57) as
well.

Let us find now the constants δ1 and δ2 in equation (3.51) for the model problem
(3.18), (3.19). Based on the choice of (3.48) and estimates (3.42) and (3.43), we have
δ1 = O(|h|2). With relations (3.48) and (3.49) taken into account, we obtain

(A1 D−1 A2 y, y) = h2
1h2

2

2 (h2
1 + h2

2)
(A2 y, A2 y).

For the right-hand side we have

(A2 y, A2 y) = 1
h2

1
(y2

x1
, 1) − 2

h1h2
(yx1, yx2) + 1

h2
2

(y2
x2

, 1).

On account of the equality

− 2
h1h2

(yx1, yx2) = −2
( 1

h2
yx1,

1
h1

yx2

)
≤ 1

h2
2

(y2
x1

, 1) + 1
h2

1
(y2

x2
, 1),

we obtain
(A2 y, A2 y) ≤

( 1
h2

1
+ 1

h2
2

)
(Ay, y).

In this way, we arrive at the inequality (A1 D−1 A2 y, y) ≤ 0.5(Ay, y). Comparing the
latter inequality with the second inequality in (3.51), we obtain: δ2 = 2.

Hence, for the Chebyshev iteration method the following estimate for the total num-
ber of iterations holds:

n0(ε) = O
( 1
|h|1/2

ln
1
ε

)
. (3.58)

Thus, the total number of iterations varies in proportion to the square root of the num-
ber of nodes in one direction (in the considered two-dimensional problem, to the fourth
root of the total number of nodes). Estimate (3.58) shows that the considered method
is more preferable than the Jacobi method.

The parameter ω in the alternate-triangular method (3.29), (3.50) can be included
into the operator D in order the method (3.29) could be used with B = (D +
A1) D−1 (D + A2). Here, the optimization of the iteration method is achieved through
a proper choice of D only. The latter is especially important in the case of problems
with varied coefficients. Worthy of note is the alternate-triangular iteration method in
the form

B = (D + L) D−1 (D + L∗). (3.59)

With θ D taken as D, where θ is a constant and D is the diagonal part of A, the
choice of the reconditioner in the form (3.59) is equivalent to the choice considered
previously. Of course, if D �= θ D, then we have no equivalence between these versions
of the alternate-triangular method.
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3.4 Program realization and numerical examples

The model Dirichlet problem in a rectangle for the second-order self-adjoint elliptic
equation with variable coefficients is considered. To approximately solve this problem,
we use the alternate-triangular iteration method of approximate factorization. The
program and the calculation results are presented.

3.4.1 Statement of the problem and the difference scheme

In the rectangle

� = {
x | x = (x1, x2), 0 < xα < lα, α = 1, 2

}
we solve the Dirichlet problem for the second-order elliptic equation:

−
2∑

α=1

∂

∂xα

(
k(x)

∂u
∂xα

)
+ q(x)u = f (x), x ∈ �, (3.60)

u(x) = μ(x), x ∈ ∂�. (3.61)

We assume that
k(x) ≥ κ > 0, q(x) ≥ 0, x ∈ �.

In � we introduce a grid, uniform in both directions, with step sizes hα, α = 1, 2.
We define the set of inner nodes

ω = {
x | x = (x1, x2), xα = iαhα, iα = 1, 2, . . . , Nα − 1,

Nαhα = lα, α = 1, 2
}

and let ∂ω be the set of boundary nodes.
To the differential problem (3.60), (3.61), we put into correspondence the difference

problem

−(a(1)yx̄1)x1 − (a(2)yx̄2)x2 + c(x)y = ϕ(x), x ∈ ω, (3.62)

y(x) = μ(x), x ∈ ∂ω. (3.63)

The coefficients and the right-hand side in (3.62) can be calculated by the simplest
formulas

a(1)(x) = k(x1 − 0.5h1, x2), a(2)(x) = k(x1, x2 − 0.5h2),

c(x) = q(x), ϕ(x) = f (x), x ∈ ω.

If necessary, more complex expressions can be used.
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3.4.2 A subroutine for solving difference equations

We start with a brief description of the subroutine SBAND5 that solves linear systems
with symmetric five-diagonal matrices. The subroutine was developed and its descrip-
tion prepared by M. M. Makarov1.

The subroutine intention. The subroutine SBAND5 is intended for approximate
solution of systems of linear equations with a non-generate symmetric matrix of spe-
cial form whose nonzero elements are contained only in five diagonals of the matrix,
namely, in the principal diagonal, in the two adjacent diagonals (sub- and superdiago-
nals), and in the two next (remote) diagonals located symmetrically about the principal
diagonal. Such matrices are a particular case of banded symmetric matrices (with the
lower half-width of the band equal to the upper half-width and to the distance between
the principal diagonal and either of the remote diagonals).

Brief information about the solution method. The subroutine SBAND5 embod-
ies an implicit iteration method of conjugate coefficients. The iteration scheme is
constructed based on the condition of minimal inaccuracy of the kth approximation in
the energy norm with linear refinement of the current iteration approximation for cor-
rection vector from the Krylov subspace of dimension k. To determine the correction
vector and subsequent iteration refinement, two iteration parameters are calculated at
each iteration step, expressed through scalar products of the iteration vectors. The
method is implicit in the sense that, at each iteration step, one has to solve a system
of linear equations with a matrix (called reconditioner) close in a sense to the initial
matrix of the system and, as a matter of fact, constructed from this matrix. Due to
special choice of reconditioner, the subroutine uses an algorithm that contains no mul-
tiplication of the initial matrix by a vector, which operation, generally speaking, needs
implicit methods to be applied alongside with the inversion of the reconditioner ma-
trix. In the case of a symmetric, positive definite matrix of the system and a symmetric,
positive definite reconditioner, the method converges in the energy space.

Algebraic formulation of the problem and the difference interpretation. For
an n × n five-diagonal symmetric matrix A, we introduce the following designations:
A0 — elements in the principal diagonal taken in the increasing order of row sub-

scripts;
A1R — elements in the right diagonal adjacent to the principal diagonal and taken

with the opposite sign;
A2R — elements in the right remote diagonal taken with the opposite sign.
By convention, the notation

Ay = f

1An earlier version of the subroutine (SOLVE1) was described in the book A. A. Samarskii and
P. N. Vabishchevich, Computational Heat Transfer. Vol. 2. The Finite Difference Methodology. Chich-
ester, Wiley, 1995.
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contains no elements on the diagonals A0, A1R, and A2R going beyond the matrix,
and no components of the vector y by which these elements multiply. Next, each of
the equations can be represented as

−A2R j−l y j−l − A1R j−1 y j−1 + A0 j y j − A1R j y j+1 − A2R j y j+l = f j ,

j = 1, 2, . . . , n,

where l is the band half-width of the matrix.
Systems with similar matrices arise, for instance, in the approximation of elliptic

partial differential equations on five-point mesh patterns in orthogonal coordinate sys-
tems. If the grid nodes in the enveloping mesh rectangle are ordered from bottom to
top in horizontal lines and from left to right in each line, then with the number of nodes
in each line equal to l the elements −A2R j−l , −A1R j−1, A0 j , −A1R j and −A2R j are
in fact the coefficients of the difference equation at the j th node for the mesh-function
components located respectively at the bottom, left, central, right, and upper nodes of
the five-point mesh pattern.

Remark 3.12 The calculation domain is not necessarily a rectangle in some coordi-
nate system; yet, for the subroutine SBAND5 to be used, in writing the difference
scheme in the enveloping mesh rectangle the difference equations at all fictitious nodes
must be given with coefficients

A0 j = 1, A1R j = A2R j = 0,

and, as the corresponding components in the initial approximation and in the right-
hand side, zeros must be transferred.

Remark 3.13 In interpreting the equations of the system as difference equations it
can be expected that at the grid nodes lying on the boundary of the mesh rectangle
some of the coefficients must be zero, for instance, the coefficients A1R j at the nodes
on the right boundary. It is due to this “naturalness” that this remark draws users’
attention to the fact that the subroutine SBAND5 allocates no zero elements into the
input coefficient array provided that these elements are elements that lie on diagonals
not going beyond the matrix. In line with the data structure adopted in SBAND5, the
input array can involve diagonal elements that lie outside the matrix. This assumption
simplifies the setting of input information as it makes possible to treat all mesh points
as inner nodes and all diagonals as having identical lengths. Into the “extra” diagonal
components, arbitrary values can be recorded since in SBAND5 these components will
all the same be put equal to zero.

Remark 3.14 All matrix elements that do not belong to the principal diagonal are
transferred into the subroutine SBAND5 with the opposite sign, and all elements on
the principal diagonal must be positive.
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Description of subroutine parameters. The heading of the subroutine SBAND5
looks as

SUBROUTINE SBAND5 ( N, L, A, Y, F, EPSR, EPSA )
IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION A(1), Y(N), F(N)
COMMON / SB5 / IDEFAULT, I1R, I2R, IFREE
COMMON / CONTROL / IREPT, NITER

Formal parameters in the subroutine SBAND5:
N — total number of equations in the system, N > 2;
L — half-width of the band, 1 < L < N (this half-width is defined for a banded

matrix as the maximum number of elements in the matrix rows between the element
lying in the principal diagonal and the nonzero element most remote from the principal
diagonal, including the last and excluding the first element);
A — array that contains at the input the coefficients A0, A1R, A2R and has suffi-

cient length for allocation of the vectors to be calculated and stored at iteration steps
(methods used in setting the input information and an estimate of the required array
length are outlined below);
Y — array of length not shorter than N that contains at the input in the first N com-

ponents an initial approximation, and at the output, in this place, the final iteration
approximation;
F — array of length not shorter than N that contains at the input in the first N com-

ponents the right-hand side vector of the system;
EPSR — desired relative accuracy of iteration approximation to the solution; this

quantity is used in SBAND5 in the criterion for termination of the iteration process
which uses the ratio between the initial and current inaccuracies of some norm;
EPSA — desired absolute accuracy of iteration approximation to the solution; this

quantity is used in the criterion for termination of the iterative process, that uses the
value of some norm of the current accuracy.

All the above parameters are input parameters. The parameter Y is also an output
parameter. The values of N, L, EPSR, EPSA remain unchanged at the output, and
the value of A and F at the exit from the subroutine are not defined.

Parameters in the common block /SB5/ of the subroutine SBAND5:
IDEFAULT — input parameter generalizing the flag pointing to the necessity to an-

alyze the remaining values in the common block /SB5/: if this parameter is zero, then
specification of all remaining parameters in the common block is unnecessary since
the values of these parameters all the same will be ignored in the subroutine SBAND5;
otherwise, all parameters in the common block must be specified;
I1R — indicator showing the position of the coefficients A1R in the array A (the

description is given below);
I2R — indicator showing the position of the coefficients A2R in the array A;
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IFREE — indicator showing the position of the free segment in the array A.
The parameters in the common block /SB5/ specify the method of setting the

system coefficients in the input array A. A given value IDEFAULT = 0 indicates that
the coefficients in the array appear in the order adopted in the subroutine SBAND5.
Otherwise, allocation of coefficients must be specified by parameters in the common
block /SB5/.

Parameters in the common block /CONTROL/ of the subroutine SBAND5:
IREPT — indicator of the necessity to perform actions that must be executed fol-

lowing the first call for the subroutine SBAND5 with the given matrix; the user must
set the value IREPT = 0 prior to the first call with the given matrix, and the sub-
routine SBAND5, in its turn, assigns the value IREPT = 1 to this variable; to solve
a system with the same matrix but with another right-hand side, the user must call
for SBAND5 with newly set values of Y, F but with the same values of A;
NITER — the number of iterations at the output.

Description of data structure and an estimate of required memory capac-
ity. The data structure in the subroutine SBAND5 obeys the concept of through-
programming for all operations used to treat matrices and vectors. This concept con-
sists in the possibility to program all operations in one cycle, without specially treating
vector and matrix components corresponding to “incomplete” rows of the matrix (in
the case of interest, to first L and to last L rows, in which, in turn, the first and last rows
would have necessitated special consideration). In the difference-equation-on-grid in-
terpretation, this implies treating all mesh points as inner nodes. This concept makes
the program code more concise and easy to read, with each linear or matrix numerical
operation realized in one cycle.

In the description of the order of setting the coefficients in the input array A it will
be indicated which components in the subroutine SBAND5 are recorded as zeros. The
common block /SB5/ provides the user with freedom in setting the coefficients. It is
necessary that the coefficients be allocated in the diagonal-by-diagonal manner using
one and the same ordering method. It must also be guaranteed that, in writing zeros,
the values in other diagonals within the matrix remained unchanged.

Setting IDEFAULT = 0 at the input, the user can omit setting of all other values
in the common block /SB5/. In the latter case, the input array A must contain in the
first 3*N components the following values:
A(I), I = 1,2,...,N — coefficients A0;
A(I1R+I), I1R = N, I = 1,2,...,N-1 — coefficients A1R within the

matrix, the values A(I1R+N) = 0 being assigned;
A(I2R+I), I2R = 2*N, I = 1,2,...,N - L — coefficients A2R

within the matrix, the values A(I2R+I) = 0, I = N-L+1, N-L+2,...,N
being assigned.

The coefficients A0 must always be allocated in first components of the array A.
The coefficients in other diagonals can be recorded as arbitrary components of A.
In the latter case it is necessary, however, in the inversion to preset some nonzero
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value of IDEFAULT and some values of the indicators I1R and I2R, and also a
value of IFREE such that 3*N+2*L components of A, starting from the (IFREE+1)-
th component, could be considered independent, available for use in the subrou-
tine SBAND5 as a storage for the iteration vectors.

Remark 3.15 In setting the indicator IFREE never causes a memory allocation error
such that into the components of the matrix, following the IFREE-th component, zero
values are recorded (for instance, the diagonal A2R is allocated last, and the value
IFREE = I2R+N-L is set).

The minimum required length of A can be estimated as follows. With the allo-
cation pattern for coefficients adopted in the subroutine SBAND5, the array must be
not shorter than 6*N+L. If another allocation pattern for coefficients is adopted, then
3*N+2*l components are necessary, located behind the components that carry the
coefficients.

Example illustrating the use of the subroutine SBAND5. In the program EXSB5,
the coefficients of a 10 × 10 system matrix with band half-width equal to 5, the zero
initial approximation, and the right-hand side of the system are set. Then, the subrou-
tine SBAND5 is called for to solve the system, and the obtained approximate solution
is printed out (together with a process protocol, in which the relative accuracy achieved
at the current iteration step is indicated).

PROGRAM EXSB5
C
C EXSB5 - EXAMPLE OF SUBROUTINE CALL FOR THE SUBROUTINE SBAND5
C

IMPLICIT REAL*8 ( A-H, O-Z )
C
C THE SYSTEM MATRIX, THE SOLUTION VECTOR,
C AND THE RIGHT-HAND SIDE VECTOR ARE
C
C ( 6 -1 -2 ) ( 1 ) ( -8 )
C ( -1 6 -1 -2 ) ( 2 ) ( -6 )
C ( -1 6 -1 -2 ) ( 3 ) ( -4 )
C ( -1 6 -1 -2 ) ( 4 ) ( -2 )

C ( -1 6 -1 -2 ) ( 5 ) ( 0 )
C ( -2 -1 6 -1 ) * ( 6 ) = ( 22 )
C ( -2 -1 6 -1 ) ( 7 ) ( 24 )
C ( -2 -1 6 -1 ) ( 8 ) ( 26 )
C ( -2 -1 6 -1 ) ( 9 ) ( 28 )
C ( -2 -1 6 ) ( 10 ) ( 41 )
C
C

PARAMETER ( N = 10, L = 5 )
DIMENSION A(6*N+L), Y(N), F(N)
COMMON / SB5 / IDEFAULT(4)
COMMON / CONTROL / IREPT, NITER

C
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C SETTING OF MATRIX DIAGONALS, ZERO INITIAL APPROXIMATION,
C AND RIGHT-HAND SIDE OF THE SYSTEM:
C

IDEFAULT(1) = 0
IREPT = 0
DO 1 I = 1, 10

A(I) = 6.D0
A(N+I) = 1.D0
A(2*N+I) = 2.D0
Y(I) = 0.D0

1 CONTINUE
F( 1) = -8.D0
F( 2) = -6.D0
F( 3) = -4.D0
F( 4) = -2.D0
F( 5) = 0.D0
F( 6) = 22.D0
F( 7) = 24.D0
F( 8) = 26.D0
F( 9) = 28.D0
F(10) = 41.D0

C
C SUBROUTINE CALL FOR SOLVING THE SYSTEM:
C

EPSR = 1.D-6
EPSA = 1.D-7
CALL SBAND5 ( N, L, A, Y, F, EPSR, EPSA )

C
C PRINTING THE SOLUTION VECTOR:
C

WRITE ( 06, * ) ’ S O L U T I O N:’
DO 2 I = 1, 10

WRITE ( 06, * ) Y(I)
2 CONTINUE

END

Below, the full text of the subroutine SBAND5 is given.

Subroutine SBAND5

SUBROUTINE SBAND5 ( N, L, A, Y, F, EPSR, EPSA )
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION A(1), Y(N), F(N)

C
COMMON / SB5 / IDEFAULT,
* I1R, I2R,
* IFREE

C
COMMON / CONTROL / IREPT, NITER

C
IF ( IDEFAULT .EQ. 0 ) THEN

I1R = N
I2R = 2*N
IG = 3*N
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ELSE IF ( IDEFAULT .NE. 0 ) THEN
IG = IFREE + L

END IF
C

IT = IG + N
ITL = IT + L
IQ = ITL + N

C
IF ( IREPT .EQ. 0 ) THEN

C
A(I1R+N) = 0.D0
DO 9 J = 1, L

A(I2R+J+N-L) = 0.D0
A(IT+J) = 0.D0

9 CONTINUE
C

DO 10 J = 1, N
G = A(J) - A(I1R+J-1)*A(ITL+J-1)

* - A(I2R+J-L)*A(ITL+J-L)
G = 1.D0 / G
A(IG+J) = DSQRT(G)
A(ITL+J) = G*( A(I1R+J) + A(I2R+J) )

10 CONTINUE
C

DO 20 J = 1, N
A(J) = A(IG+J)*A(J)*A(IG+J) - 2.D0
A(I1R+J) = A(IG+J)*A(I1R+J)*A(IG+J+1)
A(I2R+J) = A(IG+J)*A(I2R+J)*A(IG+J+L)

20 CONTINUE
C

IREPT = 1
C

END IF
C

DO 30 J = N, 1, -1
A(ITL+J) = Y(J) / A(IG+J)
Y(J) = A(ITL+J) - A(I1R+J)*A(ITL+J+1) - A(I2R+J)*A(ITL+J+L)
A(ITL+J-L) = 0.D0

30 CONTINUE
C

RR0 = 0.D0
DO 40 J = 1,N

G = A(ITL+J)
A(ITL+J) = F(J)*A(IG+J) - A(J)*G - Y(J)

* + A(I1R+J-1)*A(ITL+J-1) + A(I2R+J-L)*A(ITL+J-L)
F(J) = A(ITL+J) - G
RR0 = RR0 + F(J)*F(J)

40 CONTINUE
C

NIT = 0
EPSNIT = 1.D0
RR = RR0

C
50 CONTINUE

C
IF ( EPSNIT .GE. EPSR .AND. RR .GE. EPSA ) THEN

C
IF ( NIT .EQ. 0 ) THEN
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RRI = 1.D0 / RR
DO 60 J = N, 1, -1

A(IQ+J) = F(J)
A(ITL+J) = A(IQ+J) + A(I1R+J)*A(ITL+J+1) + A(I2R+J)*A(ITL+J+L)

A(ITL+J-L) = 0.D0
60 CONTINUE

ELSE IF ( NIT .GE. 1 ) THEN
BK = RR*RRI
RRI = 1.D0 / RR
DO 61 J = N, 1, -1

A(IQ+J) = F(J) + BK*A(IQ+J)
A(ITL+J) = A(IQ+J) + A(I1R+J)*A(ITL+J+1) + A(I2R+J)*A(ITL+J+L)
A(ITL+J-L) = 0.D0

61 CONTINUE
END IF

C
TQ = 0.D0
DO 70 J = 1, N

G = A(ITL+J)

A(ITL+J) = A(IQ+J) + A(J)*G + A(I1R+J-1)*A(ITL+J-1)
* + A(I2R+J-L)*A(ITL+J-L)

A(IT+J) = G + A(ITL+J)
TQ = TQ + A(IT+J)*A(IQ+J)

70 CONTINUE
C

AK = RR / TQ
C

RR = 0.D0
DO 80 J = 1,N

Y(J) = Y(J) + AK*A(IQ+J)
F(J) = F(J) - AK*A(IT+J)
RR = RR + F(J)*F(J)

80 CONTINUE
C

NIT = NIT + 1
EPSNIT = DSQRT( RR/RR0 )

C
GO TO 50

C
END IF

C
DO 90 J = N, 1, -1

A(ITL+J) = Y(J) + A(I1R+J)*A(ITL+J+1) + A(I2R+J)*A(ITL+J+L)
Y(J) = A(IG+J)*A(ITL+J)

90 CONTINUE
NITER = NIT

C
RETURN
END
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3.4.3 Program

To approximately solve the boundary value problem (3.60), (3.61), the following pro-
gram was used.

Program PROBLEM2

C
C PROBLEM2 - DIRICHLET BOUNDARY-VALUE PROBLEM FOR THE ELLIPTIC
C EQUATION WITH VARIABLE COEFFICIENTS IN RECTANGLE
C

IMPLICIT REAL*8 ( A-H, O-Z )
C

PARAMETER ( N1 = 101, N2 = 101 )
C

DIMENSION A(7*N1*N2), Y(N1,N2), F(N1,N2),
* BL(N2), BR(N2), BB(N1), BT(N1)
COMMON / SB5 / IDEFAULT(4)
COMMON / CONTROL / IREPT, NITER

C
C THE ARRAY A MUST BE SUFFICIENTLY LONG TO STORE
C THE COEFFICIENTS OF THE SYMMETRIC MATRIX OF THE
C DIFFERENCE PROBLEM, THE SET PRINCIPAL DIAGONAL A0,
C THE SUPERDIAGONAL A1, THE UPPER REMOTED DIAGONAL A2,
C THE SOLUTION VECTOR Y, THE RIGHT-HAND SIDE VECTOR F,
C AND THE VECTORS USED IN THE ITERATION ALGORITHM
C FOR SOLVING THE DIFFERENCE EQUATION
C ( SEE SUBROUTINE SBAND5 ).
C
C DATA INPUT:
C
C X1L, X2L - COORDINATES OF THE LEFT BOTTOM CORNER
C OF THE RECTANGULAR CALCULATION DOMAIN;
C X1R, X2R - COORDINATES OF THE RIGHT UPPER CORNER;
C X1D, X2D - COORDINATES OF THE RIGHT UPPER CORNER
C OF SUBDOMAIN D2;
C N1, N2 - NUMBER OF GRID NODES OVER THE CORRESPONDING
C DIRECTIONS
C EPSR - DESIRED RELATIVE ACCURACY OF THE ITERATIVE
C APPROXIMATION TO THE SOLUTION.
C EPSA - DESIRED ABSOLUTE ACCURACY OF THE ITERATIVE
C APPROXIMATION TO THE SOLUTION.
C

X1L = 0.D0
X1R = 1.D0
X2L = 0.D0
X2R = 1.D0

EPSR = 1.D-6
EPSA = 0.D0

C
N = N1*N2
DO I = 1, 7*N

A(I) = 0.D0
END DO

C
C BOUNDARY CONDITIONS
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C
DO J = 1, N2

BL(J) = 0.D0
BR(J) = 0.D0

END DO
DO I = 1, N1

BB(I) = 0.D0
BT(I) = 0.D0

END DO
C
C TO BE FOUND IN THE SUBROUTINE FDS_EL ARE THE CENTRAL, RIGHT,
C AND UPPER COEFFICIENTS OF THE DIFFERENCE SCHEME
C ON THE FIVE-POINT MESH PATTERN (A0, A1, AND A2, RESPECTIVELY),
C AND THE RIGHT-HAND SIDE F.
C

CALL FDS_EL ( X1L, X1R, X2L, X2R, N1, N2, BL, BR, BB, BT,
* H1, H2, A(1), A(N+1), A(2*N+1), F )

C
C THE SUBROUTINE SBAND5 SOLVES THE SOLUTION OF THE DIFFERENCE
C PROBLEM BY THE ALTERNATE-TRIANGULAR APPROXIMATE
C FACTORIZATION - CONJUGATE GRADIENT METHOD
C
C

IDEFAULT(1) = 0
IREPT = 0

C

C INITIAL APPROXIMATION
C

DO I = 1, N1
DO J = 1, N2

Y(I,J) = 0.D0
END DO

END DO
CALL SBAND5 ( N, N1, A, Y, F, EPSR, EPSA )

C
OPEN ( 01, FILE = ’RESULT.DAT’ )
WRITE ( 01, * ) NITER
WRITE ( 01, * ) ((Y(I,J),I=1,N1),J=1,N2)
CLOSE ( 01 )

C
STOP
END

Among the main components of the program, the subroutine FDS EL, used to set
the difference-problem coefficients, deserves mention.

SUBROUTINE FDS_EL ( X1L, X1R, X2L, X2R, N1, N2, BL, BR, BB, BT,
* H1, H2, A0, A1, A2, F )

C
C SETTING OF DIFFERENCE-SCHEME COEFFICIENTS
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C FOR SOLVING THE DIRICHLET BOUNDARY-VALUE PROBLEM
C FOR THE SECOND-ORDER ELLIPTIC EQUATION
C WITH VARIABLE COEFFICIENTS IN RECTANGLE
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION A0(N1,N2), A1(N1,N2), A2(N1,N2), F(N1,N2),
* BL(N2), BR(N2), BB(N1), BT(N1)

C
C PARAMETERS
C

C INPUT PARAMETERS:
C
C X1L, X1R - LEFT AND RIGHT END POINTS OF THE SEGMENT (THE FIRST
C VARIABLE);
C X2L, X2R - LEFT AND RIGHT END POINTS OF THE SEGMENT (THE SECOND
C VARIABLE);
C N1, N2 - NUMBER OF NODES OVER THE FIRST AND SECOND VARIABLES;
C BL(N2) - BOUNDARY CONDITION AT THE LEFT BOUNDARY (X1 = X1L);
C BR(N2) - BOUNDARY CONDITION AT THE RIGHT BOUNDARY (X1 = X1RL);
C BB(N1) - BOUNDARY CONDITION AT THE LOWER BOUNDARY (X2 = X2L);
C BT(N1) - BOUNDARY CONDITION AT THE UPPER BOUNDARY (X2 = X2RL).
C
C OUTPUT PARAMETERS:
C
C H1, H2 - STEPS OF THE UNIFORM RESTANGULAR GRID;
C A0, A1, A2 - DIFFERENCE-SCHEME COEFFICIENTS
C (ON THE FIVE-POINT MESH PATTERN WITH REGARD FOR
C SYMMETRY);
C F - RIGHT-HAND SIDE OF THE DIFFERENCE SCHEME.
C
C NOTES:
C
C THE COEFFICIENTS AND THE RIGHT-HAND SIDE OF THE DIFFERENCE
C EQUATION ARE SET IN THE SUBROUTINES-FUNCTIONS AK, AQ, AF
C

H1 = (X1R-X1L) / (N1-1)
H2 = (X2R-X2L) / (N2-1)
H12 = H1 / H2
H21 = H2 / H1
HH = H1 * H2

C
C INTERNAL NODES
C

DO J = 2, N2-1
X2 = X2L + (J-1)*H2
DO I = 2, N1-1

X1 = X1L + (I-1)*H1
A1(I-1,J) = H21*AK(X1-0.5D0*H1,X2)
A1(I,J) = H21*AK(X1+0.5D0*H1,X2)
A2(I,J-1) = H12*AK(X1,X2-0.5D0*H2)
A2(I,J) = H12*AK(X1,X2+0.5D0*H2)
A0(I,J) = A1(I-1,J) + A1(I,J) + A2(I,J-1) + A2(I,J)

* + HH*AQ(X1,X2)
F(I,J) = HH*AF(X1,X2)

END DO

END DO
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C
C LEFT AND RIGHT BOUNDARIES: FIRST-KIND BOUNDARY CONDITION
C

DO J = 2, N2-1
A1(1,J) = 0.D0
A2(1,J) = 0.D0

A0(1,J) = 1.D0
F(1,J) = BL(J)
A1(N1-1,J) = 0.D0
A2(N1,J) = 0.D0
A0(N1,J) = 1.D0
F(N1,J) = BR(J)

END DO
C
C BOTTOM AND UPPER BOUNDARY: FIRST-KIND BOUNDARY CONDITION
C

DO I = 2, N1-1
A1(I,1) = 0.D0
A2(I,1) = 0.D0
A0(I,1) = 1.D0
F(I,1) = BB(I)
A1(I,N2) = 0.D0
A2(I,N2-1) = 0.D0
A0(I,N2) = 1.D0
F(I,N2) = BT(I)

END DO
C
C LEFT BOTTOM CORNER
C

A1(1,1) = 0.D0
A2(1,1) = 0.D0
A0(1,1) = 1.D0
F(1,1) = 0.5D0*(BL(1) + BB(1))

C
C LEFT UPPER CORNER
C

A1(1,N2) = 0.D0

A0(1,N2) = 1.D0
F(1,N2) = 0.5D0*(BL(N2) + BT(1))

C
C RIGHT BOTTOM CORNER
C

A2(N1,1) = 0.D0
A0(N1,1) = 1.D0
F(N1,1) = 0.5D0*(BB(N1) + BR(1))

C
C RIGHT UPPER CORNER
C

A0(N1,N2) = 1.D0
F(N1,N2) = 0.5D0*(BT(N1) + BR(N2))

C
RETURN
END

DOUBLE PRECISION FUNCTION AK ( X1, X2 )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C COEFFICIENTS AT THE HIGHER DERIVATIVES
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C
AK = 1.D0
IF ( X1 .LE. 0.5D0.AND. X2 .LE. 0.5D0 ) AK = 10.D0

C

RETURN
END

DOUBLE PRECISION FUNCTION AQ ( X1, X2 )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C COEFFICIENTS AT THE LOWER TERMS OF THE EQUATION
C

AQ = 0.D0
IF ( X1 .LE. 0.5D0.AND. X2 .LE. 0.5D0 ) AK = 0.D0

C
RETURN
END

DOUBLE PRECISION FUNCTION AF ( X1, X2 )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C RIGHT-HAND SIDE OF THE EQUATION
C

AF = 1.D0
IF ( X1 .LE. 0.5D0.AND. X2 .LE. 0.5D0 ) AF = 0.D0

C
RETURN
END

In the example given below we consider a problem for the elliptic equation with
piecewise-constant coefficients.

3.4.4 Computational experiments

Consider data obtained in experiments on numerical solution of a model bound-
ary value problem. The problem simulates processes in a piecewise-homogeneous
medium, with equation coefficients assumed constant in separate subdomains. In the
calculation domain �, a rectangle �1 is singled out (see Figure 3.3). The boundary
value problem (3.60), (3.61) is solved in the case in which

k(x), q(x), f (x) =
{

κ1, q1, f1, x ∈ �1,

κ2, q2, f2, x ∈ �2.

The above program listing refers to the basic variant in which

l1 = 1.25, l2 = 1, s1 = 0.5, s2 = 0.5,

κ1 = 1, κ2 = 10, q1 = 0, q2 = 0, f1 = 1, f2 = 0,

and the boundary conditions are assumed homogeneous (μ(x) = 0).
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Figure 3.3 Calculation domain

The first point of interest concerns the efficiency of the computational algorithm
used. We are speaking, first of all, about the rate of convergence of the iteration
method, and about the convergence of approximate solution to the exact solution. Cal-
culated data obtained on a sequence of refined (from N = N1 = N2 = 25 to N = 200)
grids are given in Table 3.1.

N 25 50 100 200 400

n 17 22 32 47 69
ymax 0.06161 0.06240 0.06266 0.06278 0.06284

Table 3.1 Computations performed on a sequence of consecutively refined grids

Here n is the total number of performed iterations (the program is terminated on reach-
ing the relative accuracy ε = 10−6), and ymax is the maximum magnitude of the ap-
proximate solution.

In the case of the problem with variable coefficients, the dependence n = O(N 1/2)

holds, typical of steepest iteration methods. Considering the problem with discon-
tinuous coefficients, we cannot bargain for a difference-solution convergence rate of
O(h2), readily achieved in the case of problems with smooth solutions. The actual
rate of convergence can be figured out to an extent considering data on the maximum
magnitude of the approximate solution.

Figure 3.4 shows the approximate solution of the problem obtained for the basic
variant. It is of interest to trace the effect due to the coefficient ratio κ2/κ1. We fix
κ1 = 1 and vary κ2. Two cases of relatively high and low coefficient κ2 are illustrated
by Figures 3.5 and 3.6.

The use of high (low) coefficients at the higher-order derivatives corresponds to the
method of fictitious domains. With high coefficients (see Figure 3.5), on the boundary



Section 3.5 Exercises 85

Figure 3.4 Solution obtained on the grid N = N1 = N2 = 100

Figure 3.5 Solution obtained with κ2 = 100

of the irregular domain �1 we have homogeneous Dirichlet conditions. The second
limiting case of low κ2 gives the homogeneous Neumann approximate boundary con-
ditions (see Figure 3.6).

3.5 Exercises

Exercise 3.1 In an irregular domain �, we treat the boundary value problem

−
2∑

α=1

∂

∂xα

(
k(x)

∂u
∂xα

)
+ q(x)u = f (x), x ∈ �, (3.64)

u(x) = μ(x), x ∈ ∂� (3.65)

with
k(x) ≥ κ > 0, q(x) ≥ 0, x ∈ �.
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Figure 3.6 Solution obtained with κ2 = 0.01

The calculation domain � in the method of fictitious domains is dipped into the do-
main �0. Instead of the approximate solution of problem (3.64), (3.65), we deal with
the boundary value problem

−
2∑

α=1

∂

∂xα

(
kε(x)

∂uε

∂xα

)
+ qε(x)uε = fε(x), x ∈ �0, (3.66)

uε(x) = 0, x ∈ ∂�0. (3.67)

Consider a method of fictitious domains with continuation over higher coefficients in
which

kε(x), qε(x), fε(x) =
{

k(x), q(x), f (x), x ∈ �,

ε−2, 0, 0, x ∈ �1 = �0\�.

Show that ‖uε(x) − u(x)‖W 1
2 (�) → 0 as ε → 0.

Exercise 3.2 Consider a method of fictitious domains with continuation over lower
coefficients for approximate solution of problem (3.64), (3.65), when in (3.66), (3.67)
we have:

kε(x), qε(x), fε(x) =
{

k(x), q(x), f (x), x ∈ �,

1, ε−2, 0, x ∈ �1 = �0\�.

Exercise 3.3 Show that the difference scheme

−yx1x1 − yx1x1 − h2
1 + h2

2

12
yx1x1x2x2 = ϕ(x), x ∈ ω,

y(x) = μ(x), x ∈ ∂ω

with

ϕ(x) = f (x) + h2
1

12
fx1x1 + h2

2

12
fx2x2,

approximates the boundary value problem (3.2), (3.3) accurate to the fourth order.
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Exercise 3.4 In the numerical solution of equation (3.1), approximate the third-kind
boundary condition

−k(0, x2)
∂u
∂x1

+ σ(x2)u(0, x2) = μ(x2),

considered on one side of a rectangle � (on the other boundary segments, first-kind
boundary conditions are given).

Exercise 3.5 Construct a difference scheme for the boundary value problem (3.1),
(3.3) with the following matched conditions at x1 = x∗

1 :

u(x∗
1 + 0, x2) − u(x∗

1 − 0, x2) = 0,

k
∂u
∂x1

(x∗
1 + 0, x2) − k

∂u
∂x1

(x∗
1 − 0, x2) = χ(x2).

Exercise 3.6 Consider the approximation of the second-order elliptic equation with
mixed derivatives

−
2∑

α,β=1

∂

∂xα

(
kαβ(x)

∂u
∂xβ

)
= f (x), x ∈ �,

in which
kαβ(x) = kβα(x), α, β = 1, 2.

Exercise 3.7 In cylindrical coordinates, the Poisson equations in a circular cylinder
can be written as

−1
r

∂

∂r

(
r

∂u
∂r

)
− 1

r2

∂2u
∂ϕ2

− ∂2u
∂z2

= f (r, ϕ, z).

Construct a difference scheme for this equation with first-kind boundary conditions on
the surface of the cylinder.

Exercise 3.8 Consider a difference scheme written as

A(x)y(x) −
∑

ξ∈W ′(x)

B(x, ξ)y(ξ) = ϕ(x), x ∈ ω

with
A(x) > 0, B(x, ξ) > 0, ξ ∈ W ′(x),

D(x) = A(x) −
∑

ξ∈W ′(x)

B(x, ξ) > 0, x ∈ ω.

Derive the following estimate for the solution of the problem:

‖y(x)‖∞ ≤
∥∥∥ ϕ(x)

D(x)

∥∥∥
∞

.
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Exercise 3.9 Suppose that in the iteration method (of alternate directions)

B
yk+1 − yk

τ
+ Ayk = ϕ, k = 0, 1, . . .

we have
A = A1 + A2, A1 A2 = A2 A1

and, in addition,

δα E ≤ Aα ≤ �α E, Aα = A∗
α, δα > 0, α = 1, 2.

Next, suppose that the operator B is given in the factorized form

B = (E + ν A1)(E + ν A2).

Find the optimum value of ν.

Exercise 3.10 To solve the difference problem

Ay = ϕ, A = A∗ > 0

one uses the triangular iteration method

(D + τ A1)
yk+1 − yk

τ
+ Ayk = ϕ,

with D being an arbitrary self-adjoint operator and

A = A1 + A2, A1 = A∗
2.

Find the optimum value of τ if a priori information is given in the form

δD ≤ A, A1 D−1 A2 ≤ �

4
A.

Exercise 3.11 Derive the calculation formula

τk+1 = (wk, rk)

(Awk, wk)
, wk = B−1rk, rk = Ayk − ϕ

for the iteration parameter in the iterative steepest descend method

B
yk+1 − yk

τk+1
+ Ayk = ϕ, k = 0, 1, . . . ,

A = A∗ > 0, B = B∗ > 0,

from the condition of minimum norm of inaccuracy in HA at the next iteration.
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Figure 3.7 On the statement of the modified Dirichlet problem

Exercise 3.12 Using the program PROBLEM2, examine how the rate of convergence
in the used iterative process depends on the variable coefficient k(x) (or, in the simplest
case, how the number of iterations depends on κ2).

Exercise 3.13 Using the program PROBLEM2, perform numerical experiments on
solving the Dirichlet problem in a step domain �1 (Figure 3.3) based on the method
of fictitious domains with continuation over lower coefficients.

Exercise 3.14 Modify the program PROBLEM2 so that to solve the third boundary
value problem (boundary conditions (3.4)) for equation (3.60).

Exercise 3.15 Consider the modified Dirichlet problem for equation (3.1) in a bicon-
nected domain �1 (Figure 3.7). At the outer boundary, conditions (3.1) are given. At
the internal boundary, the solution is constant, but this solution itself must be deter-
mined from an additional integral condition:

u(x) = const, x ∈ ∂�2,∫
∂�1

k(x)
∂u
∂n

dx = 0.

To approximately solve the problem, use the method of fictitious domains imple-
mented via the program PROBLEM2.



4 Boundary value problems

for parabolic equations

As a typical non-stationary mathematical physiscs problem, we consider here the
boundary value problem for the space-uniform second-order equation. On the approx-
imation over space, we arrive at a Cauchy problem for a system of ordinary differential
equations. Normally, the approximation over time in such problems can be achieved
using two time layers. Less frequently, three-layer difference schemes are used. A
theoretical consideration of the convergence of difference schemes for non-stationary
problems rests on the theory of stability (correctness) of operator-difference schemes
in Hilbert spaces of mesh functions. Conditions for stability of two- and three-layer
difference schemes under various conditions are formulated. Numerical experiments
on the approximate solution of a model boundary value problem for a one-dimensional
parabolic equation are performed.

4.1 Difference schemes

Difference schemes for a model second-order parabolic equation are constructed. The
approximation over time is performed using two and three time layers.

4.1.1 Boundary value problems

Consider a simplest boundary value problem for a one-dimensional parabolic equation.
The calculation domain is the rectangle

QT = � × [0, T ], � = {x | 0 ≤ x ≤ l}, 0 ≤ t ≤ T .

The solution is to be found from the equation

∂u
∂t

= ∂

∂x

(
k(x)

∂u
∂x

)
+ f (x, t), 0 < x < l, 0 < t ≤ T . (4.1)

Here, the coefficient k depends just on the spatial variable and, in addition, k(x) ≥
κ > 0.

We consider the first boundary value problem (with the boundary conditions as-
sumed homogeneous) in which equation (4.1) is supplemented with the conditions

u(0, t) = 0, u(l, t) = 0, 0 < t ≤ T . (4.2)

Also, the following initial conditions are considered:

u(x, 0) = u0(x), 0 ≤ x ≤ l. (4.3)
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In a more general case, one has to use third-kind boundary conditions. In the latter
case, instead of (4.2) we have:

−k(0)
du
dx

(0, t) + σ1(t)u(0, t) = μ1(t),

k(l)
du
dx

(l, t) + σ2(t)u(l, t) = μ2(t), 0 < t ≤ T .

(4.4)

The boundary value problem (4.1)–(4.3) is considered as a Cauchy problem for the
first-order differential-operator equation in the Hilbert space H = L2(�) for functions
defined in the domain � = (0, 1) and vanishing at the boundary points of the domain
(on ∂�). For the norm and for the scalar product, we use the settings

(v, w) =
∫

�

v(x)w(x) dx, ‖v‖2 = (v, v) =
∫

�

v2(x) dx .

We define the operator

Au = − ∂

∂x

(
k(x)

∂u
∂x

)
, 0 < x < l, (4.5)

for functions satisfying the boundary conditions (4.2).
The boundary value problem (4.1)–(4.3) is written as a problem in which it is re-

quired to find the function u(t) ∈ H from the differential-operator equation

du
dt

+ Au = f (t), 0 < t ≤ T (4.6)

supplemented with the initial condition

u(0) = u0. (4.7)

The operator A is a self-adjoint operator positively defined in H, i. e.,

A∗ = A ≥ m E, m = κπ2/ l2 > 0. (4.8)

With the aforesaid taken into account (see the proof of Theorem 1.2), we derive the
following a priori estimate for the solution of problem (4.6)–(4.8):

‖u(t)‖ ≤ exp (−mt)
(
‖u0‖ +

∫ t

0
exp (mθ)‖ f (θ)‖ dθ

)
. (4.9)

A cruder estimate derived by invoking the property of non-negativeness of the op-
erator A only was obtained previously in Theorem 1.2; this estimate has the form

‖u(t)‖ ≤ ‖u0‖ +
∫ t

0
‖ f (θ)‖ dθ. (4.10)

Estimates (4.9) and (4.10) show that the solution of problem (4.6)–(4.8) is stable
with respect to initial data and right-hand side. Such fundamental properties of the
differential problem must be inherited when we pass to a discrete problem.
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4.1.2 Approximation over space

As usually, we denote as ω̄ a uniform grid with stepsize h over the interval �̄ = [0, l]:

ω̄ = {x | x = xi = ih, i = 0, 1, . . . , N , Nh = l}

and let ω and ∂ω be the sets of internal and boundary nodes.
At internal nodes, we approximate the differential operator (4.5), accurate to the

second order, with the difference operator

Ay = −(ayx̄)x , x ∈ ω, (4.11)

in which, for instance, a(x) = k(x − 0.5h).
In the mesh Hilbert space H , we introduce a norm defined as ‖y‖ = (y, y)1/2,

where

(y, w) =
∑
x∈ω

y(x)w(x)h.

On the set of functions vanishing on ∂ω, for the self-adjoint operator A under the
constraints k(x) ≥ κ > 0 and q(x) ≥ 0 there holds the estimate

A = A∗ ≥ κλ0 E, (4.12)

in which

λ0 = 4
h2

sin2 πh
2l

≥ 8
l2

is the minimum eigenvalue of the difference operator of second derivative on the uni-
form grid.

The approximation over space performed, we have the following problem put into
correspondence to the problem (4.6), (4.7):

dy
dt

+ Ay = f, x ∈ ω, t > 0, (4.13)

y(x, 0) = u0(x), x ∈ ω. (4.14)

By virtue of (4.12), for the solution of problem (4.13), (4.14) there holds the esti-
mate

‖y(x, t)‖ ≤ exp (−κλ0t)
(
‖u0(x)‖ +

∫ t

0
exp (κλ0θ)‖ f (x, θ)‖ dθ

)
, (4.15)

consistent with estimate (4.9).
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4.1.3 Approximation over time

The next step in the approximate solution of the Cauchy problem for the system of
ordinary difference equations (4.13), (4.14) is approximation over time. We define a
time-uniform grid

ω̄τ = ωτ ∪ {T } = {tn = nτ, n = 0, 1, . . . , N0, τ N0 = T }.
We denote as A, B : H → H linear operators in H dependent, generally speaking,
on τ and tn . In the notation used below, following the manner adopted in the theory of
difference schemes, we do not use subscripts:

y = yn, ŷ = yn+1, y̌ = yn−1,

yt̄ = y − y̌
τ

, yt = ŷ − y
τ

.

In a two-layer difference scheme used to solve a non-stationary equation, the transi-
tion to the next time layer t = tn+1 is performed using the solution yn at the previous
time layer.

In the two-layer scheme, equation (4.13) is approximated with the difference equa-
tion

yn+1 − yn

τ
+ A(σ yn+1 + (1 − σ)yn) = ϕn, n = 0, 1, . . . , N0 − 1, (4.16)

where σ is a numerical parameter (weight) to be taken from the interval 0 ≤ σ ≤ 1.
For the right-hand side, one can put, for instance,

ϕn = σ fn+1 + (1 − σ) fn.

Approximation of (4.14) yields

y0 = u0(x), x ∈ ω. (4.17)

Scheme (4.16) is known as the weighted scheme.
For the time-approximation inaccuracy of the first derivative we have:

vn+1 − vn

τ
= dv

dt
(t∗) + O(τ ν),

where ν = 2 if t = tn+1/2; otherwise, ν = 1. As a result, we obtain the difference
equation (4.16) that approximates equation (4.13) over time accurate to the second
order in the case of σ = 0.5 and accurate to the first order in the case of σ �= 0.5.

Consider also the weighted three-layer difference scheme for equation (4.13), in
which three time layers (tn+1, tn and tn−1) are used:

(
θ

yn+1 − yn

τ
+ (1 − θ)

yn − yn−1

τ

)
+ A(σ1 yn+1 + (1 − σ1 − σ2)yn + σ2 yn−1) = ϕn, (4.18)
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n = 1, 2, . . . , N0 − 1.

For the right-hand side, it would appear reasonable to use the approximations

ϕn = σ1 fn+1 + (1 − σ1 − σ2) fn + σ2 fn−1.

Now, we can enter the three-layer calculation scheme with known y0 and y1:

y0 = u0, y1 = u1. (4.19)

For y0, we use the initial condition (4.14). To find y1, we invoke a two-layer difference
scheme, for instance,

y1 − y0

τ
+ 1

2
A(y1 + y0) = 1

2
( f1 + f0).

The difference scheme (4.18), (4.19) involves a weighting parameter θ used in the ap-
proximation of the time derivative and two weighting parameters, σ1 and σ2, used in
the approximation of other terms. Let us give some typical sets of weighting parame-
ters that have found use in practical computations.

Using a greater number of layers in approximation of time-dependent equations is
aimed, first of all, at raising the approximation order. That is why in the considera-
tion of three-layer schemes (4.18), (4.19) it makes sense for us to restrict ourselves to
schemes that approximate the initial problem (4.13), (4.14) over time with an order not
less than second order.

First of all, consider a one-parametric family of symmetric schemes of the second
approximation order

yn+1 − yn−1

2τ
+ A(σ yn+1 + (1 − 2σ)yn + σ yn−1) = ϕn, (4.20)

which results from (4.18) with the settings

θ = 1/2, σ = σ1 = σ2.

Particular attention should be paid to the scheme

3yn+1 − 4yn + yn−1

2τ
+ Ayn+1 = ϕn (4.21)

that approximates equation (4.13) accurate to O(τ 2) with properly given right-hand
side (for instance, ϕn = fn+1). Note that if in (4.18) we choose

θ = 3/2, σ1 = 1, σ2 = 0,

then we arrive at scheme (4.21).
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4.2 Stability of two-layer difference schemes

A highly important place in the robustness study of approximate solution methods for
non-stationary problems is occupied by the stability theory. Below, we introduce key
notions in use in the theory of stability for operator-difference schemes considered in
finite-dimensional Hilbert spaces, formulate stability criteria for two-layer difference
schemes with respect to initial data, and give typical estimates of stability with respect
to initial data and right-hand side.

4.2.1 Basic notions

Stability conditions are formulated for difference schemes written in the unified gen-
eral (canonical) form. Any two-layer scheme can be written in the form

B(tn)
yn+1 − yn

τ
+ A(tn)yn = ϕn, tn ∈ ωτ , (4.22)

y0 = u0, (4.23)

where yn = y(tn) ∈ H is the function to be found and the functions ϕn, u0 ∈ H
are given functions. Notation (4.22), (4.23) is called the canonical form of two-layer
schemes.

For the Cauchy problem at the next time layer to be solvable, we assume that the
operator B−1 does exist. Then, we can write equation (4.22) as

yn+1 = Syn + τ ϕ̃n, S = E − τ B−1 A, ϕ̃n = B−1ϕn. (4.24)

The operator S is called the transition operator for the two-layer difference scheme
(using this operator, transitions from one time layer to the next time layer can be per-
formed).

A two-layer scheme is called stable, if there exist positive constants m1 and m2,
independent of τ and, also, of u0 and ϕ, such that for all u0 ∈ H , ϕ ∈ H , and t ∈ ω̄τ

for the solution of problem (4.22), (4.23) the following estimate is valid:

‖yn+1‖ ≤ m1‖u0‖ + m2 max
0≤θ≤tn

‖ϕ(θ)‖∗, tn ∈ ωτ . (4.25)

Here ‖·‖ and ‖·‖∗ are some norms in the space H . Inequality (4.25) implies that the
solution of problem (4.22), (4.23) depends continuously on input data.

The difference scheme

B(tn)
yn+1 − yn

τ
+ A(tn)yn = 0, tn ∈ ωτ , (4.26)

y0 = u0 (4.27)

is called a scheme stable with respect to initial data, if for the solution of problem
(4.26), (4.27) the following estimate holds:

‖yn+1‖ ≤ m1‖u0‖, tn ∈ ωτ . (4.28)
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The two-layer difference scheme

B(tn)
yn+1 − yn

τ
+ A(tn)yn = ϕn, tn ∈ ωτ , (4.29)

y0 = 0 (4.30)

is stable with respect to the right-hand side, if for the solution there holds the inequality

‖yn+1‖ ≤ m2 max
0≤θ≤tn

‖ϕ(θ)‖∗, tn ∈ ωτ . (4.31)

The difference scheme (4.26), (4.27) is called a ρ-stable (uniformly stable) scheme
with respect to initial data in HR if there exist constants ρ > 0 and m1 independent
of τ and n and such that for any n and for all yn ∈ H for the solution yn+1 of (4.26)
there holds the estimate

‖yn+1‖R ≤ ρ‖yn‖R, tn ∈ ωτ (4.32)

and, in addition, ρn ≤ m1.
In the theory of difference schemes, the constant ρ is traditionally chosen as one of

the following quantities:

ρ = 1,

ρ = 1 + cτ, c > 0,

ρ = exp (cτ).

Here, the constant c does not depend on τ and n.
With regard to (4.24), we rewrite equation (4.26) in the form

yn+1 = Syn. (4.33)

The requirement for ρ-stability is equivalent to the fulfillment of the two-sided opera-
tor inequality

−ρR ≤ RS ≤ ρR, (4.34)

provided that RS is a self-adjoint operator (RS = S∗ R). For any transition operator in
(4.33), the condition for ρ-stability has the form

S∗ RS ≤ ρ2 R. (4.35)

Let us formulate now the difference analogue of the Gronwall lemma (see
Lemma 1.1).

Lemma 4.1 From an estimate of the difference solution at some layer

‖yn+1‖ ≤ ρ‖yn‖ + τ‖ϕn‖∗ (4.36)

there follows the a priori estimate

‖yn+1‖ ≤ ρn+1‖y0‖ +
n∑

k=0

τρn−k‖ϕk‖∗. (4.37)
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In this way, an estimate of the solution at an individual layer yields an a priori
estimate of the difference solution at arbitrary time.

4.2.2 Stability with respect to initial data

Let us formulate basic criteria for stability of two-layer operator-difference schemes
with respect to initial data. Of primary significance here is the following theorem about
exact (sufficient and necessary) stability conditions in HA.

Theorem 4.2 Suppose that the operator A in (4.26) is a self-adjoint, positive operator
being, in addition, a constant (independent of n) operator. The condition

B ≥ τ

2
A, t ∈ ωτ (4.38)

is a necessary and sufficient condition for stability of A in HA, or for the fulfillment of
the estimate

‖yn+1‖A ≤ ‖u0‖A, t ∈ ωτ . (4.39)

Proof. We scalarwise multiply equation (4.26) by yt ; then, we obtain the identity

(Byt , yt) + (Ay, yt) = 0. (4.40)

Next, we use the representation

y = 1
2

(y + ŷ) − 1
2

τ yt ,

and write the identity (4.40) as

((
B − τ

2
A
)
yt , yt

)+ 1
2τ

(A(ŷ + y), ŷ − y) = 0. (4.41)

For the self-adjoint operator A, we have: (Ay, ŷ) = (y, Aŷ) and

(A(ŷ + y), ŷ − y) = (Aŷ, ŷ) − (Ay, y).

We insert the latter equalities into (4.41) and use the condition (4.38); then, we obtain
the inequality

‖yn+1‖A ≤ ‖yn‖A (4.42)

that yields the desired estimate (4.39).
To prove the necessity of (4.39), we assume that the scheme under consideration

is stable in HA or, in other words, inequality (4.39) is fulfilled. Prove now that, from
here, the operator inequality (4.38) follows. We start from the identity (4.41) at the
first layer n = 0,

2τ
((

B − τ

2
A
)
w, w

)+ (Ay1, y1) = (Ay0, y0), w = y1 − y0

τ
.
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In view of (4.39), the latter identity can be fulfilled iff((
B − τ

2
A
)
w, w

) ≥ 0.

Since y0 = u0 ∈ H is an arbitrary element, then w = −B−1 Au0 ∈ H is also an
arbitrary element. Indeed, since the operator A−1 does exist, for any element w ∈ H
we can find an element u0 = −A−1 Bw ∈ H . Thus, the above inequality turns out to
be fulfilled for all w ∈ H , i.e., the operator inequality (4.38) holds.

Condition (4.38) is a necessary and sufficient condition for stability not only in HA,
but also in other norms. Not discussing all possibilities that arise along this line, let us
formulate without proof only a statement concerning the stability in HB .

Theorem 4.3 Let the operators A and B in (4.26), (4.27) be constant operators and,
in addition,

B = B∗ > 0, A = A∗ > 0. (4.43)

Then, condition (4.38) is a condition necessary and sufficient for the scheme (4.26),
(4.27) to be stable, with ρ = 1, with respect to initial data in HB.

General non-stationary problems must be treated using conditions for ρ-stability.

Theorem 4.4 Let A and B be constant operators and, in addition,

A = A∗, B = B∗ > 0.

Then, the conditions
1 − ρ

τ
B ≤ A ≤ 1 + ρ

τ
B (4.44)

are conditions necessary and sufficient for ρ-stability of scheme (4.26), (4.27) in HB

or, in other words, for the fulfillment of the inequality

‖yn+1‖B ≤ ρ‖yn‖B .

Proof. We write the scheme (4.26) in the form of (4.33); then, from (4.34) we obtain
the following conditions of stability in HB :

−ρB ≤ B − τ A ≤ ρB.

The latter two-sided operator inequality can be formulated as inequalities (4.44) in-
volving the operators of the two-layer difference scheme.

It should be emphasized here that the conditions of the theorem do not assume posi-
tiveness (or even non-negativeness) of A. Under an additional assumption that A is a
positive operator, one can show that the conditions (4.44) are necessary and sufficient
conditions for ρ-stability of scheme (4.26), (4.27) in HA.

Like in Theorem 4.2, in the case of ρ ≥ 1, stability can be established for two-layer
difference schemes with a non-self-adjoint operator B.
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Theorem 4.5 Let the operator A be a self-adjoint positive and constant operator.
Then, in the case of

B ≥ τ

1 + ρ
A (4.45)

the difference scheme (4.26), (4.27) is ρ-stable in HA.

Proof. We add to and subtract from the basic energy identity (see (4.41))

2τ
((

B − τ

2
A
)
yt , yt

)+ (Aŷ, ŷ) − (Ay, y) = 0 (4.46)

the expression

2τ 2 1
1 + ρ

(Ayt , yt).

This yields

2τ
((

B − τ

1 + ρ
A
)
yt , yt

)+ (Aŷ, ŷ) − (Ay, y) − 1 − ρ

1 + ρ
τ 2(Ayt , yt) = 0.

With the condition (4.45) and self-adjointness of A taken into account, after simple
manipulations we obtain:

(Aŷ, ŷ) − ρ(Ay, y) + (ρ − 1)(Aŷ, y) ≤ 0.

Next, we use the inequality

|(Aŷ, y)| ≤ ‖ŷ‖A‖y‖A

and introduce the number

η = ‖ŷ‖A

‖y‖A
;

then, we arrive at the inequality

η2 − (ρ − 1)η + ρ ≤ 0.

This inequality holds for all η from the interval 1 ≤ η ≤ ρ, thus proving the desired
estimate

‖ŷ‖A ≤ ‖y‖A

that guarantees stability in HA.

Turn now to the derivation of a priori estimates that express stability with respect to
right-hand side. These results form a basis the examination of stability of difference
schemes for non-stationary problems rests on.
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4.2.3 Stability with respect to right-hand side

First of all, show that stability with respect to initial data in HR , R = R∗ > 0 implies
stability with respect to right-hand side provided that the norm ‖ϕ‖∗ = ‖B−1ϕ‖R is
used.

Theorem 4.6 Let the difference scheme (4.22), (4.23) be a scheme ρ-stable in HR with
respect to initial data, i. e., the estimate (4.42) be valid in the case of ϕn = 0. Then,
the difference scheme (4.22), (4.23) is also stable with respect to right-hand side and,
for the solution, the following a priori estimate holds:

‖yn+1‖R ≤ ρn+1‖u0‖R +
n∑

k=0

τρn−k‖B−1ϕk‖R. (4.47)

Proof. Since the operator B−1 does exist, equation (4.22) can be written as

yn+1 = Syn + τ ϕ̃n, S = E − τ B−1 A, ϕ̃n = B−1ϕn. (4.48)

From (4.48) we obtain

‖yn+1‖R ≤ ‖Syn‖R + τ‖B−1ϕn‖R. (4.49)

The requirement for ρ-stability of the scheme with respect to initial data is equivalent
to the boundedness of the norm of S:

‖Syn‖R ≤ ρ‖yn‖R, t ∈ ωτ .

As a result, from (4.49) we obtain

‖yn+1‖R ≤ ρ‖yn‖R + τ‖B−1ϕn‖R.

We use the difference analogue of the Gronwall lemma and obtain the desired estimate
(4.47) that shows the scheme to be stable with respect to initial data and right-hand
side.

In the particular case of D = A or D = B (with A = A∗ > 0 or B = B∗ > 0), the
a priori estimate (4.47) yields simplest estimates of stability in the energy space HA or
in HB .

Some new estimates for the two-layer difference scheme (4.22), (4.23) can be ob-
tained using a stability criterion more crude than (4.48).

Theorem 4.7 Let A be a constant, self-adjoint, positive operator, and let the opera-
tor B satisfy the condition

B ≥ 1 + ε

2
τ A (4.50)
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with some constant ε > 0 independent of τ . Then, for the difference scheme (4.22),
(4.23) there holds the a priori estimate

‖yn+1‖2
A ≤ ‖u0‖2

A + 1 + ε

2ε

n∑
k=0

τ‖ϕ‖2
B−1 . (4.51)

Proof. We scalarwise multiply equation (4.22) by 2τ yt ; then, in the same way as for
(4.46), we obtain the energy identity

2τ
((

B − τ

2
A
)
yt , yt

)+ (Aŷ, ŷ) = (Ay, y) + 2τ(ϕ, yt). (4.52)

The right-hand side of (4.52) can be estimated as

2τ(ϕ, yt) ≤ 2τ‖ϕ‖B−1‖yt‖B ≤ 2τε1‖yt‖2
B + τ

2ε1
‖ϕ‖2

B−1

with some still undetermined positive constant ε1. On substitution of the latter estimate
into (4.52), we obtain:

2τ
((

(1 − ε1)B − τ

2
A
)
yt , yt

)+ (Aŷ, ŷ) ≤ (Ay, y) + τ

2ε1
‖ϕ‖2

B−1 .

With condition (4.50) being fulfilled, one can choose the constant ε1 so that we have

1
1 − ε1

= 1 + ε

and, hence,

(1 − ε1)B − τ

2
A = (1 − ε1)

(
B − 1 + ε

2
τ A
)

≥ 0,

(Aŷ, ŷ) ≤ (Ay, y) + 1 + ε

2ε
τ‖ϕ‖2

B−1 .

The latter inequality yields the estimate (4.51).

Theorem 4.8 Let A be a constant, self-adjoint and positive operator, and the operator
B satisfy the condition

B ≥ G + τ

2
A, G = G∗ > 0. (4.53)

Then, for the scheme (4.22), (4.23) the following a priori estimate holds:

‖yn+1‖2
A ≤ ‖u0‖2

A + 1
2

n∑
k=0

τ‖ϕk‖2
G−1 . (4.54)
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Proof. In (4.52), we use the estimate

2τ(ϕ, yt) ≤ 2τ(Gyt , yt) + τ

2
(G−1ϕ, ϕ).

We insert this estimate into (4.52); then, in view of (4.53), we obtain

(Aŷ, ŷ) ≤ (Ay, y) + 1
2

τ‖ϕ‖2
G−1

which, by the difference Gronwall lemma, yields (4.54).

Convergence of difference schemes can be examined in different classes of solution
smoothness for the initial differential problem; we therefore need a broad spectrum of
estimates in which, in particular, the right-hand side would be evaluated in different
easily calculable norms. Here, we have restricted ourselves only to some typical a
priori estimates of the solutions of operator-difference schemes.

4.3 Three-layer operator-difference schemes

Below, three-layer operator-difference schemes are considered based on the passage to
an equivalent two-layer operator-difference scheme. Estimates of stability with respect
to initial data and right-hand side in various norms are obtained.

4.3.1 Stability with respect to initial data

In the consideration of three-layer difference schemes, we use the following canonical
form of three-layer difference schemes:

B(tn)
yn+1 − yn−1

2τ
+ R(tn)(yn+1 − 2yn + yn−1) + A(tn)yn = ϕn,

n = 1, 2, . . .

(4.55)

with the values
y0 = u0, y1 = u1. (4.56)

Let us obtain conditions for stability with respect to initial data in the case of con-
stant (independent of n), self-adjoint operators A, B and R; in other words, instead of
the general scheme (4.55) here we consider the scheme

B
yn+1 − yn−1

2τ
+ R(yn+1 − 2yn + yn−1) + Ayn = 0. (4.57)

Let us derive a simplest a priori estimate for the scheme (4.56), (4.57) that expresses
stability with respect to initial data. We put

un = 1
2

(yn + yn−1), wn = yn − yn−1 (4.58)
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and rewrite, using the identity

yn = 1
4

(yn+1 + 2yn + yn−1) − 1
4

(yn+1 − 2yn + yn−1),

the scheme (4.57) as

B
wn+1 + wn

2τ
+ R(wn+1 − wn) − A(wn+1 − wn) + A

un+1 + un

2
= 0. (4.59)

We scalarwise multiply equation (4.59) by

2(un+1 − un) = wn+1 + wn;
this yields the equality

1
2τ

(B(wn+1 + wn), wn+1 + wn) + (R(wn+1 − wn), wn+1 + wn)

− 1
4

(A(wn+1 − wn), wn+1 + wn) + (A(un+1 + un), un+1 − un) = 0. (4.60)

For self-adjoint operators R and A and for a non-negative operator B (B ≥ 0), it
follows from (4.60) that

En+1 ≤ En, (4.61)

where, in view of the notation (4.58), we have

En+1 = 1
4

(A(yn+1 + yn), yn+1 + yn) + (R(yn+1 − yn), yn+1 − yn)

− 1
4

(A(yn+1 − yn), yn+1 − yn). (4.62)

Under certain constraints, the quantity En , defined by (4.62), specifies a norm and,
hence, inequality (4.61) guarantees stability of the operator-difference scheme with
respect to initial data. More accurately, the following statement is valid.

Theorem 4.9 Let the operators R and A in the operator-difference scheme (4.57) be
self-adjoint operators. Then, with the conditions

B ≥ 0, A > 0, R >
1
4

A (4.63)

fulfilled, there holds the a priori estimate

1
4

‖yn+1 + yn‖2
A + ‖yn+1 − yn‖2

R − 1
4

‖yn+1 − yn‖2
A

≤ 1
4

‖yn + yn−1‖2
A + ‖yn − yn−1‖2

R − 1
4

‖yn − yn−1‖2
A (4.64)

that proves the operator-difference scheme (4.57) to be stable with respect to initial
data.
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It is the complex structure of the norm (see (4.62)) that presents a specific feature of
the three-layer schemes under consideration. In some important cases, on narrowing
the class of difference schemes or on making stability conditions cruder, one can use
simpler norms.

4.3.2 Passage to an equivalent two-layer scheme

Multi-layer difference schemes can be conveniently examined considering the passage
to an equivalent two-layer scheme. For two-layer schemes, this approach yields most
important results, including (coincident) necessary and sufficient conditions for stabil-
ity.

We set as H 2 the direct sum of spaces H : H 2 = H ⊕ H . For vectors U = {u1, u2},
the addition and multiplication in H 2 is defined coordinate-wise, and the scalar product
is

(U, V ) = (u1, v1) + (u2, v2).

In H 2, we define the operators (operator matrices)

G =
(

G11 G12

G21 G22

)
,

whose elements Gαβ are operators in H . To a self-adjoint, positively defined operator
G, we put into correspondence a Hilbert space H 2

G in which the scalar product and the
norm are given by

(U, V )G = (GU, V ), ‖U‖G =
√

(GU, U ).

We write the three-layer operator-difference scheme (4.57) as the two-layer vector
scheme

B
Y n+1 − Y n

τ
+ AY n = 0, n = 1, 2, . . . (4.65)

with appropriately defined vectors Y n , n = 1, 2, . . . .
In view of the aforesaid, for each n = 1, 2, . . . we define the vector

Y n = {1
2

(yn + yn−1), yn − yn−1
}
. (4.66)

Under the conditions of Theorem 4.9, in this notation the estimate (4.64) of stability
with respect to initial data can be expressed as

‖Y n+1‖G ≤ ‖Y n‖G, (4.67)

with

G11 = A, G12 = G21 = 0, G22 = R − 1
4

A. (4.68)
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In view of (4.58), the two-layer vector scheme (4.65), (4.66) can be written as

B11
un+1 − un

τ
+ B12

wn+1 − wn

τ
+ A11un + A12wn = 0, (4.69)

B21
un+1 − un

τ
+ B22

wn+1 − wn

τ
+ A21un + A22wn = 0. (4.70)

Equality (4.69) is put into correspondence to the three-layer operator-difference
scheme written in the form (4.57). Taking into account the identities

un+1 + un

2
= un + un+1 − un

2
,

2(un+1 − un) = wn+1 + wn,

we rewrite (4.57) in a more convenient form:

B
un+1 − un

τ
+ R

wn+1 − wn

τ
− 1

4
A(wn+1 − wn)

+ τ

2
A

un+1 − un

τ
+ Aun = 0. (4.71)

To pass over from (4.69) to (4.71), we put:

B11 = B + τ

2
A, B12 = τ R − τ

4
A, A11 = A, A12 = 0. (4.72)

Equation (4.70) does not affect the three-layer scheme (4.57). Considering the two-
layer operator-difference schemes (4.65) with self-adjoint operators A, we define

B21 = −τ Q, B22 = τ

2
Q, A21 = 0, A22 = Q, (4.73)

where Q is some self-adjoint, positive operator.
In the case of (4.72), (4.73), for the operators in (4.65) we have the representation

B = τ

2
A + Q, (4.74)

where

Q =
(

Q11 Q12

Q21 Q22

)

with
Q11 = B, Q12 = τ R − τ

4
A, Q21 = −τ Q, Q22 = 0. (4.75)

Based on the latter notation, under the conditions of Theorem 4.9 we can estab-
lish stability of the operator-difference scheme (4.57), i. e., the estimate (4.67), (4.68).
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The two-layer vector operator-difference scheme (4.65) with a self-adjoint, positive
operator A is stable with respect to initial data in H 2

A if

B ≥ τ

2
A. (4.76)

Representation (4.74) taken into account, the condition (4.76) is valid in the case of

Q ≥ 0.

The latter condition is always fulfilled for an operator Q defined by (4.75) in the case
of B ≥ 0 and

Q = R − 1
4

A. (4.77)

In the case of (4.77), stability in H 2
A refers to the case in which inequalities (4.67),

(4.68) are fulfilled.

4.3.3 ρ-stability of three-layer schemes

Admitting that norm of the difference solution of a problem can both increase or de-
crease, we consider here ρ-stable schemes, for which the condition for stability with
respect to initial data has the form

‖Y n+1‖G ≤ ρ‖Y n‖G, (4.78)

with ρ > 0.

Theorem 4.10 Let the operators R and A in the difference scheme (4.57) be self-
adjoint operators. Then, with the conditions

B + τ

2
ρ − 1
ρ + 1

A ≥ 0, A > 0, R − 1
4

A > 0 (4.79)

fulfilled with ρ > 1, there holds the a priori estimate (4.78), (4.68) or, in other words,
the operator-difference scheme (4.57) is ρ-stable with respect to initial data.

Proof. The two-layer vector difference scheme (4.65) is ρ-stable with ρ > 1 in the
case of (see Theorem 4.5)

B ≥ τ

ρ + 1
A. (4.80)

With (4.74), inequality (4.80) can be rewritten as

Q + τ

2
ρ − 1
ρ + 1

A ≥ 0. (4.81)

Under the conditions of Theorem 4.5, the validity of (4.81) can be checked directly.
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Under somewhat more general conditions, ρ-stability estimates (4.78) with arbitrary
ρ > 0 can be obtained in the case of ρ-dependent norms. In the operator-difference
scheme (4.57), we introduce new unknowns yn = ρnzn , which yields

B
ρzn+1 − ρ−1zn−1

2τ
+ R(ρzn+1 − 2zn + ρ−1zn−1) + Azn = 0. (4.82)

We write scheme (4.82) in the canonical form

B̃
zn+1 − zn−1

2τ
+ R̃(zn+1 − 2zn + zn−1) + Ãzn = 0. (4.83)

Direct manipulations yield

B̃ = ρ2 + 1
2

B + τ(ρ2 − 1)R, R̃ = ρ2 − 1
4τ

B + ρ2 + 1
2

R,

Ã = ρ2 − 1
2τ

B + (ρ − 1)2 R + ρ A.

(4.84)

By Theorem 4.9, in the case of

B̃ ≥ 0, Ã > 0, R̃ − 1
4

Ã > 0 (4.85)

the scheme (4.83) is stable with respect to initial data and there holds the estimate

‖Zn+1‖G̃ ≤ ‖Zn‖G̃, (4.86)

where (see (4.66))

Zn =
{1

2
(zn + zn−1), zn − zn−1

}
.

Now we define the vector

Y n =
{1

2

( 1
ρ

yn + zn−1

)
,

1
ρ

zn − zn−1

}
. (4.87)

Then, the estimate (4.86) assumes the form

‖Y n+1‖G̃ ≤ ρ‖Y n‖G̃, (4.88)

i.e., the initial difference scheme (4.57) is ρ-stable with respect to initial data.
The norm in (4.88) is defined by the operator G̃, for which

G̃11 = Ã, G̃12 = G̃21 = 0, G̃22 = R̃ − 1
4

Ã. (4.89)

The stability conditions can be formulated based on (4.84), (4.85).
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Theorem 4.11 Let the operators B, R and A in the difference scheme (4.67) be self-
adjoint operators. Then, with the conditions

ρ2 + 1
2

B + τ(ρ2 − 1)R ≥ 0,

ρ2 − 1
2τ

B + (ρ − 1)2 R + ρ A > 0,

ρ2 − 1
2τ

B + (ρ + 1)2 R − ρ A > 0

(4.90)

fulfilled with ρ > 0, there holds the a priori estimate (4.87)–(4.89) or, in other words,
the difference scheme (4.57) is ρ-stable with respect to initial data in H 2

G̃
.

4.3.4 Estimates in simpler norms

Stability of the operator-difference schemes discussed above was established in Hilbert
spaces with a complex composite norm (see (4.61), (4.62)). In the consideration of
stability of three-layer difference schemes, we have also obtained estimates of stability
in simpler (compared to (4.62)) norms. The latter was achieved at the expense of more
tight stability conditions. Let us formulate the result.

Theorem 4.12 Let the operators R and A in the operator-difference scheme (4.57) be
self-adjoint operators. Then, in the case of

B ≥ 0, A > 0, R >
1 + ε

4
A (4.91)

with ε > 0 there hold the a priori estimates

‖yn+1‖2
A ≤ 2

1 + ε

ε
(‖y0‖2

A + ‖y1 − y0‖2
R), (4.92)

‖yn+1‖2
A + ‖yn − yn−1‖2

R ≤ 4 + 3ε

ε
(‖y0‖2

A + ‖y1 − y0‖2
R). (4.93)

Proof. In the used notation with omitted subscripts, yn = y, and yn+1 = ŷ, ŷ − y =
τ yt , and for En+1 defined by (4.62) we have

En+1 = 1
4

(A(ŷ + y), ŷ + y) + τ 2(Ryt , yt) − τ 2

4
(Ayt , yt)

= (Aŷ, y) + τ 2(Ryt , yt). (4.94)

Substitution of ŷ = y + τ yt into (4.94) yields

En+1 = (Ay, y) + τ(Ay, yt) + τ 2(Ryt , yt) ≤ ‖y‖2
A + τ‖y‖A‖yt‖A + τ 2‖yt‖2

R.
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Taking into account the third inequality in (4.93), we obtain

En+1 ≤ ‖y‖2
A + 2τ

(1 + ε)1/2
‖y‖A‖yt‖R + τ 2‖yt‖2

R ≤ 2(‖y‖2
A + τ 2‖yt‖2

R).

Thus, we have established a lower estimate for the composite norm

En+1 ≤ 2(‖yn‖2
A + ‖yn+1 − yn‖2

R). (4.95)

An upper estimate can be established in a similar manner. In (4.94), we put y =
= ŷ − τ yt ; then, in view of (4.91), we obtain:

En+1 = (Aŷ, ŷ) − τ(Aŷ, yt) + τ 2(Ryt , yt)

≥ ‖ŷ‖2
A − τ‖ŷ‖A‖yt‖A + τ 2‖yt‖2

R

≥ ‖ŷ‖2
A − 2τ

(1 + ε)1/2
‖ŷ‖A‖yt‖R + τ 2‖yt‖2

R.

For an arbitrary β > 0 we have:

En+1 ≥ (1 − β)‖ŷ‖2
A +

(
1 − 1

β(1 + ε)

)
τ 2‖yt‖2

R. (4.96)

We put β = 1/(1 + ε); then, from (4.96) we obtain:

En+1 ≥ ε

1 + ε
‖yn+1‖2

A. (4.97)

With estimates (4.95) and (4.97) taken into account, the stability estimate (4.61) yields
the desired stability estimate (see (4.92)) for the three-layer difference scheme (4.57)
in HA.

To prove estimate (4.93), we put β = (1 + ε)−1/2, so that

1 − β = (1 + ε)1/2 − 1
(1 + ε)1/2

= ε

1 + ε + (1 + ε)1/2
.

With the inequality (1 + ε)1/2 < 1 + 0.5ε taken into account, starting from (4.96), we
arrive at a second lower estimate of the composite norm:

En+1 >
2ε

4 + 3ε
(‖yn+1‖2

A + ‖yn+1 − yn‖2
R). (4.98)

Inequality (4.61), and estimates (4.95) and (4.98), yield the estimate (4.93).

Estimates of type (4.92) naturally arise when one considers three-layer schemes for
first-order evolutionary equations (second-order parabolic equation), and estimates of
type (4.93), in the case of three-layer schemes for second-order equations (second-
order hyperbolic equation).
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4.3.5 Stability with respect to right-hand side

Let us give some simplest stability estimates for three-layer operator-difference
schemes with respect to initial data and right-hand side. Instead of (4.57), now we
consider the scheme

B
yn+1 − yn−1

2τ
+ R(yn+1 − 2yn + yn−1) + Ayn = ϕn. (4.99)

Theorem 4.13 Let the operators R and A in (4.99) be self-adjoint operators. Then,
with the conditions

B ≥ εE, A > 0, R >
1
4

A (4.100)

fulfilled with a constant ε > 0, for the difference solution there hold the following a
priori estimates

En+1 ≤ E1 + 1
2ε

n∑
k=1

τ‖ϕk‖2, (4.101)

En+1 ≤ E1 + 1
2

n∑
k=1

τ‖ϕk‖2
B−1 . (4.102)

Proof. Analogously to the proof of Theorem 4.9 (see (4.62)), we obtain the equality

1
2τ

(B(wn+1 + wn), wn+1 + wn) + En+1 = (ϕn, wn+1 + wn) + En.

To derive the estimate (4.101) with ε > 0, in conditions (4.100) we invoke the inequal-
ity

(ϕn, wn+1 + wn) ≤ 1
2τ

ε‖wn+1 + wn‖2 + τ

2ε
‖ϕn‖2.

The inequality

(ϕn, wn+1 + wn) ≤ 1
2τ

‖wn+1 + wn‖2
B + τ

2
‖ϕn‖2

B−1,

is used in the proof of estimate (4.102).

Some other stability estimates for three-layer difference schemes (4.99) with respect
to right-hand side can be obtained based on the estimates (4.92), (4.93) with somewhat
more tight constraints imposed on R.

4.4 Consideration of difference schemes

for a model problem

Below, general results obtained in the stability theory for operator-difference schemes
are used to examine stability and convergence of difference schemes for a model
boundary value problem with one-dimensional parabolic equation.
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4.4.1 Stability condition for a two-layer scheme

The boundary value problem (4.1)–(4.3) can be solved using the two-layer difference
scheme (4.16), (4.17). We assume this scheme to be written in the canonical form
(4.22), (4.23) for two-layer difference schemes with

B = E + στ A, A > 0. (4.103)

Let us formulate now stability conditions for scheme (4.22), (4.103) under rather gen-
eral conditions not assuming self-adjointness of A.

Theorem 4.14 For the weighted difference scheme (4.16), (4.17) to be stable with
respect to initial data in H, it is necessary and sufficient that the following operator
inequality be fulfilled:

A∗ +
(
σ − 1

2

)
τ A∗ A ≥ 0. (4.104)

Proof. In view of A > 0, the operator A−1 does exist. We multiply (4.16) by A−1; so
doing, we pass from (4.22), (4.103) to the difference scheme

B̃
yn+1 − yn

τ
+ Ãyn = ϕ̃n, tn ∈ ωτ

in which
B̃ = A−1 + στ E, Ã = E .

Necessary and sufficient stability conditions for the latter scheme with respect to initial
data in H = HÃ (Theorem 4.2) are given by the inequality

A−1 +
(
σ − 1

2

)
τ E ≥ 0.

We multiply this inequality from the left by A∗, and from the right, by A (after such
operations, the inequality still remains valid); this yields inequality (4.104).

For weights σ ≥ 0.5, the operator-difference scheme (4.22), (4.103) is absolutely
stable (for all τ > 0).

With a weight σ taken from the interval 0 ≤ σ < 0.5, one can expect the operator-
difference scheme (4.22), (4.103) to be conditionally stable. In the latter case, to de-
rive constraints on the time step size, we can invoke the upper estimate of A (see
Lemma 2.2):

A ≤ M1 E, M1 = 4
h2

max
1≤i≤N−1

ai + ai+1

2
. (4.105)

In the case of a self-adjoint operator A, inequality (4.104) can be written as

E +
(
σ − 1

2

)
τ A ≥ 0.



112 Chapter 4 Boundary value problems for parabolic equations

Then, in view of (4.105), we have:

E +
(
σ − 1

2

)
τ A ≥ 1

M1
A +

(
σ − 1

2

)
τ A ≥ 0.

Hence, in the case of 0 ≤ σ < 0.5 the stability condition is fulfilled if

τ ≤
(1

2
− σ

) 1
M1

. (4.106)

Thus (see (4.105)), for schemes with weighting factors taken from the interval
0 ≤ σ < 0.5 there exist tight constraints on the time step size. Here, as it follows
from (4.106), the maximum possible time step size is τmax = O(h2), the latter circum-
stance presenting the most serious obstacle that hampers the use of such schemes in
computational practice.

4.4.2 Convergence of difference schemes

The central issue in the theoretical substantiation of the difference schemes in use
consists in the necessity to prove that the approximate solution converges to the exact
solution as we successively refine the computation grid. Such a consideration can be
performed using a priori estimates of stability with respect to initial data and right-hand
side.

To investigate into the matter of accuracy of the difference scheme (4.16), (4.17) in
yielding the approximate solution of problem (4.1)–(4.3), we write the related problem
for the inaccuracy. For the inaccuracy at the time layer t = tn , we put zn = yn − un

and substitute yn = zn + un into (4.16), (4.17). In this way, we arrive at the problem

zn+1 − zn

τ
+ A(σ zn+1 + (1 − σ)zn) = ψn,

n = 0, 1, . . . , N0 − 1,
(4.107)

z0 = 0, x ∈ ω. (4.108)

In (4.107), the right-hand side ψn is the approximation inaccuracy for equation (4.1):

ψn = un+1 − un

τ
+ A(σun+1 + (1 − σ)un).

The approximation over space and time was discussed above. In the case of smooth
coefficients and smooth right-hand side in (4.1), and also with smooth initial condi-
tions, we have:

ψn = O(h2 + τm(σ )), m(σ ) =
{

2, σ = 0.5,

1, σ �= 0.5.
(4.109)
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To estimate the norm of the inaccuracy, we can invoke the a priori estimates that ex-
press stability of the difference scheme (4.107), (4.108) for the inaccuracy with respect
to the right-hand side. We write the scheme (4.107), (4.108) in the canonical form

B
zn+1 − zn

τ
+ Azn = ψn, n = 0, 1, . . . , N0 − 1, (4.110)

where the operator B is defined by (4.103).
In view of (4.103), we obtain an estimate for the difference solution of problem

(4.108), (4.110) based on Theorem 4.8. In the case of interest, inequality (4.53) holds
with G = E if we choose σ ≥ 0.5. The resulting estimate for the inaccuracy (see
(4.54)) is

‖zn+1‖2
A ≤ 1

2

n∑
k=0

τ‖ψk‖2. (4.111)

Taking the condition (4.108) into account and based on the estimate (4.111), we
conclude that, with σ ≥ 0.5, the weighted difference scheme (4.16), (4.17) converges
in HA at a rate of O(h2 + τm(σ )).

4.4.3 Stability of weighted three-layer schemes

The problem (4.1)–(4.3) can be approximately solved using the three-layer weighted
scheme (4.18), (4.19). Consider conditions for stability of such schemes in the case of
θ = 0.5, i.e., for the scheme (4.19), (4.20).

We write scheme (4.19), (4.20) in the canonical form (4.55), (4.56) with

B = E + τ(σ1 − σ2)A, R = σ1 + σ2

2
A. (4.112)

Consider the case of a varying positive operator A (A = A∗ > 0 in the model problem
(4.13), (4.14)).

Theorem 4.15 Provided that A > 0 and the conditions

σ1 ≥ σ2, σ1 + σ2 > 1/2 (4.113)

are fulfilled, the scheme (4.19), (4.20) is stable with respect to initial data, and for the
difference solution (for ϕ = 0) there holds the estimate

‖Y n+1‖∗ ≤ ‖Y1‖∗, (4.114)

where

‖Y n+1‖2
∗ = 1

4
‖yn+1 + yn‖2 + 1

2

(
σ1 + σ2 − 1

2

)
‖yn+1 − yn‖2.
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Proof. Here, direct application of results concerning stability of three-layer operator-
difference schemes is hampered by non-self-adjointness of A. We therefore start the
proof with preliminary transformation of the difference scheme.

We act on (4.19), (4.20) with the operator A−1; then, we obtain:

B̃
yn+1 − yn−1

2τ
+ R̃(yn+1 − 2yn + yn−1) + Ãyn = ϕ̃n,

n = 1, 2, . . . ,
(4.115)

where, in view of (4.112),

B̃ = A−1 + τ(σ1 − σ2)E, R̃ = σ1 + σ2

2
E,

Ã = E, ϕ̃ = A−1ϕ.

(4.116)

Let us apply Theorem 4.9 to scheme (4.115), (4.116). Under the assumptions (4.113),
the following inequalities, that guarantee stability with respect to initial data, hold:

R̃ − 1
4

Ã =
(σ1 + σ2

2
− 1

4

)
τ 2 E > 0,

B̃ = A−1 + (σ1 − σ2)τ E ≥ 0.

Here, for the solution of the problem with homogeneous right-hand side (with ϕ = 0)
the estimate (4.114) holds.

Based on the stability estimates with respect to initial data and right-hand side,
convergence of three-layer difference schemes of type (4.19), (4.20) can be examined.

4.5 Program realization and computational experiments

Below, we consider a boundary value problem for the quasi-linear parabolic equation
with nonlinear right-hand side. In the numerical solution of such problems, primary
attention is normally paid to the use of linear difference schemes. Examples of numer-
ical solutions of several model problems are given which illustrate some effects due to
nonlinearity.

4.5.1 Problem statement

Consider boundary value problems for the quasi-linear parabolic equation

∂u
∂t

= ∂

∂x

(
k(x, u)

∂u
∂x

)
+ f (x, t, u), 0 < x < l, 0 < t ≤ T, (4.117)

whose coefficients depend not only on the spatial variable, but also on the solution
itself. We restrict ourselves to the case of first-kind homogeneous boundary conditions,
so that

u(0, t) = 0, u(l, t) = 0, 0 < t ≤ T, (4.118)
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u(x, 0) = u0(x), 0 ≤ x ≤ l. (4.119)

First of all, note conditions under which the problem (4.117)–(4.119) has a unique
solution. The study of such problems leans on results concerning the solution unique-
ness in the related linear problem.

Suppose that in the domain 0 < x < l, 0 < t ≤ T a function u(x, t) satisfies the
parabolic equation

∂u
∂t

= a(x, t)
∂2u
∂x2

+ b(x, t)
∂u
∂x

− c(x, t)u + f (x, t) (4.120)

with continuous coefficients and, in addition, a(x, t) > 0. Based on the principle
of maximum, we can show that the solution of the linear problem (4.118)–(4.120) is
unique. Note that the latter statement is valid irrespective of the sign of c(x, t).

Assume that there exist two solutions of problem (4.117)–(4.119), uα(x, t), α =
1, 2:

∂uα

∂t
= ∂

∂x

(
k(x, uα)

∂uα

∂x

)
+ f (x, t, uα), 0 < x < l, 0 < t ≤ T

with some given boundary and initial conditions. For the difference of the two solu-
tions, w(x) = u2(x) − u1(x), we obtain the following boundary value problem:

∂w

∂t
= ∂

∂x

(
k(x, u2)

∂w

∂x

)
+ ∂

∂x

(∂k
∂u

(x, ū)
∂u1

∂x
w
)

+ ∂ f
∂u

(x, t, ū)w,

0 < x < l, 0 < t ≤ T,

(4.121)

w(0, t) = 0, w(l, t) = 0, 0 < t ≤ T, (4.122)

w(x, 0) = 0, 0 ≤ x ≤ l. (4.123)

Here, the following settings were used:

∂q
∂u

(x, ū) =
∫ 1

0

∂q
∂u

(x, uθ ) dθ, uθ = θu2 + (1 − θ)u1.

The linear boundary value problem (4.121)–(4.123) belongs to the above-mentioned
problem class (4.118)–(4.120). Hence, the trivial solution w(x, t) = 0 of the problem
(4.121)–(4.123) is indeed unique provided that the coefficient k(x, u), the right-hand
side f (x, t, u) and the solution of (4.117)–(4.119) are sufficiently smooth functions.

4.5.2 Linearized difference schemes

Above, we have considered difference schemes for the linear parabolic equation.
Among these schemes, absolutely stable two- and three-layer implicit schemes have
been distinguished. In application of analogous schemes to nonlinear problems it may
happen so that we encounter difficulties with computational realization. In the case
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of implicit approximations, at the next time layer we arrive at nonlinear difference
equations. For the approximate solution to be found, we have to use these or those
iteration methods for solving systems of nonlinear equations. To avoid this situation,
in computational practice they widely use linearized difference schemes in which the
solution at the next layer is found from a system of linear equations. We will illustrate
some possibilities that arise along this line with the example of difference schemes for
the nonlinear problem (4.117)–(4.119).

By analogy with (4.11), on the set of mesh functions given on ω̄ and vanishing on
∂ω, we define the operator

A(v)y = −(a(x, v)yx̄)x , x ∈ ω.

Here, the coefficient a(x, v) is to be defined, for instance, as

a(x, v) = k(x − 0.5h, 0.5(v(x) + v(x − h))),

or
a(x, v) = 1

2
(k(x − h, v(x − h)) + k(x, v)).

To the initial differential problem (4.117)–(4.119), we put into correspondence the
differential-difference problem

dy
dt

+ A(y)y = f (x, t, y), x ∈ ω, t > 0, (4.124)

y(x, 0) = u0(x), x ∈ ω. (4.125)

Let us discuss difference schemes for problem (4.124), (4.125). To begin with, con-
sider nonlinear difference schemes in which the solution at the next time layer is found
as the solution of a nonlinear difference problem. Such schemes can be constructed
similarly to difference schemes for the linear parabolic equation. For instance, a purely
implicit difference scheme for (4.124), (4.125) is

yn+1 − yn

τ
+ A(yn+1)yn+1 = f (x, tn+1, yn+1),

n = 0, 1, . . . , N0 − 1,

(4.126)

y0 = u0(x), x ∈ ω. (4.127)

In the nonlinear scheme (4.126), (4.127), for the difference solution at the next time
layer to be found, a nonlinear difference problem must be solved. For the values of
yn+1 to be determined, these or those iterative processes are used. Some important
specific features of the corresponding nonlinear difference problems deserve mention.

The first specific feature is related with the fact that in the iterative embodiment
of implicit difference schemes a good initial approximation is always available. This
initial approximation can be chosen as the solution at the previous layer. The second,
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also beneficial specific feature is the fact that the difference problem for yn+1 involves
a small parameter, the time step size τ . This parameter essentially affects the rate of
convergence of the iterative process (the smaller τ , the higher is the rate of convergence
in the process).

We can also identify the class of linearized difference schemes whose specific fea-
ture consists in that, here, the solution at the next time layer is to be found from the
solution of a linear difference problem. A simplest scheme is characterized by that,
in it, the coefficients are taken from the previous time layer. An example here is the
difference scheme

yn+1 − yn

τ
+ A(yn, yn+1) = f (x, tn, yn). (4.128)

This difference scheme has, apparently, an approximation inaccuracy of order
O(τ + |h|2).

The main drawback of scheme (4.128) is often related with the fact that the right-
hand side (source) is taken at the previous time layer. Further development of the
difference scheme (4.128) is the scheme with quasi-linearized right-hand side:

yn+1 − yn

τ
+ A(yn, yn+1) = f (x, tn+1, yn) + ∂ f

∂y
(x, tn+1, yn)(yn+1 − yn). (4.129)

Scheme (4.129), which remains linear, has wider stability margins with respect to the
nonlinear right-hand side.

Linearized schemes can be constructed around the difference schemes “predictor-
corrector”, which conceptually border on the additive difference schemes (split
schemes). Let us restrict ourselves here to a simplest variant of the predictor-corrector
scheme:

ỹn+1 − yn

τ
+ A(yn, yn) = f (x, tn, yn). (4.130)

Scheme (4.130) is used to calculate the coefficients and the right-hand side; that is why
at the correction stage we can use the scheme

yn+1 − yn

τ
+ A(ỹn+1, yn+1) = f (x, tn+1, ỹn+1). (4.131)

Alternatively, the linearization scheme (4.129) can be used at the correction stage.
The above schemes show considerable potential in constructing linearized differ-

ence schemes. In practical simulations, special methodical studies need to be per-
formed aimed at making a proper choice of difference schemes for a particular class
of nonlinear boundary value problems. In the case of nonlinear problems, theoretical
considerations give only obscure guiding lines.

Of course, linearized difference schemes for problem (4.124), (4.125) can also be
constructed around three-layer difference schemes. Without dwelling on a detailed
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description, let us give here only two simplest examples. The problem (4.124), (4.125)
can be approximately solved using the three-layer symmetric difference schemes

yn+1 − yn−1

2τ
+ A(yn, σ yn+1 + (1 − 2σ)yn + σ yn−1) = f (x, tn, yn) (4.132)

with appropriate initial and boundary conditions. These linearized schemes are of the
second approximation order both over space and time.

4.5.3 Program

Below, we give the text of a program in which two linearized schemes, schemes (4.128)
and (4.129) were implemented. To find the solution at the next time layer, the standard
sweep algorithm was employed.

Program PROBLEM3

C
C PROBLEM3 - ONE-DIMENSIONAL NON-STATIONARY PROBLEM
C QUASI-LINEAR 1D PARABOLIC EQUATION
C

IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( ISCHEME = 0, N = 1000, M = 1000 )

DIMENSION X(N+1), Y(N+1), A(N+1), B(N+1), C(N+1), F(N+1)
+ ,ALPHA(N+2), BETA(N+2)

C
C PROBLEM PARAMETERS:
C
C XL, XR - LEFT AND RIGHT END POINTS OF THE SEGMENT;
C ISCHEME - PARAMETER FOR THE CHOICE OF THE SCHEME,
C N + 1 - NUMBER OF GRID NODES OVER SPACE;
C M + 1 - NUMBER OF GRID NODES OVER TIME;
C

XL = 0.D0
XR = 10.D0
TMAX = 2.5D0

C
OPEN ( 01, FILE = ’RESULT.DAT’ ) ! FILE TO STORE THE COMPUTED DATA

C
C GRID
C

H = ( XR - XL ) / N
TAU = TMAX / M
DO I = 1, N+1

X(I) = XL + (I-1)*H
END DO

C
C INITIAL CONDITION
C

T = 0.D0
XD = 2.5D0
DO I = 1, N+1
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Y(I) = 0.D0
IF ( X(I).LT.XD ) Y(I) = 1.D0

END DO
WRITE ( 01, * ) T
WRITE ( 01, * ) (Y(I),I=1,N+1)

C

C NEXT TIME LAYER
C

DO K = 1, M
T = K*TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS
C

IF ( ISCHEME.EQ.0 ) THEN
C
C LINEARIZED SCHEME WITH EXPLICIT RIGHT-HAND SIDE
C

DO I = 2, N
X1 = (X(I) + X(I-1)) / 2

X2 = (X(I+1) + X(I)) / 2

U1 = (Y(I) + Y(I-1)) / 2
U2 = (Y(I+1) + Y(I)) / 2
A(I) = AK(X1,U1) / (H*H)
B(I) = AK(X2,U2) / (H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
F(I) = Y(I) / TAU + AF(X(I),T,Y(I))

END DO
END IF
IF ( ISCHEME.EQ.1 ) THEN

C
C LINEARIZED SCHEME WITH QUASI-LINEARIZED RIGHT-HAND SIDE
C

DO I = 2, N
X1 = (X(I) + X(I-1)) / 2
X2 = (X(I+1) + X(I)) / 2
U1 = (Y(I) + Y(I-1)) / 2
U2 = (Y(I+1) + Y(I)) / 2
A(I) = AK(X1,U1) / (H*H)
B(I) = AK(X2,U2) / (H*H)

C(I) = A(I) + B(I) + 1.D0 / TAU - ADF(X(I),T,Y(I))
F(I) = Y(I) / TAU + AF(X(I),T,Y(I)) - ADF(X(I),T,Y(I))*Y(I)

END DO
END IF

C
C LEFT BOUNDARY CONDITION
C

B(1) = 0.D0
C(1) = 1.D0
F(1) = 1.D0

C
C RIGHT BOUNDARY CONDITION
C

A(N+1) = 0.D0
C(N+1) = 1.D0
F(N+1) = 0.D0
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C
C SOLUTION OF THE PROBLEM AT THE NEXT TIME LAYER
C

CALL PROG ( N+1, A, C, B, F, ALPHA, BETA, Y )

C
C SOLUTION RECORDING
C

IF ( K/200*200.EQ.K ) THEN
WRITE ( 01, * ) T
WRITE ( 01, * ) (Y(I),I=1,N+1)

END IF
END DO

C
CLOSE ( 01 )
STOP
END

C
SUBROUTINE PROG ( N, A, C, B, F, AL, BET, Y )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C SWEEP METHOD
C

DIMENSION A(N), C(N), B(N), F(N), Y(N), AL(N+1), BET(N+1)
C

AL(1) = B(1) / C(1)
BET(1) = F(1) / C(1)
DO I = 2, N

SS = C(I) - AL(I-1)*A(I)
AL(I) = B(I) / SS
BET(I) = ( F(I) + BET(I-1)*A(I) ) / SS

END DO
Y(N) = BET(N)
DO I = N-1, 1, -1

Y(I) = AL(I)*Y(I+1) + BET(I)
END DO
RETURN

END

DOUBLE PRECISION FUNCTION AK ( X, U )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C COEFFICIENT AT THE HIGHER DERIVATIVE
C

AK = 0.2D0
C

RETURN
END

DOUBLE PRECISION FUNCTION AF ( X, T, U )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C RIGHT-HAND SIDE OF THE EQUATION
C

AF = 5.D0*U*(1.D0 - U)
C
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RETURN
END

DOUBLE PRECISION FUNCTION ADF ( X, T, U )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C DIRIVATIVE OF THE RIGHT-HAND SIDE OF THE EQUATION
C

ADF = 5.D0 - 10.D0*U
C

RETURN
END

The above program text refers to the case in which equation (4.117) is solved with
the coefficients

k(x, u) = κ, f (x, t, u) = χu(1 − u), (4.133)

where κ = 0.2 and χ = 5. The latter nonlinear diffusion-reaction equation is known
as the Fisher equation (Kolmogorov–Petrovskii–Piskunov equation).

4.5.4 Computational experiments

Very often, nonlinearity brings about new effects related with an unusual behavior of
the solution. The latter is also the case with the quasi-linear parabolic equation (4.117).
A typical example here is the Fisher equation (4.117), (4.133).

For the linear parabolic-type equation (4.1), infinite propagation velocity of per-
turbations is typical. In consideration of equations with nonlinear coefficients and
nonlinear right-hand side, one can identify solutions with a finite velocity of perturba-
tions. In the case of the Fisher equation (4.117), (4.133), there exist solutions of the
traveling-wave type:

u(x, t) = ψ(ξ), ξ = x − ct,

where c = const is the wave velocity.
A. N. Kolmogorov, I. G. Petrovskii and N. S. Piskunov showed that, for instance,

with

u(x, 0) =
{

1, x < x∗,
0, x > x∗

the solution of the Cauchy problem for equation (4.117), (4.133) is unique, presenting
a wave traveling at the velocity c = 2

√
κχ . Figure 4.1 shows the solution of the
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boundary value problem for equation (4.117), (4.133) with κ = 0.2, χ = 5 and with
the following boundary and initial conditions:

u(0, t) = 1, u(10, t) = 1,

u(x, 0) =
{

1, x < x∗,
0, x > x∗,

0 < x < 10

where x∗ = 2.5.

Figure 4.1 The solution at various times

In the calculations, a fine calculation grid with h = 0.01, τ = 0.0025 and scheme
(4.129) were used. Transformation of the initially rectangular waveform into a solitary
wave traveling to the right is observed.

Some specific features of schemes in which linearization of the right-hand side of
the equation is used are illustrated by Figures 4.2 and 4.3 that show calculation data
obtained with a larger time step size (τ = 0.025) using the linearized schemes (4.128)
(Figure 4.2) and (4.129) (Figure 4.3). The scheme with explicit right-hand side yields
more accurate results, whereas in the case of the scheme with right-hand side partially
transferred to the next time layer the front of the approximate solution propagates
somewhat faster. It should be noted that the conclusion about certain advantages of
non-linearized schemes concerns only the considered problem; in other cases, a lin-
earized scheme may yield better results.
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Figure 4.2 Difference scheme with non-linearized right-hand side

Figure 4.3 Difference scheme with linearized right-hand side
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4.6 Exercises

Exercise 4.1 Consider the Cauchy problem for the second-order evolutionary equa-
tion:

d2u
dt2

+ Au = f (t), t > 0, (4.134)

u(0) = u0,
du
dt

(0) = v0. (4.135)

Show that in the case of A = A∗ > 0 the following a priori estimate holds for the
solution of problem (4.134), (4.135):

‖u(t)‖2
∗ ≤ exp(t)

(‖u0‖2
A + ‖v0‖2 +

∫ t

0
exp(−θ)‖ f (θ)‖2dθ

)
where

‖u‖2
∗ =

∥∥∥du
dt

∥∥∥2
+ ‖u‖2

A.

Exercise 4.2 Construct a two-layer weighted scheme for the problem (4.1), (4.3) with
the third-kind boundary conditions (4.4).

Exercise 4.3 Suppose that we seek an approximate solution of the equation

∂u
∂t

= ∂2u
∂x2

+ f (x, t), 0 < x < l, 0 < t ≤ T,

supplemented with conditions (4.2), (4.3). Construct a two-layer scheme with an ap-
proximation order O(τ 2 + h4).

Exercise 4.4 In the class of weighted schemes

(
θ

yn+1 − yn

τ
+ (1 − θ)

yn − yn−1

τ

)
+ A(σ1 yn+1 + (1 − σ1 − σ2)yn + σ2 yn−1) = ϕn,

construct a scheme with an approximation order O(τ 3).

Exercise 4.5 Prove Theorem 4.3.

Exercise 4.6 Establish stability conditions for the scheme

3yn+1 − 4yn + yn−1

2τ
+ Ayn+1 = 0

in the case of A = A∗ > 0.



Section 4.6 Exercises 125

Exercise 4.7 Suppose that in an examination of the weighted scheme

yn+1 − yn

τ
+ A(σ yn+1 + (1 − σ))yn = ϕn (4.136)

the pure implicit scheme (with σ = 1) was found to be stable with respect to initial
data and right-hand side. Show that, in this case, all schemes with σ > 1 are also
stable.

Exercise 4.8 Suppose that for the scheme

B
yn+1 − yn

τ
+ A yn = ϕn, tn ∈ ωτ ,

y0 = u0

with a constant operator A = A∗ > 0 there holds the inequality

B ≥ τ

2
A.

Show that for the solution there holds the following stability estimate with respect
to initial data and right-hand side:

‖yn+1‖A ≤ ‖u0‖A + ‖ϕ0‖A−1 + ‖ϕn‖A−1 +
n∑

k=1

τ

∥∥∥ϕk − ϕk−1

τ

∥∥∥.
Exercise 4.9 Based on the maximum principle for difference schemes, establish con-
ditions of stability in C(ω) for the weighted scheme (4.136) with

Ay = −(ayx̄)x , x ∈ ω

used to solve the boundary value problem (4.1)–(4.3).

Exercise 4.10 Examine stability of the three-layer symmetric scheme

yn+1 − yn−1

2τ
+ A(σ yn+1 + (1 − 2σ)yn + σ yn−1) = ϕn,

used to solve the boundary value problem (4.1)–(4.3).

Exercise 4.11 In the solution of problem (4.134), (4.135), one can naturally use the
weighted scheme

yn+1 − 2yn + yn−1

τ 2
+ A(σ1 yn+1 + (1 − σ1 − σ2)yn + σ2 yn−1) = ϕn,

n = 1, 2, . . . , N0 − 1.

Obtain stability conditions for this scheme.
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Exercise 4.12 Modify the program PROBLEM3 by implementing in it the three-layer
difference scheme (4.132). Conduct computational experiments on the use of the
scheme for approximate solution of the model problem for equation (4.117), (4.133).

Exercise 4.13 Construct an automodel solution of the traveling-wave type for equa-
tion (4.117) with coefficients

k(x, u) = uσ , f (x, t, u) = 0.

Conduct numerical experiments to model such regimes with the use of the program
PROBLEM3.

Exercise 4.14 Numerically examine the development of local perturbations in the
Cauchy problem for equation (4.117) with

k(x, u) = uσ , f (x, t, u) = uσ+1.

Exercise 4.15 Write, around the program PROBLEM2, which numerically solves dif-
ference elliptic equations, a program that numerically solves the linear Dirichlet
boundary value problem for the two-dimensional parabolic equation

∂u
∂t

+
2∑

α=1

∂

∂xα

(
k(x)

∂u
∂xα

)
= f (x, t), x ∈ �, t > 0,

in the rectangle

� = {x | x = (x1, x2), 0 < xα < lα, α = 1, 2}.



5 Solution methods for ill-posed problems

Basic approaches for the approximate solution of ill-posed problems use this or that
perturbation of the initial problem; such a perturbation allows one to pass to some
“close” yet well-posed problem. In this way, various regularization algorithms can
be obtained. With the example of the first-order operator equation, below we con-
sider basic approaches to the solution of unstable problems. In particular, an ill-posed
problem can be replaced with a well-posed problem by perturbing the initial equation,
by passing to a variational problem, etc. Of primary importance here is an appropriate
choice of the regularization parameter, whose value needs to be properly matched with
input-data inaccuracies. Illustrative calculations performed for the first-kind integral
equation are given.

5.1 Tikhonov regularization method

Following A. N. Tikhonov, consider the general approach of constructing stable com-
putational algorithms for the approximate solution of ill-posed problems. The method
is based on the passage from the initial first-kind equation to a minimization problem
for a functional with an additional stabilizing term.

5.1.1 Problem statement

Normally, methods for the numerical solution of ill-posed problems are considered as
applied to the first-kind linear operator equation

Au = f. (5.1)

The right-hand side and the solution itself belong to some metric spaces.
To not overload the consideration with technical details, we restrict ourselves to the

case of a linear operator A under conditions acting in a Hilbert space H (for simplicity,
here we assume that u ∈ H , f ∈ H , i.e., A : H → H ). In H , we introduce the scalar
product (u, v) and the norm ‖u‖ for elements u, v ∈ H .

Even more, we assume that the operator A is self-adjoint, positive and compact,
with eigenvalues λk tending to zero as k → ∞ (λ1 ≥ λ2 ≥ · · · ≥ λk ≥ · · · > 0),
and the related eigenfunction system {wk}, wk ∈ H , k = 1, 2, . . . is an orthonormal
system complete in H . Hence, for each v ∈ H we have

v =
∞∑

k=1

vkwk, vk = (v, wk).

Typical of practical studies is a situation in which input data are given with some
inaccuracy. To model this general situation, consider a case in which the right-hand
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side of (5.1) is given accurate to some δ. Instead of f , we know fδ such that

‖ fδ − f ‖ ≤ δ. (5.2)

In a more general case, we consider problems (5.1) in which not only the right-hand
side but also the operator A are known approximately.

We pose a problem in which it is required to find an approximate solution of equa-
tion (5.1) with an approximately given right-hand side fδ. This approximate solution
is denoted by uα, and the parameter α can be naturally related with the inaccuracy
level in the right-hand side, i.e., α = α(δ).

5.1.2 Variational method

The main idea behind the construction of stable methods for solving ill-posed problems
is based on the use of some a priori information about the input-data inaccuracy. Once
the right-hand side is given with an inaccuracy, no attempts to solve the equation

Auα = fδ (5.3)

exactly are necessary. We can try to compensate for the uncertainty in the right-hand
side, for instance, by passing to some another yet well-posed problem

Aδuα = fδ,

whose operator Aδ possesses improved properties compared to A.
In variational methods, instead of solving equation (5.3), they minimize the norm

of the difference r = Av − fδ, or the discrepancy functional

J0(v) = ‖Av − fδ‖2.

There are many solutions to such a variational problem that satisfy equation (5.3) ac-
curate to some discrepancy δ. What is only needed is to wisely take into account all
available information about the inaccuracy in the right-hand side and, in this way, to
single out a most appropriate solution.

In the Tikhonov regularization method, they introduce some smoothing functional

Jα(v) = ‖Av − fδ‖2 + α‖v‖2. (5.4)

The approximate solution of the initial problem (5.1), (5.2) is the extremal of the func-
tional:

Jα(uα) = min
v∈H

Jα(v). (5.5)

In (5.4), α > 0 is the regularization parameter, whose value must be matched
with the right-hand side inaccuracy δ. For a bounded solution to be separated out, the
discrepancy functional contains an additional stabilizing functional ‖v‖2.
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The key point in the theoretical consideration of approximate algorithms is related
with the proof of convergence of the approximate solution to the exact solution. It is
required to find under which conditions the approximate solution uα found from (5.4),
(5.5) converges to the exact solution of problem (5.1). Ideally, it is required not only to
establish the fact that convergence takes place but also to find the rate of convergence.

We represent the approximate solution in the operator form

uα = R(α) fδ. (5.6)

If the approximate solution converges to the exact solution with the right-hand side
inaccuracy tending to zero, then they say that the operator R(α) is a regularizing op-
erator. With the chosen structure of R(α), it is also required to substantiate the choice
of regularization parameter α as a function of δ.

5.1.3 Convergence of the regularization method

In a consideration of conditionally well-posed problems, it is required to identify the
class of desired solutions and explicitly give a priori constraints on the solution. In
problem (5.1), (5.2), we are interested in bounded solutions and, hence, the a priori
constraint on the solution looks as

‖u‖ ≤ M, (5.7)

where M = const > 0. The main result here can be formulated as follows.

Theorem 5.1 Let for the right-hand side inaccuracy the estimate (5.2) holds. Then,
the approximate solution uα found as the solution of problem (5.4), (5.5) with α(δ) →
0, δ2/α(δ) → 0 converges in H, as δ → 0, to the bounded exact solution u.

Proof. Under the indicated assumptions concerning the operator A, the exact solution
of (5.1) can be represented as

u =
∞∑

k=1

1
λk

( f, wk)wk . (5.8)

Suppose that

v =
∞∑

k=1

ckwk, ck = (v, wk).

Then, the functional Jα(v) takes the form

Jα(v) =
∞∑

k=1

(
(λkck − ( fδ, wk))

2 + αc2
k

)
.
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Condition (5.5) is equivalent to

∂ Jα

∂ck
= 2λk(λkck − ( fδ, wk)) + 2ck = 0, k = 1, 2, . . . .

From here, we obtain the following representation for the solution of problem (5.4),
(5.5):

uα =
∞∑

k=1

λk

λ2
k + α

( fδ, wk)wk . (5.9)

For the inaccuracy z = uα − u, we use the representation

z = z1 + z2, z1 = uα − R(α) f, z2 = R(α) f − u. (5.10)

In (5.10), R(α) f is the solution to the minimization problem for the smoothing func-
tional with the right-hand side given exactly.

In view of (5.8), (5.9), we obtain:

‖z1‖2 =
∞∑

k=1

λ2
k

(λ2
k + α)2

(( fδ, wk) − ( f, wk))
2.

For non-negative x we have:

x
x2 + α

= 1
(
√

x − √
α/x)2 + 2

√
α

≤ 1
2
√

α

and, hence, under the assumptions of (5.2) there holds the two-sided inequality

‖z1‖2 ≤ 1
4α

∞∑
k=1

(( fδ, wk) − ( f, wk))
2 ≤ δ2

4α
. (5.11)

Estimate (5.11) expresses the fact that the solution of problem (5.4), (5.5) is stable
with respect to weak right-hand side perturbations.

Let us estimate now z2 in the representation (5.10) for the approximate-solution
inaccuracy. In this case, we deal with the conditions of closeness of the solution of
(5.1) to the solution of the minimization problem for the smoothing functional with
the same right-hand sides. From (5.8), (5.9) we have:

‖z2‖2 =
∞∑

k=1

α2

λ2
k(λ

2
k + α)2

( f, wk)
2.

We are going to establish the closeness of R(α) f to u for functions from class (5.7).
Let us show that for an arbitrary ε > 0 we can choose α(ε) such that ‖z2‖2 ≤ ε for all
α from the interval 0 < α ≤ α(ε). For all functions from (5.7), the series

‖u‖2 =
∞∑

k=1

1
λ2

k
( f, wk)

2
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converges and, hence, we can found a number n(ε) such that

∞∑
k=n(ε)+1

1
λ2

k
( f, wk)

2 ≤ ε

2
.

Under the stated conditions, we obtain the inequality

‖z2‖2 ≤
n(ε)∑
k=1

α2

λ2
k(λ

2
k + α)2

( f, wk)
2 +

n(ε)∑
k=n(ε)+1

1
λ2

k
( f, wk)

2.

At the expense of a sufficiently small chosen α(ε), for the first term we have:

n(ε)∑
k=1

α2

λ2
k(λ

2
k + α)2

( f, wk)
2 ≤ ε

2
.

The latter inequality holds for all α in the interval 0 < α ≤ α(ε). Hence, we obtain
that s(α) = ‖z2‖ → 0 as α → 0.

Substitution into (5.10) yields

‖z‖ ≤ ‖z1‖ + ‖z2‖ ≤ δ

2
√

α
+ s(α). (5.12)

By virtue of the above, if α(δ) → 0 and δ2/α(δ) → 0 as δ → 0, then ‖z‖ → 0.

The proved theorem remains valid under even more general conditions. A funda-
mental generalization here can be obtained considering problems (5.1), (5.2) whose
operator A is not a self-adjoint operator.

5.2 The rate of convergence in the regularization method

In the class of bounded solutions, we have established previously that the approximate
solution in the Tikhonov regularization method converges to the exact solution. Under
more tight constraints on the exact solution, one can evaluate the rate at which the
method converges.

5.2.1 Euler equation for the smoothing functional

Instead of the extremum problem (5.4), (5.5), we can consider a related Euler equation.
In the latter case, the approximate solution can be found as the solution of the following
second-kind equation:

A∗ Auα + αuα = A∗ fδ. (5.13)

The transfer from the ill-posed problem (5.3) to the well-posed problem (5.13) can
be made passing to a problem with a self-adjoint operator A∗ A. This can be done by
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multiplying equation (5.3) from the left by A∗, followed by a subsequent perturbation
of the resulting equation with the operator αE .

The mentioned equivalence between the minimization problem (5.4), (5.5) and
equation (5.13) provides us with some freedom in the computational realization of
the method. The variational approach is quite general, allowing one to consider var-
ious classes of problems from a unified methodological standpoint. The numerical
solution can most conveniently be found using the related Euler equation.

In the case of A = A∗ ≥ 0, we can restrict ourselves to perturbing the operator
itself:

Auα + αuα = fδ. (5.14)

Problem (5.14) refers to the simplified regularization algorithm.
In fact, we can say that, in addition to variational solution methods for ill-posed

problems, a second class of approximate methods can be identified, which (see, for
instance, (5.13), (5.14)) features some perturbation of the operator in the initial or
transformed problem.

5.2.2 Classes of a priori constraints imposed on the solution

We have considered the Tikhonov regularization method under the assumption (5.7)
about the exact solution of the ill-posed problem (5.1), (5.2). For the solution inaccu-
racy we have obtained the estimate (5.12), in which s(α) → 0 provided that α → 0.
Note that the convergence was established in the same norm in which the a priori
constraints on the solution were formulated. We would also like to obtain an esti-
mate for the rate of convergence of the approximate solution to the exact solution with
α(δ) → 0 and δ → 0.

To clarify the situation, consider the problem of approximate calculation of a deriva-
tive. We use the difference relation

u ◦
x = u(x + h) − u(x − h)

2h
, (5.15)

and assume that the function u(x) is differentiable at each x . We would like to know
how accurately the difference derivative (5.15) approximates the derivative du/dx at
some point x .

To prove the convergence and evaluate the rate with which the central difference
derivative (5.15) converges to du/dx(x), let us formulate more tight constraints on
u(x). If, for instance, u(x) is a twice differentiable function, then from (5.15) we
obtain

u ◦
x = du

dx
+ O(h).

For a three times differentiable function we have

u ◦
x = du

dx
+ O(h2).
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Thus, with reduced smoothness of differentiable functions the approximation inaccu-
racy decreases.

We encounter a similar situation when examining the convergence rate in the regu-
larization method. Instead of (5.17), we are going to formulate more tight constraints
on the exact solution of problem (5.1). It seems reasonable to associate the require-
ment for enhanced smoothness of the exact solution with the operator A. We assume
that the exact solution belongs to the class

‖A−1u‖ ≤ M. (5.16)

Then, in the case of a self-adjoint positive operator A the intermediate (between (5.7)
and (5.16)) position belongs to the following type of classes of a priori constraints on
the solution:

‖u‖A−1 ≤ M. (5.17)

Under conditions (5.16) and (5.17), one can try to render more concrete the depen-
dence s(α) in the inaccuracy estimate of type (5.12) in the regularization method.

5.2.3 Estimates of the rate of convergence

We now derive estimates for the solution inaccuracy in the Tikhonov regularization
method based on the a priori estimates of the operator equation (5.13) which, in view
of A = A∗ > 0, assumes the form

A2uα + αuα = A fδ. (5.18)

Theorem 5.2 For the inaccuracy z = uα − u of the approximate solution of prob-
lem (5.1), (5.2) found from (5.13), there hold the a priori estimate

‖z‖2 ≤ δ2

2α
+ α

2
M2, (5.19)

for exact solutions from class (5.16) and the estimate

‖z‖2 ≤ δ2

α
+

√
α

2
M2 (5.20)

for solutions from (5.17).

Proof. We subtract the equation
A2u = A f,

from (5.18); this yields the following equation for the inaccuracy z = uα − u:

A2z + αz = A( fδ − f ) − αu.
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We scalarwise multiply this equation by z and obtain

‖Az‖2 + α‖z‖2 = (( fδ − f ), Az) − α(u, z).

Then, insertion of the inequality

(( fδ − f ), Az) ≤ 1
2

‖Az‖2 + 1
2

‖ fδ − f ‖2

gives
1
2

‖Az‖2 + α‖z‖2 ≤ 1
2

‖ fδ − f ‖2 − α(u, z). (5.21)

Consider first the case of a priori constraints (5.16). The use of the inequality

−α(u, z) = −α(A−1u, Az) ≤ 1
2

‖Az‖2 + α2

2
‖A−1u‖2

in (5.21) leads us to the estimate

α‖z‖2 ≤ 1
2

‖ fδ − f ‖2 + α2

2
‖A−1u‖2.

With inequalities (5.2) and (5.16) taken into account, we arrive at the desired estimate
(5.19).

In the case of (5.17) the last term in the right-hand side of (5.21) can be estimated
as

−α(u, z) = −α(A−1/2u, A1/2z) ≤ √
α ‖A1/2z‖2 + α

√
α

4
‖A1/2u‖2.

Taking the fact into account that

1
2

‖Az‖2 + α‖z‖2 − √
α ‖A1/2z‖2 =

∥∥∥ 1√
2

Az −
√

α√
2

z
∥∥∥2

+ α

2
‖z‖2,

we obtain
α

2
‖z‖2 ≤ 1

2
‖ fδ − f ‖2 + α

√
α

4
‖A1/2u‖2.

In view of (5.2), (5.17), we have the estimate (5.20).

Tightened constraints on the smoothness of the exact solution result in an improved
rate of convergence of the approximations to the exact solution (see estimate (5.19),
(5.20)).

5.3 Choice of regularization parameter

Below several choices of the regularization parameter, whose value must be matched
with the input-data inaccuracy, are outlined.
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5.3.1 The choice in the class of a priori constraints on the solution

In the theory of approximate solution methods for ill-posed problems, considerable at-
tention is paid to the choice of regularization parameter. The most widespread choices
here are the choices based on the discrepancy between the solutions, on the general-
ized discrepancy (which takes into account both the right-hand side inaccuracy and the
inaccuracy in the operator A), the quasi-optimal choice, etc. A good choice of regu-
larization parameter largely determines the efficiency of the computational algorithm.

The value of the regularization parameter α must be matched with the input-data
inaccuracy: the smaller is the inaccuracy, the smaller is the value of regularization
parameter that is to be chosen, i.e., α = α(δ). To comply with the structure of the
inaccuracy (see (5.12), (5.19), (5.20)), the regularization parameter cannot be cho-
sen too small: it is in the fact that, with decreased value of regularization parameter,
the inaccuracy also decreases, that the ill-posedness of the problem is manifested.
Hence, there exists an optimal value of regularization parameter that minimizes the
approximate-solution inaccuracy.

The optimal value of regularization parameter depends not only on the inaccuracy
in the right-hand side, but also on the class of a priori constraints on the exact solution.
For instance, in the case of bounded solutions (class (5.7)) the above estimate (5.12)
for the approximate-solution inaccuracy in the Tikhonov method does not allow one
to explicitly give the optimal value of regularization parameter.

On narrowing the class of exact solutions, it becomes possible to render concrete the
choice of regularization parameter. In the class of exact solutions (5.16) there holds the
a priori estimate (5.19) for the inaccuracy, and for the optimal value of regularization
parameter we obtain the expression

αopt = δ

M
, ‖A−1u‖ ≤ M. (5.22)

With this value of regularization parameter, a rate

‖z‖ ≤
√

Mδ

of convergence of the approximate solution to the exact solution can be achieved.
A similar consideration for the choice of regularization parameter in the class (5.17)

of a priori constraints on the exact solution leads us to

αopt =
(

4
δ2

M2

)2/3
, ‖u‖A−1 ≤ M (5.23)

with

‖z‖ ≤
√

3
3

√
M2δ

4
.

To summarize, we can formulate the following statement.
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Theorem 5.3 If one chooses an optimal value of regularization parameter by the
rule (5.22) in the class (5.16) of exact solutions or by the rule (5.23) in the class (5.17)
of such solutions, then for the approximate-solution inaccuracy we have:

‖z‖ = O(δβ), β =
{

1/2, ‖A−1u‖ ≤ M,

1/3, ‖u‖A−1 ≤ M.
(5.24)

An optimum value of regularization parameter can be chosen provided that the in-
accuracy level in the right-hand side (the constant δ in (5.2)) and the class of a priori
constraints on the exact solution (the constant M in the estimate (5.16) or (5.17)) are
known. In solving practical problems, such a priori information can be partially or
even fully lacking. That is why in such cases we have to use another choice of regu-
larization. Consider some possibilities available along this line.

5.3.2 Discrepancy method

In choosing the regularization parameter from the discrepancy , the master equation is

‖Auα − fδ‖ = δ. (5.25)

This choice of regularization parameter, or, in other words, the convergence of the ap-
proximate solution uα with α = α(δ) to the exact solution of (5.1) with δ → 0 was
considered for many classes of problems. Note some specific features in the computa-
tional implementation of this method in choosing the regularization parameter.

The difference between the approximation and the exact solution, or the discrep-
ancy, somehow depends on α. We introduce the notation

ϕ(α) = ‖Auα − fδ‖;

then, to find the regularization parameter, we must solve, in line with the discrepancy
principle (5.25), the equation

ϕ(α) = δ. (5.26)

Under rather general conditions, the function ϕ(α) is a non-decreasing function, and
equation (5.26) has a solution.

Equation (5.26) can be approximately solved using various computational proce-
dures. For instance, we can use the succession

αk = α0qk, q > 0. (5.27)

Here, the calculations are to be made starting from k = 0 and going to a certain
k = K at which equality (5.26) becomes fulfilled to an acceptable accuracy. With
so defined regularization parameter, we need K + 1 calculations of the discrepancy
(for the solutions of variational problems of type (5.4), (5.5) or for the solutions of the
Euler equations (5.13)).
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In finding the approximate solution of (5.26), more rapidly converging iterative
methods can also be used. It was found that the function ψ(β) = ϕ(1/β) is a de-
creasing convex function. Hence, in solving the equation

ψ(β) = δ

one can use the Newton iterative method, in which

βk+1 = βk − ψ(βk) − δ

ψ ′(βk)
.

This method converges for any initial approximation β0 > 0. To avoid the calculation
of the derivative of ψ(β), we can use the iterative secant method, in which

βk+1 = βk − βk − βk−1

ψ(βk) − ψ(βk−1)
(ψ(βk) − δ).

The use of such iterative procedures reduces the computational cost in the determina-
tion of α.

5.3.3 Other methods for choosing the regularization parameter

With no reliable estimates for the inaccuracy in the input data (of type (5.2)) at hand,
the use of the well-accepted discrepancy method meets serious difficulties. As an al-
ternative, many other methods for choosing the regularization parameters have gained
widespread use in the computational practice.

The choice of the quasi-optimal value of regularization parameter is never directly
related with the level of δ. We choose a value of α > 0 that minimizes

χ(α) =
∥∥∥∥α duα

dα

∥∥∥∥ . (5.28)

The quasi-optimal value is most frequently found using the sequence (5.27). Min-
imization of (5.28) with such values of the regularization parameter corresponds to
searching for the minimum of

χ̃(αk+1) = ‖uαk+1 − uαk ‖.
Hence, it is required to estimate just the norm of the difference between approximate
solutions at two neighboring points.

There exist other methods to choose the regularization parameter. It is worth not-
ing that a good choice of regularization parameter allows considerable computational
savings and, to this or that extent, can be made iteratively. For each particular value
of an iteration parameter, we solve problem (5.4), (5.5) or equation (5.13). Of course,
at intermediate values of the regularization parameter there is little point in very accu-
rate solution of such problems. That is why we can combine the determination of the
solution of problem (5.13) with optimization of the value of the regularization param-
eter. In fact, a closely related idea is implemented in iterative solution methods using
integrated iteration-parameter and regularization-parameter functions.
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5.4 Iterative solution methods for ill-posed problems

In solving ill-posed problems, iteration methods are successfully used. In this case,
as a regularization parameter, the number of iterations is used. With the example of
problem (5.1), (5.2), below we discuss specific features in the application of iteration
methods.

5.4.1 Specific features in the application of iteration methods

Let us discuss specific features of iteration methods as applied to the solution of ill-
posed problems. Consider the model problem (5.1), (5.2) with a self-adjoint, positive
operator A. The ill-posedness of the problem is related with the fact that the eigenval-
ues of A, taken in decreasing order (λ1 ≥ λ2 ≥ · · · ≥ λk ≥ · · · > 0), tend to zero as
k → ∞.

The general two-layer iteration solution method for equation (5.3) with approxi-
mately given right-hand side can be written as

B
uk+1 − uk

τk+1
+ Auk = fδ, k = 0, 1, . . . . (5.29)

Here, B : H → H and the operator B−1 does exist.
If the operator in the initial problem (5.1), (5.2) is not a self-adjoint positive operator,

then preliminary Gaussian symmetrization must be applied. The use of the iteration
method for the symmetrized problem corresponds to the use of the equation

B
uk+1 − uk

τk+1
+ A∗ Auk = A∗ fδ, k = 0, 1, . . . . (5.30)

Depending on a particular context, the iteration method (5.30) can be interpreted as an
iteration method for solving the variational problem on minimization of the discrep-
ancy functional

J0(v) = ‖Av − fδ‖2.

The iteration method (5.29) and its rate of convergence are characterized by the
choice of the operator B and by the values of the iteration parameters τk+1, k =
0, 1, . . . . This matter as applied to the solution of difference problems that arise in
difference solution methods for elliptic boundary value problems was discussed in
Chapter 3. Yet, the direct use of previous results concerning the rate of convergence of
the iteration methods gives little in the consideration of iteration methods for solving
the ill-posed problem (5.3).

Dwell first on the case of explicit iteration methods, a constant iteration parameter
(simple-iteration method), and B = E . Here, we have

uk+1 − uk

τ
+ Auk = fδ, k = 0, 1, . . . . (5.31)
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The rate of convergence of the iteration method (5.31) (see Theorem 3.5) is defined
by the constants γ1 and γ2 in the inequality

γ1 E ≤ A ≤ γ2 E . (5.32)

In the case of γ1 > 0, the iteration method (5.31) converges in H, HA for all values
of τ in the interval

0 < τ <
2
γ2

, (5.33)

and for the number n of iterations required for an accuracy ε to be achieved the fol-
lowing estimate holds:

n ≥ n0(ε) = ln ε

ln ρ0
,

with

ρ0 = 1 − ξ

1 + ξ
, ξ = γ1

γ2
.

In the case of (5.3), with the adopted assumptions about A for the constants in (5.32)
we have γ2 = λ1, γ1 = 0 and, hence, ξ = 0. By virtue of this, we cannot render more
concrete the rate of convergence of the iteration method.

A second specific feature in the application of iteration methods for the approximate
solution of ill-posed problems is related with the stopping criterion. In the solution of
elliptic difference equations the iterations are to be continued unless the initial differ-
ence has decreased by the factor of ε−1. The parameter ε has to be given based on this
or that reasoning. In the iteration solution of the ill-posed problem (5.3) with regard
for the right-hand side inaccuracy (estimate (5.2)) we can choose a condition for ter-
minating the iterations considering the level of the inaccuracy, i.e., the iterations are to
be continued unless some n(δ) is reached.

5.4.2 Iterative solution of ill-posed problems

Let us formulate now conditions under which the iteration method (5.31) gives the
approximate solution of problem (5.1), (5.2).

Theorem 5.4 Let in the iteration method (5.31)–(5.33) the number of iterations
n(δ) → ∞ and n(δ)δ → 0 as δ → 0. Then, ‖un(δ) − u‖ → 0 provided that δ → 0.

Proof. We denote the inaccuracy at the nth iteration as zn = un − u. From (5.31), we
readily obtain:

un = (E − τ A)nu0 +
n−1∑
k=0

(E − τ A)kτ fδ, (5.34)

where u0 is some initial approximation.
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To obtain an exact solution, we can use a similar representation

u = (E − τ A)nu +
n−1∑
k=0

(E − τ A)kτ f.

This representation corresponds to the iteration solution of equation (5.1) in which the
initial approximation coincides with the exact solution of the problem.

With equality (5.34) taken into account, for the inaccuracy we obtain the expression

zn = z(1)
n + z(2)

n , (5.35)

where

z(1)
n = (E − τ A)nz0, z(2)

n =
n−1∑
k=0

(E − τ A)kτ( fδ − f ),

with z0 = u0 − u being the initial inaccuracy. The first term z(1)
n in (5.35) is a standard

one in iteration methods, and the term z(2)
n in the right-hand side of (5.35) is related

with the inaccuracy in the right-hand side of (5.1).
Under the above (see (5.33)) constraints on τ , we have

‖E − τ A‖ ≤ 1. (5.36)

To prove this inequality, we pass from inequality (5.36) to the equivalent inequality

(E − τ A∗)(E − τ A) ≤ E .

With the properties of self-adjointness and positiveness of A, and with the estimate
A ≤ γ2 E (see (5.32)), taken into account, we obtain

(E − τ A∗)(E − τ A) − E = τ A1/2(τ A − 2E)A1/2 ≤ τ A1/2(τγ2 − 2)A1/2 ≤ 0

provided that inequality (5.33) is fulfilled.
Taking inequality (5.36) into account, we have

‖z(2)
n ‖ ≤

n−1∑
k=0

‖E − τ A‖kτ‖ fδ − f ‖ ≤ nτδ. (5.37)

The estimate z(1)
n deserves a more detailed consideration.

To begin with, assume that z0 ∈ H . Such a situation is met, for instance, with the
initial approximation u0 = 0 taken in the solution of problem (5.1), (5.2) in the class
(5.7). Let us show that s(n) = ‖z(1)

n ‖ → 0 as n → ∞. We use the representation

s2(n) =
∞∑

i=1

(1 − τλi )
2n(z0, wi )

2.
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For any small ε > 0, there can be found a sufficiently large N such that

∞∑
i=N+1

(z0, wi )
2 ≤ ε

2
.

Taking the fact into account that |1 − τλi | < 1, we have:

s2(n) ≤
N∑

i=1

(1 − τλi )
2n(z0, wi )

2 +
∞∑

i=N+1

(z0, wi )
2.

In the case of sufficiently large n, for the first term we have:

N∑
i=1

(1 − τλi )
2n(z0, wi )

2 ≤ ε

2
.

Substitution of (5.37) into (5.35) yields the estimate

‖zn‖ ≤ nτδ + s(n), (5.38)

where s(n) → 0 as n → ∞. From the obtained estimate (5.38), the desired statement
readily follows.

In the iteration method (5.31)–(5.33), it is the number of iterations, matched with
the right-hand side inaccuracy, which serves the regularization parameter. The first
term in the right-hand side of (5.38) grows in value with the number of iterations,
whereas the second term decreases. For the inaccuracy to be minimized, the number
of iteration must be chosen not too large, nor too small.

5.4.3 Estimate of the convergence rate

Like in the proof of Theorem 5.1, we have established the convergence without finding
its rate. On narrowing the class of a priori constraints on the solution, we can derive
(see Theorem 5.2) the approximate-solution inaccuracy as an explicit function of the
inaccuracy in the right-hand side. A similar situation is also observed in using iterative
solution methods for ill-posed problems. Let us formulate a typical result along this
line.

Consider the iteration method (5.31), (5.32) under constraints on the iteration pa-
rameter tighter than (5.33),

0 < τ ≤ 1
γ2

. (5.39)

Theorem 5.5 Suppose that the exact solution of problem (5.3) belongs to the class

‖A−pu‖ ≤ M, 0 < p < ∞. (5.40)
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Then, for the inaccuracy of the iteration method (5.31), (5.32), (5.39) with u0 = 0
there holds the estimate

‖zn‖ ≤ nτδ + M1n−p, M1 = M1(τ, p, M). (5.41)

Proof. Under the conditions of (5.40), it is necessary to find how the quantity s(n) in
the estimate (5.38) depends on the number of iterations n.

With u0 = 0, we have z0 = u and, using the above notation, obtain that

z(1)
n =

∞∑
i=1

λ
p
i (1 − τλi )

n (u, wi )

λ
p
i

wi .

Then, in view of (5.40), we obtain:

s(n) ≤ max
λi

λ
p
i |1 − τλi |n‖A−pu‖. (5.42)

Under the constraint (5.39) on the iteration parameter we have 0 < τλi ≤ 1 and,
hence,

max
λi

λ
p
i |1 − τλi |n ≤ 1

τ p
max

0<η<1
χ(η), χ(η) = ηp(1 − η)n.

The function χ(η) attains its maximum at the point

η = η∗ = p
p + n

and, in addition,

χ(η∗) =
( p

n

)p(
1 − p

p + n

)p+n
<

p p

n p
exp (−p).

Substitution into (5.42) results in the estimate (5.41), in which the constant

M1 = p p

τ p
exp (−p)M

depends on p, τ and M , but does not depend on n.

Minimization of the right-hand side of (5.41) allows us to formulate the termination
criterion for the iterations:

nopt =
( pM1

τ

)1/(p+1)

δ−1/(p+1), (5.43)

i. e., n(δ) = O(δ−1/(p+1)). Here, for the approximate-solution inaccuracy we obtain
the estimate

‖znopt‖ ≤ M2δ
p/(p+1) (5.44)

with the constant

M2 = τ
( pM1

τ

)1/(p+1)

+ M1

( pM1

τ

)−p/(p+1)

.

Estimate (5.44) demonstrates the direct dependence of the rate of convergence of
the approximate solution to the exact solution on the right-hand side inaccuracy δ and
on the smoothness of the exact solution (parameter p).
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5.4.4 Generalizations

Above, the possibility to optimally choose the number of iterations in the case of
known class of a priori constraints on the exact solution was noted (the constant M
in (5.40)). In the practical use of iteration methods for solving ill-posed problems, one
often fails to explicitly specify the class of a priori constraints. That is why, instead
of (5.43), they often choose the number of iterations from the discrepancy, so that the
iterative process is to be continued unless the following inequality becomes fulfilled:

‖Aun(δ) − fδ‖ ≤ δ. (5.45)

In the discussion of iteration methods for solving elliptic difference equations,
variation-type iteration methods were isolated. In these methods, explicit calcula-
tion formulas for iteration parameters are used. For instance, in the steepest descend
method the following formula is used:

uk+1 − uk

τk+1
+ Auk = fδ, k = 0, 1, . . . , (5.46)

where
τk+1 = (rk, rk)

(Ark, rk)
, rk = Auk − fδ. (5.47)

In this connection, the conjugate gradient method deserves to be mentioned. This
method belongs to the class of three-layer iteration methods, when in the solution of
problem (5.3) we use the formulas

uk+1 = αk+1(E − τk+1 A)uk + (1 − αk+1)uk−1 + αk+1τk+1 fδ,

k = 1, 2, . . . ,

u1 = (E − τ1 A)u0 + τ1 fδ.

(5.48)

For the iteration parameters αk+1 and τk+1, we use the calculation formulas

τk+1 = (rk, rk)

(Ark, rk)
, k = 0, 1, . . . ,

αk+1 =
(

1 − τk+1

τk

(rk, rk)

(rk−1, rk−1)

1
αk

)−1
, k = 1, 2 . . . , α1 = 1.

(5.49)

We will not dwell here on the regularizing properties of such iteration methods,
inviting the interested reader to the special literature. Note only that for the variational
iterative solution methods (5.46), (5.47) and (5.48), (5.49) for the ill-posed problem
(5.1), (5.2) similar results were obtained as for the simple iteration method (5.31).

The problem of using implicit iteration methods for solving ill-posed problems de-
serves special mention. Here, we mean, for instance, iteration methods of type (5.29),
(5.30), in which B �= E . In the general context, there is a problem concerning the
choice of the operator B in solving ill-posed problems.
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In the solution of difference problems for well-posed mathematical physics prob-
lems, the choice of B should be made considering primarily the demand for improved
rate of convergence in the iteration method. In the solution of ill-posed problems the it-
erative process should be terminated on the achievement of a discrepancy whose value
is defined by the input-data inaccuracy. We are interested not only in the rate at which
the iterative process converges in this domain of decreasing, but also in the class of
smoothness on which this iterative process converges and in the norm in which the
desired level of discrepancy can be achieved. The most important feature of the ap-
proximate solution of ill-posed problems by iteration methods consists in the fact that
an appropriate approximate solution can be isolated from the necessary smoothness
class through the choice of B.

5.5 Program implementation

and computational experiments

As a routine ill-posed problem, the first-kind integral equation is normally considered.
Following the common practice, we consider here the points that arise in the numerical
solution of an integral equation used to continue anomalous gravitation fields given on
the earth surface towards disturbing masses. The program implementation is based on
the use of iteration methods in solving problems with random input-data inaccuracies.

5.5.1 Continuation of a potential

In gravimetrical and magnetic prospecting, and in direct-current geoelectrical
prospecting, most important are problems in which it is required to continue a po-
tential fields from the earth surface deep into the earth. The solution of such problems
is used to identify, to this or that extent, the position of gravitational and electromag-
netic anomalies. Here, we restrict ourselves to the formulation of the gravitational-field
continuation problem.

We designate as U the gravitational potential of an anomaly located in depth of the
earth. Let x be a horizontal coordinate and the axis Z be directed upward so that at
the earth surface we have z = 0. We consider a problem in which it is required to
determine the gravity potential in the zone z < 0 down to anomalies whose depth
is H .

We consider a problem in which it is required to continue the gravitational potential
from two disturbing masses (D1 and D2 in Figure 5.1). This potential U (x, z) satisfies
the Laplace equation in the zone outside the anomalies, so that

∂2U
∂x2

+ ∂2U
∂z2

= 0, z > −H. (5.50)

At the earth surface (according to field observations measured in which is the first
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Figure 5.1 Schematic illustrating the continuation problem

vertical derivative of the potential) the following conditions are posed:

∂U
∂z

(x, 0) = ϕ(x). (5.51)

One more boundary condition is

U (x, ∞) = 0. (5.52)

On the behavior of ϕ(x) with |x | → ∞, natural constraints are posed which provide
for solution boundedness.

The problem (5.50)–(5.52) considered in the zone z > 0) is an ordinary boundary
value problem. We pose a continuation problem for the solution of this well-posed
problem into the adjacent zone −H < z < 0.

The continuation problem (5.50)–(5.52) is not quite convenient to examine because
it involves boundary condition (5.52) with angled derivative. This problem can be
reformulated as a continuation problem for u = ∂U/∂z:

∂2u
∂x2

+ ∂2u
∂z2

= 0, z > −H, (5.53)

u(x, 0) = ϕ(x), (5.54)

u(x, ∞) = 0. (5.55)

In the case of (5.53)–(5.55), we have a continuation problem for the solution of the
Dirichlet problem for the Laplace equation.

Let us give some simple reasoning concerning the necessity to solve the continua-
tion problem for gravitational fields toward anomalies. In the performed calculations,
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Figure 5.2 Solution of the direct problem at various depths

we consider a model problem with two anomalies, circular in cross-section, with cen-
ters at (x1, z1) = (0.8, −0.3) and (x2, z2) = (1.1, −0.4). The exact solution of prob-
lem (5.53)–(5.55) is

u(x, z) = c1
z − z1

(x − x1)2 + (z − z1)2
+ c2

z − z2

(x − x2)2 + (z − z2)2
.

Suppose that c1 = 0.3 and c2 = 1.2, i. e., the deeper anomaly has fourfold greater
power.

The exact solution of the problem at various depths H is shown in Figure 5.2. From
the measured data, at H = 0 and H = 0.1 two sources of gravitational perturba-
tions can be suspected. At larger depths (as we approach the sources), two individual
anomalies can be identified (at H = 0.2 and especially at H = 0.25). It is this cir-
cumstance that necessitates the continuation of potential fields towards anomalies.

5.5.2 Integral equation

To find an approximate solution of the continuation problem (5.53)–(5.55), one can
use many computational algorithms. We will dwell here on the use of the integral
equation method. We approximate the gravitational potential produced by anomalies
with a potential generated by an elemental bed with a carrier located at the segment
0 ≤ x ≤ L and at the depth z = −H . Accurate to a multiplier, we have

U (x, z) =
∫ L

0
ln r μ(s) ds, r =

√
(x − s)2 + (z + H)2, z > −H.
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For the derivative with respect to the vertical variable we obtain:

u(x, z) =
∫ L

0

z + H
(x − s)2 + (z + H)2

μ(s) ds, z > −H. (5.56)

For the unknown density, from (5.54) and (5.56) we obtain the first-kind integral equa-
tion ∫ L

0
K (x, s)μ(s) ds = ϕ(x) (5.57)

with the symmetric kernel

K (x, s) = H
(x − s)2 + H 2

.

We write equation (5.57) as the first-kind equation

Aμ = ϕ (5.58)

in which

Aμ =
∫ L

0
K (x, s)μ(s) ds.

The integral operator A : H → H , where H = L2(0, L), is a self-adjoint operator
(Aμ, ν) = (μ, Aν). Besides, this operator is a bounded operator because

(Aμ, μ) =
∫ L

0

∫ L

0
K (x, s)μ(s)μ(x) ds dx

≤
( ∫ L

0

∫ L

0
K 2(x, s) ds dx

)1/2( ∫ L

0

∫ L

0
μ2(s)μ2(x) ds dx

)1/2
≤ γ2‖μ‖2,

where γ2 < L/H .
The integral operator under consideration is a self-adjoint, bounded operator. Yet,

the iteration method cannot be directly applied to (5.58) because, generally speaking,
the operator A here is not a positive (non-negative) operator. Hence, symmetrization
of (5.58) is to be applied:

A∗ Aμ = A∗ϕ, (5.59)

which we can finally use in the iteration method.

5.5.3 Computational realization

In the numerical solution of the integral equation (5.59), we use a uniform grid

ω̄ = {x | x = (i − 0.5)h, i = 1, 2, . . . , N , Nh = L}.

We designate the approximate solution as yi = y(xi ), i = 1, 2, . . . , N .
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We put into correspondence to the integral operator A the difference operator

(Ah y)(xi ) =
N∑

j=1

K (xi , s j )y j h. (5.60)

This approximation corresponds to the use of the rectangle quadrature formula. The
difference analogue of (5.59) is the equation

Ry = f, R = A∗
h Ah, f = A∗

hϕ. (5.61)

To approximately solve equation (5.61), we use the iteration method

yk+1 − yk

τk+1
+ Ryk = f, k = 0, 1, . . . . (5.62)

Two choices of iteration parameters were considered:

1. Simple iteration method, in which τk = τ = const;
2. Steepest descend method, in which

τk+1 = (rk, rk)

(Rrk, rk)
, rk = Ryk − f.

To model the input-data inaccuracy, we perturbed the exact solution at the grid nodes
by the law

ϕδ(x) = ϕ(x) + 2ζ(σ (x) − 1/2), x = xi , i = 1, 2, . . . , N ,

where σ(x) is a random quantity normally distributed over the interval from 0 to 1.
The parameter ζ defines the inaccuracy level in the right-hand side of (5.58), and

‖ϕδ(x)) − ϕ(x)‖ ≤ δ = ζ
√

L.

The iterative process is to be terminated considering the discrepancy. Some other
specific features of the computational algorithm will be noted below.

5.5.4 Program

To approximately solve the model two-dimensional continuation problem for gravita-
tional fields, we used the program presented below.

Program PROBLEM4

C
C PROBLEM4 - CONTINUATION OF ANAMALOUS GRAVITATIONAL FIELD
C

PARAMETER ( HH = 0.225, DELTA = 0.1, ISCHEME = 1, N = 100 )
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DIMENSION Y(N), X(N), PHI(N), PHID(N), F(N), A(N,N)
+ ,V(N), R(N), AR(N), U(N), UY(N), UY1(N)

C
C PARAMETERS:
C
C XL, XR - LEFT AND RIGHT END POINTS OF SEGMENT;
C HH - CARRIER DEPTH;
C H0 - CONTINUATION DEPTH;
C ISCHEME - SIMPLE-ITERATION METHOD (ISCHEME = 0),
C QUICKEST DESCEND METHOD (ISCHEME = 1);
C N - NUMBER OF GRID NODES;
C Y(N) - SOLUTION OF THE INTEGRAL EQUATION;
C U(N) - EXACT ANOMALOUS FIEKD AT THE DEPTH Z = H0;
C UY(N) - CALCULATED FIELD AT THE DEPTH Z = H0;
C UY1(N) - CALCULATED FIELD AT THE EARTH SURFACE;
C PHI(N) - EXACT ANOMALOUS FIELD AT THE EARTH SURFACE;
C PHID(N) - DISTURBED FIELD AT THE EARTH SURFACE;
C DELTA - INPUT-DATA INACCURACY LEVEL;
C A(N,N) - PROBLEM MATRIX;
C

XL = 0.
XR = 2.

C
OPEN ( 01, FILE = ’RESULT.DAT’ ) ! FILE TO STORE THE COMPUTED DATA

C
C GRID
C

H = (XR - XL)/N
DO I = 1, N

X(I) = XL + (I-0.5)*H
END DO

C
C DATA AT THE EARTH SURFACE
C

C1 = 0.3
X1 = 0.8
Z1 = - 0.3
C2 = 1.2
X2 = 1.1
Z2 = - 0.4
DO I = 1,N

PHI(I) = - C1/((X(I)-X1)**2 + Z1**2) * Z1
* - C2/((X(I)-X2)**2 + Z2**2) * Z2

PHID(I) = PHI(I) + 2.*DELTA*(RAND(0)-0.5)/SQRT(XR-XL)
END DO

C
C EXACT IN-EARTH DATA
C

H0 = 0.2
DO I = 1,N

U(I) = - C1/((X(I)-X1)**2 + (H0+Z1)**2) * (H0+Z1)
* - C2/((X(I)-X2)**2 + (H0+Z2)**2) * (H0+Z2)
END DO

C
C RIGHT-HAND SIDE
C

DO I = 1,N
SUM = 0.
DO J = 1,N

SUM = SUM + AK(X(I),X(J),HH) * PHID(J)
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END DO
F(I) = SUM * H

END DO
C

C MATRIX ELEMENTS
C

DO I = 1,N
DO J = 1,N

SUM = 0.
DO K = 1,N

SUM = SUM + AK(X(I),X(K),HH) * AK(X(K),X(J),HH)
END DO
A(I,J) = SUM * H**2

END DO
END DO

C
C ITERATIVE PROCESS
C

IT = 0
ITMAX = 100
DO I = 1,N

Y(I) = 0.
END DO

100 IT = IT+1

C
C CACULATION V = R Y
C

DO I = 1,N
SUM = 0.
DO J = 1,N

SUM = SUM + A(I,J) * Y(J)

END DO
V(I) = SUM

END DO
C
C ITERATION PARAMETER
C

DO I = 1,N
R(I) = V(I) - F(I)

END DO
IF ( ISCHEME.EQ.0 ) THEN

C
C SIMPLE-ITERATION METHOD
C

TAU = 0.1
END IF
IF ( ISCHEME.EQ.1 ) THEN

C
C QUICKEST DESCEND METHOD
C

DO I = 1,N
R(I) = V(I) - F(I)

END DO
DO I = 1,N

SUM = 0.
DO J = 1,N
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SUM = SUM + A(I,J) * R(J)
END DO
AR(I) = SUM

END DO
SUM1 = 0.
SUM2 = 0.
DO I = 2,N-1

SUM1 = SUM1 + R(I)*R(I)
SUM2 = SUM2 + AR(I)*R(I)

END DO
TAU = SUM1/SUM2
END IF

C
C NEXT APPROXIMATION
C

DO I = 1,N
Y(I) = Y(I) - TAU*R(I)

END DO
C
C ITERATION LOOP EXIT
C

SUM0 = 0.
DO I = 1,N

SUM = 0.
DO J = 1,N

SUM = SUM + AK(X(I),X(J),HH) * Y(J)
END DO
SUM0 = SUM0 + (SUM * H - PHID(I))**2 * H

END DO

SL2 = SQRT(SUM0)
WRITE ( 01,* ) IT, TAU, SL2
IF (SL2.GT.DELTA .AND. IT.LT.ITMAX) GO TO 100
CLOSE ( 01 )

C
C CALCULATION OF THE FOUND FIELD AT THE DEPTH Z = H0
C

DO I = 1,N
SUM = 0.
DO J = 1,N

SUM = SUM + AK(X(I),X(J),HH-H0) * Y(J)
END DO
UY(I) = SUM * H

END DO

C
C CALCULATION OF THE FOUND FIELD AT THE EARTH SURFACE
C

DO I = 1,N
SUM = 0.
DO J = 1,N

SUM = SUM + AK(X(I),X(J),HH) * Y(J)
END DO
UY1(I) = SUM * H

END DO
STOP
END
FUNCTION AK(X,S,HH)

C
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C INTEGRAL-EQUATION KERNEL
C

AK = HH/((X-S)**2 + HH**2)
RETURN
END

5.5.5 Computational experiments

Consider several examples for the solution of the continuation problem in the case of
H = 0.225. We use a computation grid whose total number of nodes is N = 100.
The most interesting dependence here is the accuracy in reconstructing the anomalous
gravitational field versus the input-data inaccuracy δ. Figure 5.3 shows data obtained
by solving the problem with the input-data inaccuracy δ = 0.1 (in setting the field at
the earth surface z = 0). Presented are the exact and found fields at the depth z = −2.

Figure 5.3 Solution of the continuation problem obtained with δ = 0.1

Similar data obtained at a larger inaccuracy level (δ = 0.2) are shown in Figure 5.4.
At the latter inaccuracy level, two individual anomalies are hard to identify (here, no
two-peak configuration is observed). Even a decrease of δ down to δ = 0.01 little
saves the situation (see Figure 5.5).
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Figure 5.4 Solution of the continuation problem obtained with δ = 0.2

Figure 5.5 Solution of the continuation problem obtained with δ = 0.01
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We now provide a few statements concerning the use of these or those iteration
methods. In the program PROBLEM4, the possibility to use either the simple-iteration
method (constant iteration parameter) or the steepest descend method is provided.
A slight modification allows one to implement the iterative conjugate gradient method,
to be used in the case of problems with small right-hand side inaccuracies, in which
the steepest descend method fails to provide a desired rate of convergence.

The number of iterations necessary for solving the problem with δ = 0.1 by the
steepest descend method is n = 6. The total number of iterations in the simple-
iteration method versus the iteration parameter is illustrated by the data in Table 5.1.

τ 0.05 0.1 0.15 0.2 0.25 0.3
n 43 21 14 11 9 32

Table 5.1 Total number of iterations in the simple-iteration method

In the iterative solution of (5.59), the optimal iteration parameter is τ = τ0 = 2/γ̄2,
where

A∗ A ≤ γ̄2 E,

can be estimated invoking the estimate γ̄2 < L2/H 2.

5.6 Exercises

Exercise 5.1 Show that in the Tikhonov regularization method for the solution there
holds the a priori estimate

‖uα‖ ≤ 1
2
√

α
‖ fδ‖

that expresses stability with respect to the right-hand side.

Exercise 5.2 Formulate conditions for convergence (analogue to Theorem 5.1, 5.2) of
the approximate solution in HD, D = D∗ > 0 found by minimization of the functional

Jα(v) = ‖Av − fδ‖2 + α‖v‖2
D.

Exercise 5.3 Construct an example illustrating the necessity of condition δ2/α(δ) →
0 with δ → 0 (Theorem 5.1) for convergence of the approximate solutions to the exact
solution in the Tikhonov method.

Exercise 5.4 Suppose that the exact solution of problem (5.1) is

‖A−2u‖ ≤ M,

where M = const > 0, and for the right-hand side inaccuracy the estimate (5.2) holds.
Then, for the approximate solution uα found as the solution of problem (5.4), (5.5)
there holds the a priori estimate

‖z‖ ≤ δ

2
√

α
+ αM.
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Exercise 5.5 Obtain an estimate for the rate of convergence in the Tikhonov method
under the a priori constraints

‖A−pu‖ ≤ M, 0 < p < 2

posed on the exact solution of problem (5.1), (5.2).

Exercise 5.6 Let uα be the solution of problem (5.4), (5.5) and

m(α) = ‖Auα − fδ‖2 + α‖uα‖2,

ϕ(α) = ‖Auα − fδ‖2, ψ(α) = ‖uα‖2.

Show that in the case of fδ �= 0 and 0 < α1 < α2 there hold the inequalities

m(α1) < m(α2), ϕ(α1) < ϕ(α2), ψ(α1) > ψ(α2).

Exercise 5.7 Show that for any δ ∈ (0, ‖ fδ‖) there exists a unique solution α = α(δ)

of the equation
ϕ(α) = ‖Auα − fδ‖2 = δ2,

such that α(δ) → 0 and ‖uα(δ) − u‖ → 0 as δ → 0 (substantiation of the choice of
regularization parameter based on the discrepancy).

Exercise 5.8 In solving problem (5.1), (5.2) with A = A∗ > 0, the algorithm of
simplified regularization uses the equation

Auα + αuα = fδ (5.63)

for finding the approximate solution. Formulate the related variational problem.

Exercise 5.9 Prove that in the case of

‖u‖A−1 ≤ M

for the inaccuracy in the approximate solution of problem (5.1), (5.2) found from
(5.63) there holds the priori estimate

‖z‖2 ≤ δ2

α
+ α

2
M2.

Exercise 5.10 Suppose that for the approximate solution of problem (5.1), (5.2) one
uses the iteration method

B
uk+1 − uk

τ
+ Auk = fδ, k = 0, 1, . . .

with B = B∗ > 0 and

γ1 B ≤ A ≤ γ2 B, γ1 > 0, 0 < τ <
2
γ2

.

Show that in the iteration method (5.31)–(5.33) ‖un(δ) − u‖B → 0 as δ → 0 provided
that n(δ) → ∞ and n(δ)δ → 0 as δ → 0.
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Exercise 5.11 Suppose that, in the solution of problem (5.1), (5.2), the total number
of iterations in the method (5.31)–(5.33) is chosen from the condition

‖Aun(δ) − fδ‖ ≤ δ < ‖Aun(δ)−1 − fδ‖

and, in addition, ‖Au0 − fδ‖ > δ. Show that, in this case, ‖un(δ) − u‖ → 0 as δ → 0.

Exercise 5.12 Prove the ill-posedness of the problem in which it is required to solve
the first-kind Fredholm integral equation

∫ b

a
K (x, s)μ(s) ds = ϕ(x), c ≤ x ≤ d

with a kernel K (x, s) continuously differentiable with respect to both variables in the
case of μ(x) ∈ C[a, b], ϕ(x) ∈ C[c, d].

Exercise 5.13 Consider the continuation problem for a gravitational field disturbed
with local anomalies with non-negative anomalous (excessive with respect to sur-
rounding rocks) density. We seek the solution of the continuation problem (5.53),
(5.55) in the form (see (5.57))∫ ∞

−∞
K (x, s)μ(s) ds = ϕ(x),

assuming, in addition, that the anomalies are localized at depths greater than H . Show
that μ(x) ≥ 0, −∞ < x < ∞.

Exercise 5.14 In the program PROBLEM4, implement the conjugate gradient method.
Examine the efficiency of the method as applied to problems with small inaccuracies
in the gravitational field at the earth surface (δ ≤ 0.01).

Exercise 5.15 Extend the program PROBLEM4 to the case in which the approximate
solution of the continuation problem is solved in the form of a double-bed potential.
Based on the solution of the model problem, perform an analysis of possibilities of-
fered by this approach.



6 Right-hand side identification

An important class of inverse mathematical physics problem is the determination of
unknown right-hand sides of equations. In such problems, additional information
about the solution is provided either throughout the calculation domain or over some
part of the domain, in particular, on the domain boundary. Another class consists in
calculating a differential operator for an approximately given right-hand side and solu-
tion which is approximately known throughout the whole domain. Also worth noting
are specific features of right-hand side determination algorithms for non-stationary
problems. Here the values of the right-hand side are successively determined at fixed
times. In the non-stationary case, additional information about the solution is required
on parts of the calculation domain. At the end of this chapter, computational algo-
rithms for solving such inverse boundary value problems involving stationary or non-
stationary mathematical physics equations are considered. Computational data are
provided that are obtained in several numerical experiments on the approximate solu-
tion of inverse problems.

6.1 Reconstruction of the right-hand side from known solu-

tion in the case of stationary problems

In this section, we consider a problem in which it is required to reconstruct the right-
hand side of a second-order ordinary differential equation whose solution is known
accurate to some given inaccuracy. A simplest computational algorithm uses stan-
dard difference approximations, the mesh size being the regularization parameter. The
possibility of using alternative approaches is noted.

6.1.1 Problem statement

As a simplest mathematical model, we use the second-order ordinary differential equa-
tion

− d
dx

(
k(x)

du
dx

)
+ q(x)u = f (x), 0 < x < l (6.1)

under the following usual constraints imposed on the coefficients:

k(x) ≥ κ > 0, q(x) ≥ 0.

In the direct problem, it is required to determine the function u(x) from equation
(6.1) with given coefficients k(x), q(x), right-hand side f (x), and additional condi-
tions given on the boundary. In a simplest case, first-kind homogeneous conditions are
given:

u(0) = 0, u(l) = 0. (6.2)
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Formulate now the inverse problem. We assume that the right-hand side f (x) is
unknown. To find it, we have to set some additional information about the solution.
Since, here, a function of x is being sought, it is therefore desirable that the additional
information be also given as a function of x . This allows us to assume that known is
the solution u(x), x ∈ [0, l].

With known exact u(x), x ∈ [0, l], the right-hand side can be uniquely found, and
it follows from (6.1) that

f (x) = − d
dx

(
k(x)

du
dx

)
+ q(x)u, 0 < x < l. (6.3)

The use of formula (6.3) implies, for instance, that f (x) ∈ C(0, l) if u(x) ∈ C2[0, l]
in the case of k(x) ∈ C1[0, l] and q(x) ∈ C[0, l].

The point here is that the input data (in the case of interest, the solution u(x), x ∈
[0, l]) are given approximately and do not belong to the mentioned smoothness class.
A typical situation is such that, for instance, instead of the exact solution u(x), x ∈
[0, l] we know the function uδ(x), x ∈ [0, l] and, in addition, uδ(x) ∈ C[0, l] and

‖uδ(x) − u(x)‖C[0,l] ≤ δ, (6.4)

where
‖v(x)‖C[0,l] = max

x∈[0,l]
|v(x)|.

Problem (6.3), (6.4) is a problem in which it is required to calculate the values
of a differential operator. This problem belongs to the class of classically ill-posed
problems and, to be solved, needs some regularizing algorithm to be applied. Consider
some basic possibilities along this line.

6.1.2 Difference algorithms

Most naturally, difference methods can be used in calculating the right-hand side f (x),
0 < x < l. Over the interval �̄ = [0, l], we introduce a uniform grid with a grid size h:

ω̄ = {x | x = xi = ih, i = 0, 1, . . . , N , Nh = l}.

Here, ω is the set of internal nodes and ∂ω is the set of boundary nodes.
We denote the approximate solution of problem (6.3), (6.4) at internal nodes as

fh(x). Using the standard notation adopted in the theory of difference schemes, we set

fh(x) = −(ayx̄)x + cy, x ∈ ω, (6.5)

where for the mesh function y(x) we have:

y(x) = uδ(x), x ∈ ω̄.
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For the difference coefficients, we set:

a(x) = k(x − 0.5h), x, x + h ∈ ω, c(x) = q(x), x ∈ ω.

The difference algorithm (6.5) is a regularizing one provided that a rule is given
by which the discretization grid size h = h(δ) can be chosen as a function of the
inaccuracy δ such that the norm of the inaccuracy z = fh − f vanishes as δ → 0.
We would also like to know the rate of convergence of the approximate solution to the
exact solution.

To optimize the discretization grid size and minimize the inaccuracy, we identify
two classes of exact solutions. We assume that

‖u(x)‖C4[0,l] ≤ M, (6.6)

or, alternatively,
‖u(x)‖C3[0,l] ≤ M, (6.7)

where

‖v(x)‖Cn [0,l] = max
x∈[0,l]

max
0≤k≤n

∣∣∣dkv

dxk
(x)

∣∣∣.
In the case of (6.6) or (6.7), we impose on the coefficients the constraints

k(x) ∈ C3[0, l], q(x) ∈ C2[0, l]

or
k(x) ∈ C2[0, l], q(x) ∈ C1[0, l].

Consider the problem for the inaccuracy z(x) = fh(x) − f (x), x ∈ ω. From (6.3),
(6.5), we easily obtain:

z(x) = z(1)(x) + z(2)(x), x ∈ ω, (6.8)

where
z(1)(x) = −(aux̄)x + cu − f (x), x ∈ ω, (6.9)

z(2)(x) = fh(x) + (aux̄)x − cu, x ∈ ω. (6.10)

Let us estimate now the individual terms in (6.8) as dependent on the a priori as-
sumptions about the exact solution of problem (6.3). The first term (z(1)(x)) is the
inaccuracy in approximating the differential operator with the difference operator. The
second term (z(2)(x)) reflects the effect induced by the input-data inaccuracy.

For the approximation inaccuracy, we readily obtain:

z(1)(x) = −(aux̄)x + cu + d
dx

(
k(x)

du
dx

)
− q(x)u

= −ai+1 − ai

h
du
dx

(xi ) − ai+1 + ai

2
d2u
dx2

(xi ) − ai+1 − ai

6
h

d3u
dx3

(xi )

+cu + O(hβ) + dk
dx

du
dx

+ k(x)
d2u
dx2

− q(x)u.
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Here β = 1 under the assumption of (6.7) and β = 2, provided that the inequality
(6.6) holds.

From similar representations, for the inaccuracy we obtain the estimate

‖z(1)(x)‖ ≤ M1hβ, (6.11)

with the used settings

‖z(x)‖ = ‖z(x)‖C(ω) = max
x∈ω

|z(x)|.

The constant M1 in (6.11) depends not only on the solution but also on the coeffi-
cient k(x) and on the derivatives of k(x), i. e., M1 = M1(u, k).

For the second inaccuracy component, from (6.5), (6.10) we obtain

‖z(2)(x)‖ = ‖ − (a(y − u)x̄)x + c(y − u)‖
≤ (

max
{‖a(x)‖, ‖a(x + h)‖} 4

h2
+ ‖c(x)‖)max

x∈ω̄
‖y(x) − u(x)‖.

With (6.4), we obtain
‖z(2)(x)‖ ≤ M2δ. (6.12)

The constant
M2 = max

{‖a(x)‖, ‖a(x + h)‖} 4
h2

+ ‖c(x)‖
depends on the discretization grid size, i. e., M2 = M2(h), and increases with decreas-
ing h.

With (6.11), (6.12), from (6.8)–(6.10) we obtain the desired estimate for the inaccu-
racy:

‖z(x)‖ ≤ M1hβ + M2(h)δ. (6.13)

It follows from here that for the convergence with δ → 0 it is required that δh−2 → 0.
In the classes of a priori assumptions (6.6) and (6.7) about the solution, from the es-

timate (6.13) we obtain the optimal discretization grid size and the rate of convergence

hopt = O(δ1/4), ‖z(x)‖ = O(δ1/2)

in the case of (6.6) (β = 2) and

hopt = O(δ1/3), ‖z(x)‖ = O(δ1/3)

in the case of (6.7) (β = 1).
Thus, we see that the discretization grid size h in the difference calculation of the

right-hand side can be used as regularization parameter. Its value must be matched
with the input-data inaccuracy δ. The optimal value of h depends on the constants M1

and M2, i. e., hopt = hopt(M1, M2). Most frequently, no direct calculation of these con-
stants is possible; in such cases, the discretization grid size can be chosen considering
the discrepancy criterion.
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In numerical solution of unstable problems, discretization (passage to a finite-
difference problem) always brings about a regularization effect. This note applies both
to difference and projection methods. Here, as the discretization parameter, the dimen-
sion of the problem (discretization step) can be used. We can say that the numerical
methods possess the self-regularization property. Yet, if we try to raise the dimension
of the problem in order to refine the solution, starting from a certain moment we ob-
tain progressively worsening results: here, ill-posedness of the problem is manifested.
That is why we have to terminate the calculations in due time and restrict ourselves to
an approximate solution obtained with some optimal discretization.

Discretization offers rather restricted opportunities in regularization of problems. In
computational practice, they often take another strategy. Methods are used in which the
continuous problem possesses regularizing properties. In the course of discretization,
the closeness of the discrete problem to the regularized differential problem due to the
use, for instance, of a sufficiently fine grid cannot be explicitly traced. In this case,
additional regularizing properties resulting from discretization are ignored as exerting
only an insignificant influence. More accurate account of discretization inaccuracies is
also possible in the cases in which the effect due to the inaccuracies cannot be ignored.
In particular, the value of regularization parameter is matched not only with the right-
hand side inaccuracy, but also with the inaccuracy of the operator in the first-kind
equation (the so-called general discrepancy principle).

6.1.3 Tikhonov regularization

Consider problem (6.2)–(6.4) on the operator level. On the set of functions vanishing
at the end points of the segment [0, l] (see (6.2)) we define the operator D as

Du = − d
dx

(
k(x)

du
dx

)
+ q(x)u.

Then, with exact input data the problem (6.2), (6.3) can be written as

f = Du. (6.14)

In H = L2(0, l), we have:

D = D∗ ≥ m E, m = κ
π2

l2
.

Hence, the operator D−1 exists and

0 < D−1 ≤ 1
m

E .

The latter allows us to pass from equation (6.14) to the equation

A f = u, (6.15)
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where A = A∗ = D−1.
Instead of the exact right-hand side of (6.15), the function uδ is known to some

accuracy given by
‖uδ − u‖ ≤ δ. (6.16)

The problem (6.15), (6.16) was considered previously. This problem can be stably
solved by the Tikhonov regularization method. In this case, the approximate solu-
tion fα, α = α(δ) is to be found from

Jα( fα) = min
v∈H

Jα(v), (6.17)

where
Jα(v) = ‖Av − uδ‖2 + α‖v‖2. (6.18)

Using the adopted notation, we can write the functional (6.18) as

Jα(v) = ‖D−1v − uδ‖2 + α‖v‖2.

This functional is inconvenient for use because the values of D can be calculated easier
than the inversion of the operator. Instead of (6.18), we can use the more general
functional

Jα(v) = ‖D−1v − uδ‖2
G + α‖v‖2

G
with G = G∗ > 0. We set G = D∗D; this yields

Jα(v) = ‖v − Duδ‖2 + α‖Dv‖2. (6.19)

In this way, we arrive at a version of the Tikhonov regularization method for the
approximate solution of problem (6.14), (6.16) based on the solution of the variational
problem (6.17), (6.19). The situation around this algorithm was clarified previously by
considering the intermediate problem (6.15), (6.16).

Method (6.17), (6.19) as applied to the approximate solution of problem (6.14),
(6.16) can be substantiated using the same scheme as in the approximate solution of
problem (6.15) (6.16) by method (6.17), (6.18). This makes further consideration of
this point unnecessary.

The Euler equation for (6.17), (6.19) has the form

(E + αD∗D) fα = Duδ. (6.20)

In the case of (6.2)–(6.4), equation (6.20) yields a boundary value problem for the
fourth-order ordinary differential equation. For the solution of (6.20) the following
standard a priori estimate is valid:

‖ fα‖ ≤ 1
2
√

α
‖uδ‖. (6.21)

This estimate shows that the approximate solution is stable with respect to weak right-
hand side perturbations.
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6.1.4 Other algorithms

We present some other possibilities for the approximate solution of problem (6.14),
(6.16). First of all, considering the case in which one obtains the approximate solution
from equation (6.20), we can give another interpretation to the Tikhonov regularization
method.

At the first stage, we define an auxiliary function

f̃ = Duδ. (6.22)

Thus, f̃ is the solution of the problem with noisy right-hand side. At the second stage,
the found solution is to be processed by applying a smoothing treatment. This can
most naturally be done by minimizing the functional

Jα(v) = ‖v − f̃ ‖2 + ‖v‖2
G . (6.23)

The minimum condition for the functional gives

(E + αG) fα = f̃ . (6.24)

In this interpretation, method (6.17), (6.19) refers to the case with G = D∗D chosen
in (6.17), (6.22), (6.23).

With
G ≥ D∗D,

for the solution of (6.22), (6.24) there holds the estimate (6.21). Note one such possi-
bility that is of interest from the computational point of view. In the case of G = D2 we
have G = D∗D > 0, and the method requires inversion of the operator E + αG. In the
model problem under consideration it is required to solve a boundary value problem
for a fourth-order equation. With

G = D2 + 2
1√
α
D,

equation (6.24) takes the form

(E + √
αD)2 fα = f̃ . (6.25)

Hence, we can restrict ourselves to double inversion of the operator E + √
αD (i. e.,

to solving two boundary value problems for a second-order equation). Note that algo-
rithm (6.22), (6.25) can be considered as double smoothing performed with the opera-
tor G = D.

Iteration methods deserve a special detailed consideration. Here, however, just one
brief remark will be made. The approximate solution fn(δ) of problem (6.15), (6.16)
can be found using the simple-iteration method

fk+1 − fk

τ
+ A fk = uδ, k = 0, 1, . . . ,
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which was considered at length previously. Turning back to problem (6.14), (6.16),
rewrite the iterative process as

D fk+1 − fk

τ
+ fk = Duδ, k = 0, 1, . . . . (6.26)

Thus, for the solution of the problem at the next iteration step to be obtained, one has
to invert the operator D. The regularization effect can be achieved with a properly
chosen reconditioner B = D.

6.1.5 Computational and program realization

We construct a computational algorithm for problem (6.14), (6.16) around the
Tikhonov regularization method (6.17), (6.19). First, pass to a discrete problem, as-
suming the discretization step to be sufficiently small.

On the set of mesh functions defined on the grid ω̄ and vanishing on ∂ω, we define
the difference operator

Dy = −(ayx̄)x + cy, x ∈ ω.

On discretization, we pass from problem (6.14) to the problem

ϕ = Dy. (6.27)

Instead of the mesh function y(x), x ∈ ω, the function yδ(x), x ∈ ω is now given.
The inaccuracy level is defined by the parameter δ:

‖yδ − y‖ ≤ δ, (6.28)

where ‖ · ‖ is the norm in H = L2(ω):

‖y‖ = (y, y)1/2, (y, v) =
∑
x∈ω

y(x)v(x)h.

In H , we have:

D = D∗ ≥ κλ0 E, λ0 = 4
h2

sin2 πh
2l

≥ 8
l2

.

In the Tikhonov method as applied to problem (6.27), (6.28) there arises (see (6.20))
the equation

(E + αD2)ϕα = Dyδ (6.29)

for the approximate solution ϕα(x), x ∈ ω̄. The value of α = α(δ) can be found using
the discrepancy principle:

‖yδ − D−1ϕα‖ = δ. (6.30)
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Note some specific features in the computational realization of the method.
Equation (6.29) is a difference equation with five-diagonal matrix. This equation

can be solved by the sweep method (Thomas algorithm). Below, we give the sweep-
method calculation formulas for the following five-diagonal system:

C0 y0 − D0 y1 + E0 y2 = F0, (6.31)

−B1 y0 + C1 y1 − D1 y2 + E1 y3 = F3, (6.32)

Ai yi−2 − Bi yi−1 + Ci yi − Di yi+1 + Ei yi+2 = Fi , i = 2, . . . , N − 2,(6.33)

AN−1 yN−3 − BN−1 yN−2 + CN−1 yN−1 − DN−1 yN = FN−1, (6.34)

AN yN−2 − BN yN−1 + CN yN = FN . (6.35)

The sweep method for system (6.31)–(6.35) uses the following solution representa-
tion:

yi = αi+1 yi+1 − βi+1 yi+2 + γi+1, i = 0, 1, . . . , N − 2, (6.36)

yN−1 = αN yN + γN . (6.37)

Like in the ordinary three-point sweep method, we find first the sweep coefficients.
Using (6.36), we express yi−1 and yi−2 in terms of yi and yi+1:

yi−1 = αi yi − βi yi+1 + γi , i = 1, 2, . . . , N − 1, (6.38)

yi−2 = (αiαi−1 − βi−1)yi − βiαi−1 yi+1 + αi−1γi + γi−1,

i = 2, 3, . . . , N − 1.
(6.39)

Substitution of (6.38) and (6.39) into (6.33) yields

(Ci − Aiβi−1 + αi (Aiαi−1 − Bi ))yi

= (Di + βi (Aiαi−1 − Bi ))yi+1 − Ei yi+2

+ Fi − Aiγi−1 − γi (Aiαi−1 − Bi ), i = 2, 3, . . . , N − 2.

In view of (6.36), we obtain

αi+1 = S−1
i (Di + βi (Aiαi−1 − Bi )), βi+1 = S−1

i Ei ,

γi+1 = S−1
i (Fi − Aiγi−1 − γi (Aiαi−1 − Bi )),

(6.40)

where

Si = (Ci − Aiβi−1 + αi (Aiαi−1 − Bi )), i = 2, 3, . . . , N − 2. (6.41)

The recurrent relations (6.40), (6.41) can be used provided that the coefficients
αi , βi and γi (i = 1, 2) are known. It follows from (6.31) and (6.36) that

α1 = C−1
0 D0, β1 = C−1

0 E0, γ1 = C−1
0 F0. (6.42)
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Substituting (6.38) with i = 1 into (6.32), we obtain

(C1 − B1α1)y1 = (D1 − B1β1)y2 − E1 y3 + F1 + B1γ1.

Hence, we can set:

α2 = S−1
1 (D1 − B1β1), S1 = C1 − B1α1,

β2 = S−1
1 E1, γ2 = S−1

1 (F1 + B1γ1).

(6.43)

To determine the coefficients αN , γN in (6.37), we substitute (6.38), (6.39) with
i = N − 1 into (6.34). This yields the same formulas (6.40), (6.41) with i = N − 1.
Thus, all sweep coefficients can be found by the recurrent formulas (6.40), (6.41)
together with (6.42), (6.43).

For the solution to be found from (6.36), (6.37), we have to find yN . To this end, we
use equation (6.35). Substitution of (6.36) with i = N − 2 yields

yN = γN+1, (6.44)

where γN+1 is to be found using formulas (6.40), (6.41) with i = N . Equality (6.44)
allows the solution of (6.31)–(6.35) to be found from (6.36), (6.37).

The above algorithm is realized in the subroutine PROG5:

Subroutine PROG5

SUBROUTINE PROG5 ( N, A, B, C, D, E, F, Y, ITASK )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C SWEEP METHOD
C FOR FIVE-DIAGONAL MATRIX
C
C ITASK = 1: FACTORIZATION AND SOLUTION;
C
C ITASK = 2: SOLUTION ONLY
C

DIMENSION A(N), B(N), C(N), D(N), E(N), F(N), Y(N)
IF ( ITASK .EQ. 1 ) THEN

C
D(1) = D(1) / C(1)
E(1) = E(1) / C(1)
C(2) = C(2) - D(1)*B(2)
D(2) = ( D(2) - E(1)*B(2) ) / C(2)
E(2) = E(2) / C(2)

C
DO I = 3, N

C(I) = C(I) - E(I-2)*A(I) + D(I-1)*( D(I-2)*A(I) - B(I) )
D(I) = ( D(I) + E(I-1)*( D(I-2)*A(I) - B(I) ) ) / C(I)
E(I) = E(I) / C(I)

END DO
C

ITASK = 2
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END IF
C

F(1) = F(1) / C(1)
F(2) = ( F(2) + F(1)*B(2) ) / C(2)

DO I = 3, N
F(I) = ( F(I) - F(I-2)*A(I)

* - F(I-1)*( D(I-2)*A(I) - B(I) ) ) / C(I)
END DO

C
Y(N) = F(N)
Y(N-1) = D(N-1)*Y(N) + F(N-1)
DO I = N-2, 1, -1

Y(I) = D(I)*Y(I+1) - E(I)*Y(I+2) + F(I)
END DO
RETURN
END

The identification problem was solved within the framework of a quasi-real experi-
ment. First, the direct problem (6.1), (6.2) with given coefficients and right-hand side
was solved. Afterwards, random perturbations were introduced into the mesh solution
and, then, the inverse problem was treated. The difference solution of the direct prob-
lem was found using the sweep method for tridiagonal matrices. Like in the case of
PROG5, in the subroutine PROG3 the matrix coefficients are not retained at the exit,
being replaced instead with the sweep coefficients.

Subroutine PROG3

SUBROUTINE PROG3 ( N, A, C, B, F, Y, ITASK )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C SWEEP METHOD
C FOR TRIDIAGONAL MATRIX
C
C ITASK = 1: FACTORIZATION AND SOLUTION;
C
C ITASK = 2: SOLUTION ONLY
C

DIMENSION A(N), C(N), B(N), F(N), Y(N)
IF ( ITASK .EQ. 1 ) THEN

C
B(1) = B(1) / C(1)
DO I = 2, N

C(I) = C(I) - B(I-1)*A(I)
B(I) = B(I) / C(I)

END DO
C

ITASK = 2
END IF

C
F(1) = F(1) / C(1)
DO I = 2, N
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F(I) = ( F(I) + F(I-1)*A(I) ) / C(I)
END DO

C
Y(N) = F(N)
DO I = N-1, 1, -1

Y(I) = B(I)*Y(I+1) + F(I)
END DO
RETURN
END

The regularization parameter was found from the discrepancy using the sequence

αk = α0qk, q > 0

with set α0 and q.

Program PROBLEM5

C
C PROBLEM5 - RIGHT-HAND SIDE IDENTIFICATION
C ONE-DIMENSIONAL STATIONARY PROBLEM
C

IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( DELTA = 0.001D0, N = 201 )
DIMENSION Y(N), X(N), YD(N), F(N), FA(N), FT(N)
+ ,A(N), B(N), C(N), D(N), E(N), FF(N)

C
C PARAMETERS:
C
C XL, XR - LEFT AND RIGHT END POINTS OF THE SEGMENT;
C N - NUMBER OF GRID NODES;
C DELTA - INPUT-DATA INACCURACY;
C ALPHA - INITIAL REGULARIZATION PARAMETER;
C Q - MULTIPLIER IN THE REGULARIZATION PARAMETER;
C Y(N) - EXACT DIFFERENCE SOLUTION OF THE BOUNDARY-VALUE
C PROBLEM;
C YD(N) - DISTURBED DIFFERENCE SOLUTION OF THE BOUNDARY-VALUE
C PROBLEM;
C F(N) - EXACT RIGHT-HAND SIDE;
C FA(N) - CALCULATED RIGHT-HAND SIDE;
C

XL = 0.
XR = 1.

C
OPEN (01, FILE = ’RESULT.DAT’) ! FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H = (XR - XL) / (N - 1)
DO I = 1, N

X(I) = XL + (I-1)*H
END DO

C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C
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B(1) = 0.D0
C(1) = 1.D0
FF(1) = 0.D0
A(N) = 0.D0
C(N) = 1.D0
FF(N) = 0.D0

DO I = 2,N-1
A(I) = AK(X(I)-0.5D0*H) / (H*H)
B(I) = AK(X(I)+0.5D0*H) / (H*H)
C(I) = A(I) + B(I) + AQ(X(I))
FF(I) = AF(X(I))

END DO
C
C SOLUTION OF THE DIFFERENCE PROBLEM

C
ITASK1 = 1
CALL PROG3 ( N, A, C, B, FF, Y, ITASK1 )

C
C NOISE ADDITION TO THE SOLUTION OF THE BOUNDARY-VALUE PROBLEM
C

YD(1) = 0.D0
YD(N) = 0.D0
DO I = 2,N-1

YD(I) = Y(I) + 2.*DELTA*(RAND(0)-0.5)
END DO

C

C RIGHT-HAND SIDE
C

FT(1) = 0.D0
FT(N) = 0.D0
DO I = 2,N-1

FT(I) = - AK(X(I)-0.5D0*H) * YD(I-1) / (H*H) +
+ ((AK(X(I)-0.5D0*H) + AK(X(I)+0.5D0*H)) / (H*H) +
+ AQ(X(I))) * YD(I) -
+ AK(X(I)+0.5D0*H) * YD(I+1) / (H*H)
END DO
WRITE ( 01,* ) (X(I), I = 1,N)
WRITE ( 01,* ) (Y(I), I = 1,N)
WRITE ( 01,* ) (YD(I), I = 1,N)
WRITE ( 01,* ) (FT(I), I=1,N)

C
C ITERATIVE ADJUSTMENT OF THE REGULARIZATION PARAMETER

C
IT = 0
ITMAX = 1000
ALPHA = 0.001D0
Q = 0.75D0

100 IT = IT + 1
C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE INVERSE PROBLEM
C

C(1) = 1.D0

D(1) = 0.D0
E(1) = 0.D0
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B(2) = 0.D0
C(2) = ALPHA*(AK(X(2)+0.5D0*H) / (H**2)) **2 +
+ ALPHA*( (AK(X(2)-0.5D0*H) +
+ AK(X(2)+0.5D0))/(H**2) + AQ(X(2)))**2 + 1.D0
D(2) = ALPHA*AK(X(2)+0.5D0*H) / (H**2) *
+ ( (AK(X(2)+0.5D0*H) +
+ AK(X(2)+1.5D0*H))/(H**2) + AQ(X(3)) +
+ (AK(X(2)-0.5D0*H) +
+ AK(X(2)+0.5D0*H))/(H**2) + AQ(X(2)))
E(2) = ALPHA*AK(X(2)+0.5D0*H)* AK(X(2)+1.5D0*H) / (H**4)
A(N-1) = ALPHA*AK(X(N-1)-0.5D0*H)* AK(X(N-1)-1.5D0*H) / (H**4)
B(N-1) = ALPHA*AK(X(N-1)-0.5D0*H) / (H**2) *
+ ( (AK(X(N-1)-0.5D0*H) + AK(X(N-1)-1.5D0*H))/(H**2) +
+ AQ(X(N-2) ) +
+ (AK(X(N-1)-0.5D0*H) + AK(X(N-1)+0.5D0*H))/(H**2) +
+ AQ(X(N-1)))
C(N-1) = ALPHA*(AK(X(N-1)-0.5D0*H) / (H**2)) **2 +
+ ALPHA*( (AK(X(N-1)-0.5D0*H) +
+ AK(X(N-1)+0.5D0*H))/(H**2) + AQ(X(N-1)))**2 + 1.D0
D(N-1) = 0.D0
A(N) = 0.D0
B(N) = 0.D0
C(N) = 1.D0
DO I = 2,N-2

A(I) = ALPHA*AK(X(I)-0.5D0*H)* AK(X(I)-1.5D0*H) / (H**4)
B(I) = ALPHA*AK(X(I)-0.5D0*H) / (H**2) *

+ ( (AK(X(I)-0.5D0*H) + AK(X(I)-1.5D0*H))/(H**2) +
+ AQ(X(I-1)) +
+ (AK(X(I)-0.5D0*H) + AK(X(I)+0.5D0*H))/(H**2) + AQ(X(I)))

C(I) = ALPHA*(AK(X(I)-0.5D0*H) / (H**2)) **2 +
+ ALPHA*(AK(X(I)+0.5D0*H) / (H**2)) **2 +
+ ALPHA*( (AK(X(I)-0.5D0*H) +
+ AK(X(I)+0.5D0))/(H**2) + AQ(X(I)))**2 + 1.D0

D(I) = ALPHA*AK(X(I)+0.5D0*H) / (H**2) *
+ ( (AK(X(I)+0.5D0*H) + AK(X(I)+1.5D0*H))/(H**2) +
+ AQ(X(I+1)) +
+ (AK(X(I)-0.5D0*H) + AK(X(I)+0.5D0*H))/(H**2) + AQ(X(I)))

E(I) = ALPHA*AK(X(I)+0.5D0*H)* AK(X(I)+1.5D0*H) / (H**4)
END DO

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

ITASK2 = 1
DO I = 1,N

FF(I) = FT(I)
END DO
CALL PROG5 ( N, A, B, C, D, E, FF, FA, ITASK2 )

C

C DISCREPANCY
C

B(1) = 0.D0
C(1) = 1.D0
FF(1) = 0.D0
A(N) = 0.D0
C(N) = 1.D0
FF(N) = 0.D0
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DO I = 2,N-1
A(I) = AK(X(I)-0.5D0*H) / (H*H)
B(I) = AK(X(I)+0.5D0*H) / (H*H)
C(I) = A(I) + B(I) + AQ(X(I))
FF(I) = FA(I)

END DO

C
ITASK1 = 1

CALL PROG3 ( N, A, C, B, FF, D, ITASK1 )
C

SUM = 0.D0
DO I = 2,N-1

SUM = SUM + (D(I)-YD(I))**2*H
END DO
SL2 = DSQRT(SUM)

C
IF ( IT.EQ.1 ) THEN

IND = 0
IF ( SL2.LT.DELTA ) THEN

IND = 1
Q = 1.D0/Q

END IF
ALPHA = ALPHA*Q
GO TO 100

ELSE
ALPHA = ALPHA*Q
IF ( IND.EQ.0 .AND. SL2.GT.DELTA ) GO TO 100
IF ( IND.EQ.1 .AND. SL2.LT.DELTA ) GO TO 100

END IF
C
C SOLUTION
C

WRITE ( 01,* ) (FA(I), I=1,N)
WRITE ( 01,* ) IT, ALPHA, SL2
CLOSE ( 01 )

C
STOP
END

DOUBLE PRECISION FUNCTION AK ( X )
IMPLICIT REAL*8 ( A-H, O-Z )

C

C COEFFICIENT AT THE HIGHER DERIVATIVES
C

AK = 0.05D0
C

RETURN
END

DOUBLE PRECISION FUNCTION AQ ( X )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C COEFFICIENT AT THE LOWEST TERM
C

AQ = 0.D0
C

RETURN
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END

DOUBLE PRECISION FUNCTION AF ( X )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C RIGHT-HAND SIDE
C

AF = X
IF ( X.GE.0.5D0 ) AF = 0.5D0

C
RETURN
END

The equation coefficients and the right-hand side are set in the subroutine functions
AK, AQ, AF.

6.1.6 Examples

As an example, the model problem (6.1), (6.2) with

k(x) = 0.05, q(x) = 0, f (x) =
{

x, 0 < x < 0.5,

0.5, 0.5 < x < 1,

was considered. The input-data inaccuracies were modeled by perturbing the differ-
ence solution of the problem with exact right-hand side at grid nodes:

yδ(x) = y(x) + 2δ(σ (x) − 1/2), x = xi , i = 0, 1, . . . , N − 1,

where σ(x) is a random quantity normally distributed over the interval from 0 to 1.
Note first some direct difference differentiation possibilities in calculating the right-

hand side of (6.1). Figure 6.1 shows data calculated on various difference grids. The
data were obtained for the perturbed solution of the direct problem on a grid with
N = 512; here, the noise level was defined by the parameter δ = 0.001. Acceptable
results could also be obtained using numerical differentiation on rather crude grids
with h ≥ 1/16.

The solution of the same identification problem obtained by the Tikhonov method is
shown in Figure 6.2. Here, a calculation grid with N = 200 was used. The effect due
to the inaccuracy level can be traced considering the data calculated with the input-
data inaccuracy δ = 0.01; these data are shown in Figure 6.3. A substantial loss of
accuracy near the right boundary x = l is observed. This loss is related with the fact
that the calculated operator D is defined on the set of functions satisfying the boundary
conditions (6.2). If the right-hand side to be found also satisfies these conditions, an
improved accuracy in finding the approximate solution can be expected. The latter
is illustrated by Figure 6.4 that shows the solution of the identification problem with
somewhat modified right-hand side.
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Figure 6.1 Numerical differentiation with δ = 0.001

Figure 6.2 Solution of the identification problem obtained with δ = 0.001
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Figure 6.3 Solution of the identification problem obtained with δ = 0.01

Figure 6.4 Solution of the identification problem obtained with δ = 0.01 and for a
modified right-hand side
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6.2 Right-hand side identification in the case of a parabolic

equation

Below, we consider an inverse problem in which it is required to reconstruct the right-
hand side of a one-dimensional parabolic equation from the known solution. Specific
features of the problem are discussed, related with the evolutionary character of the
problem and with the possibility to sequentially determine the right-hand side with
increasing time.

6.2.1 Model problem

As a model problem, consider the problem in which it is required to reconstruct the
right-hand side of a one-dimensional parabolic equation. Let us begin the considera-
tion with the statement of the direct problem.

The solution u(x, t) is defined in the rectangle

QT = � × [0, T ], � = {x | 0 ≤ x ≤ l}, 0 ≤ t ≤ T .

The function u(x, t) satisfies the equation

∂u
∂t

= ∂

∂x

(
k(x)

∂u
∂x

)
+ f (x, t), 0 < x < l, 0 < t ≤ T (6.45)

under the standard constraint k(x) ≥ κ > 0.
For simplicity, homogeneous boundary and initial conditions are assumed:

u(0, t) = 0, u(l, t) = 0, 0 < t ≤ T, (6.46)
u(x, 0) = 0, 0 ≤ x ≤ l. (6.47)

In the direct problem (6.45)–(6.47), the solution u(x, t) is to be found from the
known coefficient k(x) and from the known right-hand side f (x, t). In the inverse
problem, the unknown quantity is the right-hand side f (x, t) (source power), with
the solution u(x, t) assumed known. The right-hand side can be calculated by the
following explicit formula obtained from (6.45):

f (x, t) = ∂u
∂t

− ∂

∂x

(
k(x)

∂u
∂x

)
, 0 < x < l, 0 < t ≤ T . (6.48)

The input data are given with some inaccuracy; this circumstance makes the direct
use of formula (6.48) difficult. Most significant here is the effect resulting from the
solution inaccuracy. Let us know, instead of the exact solution u(x, t) of problem
(6.45)–(6.47), a perturbed solution uδ(x, t), and in some norm the parameter δ defines
the inaccuracy level in the solution, i. e.,

‖uδ(x, t) − u(x, t)‖ ≤ δ. (6.49)



176 Chapter 6 Right-hand side identification

Here, special computational algorithms for stable numerical differentiation must
be applied. To approximate the solution, we can use finite-difference regularization
algorithms in which the discretization step size serves the regularization parameter.
This method was discussed at length previously, when we considered the stationary
problem for the second-order ordinary differential equation. In the solution of the
inverse problem (6.46)–(6.49), the discretization step sizes over space and time must
be matched with the inaccuracy in u(x, t).

Evolutionary problems possess some specific feature of utmost significance. The
current solution of the problem depends only on the prehistory, i.e., on the solutions at
preceding times, and does not depends on the solutions at future times. This point can
(and often must) be taken into account when developing computational algorithms.
This requirement is perfectly justified in the case of direct problems of type (6.45)–
(6.47) and can also be important when one considers inverse problems similar to prob-
lem (6.46)–(6.49).

Discussing the solution of evolutionary problems in the general context, we can
speak of computational algorithms of two types. In the computational algorithms of
the first type, the current solution is to be calculated from the solution at preceding
times. Here, we speak of local algorithms for solving evolutionary problems. In the
global algorithms the current solution is sought using a procedure that involves future
times.

6.2.2 Global regularization

To approximately solve the inverse problem (6.46)–(6.49), we use the general regu-
larization scheme proposed by A. N. Tikhonov. First of all, we introduce some new
settings.

In the Hilbert space L2(�), in the ordinary way we introduce the norm and the
scalar product:

(v, w) =
∫

�

v(x)w(x) dx, ‖v‖2 = (v, v) =
∫

�

v2(x) dx .

For functions v(x, t), w(x, t) ∈ H, where H = L2(QT ), we set:

(v, w)∗ =
∫ T

0
(v, w) dt =

∫ T

0

∫
�

v(x)w(x) dx dt, ‖v‖∗ = ((v, v)∗)1/2.

We define the operator

Au = − d
dx

(
k(x)

du
dx

)
on the set of functions satisfying the condition (6.44). In L2(�), for the operator A we
have:

A = A∗ ≥ m E, m = κ
π2

l2
.
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Then, the inverse problem (6.46)–(6.48) can be written as

f = Du, (6.50)

where the operator

Du = du
dt

+ Au (6.51)

is defined on the set of functions satisfying the initial condition (6.47). For the input
data (see (6.49)), we have:

‖uδ − u‖∗ ≤ δ. (6.52)

In the Tikhonov regularization method, the approximate solution fα of problem
(6.50)–(6.52) is sought as the solution of the following variational problem:

(E + αD∗D) fα = Duδ. (6.53)

A specific feature of the regularization method as applied to the solution of the inverse
evolutionary problem is manifested in the problem operator D defined by (6.51). In
particular, it becomes necessary to explicitly define the operator D∗.

Provided that v(x, 0) = 0 and w(x, T ) = 0, we have:

(Dv, w)∗ =
∫ T

0

(dv

dt
, w
)

dt +
∫ T

0
(A, w) dt

= (v, w)
∣∣T
0 −

∫ T

0

(
v,

dw

dt
, w
)

dt +
∫ T

0
(A, w) dt = (v,Dw)∗.

Thus, we define the operator D∗ as

D∗w = −dw

dt
+ Aw (6.54)

on the set of functions
w(x, T ) = 0, 0 ≤ x ≤ l. (6.55)

In view of (6.47), (6.51), (6.54) and (6.55), equation (6.53) for the approximate
solution fα is an elliptic equation involving second time derivatives and forth spatial
derivatives. For fα, the boundary conditions at t = 0, T are as follows:

fα(x, 0) = 0, 0 ≤ x ≤ l, (6.56)

D fα(x, T ) = 0, 0 ≤ x ≤ l. (6.57)

These points should be given particular attention in the numerical realization.
In the case of the identification problem for the right-hand side of the second-order

ordinary differential equation, the following two basic possibilities are available. The
first possibility implies using the Tikhonov regularization method in interpreting the
right-hand side identification problem as a problem in which it is required to solve a
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first-kind operator equation. In the second possibility, the right-hand side identification
problem is considered as a problem in which it is required to calculate the values of a
bounded operator. The latter possibility was realized in the scheme (6.52), (6.53) for
problem (6.46)–(6.49). It also makes sense to dwell here on the standard variant of the
Tikhonov regularization.

With the given right-hand side f (x, t), the solution of the boundary value problem
(6.45)–(6.47) uniquely defines the solution u(x, t). To reflect this correspondence, we
introduce the operator G:

G f = u. (6.58)

Instead of u(x, t), the function uδ(x, t) is given and, in addition, the estimate (6.52)
holds.

The approximate solution fα of problem (6.49), (6.58) can be found as the solution
of the following problem:

Jα( fα) = min
v∈H

Jα(v), (6.59)

where
Jα(v) = (‖Gv − uδ‖∗)2 + α(‖v‖∗)2. (6.60)

The following important circumstance deserves mention. In using algorithm (6.52),
(6.53), constructed around the interpretation of the identification problem as an un-
bounded operator value problem, additional constraints on the sought function (bound-
ary conditions of type (6.56), (6.57)) are to be posed. This is not quite justified a pro-
cedure (see the results of numerical experiments on the identification of the right-hand
side of the ordinary differential equation in the previous section). No such problems
are encountered in using (6.59), (6.60).

6.2.3 Local regularization

In the approximate solution of the problem in which it is required to identify the right-
hand side of a non-stationary equation from known solution, one can more conve-
niently employ an algorithm that makes it possible to determine the right-hand side
at a given time using input information only at preceding times. Compared to the
global regularization algorithm, here we, speaking generally, loose in the approximate-
solution accuracy, but save time. Consider some basic possibilities in the construction
of local regularization algorithms for the approximate solution of the inverse problem
(6.46)–(6.49). We will dwell here on the local analogue of the regularization of type
(6.59), (6.60).

The basic idea uses the fact that the right-hand side is defined by the solution by
each fixed moment. In other words, the numerical differentiation procedure is to be
regularized only with respect to spatial variables. In fact, the input data are to be
smoothed considering only part of all variables. Such algorithms can be realized em-
ploying preliminary discretization over time.
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We introduce the uniform grid over time

ω̄τ = ωτ ∪ {T } = {tn = nτ, n = 0, 1, . . . , N0, τ N0 = T }.

The following subscriptless notation generally accepted in the theory of difference
schemes will be used:

y = yn, ŷ = yn+1, y̌ = yn−1,

yt̄ = y − y̌
τ

, yt = ŷ − y
τ

.

Let us formulate the inverse right-hand side identification problem for the parabolic
equation after the partial discretization. For the main quantities, the same settings as
in the continuous case will be used. For simplicity, we restrict the consideration to the
case of purely explicit time approximation, in which the right-hand side is determined
(compare (6.48)) from the differential-difference relation

f n = un − un−1

τ
+ Aun, n = 1, 2, . . . , N0. (6.61)

The input data (direct-problem solution un) is set accurate to some inaccuracy. We
assume the inaccuracy level to be characterized by a constant δ, so that

‖un
δ − un‖ ≤ δ, n = 1, 2, . . . , N0. (6.62)

We denote the approximate solution of problem (6.61), (6.62) at the moment t = tn
as f n

α . Consider the matter of reconstruction of the function f n
α from given un

δ , un−1
δ

and f n−1
α . We assume that the approximate right-hand side f n

α corresponds to the
solution of the boundary value problem

wn − wn−1

τ
+ Awn = f n

α , n = 1, 2, . . . , N0, (6.63)

w0 = 0. (6.64)

First, we determine f n
α as the solution of the problem

J n
α ( f n

α ) = min
v∈H

J n
α (v), (6.65)

where H = L2(�) and

J n
α (v) = ‖uδ − w(v)‖2 + α‖v‖2. (6.66)

Here, in view of (6.63) and (6.64), w(v) is the solution of the difference problem

w − w̌

τ
+ Aw = v. (6.67)
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This allows us to write equation (6.66) as

J n
α (v) =

∥∥∥uδ − 1
τ
Gτ w̌ − Gτ v

∥∥∥2
+ α‖v‖2,

where
Gτ = G∗

τ =
(1
τ

E + A
)−1

.

In this way, the approximate solution at each time t = tn can be determined from
the equation

G∗
τGτ fα + α fα = G∗

τ uδ − 1
τ
G∗

τGτ w̌. (6.68)

With (6.67), using the introduced notation, we obtain the following problem for wn:

G−1
τ w = fα + 1

τ
w̌. (6.69)

6.2.4 Iterative solution of the identification problem

In solving inverse mathematical physics problems, primary attention should be paid to
iteration methods that most fully realize the idea of finding the solution of the inverse
problem through successive solution of a set of direct problems. Considering approxi-
mate solution of problem (6.46)–(6.49) by iteration methods, here we dwell on global
regularization in the variant (6.58)–(6.60).

After symmetrization of (6.58), we write the two-layer iteration method as

fk+1 − fk

τk+1
+ G∗G fk = G∗uδ, k = 0, 1, . . . . (6.70)

In using the steepest descend method, the iteration parameters can be calculated by

τk+1 =
( ‖rk‖∗

‖Grk‖∗

)2
, rk = G∗G fk − G∗uδ, k = 0, 1, . . . . (6.71)

The number of iterations in (6.70), (6.71) is to be matched with the inaccuracy δ (see
(6.52)).

This approach can be of use provided that we are able to calculate the operators G
and G∗. Recall that v = G fk is the solution of the direct problem

dv

dt
+ Av = fk, 0 < t ≤ T, (6.72)

v(0) = 0. (6.73)

The values of the conjugate operator w = G∗v can be found by solving the direct
problem

−dw

dt
+ Aw = v, 0 ≤ t < T, (6.74)

w(T ) = 0. (6.75)
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Thus, for a given iteration parameter, the passage to the next iteration is related, in
line with (6.70), with the solution of two direct problems, namely, (6.72), (6.73) and
(6.74), (6.75).

Consider some specific features in the computational realization of the iteration
method related, first of all, with time discretization. We retain for the mesh functions
the same settings as for the continuous-argument functions.

We use a uniform grid ω̄ over the interval �̄ = [0, l] with a grid size h:

ω̄ = {x | x = xi = ih, i = 0, 1, . . . , N , Nh = l}.
Here, ω is the set of internal nodes, and ∂ω is the set of boundary nodes.

We approximate the differential operator A at internal nodes accurate to the second
order with the difference operator

Ay = −(ayx̄)x , x ∈ ω, (6.76)

where, for instance, a(x) = k(x − 0.5h).
In the mesh Hilbert space L2(ω), we introduce the norm by the relation ‖y‖ =

(y, y)1/2, where
(y, w) =

∑
x∈ω

y(x)w(x)h.

Recall that on the set of functions vanishing on ∂ω, for the self-conjugate operator A
under the constraints k(x) ≥ κ > 0, q(x) ≥ 0 there holds the estimate

A = A∗ ≥ κλ0 E, (6.77)

where
λ0 = 4

h2
sin2 πh

2l
≥ 8

l2
.

We put into correspondence to the direct problem (6.72), (6.73) the following sym-
metric difference problem:

vn − vn−1

τ
+ 1

2
A(vn+1 + vn) = 1

2
( f n+1

k + f n
k ),

n = 1, 2, . . . , N0,

(6.78)

v0 = 0, x ∈ ω. (6.79)

In the latter case, the approximation inaccuracy is of second order both over time and
space. In a similar manner, other two-layer difference schemes can be considered. We
bring the problem (6.78), (6.79) to the operator notation v = G fk , which defines the
operator G.

For two-dimensional mesh functions, we define a Hilbert space H = L2(QT ) in
which the scalar product and the norm are defined as

(v, w)∗ =
N0−1∑
n=1

(vn, wn)τ + τ

2
(v0, w0) + τ

2
(vN0, wN0), ‖v‖∗ =

√
(v, v)∗.
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A problem conjugate in H to (6.78), (6.79) is the difference problem (see (6.74),
(6.75))

−wn − wn−1

τ
+ 1

2
A(wn + wn−1) = 1

2
(vn + vn−1), n = 1, 2, . . . , N0,(6.80)

wN0 = 0, x ∈ ω. (6.81)

We can check this by scalarwise multiplying equation (6.78) by wn . The problem
(6.80), (6.81) can be written in a compact form as w = G∗v.

In line with (6.70), the iteration method can be written as

fk+1 − fk

τk+1
+ G∗G fk = G∗uδ, k = 0, 1, . . . . (6.82)

At the first stage, we have to calculate the right-hand side G∗uδ; to this end, a
boundary value problem of type (6.80), (6.81) is to be solved. For the difference
rk = G∗G fk − G∗uδ to be calculated, it is required at each step to solve two boundary
value problems, ((6.78), (6.79) and (6.80), (6.81)). The iteration parameters can be
calculated (see (6.71)) by the formula

τk+1 =
( ‖rk‖∗

‖Grk‖∗

)2
, k = 0, 1, . . . . (6.83)

Determination of Grk requires an additional boundary value problem of type (6.78),
(6.79) to be solved.

The regularization parameter here is the number K (δ) of iterations in (6.82). The
criterion for the exit from the iterative process is

‖G fK (δ) − uδ‖∗ ≤ δ. (6.84)

It should be noted that the algorithm of interest is to be used under certain restric-
tions imposed on the right-hand side. In accordance with the applied symmetrization
at the expense of the operator G, the following constraints on the right-hand side are
imposed:

f N0
α = 0, x ∈ ω,

f n
α = 0, n = 0, 1, . . . , N , x ∈ ∂ω.

The algorithm (6.78)–(6.84) is embodied in the program PROBLEM6. Given below
is the complete text of this program.

Program PROBLEM6

C
C PROBLEM6 - RIGHT-HAND SIDE IDENTIFICATION
C ONE-DIMENSIONAL NON-STATIONARY PROBLEM
C
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IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( DELTA = 0.05D0, N = 101, M = 101 )
DIMENSION X(N), Y(N,M), YD(N,M), F(N,M), FA(N,M)
+ ,V(N,M), W(N,M), GU(N,M), RK(N,M), YY(N)
+ ,A(N), B(N), C(N), D(N), E(N), FF(N)

C
C PARAMETERS:
C
C XL, XR - LEFT AND RIGHT END POINTS OF THE SEGMENT;
C N - NUMBER OF GRID NODES OVER THE SPATIAL VARIABLE;
C TMAX - MAXIMAL TIME;
C M - NUMBER OF GRID NODES OVER TIME;
C DELTA - INPUT-DATA INACCURACY;
C Y(N,M) - EXACT DIFFERENCE SOLUTION OF THE BOUNDARY-VALUE
C PROBLEM;
C YD(N,M) - DISTURBED DIFFERENCE SOLUTION OF THE BOUNDARY-VALUE
C PROBLEM;
C F(N,M) - EXACT RIGHT-HAND SIDE;
C FA(N,M) - CALCULATED RIGHT-HAND SIDE;
C

XL = 0.D0
XR = 1.D0
TMAX = 1.D0

C
OPEN (01, FILE = ’RESULT.DAT’) ! FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H = (XR - XL) / (N - 1)
DO I = 1, N

X(I) = XL + (I-1)*H
END DO
TAU = TMAX / (M-1)

C
C DIRECT PROBLEM
C
C INITIAL CONDITION
C

T = 0.D0
DO I = 1, N

Y(I,1) = 0.D0
YD(I,1) = 0.D0

END DO
C
C NEXT TIME LAYER

C
DO K = 2, M

T = T + TAU
C
C DIFFERENCE-SCHEME COEFFICIENTS
C

DO I = 2, N-1
X1 = (X(I) + X(I-1)) / 2
X2 = (X(I+1) + X(I)) / 2

A(I) = AK(X1) / (2*H*H)
B(I) = AK(X2) / (2*H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
FF(I) = A(I) * Y(I-1,K-1)
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+ + (1.D0 / TAU - A(I) - B(I) ) * Y(I,K-1)
+ + B(I) * Y(I+1,K-1)
+ + (AF(X(I),T) + AF(X(I),T-TAU)) / 2

END DO
C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS
C

B(1) = 0.D0
C(1) = 1.D0
FF(1) = 0.D0

A(N) = 0.D0
C(N) = 1.D0
FF(N) = 0.D0

C
C SOLUTION AT THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, FF, YY, ITASK )
DO I = 1, N

Y(I,K) = YY(I)
END DO

END DO
C
C NOISE ADDITION
C

DO K = 2, M

YD(1,K) = 0.D0
YD(N,K) = 0.D0
DO I = 2,N-1

YD(I,K) = Y(I,K)
+ + 2.D0*DELTA*(RAND(0)-0.5D0) / DSQRT(TMAX*(XR-XL))

END DO
END DO

C
C SYMMETRIZATION (SOLUTION OF THE CONJUGATE PROBLEM)
C
C INITIAL CONDITION
C

T = TMAX
DO I = 1, N

GU(I,M) = 0.D0
END DO

C
C NEXT TIME LAYER
C

DO K = M-1, 1, -1

T = T - TAU
C
C DIFFERENCE-SCHEME COEFFICIENTS
C

DO I = 2, N

X1 = (X(I) + X(I-1)) / 2
X2 = (X(I+1) + X(I)) / 2
A(I) = AK(X1) / (2*H*H)
B(I) = AK(X2) / (2*H*H)
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C(I) = A(I) + B(I) + 1.D0 / TAU
FF(I) = A(I) * GU(I-1,K+1)

+ + (1.D0 / TAU - A(I) - B(I) ) * GU(I,K+1)
+ + B(I) * GU(I+1,K+1)
+ + (YD(I,K) + YD(I,K+1)) / 2

END DO
C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS
C

B(1) = 0.D0
C(1) = 1.D0
FF(1) = 0.D0
A(N) = 0.D0
C(N) = 1.D0
FF(N) = 0.D0

C
C SOLUTION OF THE PROBLEM AT THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, FF, YY, ITASK )

DO I = 1, N
GU(I,K) = YY(I)

END DO
END DO

C
C INVERSE RIGHT-HAND SIDE IDENTIFICATION PROBLEM
C

IT = 0
ITMAX = 1000

C
C INITIAL APPROXIMATION
C

DO K = 1, M
DO I = 1, N

FA(I,K) = 0.D0
END DO

END DO
100 IT = IT+1

C
C SOLUTION OF THE DIRECT PROBLEM FOR THE GIVEN RIGHT-HAND SIDE
C
C INITIAL CONDITION
C

T = 0.D0
DO I = 1, N

V(I,1) = 0.D0
END DO

C
C NEXT TIME LAYER
C

DO K = 2, M
T = T + TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS
C

DO I = 2, N
X1 = (X(I) + X(I-1)) / 2
X2 = (X(I+1) + X(I)) / 2
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A(I) = AK(X1) / (2*H*H)
B(I) = AK(X2) / (2*H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
FF(I) = A(I) * V(I-1,K-1)

+ + (1.D0 / TAU - A(I) - B(I) ) * V(I,K-1)
+ + B(I) * V(I+1,K-1)
+ + (FA(I,K) + FA(I,K-1)) / 2

END DO

C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS
C

B(1) = 0.D0
C(1) = 1.D0
FF(1) = 0.D0
A(N) = 0.D0
C(N) = 1.D0
FF(N) = 0.D0

C
C SOLUTION OF THE PROBLEM AT THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, FF, YY, ITASK )
DO I = 1, N

V(I,K) = YY(I)
END DO

END DO
C
C SOLUTION OF THE CONJUGATE PROBLEM
C
C INITIAL CONDITION
C

T = TMAX
DO I = 1, N

W(I,M) = 0.D0
END DO

C
C NEXT TIME LAYER
C

DO K = M-1, 1, -1
T = T - TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS
C

DO I = 2, N
X1 = (X(I) + X(I-1)) / 2

X2 = (X(I+1) + X(I)) / 2
A(I) = AK(X1) / (2*H*H)
B(I) = AK(X2) / (2*H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
FF(I) = A(I) * W(I-1,K+1)

+ + (1.D0 / TAU - A(I) - B(I) ) * W(I,K+1)
+ + B(I) * W(I+1,K+1)
+ + (V(I,K) + V(I,K+1)) / 2

END DO
C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS
C
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B(1) = 0.D0
C(1) = 1.D0
FF(1) = 0.D0
A(N) = 0.D0
C(N) = 1.D0
FF(N) = 0.D0

C
C SOLUTION OF THE PROBLEM AT THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, FF, YY, ITASK )
DO I = 1, N

W(I,K) = YY(I)

END DO
END DO

C
C DISCREPANCY
C

DO K = 1, M
DO I = 1, N

RK(I,K) = W(I,K) - GU(I,K)
END DO

END DO
C
C ITERATION PARAMETER
C
C INITIAL CONDITION
C

T = 0.D0
DO I = 1, N

W(I,1) = 0.D0
END DO

C
C NEXT TIME LAYER
C

DO K = 2, M
T = T + TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS

C
DO I = 2, N

X1 = (X(I) + X(I-1)) / 2
X2 = (X(I+1) + X(I)) / 2
A(I) = AK(X1) / (2*H*H)
B(I) = AK(X2) / (2*H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
FF(I) = A(I) * W(I-1,K-1)

+ + (1.D0 / TAU - A(I) - B(I) ) * W(I,K-1)
+ + B(I) * W(I+1,K-1)
+ + (RK(I,K) + RK(I,K-1)) / 2

END DO
C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS

C
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B(1) = 0.D0
C(1) = 1.D0
FF(1) = 0.D0
A(N) = 0.D0
C(N) = 1.D0
FF(N) = 0.D0

C
C SOLUTION OF THE PROBLEM AT THE NEXT TIME LAYER
C

ITASK = 1

CALL PROG3 ( N, A, C, B, FF, YY, ITASK )
DO I = 1, N

W(I,K) = YY(I)
END DO

END DO
C
C QUICKEST DESCEND METHOD
C

SUM1 = 0.D0
SUM2 = 0.D0

DO K = 1, M
DO I = 1, N

SUM1 = SUM1 + RK(I,K)*RK(I,K)
SUM2 = SUM2 + W(I,K)*W(I,K)

END DO
END DO
TAUK = SUM1/SUM2

C
C NEXT APPROXIMATION
C

DO K = 1, M
DO I = 1, N

FA(I,K) = FA(I,K) - TAUK *RK(I,K)
END DO

END DO
C
C EXIT FROM THE ITERATION CYCLE
C

SUM = 0.D0
DO K = 1, M

DO I = 1, N
SUM = SUM + (V(I,K) - YD(I,K))**2

END DO

END DO
SL2 = DSQRT(SUM*TAU*H)

WRITE ( 01,* ) IT, TAUK, SL2
IF (SL2.GT.DELTA .AND. IT.LT.ITMAX) GO TO 100

C
C EXACT SOLUTION
C

SUM = 0.D0
DO K = 1, M

T = (K-1)*TAU
DO I = 1, N

F(I,K) = AF(X(I),T)
SUM = SUM + (FA(I,K) - F(I,K))**2
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END DO
END DO
STL2 = DSQRT(SUM*TAU*H)
WRITE ( 01,* ) ((FA(I,K), I = 1,N), K = 1,M)
WRITE ( 01,* ) ((F(I,K), I = 1,N), K = 1,M)
WRITE ( 01,* ) STL2
CLOSE ( 01 )
STOP

END

DOUBLE PRECISION FUNCTION AK ( X )
IMPLICIT REAL*8 ( A-H, O-Z )

C

C COEFFICIENT AT THE HIGHER DERIVATIVES
C

AK = 1.D0
C

RETURN
END

DOUBLE PRECISION FUNCTION AF ( X, T )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C RIGHT-HAND SIDE
C

AF = 10.*T*(1.D0 - T)*X*(1.D0-X)

C
RETURN
END

The equation coefficients, dependent on the spatial variable, and the right-hand side
are to be set in the subroutine-functions AK and AF.

6.2.5 Computational experiments

The calculations were carried out on a uniform grid with the number of modes N =
100, N0 = 100, the calculation domain being a unit square (l = 1, T = 1). The inverse
problem was solved within the framework of a quasi-real experiment in the case of

k(x) = 1, f (x, t) = 10t (1 − t)x(1 − x).

The solution of the problem at the inaccuracy level δ = 0.001 is shown in Figure 6.5
(the total number of iterations is 3). Shown are the level curves for the exact (dashed
lines) and approximate solutions drawn with the step � = 0.1. The effect of the
input-data inaccuracy on the right-hand side reconstruction accuracy is illustrated by
Figure 6.6, 6.7 that show data obtained with greater and lesser input-data inaccuracy.
For the problem to be solved with δ = 0.0001, a total of 23 iterations were required.
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Figure 6.5 Solution of the identification problem obtained with δ = 0.001

Figure 6.6 Solution of the identification problem obtained with δ = 0.0001

Of course, the identification accuracy essentially depends on the exact solution.
In particular, noted above was the necessity to narrow the class of sought right-hand
sides due to homogeneous conditions given on some part of the calculation-domain
boundary. Figure 6.8 shows data obtained, with δ = 0.001, for the problem with the
right-hand side

f (x, t) = 2x(1 − x).
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Figure 6.7 Solution of the identification problem obtained with δ = 0.01

Figure 6.8 Solution of the identification problem obtained with δ = 0.001

6.3 Reconstruction of the time-dependent right-hand side

In the theory of inverse heat-transfer problems, also problems are considered in which
it is required to reconstruct unknown heat sources from additional temperature mea-
surements made at some single points. In a similar manner, some important applied
problems are formulated that arise in hydrogeology. The solution can be made unique
by narrowing the class of admissible right-hand sides of the parabolic equations. In
many cases, one can assume the time-dependent right-hand side to be an unknown
quantity.
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6.3.1 Inverse problem

In this section, we construct a computational algorithm for approximate solution of a
simplest one-dimensional (over space) inverse problem in which it is required to re-
construct the time-dependent right-hand side of a parabolic equation from the known
spatial distribution. Such a linear inverse problem belongs to the class of classically
well-posed mathematical physics problems under some special assumptions concern-
ing the points in space where additional measurements were performed, namely, under
the condition that the source acts at the observation points.

We assume the state of the system to be defined by the equation

∂u
∂t

= ∂

∂x

(
k(x)

∂u
∂x

)
+ f (x, t), 0 < x < l, 0 < t ≤ T (6.85)

with a sufficiently smooth positive coefficient k(x). We restrict ourselves to the prob-
lem with the simplest first-kind homogeneous boundary conditions:

u(0, t) = 0, u(l, t) = 0, 0 ≤ t ≤ T . (6.86)

Also given is the initial condition:

u(x, 0) = u0(x), 0 < x < l. (6.87)

The direct problem is formulated in the form (6.85)–(6.87).
We consider the inverse problem in which, apart from u(x, t), also unknown is the

right-hand side f (x, t) of equation (6.85). We assume that the function f (x, t) can be
represented as

f (x, t) = η(t)ψ(x), (6.88)

where the function ψ(x) is given, and unknown is the time-dependent source, the
function η(t) in the representation (6.88). This dependence can be reconstructed from
additional observations of u(x, t) made at some internal point 0 < x∗ < l:

u(x∗, t) = ϕ(t). (6.89)

We arrive at a simple right-hand side identification problem for the parabolic equation
(6.85)–(6.89).

6.3.2 Boundary value problem for the loaded equation

We consider the solution of the identification problem under the following constraints:

1) ψ(x∗) �= 0;

2) ψ(x) is a sufficiently smooth function (ψ ∈ C2[0, 1]);

3) ψ(x) = 0 on the boundary of the calculation domain.



Section 6.3 Reconstruction of the time-dependent right-hand side 193

Particular attention should be given to the first assumption stating that the source to
be reconstructed acts at the observation point x∗. It is this assumption that makes the
identification problem under consideration a well-posed problem, providing for con-
tinuous dependence of the solution on initial data, right-hand side, and data measured
at the internal point.

The last assumption is of no fundamental significance; it is used just to simplify the
consideration.

We seek the solution of the inverse problem in the form

u(x, t) = θ(t)ψ(x) + w(x, t), (6.90)

where

θ(t) =
∫ t

0
η(s) ds. (6.91)

Substitution of (6.90), (6.91) into (6.85), (6.88) yields the following equation for
w(x, t):

∂w

∂t
= ∂

∂x

(
k(x)

∂w

∂x

)
+ θ(t)

∂

∂x

(
k(x)

∂ψ

∂x

)
. (6.92)

With representation (6.90), the condition (6.89) yields the following representation for
the unknown function θ(t):

θ(t) = 1
ψ(x∗)

(ϕ(t) − w(x∗, t)). (6.93)

Substitution of (6.93) into (6.92) yields the sought loaded parabolic equation

∂w

∂t
= ∂

∂x

(
k(x)

∂w

∂x

)
+ 1

ψ(x∗)
(ϕ(t) − w(x∗, t))

∂

∂x

(
k(x)

∂ψ

∂x

)
. (6.94)

Under the adopted assumptions about the right-hand side, the boundary condition at
the domain boundary is

w(0, t) = 0, w(l, t) = 0, 0 ≤ t ≤ T . (6.95)

With allowance for (6.91), for the auxiliary function θ(t) we have:

θ(0) = 0. (6.96)

This allows us to use the initial condition

w(x, 0) = u0(x), 0 < x < l. (6.97)

In this way, the inverse problem (6.85)–(6.89) can be formulated as a boundary
value problem for the loaded equation (6.94)–(6.97) with the representation (6.91),
(6.93) for the unknown time-dependent source.
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6.3.3 Difference scheme

Note major points in the numerical solution of the identification problem. The compu-
tational algorithm is based on the approximate solution of the initial boundary problem
for the loaded equation. Today, the numerical solution methods for such non-classical
mathematical physics problems still remain poorly developed.

We assume a uniform grid ω̄ with a grid size h to be introduced over the coordinate
x . We denote the grid nodes as xi = ih, i = 0, 1, . . . , N , Nh = 1, and let v = vi =
v(xi ). For simplicity, we assume that the observation point x = x∗ coincides with an
internal node i = k.

We pass from one time layer tn = nτ , n = 0, 1, . . . , N0, N0τ = T , τ > 0 to the
next time layer tn+1 using a purely implicit difference scheme for equation (6.94). At
the internal grid nodes over space we have:

wn+1 − wn

τ
= (awn+1

x̄ )x + 1
ψk

(ϕn+1 − wn+1
k )(aψx̄)x . (6.98)

In the case of problems with a sufficiently smooth coefficient k(x) we put, for instance,
ai = k(0.5(xi + xi−1)). We approximate the conditions (6.95) and (6.97); then, we
have:

wn+1
0 = 0, wn+1

N = 0, n = 0, 1, . . . , N0 − 1, (6.99)

w0
i = u0(xi ), i = 1, 2, . . . , N − 1. (6.100)

In accordance with (6.93), from the solution of the difference problem (6.98)–
(6.100) we determine

θn+1 = 1
ψk

(ϕn+1 − wn+1
k ), n = 0, 1, . . . , N0 − 1 (6.101)

and, then, supplement these relations with the condition (see (6.96)) θ0 = 0. With
(6.91), for the sought time dependence of the right-hand side we use the simplest
numerical-differentiation procedure:

ηn+1 = θn+1 − θn

τ
, n = 0, 1, . . . , N0 − 1. (6.102)

To realize the implicit scheme, it is necessary to dwell here on the matter of solution
of the difference problem.

6.3.4 Non-local difference problem and program realization

In spite of non-locality of the difference problem on the next time layer, we encounter
no substantial problem in the computational realization of scheme (6.98)–(6.100). We
write equation (6.98) at internal nodes in the form

wn+1
i

τ
− (awn+1

x̄ )x,i + 1
ψk

(aψx̄)x,iw
n+1
k = gn

i (6.103)
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with given right-hand side gn
i and given boundary conditions (6.99). We seek the

solution of system (6.99), (6.103) in the form

wn+1
i = yi + wn+1

k zi , i = 0, 1, . . . , N . (6.104)

Substitution of (6.104) into (6.103) allows us to formulate the following difference
problems for the auxiliary functions yi and zi :

yi

τ
− (ayx̄)x,i = gn

i , i = 1, 2, . . . , N − 1, (6.105)

y0 = 0, yN = 0, (6.106)
zi

τ
− (azx̄)x,i + 1

ψk
(aψx̄)x,i = 0, i = 1, 2, . . . , N − 1, (6.107)

z0 = 0, zN = 0. (6.108)

Afterwards, with (6.104) we can find wn+1
k :

wn+1
k = yk

1 − zk
. (6.109)

Correctness of the algorithm is guaranteed by the fact that the denominator in
(6.109) is never zero. For the difference problem (6.107), (6.108) the following a priori
estimate can be established based on the maximum principle for difference schemes:

max
0≤i≤N

|zi | ≤ τ max
0<i<N

∣∣∣ 1
ψk

(aψx̄)x,i

∣∣∣.
As a result, for a sufficiently small τ = O(1) we have: |zi | < 1, i. e., the time step size
must be sufficiently small.

The difference problems (6.105), (6.106) and (6.107), (6.108) are standard prob-
lems, their numerical solution presenting no difficulties. In the one-dimensional case
under consideration, the usual three-point sweep algorithm can be employed.

In fact, the computational difficulty of the used computational algorithm is equiva-
lent to double solution of the direct problem. For this reason, the considered method
can be classified to optimal methods. Below, we give the text of a program that nu-
merically solves the inverse problem of interest.

Program PROBLEM7

C
C PROBLEM7 - RIGHT-HAND SIDE IDENTIFICATION
C ONE-DIMENSIONAL NON-STATIONARY PROBLEM
C UNKNOWN TIME DEPENDENCE
C

IMPLICIT REAL*8 ( A-H, O-Z )
C

PARAMETER ( DELTA = 0.0005D0, N = 101, M = 101 )
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DIMENSION VT(M), VY(M), VP(M), VV(M)
+ ,A(N), B(N), C(N), F(N), Y(N), VB(N), FB(N), W(N), Z(N)

C
C PARAMETERS:
C
C XL, XR - LEFT AND RIGHT END POINTS OF THE SEGMENT;
C XD - OBSERVATION POINT;
C N - NUMBER OF GRID NODES OVER THE SPATIAL VARIABLE;
C TMAX - MAXIMAL TIME;
C M - NUMBER OF GRID NODES OVER TIME;
C DELTA - INPUT-DATA INACCURACY;
C VY(M) - EXACT SOLUTION AT THE OBSERVATION POINT;
C VP(M) - DISTURBED SOLUTION AT THE OBSERVATION POINT;
C VT(M) - EXACT TIME DEPENDENCE OF THE RIGHT-HAND SIDE;
C VB(N)) - DEPENDENCE OF THE RIGHT-HAND SIDE ON THE SPATIAL
C VARIABLE;
C VV(M) - CALCULATED RIGHT-HAND SIDE VERSUS TIME;
C

XL = 0.D0
XR = 1.D0
XD = 0.3D0
TMAX = 1.D0

C
OPEN (01, FILE = ’RESULT.DAT’) ! FILE TO STORE THE CALCULATED DATA

C
C GRID

C
H = (XR - XL) / (N - 1)
TAU = TMAX / (M-1)
ND = 1 + (XD + 0.5D0*H) / H

C
C DIRECT PROBLEM
C
C SOURCE
C

DO K = 1, M
T = (K-0.5D0)* TAU
VT(K) = (K-0.5D0)* TAU
IF (T.GE.0.6D0) VT(K) = 0.D0

END DO

C
C DEPENDENCE OF THE RIGHT-HAND SIDE ON THE SPATIAL VARIABLE
C

DO I = 1, N
VB(I) = DSIN(3.1415926*(I-1)*H)

END DO
C

C SOLUTION OF THE PROBLEM
C
C INITIAL CONDITION
C

T = 0.D0

DO I = 1, N
Y(I) = 0.D0

END DO
VY(1) = Y(ND)
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C
C NEXT TIME LAYER
C

DO K = 2, M
T = T + TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS
C

DO I = 2, N-1
A(I) = 1.D0 / (H*H)
B(I) = 1.D0 / (H*H)
C(I) = 2.D0 / (H*H) + 1.D0 / TAU

END DO
C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS
C

B(1) = 0.D0
C(1) = 1.D0
F(1) = 0.D0
A(N) = 0.D0
C(N) = 1.D0
F(N) = 0.D0

C
C RIGHT-HAND SIDE OF THE DIFFERENCE EQUATION
C

DO I = 2, N-1
F(I) = VB(I)*VT(K) + Y(I) / TAU

END DO
C
C SOLUTION AT THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, F, Y, ITASK )
VY(K) = Y(ND)

END DO
C
C DISTURBING OF MEASURED QUANTITIES
C

DO K = 1,M
VP(K) = VY(K) + 2.D0*DELTA*(RAND(0)-0.5D0)

END DO
C
C INVERSE PROBLEM
C
C AUXILIARY FUNCTION
C

DO I = 2, N-1
FB(I) = ( 1.D0 / VB(ND) )

+ * (VB(I+1)-2.D0*VB(I) + VB(I-1)) / (H*H)
END DO

C
C SOLUTION OF THE PROBLEM
C
C INITIAL CONDITION
C

T = 0.D0
DO I = 1, N

Y(I) = 0.D0
END DO
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C
C NEXT TIME LAYER
C

DO K = 2, M
T = T + TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS
C

DO I = 2, N-1
A(I) = 1.D0 / (H*H)
B(I) = 1.D0 / (H*H)
C(I) = 2.D0 / (H*H) + 1.D0 / TAU

END DO

C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS
C

B(1) = 0.D0
C(1) = 1.D0
F(1) = 0.D0
A(N) = 0.D0
C(N) = 1.D0
F(N) = 0.D0

C
C RIGHT-HAND SIDE OF THE DIFFERENCE EQUATION
C

DO I = 2, N-1
F(I) = FB(I)*VY(K) + Y(I) / TAU

END DO
C
C SOLUTION OF THE FIRST SUBPROBLEM AT THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, F, W, ITASK )

C
C DIFFERENCE-SCHEME COEFFICIENTS
C

DO I = 2, N-1
A(I) = 1.D0 / (H*H)
B(I) = 1.D0 / (H*H)
C(I) = 2.D0 / (H*H) + 1.D0 / TAU

END DO
C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS
C

B(1) = 0.D0
C(1) = 1.D0
F(1) = 0.D0
A(N) = 0.D0
C(N) = 1.D0
F(N) = 0.D0

C
C RIGHT-HAND SIDE OF THE DIFFERENCE EQUATION
C

DO I = 2, N-1
F(I) = - FB(I)

END DO
C
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C SOLUTION OF THE SECOND SUBPROBLEM AT THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, F, Z, ITASK )

C
VV(K) = (VP(K)-VP(K-1)

+ - (W(ND) / (1 - Z(ND)) - Y(ND) )) / (TAU * VB(ND))
DO I = 1, N

Y(I) = W(I) + Z(I) * W(ND) / (1 - Z(ND))
END DO

END DO
C
C APPROXIMATE SOLUTION
C

WRITE ( 01,* ) (VV(K), K = 2,M)
WRITE ( 01,* ) (VT(K), K = 2,M)
CLOSE (01)
STOP
END

6.3.5 Computational experiments

Below, results of calculations are presented which were carried out for the simplest
model inverse problem (6.84)–(6.89). Within the concept of quasi-real experiment, we
consider the direct problem (6.84)–(6.87) with some given right-hand side. For the
equation coefficient and for the initial condition we put:

k(x) = 1, u0(x) = 0, 0 ≤ x ≤ 1.

The right-hand side is defined as

ψ(x) = sin (πx), 0 ≤ x ≤ 1,

η(t) =
{

t, 0 < t < 0.6,

0, 0.6 < t < T = 1.

This problem was solved numerically on a grid with N = 100, N0 = 100.
Below, we give data obtained by reconstructing the right-hand side from observa-

tions performed at the point x∗ = 0.3. The calculated data were used to specify the
mesh function ϕn .

In the solution of the inverse problem, the mesh function ϕ(t) was perturbed using
random inaccuracies. We put

ϕn
δ = ϕn + 2δ(σ n − 1/2),

where σ n is a random function normally distributed over the interval [0, 1]. The quan-
tity δ defines the inaccuracy level. Figure 6.9 presents, as a function of time, the exact
right-hand side and the right-hand side reconstructed by the above algorithm at the
inaccuracy level δ = 0.001.
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Figure 6.9 Reconstructed right-hand side versus time at δ = 0.001

Figure 6.10 Solution of the inverse problem obtained with δ = 0.0025
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Figure 6.11 Solution of the inverse problem obtained with δ = 0.0005

Correctness of the considered inverse problem is illustrated by calculation data ob-
tained at various inaccuracy levels. Figures 6.10 and 6.11 show the solutions of the
problem obtained with δ = 0.0025 and δ = 0.0005, respectively. The lower is the
inaccuracy level, the more accurately can the solution be reconstructed.

The considered computational algorithm for solving the inverse problem can be used
to solve more general problems. In particular, multi-dimensional problems, problems
with many observation points, etc. can be treated much in the same manner. Fun-
damental difficulties (ill-posedness) arise when we pass to problems with localized
sources, with abandoned assumption ψ(x∗) �= 0.

6.4 Identification of a time-independent

right-hand side of a parabolic equation

Below, we consider an inverse problem in which it is required to reconstruct the time-
independent right-hand side of a parabolic equation. Additional measurements are
assumed to be performed at the end time.

6.4.1 Statement of the problem

Consider a process governed by a second-order one-dimensional parabolic equation.
We assume that the dynamics of interest is defined by a time-independent, spatially
distributed source, so that

∂u
∂t

= ∂

∂x

(
k(x)

∂u
∂x

)
+ f (x), 0 < x < l, 0 < t ≤ T . (6.110)
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We supplement this equation with first-kind homogeneous boundary conditions:

u(0, t) = 0, u(l, t) = 0, 0 ≤ t ≤ T . (6.111)

The initial state is defined by the condition

u(x, 0) = 0, 0 < x < l. (6.112)

With given coefficient k(x) and right-hand side f (x), relations (6.110)–(6.112) define
the direct problem.

Consider an inverse problem in which the unknown quantity is the right-hand side
f (x) of equation (6.110). We assume that the function f (x) can be reconstructed from
the known end-time solution; i.e., this function can be represented as

u(x, T ) = ϕ(x), 0 < x < l. (6.113)

To begin with, obtain an a priori estimate for the solution u(x, t) of the problem that
proves the solution to be stable with respect to weak perturbations of ϕ(x).

6.4.2 Estimate of stability

The simplest approach to the inverse problem (6.110)–(6.113) consists in elimination
of the unknown function ϕ(x). To this end, we differentiate the equation (6.110) with
respect to time:

∂2u
∂t2

= ∂

∂x

(
k(x)

∂2u
∂x∂t

)
, 0 < x < l, 0 < t < T . (6.114)

For the latter equation, two boundary conditions, (6.112) and (6.113), are given for the
variable t .

For the problem (6.111)–(6.114), we use the operator notation that can be used to
study more general problems. We introduce a Hilbert space L2(�) with the following
scalar product and norm:

(v, w) =
∫

�

v(x)w(x) dx, ‖v‖2 = (v, v) =
∫

�

v2(x) dx .

For the functions v(x, t), w(x, t) from H = L2(QT ), we put

(v, w)∗ =
∫ T

0
(v, w) dt =

∫ T

0

∫
�

v(x)w(x) dx dt, ‖v‖∗ = ((v, v)∗)1/2.

On the set of functions satisfying the conditions (6.111), we define the operator

Au = − d
dx

(
k(x)

du
dx

)
.
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Among of the main properties of A in L2(�), the following property deserves mention:

A = A∗ ≥ m E, m > 0.

Using the settings introduced, reformulate the problem (6.111)–(6.114) as the fol-
lowing boundary value problem:

d2u
dt2

+ A du
dt

= 0, 0 < t < T, (6.115)

u(0) = 0, u(T ) = ϕ. (6.116)

We pass from (6.115), (6.116) to a problem with homogeneous boundary conditions.
To do so, we represent the solution as

u(t) = w(t) + t
T

ϕ. (6.117)

For the function w(t), we obtain the problem

d2w

dt2
+ A dw

dt
= −ψ, 0 < t < T, (6.118)

w(0) = 0, w(T ) = 0, (6.119)

where
ψ = 1

T
Aϕ.

To derive a simplest a priori estimate for the solution of problem (6.118), (6.119),
we scalarwise multiply equation (6.118) in H by w:

(d2w

dt2
, w
)∗

+
(
Adw

dt
, w
)∗

= −(ψ, w)∗. (6.120)

Consideration of the constancy of A and the homogeneous boundary conditions
(6.119) gives

(
A dw

dt
, w
)∗

= 1
2

∫ T

0

d
dt

(Aw, w) = 1
2

(Aw, w)
∣∣T
0 = 0.

With (6.119) taken into account, for the first term in (6.120) we obtain

(d2w

dt2
, w
)∗

= −
(dw

dt
,

dw

dt

)
= −

( ∫ T

0

(dw

dt

)2
dt, 1

)
.

Then, substitution into (6.20) yields:

( ∫ T

0

(dw

dt

)2
dt, 1

)
= (ψ, w)∗. (6.121)
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The left-hand side of (6.121) can be estimated by invoking the Friedrichs inequality∫ T

0
v2 dt ≤ M0

∫ T

0

(dw

dt

)2
dt.

By virtue of this, we have

( ∫ T

0

(dw

dt

)2
dt, 1

)
≥ M−1

0 (‖w‖∗)2.

For the right-hand side of (6.121), we use the estimate

(ψ, w)∗ ≤ ‖ψ‖∗‖w‖∗.

This allows us to obtain from (6.121) the desired inequality

‖w‖∗ ≤ M0‖ψ‖∗, (6.122)

which shows that the solution of problem (6.118), (6.119) is stable with respect to the
right-hand side.

With allowance for (6.122) and (6.117), for the solution of problem (6.115), (6.116)
we obtain

‖u‖∗ ≤ ‖ϕ‖∗ + M0

T
‖Aϕ‖∗. (6.123)

Thus, in the inverse problem (6.115), (6.116) the solution u(t) continuously depends
on the conditions at t = T .

With the function u(t) found from the solution of the well-posed problem (6.115),
(6.116), the sought right-hand side f is given by

f = du
dt

+ Au. (6.124)

A complete study of well-posedness of the inverse problem for the pair of functions
{u, f } poses the question how the functions u and f depend on the input data (on the
function ϕ). Above, we have restricted ourselves to obtaining the simplest estimate
(6.123) only for u.

6.4.3 Difference problem

The difference problem (6.110)–(6.113) reduces to the non-classical boundary value
problem (6.111)–(6.114). It makes sense to consider specific features of the computa-
tional algorithm, with special emphasis placed to the matter of time discretization. For
the mesh functions we use the same notation as for the continuous-argument functions.

For spatial discretization, we use a uniform grid ω̄ with a grid size h over the interval
�̄ = [0, l]:

ω̄ = {x | x = xi = ih, i = 0, 1, . . . , N , Nh = l},
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where, as usual, ω is the set of internal nodes and ∂ω is the set of boundary nodes. In
the mesh Hilbert space L2(ω), we introduce the norm via the relation ‖y‖ = (y, y)1/2,
where

(y, w) =
∑
x∈ω

y(x)w(x)h.

At internal nodes, we approximate the differential operator A with second order,
with the difference operator

Ay = −(ayx̄)x , x ∈ ω, (6.125)

where, for instance, a(x) = k(x − 0.5h).
On the set of functions vanishing on ∂ω (see (6.111)) for the self-adjoint operator A

under the constraints k(x) ≥ κ > 0 and q(x) ≥ 0 there holds the estimate

A = A∗ ≥ κλ0 E (6.126)

with a constant
λ0 = 4

h2
sin2 πh

2l
≥ 8

l2
.

Over time, we use the uniform grid

ω̄τ = ωτ ∪ {T } = {tn = nτ, n = 0, 1, . . . , N0, τ N0 = T }
and let yn = y(tn).

To approximate equation (6.114) with second order over time and space, we can
naturally use the difference equation

un+1 − 2un + un−1

τ 2
+ A

un+1 − un−1

2τ
= 0,

x ∈ ω, n = 1, 2, . . . , N0 − 1.

(6.127)

This equation is supplemented with the boundary conditions (see (6.112), (6.113))

u0 = 0, uN0 = ϕ, x ∈ ω. (6.128)

The difference problem (6.127), (6.128) can be examined analogously to the differ-
ential case. We represent (see (6.117)) the difference solution as

un = wn + tn
T

ϕ, n = 0, 1, . . . , N0. (6.129)

The analogue of (6.118), (6.119) is the problem

wn+1 − 2wn + wn−1

τ 2
+ A

wn+1 − wn−1

2τ
= −ψ,

x ∈ ω, n = 1, 2, . . . , N0 − 1,

(6.130)
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w0 = 0, wN0 = 0, x ∈ ω, (6.131)

in which
ψ = 1

T
Aϕ.

For two-dimensional mesh functions, we define a Hilbert space H = L2(QT ), in
which the scalar product and the norm are

(v, w)∗ =
N0−1∑
n=1

(vn, wn)τ, ‖v‖∗ =
√

(v, v)∗.

We scalarwise multiply equation (6.130) in H = L2(QT ) by w; this yields:(
wt̄ t , w

)∗ + (
Aw◦

t
, w
)∗ = −(ψ, w)∗. (6.132)

Here, the following standard settings adopted in the theory of difference schemes are
used:

wt̄ = wn − wn−1

τ
, wt = wn+1 − wn

τ
,

wt̄ t = wn+1 − 2wn + wn−1

τ 2
, w◦

t
= wn+1 − wn−1

2τ
.

Further consideration is based on the directly verifiable property of skew symmetry
of the operator of central difference derivative, so that(

Aw◦
t
, w
)∗ = 0.

Analogously to (6.121), from (6.132) we obtain

( N0∑
n=1

(wt̄)
2τ, 1

)
= (ψ, w)∗. (6.133)

With the difference Friedrichs inequality taken into account, we obtain

N0−1∑
n=1

w2τ ≤ M0

N0∑
n=1

(wt̄)
2τ,

where
M0 = T 2/8.

In view of
(ψ, w)∗ ≤ ‖ψ‖∗‖w‖∗,

from (6.133) we obtain the estimate

‖w‖∗ ≤ M0‖ψ‖∗. (6.134)
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Figure 6.12 Mesh pattern of the difference problem

Then, representation (6.129) and inequality (6.134) yield the desired estimate

‖u‖∗ ≤ ‖ϕ‖∗ + M0

T
‖Aϕ‖∗. (6.135)

Estimate (6.135) is fully consistent with the a priori estimate (6.123) for the solution
of the differential problem.

The right-hand side can be found from the solution of problem (6.127), (6.128) at
half-integer nodes using the expression

fn+1/2 = un+1 − un

τ
+ A

un+1 + un

2
, (6.136)

matched with the difference approximation (6.127) of equation (6.114).

6.4.4 Solution of the difference problem

The a priori estimate (6.135) obtained previously in the consideration of the problem
for the inaccuracy can be used to establish convergence of the difference solution found
from (6.127), (6.128) to the solution of the boundary value problem (6.112)–(6.114)
with second order over time and space. Some problems arise in the computational
realization and in finding the solution of the difference problem (6.127), (6.128). For
problems with the constant coefficient k(x), fast algorithms can be constructed around
the variable separation method. For more general problems (in particular, for problems
with k(x) �= const), iteration methods are preferable. Figure 6.12 shows the mesh
pattern for the difference problem (6.127), (6.128).

Consider a possible approach to solving the difference problem in question. With
(6.129), the problem reduces to finding the mesh function w as the solution of (6.130),
(6.131). We write this difference problem as

Āw = ψ, Ā = A0 + A1. (6.137)
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The operators A0 and A1 are defined by

A0w
n = −wn+1 − 2wn + wn−1

τ 2
, (6.138)

A1w
n = −A

wn+1 − wn−1

2τ
, n = 1, 2, . . . , N0 − 1 (6.139)

on the set of mesh functions satisfying the conditions (6.131).
A specific feature of the difference problem (6.137) consists in that the operator Ā

in this problem is not a self-adjoint operator. This circumstance substantially hampers
the construction of efficient iteration methods. As it was shown above, the operator
A1 defined by (6.139) is a skew-symmetric operator (A1w, w) = 0). Among the main
properties of the operator A0 (see (6.138), the following property deserves mention:

A0 = A∗
0 ≥ M−1

0 E .

Thus, the operators A0 and A1 are respectively the self-adjoint and skew-symmetric
parts of Ā:

A0 = 1
2

( Ā + Ā∗), A1 = 1
2

( Ā − Ā∗).

Among the general approaches to the solution of difference problems with non-
self-adjoint operators, methods using preliminary symmetrization are worth noting. In
this way, one can pass from an initial problem with a non-self-adjoint operator to the
problem with a self-adjoint operator. An example here is the Gauss symmetrization,
in which case instead of (6.137) to be solved is the equation

Ā∗ Āw = Ā∗ψ. (6.140)

A second idea widely used in computational practice, in the approximate solution
of problems with non-self-adjoint operator (bad problem) is related with the choice,
as the iteration-method reconditioner, the self-conjugate part of the problem operator
(B = A0) (good problem at each iteration step). In the solution of problem (6.137),
we will use an iteration method developed around the mentioned passage to a problem
with self-adjoint operator, with the operator A0 used as the reconditioner.

At the first stage, the initial problem is to be reconditioned as

A−1
0 (A0 + A1)w = A−1

0 ψ.

At the second stage, the operator A0 + A∗
1, A∗

1 = −A1 (compare (6.140)) is used to
perform symmetrization:

Ãw = f̃ , (6.141)

Ã = (A0 + A∗
1)A−1

0 (A0 + A1), f̃ = (A0 + A∗
1)A−1

0 ψ.
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The problem (6.141) can be solved using the iterative conjugate method that takes,
with the so-chosen reconditioner operator (B = A0), the form

A0wk+1 = αk+1(A0 − τk+1 Ã)wk + (1 − αk+1)A0wk−1 + αk+1τk+1 f̃ ,

k = 1, 2, . . . , (6.142)

A0w1 = (A0 − τ1 Ã)w0 + τ1 f̃ .

The iteration parameters αk+1 and τk+1 can be calculated by the formulas

τk+1 = (w̃k, rk)

( Ãw̃k, w̃k)
, k = 0, 1, . . . ,

αk+1 =
(

1 − τk+1

τk

(w̃k, rk)

(w̃k−1, rk−1)

1
αk

)−1
, k = 1, 2 . . . , α1 = 1,

(6.143)

where rk = Ãwk − f̃ is the discrepancy and w̃ = A−1
0 rk is the correction.

The iteration method (6.142), (6.143) is embodied in the program PROBLEM8.

Program PROBLEM8

C
C PROBLEM8 - IDENTIFICATION OF TIME-INDEPENDENT RIGHT-HAND SIDE
C ONE-DIMENSIONAL NON-STATIONARY PROBLEM
C (UNKNOWN SPATIAL DISTRIBUTION)
C

IMPLICIT REAL*8 ( A-H, O-Z )
C

PARAMETER ( DELTA = 0.D0, N = 51, M = 51 )
DIMENSION X(N), Y(N), FT(N), FY(N), PHI(N), PHID(N)
+ ,A(M), B(M), C(M), F(M) ! M .GE. N
+ ,V(N,M), PSI(N), FP(N,M), FR(N,M), WORK(N,M)
+ ,W(N,M), WOLD(N,M), RK(N,M), ARK(N,M), FTILDE(N,M)

C
C PARAMETERS:
C
C XL, XR - LEFT AND RIGHT END POINTS OF THE SEGMENT;
C N - NUMBER OF GRID NODES OVER THE SPATIAL VARIABLE;
C TMAX - MAXIMAL TIME;
C M - NUMBER OF GRID NODES OVER TIME;
C DELTA - INPUT-DATA INACCURACY;
C PHI(N) - EXACT SOLUTION AT THE END TIME;
C PHID(N) - DISTURBED END-TIME SOLUTION;
C FT(N) - EXACT SPATIAL DEPENDENCE OF THE RIGHT-HAND SIDE;
C FY(N)) - CALCULATED SPATIAL DEPENDENCE OF THE RIGHT-HAND SIDE;
C EPS - REQUIRED RELATIVE ACCURACY IN THE ITERATIVE APPROACH
C TO THE SOLUTION.
C

XL = 0.D0
XR = 1.D0
TMAX = 1.D0

C
OPEN (01, FILE = ’RESULT.DAT’) ! FILE TO STORE THE CALCULATED DATA

C
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C GRID
C

H = (XR - XL) / (N - 1)
TAU = TMAX / (M - 1)

C
C DIRECT PROBLEM
C
C EXACT RIGHT-HAND SIDE
C

DO I = 1, N
X(I) = (I-1) * H
FT(I) = AF(X(I))

END DO
C
C SOLUTION OF THE DIRECT PROBLEM
C
C INITIAL CONDITION
C

T = 0.D0
DO I = 1, N

Y(I) = 0.D0
END DO

C
C NEXT TIME LAYER
C

DO K = 2, M
T = T + TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS
C

DO I = 2, N-1
X1 = (X(I) + X(I-1)) / 2
X2 = (X(I+1) + X(I)) / 2
A(I) = AK(X1) / (2.D0*H*H)
B(I) = AK(X2) / (2.D0*H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
F(I) = A(I) * Y(I-1)

+ + (1.D0 / TAU - A(I) - B(I)) * Y(I)
+ + B(I) * Y(I+1)
+ + AF(X(I))

END DO
C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS
C

B(1) = 0.D0
C(1) = 1.D0
F(1) = 0.D0
A(N) = 0.D0
C(N) = 1.D0
F(N) = 0.D0

C

C SOLUTION OF THE PROBLEM AT THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, F, Y, ITASK )

END DO
C
C SOLUTION AT THE END TIME
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C
DO I = 1, N

PHI(I) = Y(I)
END DO

C
C DISTURBING OF MEASURED QUANTITIES
C

DO I = 2, N-1
PHID(I) = PHI(I) + 2.D0*DELTA*(RAND(0)-0.5D0)

END DO
PHID(1) = 0.D0
PHID(N) = 0.D0

C

C INVERSE PROBLEM
C

EPS = 1.D-8

C
C AUXILIARY FUNCTION AND INITIALIZATION
C

DO I = 1, N
DO K = 1, M

V(I,K) = (K-1)*PHID(I) / (M-1)
FP(I,K) = 0.D0
FR(I,K) = 0.D0
RK(I,K) = 0.D0
ARK(I,K) = 0.D0
WORK(I,K) = 0.D0
FTILDE(I,K) = 0.D0

END DO
END DO

C
C RIGHT-HAND SIDE OF THE SYMMETRIZED EQUATION
C

DO I = 2, N-1
X1 = (X(I) + X(I-1)) / 2
X2 = (X(I+1) + X(I)) / 2
A(I) = AK(X1) / (H*H)
B(I) = AK(X2) / (H*H)
PSI(I) = - A(I)*PHID(I-1) + (A(I) + B(I))*PHID(I)

+ - B(I)*PHID(I+1)
PSI(I) = PSI(I) / TMAX

END DO
DO I = 2, N-1

DO K = 2, M-1
FP(I,K) = PSI(I)

END DO
END DO
CALL A0I ( N, M, TAU, FR, FP, A, B, C, F, Y )
DO I = 2, N-1

DO K = 2, M-1
X1 = (X(I) + X(I-1)) / 2
X2 = (X(I+1) + X(I)) / 2
AA = AK(X1) / (H*H)
BB = AK(X2) / (H*H)
WORK(I,K) = - AA*(FR(I-1,K+1) - FR(I-1,K-1))

+ + (AA + BB)*(FR(I,K+1) - FR(I,K-1))
+ - BB*(FR(I+1,K+1) - FR(I+1,K-1))

WORK(I,K) = WORK(I,K) / (2.D0*TAU)
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END DO

END DO
DO I = 2, N-1

DO K = 2, M-1
FTILDE(I,K) = FP(I,K) + WORK(I,K)

END DO
END DO

C
C ITERATIVE CONJUGATE-GRADIENT METHOD

C
NIT = 0
NITMAX = 5000
AL = 1.D0

C
C INITIAL APPROXIMATION
C

DO I = 1, N
DO K = 1, M

W(I,K) = 0.D0
WOLD(I,K) = 0.D0

END DO
END DO

C
C ITERATION CYCLE
C

100 NIT = NIT + 1

C
C DISCREPANCY
C

CALL ATILDE ( N, M, H, TAU, W, RK, WORK, A, B, C, F, Y )
DO I = 2, N-1

DO K = 2, M-1
RK(I,K) = RK(I,K) - FTILDE(I,K)

END DO
END DO

C

C CORRECTION
C

CALL A0I ( N, M, TAU, ARK, RK, A, B, C, F, Y )
C
C ITERATION PARAMETERS
C

CALL ATILDE ( N, M, H, TAU, ARK, FR, WORK, A, B, C, F, Y )
RR = 0.D0

RA = 0.D0
DO I = 2, N-1

DO K = 2, M-1
RR = RR + RK(I,K)*ARK(I,K)
RA = RA + FR(I,K)*ARK(I,K)

END DO
END DO
IF (NIT.EQ.1) RR0 = RR
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TAUK = RR / RA
IF (NIT.GT.1)
+ AL = 1.D0 / (1.D0 - TAUK * RR / (TAUKOLD * RROLD * ALOLD))

C
C NEXT APPROXIMATION
C

DO I = 2, N-1
DO K = 2, M-1

AA = AL * W(I,K) + (1.D0 - AL) * WOLD(I,K)
+ - TAUK * AL * ARK(I,K)

WOLD(I,K) = W(I,K)
W(I,K) = AA

END DO
END DO
RROLD = RR
TAUKOLD = TAUK

ALOLD = AL
C
C END OF ITERATIONS
C

IF (RR .GE. EPS*RR0 .AND. NIT .LT. NITMAX) GO TO 100
C
C APPROXIMATE SOLUTION OF THE INVERSE PROBLEM
C

DO I = 1, N
DO K = 1, M

W(I,K) = W(I,K) + V(I,K)
END DO

END DO
DO I = 2, N-1

X1 = (X(I) + X(I-1)) / 2
X2 = (X(I+1) + X(I)) / 2
A(I) = AK(X1) / (2.D0*H*H)
B(I) = AK(X2) / (2.D0*H*H)
FY(I) = (W(I,2) - W(I,1)) / TAU

+ - A(I)*(W(I-1,2) + W(I-1,1))
+ + (A(I)+B(I))*(W(I,2) + W(I,1))
+ - B(I)*(W(I+1,2) + W(I+1,1))
END DO

C
WRITE ( 01,* ) NIT
WRITE ( 01,* ) (FT(I), I = 2,N-1)
WRITE ( 01,* ) (FY(I), I = 2,N-1)
WRITE ( 01,* ) (PHI(I), I = 1,N)
WRITE ( 01,* ) (PHID(I), I = 1,N)
CLOSE (01)
STOP
END

C
DOUBLE PRECISION FUNCTION AK ( X )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C COEFFICIENT AT THE HIGHER DERIVATIVES
C

AK = 1.D-1
C

RETURN
END

C
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DOUBLE PRECISION FUNCTION AF ( X )

IMPLICIT REAL*8 ( A-H, O-Z )
C
C RIGHT-HAND SIDE
C

AF = 1.D0
IF (X.GT.0.5D0) AF = 0.D0

C
RETURN

END
C

SUBROUTINE A0I ( N, M, TAU, V, F, A, B, C, FF, YY )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C SOLUTION OF THE DIFFERENCE PROBLEM A0 V = F
C

DIMENSION V(N,M), F(N,M)
+ ,A(M), C(M), B(M), FF(M), YY(M)

C
DO I = 2, N-1

C
C DIFFERENCE-SCHEME COEFFICIENTS
C

DO K = 2, M-1
A(K) = 1.D0 / (TAU*TAU)
B(K) = A(K)
C(K) = A(K) + B(K)
FF(K) = F(I,K)

END DO
C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS
C

B(1) = 0.D0
C(1) = 1.D0
FF(1) = 0.D0
A(M) = 0.D0
C(M) = 1.D0
FF(M) = 0.D0

C
C SOLUTION OF THE PROBLEM
C

ITASK = 1
CALL PROG3 ( M, A, C, B, FF, YY, ITASK )
DO K = 2, M-1

V(I,K) = YY(K)
END DO

END DO
RETURN
END

C
SUBROUTINE ATILDE ( N, M, H, TAU, V, F, WORK, A, B, C, FF, YY )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C CALCULATION OF F = ATILDE V
C
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DIMENSION V(N,M), F(N,M), WORK(N,M)
+ ,A(M), C(M), B(M), FF(M), YY(M)

C
DO I = 2, N-1

DO K = 2, M-1
X1 = (I-0.5D0) * H
X2 = (I+0.5D0) * H

AA = AK(X1) / (H*H)
BB = AK(X2) / (H*H)

F(I,K) = - AA*(V(I-1,K+1) - V(I-1,K-1))
+ + (AA + BB)*(V(I,K+1) - V(I,K-1))
+ - BB*(V(I+1,K+1) - V(I+1,K-1))

F(I,K) = F(I,K) / (2.D0*TAU)
END DO

END DO
CALL A0I ( N, M, TAU, WORK, F, A, B, C, FF, YY )

C
DO I = 2, N-1

DO K = 2, M-1
X1 = (I-0.5D0) * H
X2 = (I+0.5D0) * H
AA = AK(X1) / (H*H)
BB = AK(X2) / (H*H)
F(I,K) = - AA*(WORK(I-1,K+1) - WORK(I-1,K-1))

+ + (AA + BB)*(WORK(I,K+1) - WORK(I,K-1))

+ - BB*(WORK(I+1,K+1) - WORK(I+1,K-1))
F(I,K) = F(I,K) / (2.D0*TAU)

END DO
END DO

C
AA = 1.D0 / (TAU*TAU)
DO I = 2, N-1

DO K = 2, M-1
F(I,K) = - AA*(V(I,K-1) - 2.D0*V(I,K) + V(I,K+1))

+ - F(I,K)

END DO
END DO
RETURN
END

The subroutine A0I solves the equation A0v = f , and the subroutine ATILDE
calculates the value of f = Ãv from the given v.

6.4.5 Computational experiments

The presented program PROBLEM8 solves the inverse problem (6.110)–(6.113) in the
case of

k(x) = 0.1, f (x) =
{

1, 0 < x < 0.5,

0, 0.5 ≤ x < 1,
l = 1, T = 1,
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The problem is being solved on a uniform grid with h = 0.02 and τ = 0.02.

Correctness of the problem is illustrated by calculation data obtained for the prob-
lem with perturbed boundary conditions at t = T (function ϕ(x) in (6.113)). In the
framework of the quasi-real experiment, the obtained solution was perturbed at t = T
by the law

ϕδ(x) = ϕ(x) + 2δ(σ (x) − 1/2), x ∈ ω,

where σ(x) is a random function normally distributed over the interval [0, 1], and the
parameter δ defines the inaccuracy level.

Figure 6.13 shows the exact and reconstructed dependence of the right-hand side on
the spatial variable, and also the exact and approximate difference end-time solutions
of the direct problem obtained with δ = 0.0005. Similar data obtained with an inac-
curacy increased to δ = 0.001 and δ = 0.0002 are shown respectively in Figures 6.14
and 6.15. Considerable sensitiveness of the reconstructed right-hand side to the so-
lution inaccuracy at t = T is worth noting: at a relative inaccuracy of 0.1 % in the
given ϕ(x), the right-hand side could be determined accurate to approximately 25 %.

Figure 6.13 Solution of the problem obtained with δ = 0.0005
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Figure 6.14 Solution of the problem obtained with δ = 0.0005

Figure 6.15 Solution of the problem perturbed with δ = 0.0002
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6.5 Reconstruction of the right-hand side of an ellipti-

cal equation from observation data obtained at the

boundary

Below, we consider the classical inverse problem in the potential theory in which it is
required to determine the unknown right-hand side of the elliptic equation in the case
in which additional data are given on the boundary of the calculation domain.

6.5.1 Statement of the inverse problem

Consider a model inverse problem in which it is required to determine the unknown
right-hand side from observation data obtained at the domain boundary. To simplify
the consideration, restrict ourselves to the two-dimensional Poisson equation. Con-
sider first the formulation of the direct problem.

In a bounded domain � the function u(x), x = (x1, x2) satisfies the equation

−�u ≡ −
2∑

α=1

∂2u
∂x2

α

= f (x), x ∈ �. (6.144)

Consider a Dirichlet problem in which equation (6.144) is supplemented with the fol-
lowing first-kind homogeneous boundary conditions:

u(x) = 0, x ∈ ∂�. (6.145)

The direct problem is formulated in the form (6.144), (6.145), with known right-hand
side f (x) in (6.144).

Among the inverse problems for elliptic equations, consider the right-hand side
identification problem. We assume that additional measurements are feasible only
on the domain boundary. In addition to (6.145), the following second-kind boundary
conditions are also considered:

∂u
∂n

(x) = μ(x), x ∈ ∂�, (6.146)

where n is the external normal to �.
In this general formulation the solution of the inverse problem in which it is required

to determine the pair of functions {u(x), f (x)} from conditions (6.144)–(6.146) is not
unique. The latter statement requires no special comments: it suffices to consider the
inverse problem in a circle with the right-hand side dependent on the distance from
the center of the circle. The non-uniqueness stems from the fact that we are trying to
reconstruct a two-dimensional function (the right-hand side f (x) from a function with
lower dimensionality (μ(x), x ∈ ∂�).
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6.5.2 Uniqueness of the inverse-problem solution

Unique determination of the right-hand side is possible in the case in which the un-
known right-hand side is independent of one of the variables. In fact, the latter was
the case of the right-hand side identification problem for a parabolic equation, with the
unknown dependence of the right-hand side on time or spatial variables to be recon-
structed.

Not trying to consider the general case, turn to a typical example. We assume that
the right-hand side (6.144) can be represented as

f (x) = ϕ1(x2) + x1ϕ2(x2). (6.147)

We pose a problem in which it is required to determine two functions ϕα(x2), α = 1, 2,
independent of one of the variables (namely, of the variable x1), from (6.144)–(6.146).

We reformulate the inverse problem (6.144)–(6.147) by eliminating the unknown
functions ϕα(x2), α = 1, 2. Double differentiation of (6.144) with respect to x1 with
allowance for (6.147) gives:

∂2

∂x2
1

�u = 0, x ∈ �. (6.148)

In this way, we arrive at a boundary value problem for the composite equation (6.145),
(6.146), (6.148).

Let us show that the solution of problem (6.145), (6.146), (6.148) is unique. For this
to be shown, it suffices to prove that the solution of the problem with homogeneous
boundary conditions

∂u
∂n

(x) = 0, x ∈ ∂�, (6.149)

is u(x) ≡ 0, x ∈ �.
We multiply equation (6.148) by u(x) and perform integration over the whole do-

main �); this yields ∫
�

∂2

∂x2
1

�u u dx = 0.

Taking into account the homogeneous boundary conditions (6.145) and permutability
of the operators ∂/∂x1 and �, we obtain∫

�

v �v dx = 0, v = ∂u
∂x1

.

The pair of homogeneous boundary conditions (6.145), (6.149) guarantees that

v(x) = 0, x ∈ ∂�.

Under these conditions, we have∫
�

v �v dx =
2∑

α=1

∫
�

( ∂v

∂xα

)2
dx = 0
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Figure 6.16 Calculation domain

and, hence, v(x) = 0 throughout the whole domain �. From

∂u
∂x1

= 0, x ∈ �

and boundary conditions (6.145) it follows that the only solution of problem (6.145),
(6.148), (6.149) is u(x) ≡ 0, x ∈ �.

More informative a priori estimates for the solution of the boundary value problem
(6.145), (6.146), (6.148) can also be obtained. This matter will be considered on the
difference level below.

6.5.3 Difference problem

We assume the calculation domain to be a rectangle:

� = {x | x = (x1, x2), 0 < xα < lα, α = 1, 2}.
For the sides of � we use conditions indicated in Figure 6.16, so that

∂� = �1 ∪ �2 ∪ �3 ∪ �4.

We seek the right-hand side of (6.144) in class (6.147) under the following addi-
tional conditions posed on the sides �2 and �4 of the rectangle:

∂u
∂x1

(0, x2) = μ1(x2),
∂u
∂x1

(l1, x2) = μ2(x2). (6.150)

With boundary conditions given on �1 and/or �3 (see (6.146)), the problem becomes
overspecified.

Along both direction xα, α = 1, 2, we introduce a uniform grid

ωα = {xα | xα = iαhα, iα = 0, 1, . . . , Nα, Nαhα = lα},



Section 6.5 Right-hand side reconstruction from boundary data: elliptic equations 221

so that

ωα = {xα | xα = iαhα, iα = 1, 2, . . . , Nα − 1, Nαhα = lα},
∂ωα = {xα | xα = 0, lα}.

For the grid in the rectangle � we use the notations

ω = ω1 × ω2 = {x | x = (x1, x2), xα ∈ ωα, α = 1, 2},
ω = ω1 × ω2.

In the standard notation adopted in the theory of difference schemes, at internal
nodes we define the difference Laplace operator

�y = yx̄1x1 + yx̄2x2, x ∈ ω.

We put into correspondence to the direct problem (6.144), (6.145) the difference prob-
lem

−�y = f (x), x ∈ ω, (6.151)

y(x) = 0, x ∈ ∂ω. (6.152)

In the inverse problem, the right-hand side is sought in the class (6.147) from the
additional conditions (6.150). To pass to a difference analogue of (6.145), (6.147),
(6.150), we define the mesh function v = −�y not only at internal nodes (see (6.151)),
but also on the set of boundary nodes.

We can conveniently introduce fictitious nodes with i1 = −1 and i1 = N1 + 1 to
extend the grid over the variable x1 by one node from either side. We approximate
boundary conditions (6.150) on the extended grid. Accurate to O(h2

1), we have:

y(h1, x2) − y(−h1, x2)

2h1
= μ1(x2), (6.153)

y(l1 + h1, x2) − y(l1 − h1, x2)

2h1
= μ2(x2). (6.154)

Taking into account the boundary conditions (6.145) at the left boundary, we obtain

v(0, x2) = −�y(0.x2) = − y(h1, x2) − 2y(0, x2) + y(−h1, x2)

h2
1

.

With (6.153) taken into account, we arrive at the expression

v(0, x2) = − 2
h2

1
y(h1, x2) + 2

h1
μ1(x2). (6.155)

In a similar way, on �4 we obtain

v(l1, x2) = − 2
h2

1
y(l1 − h1, x2) − 2

h1
μ1(x2). (6.156)
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Double difference differentiation (6.151) yields the equation

vx̄1x1 = 0, x ∈ ω. (6.157)

The boundary conditions for this equation have the form (6.154), (6.155). With
known v, the solution is to be determined (see (6.151), (6.152)) from

−�y = v(x), x ∈ ω, (6.158)

y(x) = 0, x ∈ ∂ω. (6.159)

In this manner, we arrive at a system of two difference Poisson equations for the pair
{y, v}. These two equations are interrelated via boundary conditions (6.155), (6.156).

We can conveniently reformulate the boundary value problem with non-
homogeneous boundary conditions (6.155)–(6.157) as a problem with homoge-
neous boundary conditions for a non-homogeneous equation at the internal nodes.
With (6.155), at near-boundary nodes we have:

2v(h1, x2) − v(2h1, x2)

h2
1

= v(0, x2)

h2
1

= − 2
h4

1
y(h1, x2) + 2

h3
1

μ1(x2).

From (6.156), we obtain

2v(l1 − h1, x2) − v(l1 − 2h1, x2)

h2
1

= − 2
h4

1
y(l1 − h1, x2) − 2

h3
1

μ2(x2).

Let us define difference operators Aα, α = 1, 2 on the set of mesh functions vanish-
ing at the boundary nodes:

Aα y = −yx̄αxα
, x ∈ ω.

Then, the boundary value problem (6.155)–(6.157) can be written as

A1v = −A0 y + φ, x ∈ ω. (6.160)

Here, the difference operator A0 is defined by

A0 y =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2
h4

1
y(h1, x2), x1 = h1,

0, h1 < x1 < l1 − h1,

2
h4

1
y(l1 − h1, x2), x1 = l1 − h1.

The right-hand side φ in nonzero only at near-boundary nodes:

φ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 2
h3

1

μ1(x2), x1 = h1,

0, h1 < x1 < l1 − h1,

2
h3

1

μ2(x2), x1 = l1 − h1.
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Figure 6.17 The mesh pattern for the difference scheme

In the introduced notation, the boundary value problem (6.158), (6.159) takes the
form

(A1 + A2)y = v, x ∈ ω. (6.161)

In this way, we pass from (6.155)–(6.159) to the system (6.160), (6.161). The latter
system can be conveniently written as the following single operator equation:

Ay = φ. (6.162)

Here,
A = (A1 + A2)A1 + A0. (6.163)

The mesh pattern used in this difference scheme is shown in Figure 6.17.
In the ordinary way, in the Hilbert space H = L2(ω) we introduce the scalar product

and the norm:

(y, w) ≡
∑
x∈ω

y(x)w(x)h1h2, ‖y‖ ≡ (y, y)1/2.

In H ,
Aα = A∗

α > 0, A0 = A∗
0 ≥ 0

and, hence, in (6.162) we have A = A∗ > 0. By virtue of this, the difference problem
(6.162) has a unique solution.

We gave a sufficiently general scheme for constructing a discrete analogue to the
non-classical boundary value problem (6.145), (6.148), (6.150) suitable for solving
even more complex problems. In the case under consideration, we can substantially
simplify the problem by explicitly writing the solution of problem (6.155)–(6.157).
It should be noted that such transformation allows for specific features of the inverse
problem in the greatest possible extent and most clearly on the difference level.

The general solution of the difference equation (6.157) is a linear function of x1:

v(x1, x2) =
(

1 − x1

l1

)
v(0, x2) + x1

l1
v(l1, x2).
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With boundary conditions (6.155), (6.156) taken into account, we obtain

v(x1, x2) = −
(

1 − x1

l1

) 2
h2

1
y(h1, x2) − x1

l1

2
h2

1
y(l1 − h1, x2) + ψ(x1, x2), (6.164)

where
ψ(x1, x2) =

(
1 − x1

l1

) 2
h1

μ1(x2) − x1

l1

2
h1

μ2(x2).

Substitution of (6.164) into (6.151) leads us to the difference equation

−�y +
(

1− x1

l1

) 2
h2

1
y(h1, x2)+ x1

l1

2
h2

1
y(l1 − h1, x2) = ψ(x), x ∈ ω. (6.165)

In this way, the solution of the inverse right-hand side identification problem for
equation (6.151) in class (6.147) has reduced to the solution of the boundary value
problem (6.152), (6.165). Equation (6.165) is a loaded difference equation.

6.5.4 Solution of the difference problem

To find the solution of the difference problem, we use the variable separation method.
This approach can be applied to the difference problem (6.152) with the composite
difference operator A defined by (6.153). Let us dwell on a second possibility, when
to be sought is the solution of the boundary-layer problem for the loaded difference
elliptic equation (6.152), (6.165).

We write problem (6.152), (6.165) as the equation

(A1 + A2)y + q1(x1)y(h1, x2)+ q2(x1)y(l1 − h1, x2) = ψ(x), x ∈ ω, (6.166)

in which qα ≥ 0, α = 1, 2.
We denote as λk , vk(x2), k = 1, 2, . . . , N2 − 1 the eigenvalues and eigenfunctions

of A2:
A2v = λv.

The solution of this difference spectral problem is well known:

λk = 4
h2

2
sin2 kπh2

2l2
, vk(x2) =

√
2
l2

sin
kπx2

l2
.

The eigenfunctions are orthonormal functions:

(vk, vm)(2) = δkm, δkm =
{

1, k = m,

0, k �= m,

where

(v, w)(2) =
N2−1∑
i2=1

v(x2)w(x2)h2
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is the scalar product in L2(ω2).
We seek the solution of problem (6.166) as an expansion in the eigenfunctions of

A2:

y(x1, x2) =
N2−1∑
k=1

ck(x1)vk(x2).

Substitution into (6.166) leads us to the necessity to solve the difference problems

(A1 + λk)ck(x1) + q1(x1)ck(h1) + q2(x1)ck(l1 − h1) = ψk(x1), (6.167)

where
ψk(x1) = (ψ, vk)

(2), k = 1, 2, . . . , N2 − 1.

The matter of solution of these N2 − 1 one-dimensional difference problems should
be given particular attention. In the case of (6.167) it is required to find the solution of
the difference boundary value problem

−wx̄1x1 + λw + q1(x1)w(h1) + q2(x1)w(l1 − h1) = r(x1), (6.168)

w(0) = 0, w(l1) = 0. (6.169)

We represent the solution of problem (6.168), (6.169) as

w(x1) = s(x1) + s(1)(x1)w(h1) + s(2)(x1)w(l1 − h1). (6.170)

We insert this expression into (6.168) and isolate the functions sα, α = 1, 2, collecting
the terms with w(h1), w(l1 − h1) and equating them to zero. This gives us three three-
point difference equations for the auxiliary functions s(x1), sα(x1), α = 1, 2. With
allowance for (6.169), we assume the boundary conditions to be homogeneous, so that

−sx̄1x1 + λs = r(x1), (6.171)

s(0) = 0, s(l1) = 0, (6.172)

−s(1)
x̄1x1

+ λs(1) = −q1(x1), (6.173)

s(1)(0) = 0, s(1)(l1) = 0, (6.174)

−s(2)
x̄1x1

+ λs(2) = −q2(x1), (6.175)

s(2)(0) = 0, s(2)(l1) = 0. (6.176)

After solving the three standard problems (6.171)–(6.176), the functions w(h1) and
w(l1 − h1) can be found. From representation (6.170), it readily follows that

w(h1) = s(h1) + s(1)(h1)w(h1) + s(2)(h1)w(l1 − h1), (6.177)

w(l1 − h1) = s(l1 − h1) + s(1)(l1 − h1)w(h1) + s(2)(l1 − h1)w(l1 − h1). (6.178)
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Solvability of this system is controlled by the determinant

D = (1 − s(1)(h1))(1 − s(2)(l1 − h1)) − s(2)(h1)s(1)(l1 − h1),

whose non-zero value can easily be guaranteed under certain constraints. Taking the
inequalities λ > 0 and qα ≥ 0, α = 1, 2 into account, we have: s(α)(x1) ≥ 0,
0 ≤ x1 ≤ l1. Hence, we have D > 0 at sufficiently small l1, for instance.

As a matter of fact, the determinant of (6.177), (6.178) is always positive. To show
this, we have to recall (see (6.164)) the expressions for the mesh functions qα(x1),
α = 1, 2:

q1(x1) =
(

1 − x1

l1

) 2
h2

1
, q2(x1) = x1

l1

2
h2

1
.

By virtue of this, for the solutions of the boundary value problems (6.173), (6.174) and
(6.175), (6.176) there hold the relations

s(1)(x1) = s(2)(l1 − x1), 0 ≤ x1 ≤ l1.

The latter means, in particular, that it is unnecessary for us to solve (in the case of the
uniform computational grid used) one of the two difference boundary value problems,
(6.173), (6.174) or (6.175), (6.176). Hence,

D = 1 − 2s(1)(h1) + (s(1)(h1))
2 − (s(1)(l1 − h1))

2

and, with allowance for s(1)(h1) > s(1)(l1 − h1), we obtain that D > 1.
With the mesh functions s(x1), s(α), α = 1, 2 found from (6.171)–(6.176) and with

the mesh functions w(h1) and w(l1 − h1) found from (6.177), (6.178), the solution of
problem (6.168), (6.169) can be found in the form (6.170). The program realization of
this algorithm is discussed below.

6.5.5 Program

The used computational algorithm employs the fast Fourier transform over the vari-
able x2. In the embodied algorithm, one can conveniently use the non-normalized
eigenfunctions

sin
kπx2

l2
= sin

kπ i2

N2
, x2 = i2h2.

In the latter case, any mesh function fi2 defined at i2 = 1, 2, . . . , N2 − 1 (on ω2) can
be expanded as

fi2 = 2
N2

N2−1∑
k=1

ξk sin
kπ i2

N2
, i2 = 1, 2, . . . , N2 − 1,

where

ξk =
N2−1∑
i2=1

fi2 sin
kπ i2

N2
, k = 1, 2, . . . , N2 − 1.
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Let us use the subroutine SINT from the program library SLATEC. Here, we cite a
borrowed description of the subroutine, representing a component of the big program
package FFTPACK that embodies fast Fourier transform algorithms. You can use other
subroutines for fast Fourier transform available at hand.

Subroutine SINT

*DECK SINT
SUBROUTINE SINT (N, X, WSAVE)

C***BEGIN PROLOGUE SINT
C***PURPOSE Compute the sine transform of a real, odd sequence.
C***LIBRARY SLATEC (FFTPACK)
C***CATEGORY J1A3
C***TYPE SINGLE PRECISION (SINT-S)
C***KEYWORDS FFTPACK, FOURIER TRANSFORM
C***AUTHOR Swarztrauber, P. N., (NCAR)
C***DESCRIPTION

C
C Subroutine SINT computes the discrete Fourier sine transform
C of an odd sequence X(I). The transform is defined below at
C output parameter X.
C
C SINT is the unnormalized inverse of itself since a call of SINT
C followed by another call of SINT will multiply the input sequence
C X by 2*(N+1).
C

C The array WSAVE which is used by subroutine SINT must be
C initialized by calling subroutine SINTI(N,WSAVE).
C
C Input Parameters
C
C N the length of the sequence to be transformed. The method
C is most efficient when N+1 is the product of small primes.
C

C X an array which contains the sequence to be transformed
C
C
C WSAVE a work array with dimension at least INT(3.5*N+16)
C in the program that calls SINT. The WSAVE array must be
C initialized by calling subroutine SINTI(N,WSAVE), and a
C different WSAVE array must be used for each different
C value of N. This initialization does not have to be
C repeated so long as N remains unchanged. Thus subsequent

C transforms can be obtained faster than the first.
C
C Output Parameters
C
C X For I=1,\dots,N
C
C X(I)= the sum from K=1 to K=N
C
C 2*X(K)*SIN(K*I*PI/(N+1))
C
C A call of SINT followed by another call of
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C SINT will multiply the sequence X by 2*(N+1).
C Hence SINT is the unnormalized inverse
C of itself.
C
C WSAVE contains initialization calculations which must not be
C destroyed between calls of SINT.
C
C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
C Computations (G. Rodrigue, ed.), Academic Press,
C 1982, pp. 51-83.
C***ROUTINES CALLED RFFTF
C***REVISION HISTORY (YYMMDD)
C 790601 DATE WRITTEN
C 830401 Modified to use SLATEC library source file format.
C 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
C (a) changing dummy array size declarations (1) to (*),

C (b) changing definition of variable SQRT3 by using
C FORTRAN intrinsic function SQRT instead of a DATA
C statement.
C 881128 Modified by Dick Valent to meet prologue standards.
C 891009 Removed unreferenced statement label. (WRB)
C 891009 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE SINT

The auxiliary subroutine SINTI initializes the subroutine SINT.

Subroutine SINTI

*DECK SINTI
SUBROUTINE SINTI (N, WSAVE)

C***BEGIN PROLOGUE SINTI
C***PURPOSE Initialize a work array for SINT.
C***LIBRARY SLATEC (FFTPACK)
C***CATEGORY J1A3
C***TYPE SINGLE PRECISION (SINTI-S)
C***KEYWORDS FFTPACK, FOURIER TRANSFORM
C***AUTHOR Swarztrauber, P. N., (NCAR)
C***DESCRIPTION
C

C Subroutine SINTI initializes the array WSAVE which is used in
C subroutine SINT. The prime factorization of N together with
C a tabulation of the trigonometric functions are computed and
C stored in WSAVE.
C
C Input Parameter
C
C N the length of the sequence to be transformed. The method
C is most efficient when N+1 is a product of small primes.
C
C Output Parameter
C
C WSAVE a work array with at least INT(3.5*N+16) locations.
C Different WSAVE arrays are required for different values
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C of N. The contents of WSAVE must not be changed between
C calls of SINT.
C
C***REFERENCES P. N. Swarztrauber, Vectorizing the FFTs, in Parallel
C Computations (G. Rodrigue, ed.), Academic Press,
C 1982, pp. 51-83.
C***ROUTINES CALLED RFFTI
C***REVISION HISTORY (YYMMDD)

C 790601 DATE WRITTEN
C 830401 Modified to use SLATEC library source file format.

C 860115 Modified by Ron Boisvert to adhere to Fortran 77 by
C (a) changing dummy array size declarations (1) to (*),
C (b) changing references to intrinsic function FLOAT
C to REAL, and
C (c) changing definition of variable PI by using
C FORTRAN intrinsic function ATAN instead of a DATA
C statement.
C 881128 Modified by Dick Valent to meet prologue standards.
C 890531 Changed all specific intrinsics to generic. (WRB)
C 890531 REVISION DATE from Version 3.2
C 891214 Prologue converted to Version 4.0 format. (BAB)
C 920501 Reformatted the REFERENCES section. (WRB)
C***END PROLOGUE SINTI

The program PROBLEM9 is used to obtain the approximate solution of the inverse
problem.

Program PROBLEM9

C
C PROBLEM9 IDENTIFICATION OF THE RIGHT-HAND SIDE
C OF THE POISSON EQUATION IN A RECTANGLE
C
C

PARAMETER ( DELTA = 0.0, N1 = 257, N2 = 257 )
C

DIMENSION U(N1,N2), Y(N1,N2), F(N1,N2), X1(N1), X2(N2)
+ ,FIT1(N2), FIT2(N2), FI1(N2), FI2(N2)
+ ,AM1(N2), AM2(N2), AMD1(N2), AMD2(N2)
+ ,A(N1), B(N1), C(N1), FF(N1), YY(N1), S(N1), S1(N1)
+ ,WSAVE(4*N2), WW(N2-2)

C
C
C PARAMETERS:
C
C X1L, X2L - COORDINATES OF THE LEFT BOTTOM CORNER
C OF THE RECTANGULAR CALCULATION DOMAIN;
C X1R, X2R - COORDINATES OF THE RIGHT TOP CORNER;
C N1, N2 - NUMBER OF DRID NODES OVER THE CORRESPONDING
C DIRECTIONS;
C U(N1,N2) - DIFFERENCE SOLUTION OF THE DIRECT PROBLEM;
C FI(N2),
C FI2(N2) - EXACT RIGHT-HAND SIDE COMPONENTS;
C AM1(N2),
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C AM2(N2) - BOUNDARY CONDITIONS;
C DELTA - INPUT-DATA INACCURACY LEVEL;
C AMD1(N2),
C AMD2(N2) - DISTURBED BOUNDARY CONDITIONS;
C FIS1(N2),
C FIS2(N2) - FOUND RIGHT-HAND SIDE COMPONENTS;
C

X1L = 0.
X1R = 1.
X2L = 0.
X2R = 1.
PI = 3.1415926

C
OPEN (01, FILE = ’RESULT.DAT’) ! FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H1 = (X1R - X1L) / (N1 - 1)
H2 = (X2R - X2L) / (N2 - 1)
DO I = 1, N1

X1(I) = X1L + (I-1)*H1
END DO
DO J = 1, N2

X2(J) = X2L + (J-1)*H2
END DO

C
C DIRECT PROBLEM
C
C EXACT RIGHT-HAND SIDE
C

DO J = 2, N2-1
FIT1(J) = AF1(X2(J))
FIT2(J) = AF2(X2(J))
DO I = 2, N1-1

F(I,J) = FIT1(J) + X1(I) * FIT2(J)
END DO

END DO
C
C FORWARD FOURIER TRANSFORM
C

CALL SINTI(N2-2,WSAVE)
DO I = 2, N1-1

DO J = 2, N2-1
WW(J-1) = F(I,J)

END DO
CALL SINT(N2-2,WW,WSAVE)
DO J = 2, N2-1

F(I,J) = WW(J-1)
END DO

END DO
C
C SOLUTION OF THE ONE-DIMENSIONAL (OVER THE VARIABLE X1) PROBLEM
C

DO J = 2, N2-1
C
C DIFFERENCE-SCHEME COEFFICIENTS
C

ALAM = 4./H2**2*(SIN(PI*(J-1)/(2.*(N2-1))))**2
DO I = 2, N1-1
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A(I) = 1. / (H1*H1)
B(I) = 1. / (H1*H1)
C(I) = A(I) + B(I) + ALAM
FF(I) = F(I,J)

END DO
C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS
C

B(1) = 0.
C(1) = 1.
FF(1) = 0.
A(N1) = 0.
C(N1) = 1.
FF(N1) = 0.

C
C SOLUTION OF THE ONE-DIMENSIONAL PROBLEM
C

ITASK = 1
CALL PROGS3 ( N1, A, C, B, FF, YY, ITASK )

DO I = 1, N1
F(I,J) = YY(I)

END DO
END DO

C
C INVERSE FOURIER TRANSFORM
C

DO I = 2, N1-1
DO J = 2, N2-1

WW(J-1) = F(I,J)
END DO
CALL SINT(N2-2,WW,WSAVE)

DO J = 2, N2-1
U(I,J) = 1./(2.*(N2-1))*WW(J-1)

END DO
END DO

C
C BOUNDARY CONDITIONS IN THE INVERSE PROBLEM
C

DO J = 1, N2
AM1(J) = U(2,J) / H1
AM2(J) = - U(N1-1,J) / H1

END DO
C
C DISTURBING OF MEASURED QUANTITIES
C

DO J = 1, N2
AMD1(J) = AM1(J) + 2.*DELTA*(RAND(0)-0.5)
AMD2(J) = AM2(J) + 2.*DELTA*(RAND(0)-0.5)

END DO
C
C INVERSE PROBLEM
C
C RIGHT-HAND SIDE OF THE LOADED EQUATION

C
DO I = 2, N1-1

Q1 = 2.*(N1-I) / (X1R - X1L)
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Q2 = 2.*(I-1) / (X1R - X1L)
DO J = 2, N2-1

F(I,J) = Q1 * AMD1(J) - Q2 * AMD2(J)
END DO

END DO
C

C FORWARD FOURIER TRANSFORM
C

CALL SINTI(N2-2,WSAVE)
DO I = 2, N1-1

DO J = 2, N2-1

WW(J-1) = F(I,J)
END DO
CALL SINT(N2-2,WW,WSAVE)
DO J = 2, N2-1

F(I,J) = WW(J-1)
END DO

END DO

C
C SOLUTION OF THE ONE-DIMENSIONAL (OVER THE VARIABLE X1) PROBLEM
C

DO J = 2, N2-1
C
C AUXILIARY FUNCTIONS
C
C DIFFERENCE-SCHEME COEFFICIENTS
C

ALAM = 4./H2**2*(SIN(PI*(J-1)/(2.*(N2-1))))**2
DO I = 2, N1-1

A(I) = 1. / (H1*H1)
B(I) = 1. / (H1*H1)
C(I) = A(I) + B(I) + ALAM
FF(I) = F(I,J)

END DO
C
C BOUNDARY CONDITIONS AT THE LEFT AND RIGHT END POINTS
C

B(1) = 0.
C(1) = 1.
FF(1) = 0.
A(N1) = 0.
C(N1) = 1.
FF(N1) = 0.

C
C SOLUTION OF THE ONE-DIMENSIONAL PROBLEM
C

ITASK = 1
CALL PROGS3 ( N1, A, C, B, FF, S, ITASK )
DO I = 2, N1-1

FF(I) = - 2.*(N1-I) / ((N1-1.)*H1*H1)
END DO
ITASK = 2
CALL PROGS3 ( N1, A, C, B, FF, S1, ITASK )

C
C SOLUTION OF THE SYSTEM OF TWO EQUATIONS
C
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DD = (1. - S1(2))**2 - (S1(N1-1))**2
W1 = ((1. - S1(2))*S(2) + S1(N1-1)*S(N1-1))/DD
W2 = ((1. - S1(2))*S(N1-1) + S1(N1-1)*S(2))/DD
DO I = 2, N1-1

F(I,J) = S(I) + W1*S1(I) + W2*S1(N1+1-I)
END DO

END DO
C
C INVERSE FOURIER TRANSFORM
C

DO I = 2, N1-1
DO J = 2, N2-1

WW(J-1) = F(I,J)
END DO
CALL SINT(N2-2,WW,WSAVE)
DO J = 2, N2-1

Y(I,J) = 1./(2.*(N2-1))*WW(J-1)
END DO

END DO
C
C RIGHT-HAND SIDE

C
DO I = 2, N1-1

DO J = 2, N2-1

F(I,J) = - (Y(I+1,J) - 2.*Y(I,J) + Y(I-1,J)) / (H1*H1)
+ - (Y(I,J+1) - 2.*Y(I,J) + Y(I,J-1)) / (H2*H2)

END DO
END DO

C
DO J = 2, N2-1

FI1(J) = 2.*AMD1(J)/H1 - 2.*Y(2,J)/(H1*H1)
FI2(J) = - 2.*(AMD2(J)+AMD1(J))/((X1R-X1L)*H1)

+ - 2.*(Y(N1-1,J)-Y(2,J))/((X1R-X1L)*H1*H1)
END DO
WRITE ( 01, * ) (FI1(J),J=2,N2-1)
WRITE ( 01, * ) (FIT1(J),J=2,N2-1)
WRITE ( 01, * ) (FI2(J),J=2,N2-1)
WRITE ( 01, * ) (FIT2(J),J=2,N2-1)
CLOSE ( 01 )

C
STOP
END

FUNCTION AF1 ( X2 )
C
C FIRST COMPONENT OF THE RIGHT-HAND SIDE OF THE EQUATION
C

AF1 = 1.
IF (X2.GT.0.5) AF1 = 0.

C
RETURN
END

FUNCTION AF2 ( X2 )
C
C SECOND COMPONENT OF THE RIGHT-HAND SIDE OF THE EQUATION
C

AF2 = X2
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C
RETURN
END

SUBROUTINE PROGS3 ( N, A, C, B, F, Y, ITASK )
C
C SWEEP METHOD
C FOR TRIDIAGONAL MATRIX
C
C ITASK = 1: FACTORIZATION AND SOLUTION;
C
C ITASK = 2: ONLY SOLUTION
C

DIMENSION A(N), C(N), B(N), F(N), Y(N)
IF ( ITASK .EQ. 1 ) THEN

C
B(1) = B(1) / C(1)
DO I = 2, N

C(I) = C(I) - B(I-1)*A(I)
B(I) = B(I) / C(I)

END DO
C

ITASK = 2
END IF

C
F(1) = F(1) / C(1)
DO I = 2, N

F(I) = ( F(I) + F(I-1)*A(I) ) / C(I)
END DO

C
Y(N) = F(N)
DO I = N-1, 1, -1

Y(I) = B(I)*Y(I+1) + F(I)
END DO
RETURN
END

The function of the additional programs requires no comments.

6.5.6 Computational experiments

The presented program PROBLEM9 solves the inverse problem (6.144), (6.145),
(6.150), in which to be found is the right-hand side (6.147) with

ϕ1(x2) =
{

1, 0 < x2 < 0.5,

0, 0.5 < x2 < 1,
ϕ1(x2) = x2.

The problem is solved in the unit square (l1 = l2 = 1). To obtain the input data
for the inverse problem, the direct problem (6.144), (6.145) is preliminarily solved at
a given right-hand side.

First of all, consider the solution data obtained for the inverse problem with un-
perturbed input data. Of interest here are numerical data obtained on a sequence of
progressively refined grids (see Figures 6.18–6.20). The approximate solution is seen
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to converge to the exact solution. A sufficiently high accuracy can be obtained using
refined grids.

More sensitive to input-data inaccuracies are calculation data obtained at different
levels of boundary-condition inaccuracies (6.150). These inaccuracies were modeled
in the ordinary way, for instance, as

μ̃1(x2) = μ1(x2) + 2δ(σ (x2) − 1/2), x2 ∈ ω2,

where σ(x2) is a random function normally distributed over the interval [0, 1], and the
parameter δ defines the inaccuracy level. Figure 6.21 shows data obtained by solving
the inverse problem with δ = 0.0003. This inaccuracy level corresponds to a relative
inaccuracy of 0.1%. The calculation grid N1 = N2 = 129 was used.

Figure 6.18 Solution of the problem obtained on the grid N1 = N2 = 65
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Figure 6.19 Solution of the problem obtained on the grid N1 = N2 = 129

Figure 6.20 Solution of the problem obtained on the grid N1 = N2 = 257
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Figure 6.21 Solution of the problem obtained at the inaccuracy level δ = 0.0003

6.6 Exercises

Exercise 6.1 Formulate the condition for convergence of the approximate solution
determined from (6.16), (6.17), (6.19) to the solution of problem (6.14).

Exercise 6.2 Substantiate the iteration method (6.26) as applied to the approximate
solution of problem (6.14), (6.16).

Exercise 6.3 Modify the program PROBLEM5 so that to make it suitable for solving
the inverse problem (6.14), (6.16) by the iteration method (6.26). Give a comparative
analysis of the methods.

Exercise 6.4 Consider the basic specific features of the Tikhonov regularization
method as applied to solving the inverse problem on the identification of the right-
hand side of parabolic equation with lower terms

∂u
∂t

= ∂

∂x

(
k(x)

∂u
∂x

)
+ b(x)

∂u
∂x

+ f (x, t), 0 < x < l, 0 < t ≤ T,

from a given function u(x, t).

Exercise 6.5 Construct an iterative local-regularization algorithm making it possible
to identify the right-hand side of the parabolic equation (6.45) from an approximately
given solution of the boundary value problem (6.45)–(6.47).
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Exercise 6.6 Using the program PROBLEM6, numerically examine the rate of con-
vergence of the approximate solution of the inverse problem to the exact solution as
dependent on the input-data inaccuracy.

Exercise 6.7 Consider the first boundary value problem for the loaded parabolic equa-
tion:

∂u
∂t

= ∂

∂x

(
k(x)

∂u
∂x

)
+ c(x)u(x∗, t) + f (x, t), 0 < x < l, 0 < x∗ < l,

u(0, t) = 0, u(l, t) = 0, 0 ≤ t ≤ T,

u(x, 0) = u0(x), 0 < x < l.

In this problem, formulate the applicability conditions for the maximum principle and,
on this basis, establish solution uniqueness.

Exercise 6.8 Examine the convergence of the solution of the difference problem
(6.98)–(6.100) to the solution of the differential problem (6.94), (6.95).

Exercise 6.9 Based on calculations performed on a sequence of progressively refined
grids and using the program PROBLEM7, examine the accuracy in reconstructing the
time-dependent right-hand side of parabolic equation (6.84), (6.88) under conditions
(6.86), (6.87), (6.89).

Exercise 6.10 Examine the rate of convergence of the difference scheme (6.127),
(6.128) as applied to problem (6.111)–(6.114).

Exercise 6.11 Suppose that we solve the equation

Ay = f

in which
A = A0 + A1, A0 = A∗

0 > 0, A1 = −A∗
1.

To modify the initial problem, we use symmetrization:

Ãy = f̃ ,

where
Ã = A∗ A−1

0 A, f̃ = A∗ A−1
0 f.

We use the iteration method

A0
yk+1 − yk

τk+1
+ Ãyk = f̃ , k = 0, 1, . . . .

Examine the rate of convergence in this method under the conditions

‖A1 y‖2 ≤ M(y, A0 y), M = const > 0.
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Exercise 6.12 Using the program PROBLEM8, numerically examine the convergence
of the right-hand side as reconstructed in different norms.

Exercise 6.13 Consider the inverse problem (6.144)–(6.146) under the condition that

f (x) = ϕ(x2
1 + x2

2).

In which case the solution of this problem is unique?

Exercise 6.14 Obtain an a priori estimate for the solution of the difference problem
(6.162), (6.163).

Exercise 6.15 Propose procedures for preliminary treatment of noisy input data in
the solution of the right-hand side identification problem (6.144), (6.145), (6.147),
(6.150) making it possible to obtain possibly more smooth solution. Modify the pro-
gram PROBLEM9 to practically examine the possibilities offered by these procedures.
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In the present chapter, inverse problems for non-stationary mathematical physics equa-
tions are considered whose specific feature consists in that the initial state of the system
is not specified. A most typical example here is given by the inverted-time problem for
the second-order parabolic equation. Such problems belong to the class of problems
ill-posed in the classical sense; they can be approximately solved by various versions
of main regularizing algorithms. Among the latter algorithms, variational methods can
be identified in which non-locally perturbed initial conditions are used. In the second
class of methods, perturbed equations are used for which a well-posed problem can be
posed (generalized inverse method). Regularizing algorithms enabling the solution of
unstable evolutionary problems can be constructed using the regularization principle, a
general guiding principle that makes it possible to obtain operator-difference schemes
of desired quality. Of great potential are iterative algorithms for solving evolution-
ary inverse problems, capable of adequately taking into account specific features of
particular problems and based on successive solution of several direct problems. The
consideration is performed on the differential and difference levels. Numerical results
for model problems are cited to illustrate theoretical results.

7.1 Non-local perturbation of initial conditions

In this section, we consider the inverse inverted-time problem for the parabolic equa-
tion. To approximately solve the problem, we use a regularizing algorithm with non-
locally perturbed initial conditions. A close relation between this algorithm and varia-
tional solution methods for such ill-posed problems is established.

7.1.1 Problem statement

As a model problem, consider the inverted-time problem for the one-dimensional
parabolic equation. In the rectangle

QT = � × [0, T ], � = {x | 0 ≤ x ≤ l}, 0 ≤ t ≤ T

the function u(x, t) satisfies the equation

∂u
∂t

+ ∂

∂x

(
k(x)

∂u
∂x

)
= f (x, t), 0 < x < l, 0 < t ≤ T, (7.1)

with k(x) ≥ κ > 0. We restrict the present consideration to the boundary value
problem with the first-kind homogeneous boundary conditions

u(0, t) = 0, u(l, t) = 0, 0 < t ≤ T (7.2)
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and with the initial condition

u(x, 0) = u0(x), 0 ≤ x ≤ l. (7.3)

We can conveniently consider problem (7.1)–(7.3) as a Cauchy problem for the
second-order differential-operator equation. For functions defined in the domain � =
(0, 1) and vanishing at the boundary ∂�, we define a Hilbert space H = L2(�), in
which the scalar product is defined as

(v, w) =
∫

�

v(x)w(x) dx .

For the norm in H, we use the usual setting

‖v‖ = (v, v)1/2 =
( ∫

�

v2(x) dx
)1/2

.

On the set of functions satisfying the boundary conditions (7.2), we define the op-
erator

Au = − ∂

∂x

(
k(x)

∂u
∂x

)
, 0 < x < l. (7.4)

The operator A is a positive definite self-adjoint operator in H:

A∗ = A ≥ m E, m > 0. (7.5)

Equation (7.1), supplemented with conditions (7.2) at the boundary, is written as a
differential-operator equation for the function u(t) ∈ H:

du
dt

− Au = f (t), 0 < t ≤ T . (7.6)

The initial condition (7.3) gives
u(0) = u0. (7.7)

Problem (7.6), (7.7) is an ill-posed problem because continuous dependence on input
data, namely, on the initial conditions, is lacking here.

7.1.2 General methods for solving ill-posed evolutionary problems

The evolutionary inverse problem (7.6), (7.7) can be solved using, in this or another
version, all the above-discussed approaches to solving ill-posed problems which were
previously considered as applied to the first-kind operator equation

Au = f.

The right-hand side of the latter equation is given with some inaccuracy and, in addi-
tion,

‖ fδ − f ‖ ≤ δ.
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In the Tikhonov method, the approximate solution uα is to be found as follows:

Jα(uα) = min
v∈H

Jα(v),

Jα(v) = ‖Av − fδ‖2 + α‖v‖2.

As applied to the evolutionary problem (7.6), (7.7), the Tikhonov method corre-
sponds to the solution of an optimal control problem for equation (7.6). Here, the
point of interest concerns the start control and the final observation.

The optimal control problem for (7.6), (7.7) can be formulated as follows. Let
v ∈ H be an unconstrained control. Define the function uα = uα(t; v) as the solution
of the following well-posed problem:

duα

dt
− Auα = f (t), 0 < t < T, (7.8)

uα(T ; v) = v. (7.9)

We adopt the following simplest form of the quadratic quality functional (smoothing
functional):

Jα(v) = ‖uα(0; v) − u0‖2 + α‖v‖2. (7.10)

The optimal control w can be found as a minimum of Jα(v):

Jα(w) = min
v∈H

Jα(v), (7.11)

and the related solution uα(t, w) of problem (7.8), (7.9) can be considered as an ap-
proximate solution of the ill-posed problem (7.6), (7.7).

The variational problem (7.8)–(7.11) can be approximately solved by various nu-
merical methods. In gradient methods, the minimizing sequence {vk}, k = 1, 2, . . . , K
can be constructed by the rule

vk+1 = vk + γk pk,

where pk is the descend direction and γk is the descend parameter. In the sim-
plest case, the descend direction can be directly related with the gradient of (7.10):
pk = − grad Jα(vk). An unusual feature here consists in the necessity to calculate a
functional gradient. That is why in the solution of applied inverse problems by varia-
tional methods the latter point deserves special attention.

In the Tikhonov method, instead of the extremum problem, we solve a related Euler
equation. In the latter case, the approximate solution is to be found by solving the
second-kind equation

A∗ Auα + αuα = A∗ fδ.

Thus, the transition to a well-posed problem is performed by passing to a problem with
the self-adjoint operator A∗ A, which can be done by multiplying the initial equation
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from the left by A∗, and by subsequent perturbation of the resulting equation with an
operator αE .

Note the class of approximate solution methods for ill-posed evolutionary problems
of type (7.6), (7.7) based on the passage to a perturbed well-posed problem; these
methods are known as generalized inverse methods. Consider briefly major variants of
the generalized inverse method for problem (7.6), (7.7) in which the perturbed initial
equation (7.6) is used.

In the classical variant of the generalized inverse method, the approximate solution
uα(t) is to be found from the equation

duα

dt
− Auα + αA∗Auα = 0. (7.12)

In the class of bounded solutions, one can establish the regularizing properties, namely,
the convergence of the approximate solution to the exact solution in the class of
bounded solutions.

Also, a variant of the generalized inverse method for stable solution of problem
(7.6), (7.7) with A = A∗ can be applied; in this method, the following pseudo-
parabolically perturbed equation is treated:

duα

dt
− Auα + αA duα

dt
= 0. (7.13)

In the approximate solution of inverse mathematical physics problems (problem
(7.1)–(7.3)), the first variant of the generalized inverse method (see (7.12)) is based
on raising the order of the differential operator over space (instead of A, the operator
A∗A is used). In the second variant of the generalized inverse method (see (7.13)), the
problem suffers no such dramatic changes.

Some other possibilities in the regularization of the problem at the expense of ad-
ditional terms deserve mention. In the context of the general theory of approximate
solution of ill-posed problems, these variants border on the variant of simplified regu-
larization in which in the problem with A = A∗ ≥ 0 to be solved is the equation

Auα + αuα = fδ,

i. e., here, one can restrict himself to perturbing the operator of the initial problem only.

7.1.3 Perturbed initial conditions

A most significant class of approximate methods for solving ill-posed evolutionary
problems is based on using perturbed initial conditions instead of passing to some new
equation like in the ordinary variant of the generalized inverse method. This approach
can appear to be more reasonable in problems with initial conditions specified with an
inaccuracy.
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In methods with perturbed initial conditions, the extremum formulation of prob-
lems has found a most widespread use. The optimum control problem for systems
governed by the evolutionary equations of interest can be solved using these or those
regularization methods. To this class of approximate solution methods for unstable
evolutionary problems, methods with non-locally perturbed initial conditions can be
assigned. In the latter case, the regularizing effect is achieved due to the established
relation between the initial solution and the end-time solution.

Special attention should be paid to the equivalence between the extremum formula-
tion of ill-posed evolutionary problems and non-local problems. The latter allows us
to perform a uniform consideration of non-local perturbation methods and extremum
solution methods for evolutionary problems. Moreover, the equivalence between these
methods makes it possible to construct computational algorithms based on this or an-
other formulation of the problem. For instance, in some cases, instead of solving
a related functional-minimization problem, one can use simple computational algo-
rithms for solving non-local difference problems. Nonetheless, opposite examples are
also known in which construction of computational algorithms around an extremum
formulation is more preferable.

To approximately solve the ill-posed problem (7.6), (7.7) (with f (t) = 0), apply the
method with non-locally perturbed initial condition. We find the approximate solution
uα(t) as the solution of the equation

duα

dt
− Auα = 0, 0 < t ≤ T (7.14)

with the initial condition (7.7) replaced with the simplest non-local condition

uα(0) + αuα(T ) = u0. (7.15)

Here, the regularization parameter α is positive (α > 0).
Let us derive estimates for the solution of the non-local problem with regard to the

above-formulated constraint on the operator A (A = A∗ > 0). Of primary concern
here is stability of the approximate solution uα(t) with respect to initial data.

Our consideration is based on using the expansion of the solution in eigenfunctions
of A. Not restricting ourselves to the case of (7.4), (7.5), we denote as A a linear
constant (t-independent) operator with a domain of definition D(A), dense in H. We
assume that the operator A is positive definite self-adjoint in H; generally speaking,
this operator is an unbounded operator. For simplicity, we assume that the spectrum
of A is discrete, consisting of eigenvalues 0 < λ1 ≤ λ2 ≤ · · · , and the system of
eigenfunctions {wk}, wk ∈ D(A), k = 1, 2, . . . is an orthonormal complete system
in H. That is why for each v ∈ H we have:

v =
∞∑

k=1

vkwk, vk = (v, wk).
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Theorem 7.1 For the solution of problem (7.14), (7.15) the following estimates are
valid:

‖uα(t)‖ ≤ 1
α

‖u0‖, (7.16)

‖uα(t)‖ ≥ 1
1 + α

‖u0‖. (7.17)

Proof. To prove the above theorem, we write the solution of problem (7.14), (7.15) as

uα = R(t, α)u0. (7.18)

In problem (7.14), (7.15), the operator R(t, α) can be written as

R(t, α) = exp (At)(E + α exp (AT ))−1. (7.19)

In view of (7.18) and (7.19), the solution of the non-local problem admits the fol-
lowing representation:

uα(t) =
∞∑

k=1

(u0, wk) exp (λkt)(1 + α exp (λk T ))−1wk . (7.20)

With (7.20), we have:

‖uα(t)‖2 =
∞∑

k=1

(u0, wk)
2 exp (2λk)(1 + α exp (λk T ))−2.

From here, with allowance for λk > 0, k = 1, 2, . . ., the desired inequalities (7.16),
(7.17) readily follow.

Remark 7.2 Estimate (7.16) guarantees stability of the solution with respect to initial
data (upper estimate), and inequality (7.17) gives a lower estimate of the solution of
the non-local problem.

Remark 7.3 Note that the lower estimate (7.17) can be obtained directly from (7.14),
(7.15) under an assumption that the time-independent operator A is not necessarily a
self-adjoint yet non-negative operator (A ≥ 0). To derive this estimate, we scalar-
wise multiply equation (7.14) by uα(t) to obtain the following estimate typical of the
parabolic equation with inverted time:

‖uα(t)‖ ≤ ‖uα(T )‖. (7.21)

With (7.21), the non-local condition (7.15) yields

‖u0‖ = ‖uα(0) + αuα(T )‖ ≤ ‖uα(0)‖ + α‖uα(T )‖ ≤ (1 + α)‖uα(T )‖.
We have proved that the problem with conditions (7.14), (7.15), non-local over time,

is a well-posed problem. Now, we can discuss a more fundamental matter, namely, un-
der which conditions solution of problem (7.14), (7.15) gives an approximate solution
of the ill-posed problem (7.6), (7.7) (with f (t) = 0).
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7.1.4 Convergence of approximate solution to the exact solution

Let us formulate a statement concerning the convergence of the approximate solutions
to the exact solution of problem (7.6), (7.7). Suppose that the initial condition (7.7) is
given with an inaccuracy

‖uδ
0 − u0‖ ≤ δ. (7.22)

Instead of the non-local condition (7.15), we consider the condition

uα(0) + αuα(T ) = uδ
0. (7.23)

Theorem 7.4 Suppose that for the initial-condition inaccuracy the estimate (7.22) is
valid. Then, the approximate solution uα(t) defined as the solution of problem (7.14),
(7.23) converges, with δ → 0, α(δ) → 0, δ/α → 0, to the exact (bounded in H)
solution u(t) of problem (7.6), (7.7) with f (t) = 0.

Proof. In the operator form, the approximate solution uα(t) obtained with the inaccu-
rately given initial condition uδ

0 can be written as

uα(t) = R(t, α)uδ
0. (7.24)

In the latter notation, the operator R(t, 0) gives the exact solution of the problem and,
therefore, we have u(t) = R(t, 0)u0. In the adopted notation, for the inaccuracy v we
obtain:

‖uα(t) − u(t)‖ = ‖R(t, α)(uδ
0 − u0) − (R(t, α) − R(t, 0))u0‖

≤ ‖R(t, α)‖ ‖uδ
0 − u0‖ + ‖(R(t, α) − R(t, 0))u0‖. (7.25)

The first term in (7.25) refers to stability with respect to initial data, or to the bound-
edness of R(t, α). The second term in the right-hand side of (7.25) requires that the
solution R(t, α)u0 of the perturbed problem with exact input data be close to the exact
solution u(t). It is with this aim that a certain class of solutions (well-posedness class)
was isolated with the used regularizing operator R(t, α).

In view of the derived estimate (7.16) for stability with respect to initial data and
estimate (7.22), we have:

‖R(t, α)‖ ‖uδ
0 − u0‖ ≤ 1

α
δ. (7.26)

Consider the second term in the right-hand side of (7.25). With (7.19), for the approx-
imate solution found from (7.14), (7.23) we obtain the representation

‖uα(t)‖2 =
∞∑

k=1

(uδ
0, wk)

2 exp (2λkt)(1 + α exp (λk T ))−2. (7.27)
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By virtue of (7.27), we have:

χ(t) ≡ ‖(R(t, α) − R(t, 0))u0‖2

=
∞∑

k=1

exp (2λkt)(1 − (1 + α exp (λk T ))−1)2(u0, wk)
2. (7.28)

We consider stability in the class of solutions bounded in H:

‖u(t)‖ ≤ M, 0 ≤ t ≤ T . (7.29)

In view of (7.29), for any ε > 0 there exists a number r(ε) such that

∞∑
k=r(ε)+1

exp (2λkt)(u0, wk)
2 ≤ ε

8
.

Hence, from (7.28) we obtain:

χ(t) ≤
r(ε)∑
k=1

exp (2λkt)(1 − (1 + α exp (λk T ))−1)2(u0, wk)
2

+
∞∑

k=r(ε)+1

exp (2λkt)(u0, wk)
2

≤ M2
r(ε)∑
k=1

(1 − (1 + α exp (λk T ))−1)2 + ε2

8
.

For any r(ε), there exists a number α0 such that

M2
r(ε)∑
k=1

(1 − (1 + α exp (λk T ))−1)2 ≤ ε2

8

if α ≤ α0.
Hence, the representation (7.29) yields:

‖(R(t, α) − R(t, 0))u0‖ ≤ ε

2
. (7.30)

With (7.26) and (7.30), from (7.25) we obtain the estimate

‖uα(t) − u(t)‖ ≤ 1
α

δ + ε

2
. (7.31)

For an arbitrary ε > 0, there exists a number α = α(δ) ≤ α0 and a sufficiently small
number δ(ε) such that δ/α ≤ ε/2. Hence, the estimate (7.31) assumes the form

‖uα(t) − u(t)‖ ≤ ε.

Thus, the approximate solution converges to the exact solution.
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To establish the fact that the approximate solution converges to the exact solution,
it suffices for us to assume that the exact solution is bounded in H (see (7.29)). One
can expect that under stronger assumptions about the smoothness of the exact solution
we will be able to obtain an estimate for the rate of convergence. We discussed such
a situation in detail when we considered methods for the stable solution of first-kind
equations. Similar possibilities in the approximate solution of the ill-posed Cauchy
problem for the first-order evolutionary equation (7.6), (7.7) also deserve mention.

A natural narrowing of the class of exact solutions of problem (7.6), (7.7) is

‖Au(t)‖ ≤ M,

or
‖A2u(t)‖ ≤ M

for all t ∈ [0, T ]. Yet, this does not allow us to directly derive an estimate for the
rate of convergence of the approximate solution obtained by (7.14), (7.23) to the exact
solution of the problem.

Under conditions of the above theorem, we assume that the exact solution is
bounded over the double time interval [0, 2T ] and consider the convergence of the
approximate solution found as the solution of the non-local problem (7.14), (7.23)
only at times t ∈ [0, T ]. Suppose that the a priori conditions are

‖u(t)‖ ≤ M, 0 ≤ t ≤ 2T . (7.32)

With the latter conditions (see (7.28)), we have:

χ(t) = α2
∞∑

k=1

exp (2λk(t + T ))(1 + α exp (λk T ))−2(u0, wk)
2 ≤ M2α2.

For the inaccuracy, we obtain the explicit estimate

‖uα(t) − u(t)‖ ≤ δ

α
+ αM. (7.33)

It makes sense to give here an estimate for the rate of convergence under constraints
on the exact solution less tight than (7.32). Let for the solution of problem (7.6), (7.7)
we have:

‖u(t)‖ ≤ M, 0 ≤ t ≤ (1 + θ)T, 0 < θ ≤ 1. (7.34)

Under the conditions of (7.34), we obtain:

χ(t) = α2
∞∑

k=1

exp (2λk(t + θT ))

× exp (2λk((1 − θ)T ))(1 + α exp (λk T ))−2(u0, wk)
2

≤ M2α2 max
1≤k<∞

exp (2λk((1 − θ)T ))(1 + α exp (λk T ))−2.
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We denote η = exp (λk T ) and consider the maximum of the function

ϕ(η) = η(1−θ)

1 + αη
, η > 0, 0 < θ ≤ 1.

This maximum, attained at

ηopt = γ

α
, γ = 1 − θ

θ
,

is equal to

ϕ(ηopt) = αθ−1 γ 1−θ

1 + γ
.

In view of this, we have

χ(t) ≤ M2α2θ γ 2(1−θ)

(1 + γ )2

and, therefore, under the a priori assumptions (7.34) about the exact solution we have
the following estimate for the inaccuracy:

‖uα(t) − u(t)‖ ≤ δ

α
+ αθ γ 1−θ

1 + γ
M. (7.35)

The estimate (7.35) shows that the accuracy of the approximate solution uα(t) depends
on the smoothness of the exact solution of problem (7.6), (7.7).

Let us briefly mention here the possibility of using non-local conditions more gen-
eral than (7.23). Suppose that, for instance, instead of (7.23) we use the conditions

uα(0) + αSuα(T ) = uδ
0. (7.36)

The operator S is assumed to be a self-adjoint, positively defined operator.
Not dwelling on the formulation of general results, note a special case of non-local

condition (7.36) with S = A. Under such conditions, it is an easy matter to derive
the following stability estimate in HD for the solution of the non-local problem (7.14),
(7.36):

‖uα(t)‖D ≤ 1
α

‖u0‖. (7.37)

Here, D = A2. Thus, stability takes place in the case of less smooth initial conditions.
In HD, one can also prove convergence of the approximate solution to the exact solu-
tion (an analogue of Theorem 7.1) under the a priori assumption that the exact solution
is bounded in the same space.
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7.1.5 Equivalence between the non-local problem and the optimal con-

trol problem

Let us dwell now on the equivalence between the non-local problem and the optimal
control problem. We denote the control as v ∈ H (there are no constraints imposed on
the control). We define uα = uα(t; v) as the solution of the well-posed problem

duα

dt
− Auα = 0, 0 ≤ t < T, (7.38)

uα(T ; v) = v. (7.39)

We specify the quadratic quality functional (cost function) in the form

Jα(v) = ‖uα(0; v) − uδ
0‖2 + α(Sv, v), (7.40)

where S is a self-adjoint, positively defined operator. The choice of (7.40) refers to
the start observation. The optimal control w is determined as the minimum of the
functional Jα(v):

Jα(w) = min
v∈H

Jα(v), (7.41)

and the related solution uα(t; w) of problem (7.38), (7.39) is considered as an approx-
imate solution of the ill-posed problem (7.6), (7.7) ( f (t) = 0).

Let us show that, under certain conditions, the non-local problem (7.14), (7.36)
presents an Euler equation for the functional (7.40) on the set of constraints given
by (7.38), (7.39). To this end, we conveniently introduce the conjugate state. We
introduce the setting

(u, p)∗ =
∫ T

0
(u, p) dt.

For (7.38), in view of the self-adjointness of A, we have:

((dy
dt

− Ay
)
, p
)∗

=
(dy

dt
, p
)∗

− (y,Ap)∗ (7.42)

= (y(T ), p(T )) − (y(0), p(0)) −
(

y,
dy
dt

)∗
− (y,Ap)∗.

With (7.42), we assume that the function p(t) is determined from the equation

dp
dt

+ Ap = 0, 0 ≤ t < T . (7.43)

The initial condition for (7.43) will be chosen below.
For the optimal control w of interest, the following Euler equation holds:

(uα(0; w) − uδ
0, uα(0; v) − uα(0; w)) + α(Sw, v − w) = 0, ∀ v ∈ H. (7.44)
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We take into consideration the equation

(uα(T ; v), p(T )) = (uα(0; v), p(0)),

which follows from (7.38), (7.42) and (7.43), and assume that

p(0) = uα(0) − uδ
0, (7.45)

where uα(t) = uα(t; w). Then, from (7.44) we obtain:

(p(T ) + αSw, v − w) = 0, ∀ v ∈ H.

This yields
p(T ) + αSuα(T ) = 0. (7.46)

Equality (7.46) is well known in control theory for parabolic equations.
Thus, the problem of finding the optimal control w and the related solution uα(t) is

reduced to the solution of system (7.38), (7.43) with correlatons (7.45), (7.46).
For the time-independent operator S, permutable with A, there holds the equation

p(T − θ) + αSuα(T + θ) = 0 (7.47)

with a constant θ . Here, the functions p(t) and uα(t) satisfy respectively equations
(7.43) and (7.14), being correlated at t = T with relations (7.46).

Indeed, assuming that g(t) = −αSuα(t), we rewrite equation (7.46) in the form

p(T ) = g(T ). (7.48)

In the case of S �= S(t) and SA = AS , the function g(t) satisfies the equation

dg
dt

− Ag = 0. (7.49)

Equation (7.49) coincides with equation (7.43) for the function p(t) with sign change
applied to the variable t . With equation (7.48) taken into account, we obtain that

p(T − θ) = g(T + θ)

for any θ . It is from here that the desired correlation (7.47) between the solution of the
conjugate equation (7.43) and the solution of the optimal control problem follows.

We assume that in equality (7.47) we have θ = T ; then, we arrive at the equality

p(0) + αSu(2T ) = 0;
with the initial condition (7.45), this equality assumes the form

uα(0) + αSuα(2T ) = uδ
0. (7.50)

In this way, we eliminate the auxiliary function p(t), which defines the conjugate state,
and arrive at a non-local condition for the approximate solution. The latter allows the
following statement to be formulated:
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Theorem 7.5 Let self-adjoint, time-independent and positively defined operators S
and A be mutually permutable operators. Then, the solution of the variational problem
(7.38)–(7.41) satisfies the equation

duα

dt
− Auα = 0, 0 < t ≤ 2T (7.51)

and the non-local conditions (7.50).

Equations (7.50) and (7.51) are the Euler equations for the variational problem
(7.38)–(7.41). The established relation between the non-local problem and the op-
timal control problem is a very useful relation of utmost significance. This statement
can be supported by a line of reasoning similar to that used for the Euler equations in
classical variational problems.

In the above consideration of ill-posed evolutionary problems of type (7.6), (7.7)
we showed the equivalence of the two different approaches to finding the approximate
solution. The methods based, first, on non-local perturbation of initial conditions and,
second, on using the extremum formulation of the problem give rise to the same reg-
ularizing algorithms. A fundamental difference between the two approaches consists
only in the manner in which the approximate solution is obtained, i. e., in the compu-
tational realization.

7.1.6 Non-local difference problems

Let us show that, under certain conditions, statements analogous to Theorems 7.1 and
7.5 are valid for the difference analogues of the non-local problem (7.14), (7.15). Here,
we restrict ourselves to the consideration of time approximations. We routinely ap-
proximate the operator A with a difference operator, self-adjoint and positive in the
corresponding mesh space. We introduce a uniform grid over the variable t ,

ω̄τ = ωτ ∪ {T } = {tn = nτ, n = 0, 1, . . . , N0, τ N0 = T },

with a step size τ > 0. As usually, we denote the approximate solution of the non-
local problem (7.14), (7.15) at t = tn as yn . To find this solution, we use the simplest
explicit scheme, often more preferable than implicit schemes for unstable problems.
From (7.14) and (7.15), we obtain:

yn+1 − yn

τ
− Ayn = 0, n = 0, 1, . . . , N0 − 1, (7.52)

y0 + αyN0 = u0. (7.53)

For the solution of the difference equation (7.52), we have the following representa-
tion:

yn =
∞∑

k=1

(1 + τλk)
n(y0, wk)wk, n = 0, 1, . . . , N0. (7.54)
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Starting from (7.54), we can easily establish the following direct analogue of Theo-
rem 7.1.

Theorem 7.6 For the solution of the non-local operator-difference problem (7.52),
(7.53), there hold the estimates

‖yn‖ ≤ 1
α

‖u0‖, n = 0, 1, . . . , N0, (7.55)

and

‖yN0‖ ≥ 1
1 + α

‖u0‖. (7.56)

Proof. From (7.53) and (7.54), the following representation for the solution of the
non-local problem (7.52), (7.53) can be obtained:

yn =
∞∑

k=1

(1 + τλk)
n(1 + α(1 + τλk)

N0)−1(u0, wk)wk . (7.57)

Since λk > 0, k = 1, 2, . . ., then for the norm in H the representation (7.57) yields

‖yn‖2 =
∞∑

k=1

(1 + τλk)
2n(1 + α(1 + τλk)

N0)−2(u0, wk)
2 ≤ 1

α2
‖u0‖2.

Thus, the estimate (7.55) is proved.
By analogy with the continuous case (see Theorem 7.1), the lower estimate (7.56)

can be derived under more general assumptions on the operator A. Suppose that A ≥
0; then, we scalarwise multiply the difference equation (7.52) in H by yn and obtain

(yn+1, yn) = ‖yn‖2 + τ(Ayn, yn) ≥ ‖yn‖2. (7.58)

For the left-hand side of (7.58), we have

(yn+1, yn) ≤ ‖yn+1‖ ‖yn‖

and, hence,
‖yn‖ ≤ ‖yn+1‖ ≤ · · · ≤ ‖yN0‖. (7.59)

Inequality (7.59) is a difference analogue of (7.21). With the non-local condition (7.53)
taken into account and in view of (7.59), we obtain

‖u0‖ = ‖y0 + αyN0‖ ≤ ‖y0‖ + α‖yN0‖ ≤ (1 + α) ‖yN0‖.

The latter inequality yields the estimate (7.56).
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It should be emphasized here that, with the use of the explicit scheme (7.52), the
above estimates for the difference solution were obtained assuming no constraints on
the time step size. Simultaneously, conditional stability takes place if the weighted
scheme is used.

Consider now the difference problem that corresponds to the optimal control prob-
lem (7.38), (7.39). We denote the approximate solutions of the two problems at the
time tn under the control v as yn(v) and yn = yn(w), respectively.

To problem (7.38), (7.39), we put into correspondence the difference problem

yn+1 − yn

τ
− Ayn = 0, n = 0, 1, . . . , N0 − 1, (7.60)

yN0(v) = v. (7.61)

In view of (7.40), the quality functional is

Jα(v) = ‖y0(v) − u0‖2 + α(Sv, v), (7.62)

with some positive self-adjoint operator S. The optimal control w is defined by

Jα(w) = min
v∈H

Jα(v). (7.63)

For the conjugate problem to be formulated, we obtain a difference analogue of
formula (7.42). To this end, we consider the following extended grid:

ω̄+
τ = {tn = nτ, n = −1, 0, . . . , N0, τ N0 = T }.

We use the following settings adopted in the theory of difference schemes. On the
extended grid, we have:

{y, v} =
N0−1∑
n=0

ynvnτ, {y, v] =
N0∑

n=0

ynvnτ, [y, v} =
N0−1∑
n=−1

ynvnτ.

The difference summation-by-parts formulas yield the equation

{y, vt̄ ] + [yt , v} = yN0vN0 − y−1v−1, (7.64)

where, recall,

yt̄ = yn − yn−1

τ
, yt = yn+1 − yn

τ
.

Using (7.64) and the obvious identity

{y, v] − [y, v} = yN0vN0τ − y−1v−1τ,

we obtain

{y, pt̄ + Ap] + [y + t − Ay, p}
= yN0(pN0 + τApN0) − p−1(y−1 + τAy−1). (7.65)
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Equation (7.65) is a difference analogue of (7.42). By analogy with the continuous
problem and with allowance for (7.65), we determine the conjugate state from the
difference equation

pn − pn−1

τ
+ Apn = 0, n = 0, 1, . . . , N0. (7.66)

Then, by virtue of (7.65), we have the equation

yN0(pN0 + τApN0) = p−1(y−1 + τAy−1). (7.67)

It readily follows from (7.66) that

pN0 + τApN0 = pN0−1. (7.68)

We assume that the difference equation (7.60) is also valid for n = −1. Then we
obtain

y−1 + τAy−1 = y0. (7.69)

With (7.68) and (7.69), equation (7.67) can be written as

yN0 pN0−1 = y0 p−1. (7.70)

For the functional (7.62), we obtain (see (7.44))

(y0(w) − u0, y0(v) − y0(w)) + α(Sw, v − w) (7.71)

for all v ∈ H. Now, we choose

p−1 = y0(w) − u0. (7.72)

Then, in view of (7.70), it follows from (7.71) that

pN0−1 + αS yN0 = 0. (7.73)

Let a time-independent operator S be permutable with the operator A. Then, for
any integer number m the equation

pN0−1−m + αS yN0+m = 0 (7.74)

is valid provided that the functions pn and yn satisfy respectively equations (7.66) and
(7.60) and are correlated with relations (7.73). This statement can be proved analo-
gously to the continuous case (see (7.47)).

To pass to the non-local problem, in (7.74) we put m = N0; then, with (7.72), we
arrive at the condition

y0 + αS y2N0 = u0. (7.75)

The latter allows the following statement to be formulated:
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Theorem 7.7 Let self-adjoint, time-independent and positively defined operators S
and A be mutually permutable. Then, the solution of the difference optimal control
problem (7.60)–(7.63) satisfies the equation

yn+1 − yn

τ
− Ayn = 0, n = 0, 1, . . . , 2N0 − 1, (7.76)

supplemented with the non-local condition (7.75).

Thus, for the difference optimal control problem we have established their relation
with problems with time-non-local conditions over the double time interval. Above,
the relation between non-local problems and optimal control problems was established
under the assumption that the initial operator A is a self-adjoint, time-independent
operator positively defined in H. These restrictions are not related with the essence of
the problems, and for more general optimal control problems, in a similar manner, an
Euler equation in the form of a non-local problem can be constructed.

7.1.7 Program realization

For methods with non-locally perturbed initial conditions, there exists a problem with
computational realization of such regularizing algorithms. It should be noted that,
presently, simple and convenient computational schemes for numerical solution of
general non-local boundary value problems for mathematical physics equations are
lacking. In order to avoid computational difficulties that obscure the essence of
the problem, below we consider a simple inverse problem for the one-dimensional
parabolic equation with constant coefficients. The solution of the difference problem
will be constructed using the variable separation method in the fast Fourier transform
technique.

Within the framework of a quasi-real experiment, we first solve the direct, initially
boundary value problem:

∂u
∂t

− ∂2u
∂x2

= 0, 0 < x < l, 0 < t ≤ T,

u(0, t) = 0, u(l, t) = 0, 0 < t ≤ T,

u(x, 0) = u0(x), 0 ≤ x ≤ l.

The solution of the problem at the end time (u(x, T )) is perturbed to subsequently use
this solution as input data for the inverse problem of reconstructing the initial solution
at t = 0.

The realization is based in the fast Fourier transform (subroutines SINT and
SINTI). A more detailed description was given above (program PROBLEM9).

The value of the regularization parameter is chosen considering the discrepancy.
The computational realization is based on using the sequence

αk = α0qk, q > 0
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with given α0 and q.

Program PROBLEM10

C
C PROBLEM10 - PROBLEM WITH INVERTED TIME
C ONE-DIMENSIONAL PROBLEM
C NON-LOCALLY DISTURBED INITIAL CONDITION
C

PARAMETER ( DELTA = 0.005, N = 65, M = 65 )
DIMENSION U0(N), UT(N), UTD(N), UT1(N), U(N), U1(N)
+ ,X(N), ALAM(N-2), W(N-2), W1(N-2), WSAVE(4*N)

C
C PARAMETERS:
C
C XL, XR - LEFT AND RIGHT END POINTS OF THE SEGMENT;
C N - NUMBER OF GRID NODES OVER SPACE;
C TMAX - MAXIMAL TIME;
C M - NUMBER OF GRID NODES OVER TIME;
C DELTA - INPUT-DATA INACCURACY LEVEL;
C Q - MULTIPLIER IN THE REGULARIZATION PARAMETER;
C U0(N) - INITIAL CONDITION TO BE RECONSTRUCTED;
C UT(N) - END-TIME SOLUTION OF THE DIRECT PROBLEM;
C UTD(N) - DISTURBED SOLUTION OF THE DIRECT PROBLEM;
C U(N) - APPROXIMATE SOLUTION OF THE INVERSE PROBLEM;
C

XL = 0.
XR = 1.
TMAX = 0.1
PI = 3.1415926

C
OPEN (01, FILE = ’RESULT.DAT’) !FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H = (XR - XL) / (N - 1)
TAU = TMAX / (M-1)
DO I = 1, N

X(I) = XL + (I-1)*H
END DO

C
C DIRECT PROBLEM
C
C INITIAL CONDITION
C

DO I = 1, N
U0(I) = AU(X(I))

END DO
C
C EIGENVALUES OF THE DIFFERENCE OPERATOR
C

DO I = 1, N-2
ALAM(I) = 4./H**2*(SIN(PI*I/(2.*(N-1))))**2

END DO
C
C FORWARD FOURIER TRANSFORM
C

CALL SINTI(N-2,WSAVE)
DO I = 2, N-1
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W(I-1) = U0(I)
END DO
CALL SINT(N-2,W,WSAVE)

C
C FOURIER INVERSION
C

DO I = 1, N-2
QQ = 1. / (1. + TAU*ALAM(I))
W1(I) = QQ**(M-1) * W(I)

END DO
CALL SINT(N-2,W1,WSAVE)
DO I = 2, N-1

UT(I) = 1./(2.*(N-1))*W1(I-1)
END DO
UT(1) = 0.
UT(N) = 0.
DO I = 1, N-2

QQ = 1. / (1. + TAU*ALAM(I))
W1(I) = QQ**((M-1)/2) * W(I)

END DO
CALL SINT(N-2,W1,WSAVE)
DO I = 2, N-1

UT1(I) = 1./(2.*(N-1))*W1(I-1)
END DO
UT1(1) = 0.
UT1(N) = 0.

C
C DISTURBING OF MEASURED QUANTITIES
C

DO I = 2, N-1
UTD(I) = UT(I) + 2.*DELTA*(RAND(0)-0.5)

END DO
UTD(1) = 0.
UTD(N) = 0.

C
C INVERSE PROBLEM
C
C INPUT-DATA FOURIER TRANSFORM
C

DO I = 2, N-1
W(I-1) = UTD(I)

END DO
CALL SINT(N-2,W,WSAVE)

C
C ITERATIVE PROCESS TO ADJUST THE REGULARIZATION PARAMETER
C

IT = 0
ITMAX = 1000
ALPHA = 0.001
Q = 0.75

100 IT = IT + 1
C
C FOURIER INVERSION
C

DO I = 1, N-2
QQ = 1. + TAU*ALAM(I)
W1(I) = W(I) / (1. + ALPHA*QQ**(M-1))

END DO

CALL SINT(N-2,W1,WSAVE)
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DO I = 2, N-1
U(I) = 1./(2.*(N-1))*W1(I-1)

END DO
C
C DISCREPANCY
C

SUM = 0.D0

DO I = 2,N-1
SUM = SUM + (U(I)-UTD(I))**2*H

END DO
SL2 = SQRT(SUM)

C
IF ( IT.EQ.1 ) THEN

IND = 0

IF ( SL2.LT.DELTA ) THEN
IND = 1
Q = 1.D0/Q

END IF
ALPHA = ALPHA*Q
GO TO 100

ELSE
ALPHA = ALPHA*Q
IF ( IND.EQ.0 .AND. SL2.GT.DELTA ) GO TO 100
IF ( IND.EQ.1 .AND. SL2.LT.DELTA ) GO TO 100

END IF
C
C SOLUTION
C

DO I = 1, N-2
QQ = 1. + TAU*ALAM(I)
W1(I) = QQ**((M-1)/2) * W(I) / (1. + ALPHA*QQ**(M-1))

+ * QQ**((M-1)/2)
END DO
CALL SINT(N-2,W1,WSAVE)
DO I = 2, N-1

U(I) = 1./(2.*(N-1))*W1(I-1)
END DO
U(1) = 0.

U(N) = 0.
DO I = 1, N-2

QQ = 1. + TAU*ALAM(I)
W1(I) = QQ**((M-1)/2) * W(I) / (1. + ALPHA*QQ**(M-1))

END DO
CALL SINT(N-2,W1,WSAVE)
DO I = 2, N-1

U1(I) = 1./(2.*(N-1))*W1(I-1)
END DO
U1(1) = 0.
U1(N) = 0.

C
WRITE ( 01, * ) (U0(I),I=1,N)
WRITE ( 01, * ) (UT(I),I=1,N)
WRITE ( 01, * ) (UT1(I),I=1,N)
WRITE ( 01, * ) (UTD(I),I=1,N)
WRITE ( 01, * ) (U(I),I=1,N)
WRITE ( 01, * ) (U1(I),I=1,N)
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WRITE ( 01, * ) (X(I),I=1,N)
WRITE ( 01, * ) IT, ALPHA
CLOSE (01)
STOP
END

FUNCTION AU ( X )
C
C INITIAL CONDITION

C
AU = X / 0.3
IF (X.GT.0.3) AU = (1. - X) / 0.7

C
RETURN
END

The initial condition is set in the subroutine AU. With regard to the previous considera-
tion of the convergence, the approximate solution is calculated at the end time (t = T )
and at the time t = T/2.

7.1.8 Computational experiments

We solved a model problem whose input data were taken equal to the difference solu-
tion of the direct problem (l = 1, t = 0.1) with the initial condition

u0(x) =
{

x/0.3, 0 < x < 0.3,

(1 − x)/0.7, 0.3 < x < 1.

The computations were performed on a uniform grid with h = 1/64, τ = 1/640. The
results obtained by solving the direct problem are shown in Figure 7.1.

The effect due to inaccuracies was modeled by perturbing the input data (solution
of the direct problem at the time t = T ):

ũ(x, T ) = u(x, T ) + 2δ
(
σ(x) − 1

2

)
, x ∈ ω.

Here, σ(x) is a random function normally distributed over the interval [0, 1]. Fig-
ure 7.2 shows the exact and approximate solutions of the inverse problem at two char-
acteristic times, t = T and t = T/2, for δ = 0.005. Similar data obtained with a
greater (δ = 0.015) and lower (δ = 0.0025) inaccuracy are shown respectively in
Figures 7.3 and 7.4.

The data presented show that the solution reconstruction accuracy essentially de-
pends on the time. The end-time solution is reconstructed inaccurately, and the con-
vergence related with decreased input-data inaccuracy is indistinctly observed. A more
favorable situation is observed at t = T/2. It is by this time, as it was shown previ-
ously in the theoretical consideration of the problem, that the rate of convergence of
the approximations to the exact solution attains its highest.
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Figure 7.1 Mesh solution of the direct problem

Figure 7.2 Solution of the inverse problem obtained with δ = 0.005
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Figure 7.3 Solution of the inverse problem obtained with δ = 0.01

Figure 7.4 Solution of the inverse problem obtained with δ = 0.0025
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7.2 Regularized difference schemes

An important class of solution methods for ill-posed evolutionary problems is related
with some perturbation applied to the initial equation. In the generalized inverse
method, such a perturbation can be applied immediately to the initial differential prob-
lem.

In a more natural approach, no auxiliary differential problem is considered; instead,
this approach uses a perturbation applied to the difference problem. In this way, regu-
larized difference schemes can be constructed.

7.2.1 Regularization principle for difference schemes

The regularization principle for difference schemes is presently recognized as a guid-
ing principle in improvement of difference schemes. For general two- and three-layer
schemes, recipes aimed at improving the quality of the difference schemes (their sta-
bility, accuracy and efficiency) can be formulated. Using this principle, one can ex-
amine stability and convergence of a broad class of difference schemes for boundary
value mathematical physics problems and develop solution algorithms for difference
problems.

Traditionally, the regularization principle is widely used to develop stable difference
schemes for well-posed problems involving partial differential equations. The same
uniform methodological base is used to construct difference schemes for conditionally
well-posed non-stationary mathematical physics problems. Weakly perturbing prob-
lem operators, one can exert control over the growth of the solution norm on passage
from one to the next time layer.

Absolutely stable difference schemes can be constructed, with the help of the regu-
larization principle, in the following manner:

1. For a given initial problem we construct some simplest difference scheme
(generating difference scheme) that does not possesses the required properties;
i. e., a scheme conditionally stable or even absolutely unstable.

2. We write the difference scheme in the standard (canonical) form for which
stability conditions are known.

3. The properties of the difference scheme (its stability) can be improved by per-
turbing the operators in the difference scheme.

Thus, the regularization principle for a difference scheme is based on using already
known results concerning conditional stability. Such criteria are given by the general
stability theory for difference schemes. From the latter standpoint, we can consider the
regularization principle as a means enabling an efficient use of general results yielded
by the stability theory for difference schemes. The latter can be achieved by writing
difference schemes in rather a general canonical form and by formulation of easy-to-
check stability criteria.
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To illustrate the considerable potential the regularization principle offers in the real-
ization of difference schemes, we will use this general approach to construct absolutely
stable schemes for direct mathematical physics problems. As a model problem, below
we consider the first boundary value problem for the parabolic equation. As a generat-
ing function, consider a conditionally stable explicit scheme. For an absolutely stable
scheme to be obtained, we perturb the operators in the explicit difference scheme. We
separately consider the variants with additively (standardly) and multiplicative (non-
standardly) perturbed operators of the generating difference scheme.

Consider a two-dimensional problem in the rectangle

� = {x | x = (x1, x2), 0 < xα < lα, α = 1, 2}.

In �, we seek the solution of the parabolic equation

∂u
∂t

−
2∑

α=1

∂

∂xα

(
k(x)

∂u
∂xα

)
= 0, x ∈ �, 0 < t < T, (7.77)

supplemented with the simplest homogeneous boundary conditions of the first kind:

u(x, t) = 0, x ∈ ∂�, 0 < t < T . (7.78)

Also, an initial condition is given:

u(x, 0) = u0(x), x ∈ �. (7.79)

We assume that the coefficient in (7.77) is sufficiently smooth and k(x) ≥ κ , κ > 0,
x ∈ �.

We put into correspondence to the differential problem (7.77)–(7.79) a differential-
difference problem by performing discretization over space. We assume for simplicity
that a grid with step sizes hα, α = 1, 2, uniform along each of the directions, is
introduced in the domain �. As usually, ω is the set of internal nodes.

On the set of mesh functions y(x) such that y(x) = 0, x �= ω, we define, by the
relation

�y = −
2∑

α=1

(aα yx̄α
)xα

, (7.80)

a difference operator �, putting, for instance,

a1(x) = k(x1 − 0.5h1, x2), a2(x) = k(x1, x2 − 0.5h2).

In the Hilbert space H = L2(ω), we introduce the scalar product and the norm by the
relations

(y, w) =
∑
x∈ω

y(x)w(x)h1h2, ‖y‖ =
√

(y, y).
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In H , we have � = �∗ ≥ m E , m > 0. We pass from (7.77)–(7.79) to the differential-
operator equation

dy
dt

+ �y = 0, 0 < t < T (7.81)

at a given
y(0) = u0, x ∈ ω. (7.82)

Now, we are going to construct absolutely stable two-layer difference schemes for
problem (7.81), (7.82) around the regularization principle.

In compliance with the regularization principle, we first choose some difference
scheme to start from. As such generating a scheme, we can consider the simplest
explicit scheme

yn+1 − yn

τ
+ �yn = 0, n = 0, 1, . . . , N0 − 1, (7.83)

y0 = u0, x ∈ ω, (7.84)

where N0τ = T .
We write the difference scheme (7.83), (7.84) in the canonical form for two-layer

operator-difference schemes

B
yn+1 − yn

τ
+ Ayn = 0, tn ∈ ωτ (7.85)

with the operators
B = E, A = �.

By Theorem 4.2, the condition

B ≥ τ

2
A, t ∈ ωτ (7.86)

is a condition necessary and sufficient for the scheme (7.84), (7.85) to be stable in HA

or, in other words, for the estimate

‖yn+1‖A ≤ ‖u0‖A, t ∈ ωτ

to hold.
With the inequality � ≤ ‖�‖E taken into account, we would like to obtain, from

the necessary and sufficient stability conditions (7.86), the following constraints on the
time step size in the explicit scheme (7.83), (7.84):

τ ≤ 2
‖�‖ .

In the case under consideration, ‖�‖ = O(|h|2), where |h|2 = h2
1 + h2

2, and for the
maximum admissible step size we have τ0 = O(|h|2).
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According to (7.86), improved stability can be gained in two ways. In the first case,
stability can be improved due to increased energy (By, y) of the operator B (left-hand
side of inequality (7.86)) or, alternatively, due to decreased energy of the operator A
(right-hand side of inequality (7.86)). Consider first the opportunities related with
addition of operator terms to the operators B and A. In this case, we will speak of
additive regularization.

We can most naturally start from an additive perturbation applied to the operator B,
i.e., from the transition B �→ B +αR, where R is the regularizing operator and α is the
regularization parameter. Taking the fact into account that in the generating scheme of
interest we have B = E , we put:

B = E + αR. (7.87)

To retain the first approximation order in the scheme (7.85), (7.87), it suffices for us to
choose α = O(τ ).

Consider two typical choices of the regularizing operator:

R = �, (7.88)

R = �2. (7.89)

We can directly establish that the regularized difference scheme (7.85), (7.87) is
stable in HA provided that α ≥ τ/2 in the case of (7.88) and α ≥ τ 2/16 in the case
of (7.89).

The regularized scheme (7.85), (7.87), (7.88) corresponds to the case in which we
use the standard weighted scheme

yn+1 − yn

τ
+ �(σ yn+1 + (1 − σ)yn) = 0 n = 0, 1, . . . , N0 − 1,

with α = στ .
In the standard approach for the construction of stable schemes, additive regular-

ization is used. The alternative approach uses multiplicative perturbation of difference
operators in the generating scheme. Within the framework of the latter approach, con-
sider simplest examples part of which can be considered as a new interpretation of the
above regularized schemes.

In multiplicative regularization of B, apply, for instance, the change B �→ B(1 +
αR) or B �→ (1 + αR)B. With such a perturbation, we still remain in the class of
schemes with self-adjoint operators provided that R = R∗. In this case, we have the
previously examined regularized scheme (7.85), (7.87).

An example of more complex regularization is given by the transformation

B �→ (E + αR∗)B(E + αR).

In the case of R = A, the condition for stability is α ≥ τ/8. In another interesting
example, the alternate triangular method is used, in which A = R∗ + R and α ≥ τ/2.
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In a similar manner, multiplicative regularization due to perturbed operator A can
be applied. With allowance for the inequality (7.86), we can use the transformation
A �→ A(1 + αR)−1 or A �→ (1 + αR)−1 A. For simplest two-layer schemes, such
regularization can be considered as a new version of regularization applied to B. To
remain in the class of schemes with self-adjoint operators, it suffices for us to choose
R = R(A). A higher potential is offered by the regularization

A �→ (E + αR∗)−1 A(E + αR)−1.

In the latter case, the regularizing operator R can be chosen not directly related with
the operator A.

7.2.2 Inverted-time problem

In the development of computational algorithms for the approximate solution of ill-
posed problems involving evolutionary equations, broad possibilities are offered by
the regularization principle. In the rectangle �, we seek the solution of the parabolic
equation

∂u
∂t

+
2∑

α=1

∂

∂xα

(
k(x)

∂u
∂xα

)
= 0, x ∈ �, 0 < t < T, (7.90)

that differs from (7.77) only by the sign at the spatial derivatives, which corresponds to
the substitution of t with −t , yielding the equation with inverted time. The boundary
and initial conditions here remain the same as previously (see (7.78) and (7.79)).

We put into correspondence to the differential inverse problem (7.78), (7.78), (7.90)
a Cauchy problem for the differential-operator equation

dy
dt

− �y = 0, 0 < t < T . (7.91)

Let us construct now absolutely stable difference schemes for (7.82), (7.91) using the
regularization principle for difference schemes.

To construct the difference scheme for the ill-posed problem under consideration,
we use the regularization principle. We start with the simplest explicit difference
scheme

yn+1 − yn

τ
− �yn = 0, x ∈ ω, n = 0, 1, . . . , N0 − 1 (7.92)

supplemented with the initial condition (7.84).
In compliance with the regularization principle, we write the scheme (7.92) in the

canonical form with
A = −�, B = E, (7.93)

i. e., A = A∗ < 0.
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We use (see Lemma 3.2) the upper estimate for the difference operator �:

� ≤ M E (7.94)

with the constant

M = 4
h2

1
max
x∈ω

a(1)(x) + a(1)(x1 + h1, x2)

2
+ 4

h2
2

max
x∈ω

a(2)(x) + a(2)(x1, x2 + h2)

2
.

Theorem 7.8 The explicit scheme (7.84), (7.92) is �-stable in H with

� = 1 + Mτ. (7.95)

Proof. The latter statement stems from the general conditions for �-stability for two-
layer operator-difference schemes. The difference scheme (7.84), (7.85) with self-
adjoint, time-independent operators B > 0, A is �-stable in HB in the case of (see
Theorem 4.4)

1 − ρ

τ
B ≤ A ≤ 1 + ρ

τ
B. (7.96)

For the scheme (7.84), (7.92), we have B > 0, A < 0, and for � > 1 the right-hand
side of the two-sided operator inequality (7.96) is fulfilled for all τ > 0. The left-hand
side of (7.96) assumes the form (� − 1)/τ E ≥ �; in view of (7.94), this inequality
holds with � chosen according to (7.95).

Remark 7.9 In the approximate solution of ill-posed problems, the value of the regu-
larization parameter must be matched with the input-data inaccuracy. Here, we restrict
ourselves to the construction of stable computational algorithms for ill-posed evolu-
tionary problems and to the examination of the effect of regularization parameter on
the stability of the difference scheme only. For a given value of α, the minimum value
of � is to be specified according to (7.95).

Starting from the explicit scheme (7.84), (7.92), we write the regularized scheme
for problem (7.82), (7.91) in the canonical form (7.85) with

A = −�, B = E + αR. (7.97)

Theorem 7.10 The regularized scheme (7.85), (7.97) is �-stable in HB with

� = 1 + τ

α
(7.98)

if the regularizing operator is chosen according to (7.88) and with

� = 1 + τ

2
√

α
(7.99)

if the operator (7.89) is used.
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Proof. To prove the theorem, it suffices to check that the left-hand side of the two-
sided inequality (7.96) is fulfilled. For (7.97), this inequality assumes the form

� − 1
τ

(E + αR) ≥ �. (7.100)

In the case of R = � and with � chosen by (7.98), inequality (7.100) is fulfilled.
In the case of R = �2, inequality (7.100) can be transformed into

E + α�2 − τ

� − 1
=
(√

α� − τ

2
√

α(� − 1)
E
)2

+
(

1 − τ 2

4α(� − 1)2

)
E ≥ 0.

The latter inequality will be fulfilled with � chosen in the form of (7.99).

In a similar manner, other regularized difference schemes can be constructed. In par-
ticular, by now second-order evolutionary problems, problems with non-self-adjoint
operators, additive schemes for multi-dimensional inverse problems, etc. have been
considered. With constructed regularized difference schemes, these or those (standard
or non-standard) variants of the generalized inverse method can be related.

7.2.3 Generalized inverse method

First of all, consider methods for the approximate solution of ill-posed problems in-
volving evolutionary equations based on some perturbation of the initial equation that
makes the perturbed problem a well-posed problem. Here, the perturbation parameter
serves the regularization parameter. Such methods are known as generalized inverse
methods. Let us give a priori estimates for the solution of the perturbed problem
in various versions of the generalized inverse method for problems with self-adjoint,
positive operators. Convergence of the approximate solution uα to the exact solution u
takes place in some well-posedness classes. It makes sense to consider here the matter
of approximate solution of unstable evolutionary problems using difference methods
based on various versions of the generalized inverse method. Primary attention will be
paid to the matter of stability of the difference schemes.

First of all, let us dwell on the examination of the main version of the generalized
inverse method. In the Hilbert space H, consider an ill-posed Cauchy problem for the
first-order evolutionary equation

du
dt

− Au = 0, (7.101)
u(0) = u0. (7.102)

In the model inverse problem (7.78), (7.79), (7.90), we can put H = L2(�) and

Au = −
2∑

α=1

∂

∂xα

(
k(x)

∂u
∂xα

)
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on the set of functions satisfying (7.78). We assume that the operator A is a positive
definite self-adjoint operator in H. Let 0 < λ1 ≤ λ2 ≤ · · · be the eigenvalues of A.
The corresponding system of eigenfunctions {wk}, wk ∈ D(A), k = 1, 2, . . . is an
orthonormal complete system in H.

For the stable approximate solution of the ill-posed problem (7.101), (7.102), apply
the generalized inverse method. Taking into account the self-adjointness of A, we
determine uα(t) as the solution of the equation

duα

dt
− Auα + αA2uα = 0 (7.103)

with the initial condition
uα(0) = u0. (7.104)

Let us formulate a typical statement about the approximate-solution stability.

Theorem 7.11 For the solution of problem (7.103), (7.104), the following estimate
holds:

‖uα(t)‖ ≤ exp
( 1

4α
t
)
‖uα(0)‖. (7.105)

Proof. To derive the estimate (7.105), we scalarwise multiply equation (7.103) in H
by uα(t). This yields the equality

1
2

d
dt

‖uα‖2 + α‖Auα‖2 = (Auα, uα). (7.106)

The right-hand side of (7.106) can be estimated as

(Auα, uα) ≤ ε‖Auα‖2 + 1
4ε

‖uα‖2. (7.107)

Substitution of (7.107) with ε = α into (7.106) yields:

d
dt

‖uα‖2 ≤ 1
2α

‖uα‖2.

From here, and also from the Gronwall inequality, the desired estimate (7.105) follows.

Let us briefly discuss the matter of convergence of the approximate solution uα(t)
to the exact solution u(t). From (7.101) and (7.103), for the inaccuracy v(t) = uα(t)−
u(t) we obtain the equation

dv

dt
− Av + αA2v = −αA2u. (7.108)

The ill-posedness of problem (7.101), (7.102) results from instability of the solution
with respect to initial data. Instead of the exact initial condition (7.104), we use the
condition

uα(0) = uδ
0. (7.109)
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For the initial-condition inaccuracy, we can use the estimate of type

‖uδ
0 − u0‖ ≤ δ. (7.110)

In view of this, equation (7.108) is supplemented with the initial condition

v(0) = uδ
0 − u0, (7.111)

in which ‖v(0)‖ ≤ δ.
Convergence of the approximate solution to the solution of the ill-posed problem

can be established in certain well-posedness classes. Most frequently, the a priori con-
straints on the solution of the unstable problem are related with the assumption about
solution boundedness. Concerning the problem (7.101), (7.102), we can consider the
following classes of solutions:

‖Au(t)‖ ≤ M, (7.112)

‖A2u(t)‖ ≤ M (7.113)

for all t ∈ [0, T ].
By examining stability with respect to initial data and right-hand side, we can derive

an estimate for the inaccuracy in the classes of a priori constraints (7.112), (7.113).
Under the constraints (7.112), we obtain:

‖v(t)‖ ≤ δ exp
( 1

2α
t
)

+
(

exp
( t
α

)
− 1

)1/2
M. (7.114)

In the class (7.113), the corresponding estimate is

‖v(t)‖ ≤ δ exp
( 1

2α
t
)

+
√

2
(

exp
( t
α

)
− 1

)1/2
αM. (7.115)

The derived estimates (7.114) and (7.115) are not optimal estimates. In particular,
these estimates do not prove convergence of the approximate solution uα(t) found
from equation (7.103) and initial condition (7.109) to the exact solution u(t) with
δ → 0. Here, a more subtle consideration is required. Let us show, for instance, the
convergence in H in the class of solutions bounded in H.

We will adhere to a scheme closely following the proof of convergence of approx-
imate solution to the exact solution in the case of approximate solution obtained with
non-locally perturbed initial condition. We write the approximate solution uα(t) for
the inaccurately given initial condition (7.109) in the operator form:

uα(t) = R(t, α)uδ
0. (7.116)

In this notation, R(t, 0) is the exact solution of the problem and, hence, u(t) =
R(t, 0)u0. With the introduced settings, for the inaccuracy v we obtain

‖uα(t) − u(t)‖ = ‖R(t, α)(uδ
0 − u0) − (R(t, α) − R(t, 0))u0‖

≤ ‖R(t, α)‖ ‖uδ
0 − u0‖ + ‖(R(t, α) − R(t, 0))u0‖. (7.117)
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The first term in (7.117) refers to stability with respect to initial data (boundedness
of R(t, α)). The second term in the right-hand side of (7.117) requires that the solution
R(t, α)u0 of the perturbed problem obtained with exact input data be close to the exact
solution u(t). It is with this aim that a certain class of solutions (well-posedness class)
has been isolated.

In view of the derived initial-data stability estimate (7.105) and estimate (7.110), we
have:

‖R(t, α)‖ ‖uδ
0 − u0‖ ≤ exp

( 1
4α

t
)
δ. (7.118)

Consider the second term in the right-hand side of (7.117).
The operator R(t, α) has the form

R(t, α) = exp ((A − αA2)t). (7.119)

For the approximate solution determined from (7.113), (7.109), with (7.119) we obtain
the representation

uα(t) =
∞∑

k=1

(uδ
0, wk) exp ((λk − αλ2

k)t)wk . (7.120)

In view of (7.120), we have

χ(t) ≡ ‖(R(t, α) − R(t, 0))u0‖2

=
∞∑

k=1

exp (2λkt)(1 − exp (−αλ2
kt))2(u0, wk)

2. (7.121)

We consider stability in the class of solutions bounded in H:

‖u(t)‖ ≤ M, 0 ≤ t ≤ T . (7.122)

In view of (7.122), for any ε > 0 there exists a number r(ε) such that

∞∑
k=r(ε)+1

exp (2λkt)(u0, wk)
2 ≤ ε

8
.

Hence, from (7.121) we obtain:

χ(t) ≤
r(ε)∑
k=1

exp (2λkt)(1 − exp (−αλ2
kt))2(u0, wk)

2 +
∞∑

k=r(ε)+1

exp (2λkt)(u0, wk)
2

≤ M2
r(ε)∑
k=1

(1 − exp (−αλ2
kt))2 + ε2

8
.
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For any r(ε), there exists a number α0 such that in the case of α ≤ α0 we have

M2
r(ε)∑
k=1

(1 − exp (−αλ2
kt))2 ≤ ε2

8
.

Hence, (7.122) yields:

‖(R(t, α) − R(t, 0))u0‖ ≤ ε/2. (7.123)

With relations (7.118) and (7.123) taken into account, from (7.117) we obtain the
estimate

‖uα(t) − u(t)‖ ≤ exp
( 1

4α
t
)
δ + ε

2
. (7.124)

For any ε > 0 there exist a number α = α(δ) ≤ α0 and a sufficiently small δ(ε) for
which δ exp (t/(4α)) ≤ ε/2. Hence, (7.124) assumes the form

‖uα(t) − u(t)‖ ≤ ε.

Thus, the following statement can be formulated:

Theorem 7.12 Suppose that for the initial-condition inaccuracy the estimate (7.110)
is valid. Then, the approximate solution uα(t) found as the solution of problem (7.103),
(7.109) with δ → 0, α(δ) → 0, δ exp (t/(4α)) → 0 converges to the bounded exact
solution u(t) of problem (7.101), (7.102) in H.

Remark 7.13 The proved statement admits various generalizations. For instance, in
the narrower class of a priori constraints (7.113), one can derive a direct estimate of
‖(R(t, α) − R(t, 0))u0‖ in terms of α. It follows from (7.121) and (7.113) that

‖(R(t, α) − R(t, 0))u0‖2 ≤
∞∑

k=1

λ4
k exp (2λkt)α2t2(u0, wk)

2 ≤ α2t2 M2

and, hence, the following inequality holds:

‖uα(t) − u(t)‖ ≤ exp
( 1

4α
t
)

+ αt M.

In the second variant of the generalized inverse method, transition to a pseudo-
parabolic equation is used. In the case of a self-adjoint, positive operator A, instead of
the unstable problem (7.101), (7.102), we solve the equation

duα

dt
− Auα + αAduα

dt
= 0, (7.125)

supplemented with the initial condition (7.104).
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Theorem 7.14 For the solution of problem (7.104), (7.125), the following estimate
holds:

‖uα(t)‖ ≤ exp
( 1
α

t
)
‖uα(0)‖. (7.126)

Proof. To prove the theorem, we rewrite equation (7.125) as

duα

dt
− (E + αA)−1Auα = 0. (7.127)

We scalarwise multiply (7.127) in H by uα(t); then, we obtain:

1
2

d
dt

‖uα‖2 = ((E + αA)−1Auα, uα). (7.128)

It is easy to check that for the right-hand side of (7.128) there holds the estimate

((E + αA)−1Auα, uα) ≤ 1
α

(uα, uα).

On the operator level, the latter inequality corresponds to the inequality

(E + αA)−1A ≤ 1
α

E . (7.129)

To prove inequality (7.129), we multiply (7.129) from the right and from the left by
(E + αA). In this way, we pass to the equivalent inequality

(E + αA)A ≤ 1
α

(E + 2αA + α2A2),

which obviously holds in the case of α > 0.
With inequality (7.129) taken into account, from (7.128) we obtain the inequality

1
2

d
dt

‖uα‖ ≤ 1
α

‖uα‖2,

which yields the desired estimate (7.126).

Convergence of the approximate solution to the exact solution can be established
in the case of δ → 0, α(δ) → 0, δ exp (t/(α)) → 0 under the previously discussed
constraints.

Let us briefly discuss the matter of construction and examination of numerical solu-
tion methods for ill-posed evolutionary problems with perturbed equations. As a model
problem, consider the problem (7.78), (7.79), (7.90), a retrospective heat-transfer prob-
lem in the rectangle �. On discretization over space, we arrive at a Cauchy problem
for the differential-operator equation (7.82), (7.91).
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The difference analogue of the basic generalized inverse method (see (7.103)) has
the form

yn+1 − yn

τ
− �(σ1 yn+1 + (1 − σ1)yn) + α�2(σ2 yn+1 + (1 − σ2)yn) = 0, (7.130)

n = 0, 1, . . . , N0 − 1.

Let us examine stability of this weighted scheme using the results of the general
stability theory for operator-difference schemes. Here, stability criteria are formulated
as operator inequalities for difference schemes written in the canonical form.

The scheme (7.130) can be written in the canonical form (7.85) with

A = −� + α�2,

B = E − σ1τ� + σ2τα�2.
(7.131)

Theorem 7.15 The scheme (7.85), (7.131) is ρ-stable in H = L2(ω) for any τ > 0
with

ρ = 1 + 1
4α

τ, (7.132)

provided that σ1 ≤ 0, σ2 ≥ 1/2.

Proof. First of all, note that the choice of ρ is perfectly consistent with the estimate
(7.105) for the solution of the continuous problem. The proof of (7.132) is based on
checking the necessary and sufficient conditions for ρ-stability.

First of all, we check that under the formulated constraints on the weights of (7.130)
we have: B = B∗ > 0. With (7.131), the right-hand side of (7.96) can be transformed
as follows:

0 ≤ 1 + ρ

τ
B − A

= � − α�2 + 1 + ρ

τ
E − (1 + ρ)σ1� + (1 + ρ)ασ2�

2

= 1 + ρ

τ
E + (1 − (1 + ρ)σ1)� + α((1 + ρ)σ2 − 1)�2.

Under the indicated constraints on the weights, this inequality holds for all ρ > 1.
An estimate for ρ can be obtained from the left inequality of (7.96). With ρ =

1 + cτ , this inequality assumes the form

cB ≥ −A. (7.133)

Substitution of (7.131) into (7.133) yields:

c(E − σ1τ� + σ2τα�2) ≥ � − α�2 = −
( 1

2
√

α
E − √

α �
)2

+ 1
4α

E .

In the case of σ1 ≤ 0, σ2 ≥ 1/2, for the inequality to be fulfilled, we can put c =
1/(4α). The latter yields for ρ the expression (7.132).
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In a similar manner, difference schemes for other variants of the generalized inverse
method can be constructed. Let us examine, for instance, two-layer difference schemes
for a pseudo-parabolic perturbation. To approximately solve equation (7.91) with the
initial condition (7.82), we use the difference scheme

yn+1 − yn

τ
− �(σ yn+1 + (1 − σ)yn) + α�

yn+1 − yn

τ
= 0. (7.134)

The scheme (7.134) can be written in the canonical form (7.85) with

A = −�, B = E + (α − στ)�. (7.135)

Theorem 7.16 The difference scheme (7.85), (7.135) is ρ-stable in H for all τ > 0
with

ρ = 1 + 1
α

τ, (7.136)

provided that σ ≤ 0.

Proof. In the case under consideration, the condition B = B∗ > 0 and the right
inequality of (7.96) obviously hold. With (7.135), the left inequality of (7.96) assumes
the form

c(E + (α − στ)�) ≥ �

and, hence, we can put c = 1/α; then, for ρ we have (7.136).

Remark 7.17 The estimate of the difference solution of scheme (7.134) with ρ given
by (7.136) is perfectly consistent with the estimate for the solution of the differential
problem (see estimate (7.126)).

Remark 7.18 Accurate to the adopted notation, the scheme (7.134) coincides with the
ordinary weighted scheme immediately written for (7.82), (7.91):

yn+1 − yn

τ
− �(σ ′yn+1 + (1 − σ ′)yn) = 0. (7.137)

In suffices to put in (7.137) σ ′ = σ − α/τ . The only essential thing here is that the
weight σ ′ in (7.137) is negative.

The presented schemes, as well as all other known schemes, can be obtained by
regularization of unstable difference schemes. Moreover, based on an analysis of reg-
ularized difference schemes, other versions of the generalized inverse method can be
constructed.

The difference scheme (7.134) of the pseudo-parabolic generalized inverse method
is nothing else than a regularized scheme of type (7.85), (7.88), (7.97). The difference
scheme of the basic variant (7.130) of the generalized inverse method refers to the
use of regularized difference schemes with perturbed operators A and B (see (7.131)).



Section 7.2 Regularized difference schemes 277

The regularized difference scheme (7.85), (7.89), (7.97) can be used to construct a new
version of the generalized inverse method in which the approximate solution is sought
as the solution of a Cauchy problem for the equation

duα

dt
− Auα + αA2 duα

dt
= 0. (7.138)

In construction of regularized difference schemes, the perturbed differential prob-
lem itself becomes unnecessary. Note also that for difference problems the construc-
tion of a stable scheme around the regularization principle is facilitated substantially
because general results are available concerning the necessary and sufficient conditions
for ρ-stability of the difference schemes.

7.2.4 Regularized additive schemes

Certain difficulties may arise in the computational realization of difference schemes
constructed within the framework of the generalized inverse method. The latter is
related, first of all, with the fact that the perturbed problem is a singularly perturbed
problem (with small perturbation parameters at higher derivatives). It should be noted
that a perturbed equation is a higher-order equation. To discuss this matter, here we
imply that the standard variant of the generalized inverse method (7.103), (7.104) is
used.

In the approximate solution of problem (7.77)–(7.79), it seems reasonable to use the
difference scheme

yn+1 − yn

τ
− �yn + α�2(σ yn+1 + (1 − σ)yn) = 0. (7.139)

The latter implies that in the two-parametric scheme (7.130) we have σ1 = 0 and
σ2 = σ . The scheme (7.139) is ρ-stable (see Theorem 7.15) if σ ≥ 1/2.

Above, we showed that the difference schemes constructed within the framework of
the generalized inverse method can be obtained in two ways. The first approach implies
approximation of the perturbed differential problem. The second approach is based on
using the regularization principle for operator-difference schemes. In connection with
the present consideration of scheme (7.139), another interpretation of the generalized
inverse method scheme can prove useful, in which this scheme is considered as a
scheme with smoothed mesh solution.

We consider scheme (7.139) as a scheme of the predictor-corrector type. Consider
the simplest case of σ = 1. In this case, at the predictor stage we seek the mesh
solution ỹn+1 using the explicit scheme

ỹn+1 − yn

τ
− �yn = 0. (7.140)

In accordance with (7.139), in the case of σ = 1 the corrector stage is

yn+1 − ỹn+1

τ
+ α�2 yn+1 = 0. (7.141)
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The explicit scheme (7.140) is unstable; a stable solution can be obtained using
(7.141). Equation (7.141) can be considered as an Euler equation in the smoothing
problem for the mesh function ỹn+1:

Jα(yn+1) = min
v∈H

Jα(v), (7.142)

Jα(v) = ‖v − ỹn+1‖2 + τα‖�v‖2. (7.143)

In the latter interpretation, we can speak of the generalized inverse method in the form
(7.140), (7.141) (or (7.140), (7.142), (7.143)) as of a local regularization algorithm.
Such a relation can be traced especially distinctly on the difference level.

Realization of the difference scheme (7.139) requires solution of the following
forth-order difference elliptic equation:

ασ�2v + 1
τ

v = f.

At present, this task presents rather a difficult computational problem. It would there-
fore be desirable to have regularization difference schemes simpler from the standpoint
of computational realization. In this connection, additive spatial-variable split schemes
deserve mention in which transition to the next time layer necessitates solution of one-
dimensional difference problems.

We construct additive operator-difference schemes starting from scheme (7.139).
We begin with the interpretation of scheme (7.139) as a regularization scheme. As a
generating scheme, we consider, as usual, an explicit scheme in which for the general-
ized inverse method we have:

yn+1 − yn

τ
+ (α�2 − �)yn = 0. (7.144)

To an additive regularization scheme, the following form of (7.139) corresponds:

(E + αστ�2)
yn+1 − yn

τ
+ (α�2 − �)yn = 0.

In the latter case, the transition from (7.144) is interpreted as

B = E �→ B + αστ�2.

We can change scheme (7.139) to the following somewhat different yet equivalent
form:

yn+1 − yn

τ
+ (E + αστ�2)−1(α�2 − �)yn = 0. (7.145)

Scheme (7.145) corresponds to the use of the following version of multiplicative reg-
ularization:

A = α�2 − � �→ (E + αστ�2)−1 A. (7.146)
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It is the regularization (7.145), (7.146) that will be used as the basis for the desired
regularized additive operator-difference schemes.

In view of (7.80), we have the following additive representation for �:

� =
2∑

β=1

�β, �β y = −(aβ yx̄β
)xβ

, β = 1, 2. (7.147)

Either of these operator terms is positive,

�β = �∗
β > 0, β = 1, 2,

and both are generally non-permutable:

�1�2 �= �2�1.

In the case of three-dimensional problems, the operator � can be factorized to three
one-dimensional pairwise non-permutable positive operators.

We construct the additive scheme using constructions analogous to (7.145), and
used for each operator term in (7.147). The latter yields the regularized scheme

yn+1 − yn

τ
+

2∑
β=1

(E + αστ�2
β)−1(α�2

β − �β)yn = 0. (7.148)

To obtain the stability condition, we write scheme (7.148) in the form

yn+1 − yn

τ
+

2∑
β=1

Aβ yn = 0, (7.149)

where
Aβ = (E + αστ�2

β)−1(α�2
β − �β), β = 1, 2. (7.150)

In the case of interest, for the operators we have Aβ = A∗
β , β = 1, 2; hence,

A =
2∑

β=1

Aβ = A∗. (7.151)

The scheme (7.149), (7.151) is ρ-stable provided that the two-sided inequality
(7.96) is fulfilled; in the case of interest, this inequality assumes the form

1 − ρ

τ
E ≤ A ≤ 1 + ρ

τ
E . (7.152)

Inequality (7.152) will be fulfilled, for instance, in the case of

1 − ρ

2τ
E ≤ Aβ ≤ 1 + ρ

2τ
E, β = 1, 2.
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With allowance for (7.150), we rewrite this inequality as follows:

1 − ρ

2τ
(E + αστ�2

β) ≤ α�2
β − �β ≤ 1 + ρ

2τ
(E + αστ�2

β). (7.153)

Taking into account the inequality

α�2
β − �β ≥ − 1

4α
E,

we obtain that for the left inequality in (7.153) to be fulfilled it suffices for us to put

ρ = 1 + τ

2α
. (7.154)

The right inequality (7.153) is fulfilled in all cases if σ ≥ 1. This allows the following
statement to be formulated:

Theorem 7.19 The regularized additive scheme (7.148) is ρ-stable in H, with ρ de-
fined by (7.154) with τ > 0, provided that σ ≥ 1.

The realization of the additive scheme (7.148) requires the inversion of the one-
dimensional difference operators E +αστ�2

β , β = 1, 2. The following computational
scheme can be proposed which demonstrates an intimate interrelation between the
regularized schemes under consideration and additive-averaged difference schemes.

We determine the auxiliary mesh functions y(β)

n+1, β = 1, 2 by solving the equations

y(β)

n+1 − yn

2τ
+ (E + αστ�2

β)−1(α�2
β − �β)yn = 0, β = 1, 2. (7.155)

Afterwards, the next-layer solution is given by

yn+1 = 1
2

2∑
β=1

y(β)

n+1. (7.156)

We change equation (7.155) to the form analogous to (7.139):

y(β)

n+1 − yn

2τ
− �β yn + α�2

β(σ y(β)

n+1 + (1 − σ)yn) = 0.

Thus, the determination of y(β)

n+1, β = 1, 2 corresponds to the case in which the gener-
alized inverse method is applied to each operator term in (7.147).

Above (see (7.140), (7.141)), a close relation between the generalized inverse
method and local regularization algorithms (smoothing at each time layer, see (7.140),
(7.142), (7.143)) was noted. In the latter interpretation, the regularized scheme (7.148)
corresponds to the case in which, as a local regularization algorithm, we use smoothing
along individual directions (see (7.155)) followed by averaging according to (7.156).
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We can relate with the regularized additive scheme (7.148) or, more precisely, with
the additive-averaged scheme (7.155), (7.156), the generalized inverse method used to
solve problem (7.101), (7.102) with

A =
p∑

β=1

Aβ, Aβ = A∗
β ≥ 0, β = 1, 2, . . . , p. (7.157)

In the case of two-component splitting, we have p = 2. The approximate solution of
problem (7.101), (7.102), (7.157) is to be found as the solution of a Cauchy problem
for the equation

duα

dt
−

p∑
β=1

Aβuα + α

p∑
β=1

A2
βuα = 0. (7.158)

For the solution of problem (7.104), (7.158), the following estimate of stability with
respect to initial data holds:

‖uα(t)‖ ≤ exp
( p

4α
t
)
‖u0‖.

The latter estimate is perfectly consistent with the above ρ-stability estimate (see
(7.154)) for the regularized difference scheme (7.148).

7.2.5 Program

To approximately solve the inverted-time problem, we use the regularized additive
scheme (7.148). The computational realization here is based on the interpretation
of this scheme as the additive-averaged scheme (7.155), (7.156). The five-diagonal
difference problems are solved by the five-point sweep algorithm using the subroutine
PROG5. A detailed description of the algorithm is given in Section 6.1.

The input data for the inverted-time problem are taken from the solution of the direct
problem (7.77)–(7.79). To find the approximate solution, the following purely implicit
additive-averaged scheme is used:

y(β)

n+1 − yn

2τ
+ �β yn+1 = 0, β = 1, 2,

yn+1 = 1
2

2∑
β=1

y(β)

n+1.

The end-time difference solution of the direct problem is perturbed to use this solu-
tion as input data in the inverse problem.

The value of the regularization parameter was chosen considering the discrepancy,
using the sequence

αk = α0qk, q > 0
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with given α0 = 0. and q = 0.75. To calculate the discrepancy, we additionally solved
the direct problem in which initial data were taken equal to the solution of the inverse
problem.

For simplicity, in the program presented below we have restricted ourselves to the
simplest case of time-independent coefficients, with k(x) = 1 in (7.77), and the
weighting parameter in the regularized additive scheme (7.155), (7.156) is σ = 1.

Program PROBLEM11

C
C PROBLEM11 INVERTED-TIME PROBLEM
C TWO-DIMENSIONAL PROBLEM
C ADDITIVE REGULARIZED SCHEME
C

IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( DELTA = 0.01, N1 = 101, N2 = 101, M = 101 )
DIMENSION U0(N1,N2), UT(N1,N2), UTD(N1,N2), U(N1,N2)
+ ,X1(N1), X2(N2), Y(N1,N2), Y1(N1,N2), Y2(N1,N2), YY(N1)
+ ,A(N1), B(N1), C(N1), D(N1), E(N1), F(N1) ! N1 >= N2

C
C PARAMETERS:
C
C X1L, X2L - COORDINATES OF THE LEFT CORNER;
C X1R, X2R - COORDINATES OF THE RIGHT CORNER;
C N1, N2 - NUMBER OF NODES IN THE SPATIAL GRID;
C H1, H2 - STEP OVER SPACE;
C TAU - TIME STEP;
C DELTA - INPUT-DATA INACCURACY;
C Q - MULTIPLIER IN THE REGULARIZATION PARAMETER;
C U0(N1,N2) - RECONSTRUCTED INITIAL CONDITION;
C UT(N1,N2) - END-TIME SOLUTION OF THE DIRECT PROBLEM;
C UTD(N1,N2)- DISTURBED SOLUTION OF THE DIRECT PROBLEM;
C U(N1,N2) - APPROXIMATE SOLUTION OF THE INVERSE PROBLEM;
C

X1L = 0.D0
X1R = 1.D0
X2L = 0.D0
X2R = 1.D0
TMAX = 0.025D0
PI = 3.1415926D0

C
OPEN (01, FILE = ’RESULT.DAT’) !FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H1 = (X1R-X1L) / (N1-1)
H2 = (X2R-X2L) / (N2-1)

TAU = TMAX / (M-1)
DO I = 1, N1

X1(I) = X1L + (I-1)*H1
END DO
DO J = 1, N2

X2(J) = X2L + (J-1)*H2
END DO

C
C DIRECT PROBLEM
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C ADDITIVE-AVERAGE DIFFERENCE SCHEME
C
C INITIAL CONDITION
C

DO I = 1, N1

DO J = 1, N2
U0(I,J) = AU(X1(I),X2(J))
Y(I,J) = U0(I,J)

END DO
END DO
DO K = 2, M

C
C SWEEP OVER X1
C

DO J = 2, N2-1
C
C COEFFICIENTS OF THE DIFFERENCE SCHEME IN THE DIRECT PROBLEM
C

B(1) = 0.D0
C(1) = 1.D0
F(1) = 0.D0
A(N1) = 0.D0
C(N1) = 1.D0
F(N1) = 0.D0
DO I = 2, N1-1

A(I) = 1.D0 / (H1*H1)
B(I) = 1.D0 / (H1*H1)
C(I) = A(I) + B(I) + 0.5D0 / TAU
F(I) = 0.5D0 * Y(I,J) / TAU

END DO
C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

ITASK1 = 1

CALL PROG3 ( N1, A, C, B, F, YY, ITASK1 )
DO I = 1, N1

Y1(I,J) = YY(I)
END DO

END DO
C
C SWEEP OVER X2
C

DO I = 2, N1-1
C
C COEFFICIENTS OF THE DIFFERENCE SCHEME IN THE DIRECT PROBLEM
C

B(1) = 0.D0
C(1) = 1.D0
F(1) = 0.D0
A(N2) = 0.D0

C(N2) = 1.D0
F(N2) = 0.D0
DO J = 2, N2-1

A(J) = 1.D0 / (H2*H2)
B(J) = 1.D0 / (H2*H2)
C(J) = A(J) + B(J) + 0.5D0 / TAU
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F(J) = 0.5D0 * Y(I,J) / TAU

END DO
C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

ITASK1 = 1
CALL PROG3 ( N2, A, C, B, F, YY, ITASK1 )
DO J = 1, N2

Y2(I,J) = YY(J)
END DO

END DO
C
C ADDITIVE AVERAGING
C

DO I = 1, N1
DO J = 1, N2

Y(I,J) = 0.5D0 * (Y1(I,J) + Y2(I,J))
END DO

END DO
END DO

C
C DISTURBING OF MEASURED QUANTITIES
C

DO I = 1, N1
DO J = 1, N2

UT(I,J) = Y(I,J)
UTD(I,J) = Y(I,J)

END DO
END DO

DO I = 2, N1-1
DO J = 2, N2-1

UTD(I,J) = UT(I,J) + 2.*DELTA*(RAND(0)-0.5)
END DO

END DO
C
C INVERSE PROBLEM
C
C ITERATIVE PROCESS TO ADJUST
C THE VALUE OF THE REGULARIZATION PARAMETER
C

IT = 0
ITMAX = 100
ALPHA = 0.001D0

Q = 0.75D0
100 IT = IT + 1

C

C ADDITIVE-AVERAGED REGULARIZATION SCHEMES
C
C INITIAL CONDITION
C

DO I = 1, N1
DO J = 1, N2

Y(I,J) = UTD(I,J)
END DO

END DO
DO K = 2, M
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C
C SWEEP OVER X1
C

DO J = 2, N2-1
C
C COEFFICIENTS OF THE DIFFERENCE SCHEME IN THE INVERSE PROBLEM
C

DO I = 2,N1-1
A(I) = ALPHA / (H1**4)
B(I) = 4.D0 * ALPHA / (H1**4)
C(I) = 6.D0 * ALPHA / (H1**4) + 0.5D0 / TAU
D(I) = 4.D0 * ALPHA / (H1**4)
E(I) = ALPHA / (H1**4)
F(I) = 0.5D0 * Y(I,J) / TAU

+ - (Y(I+1,J) - 2.D0*Y(I,J) + Y(I-1,J)) / (H1**2)
END DO
C(1) = 1.D0
D(1) = 0.D0

E(1) = 0.D0
F(1) = 0.D0
B(2) = 0.D0
C(2) = 5.D0 * ALPHA / (H1**4) + 0.5D0 / TAU
C(N1-1) = 5.D0 * ALPHA / (H1**4) + 0.5D0 / TAU
D(N1-1) = 0.D0
A(N1) = 0.D0
B(N1) = 0.D0
C(N1) = 1.D0
F(N1) = 0.D0

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

ITASK2 = 1
CALL PROG5 ( N1, A, B, C, D, E, F, YY, ITASK2 )
DO I = 1, N1

Y1(I,J) = YY(I)
END DO

END DO
C
C SWEEP OVER X2
C

DO I = 2, N1-1
C
C COEFFICIENTS IN THE DIFFERENCE SCHEME FOR THE INVERSE PROBLEM
C

DO J = 2, N2-1
A(J) = ALPHA / (H2**4)
B(J) = 4.D0 * ALPHA / (H2**4)
C(J) = 6.D0 * ALPHA / (H2**4) + 0.5D0 / TAU
D(J) = 4.D0 * ALPHA / (H2**4)
E(J) = ALPHA / (H2**4)
F(J) = 0.5D0 * Y(I,J) / TAU

+ - (Y(I,J+1) - 2.D0*Y(I,J) + Y(I,J-1)) / (H2**2)
END DO
C(1) = 1.D0
D(1) = 0.D0
E(1) = 0.D0
F(1) = 0.D0
B(2) = 0.D0
C(2) = 5.D0 * ALPHA / (H2**4) + 0.5D0 / TAU
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C(N2-1) = 5.D0 * ALPHA / (H2**4) + 0.5D0 / TAU
D(N2-1) = 0.D0
A(N2) = 0.D0
B(N2) = 0.D0
C(N2) = 1.D0
F(N2) = 0.D0

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

ITASK2 = 1
CALL PROG5 ( N2, A, B, C, D, E, F, YY, ITASK2 )
DO J = 1, N2

Y2(I,J) = YY(J)
END DO

END DO
C
C ADDITIVE AVERAGING
C

DO I = 1, N1
DO J = 1, N2

Y(I,J) = 0.5D0 * (Y1(I,J) + Y2(I,J))
END DO

END DO
END DO
DO I = 1, N1

DO J = 1, N2
U(I,J) = Y(I,J)

END DO

END DO
C
C DIRECT PROBLEM
C

DO K = 2, M
C
C SWEEP OVER X1
C

DO J = 2, N2-1
C
C COEFFICIENTS IN THE DIFFERENCE SCHEME FOR THE DIRECT PROBLEM
C

B(1) = 0.D0
C(1) = 1.D0
F(1) = 0.D0
A(N1) = 0.D0
C(N1) = 1.D0
F(N1) = 0.D0
DO I = 2, N1-1

A(I) = 1.D0 / (H1*H1)
B(I) = 1.D0 / (H1*H1)
C(I) = A(I) + B(I) + 0.5D0 / TAU
F(I) = 0.5D0 * Y(I,J) / TAU

END DO
C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

ITASK1 = 1
CALL PROG3 ( N1, A, C, B, F, YY, ITASK1 )
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DO I = 1, N1

Y1(I,J) = YY(I)
END DO

END DO
C
C SWEEP OVER X2
C

DO I = 2, N1-1
C
C COEFFICIENTS IN THE DIFFERENCE SCHEME FOR THE DIRECT PROBLEM
C

B(1) = 0.D0
C(1) = 1.D0
F(1) = 0.D0
A(N2) = 0.D0
C(N2) = 1.D0
F(N2) = 0.D0
DO J = 2, N2-1

A(J) = 1.D0 / (H2*H2)
B(J) = 1.D0 / (H2*H2)
C(J) = A(J) + B(J) + 0.5D0 / TAU

F(J) = 0.5D0 * Y(I,J) / TAU
END DO

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

ITASK1 = 1
CALL PROG3 ( N2, A, C, B, F, YY, ITASK1 )
DO J = 1, N2

Y2(I,J) = YY(J)
END DO

END DO
C
C ADDITIVE AVERAGING
C

DO I = 1, N1
DO J = 1, N2

Y(I,J) = 0.5D0 * (Y1(I,J) + Y2(I,J))
END DO

END DO
END DO

C
C CRITERION FOR THE EXIT FROM THE ITERATIVE PROCESS
C

SUM = 0.D0
DO I = 2, N1-1

DO J = 2, N2-1
SUM = SUM + (Y(I,J) - UTD(I,J))**2*H1*H2

END DO
END DO
SL2 = DSQRT(SUM)

C
IF ( IT.EQ.1 ) THEN

IND = 0
IF ( SL2.LT.DELTA ) THEN

IND = 1
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Q = 1.D0/Q
END IF
ALPHA = ALPHA*Q
GO TO 100

ELSE
ALPHA = ALPHA*Q
IF ( IND.EQ.0 .AND. SL2.GT.DELTA ) GO TO 100
IF ( IND.EQ.1 .AND. SL2.LT.DELTA ) GO TO 100

END IF
C
C SOLUTION
C

WRITE ( 01, * ) ((UTD(I,J),I=1,N1), J=1,N2)
WRITE ( 01, * ) ((U(I,J),I=1,N1), J=1,N2)

CLOSE (01)
STOP
END

DOUBLE PRECISION FUNCTION AU ( X1, X2 )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C INITIAL CONDITION
C

AU = 0.D0
IF ((X1-0.6D0)**2 + (X2-0.6D0)**2.LE.0.04D0) AU = 1.D0

C
RETURN
END

7.2.6 Computational experiments

The data presented below were obtained on a uniform grid with h1 = 0.01, h2 = 0.01
for the problem in the unit square. As input data, the solution of the direct problem
at the time T = 0.025 was taken, the time step size being τ = 0.00025. In the
direct problem, the initial condition, taken as the exact end-time solution of the inverse
problem, is given in the form

u0(x, 0) =
{

1, (x1 − 0.6)2 + (x2 − 0.6)2 ≤ 0.04,

0, (x1 − 0.6)2 + (x2 − 0.6)2 > 0.04.

The end-time solution of the direct problem (the exact initial condition for the di-
rect problem) is shown in Figure 7.5. Here, contour lines obtained with �u = 0.05 are
shown. Figure 7.6 shows the solution of the inverse problem obtained with δ = 0.01
(here, �u = 0.1). Since, in the present example, a discontinuous function is recon-
structed, one cannot expect that a very good accuracy can be achieved. The effect due
to the inaccuracy level can be traced considering Figures 7.7 and 7.8.
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Figure 7.5 Solution of the direct problem at t = T

Figure 7.6 Solution of the inverse problem obtained with δ = 0.01
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Figure 7.7 Solution of the inverse problem obtained with δ = 0.02

Figure 7.8 Solution of the inverse problem obtained with δ = 0.005
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7.3 Iterative solution of retrospective problems

Key features of algorithms intended for the approximate solution of inverted-time
problems by iteration methods with refinement of initial conditions are outlined. A
model problem for the two-dimensional non-stationary parabolic equation is consid-
ered.

7.3.1 Statement of the problem

In solving inverse problems for mathematical physics equations, gradient iteration
methods are applied to the variational formulation of the problem. Below, we consider
a simplest iteration method for the approximate solution of the retrospective inverse
problem for the second-order parabolic equation. For this inverse problem, the ini-
tial condition is refined iteratively, which requires solving, at each iteration step, an
ordinary boundary value problem for the parabolic equation.

Based on the general theory of iteration solution methods for operator equations,
sufficient conditions for convergence of the iterative process can be established, and
the iteration parameters are chosen. In such problems, the operator of transition to the
next approximation makes it possible to identify the approximate solution in a desired
class of smoothness.

As a model problem, consider a two-dimensional problem in the rectangle

� = {x | x = (x1, x2), 0 < xβ < lβ, β = 1, 2}.

In the domain �, we seek the solution of the parabolic equation

∂u
∂t

−
2∑

β=1

∂

∂xβ

(
k(x)

∂u
∂xβ

)
= 0, x ∈ �, 0 < t < T, (7.159)

supplemented with the simplest first-kind homogeneous boundary conditions:

u(x, t) = 0, x ∈ ∂�, 0 < t < T . (7.160)

In the inverse problem, instead of setting the zero-time solution (the solution at t = 0),
the end-time solution is specified:

u(x, T ) = ϕ(x), x ∈ �. (7.161)

Such an inverse problem is a well-posed one, for instance, in the classes of bounded
solutions.
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7.3.2 Difference problem

Performing discretization over space, we put into correspondence to the differential
problem (7.159)–(7.161) some differential-difference problem. For simplicity, we as-
sume that a grid uniform along either direction with steps hβ , β = 1, 2 is introduced
in the domain �, and let ω be the set of internal nodes.

On the set of mesh functions y(x) such that y(x) = 0, x �∈ ω, we define the
difference operator �:

�y = −
2∑

β=1

(aβ yx̄β
)xβ

(7.162)

where, for instance,

a1(x) = k(x1 − 0.5h1, x2), a2(x) = k(x1, x2 − 0.5h2).

In the mesh Hilbert space H , we introduce the scalar product and the norm:

(y, w) =
∑
x∈ω

y(x)w(x)h1h2, ‖y‖ = (y, y)1/2.

In H , we have � = �∗ > 0. We pass from (7.159)–(7.161) to the differential-operator
equation

dy
dt

+ �y = 0, x ∈ ω, 0 < t < T (7.163)

with some given
y(T ) = ϕ, x ∈ ω. (7.164)

Previously, possible ways in constructing regularizing algorithms for the approxi-
mate solution of problem (7.163), (7.164) based on using perturbed equations or per-
turbed initial conditions were discussed. In this chapter, the inverse problem (7.163),
(7.164) will be solved by iteration methods.

7.3.3 Iterative refinement of the initial condition

Here, we are going to employ methods in which, at each iteration step, the emerging
well-posed problems are solved using standard two-layer difference schemes.

Suppose that, instead of the inverse problem (7.163), (7.164), we treat the direct
problem for equation (7.163), in which, instead of (7.164), we use the initial condition

y(0) = v, x ∈ ω. (7.165)

We denote by yn the difference solution at the time tn = nτ , where τ > 0 is the time
step size, so that N0τ = T . In the ordinary two-layer weighted scheme the passage to
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the next time layer in problem (7.163), (7.165) is to be made in accordance with

yn+1 − yn

τ
+ �(σ yn+1 + (1 − σ)yn) = 0,

n = 0, 1, . . . , N0 − 1,
(7.166)

y0 = v, x ∈ ω. (7.167)

As it is well known, the weighted scheme (7.166), (7.167) is absolutely stable if
σ ≥ 1/2, and there holds the following estimate of stability:

‖yn+1‖ ≤ ‖yn‖ ≤ · · · ≤ ‖y0‖ = ‖v‖,
n = 0, 1, . . . , N0 − 1.

(7.168)

Thereby, the solution norm decreases with time.
To approximately solve the inverse problem (7.163), (7.164), we use a simplest

iterative process based on successive refinement of the initial condition and on solving
at each iteration step the direct problem. Let us formulate the problem in the operator
form.

From (7.166) and (7.167), for the given y0 at the end time we obtain

yN0 = SNv, (7.169)

where S is the operator of transition from one time layer to the next time layer:

S = (E + στ�)−1(E + (σ − 1)τ�). (7.170)

In view of (7.163), (7.164), and (7.169), the approximate solution of the inverse
problem can be put into correspondence to the solution of the following difference
operator equation:

Av = ϕ, x ∈ ω, A = SN . (7.171)

Since the operator � is a self-adjoint operator, the transition operator S and the
operator A in (7.171) are also self-adjoint operators. The difference equation (7.171)
can be solved uniquely if, for instance, the operator A is a positive operator. In turn,
the latter condition is satisfied if the transition operator S is a positive operator. Taking
into account the representation (7.170), we obtain that S > 0 in the case of

σ ≥ 1. (7.172)

Condition (7.172) imposed on the weight of scheme (7.166), (7.167) is a more strin-
gent condition than the ordinary stability condition. In the case of interest, under the
constraints (7.172) for the operator A defined by (7.171) we have:

0 < A = A∗ < E . (7.173)
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Equation (7.171), (7.173) can be solved using the explicit two-layer iteration
method; this method can be written as

vk+1 − vk

sk+1
+ Avk = ϕ. (7.174)

Here, sk+1 are iteration parameters. We denote the difference solution obtained with
the initial condition vk as y(k).

The iteration method under consideration implies the following organization of cal-
culations in the approximate solution of the retrospective inverse problem (7.159),
(7.160).

First, with the given vk , we solve the direct problem, using, for determining y(k)
N0

, the
difference scheme

y(k)

n+1 − y(k)
n

τ
+ �(σ y(k)

n+1 + (1 − σ)y(k)
n ) = 0,

n = 0, 1, . . . , N0 − 1,

(7.175)

y(k)

0 = vk, x ∈ ω. (7.176)

Then, with the found end-time solution of the direct problem, we use formula
(7.174) to refine the initial condition:

vk+1 = vk − sk+1(y(k)
N0

− ϕ). (7.177)

As it follows from the general theory of iterative solution methods, the rate of con-
vergence in method (7.174), used to solve equation (7.171), is defined by the energy
equivalence constants γβ, β = 1, 2:

γ1 E ≤ A ≤ γ2 E, γ1 > 0. (7.178)

Regarding (7.173), we can put γ2 = 1. The positive constant γ1, close to zero, depends
on the grid.

In the notation used, in the stationary iteration method (sk = s0 = const) the condi-
tions for convergence in (7.174) have the form s0 ≤ 2. For the optimal constant value
of the iteration parameter we have: s0 ≈ 1. For the convergence to be improved, it
makes sense to use variation-type iteration methods. In the iteration method of mini-
mal discrepancies, for the iteration parameters we have:

sk+1 = (Ark, rk)

(Ark, Ark)
, rk = Avk − ϕ.

Here, at each iteration step we minimize the discrepancy norm which implies the fol-
lowing estimate:

‖rk+1‖ < ‖rk‖ < · · · < ‖r0‖.
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In the more general implicit iteration method, instead of (7.174) we have:

B
vk+1 − vk

sk+1
+ Avk = ϕ, (7.179)

where B = B∗ > 0. In the method of minimal corrections, iteration parameters can
be calculated by the formulas

sk+1 = (Awk, wk)

(B−1 Awk, Awk)
, wk = B−1rk .

Here, to be minimized at each iteration step is the correction wk+1 which implies the
estimate

‖wk+1‖ < ‖wk‖ < · · · < ‖w0‖.
In a similar manner, more rapidly converging three-layer variational iteration methods
can be considered.

Note the following specific features in the choice of B in solving ill-posed problems.
In ordinary iteration methods the operator B is to be chosen so that just to raise the
rate of convergence in the method. In solving ill-posed problem, the iterative process
is to be terminated on attainment of a discrepancy value defined by the input-data
inaccuracy. Of importance for us is not only the rate with which the iterative process
converges on the descending portion of the characteristic curve but also the class of
smoothness in which this iterative process converges and the norm with which the
required discrepancy level can be achieved. A key specific feature of the approximate
solution of ill-posed problems by iteration methods consists in that the approximate
solution can be identified in the desired class of smoothness using a proper choice
of B.

7.3.4 Program

The iteration method under consideration is based on refinement of the initial condition
for the solution of a well-examined direct problem. For the implicit difference schemes
(7.175), (7.176) to be realized, we have to solve at each time step two-dimensional
difference elliptic problems. To this end, we use iteration methods (embedded iterative
process).

Program PROBLEM12

C PROBLEM12 - PROBLEM WITH INVERTED TIME
C TWO-DIMENSIONAL PROBLEM
C ITERATIVE REFINEMENT OF THE INITIAL CONDITION
C

IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( DELTA = 0.01D0, N1 = 51, N2 = 51, M = 101 )
DIMENSION A(17*N1*N2), X1(N1), X2(N2)
COMMON / SB5 / IDEFAULT(4)
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COMMON / CONTROL / IREPT, NITER
C
C PARAMETERS:
C
C X1L, X2L - COORDINATES OF THE LEFT CORNER;
C X1R, X2R - COORDINATES OF THE RIGHT CIRNER;
C N1, N2 - NUMBER OF NODES IN THE SPATIAL GRID;
C H1, H2 - MESH SIZES OVER SPACE;
C TAU - TIME STEP;
C DELTA - INPUT-DATA INACCURACY LEVEL;
C U0(N1,N2) - INITIAL CONDITION TO BE RECONSTRUCTED;
C UT(N1,N2) - END-TIME SOLUTION IN THE DIRECT PROBLEM;
C UTD(N1,N2)- DISTURBED DIRECT-PROBLEM SOLUTION;
C U(N1,N2) - APPROXIMATE SOLUTION IN THE INVERSE PROBLEM;
C EPSR - RELATIVE INACCURACY OF THE DIFFERENCE SOLUTION;
C EPSA - ABSOLUTE INACCURACY OF THE DIFFERENCE SOLUTION;
C
C EQUIVALENCE ( A(1), A0 ),
C * ( A(N+1), A1 ),
C * ( A(2*N+1), A2 ),
C * ( A(9*N+1), F ),
C * ( A(10*N+1), U0 ),
C * ( A(11*N+1), UT ),
C * ( A(12*N+1), UTD ),
C * ( A(13*N+1), U ),
C * ( A(14*N+1), V ),
C * ( A(15*N+1), R ),
C * ( A(16*N+1), BW )
C

X1L = 0.D0
X1R = 1.D0
X2L = 0.D0
X2R = 1.D0
TMAX = 0.025D0
PI = 3.1415926D0
EPSR = 1.D-5
EPSA = 1.D-8

C
OPEN (01, FILE =’RESULT.DAT’) ! FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H1 = (X1R-X1L) / (N1-1)
H2 = (X2R-X2L) / (N2-1)
TAU = TMAX / (M-1)
DO I = 1, N1

X1(I) = X1L + (I-1)*H1
END DO
DO J = 1, N2

X2(J) = X2L + (J-1)*H2
END DO

C
N = N1*N2
DO I = 1, 17*N

A(I) = 0.0
END DO

C
C DIRECT PROBLEM
C PURELY IMPLICIT DIFFERENCE SCHEME
C
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C INITIAL CONDITION
C

T = 0.D0
CALL INIT (A(10*N+1), X1, X2, N1, N2)
DO K = 2, M

C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

CALL FDST (A(1), A(N+1), A(2*N+1), A(9*N+1), A(10*N+1),
+ H1, H2, N1, N2, TAU)

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), A(10*N+1), A(9*N+1), EPSR, EPSA)

END DO
C
C DISTURBING OF MEASURED QUANTITIES
C

DO I = 1, N
A(11*N+I) = A(10*N+I)
A(12*N+I) = A(11*N+I) + 2.*DELTA*(RAND(0)-0.5)

END DO
C
C INVERSE PROBLEM
C ITERATION METHOD
C

IT = 0
C
C STARTING APPROXIMATION
C

DO I = 1, N
A(14*N+I) = 0.D0

END DO
C

100 IT = IT + 1
C

C DIRECT PROBLEM
C

T = 0.D0
C
C INITIAL CONDITION
C

DO I = 1, N
A(10*N+I) = A(14*N+I)

END DO
DO K = 2, M

C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

CALL FDST (A(1), A(N+1), A(2*N+1), A(9*N+1), A(10*N+1),
+ H1, H2, N1, N2, TAU)

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), A(10*N+1), A(9*N+1), EPSR, EPSA)
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END DO
C
C DISCREPANCY
C

DO I = 1, N
A(15*N+I) = A(10*N+I) - A(12*N+I)

END DO
C
C CORRECTION
C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

CALL FDSB (A(1), A(N+1), A(2*N+1), A(9*N+1), A(15*N+1),
+ H1, H2, N1, N2)

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), A(13*N+1), A(9*N+1), EPSR, EPSA)

C
C ITERATION PARAMETERS
C

T = 0.D0
C
C INITIAL CONDITIONS
C

DO I = 1, N
A(10*N+I) = A(13*N+I)

END DO
DO K = 2, M

C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

CALL FDST (A(1), A(N+1), A(2*N+1), A(9*N+1), A(10*N+1),
+ H1, H2, N1, N2, TAU)

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), A(10*N+1), A(9*N+1), EPSR, EPSA)

END DO
C
C METHOD OF MINIMAL DISCREPANCIES
C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

CALL FDSB (A(1), A(N+1), A(2*N+1), A(9*N+1), A(10*N+1),
+ H1, H2, N1, N2)

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), A(16*N+1), A(9*N+1), EPSR, EPSA)

C
SUM = 0.D0
SUM1 = 0.D0
DO I = 1, N
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SUM = SUM + A(10*N+I)*A(13*N+I)
SUM1 = SUM1 + A(16*N+I)*A(10*N+I)

END DO
SS = SUM / SUM1

C
C NEXT APPROXIMATION
C

DO I = 1, N
A(14*N+I) = A(14*N+I) - SS*A(13*N+I)

END DO
C
C EXIT FROM THE ITERATIVE PROCESS BY THE DISCREPANCY CRITERION
C

SUM = 0.D0
DO I = 1, N

SUM = SUM + A(15*N+I)**2*H1*H2
END DO
SL2 = DSQRT(SUM)
IF ( SL2.GT.DELTA ) GO TO 100

C
C SOLUTION
C

DO I = 1, N
A(13*N+I) = A(14*N+I)

END DO
WRITE ( 01, * ) (A(11*N+I), I=1,N)
WRITE ( 01, * ) (A(13*N+I), I=1,N)
CLOSE (01)
STOP
END

C
SUBROUTINE INIT (U, X1, X2, N1, N2)

C
C INITIAL CONDITION
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION U(N1,N2), X1(N1), X2(N2)
DO I = 1, N1

DO J = 1, N2
U(I,J) = 0.D0
IF ((X1(I)-0.6D0)**2 + (X2(J)-0.6D0)**2.LE.0.04D0)

+ U(I,J) = 1.D0
END DO

END DO
C

RETURN
END

C
SUBROUTINE FDST (A0, A1, A2, F, U, H1, H2, N1, N2, TAU)

C
C GENERATION OF DIFFERENCE-SCHEME COEFFICIENTS
C FOR THE PARABOLIC EQUATION WITH CONSTANT COEFFICIENTS
C IN THE CASE OF PURELY IMPLICIT SCHEME
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION A0(N1,N2), A1(N1,N2), A2(N1,N2), F(N1,N2), U(N1,N2)

C
DO J = 2, N2-1

DO I = 2, N1-1
A1(I-1,J) = 1.D0/(H1*H1)
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A1(I,J) = 1.D0/(H1*H1)
A2(I,J-1) = 1.D0/(H2*H2)
A2(I,J) = 1.D0/(H2*H2)
A0(I,J) = A1(I,J) + A1(I-1,J) + A2(I,J) + A2(I,J-1)

+ + 1.D0/TAU
F(I,J) = U(I,J)/TAU

END DO
END DO

C
C FIRST-KIND HOMOGENEOUS BOUNDARY CONDITION
C

DO J = 2, N2-1
A0(1,J) = 1.D0
A1(1,J) = 0.D0
A2(1,J) = 0.D0
F(1,J) = 0.D0

END DO
C

DO J = 2, N2-1
A0(N1,J) = 1.D0
A1(N1-1,J) = 0.D0
A1(N1,J) = 0.D0
A2(N1,J) = 0.D0
F(N1,J) = 0.D0

END DO
C

DO I = 2, N1-1
A0(I,1) = 1.D0
A1(I,1) = 0.D0
A2(I,1) = 0.D0
F(I,1) = 0.D0

END DO
C

DO I = 2, N1-1
A0(I,N2) = 1.D0
A1(I,N2) = 0.D0
A2(I,N2) = 0.D0
A2(I,N2-1) = 0.D0
F(I,N2) = 0.D0

END DO
C

A0(1,1) = 1.D0
A1(1,1) = 0.D0
A2(1,1) = 0.D0
F(1,1) = 0.D0

C
A0(N1,1) = 1.D0
A2(N1,1) = 0.D0
F(N1,1) = 0.D0

C
A0(1,N2) = 1.D0
A1(1,N2) = 0.D0
F(1,N2) = 0.D0

C
A0(N1,N2) = 1.D0
F(N1,N2) = 0.D0

C
RETURN
END

C
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SUBROUTINE FDSB (A0, A1, A2, F, U, H1, H2, N1, N2)
C
C GENERATION OF DIFFERENCE-SCHEME COEFFICIENTS
C FOR THE DIFFERENCE ELLIPTIC EQUATION
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION A0(N1,N2), A1(N1,N2), A2(N1,N2), F(N1,N2), U(N1,N2)

C
DO J = 2, N2-1

DO I = 2, N1-1
A1(I-1,J) = 1.D0/(H1*H1)
A1(I,J) = 1.D0/(H1*H1)
A2(I,J-1) = 1.D0/(H2*H2)
A2(I,J) = 1.D0/(H2*H2)
A0(I,J) = A1(I,J) + A1(I-1,J) + A2(I,J) + A2(I,J-1)

+ + 1.D0
F(I,J) = U(I,J)

END DO
END DO

C
C FIRST-KIND HOMOGENEOUS BOUNDARY CONDITIONS
C

DO J = 2, N2-1
A0(1,J) = 1.D0
A1(1,J) = 0.D0
A2(1,J) = 0.D0
F(1,J) = 0.D0

END DO
C

DO J = 2, N2-1
A0(N1,J) = 1.D0
A1(N1-1,J) = 0.D0
A1(N1,J) = 0.D0
A2(N1,J) = 0.D0
F(N1,J) = 0.D0

END DO
C

DO I = 2, N1-1
A0(I,1) = 1.D0
A1(I,1) = 0.D0
A2(I,1) = 0.D0
F(I,1) = 0.D0

END DO
C

DO I = 2, N1-1
A0(I,N2) = 1.D0
A1(I,N2) = 0.D0
A2(I,N2) = 0.D0
A2(I,N2-1) = 0.D0
F(I,N2) = 0.D0

END DO
C

A0(1,1) = 1.D0
A1(1,1) = 0.D0
A2(1,1) = 0.D0
F(1,1) = 0.D0

C
A0(N1,1) = 1.D0
A2(N1,1) = 0.D0
F(N1,1) = 0.D0
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C
A0(1,N2) = 1.D0
A1(1,N2) = 0.D0
F(1,N2) = 0.D0

C

A0(N1,N2) = 1.D0
F(N1,N2) = 0.D0

C
RETURN
END

In the subroutine FDST, coefficients of the difference elliptic problem are generated
for the problem to be solved at the next time step. In the subroutine FDSB, coefficients
of the difference elliptic operator B in the iterative process (7.179) are generated, so
that

By = −
2∑

β=1

yx̄β xβ
+ y.

Difference elliptic problems are solved in the subroutine SBAND5.

7.3.5 Computational experiments

Like in the case of regularized difference schemes intended for approximate solution
of inverted-time problems, a uniform grid with h1 = 0.02 and h2 = 0.02 for the
model problem with k(x) = 1 in unit square was used. In the framework of a quasi-
real experiment, the direct problem with T = 0.025 is solved using a time grid with
τ = 0.00025. A purely implicit difference scheme (σ = 1) was employed. Again,
in the direct problem the initial condition (the exact end-time solution of the inverse
problem) is given by

u0(x, 0) =
{

1, (x1 − 0.6)2 + (x2 − 0.6)2 ≤ 0.04,

0, (x1 − 0.6)2 + (x2 − 0.6)2 > 0.04.

The end-time solution of the direct problem is shown in Figure 7.5.
To illustrate the capability of the adopted scheme in reconstructing a piecewise-

discontinuous initial condition, here we present computational data obtained with un-
perturbed input data (the difference solution of the direct problem at t = T ). The
iterative process was terminated when the difference rk = Avk − ϕ attained the es-
timate ‖rk‖ ≤ ε. Approximate solutions obtained with ε = 0.001 and ε = 0.0001
are shown in Figures 7.9 and 7.10, respectively (in the figures, contour lines with the
step size �u = 0.05 are plotted). A substantial (tenfold) change in the solution accu-
racy for the inverse problem results in slight refinement of the approximate solution.
In the case of interest, we cannot expect that a more accurate reconstruction of the
piecewise-discontinuous initial condition can be achieved.
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Figure 7.9 Inverse-problem solution obtained with ε = 0.001

Figure 7.10 Inverse-problem solution obtained with ε = 0.0001
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In perturbing input data, we have to try identify the smooth initial solution of the
inverse problem using a proper choice of the operator B �= E in the iterative pro-
cess (7.179). Figure 7.11 shows the solution of the inverse problem obtained at the
inaccuracy level δ = 0.01. Solutions of the problem obtained at a higher and lower
inaccuracy levels are shown in Figures 7.12 and 7.13.

Figure 7.11 Inverse-problem solution obtained with δ = 0.01

Figure 7.12 Inverse-problem solution obtained with δ = 0.02
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Figure 7.13 Inverse-problem solution obtained with δ = 0.005

7.4 Second-order evolution equation

A classical example of ill-posed problems is the Cauchy problem for the elliptic equa-
tion (Hadamard examples). In this section, major possibilities available in the con-
struction of stable solution algorithm for such evolutionary inverse problems are con-
sidered. Methods using the perturbation of initial conditions and the perturbation of
the initial second-order evolution equation are briefly discussed. A program in which,
to approximately solve the Cauchy problem for the Laplace equation, regularized dif-
ference schemes are used, is presented.

7.4.1 Model problem

Consider the simplest inverse problem for the two-dimensional Laplace equation. Let
us start with formulating the direct problem. Suppose that in the rectangle

QT = � × [0, T ], � = {x | 0 ≤ x ≤ l}, 0 ≤ t ≤ T

the function u(x, t) satisfies the equation

∂2u
∂t2

+ ∂2u
∂x2

= 0, 0 < x < l, 0 < t < T . (7.180)

We supplement this equation with some boundary conditions. On the lateral sides of
the rectangle, we put:

u(0, t) = 0, u(l, t) = 0, 0 < t < T . (7.181)
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On the top and bottom sides, the following boundary conditions are considered:

∂u
∂t

(x, 0) = 0, 0 ≤ x ≤ l, (7.182)

u(x, T ) = uT (x), 0 ≤ x ≤ l. (7.183)

Among the inverse evolutionary problems for equation (7.180), we can identify the
Cauchy problem and the continuation problem for the solution of the boundary value
problem. The Cauchy problem is formulated as follows. Suppose that the boundary
condition at t = T is not specified, but we know the solution at t = 0, i.e., instead of
(7.183), the following condition is considered:

u(x, 0) = u0(x), 0 ≤ x ≤ l. (7.184)

In practical cases, of interest can be the problem in which it is required to protract the
solution of the direct problem (7.180)–(7.183) beyond the calculation-domain bound-
ary. For instance, we are interested in the solution u(x, t) in the domain QT +�T with
�T > 0, i.e., here the solution is to be continued into a region adjacent to the top
portion of the boundary. After the solution of the problem inside the calculation do-
main QT is found, the continuation problem reduces to a Cauchy problem similar to
problem (7.180)–(7.182), (7.184). Also of interest is the possibility of passing from
the Cauchy problem to a continuation problem. With this remark, in what follows we
will concentrate our attention on the Cauchy problem.

We will consider problem (7.180)–(7.182), (7.184) from a somewhat more general
standpoint as the Cauchy problem for the second-order differential-operator equation.
For functions given on the interval � = (0, 1) we define, in the traditional manner,
the Hilbert space H = L2(�). On the set of functions vanishing at ∂� we define the
operator

Au = −∂2u
∂x2

, 0 < x < l. (7.185)

Among the key properties of this operator, note that in H we have:

A∗ = A ≥ m E, m > 0. (7.186)

Equation (7.180), supplemented with condition (7.181) at the boundary, can be written
as the following differential-operator equation for u(t) ∈ H:

d2u
dt2

− Au = 0, 0 < t ≤ T . (7.187)

Initial conditions (7.182) and (7.184) yield:

u(0) = u0, (7.188)
du
dt

(0) = 0. (7.189)
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In (7.187), the operator A is a self-adjoint, positively defined operator. Problem
(7.187)–(7.189) is an ill-posed problem because, here, continuous dependence on in-
put data (initial conditions) is lacking. Conditional well-posedness takes place in the
class of solutions bounded in H.

7.4.2 Equivalent first-order equation

In the construction of regularizing algorithms for the approximate solution of problem
(7.187)–(7.189), passage to a Cauchy problem for the first-order evolution equation
may prove useful. In the latter case, we can follow the above-considered approaches
to the solution of ill-posed problems for evolution equations using perturbed initial
conditions and/or perturbed equation.

The simplest transformation related with the traditional introduction of the vector
of unknown quantities U = {u1, u2}, u1 = u, u2 = du/dt results in a system of first-
order equations with a non-self-adjoint operator. This approach will be discussed in
more detail below.

In the case of problem (7.187)–(7.189), the self-adjointness and positive definiteness
of A can be taken into account.

We perform the following change of variables:

v(t) = 1
2

(
u − A−1/2 du

dt

)
, w(t) = 1

2

(
u + A−1/2 du

dt

)
. (7.190)

Then, from (7.187) it readily follows that the new unknown quantities v(t) and w(t)
satisfy the following first-order equations:

dv

dt
+ A1/2v = 0,

dw

dt
− A1/2w = 0. (7.191)

With regard to (7.188), (7.189) and for the introduced notation (7.190), for equations
(7.191) we pose the initial conditions

v(0) = 1
2

u0, w(0) = 1
2

u0. (7.192)

Thus, starting from the ill-posed problem (7.187)–(7.189), we arrive at a well-posed
problem in which it is required to determine v(t), and also at an ill-posed problem for
w(t). Hence, regularizing algorithms for problem (7.187)–(7.189) can be constructed
based on regularization of the split system (7.191). Below, in the consideration of
the generalized inverse method for problem (7.187)–(7.189), we will outline some
possibilities available along this direction. In practical realizations, it seems reasonable
to use perturbations related with the calculation of the square root of A.

We define the vector U = {u1, u2} and the space H2 as the direct sum of spaces H:
H2 = H ⊕ H. The addition in H2 is to be performed coordinatewise, and the scalar
product there is defined as follows:

(U, V ) = (u1, v1) + (u2, v2).
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Suppose that u1 = v, u2 = w; then, system (7.191) assumes the form

dU
dt

− LU = 0, (7.193)

where

L =
[ −A1/2 0

0 A1/2

]
. (7.194)

Equation (7.194) is supplemented with the boundary condition (see (7.192))

U (0) = U0, U0 =
{1

2
u0,

1
2

u0

}
. (7.195)

Problem (7.193), (7.195) belongs to the above-considered class of ill-posed prob-
lems for the first-order equation. The specific feature of the problem is due to fact that
the operator L (see (7.194)) may change its sign.

Consider some possibilities in the passage to an equivalent system of first-order
equations under more general conditions, for instance, in the case in which the oper-
ator A is a non-self-adjoint operator. Suppose that the components of U = {u1, u2}
from H2 are defined as

u1 = u, u2 = du
dt

. (7.196)

Then, the initial problem (7.187)–(7.189) can be written as (compare with (7.193)–
(7.195)) equation (7.193), supplemented now with the initial condition

U (0) = U0, U0 = {u0, 0}. (7.197)

For the operator L we obtain the representation

L =
[

0 E
A 0

]
. (7.198)

Thus, here again from the Cauchy problem for the evolution second-order equation we
have passed to the Cauchy problem for the evolution first-order equation.

7.4.3 Perturbed initial conditions

Let us briefly outline the available possibilities in using methods based on non-local
perturbation of initial conditions as applied to the approximate solution of the ill-posed
Cauchy problem for the second-order evolution equation. Generally speaking, in the
case of general problems, two initial conditions are to be perturbed. Suppose that
we pose first an ill-posed problem in which it is required to determine the function
u = u(t) ∈ H from equation (7.187) supplemented with initial conditions (7.188) and
(7.189).
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The approximate solution uα(t) is defined as the solution of the following non-local
problem:

d2uα

dt2
− Auα = 0, 0 < t ≤ T, (7.199)

uα(0) + αuα(T ) = u0, (7.200)
duα

dt
(0) = 0. (7.201)

A specific feature in the non-local problem (7.199)–(7.201) consists in the fact that
here only one initial condition (see (7.200)) is to be perturbed. The stability estimate
is given by the following statement.

Theorem 7.20 For the solution of the non-local problem (7.199)–(7.201) there holds
the estimate

‖uα(t)‖ ≤ 1
α

‖u0‖. (7.202)

Proof. The solution of problem (7.199)–(7.201) can be written in the traditional oper-
ator form

uα(t) = R(t, α)u0, (7.203)

where
R(t, α) = ch (A1/2t)(E + α ch (A1/2T ))−1. (7.204)

We assume that the spectrum of A is discrete, consisting of eigenvalues 0 < λ1 ≤
λ2 ≤ · · · , and the related system of eigenfunctions {wk}, wk ∈ D(A), k = 1, 2, . . . is
an orthonormal complete system in H. In such conditions, for the solution of problem
(7.199)–(7.201) we have the representation

uα(t) =
∞∑

k=1

(u0, wk) ch (λ
1/2
k t)(1 + α ch (λ

1/2
k T ))−1wk .

From here, the stability estimate (7.203) follows.

Using the perturbed initial condition, one can establish regularizing properties of the
algorithm perfectly analogous to the case of the first-order equation (see Theorem 7.4).
Suppose that, instead of the exact initial condition u0, an approximate solution uδ

0 is
given. As usually, we assume that there exists a stability estimate of form

‖uδ
0 − u0‖ ≤ δ. (7.205)

The approximate solution for inaccurate initial conditions is to be found from equation
(7.199), condition (7.201), and from the non-local condition

uα(0) + αuα(T ) = uδ
0. (7.206)
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Theorem 7.21 With estimate (7.205) fulfilled, the solution of problem (7.199),
(7.201), (7.206) converges to the solution of problem (7.187)–(7.189), bounded in H,
provided that δ → 0, α(δ) → 0, δ/α → 0.

Consider the relation between the non-local problem (7.199)–(7.201) and the opti-
mal control problem. In the case of interest, both the solution of the optimal control
problem and the solution of the non-local problem are obtained based on the variable
separation method.

Let v ∈ H be the sought control and uα(t; v) be defined as the solution of the
problem

d2uα

dt2
− Auα = 0, 0 < t ≤ T, (7.207)

uα(T ; v) = v, (7.208)
duα

dt
(0) = 0. (7.209)

We consider the quality functional in the following simplest form:

Jα(v) = ‖uα(0; v) − u0‖2 + α‖v‖2. (7.210)

For the optimal control w, we have:

Jα(w) = min
v∈H

Jα(v). (7.211)

The solution of the optimal control problem (7.207)–(7.211) can be written in the
form (7.203) provided that

R(t, α) = ch (A1/2t)(E + α ch2(A1/2T ))−1. (7.212)

Through comparison of (7.204) with (7.212), the following statement can be estab-
lished.

Theorem 7.22 The solution of the optimal control problem (7.207)–(7.211) coincides
with the solution of the non-local problem for equation (7.199) on the double interval
(0, 2T ) with initial condition (7.201) and non-local

uα(0) + α

2 + α
uα(2T ) = 2

2 + α
u0. (7.213)

Proof. To derive (7.213) we use for the solution the representation (7.212) and formula
2 ch (x) = ch (2x) + 1.

Some other non-local conditions can be obtained by writing the Cauchy problem
(7.187)–(7.189) as a Cauchy problem for the first-order evolution equation. An exam-
ple here is problem (7.193)–(7.195).
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We determine the approximate solution of problem (7.193)–(7.195) as the solution
of the non-local problem

dUα

dt
− LUα = 0, (7.214)

Uα(0) + αUα(T ) = U0. (7.215)

To formulate the related non-local problem for the second-order equation, in prob-
lem (7.214), (7.215) we perform the reverse transition. By analogy with (7.190), we
represent the solution of (7.214) as

u1(t) = 1
2

(
uα − A−1/2 duα

dt

)
,

u2(t) = 1
2

(
uα + A−1/2 duα

dt

)
.

(7.216)

From (7.216) it follows that

uα(t) = u1(t) + u2(t),

duα

dt
(t) = A−1/2(u2(t) − u1(t)).

(7.217)

Then, with (7.195) the non-local condition (7.215) yields:

u1(0) + αu1(T ) = 1
2

u0,

u2(0) + αu2(T ) = 1
2

u0.

(7.218)

With (7.216), (7.217) taken into account, from (7.218) we obtain:

uα(t) + αuα(T ) = u0,

duα

dt
(0) + duα

dt
(T ) = 0.

(7.219)

We arrive at two non-local conditions for the solution uα(t) of equation (7.199). Here
(compare with (7.200) and (7.201)), two, instead of one, initial conditions are to be
perturbed.

7.4.4 Perturbed equation

Consider the possibilities available in the construction of regularized solution algo-
rithms suitable for inverse problems for second-order equations based on the perturbed
initial equation. Here, we can use the above-considered versions of the generalized in-
verse method for first-order evolution equations.
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To approximately solve problem (7.187)–(7.189), we use the generalized inverse
method in its version analogous to the basic version of this method for first-order
equations. The approximate solution uα(t) is to be found from the equation

d2uα

dt2
− Auα + αA2uα = 0, 0 < t ≤ T . (7.220)

The initial conditions are given with some inaccuracy. Suppose that

uα(0) = uδ
0, (7.221)

duα

dt
(0) = 0. (7.222)

We assume that for the initial-condition inaccuracy the estimate (7.205) holds.
The solution of (7.220)–(7.222) can be written in the operator form

uα(t) = R(t, α)uδ
0, (7.223)

where
R(t, α) = ch ((A − αA2)1/2t).

Using the variable separation method, we can prove convergence of the approximate
solution to the exact solution.

Theorem 7.23 Let for the initial-condition inaccuracy the estimate (7.205) hold.
Then, in the case of δ → 0, α(δ) → 0, δ exp (T/(4α)1/2) → 0 the approximate
solution uα(t), determined as the solution of problem (7.220)–(7.222), converges to
the exact solution u(t) of problem (7.187)–(7.189), bounded in H, and the following
stability estimate with respect to initial data holds:

‖uα(t)‖ ≤ ch
( t

2
√

α

)
‖uα(0)‖. (7.224)

Proof. To prove the statement and, in particular, to show the validity of esti-
mate (7.224), we can follow the procedure previously used to prove analogous results
for the first-order equation (see Theorem 7.12, for instance).

The version of the generalized inverse method for equation (7.187) analogous to
pseudo-parabolic perturbation of the first-order equation consists in the determination
of the approximate solution from the equation

d2uα

dt2
− Auα + αA d2uα

dt2
= 0, 0 < t ≤ T, (7.225)

supplemented with initial conditions (7.221), (7.222).
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The approximate solution converges to the exact solution provided that the value of
the regularization parameter is matched with the input-data inaccuracy, and for the so-
lution of problem (7.221), (7.222), (7.225) there holds the following stability estimate
with respect to initial data:

‖uα(t)‖ ≤ ch
( t√

α

)
‖uα(0)‖. (7.226)

Variants of the generalized inverse method for the approximate solution of the ill-
posed Cauchy problem (7.187)–(7.189) can be constructed based on the passage to an
equivalent Cauchy problem for the system of first-order equations. Instead of (7.187)–
(7.189), consider the problem (7.193)–(7.195), in which

u1(t) = v(t) = 1
2

(
u − A−1/2 du

dt

)
,

u2(t) = w(t) = 1
2

(
u + A−1/2 du

dt

)
.

(7.227)

Taking the fact into account that the operator L is a self-adjoint operator that can
change its sign, we find the approximate solution Uα(t) of problem (7.193), (7.195)
from the equation

dUα

dt
− LUα + αL2Uα = 0 (7.228)

and the initial conditions
Uα(0) = U0. (7.229)

Based on the previously obtained results (see Theorem 7.11), derive the following
estimate of stability of the approximate solution Uα(t) with respect to initial data:

‖Uα(t)‖ ≤ exp
( t

4α

)
‖Uα(0)‖. (7.230)

First, we derive an equation from which the approximate solution uα(t) that corre-
sponds to system (7.228) can be found. In view of (7.194), we have

L2 =
[ A 0

0 A
]

.

With regard to (7.228), for vα(t), wα(t) (with Uα = {vα, wα}) we obtain the following
system of equations:

dvα

dt
+ A1/2vα + αAvα = 0,

dwα

dt
− A1/2wα + αAwα = 0.

(7.231)

By analogy with the exact solution u(t) (see (7.227)), we define the approximate
solution uα(t) by the following equation:

uα(t) = vα(t) + wα(t). (7.232)
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From (7.231) and (7.232), it follows immediately that the function uα(t) satisfies the
equation

d2uα

dt2
− Auα + 2αA duα

dt
+ α2A2uα = 0, 0 < t ≤ T . (7.233)

It follows from (7.232) that the solution of equation (7.233), supplemented with ap-
propriate initial conditions, satisfies

‖uα‖2 ≤ (‖vα‖ + ‖wα‖)2 ≤ 2(‖vα‖2 + ‖wα‖2) = 2‖Uα‖2

≤ 2 exp
( t

2α

)
‖Uα(0)‖2 ≤ exp

( t
2α

)
‖uα(0)‖2.

Of course, the same estimate can be obtained starting from the estimates for vα(t) and
wα(t) derived from equation (7.231).

Equation (7.233) was obtained by perturbing two terms. The regularization per-
formed by perturbing one of the terms (α2A2uα) was considered previously (see equa-
tion (7.220)). Of interest here is to consider, in its pure form, the regularization per-
formed at the expense of the second term. For this reason, we will seek the approxi-
mate solution from the equation (see (7.233))

d2uα

dt2
− Auα + αA duα

dt
= 0, 0 < t ≤ T, (7.234)

supplemented with the initial conditions (7.221), (7.222). Such regularization, applied
to well-posed problems for evolution equations, is called “parabolic” regularization.

Similarly to Theorem 7.23, we can prove an analogous statement about regularizing
properties of the generalized inverse method in its “parabolic”-regularization version.
Here, we give only the stability estimate with respect to initial data:

‖uα(t)‖ ≤ exp
( t
α

)
‖uα(0)‖.

We have restricted ourselves to the application of the generalized inverse method in its
standard version (7.228), (7.229) applied to problem (7.193)–(7.195). Some additional
possibilities are given by pseudo-parabolic perturbation of equation (7.193).

7.4.5 Regularized difference schemes

Let us turn now to constructing regularized difference schemes for the approximate
solution of the ill-posed Cauchy problem for the second-order evolution equation.

On the interval �̄ = [0, l], we introduce a uniform grid with a grid size h:

ω̄ = {x | x = xi = ih, i = 0, 1, . . . , N , Nh = l}.

Here, ω is the set of internal nodes and ∂ω is the set of boundary nodes.
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At the internal nodes, we approximate the differential operator (7.185), accurate to
second order, with the difference operator

�y = −yx̄x , x ∈ ω. (7.235)

In the mesh Hilbert space H , we introduce the norm by the relation ‖y‖ = (y, y)1/2,
in which

(y, w) =
∑
x∈ω

y(x)w(x)h.

On the set of functions vanishing on ∂ω, for the self-adjoint operator � there holds the
estimate

� = �∗ ≥ λ0 E, (7.236)

in which
λ0 = 4

h2
sin2 πh

2l
≥ 8

l2
.

On the approximation over the space, to problem (7.187)–(7.189) we put into cor-
respondence the problem

d2 y
dt2

− �y = 0, x ∈ ω, t > 0, (7.237)

y(x, 0) = u0(x), x ∈ ω, (7.238)
dy
dt

(x, 0) = 0, x ∈ ω. (7.239)

Regularized difference schemes for problem (7.237)–(7.239) can be constructed
based on the regularization principle for difference schemes. As a generic (initial)
difference scheme, we adopt the explicit symmetric difference scheme

yn+1 − 2yn + yn−1

τ 2
− �yn = 0,

x ∈ ω, n = 1, 2, . . . , N0 − 1
(7.240)

with some initial conditions.
With regard to (7.238), we have:

y0 = u0(x), x ∈ ω.

The solution at the time t = τ can be approximated, with conditions (7.238), (7.239)
on the solutions of (7.237). Taking into account the relation

y1 = y0 + τ
dy
dt

(0) + τ 2

2
d2 y
dt2

(0) + O(τ 3),

to approximate (7.239), we use the difference relation

y1 − y0

τ
+ τ

2
�y0 = 0.
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Scheme (7.240) can be written in the canonical form for three-layer difference
schemes

B
yn+1 − yn−1

2τ
+ R(yn+1 − 2yn + yn−1) + Ayn = 0 (7.241)

with operators

B = 0, R = 1
τ 2

E, A = −�, (7.242)

i. e., with A = A∗ < 0.

Theorem 7.24 The explicit scheme (7.240) is ρ-stable with

ρ = exp (M1/2τ). (7.243)

Proof. For scheme (7.240), we check that the following conditions for ρ-stability (see
Theorem 4.11) are fulfilled:

ρ2 + 1
2

B + τ(ρ2 − 1)R ≥ 0, (7.244)

ρ2 − 1
2τ

B + (ρ − 1)2 R + ρ A > 0, (7.245)

ρ2 − 1
2τ

B + (ρ + 1)2 R − ρ A > 0. (7.246)

Apparently, in the case of B ≥ 0, A ≤ 0, R ≥ 0 and ρ > 1 (see (7.242)) inequalities
(7.244) and (7.246) are fulfilled for all τ > 0.

With (7.242), inequality (7.245) yields:

(ρ − 1)2 E − τ 2ρ� ≥ ((ρ − 1)2 M−1 − τ 2ρ)� > 0.

Derivation of the estimates is based on the following useful result.

Lemma 7.25 Inequality
(ρ − 1)2χ − τ 2ρ > 0 (7.247)

is fulfilled for positive χ , τ and for ρ > 1 in the case of

ρ ≥ exp
(
χ−1/2τ

)
.

Proof. Inequality (7.247) is fulfilled in the case of ρ > ρ2, where

ρ2 = 1 + 1
2

τ 2χ−1 + τχ−1/2
(

1 + 1
4

τ 2χ−1
)1/2

.

Taking into account the inequality

(
1 + 1

4
τ 2χ−1

)1/2
< 1 + 1

8
τ 2χ−1,
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we obtain

ρ2 < 1 + τχ−1/2 + 1
2

τ 2χ−1 + 1
8

τ 3χ−3/2

< 1 + τχ−1/2 + 1
2

τ 2χ−1 + 1
6

τ 3χ−3/2 < exp (χ−1/2τ).

Thus, the lemma is proved.

In the case of interest, we have χ = M−1 and, hence, for ρ we obtain the desired
estimate (4.32) for the explicit scheme (7.240).

With regard to the boundedness of � (in Cauchy problems for elliptic equations),
we conclude that the grid step over space limits the solution growth, i.e., serves the
regularization parameter.

Let us construct now, at the expense of introducing penalty terms into the difference
operators of difference schemes, unconditionally stable difference schemes for the ap-
proximate solution of problem (7.237)–(7.239). Starting from the explicit scheme
(7.240), we write the regularized scheme in the canonical form (7.241) with

B = 0, R = 1
τ 2

(E + αG), A = −�. (7.248)

Theorem 7.26 The regularized scheme (7.241), (7.248) is ρ-stable with the regulizer
G = � with

ρ = exp
( τ√

α

)
, (7.249)

and with the regulizer G = �2, with

ρ = exp
( τ√

2
√

α

)
. (7.250)

Proof. Starting from (7.245) for (7.248), we arrive at the inequality

(ρ − 1)2(E + αG) − τ 2ρ� ≥ 0. (7.251)

In the case of G = �, analogously to the proof of Theorem 7.24 (χ = α + M−1)
we obtain the following expression for ρ:

ρ = exp
(
(α + ‖�‖−1)−1/2τ

)
.

Making ρ cruder yields the estimate (7.249).
In the case of G = �2, from inequality (7.245) we obtain:

E + α�2 − τ 2ρ

(ρ − 1)2
� =

(√
α� − τ 2ρ

2
√

α(ρ − 1)2
E
)2

+
(

1 − τ 4ρ2

4α(ρ − 1)4

)
E .
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This inequality is fulfilled for some given ρ if

α ≥ τ 4ρ2

4(ρ − 1)4
. (7.252)

Let us evaluate now the quantity ρ for given α from inequality (7.252) rewritten in the
form

(ρ − 1)22
√

α − τ 2ρ.

By the above lemma with χ = 2
√

α, the latter inequality is fulfilled for the values of ρ

defined by (7.250).

The regularized scheme (7.241), (7.248) with the regularizer G = � can be written
as the weighted scheme

yn+1 − 2yn + yn−1

τ 2
− �(σ yn+1 + (1 − 2σ)yn + σ yn−1) = 0 (7.253)

with σ = −α/τ 2. Thereby, the regularizing parameter here is the negative weight in
(7.253). The latter scheme can also be related to a version of the generalized inverse
method (7.225) for the approximate solution of the ill-posed problem (7.187)–(7.189).

The construction of the regularized difference scheme is based on a perturbation
of the operators in the generic difference scheme (7.241), (7.242) chosen so that to
fulfill the operator inequality (7.245). In Theorem 7.26, the latter can be achieved
at the expense of some additive perturbation (increase) of R. There are many other
possibilities. In particular, note the possibility of additive perturbation of B:

B = αG, R = 1
τ 2

E, A = −�. (7.254)

Theorem 7.27 The regularized scheme (7.241), (7.254) with G = � is ρ-stable with

ρ = exp
( τ

α

)
. (7.255)

Proof. Inequality (7.245) can be rearranged as

ρ2 − 1
2τ

B + (ρ − 1)2 R + ρ A >
ρ2 − 1

2τ
α� − ρ� ≥ 0.

This inequality is fulfilled with ρ ≥ ρ2, where

ρ2 = τ

α
+
(

1 + τ 2

α2

)1/2
< 1 + τ

α
+ 1

2
τ 2

α2
< exp

( τ

α

)
.

From here, expression (7.255) for ρ in the difference scheme (7.241), (7.254) follows.

The regularized scheme (7.241), (7.254) can be directly related to the use of the gen-
eralized inverse method in its version (7.234). In a similar way, regularized schemes
can be constructed which can be related to the basic variant (7.225) of the generalized
inverse method.
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7.4.6 Program

Here, we do not has as our object to check the efficiency of all mentioned methods for
the approximate solution of the model Cauchy problem for elliptic equation (7.180)–
(7.182), (7.184). As judged from the standpoint of computational realization, the sim-
plest approach here is related with using regularized schemes of type (7.241), (7.248)
(or (7.241), (7.254)) with the regulizer G = �.

In the case of (7.241), (7.248), the approximate solution is to be found from the
difference equation

(E + α�)
yn+1 − 2yn + yn−1

τ 2
− �yn = 0,

and in the case of (7.241), (7.254), from

α�
yn+1 − yn−1

2τ
+ yn+1 − 2yn + yn−1

τ 2
− �yn = 0.

For such schemes, the computational realization is not much more difficult than for
direct problems.

Here, to be controlled (bounded) is the growth of the solution norm, this very often
being not sufficient for obtaining a satisfactory approximate solution. The latter cir-
cumstance is related with the fact that, here, we do not use any preliminary treatment
of the approximate solution burdened with input-data inaccuracy. That is why we have
to use regularized difference schemes with stronger regulizers.

The program PROBLEM13 realizes the regularized difference scheme (7.241),
(7.248) with G = �2:

(E + α�2)
yn+1 − 2yn + yn−1

τ 2
− �yn = 0. (7.256)

For the model problem (7.180)–(7.182), (7.184), the realization of (7.256) is based on
using the five-point sweep algorithm.

Note some possibilities available in choosing the regularization parameter. In the
most natural approach, the regularization parameter is to be chosen considering the
discrepancy; here, we compare, at t = 0, the solutions of the direct problem of type
(7.180)–(7.183), in which the boundary condition (7.183) is formulated from the solu-
tion of the inverse problem. Here, two circumstances are to be mentioned, which make
this approach very natural as used with regularized difference schemes of type (7.256).
First, the used algorithm becomes a global regularization algorithm (we have to solve
the problem for all times t at ones). Second, here the computational realization of
the direct problem, i.e., the boundary value problem for the elliptic equation, is much
more difficult than for the inverse problem, a problem for the second-order evolution
equation.
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With the aforesaid, for choosing the value of the regularization parameter we have
to apply such algorithms that retain the local regularization property (making a con-
secutive determination of the approximate solution at the next time layer possible). A
simplest such algorithm is realized in the program PROBLEM13.

Previously (see (7.140)–(7.143)), the relation between the regularized schemes and
the difference-smoothing algorithms was elucidated. We rewrite scheme (7.256) as

w̃n − �yn = 0,

(E + α�2)wn = w̃n+1,

where
wn = yn+1 − 2yn + yn−1

τ 2
.

In this way, the second difference derivative is first to be calculated by an explicit
formula and, then, to be smoothed:

Jα(wn) = min
v∈H

Jα(v),

Jα(v) = ‖v − w̃n‖2 + α‖�v‖2.

In the case under consideration, the regularization is related with smoothing of mesh
functions.

First of all, the smoothing procedure has to be applied to the inaccurate input data.
Here, these data are the mesh function y0. In accordance with the discrepancy princi-
ple, the regularization (smoothing) parameter can be found from the condition

‖y0 − uδ
0‖ = δ,

with

Jα(y0) = min
v∈H

Jα(v),

Jα(v) = ‖v − uδ
0‖2 + α‖�v‖2.

Program PROBLEM13

C
C PROBLEM13 - CAUCHY PROBLEM FOR THE LAPLACE EQUATION
C TWO-DIMENSIONAL PROBLEM
C REGULARIZED SCHEME

IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( DELTA = 0.005D0, N = 65, M = 65 )
DIMENSION U0(N), U0D(N), UT(N), U(N), U1(N), Y(N), Y1(N)
+ ,X(N), A(N), B(N), C(N), D(N), E(N), F(N)

C
C PARAMETERS:
C
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C XL, XR - LEFT AND RIGHT ENDS OF THE SEGMENT;
C N - NUMBER OF NODES IN THE SPATIAL GRID;
C TMAX - MAXIMAL TIME;
C M - NUMBER OF NODES OVER TIME;
C DELTA - INPUT-DATA INACCURACY LEVEL;
C Q - FACTOR IN THE FORMULA FOR THE REGULARIZATION PARAMETER;
C U0(N) - INITIAL CONDITION;
C U0D(N) - DISTURBED INITIAL CONDITION;
C UT(N) - EXACT END-TIME SOLUTION;
C U(N) - APPROXIMATE SOLUTION OF THE INVERSE PROBLEM;
C

XL = 0.D0
XR = 1.D0
TMAX = 0.25D0

C
OPEN (01, FILE = ’RESULT.DAT’)! FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H = (XR - XL) / (N - 1)
TAU = TMAX / (M-1)
DO I = 1, N

X(I) = XL + (I-1)*H
END DO

C
C EXACT SOLUTION OF THE PROBLEM
C

DO I = 1, N
U0(I) = AU(X(I), 0.D0)
UT(I) = AU(X(I), TMAX)

END DO
C
C DISTURBING OF MEASURED QUANTITIES
C

DO I = 2, N-1
U0D(I) = U0(I) + 2.*DELTA*(RAND(0)-0.5)

END DO
U0D(1) = U0(1)
U0D(N) = U0(N)

C
C INVERSE PROBLEM
C
C SMOOTHING OF INITIAL CONDITIONS
C

IT = 0
ITMAX = 100
ALPHA = 0.00001D0
Q = 0.75D0

100 IT = IT + 1
C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE INVERSE PROBLEM
C

DO I = 2, N-1
A(I) = ALPHA / (H**4)
B(I) = 4.D0 * ALPHA / (H**4)
C(I) = 6.D0 * ALPHA / (H**4) + 1.D0
D(I) = 4.D0 * ALPHA / (H**4)
E(I) = ALPHA / (H**4)

END DO
C(1) = 1.D0
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D(1) = 0.D0
E(1) = 0.D0
F(1) = 0.D0
B(2) = 0.D0
C(2) = 5.D0 * ALPHA / (H**4) + 1.D0
C(N-1) = 5.D0 * ALPHA / (H**4) + 1.D0
D(N-1) = 0.D0
A(N) = 0.D0
B(N) = 0.D0
C(N) = 1.D0
F(N) = 0.D0
DO I = 2, N-1

F(I) = U0D(I)
END DO

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

ITASK = 1
CALL PROG5 ( N, A, B, C, D, E, F, U1, ITASK )

C
C CRITERION FOR THE EXIT FROM THE ITERATIVE PROCESS
C

WRITE (01,*) IT, ALPHA
SUM = 0.D0
DO I = 2, N-1

SUM = SUM + (U1(I) - U0D(I))**2*H
END DO
SL2 = DSQRT(SUM)

C
IF (IT.GT.ITMAX) STOP
IF ( IT.EQ.1 ) THEN

IND = 0
IF ( SL2.LT.DELTA ) THEN

IND = 1
Q = 1.D0/Q

END IF
ALPHA = ALPHA*Q
GO TO 100

ELSE
ALPHA = ALPHA*Q
IF ( IND.EQ.0 .AND. SL2.GT.DELTA ) GO TO 100
IF ( IND.EQ.1 .AND. SL2.LT.DELTA ) GO TO 100

END IF
C
C INVERSE-PROBLEM SOLUTION WITH CHOSEN REGULARIZATION PARAMETER
C REGULARIZED SCHEME
C
C INITIAL CONDITION
C

DO I = 1, N
Y1(I) = U1(I)

END DO
DO I = 2, N-1

Y(I) = Y1(I)
+ + 0.5D0*TAU**2/H**2 * (Y1(I+1)-2.D0*Y1(I) + Y1(I-1))
END DO
Y(1) = 0.D0
Y(N) = 0.D0
DO K = 3, M

C
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C DIFFERENCE-SCHEME COEFFICIENTS IN THE INVERSE PROBLEM
C

DO I = 2, N-1
A(I) = ALPHA / (H**4)
B(I) = 4.D0 * ALPHA / (H**4)
C(I) = 6.D0 * ALPHA / (H**4) + 1.D0
D(I) = 4.D0 * ALPHA / (H**4)
E(I) = ALPHA / (H**4)

END DO
C(1) = 1.D0
D(1) = 0.D0
E(1) = 0.D0
F(1) = 0.D0
B(2) = 0.D0
C(2) = 5.D0 * ALPHA / (H**4) + 1.D0
C(N-1) = 5.D0 * ALPHA / (H**4) + 1.D0
D(N-1) = 0.D0
A(N) = 0.D0
B(N) = 0.D0
C(N) = 1.D0
F(N) = 0.D0
DO I = 3, N-2

F(I) = A(I)*(2.D0*Y(I-2) - Y1(I-2))
+ - B(I)*(2.D0*Y(I-1) - Y1(I-1))
+ + C(I)*(2.D0*Y(I) - Y1(I))
+ - D(I)*(2.D0*Y(I+1) - Y1(I+1))
+ + E(I)*(2.D0*Y(I+2) - Y1(I+2))
+ - TAU**2/(H*H) * (Y(I+1)-2.D0*Y(I) + Y(I-1))

END DO
F(2) = - B(2)*(2.D0*Y(1) - Y1(1))

+ + C(2)*(2.D0*Y(2) - Y1(2))

+ - D(2)*(2.D0*Y(3) - Y1(3))
+ + E(2)*(2.D0*Y(4) - Y1(4))
+ - TAU**2/(H*H) * (Y(3)-2.D0*Y(2) + Y(1))

F(N-1) = A(N-1)*(2.D0*Y(N-3) - Y1(N-3))
+ - B(N-1)*(2.D0*Y(N-2) - Y1(N-2))
+ + C(N-1)*(2.D0*Y(N-1) - Y1(N-1))
+ - D(N-1)*(2.D0*Y(N) - Y1(N))
+ - TAU**2/(H*H) * (Y(N)-2.D0*Y(N-1) + Y(N-2))

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

DO I = 1, N
Y1(I) = Y(I)

END DO
ITASK = 1
CALL PROG5 ( N, A, B, C, D, E, F, Y, ITASK )

END DO
DO I = 1, N

U(I) = Y(I)
END DO

C
C SOLUTION
C

WRITE ( 01, * ) (U0(I),I=1,N)
WRITE ( 01, * ) (UT(I),I=1,N)
WRITE ( 01, * ) (U0D(I),I=1,N)
WRITE ( 01, * ) (X(I),I=1,N)
WRITE ( 01, * ) (U(I),I=1,N)
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CLOSE (01)
STOP
END

DOUBLE PRECISION FUNCTION AU ( X, T )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C EXACT SOLUTION
C

PI = 3.1415926D0
C1 = 0.1D0
C2 = 0.5D0 * C1
AU = C1 * (DEXP(PI*T) + DEXP(-PI*T)) * DSIN(PI*X)
+ + C2 * (DEXP(2*PI*T) + DEXP(-2*PI*T)) * DSIN(2*PI*X)

C
RETURN
END

7.4.7 Computational experiments

The data presented below were obtained on a uniform grid with h = 1/64 and l = 1.
The inverse problem was solved till the time T = 0.25, the time step size of the grid
being τ = T/64. The exact solution of the inverse problem is

u(x, t) = ch (π t) sin (πx) + 1
2

ch (2π t) sin (2πx).

Figure 7.14 Solution of the problem obtained with δ = 0.002
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Figure 7.15 Solution of the problem obtained with δ = 0.001

Figure 7.16 Inverse-problem solution obtained with δ = 0.005

Figure 7.14 shows the solution of the inverse problem obtained for the inaccuracy
level defined by the quantity δ = 0.002. Here, the exact and perturbed initial condi-
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tions are shown, as well as the exact and approximate end-time solution of the inverse
problem. Solutions of the problem obtained for two other inaccuracy levels are shown
in Figures 7.15 and 7.16. The calculation data prove it possible to reconstruct smooth
solutions at inaccuracy levels amounting to one percent.

7.5 Continuation of non-stationary fields

from point observation data

In this section, we consider the inverse problem for a model non-stationary parabolic
equation with unknown initial condition and with information about the solution avail-
able at some points of the two-dimensional calculation domain. We describe a com-
putational algorithm developed around the variational formulation of the problem and
using the Tikhonov regularization algorithm.

7.5.1 Statement of the problem

We consider a problem in which it is required to determine a non-stationary field
u(x, t) that satisfies a second-order parabolic equation in a bounded two-dimensional
domain � and certain boundary conditions provided that information about the solu-
tion at some points in the domain is available. The initial state u(x, 0) is assumed
unknown. This problem is an ill-posed one; in particular, we cannot rely on obtaining
a unique solution. Such inverse problems often arise in hydrogeology, for instance, in
the cases in which all available information about the solution is given by variation of
physical quantities in observation holes.

In a two-dimensional bounded domain � (x = (x1, x2)), we seek the solution of the
parabolic equation

∂u
∂t

−
2∑

β=1

∂

∂xβ

(
k(x)

∂u
∂xβ

)
= 0, x ∈ �, 0 < t < T . (7.257)

This equation is supplemented with first-kind homogeneous boundary conditions:

u(x, t) = 0, x ∈ ∂�, 0 < t < T . (7.258)

For a well-posed problem to be formulated, we have to set the initial state, the function
u(x, 0).

In the inverse problem of interest, the initial condition is unknown. The additional
information is gained in observations performed over the solution at some individual
points in the calculation domain; this information is provided by functions u(x, t)
given at points zm ∈ �, m = 1, 2, . . . , M (see Figure 7.17). With regard to the
measurement inaccuracies, we put:

u(zm, t) ≈ ϕm(t), 0 < t < T, m = 1, 2, . . . , M. (7.259)
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Figure 7.17 Schematic illustrating the statement of the problem

It is required to find, from equation (7.257), boundary conditions (7.258) and addi-
tional measurements (7.259), the function u(x, t).

With the given data measured at individual points (see (7.259)), we can pose a prob-
lem aimed at treating the data. At each time, we can try to interpolate (extrapolate)
these data towards all points in the calculation domain. From this standpoint, the
above-posed inverse problem (7.257)–(7.259) can be considered as a problem in which
it is required to treat the data maximally taking into account a priori information about
the solution; here, the interpolation problem is to be solved in the class of functions
that satisfy equation (7.257) and boundary conditions (7.258).

7.5.2 Variational problem

In the consideration of inverse problem (7.257)–(7.259), we will restrict ourselves to
the cases in which it is required to solve such problems approximately. We will solve
these problems on the basis of the Tikhonov regularization method. To this end, we
will use the formulation of the inverse problem as an optimal control problem.

As the control v(x), it seems reasonable to choose the initial condition. We de-
note the corresponding solution as u(x, t; v). The state u(x, t; v) of the system is
pre-defined by equation (7.257), by boundary conditions (7.258), and by the initial
condition

u(x, 0; v) = v(x), x ∈ �. (7.260)

We assume that the control v(x) belongs to the Hilbert space H = {v(x) | v(x) ∈
L2(�), v(x) = 0, x ∈ ∂�}, in which the scalar product and the norm are defined as

(v, w) =
∫

�

v(x)w(x) dx, ‖v‖ =
√

(v, v).
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In line with (7.259), we choose the smoothing functional in the form

Jα(v) =
M∑

m=1

∫ T

0
(u(zm, t; v) − ϕm(t))2 dt + α‖v‖2, (7.261)

where α > 0 is the regularization parameter, whose value must be chosen considering
the inaccuracy in the measurements (7.259).

The optimal control w(x) is to be chosen from the minimum of (7.261), i.e.,

Jα(w) = min
v∈H

Jα(v). (7.262)

The solution of the inverse problem is u(x, t) = u(x, t; w).
For the variational problem (7.257), (7.258), (7.260)–(7.262), we use a somewhat

more general differential-operator statement, considering the problem in H, so that
u(x, t; v) = u(t; v) ∈ H. We write equation (7.257) with boundary conditions (7.258)
in H in the form of an evolutionary first-order equation:

du
dt

+ Au = 0, 0 < t < T . (7.263)

The operator A, defined as

Au ≡ −
2∑

β=1

∂

∂xβ

(
k(x)

∂u
∂xβ

)
,

is self-adjoint and positively defined in H:

A = A∗ ≥ κλ0 E, (7.264)

where k(x) ≥ κ > 0, and λ0 > 0 is the minimal eigenvalue of the Laplace operator.
We introduce the function χ ∈ H:

χ =
M∑

m=1

δ(x − zm).

Here, δ(x) is the δ-function, and let ϕ(t) ∈ H be a function such that

χϕ(t) =
M∑

m=1

δ(x − zm)ϕm(t).

With the notation introduced, the functional (7.261) can be rewritten as

Jα(v) =
∫ T

0
(χ, (u(t; v) − ϕ(t))2) dt + α‖v‖2. (7.265)

Equation (7.263) is supplemented with the initial condition (see (7.260))

u(0) = v. (7.266)

So, we arrive at the minimization problem (7.262), (7.265) for the solutions of problem
(7.263), (7.266).
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7.5.3 Difference problem

For simplicity, we restrict ourselves to the case in which � is a rectangle:

� = {x | x = (x1, x2), 0 < xβ < lβ, β = 1, 2}.
In the domain �, we introduce a grid, uniform over either direction, with grid sizes hα,
α = 1, 2. Suppose that, as usually, ω is the set of internal nodes.

On the set of mesh functions y(x) such that y(x) = 0, x �= ω, by the relation

�y = −
2∑

β=1

(aβ yx̄β
)xβ

, (7.267)

we define the difference operator �, where, for instance,

a1(x) = k(x1 − 0.5h1, x2), a2(x) = k(x1, x2 − 0.5h2).

In the mesh Hilbert space H = L2(ω), we introduce the scalar product and the norm
with the relations

(y, w) =
∑
x∈ω

y(x)w(x)h1h2, ‖y‖ =
√

(y, y).

In H we have � = �∗ ≥ γ E , m > 0, where

γ = κ
( 8

l2
1

+ 8
l2
2

)
.

From (7.263) and (7.266), we pass to the differential-operator equation

dy
dt

+ �y = 0, 0 < t < T (7.268)

with the given initial condition

y(0) = v, x ∈ ω. (7.269)

We denote by yn the difference solution at the time tn = nτ , n = 0, 1, . . . , N0,
N0τ = T , where τ > 0 is the time step size. For problem (7.268), (7.269), we will use
the two-layer scheme with the weights

yn+1 − yn

τ
+ �(σ yn+1 + (1 − σ)yn) = 0,

n = 0, 1, . . . , N0 − 1,

(7.270)

supplemented with the initial condition

y0(x) = v(x), x ∈ ω. (7.271)
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We write scheme (7.270) in the canonical form

B
yn+1 − yn

τ
+ Ayn = 0, n = 0, 1, . . . , N0 − 1. (7.272)

For the difference operators B and A we have:

B = E + στ A, A = �. (7.273)

The scheme with weights (7.272) and (7.273) in the case of A = A∗ > 0 is stable
(see Theorem 4.14) in H provided that

E + τ
(
σ − 1

2

)
A ≥ 0.

This (necessary and sufficient) condition is fulfilled for all σ ≥ 0.5, i.e., here we have
an unconditionally stable difference scheme. In the case of σ < 0.5 scheme (7.272),
(7.273) is conditionally stable. For the difference solution of problem (7.270), (7.271)
in the case of σ ≥ 0.5 there holds the following a priori estimate:

‖yn‖ ≤ ‖v‖, n = 1, 2, . . . , N0;

this estimate shows the scheme to be stable with respect to initial data.
We assume that the observation points zm , m = 1, 2, . . . , M coincide with some

internal nodes of the calculation grid. Like in the continuous case, we define the mesh
function χh ∈ H as

χh(x) = 1
h1h2

M∑
m=1

∫
�

δ(x − zm) dx,

i.e., χh ∈ H is the sum of the corresponding difference δ-functions. In a similar way,
we can introduce ϕh(x, tn), x ∈ ω, n = 1, 2, . . . , N0 so that

χh(x)ϕh(x, tn) = 1
h1h2

M∑
m=1

∫
�

δ(x − zm)ϕm(tn) dx.

To functional (7.265), we put into correspondence the following difference func-
tional:

Jα(v) =
N0∑

n=1

(χh, (y(x, tn; v) − ϕh(x, tn))2)τ + α‖v‖2. (7.274)

The minimization problem
Jα(w) = min

v∈H
Jα(v) (7.275)

is to be solved under constraints (7.270) and (7.271).
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7.5.4 Numerical solution of the difference problem

To approximately solve the discrete variational problem of interest, we will use gra-
dient iteration methods. First, we are goint to derive the Euler equation (optimal-
ity condition) for the variational problem to be approximately solved by the iteration
methods.

To formulate the optimality conditions for problem (7.271), (7.272), (7.274),
(7.275), consider the problem for the increments. From (7.271) and (7.272) we have:

B
δyn+1 − δyn

τ
+ Aδyn = 0, n = 0, 1, . . . , N0 − 1, (7.276)

δy0 = δv. (7.277)

To formulate the problem for the conjugate state ψn , we multiply equation (7.276)
(scalarwise in H ) by τψn+1 and calculate the sum over n from 0 to N0 −1. This yields

N0−1∑
n=0

((Bδyn+1, ψn+1) + ((τ A − B)δyn, ψn+1)) = 0. (7.278)

With the constancy and self-adjointness of the operators A and B taken into account,
for the first term we have:

N0−1∑
n=0

(Bδyn+1, ψn+1) =
N0∑

n=1

(δyn, Bψn).

We consider the mesh function ψn for n = 0, 1, . . . , N0 under the following addi-
tional conditions:

ψN0+1 = 0. (7.279)

The second term in (7.278) can be rearranged as

N0−1∑
n=0

((τ A − B)δyn, ψn+1) =
N0∑

n=0

((τ A − B)δyn, ψn+1)

=
N0∑

n=1

(δyn, (τ A − B)ψn+1) + (δy0, (τ A − B)ψ1). (7.280)

Substitution of (7.279) and (7.280) into (7.278) yields the equation

N0∑
n=0

(δyn, (Bψn + (τ A − B)ψn+1)) = (δv, Bψ0). (7.281)
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With the form of (7.274) taken into account, we determine the conjugate state from the
difference equation

B
ψn − ψn+1

τ
+ Aψn+1 = χh(yn − ϕh(x, tn)),

n = N0, N0 − 1, . . . , 0,

(7.282)

supplemented with conditions (7.279). Scheme (7.279), (7.282) is stable under the
same conditions as scheme (7.271), (7.272) for the ground state.

From (7.281), for the gradient of (7.274) the following representation can be de-
rived:

J ′
α(v) = 2

(1
τ

Bψ0 + αv
)
. (7.283)

With (7.283), the necessary and sufficient condition for the minimum of (7.274) can
be written as

Bψ0 + ταv = 0. (7.284)

For equation (7.284) to be solved, we construct the iteration method.
The iteration algorithm for initial-state correction consists in the following organi-

zation of the computational procedure.

• At a given wk (k is the iteration number), we solve the identification problem
for the ground state:

B
yk

n+1 − yk
n

τ
+ Ayk

n = 0, n = 0, 1, . . . , N0 − 1,

yk
0(x) = wk(x), x ∈ ω.

• Then, we calculate the conjugate state:

B
ψk

n − ψk
n+1

τ
+ Aψk

n+1 = 2χh(yk
n − ϕh(x, tn)), n = N0, N0 − 1, . . . , 1,

B
ψk

0 − ψk
1

τ
+ Aψk

1 = 0,

ψk
N0+1 = 0, x ∈ ω.

• Next, we refine the initial condition:

wk+1 − wk

sk+1
+ Bψk

0 + αwk = 0, x ∈ ω.

Thus, the algorithm is based on the solution of two non-stationary difference problems
and on refinement of the initial condition at each iteration step.
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A second, more attractive possibility is related with the construction of the itera-
tion method of minimized discrepancy functional (with α = 0 in (7.274)). The latter
situation arises when the iteration method is used to solve the equation (see (7.284))

Bψ0 = 0. (7.285)

In the case of (7.285), we use the same computational procedure as in the solution of
(7.284). Yet, there are no problems with the special definition of the regularization
parameter, this circumstance being the major advantage of iteration methods over the
Tikhonov regularization method.

7.5.5 Program

In the program listing presented below, the iteration method for the minimization of
the discrepancy functional is realized (equation (7.285) is solved). In order to make
the problem not too complicated, we have restricted ourselves to the iterative method
of simple iteration, in which

wk+1 − wk

s
+ Bψk

0 = 0, x ∈ ω

and the value of s is set explicitly.

Program PROBLEM14

C
C PROBLEM14 - CONTINUATION OF NON-STATIONARY FIELDS
C FROM POINT OBSERVATIONS
C TWO-DIMENSIONAL PROBLEM
C ITERATIVE REFINEMENT OF THE INITIAL CONDITION
C

IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( DELTA = 0.02D0, N1 = 51, N2 = 51, M = 101, L = 10 )
DIMENSION A(13*N1*N2), X1(N1), X2(N2)
+ ,XP(L), YP(L), IM(L), JM(L)
+ ,FF(L), FI(L,M), FID(L,M), FIK(L,M)
COMMON / SB5 / IDEFAULT(4)
COMMON / CONTROL / IREPT, NITER

C
C PARAMETERS:
C
C X1L, X2L - COORDINATES OF THE LEFT CORNER;
C X1R, X2R - COORDINATES OF THE RIGHT CIRNER;
C N1, N2 - NUMBER OF NODES IN THE SPATIAL GRID;
C H1, H2 - MESH SIZES OVER SPACE;
C TAU - TIME STEP;
C DELTA - INPUT-DATA INACCURACY LEVEL;
C U0(N1,N2) - INITIAL CONDITION TO BE RECONSTRUCTED;
C XP(L), - COORDINATES OF THE OBSERVATION POINTS;
C YP(L)
C FI(L,M) - SOLUTION AT THE OBSERVATION POINTS;
C FID(L,M) - DISTURBED SOLUTION AT THE OBSERVATION POINTS;
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C
C EPSR - RELATIVE INACCURACY OF THE DIFFERENCE SOLUTION;
C EPSA - ABSOLUTE INACCURACY OF THE DIFFERENCE SOLUTION;
C
C EQUIVALENCE ( A(1), A0 ),
C * ( A(N+1), A1 ),
C * ( A(2*N+1), A2 ),
C * ( A(9*N+1), F ),
C * ( A(10*N+1), U0 ),
C * ( A(11*N+1), V ),
C * ( A(12*N+1), B ),
C

X1L = 0.D0
X1R = 1.D0
X2L = 0.D0
X2R = 1.D0
TMAX = 0.025D0
PI = 3.1415926D0
EPSR = 1.D-5
EPSA = 1.D-8
SS = - 2.D0

C
OPEN (01, FILE = ’RESULT.DAT’)! FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H1 = (X1R-X1L) / (N1-1)
H2 = (X2R-X2L) / (N2-1)
TAU = TMAX / (M-1)
DO I = 1, N1

X1(I) = X1L + (I-1)*H1
END DO
DO J = 1, N2

X2(J) = X2L + (J-1)*H2
END DO

C
N = N1*N2
DO I = 1, 13*N

A(I) = 0.0
END DO

C
C DIRECT PROBLEM
C PURELY IMPLICIT DIFFERENCE SCHEME
C
C INITIAL CONDITION
C

T = 0.D0
CALL MEGP (XP, YP, IM, JM, L, H1, H2)
CALL INIT (A(10*N+1), X1, X2, N1, N2)
CALL PU (IM, JM, A(10*N+1), N1, N2, FF, L)
DO IP = 1,L

FI(IP,1) = FF(IP)
END DO
DO K = 2, M

C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

CALL FDS (A(1), A(N+1), A(2*N+1), A(9*N+1), A(10*N+1),
+ H1, H2, N1, N2, TAU)

C
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C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), A(10*N+1), A(9*N+1), EPSR, EPSA)

C
C OBSERVATIONAL DATA
C

CALL PU (IM, JM, A(10*N+1), N1, N2, FF, L)
DO IP = 1,L

FI(IP,K) = FF(IP)
END DO

END DO
C
C DISTURBING OF MEASURED QUANTITIES
C

DO K = 1,M
DO IP = 1,L

FID(IP,K) = FI(IP,K) + 2.*DELTA*(RAND(0)-0.5)
END DO

END DO
C
C INVERSE PROBLEM
C ITERATION METHOD
C

IT = 0
C
C STARTING APPROXIMATION
C

DO I = 1, N
A(11*N+I) = 0.D0

END DO
C

100 IT = IT + 1
C
C GROUND STATE
C

T = 0.D0
C
C INITIAL CONDITION
C

DO I = 1, N
A(10*N+I) = A(11*N+I)

END DO
CALL PU (IM, JM, A(10*N+1), N1, N2, FF, L)
DO IP = 1,L

FIK(IP,1) = FF(IP)
END DO
DO K = 2, M

C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

CALL FDS (A(1), A(N+1), A(2*N+1), A(9*N+1), A(10*N+1),
+ H1, H2, N1, N2, TAU)

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), A(10*N+1), A(9*N+1), EPSR, EPSA)
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C
C SOLUTION AT THE OBSERVATION POINTS
C

CALL PU (IM, JM, A(10*N+1), N1, N2, FF, L)
DO IP = 1,L

FIK(IP,K) = FF(IP)
END DO

END DO
C
C CONJUGATE STATE
C

T = TMAX + TAU
C
C INITIAL CONDITION
C

DO I = 1, N
A(10*N+I) = 0.D0

END DO
DO K = 2, M+1

C
C DIFFERENCE-SCHEME COEFFICIENTS
C

CALL FDS (A(1), A(N+1), A(2*N+1), A(9*N+1), A(10*N+1),
+ H1, H2, N1, N2, TAU)

CALL RHS (A(9*N+1), N1, N2, H1, H2, FID, FIK, IM, JM, L, M, K)
C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), A(10*N+1), A(9*N+1), EPSR, EPSA)

END DO
C
C SIMPLE ITERATION METHOD
C NEXT APPROXIMATION
C

CALL BS (A(10*N+1), A(1), A(N+1), A(2*N+1), A(12*N+1), N1, N2 )
DO I = 1, N

A(11*N+I) = A(11*N+I) - SS*A(12*N+I)
END DO

C
C EXIT FROM THE ITERATIVE PROCESS BY THE DISCREPANCY CRITERION
C

SUM = 0.D0
DO K = 1, M

DO IP = 1, L
SUM = SUM + (FID(IP,K) - FIK(IP,K))**2*TAU

END DO
END DO
SUM = SUM/(L*TMAX)
SL2 = DSQRT(SUM)
WRITE (*,*) IT, SL2
IF ( SL2.GT.DELTA ) GO TO 100

C
C SOLUTION
C

WRITE ( 01, * ) (A(11*N+I), I=1,N)
WRITE ( 01, * ) ((FI(IP,K), IP=1,L), K=1,M)
CLOSE (01)
STOP
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END
C

SUBROUTINE INIT (U, X1, X2, N1, N2)
C
C INITIAL CONDITION
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION U(N1,N2), X1(N1), X2(N2)
DO I = 1, N1

DO J = 1, N2
U(I,J) = 0.D0
IF ((X1(I)-0.6D0)**2 + (X2(J)-0.6D0)**2.LE.0.04D0)

+ U(I,J) = 1.D0
END DO

END DO
C

RETURN
END

C
SUBROUTINE FDS (A0, A1, A2, F, U, H1, H2, N1, N2, TAU)

C
C GENERATION OF DIFFERENCE-SCHEME COEFFICIENTS
C FOR PARABOLIC EQUATION WITH CONSTANT COEFFICIENTS
C IN THE CASE OF PURELY IMPLICIT SCHEME
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION A0(N1,N2), A1(N1,N2), A2(N1,N2), F(N1,N2), U(N1,N2)

C
DO J = 2, N2-1

DO I = 2, N1-1
A1(I-1,J) = 1.D0/(H1*H1)
A1(I,J) = 1.D0/(H1*H1)
A2(I,J-1) = 1.D0/(H2*H2)
A2(I,J) = 1.D0/(H2*H2)
A0(I,J) = A1(I,J) + A1(I-1,J) + A2(I,J) + A2(I,J-1)

+ + 1.D0/TAU
F(I,J) = U(I,J)/TAU

END DO
END DO

C
C FIRST-KIND HOMOGENEOUS BOUNDARY CONDITION
C

DO J = 2, N2-1
A0(1,J) = 1.D0
A1(1,J) = 0.D0
A2(1,J) = 0.D0
F(1,J) = 0.D0

END DO
C

DO J = 2, N2-1
A0(N1,J) = 1.D0
A1(N1-1,J) = 0.D0
A1(N1,J) = 0.D0
A2(N1,J) = 0.D0
F(N1,J) = 0.D0

END DO
C

DO I = 2, N1-1
A0(I,1) = 1.D0
A1(I,1) = 0.D0
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A2(I,1) = 0.D0
F(I,1) = 0.D0

END DO
C

DO I = 2, N1-1
A0(I,N2) = 1.D0
A1(I,N2) = 0.D0
A2(I,N2) = 0.D0
A2(I,N2-1) = 0.D0
F(I,N2) = 0.D0

END DO
C

A0(1,1) = 1.D0
A1(1,1) = 0.D0
A2(1,1) = 0.D0
F(1,1) = 0.D0

C
A0(N1,1) = 1.D0
A2(N1,1) = 0.D0
F(N1,1) = 0.D0

C

A0(1,N2) = 1.D0
A1(1,N2) = 0.D0
F(1,N2) = 0.D0

C
A0(N1,N2) = 1.D0
F(N1,N2) = 0.D0

C
RETURN
END

C
SUBROUTINE RHS (F, N1, N2, H1, H2, FI, FIK, IM, JM, L, M, K)

C
C RIGHT-HAND SIDE IN THE EQUATION FOR THE CONJUGATE STATE
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION F(N1,N2), FI(L,M), FIK(L,M), IM(L), JM(L)

C
DO J = 2, N2-1

DO I = 2, N1-1
DO IP = 1, L

IF (I.EQ.IM(IP).AND.J.EQ.JM(IP)) THEN
F(I,J) = F(I,J) + (FIK(IP,M+2-K)-FI(IP,M+2-K))/(H1*H2)

END IF
END DO

END DO
END DO

C
RETURN
END

C
SUBROUTINE MEGP (XP, YP, IM, JM, L, H1, H2)

C
C OBSERVATION POINTS
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION IM(L), JM(L), XP(L), YP(L)

C
XP(1) = 0.17D0
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YP(1) = 0.53D0
XP(2) = 0.36D0
YP(2) = 0.87D0
XP(3) = 0.42D0
YP(3) = 0.39D0
XP(4) = 0.58D0
YP(4) = 0.48D0
XP(5) = 0.83D0
YP(5) = 0.25D0
XP(6) = 0.11D0
YP(6) = 0.15D0
XP(7) = 0.76D0
YP(7) = 0.71D0
XP(8) = 0.28D0
YP(8) = 0.33D0
XP(9) = 0.35D0
YP(9) = 0.65D0
XP(10) = 0.49D0
YP(10) = 0.24D0
DO IP = 1,L

IM(IP) = XP(IP)/H1 + 1
IF ((XP(IP) - IM(IP)*H1).GT. 0.5D0*H1) IM(IP) = IM(IP)+1
JM(IP) = YP(IP)/H2 + 1
IF ((YP(IP) - JM(IP)*H2).GT. 0.5D0*H2) JM(IP) = JM(IP)+1

END DO
C

RETURN
END

C
SUBROUTINE PU (IM, JM, U, N1, N2, F, L)

C
C SOLUTION AT THE MEASUREMENT POINTS
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION IM(L), JM(L), F(L), U(N1,N2)

C
DO IP = 1,L

I = IM(IP)
J = JM(IP)
F(IP) = U(I,J)

END DO
C

RETURN
END

C
SUBROUTINE BS ( U, A0, A1, A2, B, N1, N2 )

C
C FUNCTIONAL GRADIENT
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION U(N1,N2), A0(N1,N2), A1(N1,N2), A2(N1,N2), B(N1,N2)

C
DO J = 2, N2-1

DO I = 2, N1-1
B(I,J) = A0(I,J)*U(I,J)

* - A1(I-1,J)*U(I-1,J)
* - A1(I,J)*U(I+1,J)
* - A2(I,J-1)*U(I,J-1)
* - A2(I,J)*U(I,J+1)

END DO
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END DO
C

RETURN
END

We have restricted ourselves to the case in which in equation (7.257) we have k(x) = 1
and, in addition, purely implicit schemes are used (the difference-scheme coefficients
for the ground state are generated in the subroutine FDS, and for the conjugate state,
in the subroutines FDS and RHS.

7.5.6 Computational experiments

The basic grid was the uniform grid with h1 = 0.02 and h2 = 0.02 for the problem in
unit square. In the realization of the quasi-real experiment, as input data, the solution
of the direct problem at some points of the calculation domain was taken. The problem
is solved till the time T = 0.025, the time step size of the grid being τ = 0.00025. In
the direct problem, the initial condition is given in the form

u0(x, 0) =
{

1, (x1 − 0.6)2 + (x2 − 0.6)2 ≤ 0.04,

0, (x1 − 0.6)2 + (x2 − 0.6)2 > 0.04.

Figure 7.18 Observation points and initial conditions in the direct problem

Figure 7.18 shows the location of the observation points and indicates the portion
of the calculation domain in which the initial condition was localized. As input data,
the solution at the observation points is used (see Figure 7.19).
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Figure 7.19 Solution at the observation points

Figure 7.20 Inverse-problem solution obtained with δ = 0.02
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Consider calculated data that illustrate possibilities in reconstructing the initial con-
dition from point observation data. Figure 7.20 shows the solution of the inverse prob-
lem obtained with the inaccuracy level δ = 0.02 (plotted are contour lines following
with the grid size �u = 0.1). The effect due to the inaccuracy level is illustrated in
Figures 7.21 and 7.22.

Figure 7.21 Inverse-problem solution obtained with δ = 0.04

Figure 7.22 Inverse-problem solution obtained with δ = 0.01
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7.6 Exercises

Exercise 7.1 Examine convergence of the approximate solution found by formulas
(7.14), (7.36) to the exact solution of problem (7.6), (7.7) HD, D = S2.

Exercise 7.2 Formulate the non-local problem that arises in the optimal control prob-
lem (7.38)–(7.41) with a non-self-adjoint operator A.

Exercise 7.3 Using the program PROBLEM10, examine the time dependence of the
approximate-solution inaccuracy. Compare the experimental data with the theoretical
results (see estimate (7.35)).

Exercise 7.4 Examine the generalized inverse method (7.109), (7.138) to approxi-
mately solve the ill-posed problem (7.101), (7.102).

Exercise 7.5 Consider the additive scheme of component-by-component splitting (to-
tal approximation scheme)

yn+1/2 − yn

τ
− �1 yn + α�2

1(σ yn+1/2 + (1 − σ)yn) = 0,

yn+1 − yn+1/2

τ
− �2 yn+1/2 + α�2

2(σ yn+1 + (1 − σ)yn+1/2) = 0

for the Cauchy problem posed for equation (7.158).

Exercise 7.6 Based on the data calculated by the program PROBLEM11, examine the
effect of exact-solution smoothness on the initial-condition reconstruction inaccuracy.

Exercise 7.7 Consider the possibility of using iteration methods constructed around
the minimization of the discrepancy functional in solving the inverted-time problem
(7.159)–(7.161).

Exercise 7.8 Construct an iteration method for refining the initial condition in scheme
(7.166), (7.167) as applied to the approximate solution of the retrospective inverse
problem with a non-self-adjoint, positively defined operator �.

Exercise 7.9 Using the program PROBLEM12, experimentally examine how the
choice of B in (7.179) affects the possibility of identifying a solution with desired
smoothness.

Exercise 7.10 Construct a difference scheme for the non-local boundary value prob-
lem

− d
dx

(
k(x)

du
dx

)
+ q(x)u = f (x), 0 < x < l,

u(0) + αu(l) = μ1,

−k(0)
du
dx

(0) = μ2.

Modify the sweep algorithm so that to make it appropriate for the solution of the related
non-local difference problem.
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Exercise 7.11 Construct the difference scheme for the generalized inverse method
(7.220)–(7.222) as applied to the approximate solution of the ill-posed problem
(7.187)–(7.189) and perform a stability study for this scheme.

Exercise 7.12 Perform computational experiments (program PROBLEM13) to inves-
tigate into the solution inaccuracy in the Cauchy problem for the Laplace equation as
dependent on the smoothness of exact initial conditions.

Exercise 7.13 Formulate optimality conditions for the minimization problem for
(7.274), (7.275) under constraints (7.270), (7.271).

Exercise 7.14 Derive optimality conditions for the difference problem (7.271)–
(7.274), (7.275) in the case of a non-self-adjoint operator � > 0.

Exercise 7.15 Modify the program PROBLEM14 so that the initial condition be re-
fined by the method of minimal discrepancies instead of the simple iteration method.



8 Other problems

Above, two classes of inverse problems for mathematical physics equations have been
considered in which it was required to identify the right-hand side of an equation or the
initial condition for the equation. Among other problems important for applications,
boundary value inverse problems deserve mention in which to be reconstructed are the
boundary conditions. For approximate solution of the latter problems, methods using
some perturbation of the equation or methods using non-locally perturbed boundary
conditions can be applied. In the case in which the generalized inverse method is used
to solve some boundary value inverse problem, namely, in treating the spatial coordi-
nate as the evolutionary coordinate, special emphasis is to be placed on the hyperbolic
regularization method, used to pass from the hyperbolic to a parabolic equation. In the
present chapter, possibilities offered by the generalized inverse method as applied to
problems with perturbed boundary conditions are discussed with the example of the
boundary value inverse problem for the one-dimensional parabolic equation of sec-
ond order. For a more general two-dimensional problem, an algorithm with iteratively
refined boundary condition is used. The problems most difficult for examination are
coefficient inverse problems for mathematical physics equations. Here, we have re-
stricted ourselves to the matter of numerical solution of two coefficient problems. In
the first problem it is required to determine the higher coefficient as a function of the
solution for a one-dimensional parabolic equation. We describe a computational al-
gorithm that solves the coefficient inverse problem for the two-dimensional elliptic
equation in the case in which the unknown coefficient does not depend on one of the
two coordinates.

8.1 Continuation over the spatial variable in the boundary

value inverse problem

In this section, we consider the boundary value inverse problem for the one-
dimensional parabolic equation of second order (heat conduction equation). In this
problem, it is required to reconstruct the boundary condition from measurements per-
formed inside the calculation domain. This problem belongs to the class of condition-
ally well-posed problems and, to be solved stably, it requires the use of regularization
methods. Here, the generalized inverse method is to be applied under conditions in
which the problem is considered as an evolutionary one with respect to the spatial
variable. The use of the generalized inverse method leads, in particular, to the well-
known hyperbolic regularization of boundary value inverse problems.
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8.1.1 Statement of the problem

Among inverse mathematical physics problems, of primary significance for practical
applications is the boundary value inverse problem. This problem is often encountered
in diagnostics, in the cases in which it is required to reconstruct, from additional mea-
surements made inside the calculation domain, the thermal boundary condition at the
domain boundary, where direct measurements are unfeasible.

This problem belongs to the class of conditionally well-posed problems and, for its
approximate solution, development of special regularization methods is under way. A
general approach for the solution of unstable problems for partial equations is the gen-
eralized inverse method. This method uses some perturbation of the initial equation,
the problem for the perturbed equation being a well-posed one. Here, the perturbation
parameter serves as regularization parameter.

In the consideration of the boundary value inverse problem for the one-dimensional
parabolic equation of the second order, the generalized inverse method can be devel-
oped considering the initial problem as a problem for the evolutionary equation of the
first order. A second possibility is related with the consideration of the boundary value
inverse problem as a problem with initial data for the evolutionary equation of the sec-
ond order. Here, as the evolutionary variable, the spatial variable is used. That is why
here we speak of the continuation over the spatial variable in a boundary value inverse
problem.

Consider a heat conduction boundary value inverse problem in which it is required
to continue the solution over the spatial variable, which serves as time variable. The
problem is to be constructed as follows. The solution v(x, t) is to be found from the
equation

∂v

∂t
− ∂2v

∂x2
= 0, 0 < x < l, 0 < t < T, (8.1)

supplemented with initial conditions, written in terms of the variables x and t , of the
form

v(0, t) = ϕ(t), 0 < t < T, (8.2)
∂v

∂x
(0, t) = 0, 0 < t < T, (8.3)

v(x, 0) = 0, 0 < x < l. (8.4)

Let us apply in the boundary value inverse problem (8.1)–(8.4) the following change
of variables: the variable x is changed for t , and t , for x (l → T , T → l). Next,
we denote the solution to be found as u(x, t) ( = v(t, x)). For u(x, t), we obtain the
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problem

∂2u
∂t2

− ∂u
∂x

= 0, 0 < x < l, 0 < t < T, (8.5)

u(0, t) = 0, 0 < t < T, (8.6)

u(x, 0) = u0(x), 0 < x < l, (8.7)
∂u
∂t

(x, 0) = 0, 0 < x < l. (8.8)

In the new settings, the function ϕ(t) refers to u0(x).
The problem (8.5)–(8.8) is written as the operator equation

d2u
dt2

− Au = 0 (8.9)

with the initial conditions (8.7), (8.8). The operator A is defined by

Au = ∂u
∂x

(8.10)

with the domain of definition

D(A) = {u | u = u(x, t), x ∈ [0, l], u(0, t) = 0}.
The introduced operator A is not a self-adjoint, sign-definite operator in H = L2(0, l).

8.1.2 Generalized inverse method

To approximately solve the inverse problem (8.7)–(8.9), we use the generalized inverse
method. We use this method in its version in which the approximate solution uα(x, t)
is to be determined from the perturbed equation

d2uα

dt2
− Auα + αA∗Auα = 0, (8.11)

supplemented with the initial conditions

uα(x, 0) = u0(x), 0 < x < l, (8.12)
∂uα

∂t
(x, 0) = 0, 0 < x < l. (8.13)

By virtue of (8.10), the operator conjugate in H = L2(0, l) to A is given by

A∗u = −∂u
∂x

, (8.14)

and, in addition,

D(A∗) = {u | u = u(x, t), x ∈ [0, l], u(l, t) = 0}.
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With regard to (8.10), (8.14), in the variant (8.11)–(8.13) of the generalized inverse
method it is required to solve the problem

∂2uα

∂t2
− ∂uα

∂x
+ α

∂2uα

∂x2
= 0, 0 < x < l, 0 < t < T, (8.15)

uα(0, t) = 0, 0 < t < T, (8.16)
∂uα

∂x
(l, t) = 0, 0 < t < T, (8.17)

uα(x, 0) = u0(x), 0 < x < l, (8.18)
∂uα

∂t
(x, 0) = 0, 0 < x < l. (8.19)

Thus, the generalized inverse method leads us to a hyperbolic perturbation (see (8.15))
of the initial parabolic equation (8.5), this perturbation being a well-known one in the
computational practice.

Theorem 8.1 For the solution of the boundary value problem (8.15)–(8.19), there
holds the following a priori estimate:

∥∥∥∂uα

∂t
(x, t)

∥∥∥2
+ α

∥∥∥∂uα

∂x
(x, t)

∥∥∥2
≤ α exp

( 1√
α

t
)∥∥∥∂u0

∂x
(x)

∥∥∥2
. (8.20)

Proof. Let us prove the above statement under more general conditions (namely, for
problem (8.11)–(8.13)). We multiply equation (8.11) scalarwise by du/dt ; this yields:

1
2

d
dt

(∥∥∥duα

dt

∥∥∥2
+ α‖Auα‖2

)
=
(
Auα,

duα

dt

)
. (8.21)

For the right-hand side of (8.21), we have:

(
Auα,

duα

dt

)
≤ 1

2
1√
α

(∥∥∥duα

dt

∥∥∥2
+ α‖Auα‖2

)
. (8.22)

Substitution of (8.22) into (8.21) yields the estimate

∥∥∥duα

dt

∥∥∥2
+ α‖Auα‖2 ≤ α exp

( 1√
α

t
)
‖Au0‖2. (8.23)

Inequality (8.23) yields the following simpler estimate:

‖Auα‖ ≤ α exp
( 1
α1/4

t
)
‖Au0‖.

The desired estimate (8.20) for the perturbed problem (8.15)–(8.19) is a simple corol-
lary to the estimate (8.23).
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Some other variants of the generalized inverse method can also be used. For in-
stance, we can determine the approximate solution from the equation

d2uα

dt2
− Auα + αAA∗ duα

dt
= 0, (8.24)

supplemented with conditions (8.12), (8.13).
Hence, with (8.10) and (8.14), the approximate solution uα(x, t) is to be found from

the equation

∂2uα

∂t2
− ∂uα

∂x
+ α

∂3uα

∂x2 ∂t
= 0, 0 < x < l, 0 < t < T (8.25)

and conditions (8.16)–(8.19). Similarly to Theorem 8.1, we formulate the following
statement:

Theorem 8.2 For the solution of the boundary value problem (8.16)–(8.19), (8.25),
there holds the a priori estimate

‖uα(x, t)‖2 +
∥∥∥∂uα

∂t
(x, t)

∥∥∥2
≤ exp

(1 + 2α

2α
t
)
‖u0(x)‖2. (8.26)

Proof. Here again, the consideration will be performed for the general perturbed evo-
lutionary equation. We can conveniently reformulate equation (8.24) as a system of
first-order equations.

We define the vector U = {u1, u2} and the space H2 as the direct sum of spaces H:
H2 = H⊕H. The addition in H2 is performed coordinatewise, and the scalar product
is defined as

(U, V ) = (u1, v1) + (u2, v2).

We define u1 = uα, u2 = duα/dt and write equation (8.24) as a system of first-order
equations (Uα = {u1, u2}):

dUα

dt
+ PUα = 0, (8.27)

where

P =
[

0 −E
−A αAA∗

]
. (8.28)

Equation (8.27) is supplemented (see (8.12), (8.13)) with the initial conditions

Uα(0) = U0 = {u0, 0}. (8.29)

In the notation introduced, we have:

‖Uα‖2 = ‖u1‖2 + ‖u2‖2 = ‖uα‖2 +
∥∥∥duα

dt

∥∥∥2
.
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For problem (8.27)–(8.29), there holds the a priori estimate

‖Uα(t)‖2 ≤ exp
(1 + 2α

2α
t
)
‖Uα(0)‖2. (8.30)

With (8.28), we have:

PU = {−u2, −Au1 + αAA∗u2}.

We multiply equation (8.27) scalarwise by Uα and obtain:

1
2

d
dt

(‖u1‖2 + ‖u2‖2) + α‖A∗u2‖2 = (Au1, u2) + (u1, u2). (8.31)

For the right-hand side, we use the estimate

(Au1, u2) ≤ α‖A∗u2‖2 + 1
4α

‖u1‖2,

(u1, u2) ≤ ε‖u2‖2 + 1
4ε

‖u1‖2.

(8.32)

Choosing ε = 1/2 and substituting (8.32) into (8.31), we arrive at the estimate (8.30).
From (8.30), the estimate (8.26) for the solution of problem (8.16)–(8.19), (8.25)

follows.

8.1.3 Difference schemes for the generalized inverse method

Consider now the proposed variants of the generalized inverse method on the mesh
level. For simplicity, we restrict ourselves to the case of a one-dimensional boundary
value problem. To pass to a difference problem, we introduce the uniform grid

ω̄ = {x | x = xi = ih, i = 0, 1, . . . , N , Nh = l},

where ω is the set of internal nodes, and ∂ω is the set of boundary nodes. The operators
A and A∗ are introduced in the traditional manner. Let in the subscriptless notation we
have

Ay =
{

0, i = 0,

yx̄ , i = 1, 2, . . . , N

with the domain of definition

D(A) = {y | y(x), x ∈ ω̄, y0 = 0}.

We define the scalar product and the norm in the mesh Hilbert space H = L2(ω) as

(z, y) =
∑
x∈ω̄

z(x)y(x)h, ‖y‖ =
√

(y, y).
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Then, for the adjoint operator A∗ we have

A∗y =
{ −yx , i = 0, 1, . . . , N − 1,

0, i = N ,

and
D(A∗) = {y | y(x), x ∈ ω̄, yN = 0}.

For the operator A∗ A we have:

A∗ Ay =
⎧⎨
⎩

−yx/h, i = 0,

−yx̄x , i = 1, 2, . . . , N − 1,

0, i = N .

Let us dwell first on the variant (8.11) of the generalized inverse method. We determine
the difference solution of problem (8.11)–(8.13) from the equation

d2 y
dt2

− Ay + αA∗ Ay = 0 (8.33)

for y(x, t) ∈ H , supplemented with the initial conditions

y(x, 0) = u0(x), x ∈ ω̄, (8.34)
dy
dt

(x, 0) = 0, x ∈ ω̄. (8.35)

To approximately solve problem (8.33)–(8.35), we use a time-uniform grid with the
time step size τ . Consider the difference scheme

yn+1 − 2yn + yn−1

τ 2
− 1

2
A(yn + yn−1) + α

4
A∗ A(yn+1 + 2yn + yn−1) = 0,

n = 1, 2, . . . . (8.36)

To perform a stability study for the scheme (8.36), we introduce the settings

vn = 1
2

(yn + yn−1), wn = 1
τ

(yn − yn−1). (8.37)

Then, the difference scheme (8.36) can be written as

wn+1 − wn

τ
− Avn + α

2
A∗ A(vn+1 + vn) = 0. (8.38)

We multiply the difference equation (8.38) scalarwise by

2(vn+1 − vn) = yn+1 − yn−1 = τ(wn+1 + wn);
then we obtain

‖wn+1‖2 − ‖wn‖2 + α‖Avn+1‖2 − α‖Avn‖2 = τ(Avn, wn+1 + wn). (8.39)
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The right-hand side in (8.39) can be estimated as follows:

(Avn, wn+1 + wn) ≤ β‖Avn‖2 + 1
4β

‖wn+1 + wn‖2

≤ β‖Avn‖2 + 1 + ε

4β
‖wn+1‖2 + 1 + ε

4βε
‖wn‖2.

We choose ε = 1/2; then, we substitute the latter inequality into (8.39). This yields(
1 − 3

8
τ

β

)
‖wn+1‖2 + α‖Avn+1‖2 ≤

(
1 + 3

4
τ

β

)
‖wn‖2 + α

(
1 + β

α

)
‖Avn‖2. (8.40)

Using in the case of τ ≤ 4β/3 the estimate(
1 − 3

8
τ

β

)−1
≤ exp

( 3
4β

τ
)

and choosing β = (3α/2)1/2, from (8.40) we obtain the a priori estimate

(
1 − 3

8
τ

β

)
‖wn+1‖2 + α‖Avn+1‖2 ≤ �2

((
1 − 3

8
τ

β

)
‖wn‖2 + α‖Avn‖2

)
(8.41)

with

� = exp
(√ 3

2α
τ
)
. (8.42)

Thus, the following statement is proved:

Theorem 8.3 For the difference scheme (8.36), in the case of τ ≤ 2(2α/3)1/2 there
holds the estimate (8.37), (8.40).

In the variant (8.24) of the generalized inverse method, it is required to solve the equa-
tion

d2 y
dt2

− Ay + αAA∗ dy
dt

= 0

with the initial conditions (8.34), (8.35). In the numerical realization, we use the
scheme

yn+1 − 2yn + yn−1

τ 2
− Ayn + αAA∗ yn+1 − yn−1

2τ
= 0,

n = 1, 2, . . . .

(8.43)

Theorem 8.4 The difference scheme (8.43) is �-stable with

� = exp
(1 + 4α

4α
τ
)

and, for this scheme, there holds the a priori estimate

‖yn‖2 +
∥∥∥ yn+1 − yn

τ

∥∥∥2
≤ �2

(
‖yn−1‖2 +

∥∥∥ yn − yn−1

τ

∥∥∥2)
. (8.44)
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Proof. To obtain the desired a priori estimate, we scalarwise multiply the difference
equation (8.43) by

y◦
t
= yn+1 − yn−1

2τ

and, using the standard subscriptless notation adopted in the theory of difference
schemes, arrive at the equality

(yt̄t , y◦
t
) − (Ay, y◦

t
) + α‖A∗y◦

t
‖2 = 0. (8.45)

For the first two terms in the left side of (8.45) we have

(yt̄t , y◦
t
) = 1

2
(yt̄ , yt̄)t ,

(Ay, y◦
t
) ≤ α‖A∗y◦

t
‖2 + 1

4α
‖y‖2.

(8.46)

We insert (8.46) into (8.45); then, we arrive at the inequality

(yt̄ , yt̄)t ≤ 1
2α

‖y‖2. (8.47)

We add to the both sides of (8.47) the term

(‖y‖2)t̄ = 1
τ

(‖yn‖2 − ‖yn−1‖2)

=
(

yn + yn−1,
yn − yn−1

τ

)
= 2(yn−1, yt̄) + τ‖yt̄‖2.

Using the fact that

‖y‖2 = ‖yn−1 + τ yt̄‖2 ≤ (1 + ε)‖yn−1‖2 +
(

1 + 1
4ε

)
τ 2‖yt̄‖2

and taking the inequality

(yn−1, yt̄) ≤ β‖yn−1‖2 + 1
4β

‖yt̄‖2

into account, from (8.47) we obtain the inequality

(‖yn−1‖2 + ‖yt̄‖2)t

≤
(1 + ε

2α
+ 2β

)
‖yn−1‖2 +

( 1
2β

+ τ + τ 2

2α

1 + 4ε

4ε

)
‖yt̄‖2, (8.48)

that holds for all positive ε and β.
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We choose ε = τ/2 and β = 1/2; then, we obtain

1 + ε

2α
+ 2β = 1 + 1

2α
+ τ

4α
<

1
τ

(�2 − 1),

1
2β

+ τ + τ 2

2α

1 + 4ε

4ε
= 1 + τ + τ

4α
+ τ 2

2α
<

1
τ

(�2 − 1).

Here, the value of � is defined in the conditions of the theorem. With regard to these
inequalities, inequality (8.48) yields the desired estimate (8.44).

8.1.4 Program

We numerically solve the boundary value inverse problem (8.1)–(8.4). In the frame-
work of the quasi-real computational experiment, to formulate the boundary conditions
(8.2), we consider the direct problem in which it is required to determine the function
v(x, t) from equation (8.1), initial condition (8.4), boundary condition (8.3) at the left
boundary, and the condition

v(l, t) = ψ(t), 0 < t < T

at the right boundary. To find the approximate solution, we use the purely implicit
difference scheme.

The approximate solution of the inverse problem can be found using the variant
(8.24) of the generalized inverse method. In terms of the initial variables, this corre-
sponds to the solution of the problem (see (8.16)–(8.19), (8.25))

∂2vα

∂x2
− ∂vα

∂t
+ α

∂3vα

∂t2 ∂x
= 0, 0 < x < l, 0 < t < T,

vα(0, t) = ϕ(t)), 0 < t < T,

∂vα

∂x
(0, t) = 0, 0 < t < T,

vα(x, 0) = 0, 0 < x < l,
∂vα

∂t
(x, T ) = 0, 0 < x < l.

This boundary value problem is solved by the difference scheme (8.43).
The value of α is determined using the discrepancy criterion. We assume that the

input-data inaccuracy (the inaccuracy in setting ϕ(t))) plays a decisive role and, hence,
the approximation inaccuracy in choosing the regularization parameter can be ignored.

Program PROBLEM15

C
C PROBLEM15 - IDENTIFICATION OF THE BOUNDARY CONDITION
C NON-STATIONARY ONE-DIMENSIONAL PROBLEM
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C
IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( DELTA = 0.01D0, N = 101, M = 101 )
DIMENSION X(N), Y(N,M), F(N,M), YY(M)
+ ,FI(M), FID(M), FIY(M), Q(M), QA(M)
+ ,A(M), B(M), C(M), FF(M) ! M >= N

C
C PARAMETERS:
C
C XL, XR - LEFT AND RIGHT ENDS OF THE SEGMENT;
C N - NUMBER OF GRID NODES OVER SPACE;
C TMAX - MAXIMAL TIME;
C M - NUMBER OF GRID NODES OVER TIME;
C DELTA - INPUT-DATA INACCURACY LEVEL;
C FI(M) - EXACT DIFFERENCE BOUNDARY CONDITION;
C FID(M) - DISTURBED DIFFERENCE BOUNDARY CONDITION;
C Q(M) - EXACT SOLUTION OF THE INVERSE PROBLEM
C (BOUNDARY CONDITION);
C QA(M) - APPROXIMATE SOLUTION OF THE INVERSE PROBLEM;
C

XL = 0.D0
XR = 1.D0
TMAX = 1.D0

C
OPEN (01, FILE=’RESULT.DAT’)! FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H = (XR - XL) / (N - 1)
DO I = 1, N

X(I) = XL + (I-1)*H
END DO
TAU = TMAX / (M-1)

C
C DIRECT PROBLEM
C
C BOUNDARY REGIME
C

DO K = 1, M
T = (K-1)*TAU
Q(K) = AF(T, TMAX)

END DO
C
C INITIAL CONDITION
C

T = 0.D0
DO I = 1, N

Y(I,1) = 0.D0
END DO

C
C NEXT TIME LAYER
C

DO K = 2, M
T = T + TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS
C PURELY IMPLICIT SCHEME
C

DO I = 2, N-1
A(I) = 1.D0 / (H*H)
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B(I) = 1.D0 / (H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
FF(I) = Y(I,K-1) / TAU

END DO
C
C BOUNDARY CONDITION AT THE LEFT AND RIGHT END POINTS
C

B(1) = 2.D0 / (H*H)
C(1) = B(1) + 1.D0 / TAU
FF(1) = Y(1,K-1) / TAU
A(N) = 0.D0
C(N) = 1.D0
FF(N) = Q(K)

C
C SOLUTION OF THE PROBLEM ON THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, FF, YY, ITASK )
DO I = 1, N

Y(I,K) = YY(I)
END DO

END DO
C
C SOLUTION ON THE LEFT BOUNDARY
C

DO K = 1, M
FI(K) = Y(1,K)
FID(K) = FI(K)

END DO
C
C NOISE ADDITION TO THE SOLUTION OF THE BOUNDARY-VALUE PROBLEM
C

DO K = 2, M
FID(K) = FI(K) + 2.D0*DELTA*(RAND(0)-0.5D0)

END DO
C
C INVERSE PROBLEM
C
C GENERALIZED INVERSE METHOD
C CONTINUATION OVER THE SPATIAL VARIABLE
C

IT = 0
ITMAX = 100
ALPHA = 0.001D0
QQ = 0.75D0

100 IT = IT + 1
C
C INITIAL CONDITIONS
C (LEFT BOUNDARY)
C

DO K = 2, M
Y(1,K) = FID(K)
Y(2,K) = FID(K) + 0.5D0*H**2*(FID(K)-FID(K-1))/TAU

END DO
C
C NEXT LAYER
C

DO I = 3, N
C
C DIFFERENCE-SCHEME COEFFICIENTS
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C
DO K = 2, M-1

A(K) = ALPHA / (H*TAU**2)
B(K) = ALPHA / (H*TAU**2)
C(K) = A(K) + B(K) + 1.D0 / (H*H)
FF(K) = (Y(I-1,K)-Y(I-1,K-1))/TAU

+ + (2.D0*Y(I-1,K) - Y(I-2,K))/(H*H)
+ - A(K)*(Y(I-2,K+1)-2.D0*Y(I-2,K)+Y(I-2,K-1))

END DO
C
C BOUNDARY CONDITION ON THE BOTTOM AND ON THE TOP
C

B(1) = 0.D0
C(1) = 1.D0
FF(1) = 0.D0
A(M) = ALPHA / (H*TAU**2)
C(M) = A(M) + 1.D0 / (H*H)
FF(M) = (Y(I-1,M)-Y(I-1,M-1))/TAU

+ + (2.D0*Y(I-1,M) - Y(I-2,M))/(H*H)
+ - A(M)*(-Y(I-2,M)+Y(I-2,M-1))

C
C SOLUTION OF THE PROBLEM ON THE NEXT LAYER
C

ITASK = 1
CALL PROG3 ( M, A, C, B, FF, YY, ITASK )
DO K = 1, M

Y(I,K) = YY(K)
END DO

END DO
C
C SOLUTION
C

DO K = 1, M
QA(K) = Y(N,K)

END DO
C
C SOLUTION OF THE DIRECT PROBLEM WITH THE FOUND BOUNDARY CONDITION
C
C INITIAL CONDITION
C

T = 0.D0
DO I = 1, N

Y(I,1) = 0.D0
END DO

C
C NEXT TIME LAYER
C

DO K = 2, M
T = T + TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS

DO I = 2, N-1
A(I) = 1.D0 / (H*H)
B(I) = 1.D0 / (H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
FF(I) = Y(I,K-1) / TAU

END DO
C
C BOUNDARY CONDITION AT THE LEFT AND RIGHT END POINTS
C
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B(1) = 2.D0 / (H*H)
C(1) = B(1) + 1.D0 / TAU
FF(1) = Y(1,K-1) / TAU
A(N) = 0.D0
C(N) = 1.D0
FF(N) = QA(K)

C
C SOLUTION OF THE PROBLEM ON THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, FF, YY, ITASK )
DO I = 1, N

Y(I,K) = YY(I)
END DO

END DO
C
C CRITERION FOR THE EXIT FROM THE ITERATIVE PROCESS
C

SUM = 0.D0
DO K = 1, M

FIY(K) = Y(1,K)
SUM = SUM + (FIY(K) - FID(K))**2*TAU

END DO
SL2 = DSQRT(SUM)

C
IF (IT.GT.ITMAX) STOP
IF ( IT.EQ.1 ) THEN

IND = 0
IF ( SL2.LT.DELTA ) THEN

IND = 1
QQ = 1.D0/QQ

END IF
ALPHA = ALPHA*QQ
GO TO 100

ELSE
ALPHA = ALPHA*QQ
IF ( IND.EQ.0 .AND. SL2.GT.DELTA ) GO TO 100
IF ( IND.EQ.1 .AND. SL2.LT.DELTA ) GO TO 100

END IF
C
C RECORDING OF CALCULATED DATA
C

WRITE ( 01,* ) (Q(K), K = 1,M)
WRITE ( 01,* ) (FID(K), K = 1,M)
WRITE ( 01,* ) (QA(K), K = 1,M)
WRITE ( 01,* ) (FIY(K), K = 1,M)
CLOSE ( 01 )
STOP
END

C
DOUBLE PRECISION FUNCTION AF ( T, TMAX )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C BOUNDARY CONDITION ON THE RIGHT BOUNDARY
C

AF = 2.D0*T/TMAX
IF (T.GT.(0.5D0*TMAX)) AF = 2.D0*(TMAX-T)/TMAX

C
RETURN
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END

8.1.5 Examples

As the basic one, a uniform grid with h = 0.01 and τ = 0.01 for the problem with
l = 1 and T = 1 was used. In the realization of the quasi-real experiment for the direct
problem, the boundary condition at the right end point was set as follows:

ψ(t) =
{

2t/T, 0 < t < T/2,

2(T − t)/T, T/2 < t < T .

Figure 8.1 shows the contour lines for the direct-problem solution obtained with the
chosen boundary conditions.

Figure 8.1 Direct-problem solution

First of all, we would like to know how the inaccuracy in setting the boundary
conditions affects the solution accuracy in the inverse problem. Figure 8.2 shows the
solution of the inverse problem obtained with the inaccuracy level defined by δ = 0.01.
Here, plotted are the exact and perturbed solutions at the left boundary (at x = 0),
serving the input data in solving the inverse problem. From these conditions, the
solution in the interval 0 < x ≤ l is to be reconstructed. Plotted in the figure are the
exact solution and the found solution at x = 1. The direct-problem solution at x = 1
for the found boundary condition is shown in Figure 8.3 (compare with Figure 8.1).
The effect due to the inaccuracy level is illustrated by Figures 8.4 and 8.5.
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Figure 8.2 Inverse-problem solution obtained with δ = 0.01

Figure 8.3 Direct-problem solution obtained with the found boundary conditions
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Figure 8.4 Inverse-problem solution obtained with δ = 0.005

Figure 8.5 Inverse-problem solution obtained with δ = 0.02
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8.2 Non-local distribution of boundary conditions

For the approximate solution of the boundary value inverse problem for the one-
dimensional parabolic equation, a computational algorithm is often used based on
non-local perturbation of the boundary condition. This approach can be related to
the local Tikhonov regularization.

8.2.1 Model problem

We assume that the process of interest obeys the one-dimensional parabolic equation
of the second order. The related direct problem can be formulated as follows:

The solution u(x, t) is to be determined in the rectangle

QT = � × [0, T ], � = {x | 0 ≤ x ≤ l}, 0 ≤ t ≤ T .

The function u(x, t) satisfies the equation

∂u
∂t

= ∂

∂x

(
k(x)

∂u
∂x

)
, 0 < x < l, 0 < t ≤ T, (8.49)

with the usual constraints k(x) ≥ κ > 0. The adopted boundary and initial conditions
are as follows:

k(x)
∂u
∂x

(0, t) = 0, 0 < t ≤ T, (8.50)

u(l, t) = ψ(t), 0 < t ≤ T, (8.51)

u(x, 0) = 0, 0 ≤ x ≤ l. (8.52)

We consider the boundary value inverse problem in which the boundary condition at
the right boundary is not given (the function ψ(t) in (8.51) is unknown). Instead, given
is the additional condition at the left boundary:

u(0, t) = ϕ(t), 0 < t ≤ T . (8.53)

Additionally, we assume that, as it is often the case in practice, the latter boundary
condition is given with some inaccuracy.

8.2.2 Non-local boundary value problem

Among the various possible approaches to the approximate solution of inverse prob-
lems for evolutionary equations, we choose to treat methods with perturbed initial
equation and methods with perturbed initial (boundary) conditions. The variant of the
generalized inverse method with the passage to a well-posed problem for a perturbed
equation was realized above by considering the spatial variable as the evolutionary
variable. It is of interest here to use the variant of this method with perturbed boundary
(initial, with the interpretation of the variable x as the evolutionary variable) condition.
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We denote the approximate solution of the boundary value inverse problem (8.49),
(8.50), (8.52), (8.53) as uα(x, t) and determine it from the equation

∂uα

∂t
= ∂

∂x

(
k(x)

∂uα

∂x

)
, 0 < x < l, 0 < t ≤ T . (8.54)

We leave the boundary condition (8.50) and the initial condition (8.52) unchanged:

k(x)
∂uα

∂x
(0, t) = 0, 0 < t ≤ T, (8.55)

uα(x, 0) = 0, 0 ≤ x ≤ l. (8.56)

We replace the boundary condition (8.53), which makes the inverse problem (8.49),
(8.50), (8.52), (8.53) an ill-posed problem, with the following non-local condition:

uα(0, t) + αuα(l, t) = ϕ(t), 0 < t ≤ T . (8.57)

In (8.54)–(8.57), the passage to a non-local boundary value problem can be made
immediately. A second possibility in formulating such a non-classical problem is
based on the consideration of the Tikhonov regularization method for problem (8.54)–
(8.57) interpreted as a boundary control problem (the boundary condition at the right
end point is (8.51)) with boundary observation (at the left end point, the condition
(8.53) is adopted). Next, we can try to formulate a related Euler equation, which, as
we saw, leads to non-classical boundary value problems. What is necessary is to only
take the fact into account that in the case of interest both for the ground and conjugate
states we have evolutionary problems with non-selfadjoint operators.

8.2.3 Local regularization

As it was repeated over and over again, in the application of regularization methods to
evolutionary problems we have two possibilities. In global regularization methods the
solution is to be determined at all times simultaneously, whereas in local regularization
methods the solution depends only on the pre-history, and can be determined sequen-
tially at separate times. Local regularization methods take into account the specific
feature of inverse problems for evolutionary problems in maximal possible measure.

Over time, we introduce the uniform grid

ω̄τ = {tn = nτ, n = 0, 1, . . . , N0, τ N0 = T },

and let un(x) = u(x, tn). In the approximate solution of the inverse problem (8.54)–
(8.57), we perform the transition to the next time layer using the purely implicit scheme
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for the direct problem:

un+1 − un

τ
− ∂

∂x

(
k(x)

∂un+1

∂x

)
= 0, 0 < x < l, n = 0, 1, . . . , N0 − 1, (8.58)

k(x)
∂un+1

∂x
(0) = 0, n = 0, 1, . . . , N0 − 1, (8.59)

un+1(l) = vn+1, n = 0, 1, . . . , N0 − 1, (8.60)

u0(x) = 0, 0 ≤ x ≤ l. (8.61)

Using, on each time layer, the Tikhonov regularization for determining the boundary
condition at the right boundary (see (8.60)) implies minimization of the smoothing
functional

Jα(v
n+1) = (un+1(0) − ϕn+1)2 + α(vn+1)2. (8.62)

Let us show that the minimization problem for the functional (8.62) under constraints
(8.58)–(8.61) is in fact equivalent to solving the difference problem with non-local
boundary conditions of type (8.57) on each time layer.

We represent the solution of problem (8.58)–(8.60) in the form

un+1(x) = zn+1(x) + wn+1(x). (8.63)

In the latter representation, zn+1(x) is the solution of the difference problem

zn+1 − un

τ
− ∂

∂x

(
k(x)

∂zn+1

∂x

)
= 0, 0 < x < l, n = 0, 1, . . . , N0 − 1, (8.64)

k(x)
∂zn+1

∂x
(0) = 0, n = 0, 1, . . . , N0 − 1, (8.65)

zn+1(l) = 0, n = 0, 1, . . . , N0 − 1, (8.66)

z0(x) = 0, 0 ≤ x ≤ l. (8.67)

Thereby, zn+1(x) is the solution of the direct problem with homogeneous condition of
the first kind at the right boundary.

From (8.63) and (8.64)–(8.67), for wn+1(x) we obtain:

wn+1

τ
− ∂

∂x

(
k(x)

∂wn+1

∂x

)
= 0, 0 < x < l, n = 0, 1, . . . , N0 − 1, (8.68)

k(x)
∂wn+1

∂x
(0, t) = 0, n = 0, 1, . . . , N0 − 1, (8.69)

wn+1(l) = vn+1, n = 0, 1, . . . , N0 − 1, (8.70)

w0(x) = 0, 0 ≤ x ≤ l. (8.71)

Taking into account the linearity of the coefficient k(x) and its independence of time,
for the solution of the difference problem (8.68)–(8.71) we obtain the representation

wn+1(x) = q(x)vn+1, (8.72)



Section 8.2 Non-local distribution of boundary conditions 365

in which q(x) is the solution of the difference problem

q
τ

− d
dx

(
k(x)

dq
dx

)
= 0, 0 < x < l, (8.73)

k(x)
dq
dx

(0) = 0, q(l) = 1. (8.74)

Substitution of (8.63) and (8.72) into (8.62) yields:

Jα(v
n+1) = (zn+1(0) + q(0)vn+1 − ϕn+1)2 + α(vn+1)2. (8.75)

The minimum of (8.75) is attained at

(zn+1(0) + q(0)vn+1 − ϕn+1))q(0) + αvn+1 = 0. (8.76)

Thereby, for the boundary condition at the right boundary we have:

vn+1 = q(0)
ϕn+1 − zn+1(0)

α + q2(0)
. (8.77)

In the local regularization algorithm as applied to the solution of the inverse prob-
lem (8.54)–(8.57), the transition to the next time layer implies the solution of the direct
problems (8.64)–(8.67) and (8.73), (8.74), the calculation of the constant vn+1 by for-
mula (8.76), and the use of representation (8.63), (8.72) for the solution of the inverse
problem.

Using the maximum principle for problem (8.64)–(8.67), we have q(0) > 0; hence,
the condition (8.76) can be brought (see (8.70)) to the form

un+1(0) + α

q(0)
un+1(l) = ϕn+1. (8.78)

Thus, the minimization problem for the functional (8.62) under constraints (8.58)–
(8.61) is equivalent to the solution of the problem with the non-local boundary con-
ditions (8.58), (8.59), (8.61), and (8.77). With all these taken into account, we can
say that the local regularization algorithm is a discrete variant of the method with non-
locally perturbed boundary conditions (8.54)–(8.57) for the approximate solution of
the boundary value inverse problem (8.49), (8.50), (8.52), (8.53).

8.2.4 Difference non-local problem

To the differential problem with the non-local boundary condition (8.54)–(8.57), we
put in correspondence a difference problem. Along the spatial variable, we introduce
a uniform grid ω̄ with a grid size h over the interval �̄ = [0, l]:

ω̄ = {x | x = xi = ih, i = 0, 1, . . . , N , Nh = l}.
In this grid, ω is the set of internal nodes, and ∂ω is the set of boundary nodes.
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At the internal nodes, in using the purely implicit scheme we approximate equation
(8.54) with the difference equation

yn+1 − yn

τ
− (ayn+1

x̄ )x = 0, x ∈ ω, n = 0, 1, . . . , N0 − 1, (8.79)

with, for instance, a(x) = k(x − 0.5h). The initial condition (8.56) yields:

y0(x) = 0, x ∈ ω. (8.80)

The second-kind boundary condition (8.55) is approximated on the solutions of
(8.54):

yn+1
0 − yn

0

τ
− 2

h
a1

yn+1
1 − yn+1

0

h
= 0, n = 0, 1, . . . , N0 − 1. (8.81)

To the non-local boundary condition (8.57), we put in correspondence the non-local
difference condition

yn+1
0 + αyn+1

N = ϕn+1, n = 0, 1, . . . , N0 − 1. (8.82)

Realization of the difference scheme (8.79)–(8.82) implies solution of the three-
point difference problem at each time step with the non-local boundary conditions
(8.82). To this end, we can use some modification of the standard sweep algorithm.
A second possibility was considered previously, in the discussion of non-local regu-
larization; this possibility is related with the use of some special representation of the
solution (see (8.63) and (8.72)).

We seek the solution of the difference problem (8.79)–(8.82) in the form

yn+1(x) = zn+1(x) + q(x)vn+1, x ∈ ω̄. (8.83)

Here, similarly to (8.64)–(8.67), the mesh function zn(x) is defined as the solution
of the following direct problem:

zn+1 − yn

τ
− (azn+1

x̄ )x = 0, x ∈ ω, n = 0, 1, . . . , N0 − 1, (8.84)

z0(x) = 0, x ∈ ω, (8.85)

zn+1
0 − yn

0

τ
− 2

h
a1

zn+1
1 − zn+1

0

h
= 0, n = 0, 1, . . . , N0 − 1, (8.86)

zn+1
N = 0, n = 0, 1, . . . , N0 − 1. (8.87)

The mesh function q(x) (see (8.73), (8.74)) is defined as the solution of the boundary
value problem

q
τ

− (aqx̄)x = 0, x ∈ ω, (8.88)
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q0

τ
− 2

h
q1 − q0

h
= 0, qN = 1. (8.89)

Substitution of (8.83) into (8.82) yields:

vn+1 = ϕn+1 − zn+1
0

α + q0
, n = 0, 1, . . . , N0 − 1. (8.90)

For the solution of the difference problem (8.79)–(8.82) to be found, we have to solve
two standard problems, problems (8.84)–(8.87) and (8.88), (8.89) and, then, find the
function vn, n = 1, 2, . . . , N by formula (8.90); subsequently, the sought solution is
to be represented in the form (8.83).

8.2.5 Program

The above solution algorithm for the boundary value inverse problem (8.49), (8.50),
(8.52), (8.53) based on a non-local perturbation of the boundary condition is realized
in the program PROBLEM16.

Program PROBLEM16

C
C PROBLEM16 - IDENTIFICATION OF THE BOUNDARY CONDITION
C ONE-DIMENSIONAL NON-STATIONARY PROBLEM
C NON-LOCAL DISTURBANCE OF THE BOUNDARY CONDITION
C

IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( DELTA = 0.01D0, N = 101, M = 21 )
DIMENSION X(N), Y(N), Z(N), Q(N)
+ ,FI(M), FID(M), FIY(M), U(M), UA(M)
+ ,A(N), B(N), C(N), F(N)

C
C PARAMETERS:
C
C XL, XR - LEFT AND RIGHT ENDS OF THE GEGMENT;
C N - NUMBER OF GRID NODES OVER SPACE;
C TMAX - MAXIMAL TIME;
C M - NUMBER OF GRID NODES OVER TIME;
C DELTA - INPUT-DATA INACCURACY LEVEL;
C FI(M) - EXACT DIFFERENCE BOUNDARY CONDITION;
C FID(M) - DISTURBED DIFFERENCE BOUNDARY CONDITION;
C U(M) - EXACT SOLUTION OF THE INVERSE PROBLEM
C (BOUNDARY CONDITION);
C UA(M) - APPROXIMATE SOLUTION OF THE INVERSE PROBLEM;
C

XL = 0.D0
XR = 1.D0
TMAX = 1.D0

C
OPEN ( 01, FILE=’RESULT.DAT’) ! FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H = (XR - XL) / (N - 1)
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DO I = 1, N
X(I) = XL + (I-1)*H

END DO
TAU = TMAX / (M-1)

C
C DIRECT PROBLEM
C
C BOUNDARY REGIME
C

DO K = 1, M
T = (K-1)*TAU

U(K) = AF(T, TMAX)
END DO

C
C INITIAL CONDITION
C

T = 0.D0
DO I = 1, N

Y(I) = 0.D0
END DO

C
C NEXT TIME LAYER
C

DO K = 2, M
T = T + TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS
C PURELY IMPLICIT SCHEME
C

DO I = 2, N-1
A(I) = 1.D0 / (H*H)
B(I) = 1.D0 / (H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
F(I) = Y(I) / TAU

END DO
C
C BOUNDARY CONDITION AT THE LEFT AND RIGHT ENDS
C

B(1) = 2.D0 / (H*H)
C(1) = B(1) + 1.D0 / TAU
F(1) = Y(1) / TAU
A(N) = 0.D0
C(N) = 1.D0
F(N) = U(K)

C
C SOLUTION OF THE PROBLEM ON THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, F, Y, ITASK )

C
C SOLUTION AT THE LEFT BOUNDARY
C

FI(K) = Y(1)
FID(K) = FI(K)

END DO
C
C NOISE ADDITION TO THE SOLUTION OF THE BOUNDARY-VALUE PROBLEM
C

DO K = 2, M
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FID(K) = FI(K) + 2.D0*DELTA*(RAND(0)-0.5D0)
END DO

C
C INVERSE PROBLEM
C
C NON-LOCAL DISTURBANCE OF THE BOUNDARY CONDITION
C
C AUXILIARY MESH FUNCTION
C
C DIFFERENCE-SCHEME COEFFICIENTS
C

DO I = 2, N-1
A(I) = 1.D0 / (H*H)
B(I) = 1.D0 / (H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
F(I) = 0.D0

END DO
C
C BOUNDARY CONDITION AT THE LEFT AND RIGHT END POINTS
C

B(1) = 2.D0 / (H*H)
C(1) = B(1) + 1.D0 / TAU
F(1) = 0.D0
A(N) = 0.D0
C(N) = 1.D0
F(N) = 1.D0

C
C SOLUTION OF THE PROBLEM
C

ITASK = 1
CALL PROG3 ( N, A, C, B, F, Q, ITASK )

C
C ITERATIVE PROCESS FOR THE REGULARIZATION PARAMETER
C

IT = 0
ITMAX = 100
ALPHA = 0.001D0
QQ = 0.75D0

100 IT = IT + 1
C
C INITIAL CONDITION
C

T = 0.D0
DO I = 1, N

Y(I) = 0.D0
END DO
UA(1) = Y(N)

C
C NEXT TIME LAYER
C

DO K = 2, M
T = T + TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS
C PURELY IMPLICIT SCHEME
C

DO I = 2, N-1
A(I) = 1.D0 / (H*H)
B(I) = 1.D0 / (H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
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F(I) = Y(I) / TAU
END DO

C
C BOUNDARY CONDITION AT THE LEFT AND RIGHT END POINTS
C

B(1) = 2.D0 / (H*H)
C(1) = B(1) + 1.D0 / TAU
F(1) = Y(1) / TAU
A(N) = 0.D0
C(N) = 1.D0
F(N) = 0.D0

C
C SOLUTION OF THE AUXILIARY PROBLEM ON THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, F, Z, ITASK )

C
C SOLUTION AT THE RIGHT BOUNDARY
C

UA(K) = (FID(K) - Z(1)) / (ALPHA + Q(1))
C
C SOLUTION AT ALL NODES
C

DO I = 1, N
Y(I) = Z(I) + Q(I)*UA(K)

END DO
END DO

C
C SOLUTION OF THE DIRECT PROBLEM WITH THE FOUND BOUNDARY CONDITION
C
C INITIAL CONDITION
C

T = 0.D0
DO I = 1, N

Y(I) = 0.D0
END DO
FIY(1) = Y(1)

C
C NEXT TIME LAYER
C

DO K = 2, M
T = T + TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS

DO I = 2, N-1
A(I) = 1.D0 / (H*H)
B(I) = 1.D0 / (H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
F(I) = Y(I) / TAU

END DO
C
C BOUNDARY CONDITION AT THE LEFT AND RIGHT END POINTS
C

B(1) = 2.D0 / (H*H)
C(1) = B(1) + 1.D0 / TAU
F(1) = Y(1) / TAU
A(N) = 0.D0
C(N) = 1.D0
F(N) = UA(K)

C
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C SOLUTION OF THE PROBLEM ON THE NEXT TIME LAYER
C

ITASK = 1
CALL PROG3 ( N, A, C, B, F, Y, ITASK )
FIY(K) = Y(1)

END DO
C
C CRITERION FOR THE EXIT FROM THE ITERATIVE PROCESS
C

SUM = 0.D0
DO K = 1, M

SUM = SUM + (FIY(K) - FID(K))**2*TAU
END DO
SL2 = DSQRT(SUM)

C
IF (IT.GT.ITMAX) STOP
IF ( IT.EQ.1 ) THEN

IND = 0

IF ( SL2.LT.DELTA ) THEN
IND = 1
QQ = 1.D0/QQ

END IF
ALPHA = ALPHA*QQ
GO TO 100

ELSE
ALPHA = ALPHA*QQ
IF ( IND.EQ.0 .AND. SL2.GT.DELTA ) GO TO 100
IF ( IND.EQ.1 .AND. SL2.LT.DELTA ) GO TO 100

END IF
C
C RECORDING OF CALCULATED DATA
C

WRITE ( 01,* ) (U(K), K = 1,M)
WRITE ( 01,* ) (FID(K), K = 1,M)
WRITE ( 01,* ) (UA(K), K = 1,M)
WRITE ( 01,* ) (FIY(K), K = 1,M)
CLOSE ( 01 )
STOP
END

C
DOUBLE PRECISION FUNCTION AF ( T, TMAX )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C BOUNDARY CONDITION AT THE RIGHT BOUNDARY
C

AF = 2.D0*T/TMAX
IF (T.GT.(0.5D0*TMAX)) AF = 2.D0*(TMAX-T)/TMAX

C
RETURN
END

The program implements the algorithm with non-locally perturbed boundary condi-
tions for problem (8.49), (8.50), (8.52), (8.53) with the coefficient k(x) = const = 1
and with the non-local perturbation parameter chosen from the discrepancy.
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8.2.6 Computational experiments

The problem was solved using a uniform grid with h = 0.01 and τ = 0.05 in the
calculation domain with l = 1 and T = 1. The input data in the inverse problem were
taken from the solution of the direct problem with the right-end boundary condition

ψ(t) =
{

2t/T, 0 < t < T/2,

2(T − t)/T, T/2 < t < T .

The same model problem was considered above, when we discussed the algorithm
with continuation over the spatial variable.

The data calculated with the various input-data inaccuracy levels are shown in Fig-
ures 8.6–8.8. A comparison with the data obtained using the algorithm with contin-
uation over the spatial variable (see Figures 8.2, 8.4, 8.5) shows that the algorithm
with non-locally perturbed boundary condition is inferior in terms of data accuracy
because it poorly takes into account the specific features of the boundary value inverse
problems of interest. With this approach, we hardly can count on time filtration of
high-frequency inaccuracies because here, in fact, we have regularization with respect
to the spatial variable.

In many respects, the effect due to the regularization is provided at the expense of
cruder calculation grids along time (self-regularization effect). An illustration here
are the data calculated with a finer grid along time (see Figure 8.9). The input-data
inaccuracies can be most distinctly identified by reducing the time step size. The latter
can be explicitly traced considering the formula for the solution at the right boundary,
since q0 → 0 as τ → 0.

Figure 8.6 Inverse-problem solution obtained with δ = 0.01
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Figure 8.7 Inverse-problem solution obtained with δ = 0.005

Figure 8.8 Inverse-problem solution obtained with δ = 0.0025
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Figure 8.9 Solutions obtained with δ = 0.0025 and τ = 0.025

8.3 Identification of the boundary condition

in the two-dimensional problem

In this section, we consider the boundary-layer inverse problem for the two-
dimensional parabolic equation of second order. From data on some portion of the
boundary, it is required to reconstruct the boundary data on the other portion of the
boundary. To approximately solve the problem, we use the iteration method. Primary
attention is given to accurate formulation of the symmetrized operator equation of the
first order at the differential and mesh levels.

8.3.1 Statement of the problem

To most powerful methods intended for the approximate solution of inverse problems
for mathematical physics equations, iteration methods belong. These methods rather
adequately take into account the general specific features of the problems. Very often,
the correct use of such methods is hampered by the necessity to perform certain analyt-
ical work primarily related with the fact that symmetrization of the corresponding op-
erator equation of the first order is necessary. Similar problems are encountered in the
formulation of necessary minimum conditions in the Tikhonov regularization method
as applied to related optimum control problems for systems governed by mathematical
physics equations. Here, the matter of obtaining the symmetrized operator equation is
considered both on the differential level and on the mesh level.
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Figure 8.10 Calculation domain

As a model one, consider the two-dimensional problem in the rectangle

� = {x | x = (x1, x2), 0 < xβ < lβ, β = 1, 2}.
For the sides of �, we use the following notations (see Figure 8.10):

∂� = γ∗ ∪ �1 ∪ γ ∪ �2, � = �1 ∪ �2.

In �, we seek the solution of the parabolic equation

∂u
∂t

−
2∑

β=1

∂

∂xβ

(
k(x)

∂u
∂xβ

)
= 0, x ∈ �, 0 < t < T . (8.91)

We assume that k(x) ≥ κ , κ > 0, x ∈ �.
The starting point in the present consideration is the direct initial-boundary value

problem for equation (8.91), in which the boundary and initial conditions look as

k(x)
∂u
∂n

(x, t) = 0, x ∈ ∂γ∗, (8.92)

k(x)
∂u
∂n

(x, t) = 0, x ∈ �, (8.93)

k(x)
∂u
∂n

(x, t) = μ(x1, t), x ∈ γ, (8.94)

u(x, 0) = 0, x ∈ �. (8.95)

Consider an inverse problem in which it is required to identify the boundary condi-
tion on some portion of the boundary (on γ ). In the latter case, instead of (8.94) the
following condition is given:

u(x, t) = ϕ(x1, t), x ∈ γ∗. (8.96)



376 Chapter 8 Other problems

To approximately solve the boundary value inverse problem (8.91)–(8.93), (8.95),
(8.96), we will use the iteration method related with refinement of a boundary con-
dition of type (8.94).

8.3.2 Iteration method

We write the boundary value inverse problem as an operator equation of the first kind.
To the boundary condition (8.94) we put in correspondence equation (8.96), i. e.,

Aμ = ϕ. (8.97)

The linear operator A is defined for functions given on some portion of the boundary
γ , and its values are functions given on the other portion of the boundary (on γ∗). To
calculate the values of A, we solve the boundary value problem (8.91)–(8.95).

To approximately solve the ill-posed problem (8.97), we employ an iteration method
based on the passage to a problem with a symmetric operator, where, instead of (8.97),
we solve the equation

A∗Aμ = A∗ϕ. (8.98)

In using the explicit iteration method for (8.98), we have:

μk+1 − μk

sk+1
− A∗Aμk = A∗ϕ, k = 0, 1, . . . . (8.99)

For non-stationary functions given on γ and γ∗, we define the Hilbert spaces
L(γ, [0, T ]) and L(γ∗, [0, T ]) with the scalar products and norms

(u, v) =
∫ T

0

∫
γ

u(x)v(x) dx dt, ‖u‖ =
√

(u, u),

(u, v)∗ =
∫ T

0

∫
γ∗

u(x)v(x) dx dt, ‖u‖∗ =
√

(u, u)∗,

respectively. In the steepest descend method, the iteration parameters can be calculated
by the rule

sk+1 = ‖rk‖2

‖Ark‖2∗
, rk = A∗Aμk − A∗ϕ. (8.100)

Let us dwell on a point of primary concern in the practical use of (8.99) related with
the necessity to calculate the values of the operator conjugate in A. For functions μ

and ν given respectively on γ and γ∗ we have:

(Aμ, ν)∗ = (μ,A∗ν). (8.101)

We obtain the values of A as

Aμ = u(x, t), x ∈ γ∗.
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Here, u(x, t) is the solution of the boundary value problem (8.91)–(8.95) (the function
u(x, t) defines the ground state of the system). The values of the conjugate operator
can be found from the function ψ(x, t), to be found from the solution of an auxiliary
boundary value problem (conjugate state). For this boundary value problem to be for-
mulated, we multiply equation (8.91) through by ψ(x, t), and then perform integration
over � and time: ∫ T

0

∫
�

(∂u
∂t

+ Lu
)
ψ dx dt = 0, (8.102)

where

Lu = −
2∑

β=1

∂

∂xβ

(
k(x)

∂u
∂xβ

)
.

For the first term in (8.102), we have

I1 =
∫ T

0

∫
�

∂u
∂t

ψ dx dt = −
∫ T

0

∫
�

u
∂ψ

∂t
dx dt, (8.103)

provided that, in view of (8.95),

ψ(x, T ) = 0, x ∈ �. (8.104)

Similar manipulations with the second term in (8.102), performed with due regard
for the boundary conditions (8.92)–(8.94), yield:

I2 =
∫ T

0

∫
�

Luψ dx dt

= −
∫ T

0

∫
γ

μψ dx dt +
∫ T

0

∫
∂�

uk
∂ψ

∂n
dx dt +

∫ T

0

∫
�

uLψ dx dt. (8.105)

We choose the boundary conditions for the conjugate state in the form

k(x)
∂ψ

∂n
(x, t) = ν(x1, t), x ∈ ∂γ∗, (8.106)

k(x)
∂ψ

∂n
(x, t) = 0, x ∈ �, (8.107)

k(x)
∂u
∂ψ

(x, t) = 0, x ∈ γ. (8.108)

With such boundary conditions, substitution of (8.103), (8.105) yields the equality∫ T

0

∫
�

u
(

− ∂ψ

∂t
+Lψ

)
dx dt −

∫ T

0

∫
γ

μψ dx dt +
∫ T

0

∫
γ∗

uν dx dt = 0. (8.109)

We assume that the function ψ(x, t) satisfies the equation

−∂ψ

∂t
+ Lψ = 0, x ∈ �, 0 < t < T . (8.110)
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Figure 8.11 Calculation grid over space

Thereby, the conjugate state is to be found as the solution of the direct problem (8.104),
(8.106)–(8.108), (8.110).

Under the present conditions, from (8.109) we obtain:

∫ T

0

∫
γ

μψ dx dt =
∫ T

0

∫
γ∗

uν dx dt.

The latter equality can be brought to the form (8.101), and for the values of A∗ we
obtain the representation

A∗ν = ψ(x, t), x ∈ γ,

where ψ(x, t) is the solution of the boundary value problem (8.104), (8.106)–(8.108),
(8.110).

8.3.3 Difference problem

Let us start the present consideration with the formulation of a difference problem for
the direct problem (8.91)–(8.95). Taking the fact into account that on the calculation-
domain boundary second-kind boundary conditions are given, we use a grid whose
nodes are displaced by half the step size from the domain boundary (see Figure 8.11).
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Along each of the directions xβ, β = 1, 2, the grid is uniform, and let

ωβ = {
xβ | xβ = (iβ − 1/2)hβ, iβ = 1, 2, . . . , Nβ, Nβhβ = lβ}.

For the grid in the rectangle � we use the settings ω = ω1 × ω2.
With regard to the boundary conditions (8.92)–(8.94), to the differential operator L

we put in correspondence a two-dimensional difference operator defined as the sum of
one-dimensional operators:

� = �1 + �2. (8.111)

With the grid displaced by half the grid size, it seems reasonable to define the differ-
ence operator �1 as follows:

�1 y =
⎧⎨
⎩

−a1(x1 + h1, x2)yx1/h1, x1 = h1/2,

−(a1 yx̄1)x1, h1/2 < x1 < l1 − h1/2,

a1 yx̄1/h1, x1 = l1 − h1/2,

where, for instance, a1(x1, x2) = k(x1 − 0.5h1, x2). In a similar way, we define the
difference operator �2:

�2 y =
⎧⎨
⎩

−a2(x1, x2 + h2)yx2/h2, x2 = h2/2,

−(a2 yx̄2)x2, h2/2 < x2 < l2 − h2/2,

a2 yx̄2/h2, x2 = l2 − h2/2

with a2(x1, x2) = k(x1, x2 − 0.5h2).
In the Hilbert space L2(ω) of mesh functions set on ω, we define the scalar product

as
(y, v)ω =

∑
x∈ω

y(x)v(x)h1h2.

It is an easy matter to check that the difference operator � defined by (8.111) is a
self-adjoint operator non-negative in L2(ω), i.e. � = �∗ ≥ 0.

We denote as yn the difference solution at the time tn = nτ , where τ > 0 is the time
step size (N0τ = T ). An approximate solution of the direct problem (8.91)–(8.95) can
be found as the solution of the difference problem

yn+1 − yn

τ
+ �(σ yn+1 + (1 − σ)yn) = fn,

n = 0, 1, . . . , N0 − 1,
(8.112)

y0 = 0, x ∈ ω. (8.113)

The weighted difference scheme (8.112), (8.113) is absolutely stable in the case
of σ ≥ 1/2. For simplicity, we restrict ourselves to the case of the purely implicit
scheme (σ = 1), in which for the solution of the difference problem (8.112), (8.113)
there holds the following stability estimate:

‖yn+1‖ ≤ ‖yn‖ + τ‖ fn‖, n = 0, 1, . . . , N0 − 1.
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The inhomogeneity of the right-hand side of (8.112) results from the boundary con-
ditions (8.94), so that in the case of σ = 1 we can put:

fn(x) =
⎧⎨
⎩

0, x1 ∈ ω1, x2 = h2/2,

0, x1 ∈ ω1, h2/2 < x2 < l2 − h2/2,

μn+1(x1)/h2, x1 ∈ ω1, x2 = l2 − h2/2.

(8.114)

Thus, the boundary conditions are included on the operator level into the difference
equation. With the form of the inhomogeneous right-hand side taken into account, the
above estimate proves that the solution of the difference problem is stable with respect
to the initial data and boundary conditions.

Let us formulate now the boundary value inverse problem on the mesh level. In
the case under consideration (see (8.91)–(8.93), (8.95), (8.96)) the function μn(x1),
n = 1, 2, . . . , N0 in the right-hand side of (8.114) is not given. Instead of this function,
the solution at the nodes adjacent to the boundary γ∗ is assumed to be known:

yn(x1, 0.5h2) = ϕn(x1), x1 ∈ ω1, n = 1, 2, . . . , N0. (8.115)

Hence, on the mesh level we can speak about a problem in which it is required to iden-
tify the right-hand side of special form (8.114) from boundary observations (8.115).

8.3.4 Iterative refinement of the boundary condition

Similarly to the continuous case, here we use the formulation of the boundary value
inverse problem in the form of a first-kind operator equation. From the given boundary
condition (right-hand side set in the form (8.114) with known mesh function μn(x1),
n = 1, 2, . . . , N0), we put in correspondence the function ϕn(x1), n = 1, 2, . . . , N0

(see (8.115)):
Aμ = ϕ. (8.116)

To calculate ϕn(x1), n = 1, 2, . . . , N0, we have to solve the difference boundary value
problem (8.112)–(8.114). The operator equation (8.116) is the difference analogue
to (8.97).

The iteration method is to be applied to the symmetrized equation (see (8.98))

A∗ Aμ = A∗ϕ. (8.117)

The explicit iteration method for the approximate solution of (8.117) can be written in
the form

μk+1 − μk

sk+1
+ A∗ Aμk = A∗ϕ, k = 0, 1, . . . . (8.118)

The matter of calculating the values of A∗ deserves special consideration. To this
end, first of all we have to give mesh analogues of the Hilbert spaces L(γ, [0, T ]) and
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L(γ∗, [0, T ]), to be subsequently referred to as H and H∗, respectively. In H and H∗,
the scalar product and the norm are defined as

(u, v) =
N0∑

n=1

∑
x1∈ω1

un(x1, l2)vn(x1, l2)h1τ, ‖u‖ =
√

(u, u),

(u, v)∗ =
N0∑

n=1

∑
x1∈ω1

un(x1, 0)vn(x1, 0)h1τ, ‖u‖∗ =
√

(u, u)∗.

Then, in the steepest descend method, for the iteration parameters in (8.118) we have:

sk+1 = ‖rk‖2

‖Ark‖2∗
, rk = A∗ Aμk − A∗ϕ. (8.119)

The operator adjoint to A can be found from the equality

(Aμ, ν)∗ = (μ, A∗ν). (8.120)

Here, the mesh functions μn(x1), n = 1, 2, . . . , N0 and νn(x1), n = 1, 2, . . . , N0 are
given in the calculation domain ω at the nodes adjacent to the boundaries γ and γ∗,
respectively.

To formulate the difference problem for the conjugate state, we multiply the differ-
ence equation for the ground state

yn+1 − yn

τ
+ �yn+1 = fn, (8.121)

by the mesh function ψn+1h1h2τ and sum it up over all nodes x ∈ ω and all n =
0, 1, . . . , N0 − 1:

N0∑
n=1

∑
x∈ω

( yn − yn−1

τ
+ �yn

)
ψnh1h2τ =

N0∑
n=1

∑
x∈ω

fn−1ψnh1h2τ. (8.122)

With regard to (8.114) and with regard to the introduced notation, for the right-hand
side of (8.122) we immediately obtain:

N0∑
n=1

∑
x∈ω

fn−1ψnh1h2τ = (μ, ψ). (8.123)

As a result, we can relate this right-hand side with the right-hand side in (8.120).
Using the initial condition (8.113), we can rearrange the first term in the left-hand

side in (8.122) as

I1 =
N0∑

n=1

∑
x∈ω

yn − yn−1

τ
ψnh1h2τ = −

N0∑
n=1

∑
x∈ω

ψn+1 − ψn

τ
ynh1h2τ, (8.124)
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provided that the following additional condition holds:

ψN0+1 = 0, x ∈ ω. (8.125)

With regard to the self-adjointness of � and L2(ω), for the second term in the right-
hand side of (8.122) we have:

I2 =
N0∑

n=1

∑
x∈ω

�ynψnh1h2τ =
N0∑

n=1

∑
x∈ω

yn�ψnh1h2τ. (8.126)

Substitution of (8.123), (8.124), and (8.126) into (8.122) yields:

N0∑
n=1

∑
x∈ω

yn

(
− ψn+1 − ψn

τ
+ �ψn

)
h1h2τ = (μ, ψ). (8.127)

We choose the mesh function ψn(x) so that the left side of (8.127) is related with the
left side in (8.120).

We assume that the function ψn(x) satisfies the difference equation

−ψn+1 − ψn

τ
+ �ψn = gn, n = 1, 2, . . . , N0 (8.128)

supplemented with the initial condition (8.125). Hence, with the given right-hand side
gn(x) the conjugate state is to be found using the purely implicit scheme (8.125),
(8.128) on the grid displaced by the time step size.

From (8.127) and (8.128), we obtain

N0∑
n=1

∑
x∈ω

yngnh1h2τ = (μ, ψ). (8.129)

In view of (8.115) and (8.116), the left-hand side of (8.129) coincides with the left-
hand side in (8.120) provided that the right-hand side in (8.128) is given as

gn(x) =
⎧⎨
⎩

νn(x1)/h2, x1 ∈ ω1, x2 = h2/2,

0, x1 ∈ ω1, h2/2 < x2 < l2 − h2/2,

0, x1 ∈ ω1, x2 = l2 − h2/2.

(8.130)

This choice of the right-hand side corresponds to the solution of the difference bound-
ary value problem with boundary conditions of the second kind (see (8.106)).

From the equality between the right-hand sides of (8.120) and (8.129), for the values
of A∗ we obtain:

A∗νn = ψn(x1, l2), x1 ∈ ω1, n = 1, 2, . . . , N0. (8.131)

Here, the mesh function ψn(x) is to be found as the solution of the difference problem
(8.125), (8.128), (8.130).
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8.3.5 Program realization

The program presented below embodies the above iteration solution method for the
boundary value inverse problem (8.91)–(8.93), (8.95), (8.96) in the case of k(x) = 1.
The iteration method is terminated based on discrepancy.

Program PROBLEM17

C
C PROBLEM17 - BOUNDARY-VALUE INVERSE PROBLEM
C TWO-DIMENSIONAL PROBLEM
C ITERATIVE REFINEMENT OF THE BOUNDARY CONDITION
C

IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( DELTA = 0.005D0, N1 = 50, N2 = 50, M = 101 )
DIMENSION A(9*N1*N2), X1(N1), X2(N2), T(M)
+ ,Y(N1,N2), F(N1,N2), G(N1)
+ ,FI(N1,M), FID(N1,M), FS(N1,M), FIK(N1,M)
+ ,U(N1,M),UA(N1,M), UK(N1,M), R(N1,M), AR(N1,M)
COMMON / SB5 / IDEFAULT(4)
COMMON / CONTROL / IREPT, NITER

C
C PARAMETERS:
C
C X1L, X2L - COORDINATES OF THE LEFT CORNER;
C X1R, X2R - COORDINATES OF THE RIGHT CORNER;
C N1, N2 - NUMBER OF NODES IN THE SPATIAL GRID;
C H1, H2 - MESH SIZE OVER SPACE;
C TAU - TIME STEP;
C DELTA - INPUT-DATA INACCURACY LEVEL;
C FI(N1,M) - EXACT DIFFERENCE BOUNDARY CONDITION;
C FID(N1,M) - DISTURBED DIFFERENCE BOUNDARY CONDITION;
C U(N1,M) - EXACT SOLUTION OF THE INVERSE PROBLEM
C (BOUNDARY CONDITION);
C UA(N1,M) - APPROXIMATE SOLUTION OF THE INVERSE PROBLEM;
C EPSR - RELATIVE SOLUTION INACCURACY IN THE DIFFERENCE
C PROBLEM;
C EPSA - ABSOLUTE SOLUTION INACCURACY IN THE DIFFERENCE
C PROBLEM;
C
C EQUIVALENCE ( A(1), A0 ),
C * ( A(N+1), A1 ),
C * ( A(2*N+1), A2 ),
C

X1L = 0.D0
X1R = 1.D0
X2L = 0.D0
X2R = 0.5D0
TMAX = 1.D0
PI = 3.1415926D0
EPSR = 1.D-5
EPSA = 1.D-8

C
OPEN (01, FILE=’RESULT.DAT’) ! FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H1 = (X1R-X1L) / N1
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H2 = (X2R-X2L) / N2
TAU = TMAX / (M-1)
DO I = 1, N1

X1(I) = X1L + (I-0.5D0)*H1
END DO
DO J = 1, N2

X2(J) = X2L + (J-0.5D0)*H2

END DO
DO K = 1, M

T(K) = (K-1)*TAU
END DO

C
N = N1*N2
DO I = 1, 9*N

A(I) = 0.0
END DO

C
C DIRECT PROBLEM
C PURELY IMPLICIT DIFFERENCE SCHEME
C
C INITIAL CONDITION
C

DO I = 1, N1
DO J = 1, N2

Y(I,J) = 0.D0
END DO

END DO
C
C BOUNDARY CONDITION
C

CALL FLUX (U, X1, T, N1, M)
DO K = 2, M

C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

DO I = 1, N1
G(I) = U(I,K)

END DO
CALL FDS (A(1), A(N+1), A(2*N+1), F, Y,

+ H1, H2, N1, N2, TAU, G)
C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), Y, F, EPSR, EPSA)

C
C INPUT DATA FOR THE INVERSE PROBLEM
C

DO I = 1, N1
FI(I,K) = Y(I,1)

END DO
END DO

C
C DISTURBING OF MEASURED QUANTITIES
C

DO I = 1, N1
DO K = 2, M

FID(I,K) = FI(I,K) + 2.*DELTA*(RAND(0)-0.5)
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END DO
END DO

C
C INVERSE PROBLEM
C
C RIGHT SIDE OF THE SYMMETRIZED EQUATION
C
C DIRECT PROBLEM
C PURELY IMPLICIT DIFFERENCE SCHEME
C
C INITIAL CONDITION (AT t = T)
C

DO I = 1, N1
DO J = 1, N2

Y(I,J) = 0.D0
END DO

END DO
DO K = M,2,-1

C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

DO I = 1, N1
G(I) = FID(I,K)

END DO
CALL FDSS (A(1), A(N+1), A(2*N+1), F, Y,

+ H1, H2, N1, N2, TAU, G)
C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), Y, F, EPSR, EPSA)

C
C RIGHT-HAND SIDE
C

DO I = 1, N1
FS(I,K) = Y(I,N2)

END DO
END DO

C
C ITERATION METHOD
C

IT = 0
C
C INITIAL APPROXIMATION
C

DO I = 1, N1
DO K = 2, M

UK(I,K) = 0.D0
END DO

END DO
C

100 IT = IT + 1
C
C GROUND STATE
C
C INITIAL CONDITION
C

DO I = 1, N1
DO J = 1, N2
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Y(I,J) = 0.D0
END DO

END DO
DO K = 2, M

C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

DO I = 1, N1
G(I) = UK(I,K)

END DO
CALL FDS (A(1), A(N+1), A(2*N+1), F, Y,

+ H1, H2, N1, N2, TAU, G)
C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), Y, F, EPSR, EPSA)

C
C INPUT DATA FOR THE CONJUGATE PROBLEM
C

DO I = 1, N1
FIK(I,K) = Y(I,1)

END DO
END DO

C
C CONJUGATE STATE
C PURELY IMPLICIT DIFFERENCE SCHEME
C
C INITIAL CONDITION (AT t = T)
C

DO I = 1, N1
DO J = 1, N2

Y(I,J) = 0.D0
END DO

END DO
DO K = M,2,-1

C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

DO I = 1, N1
G(I) = FIK(I,K)

END DO
CALL FDSS (A(1), A(N+1), A(2*N+1), F, Y,

+ H1, H2, N1, N2, TAU, G)
C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), Y, F, EPSR, EPSA)

C
C DISCREPANCY
C

DO I = 1, N1
R(I,K) = Y(I,N2) - FS(I,K)

END DO
END DO

C
C QUICKEST DESCEND METHOD
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C
C AUXILIARY PROBLEM
C
C INITIAL CONDITION
C

DO I = 1, N1
DO J = 1, N2

Y(I,J) = 0.D0
END DO

END DO
DO K = 2, M

C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

DO I = 1, N1
G(I) = R(I,K)

END DO
CALL FDS (A(1), A(N+1), A(2*N+1), F, Y,

+ H1, H2, N1, N2, TAU, G)
C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), Y, F, EPSR, EPSA)
DO I = 1, N1

AR(I,K) = Y(I,1)
END DO

END DO
C
C ITERATION PARAMETER
C

SUM1 = 0.D0
SUM2 = 0.D0
DO I = 1, N1

DO K = 2, M
SUM1 = SUM1 + R(I,K)*R(I,K)
SUM2 = SUM2 + AR(I,K)*AR(I,K)

END DO
END DO
SS = SUM1/SUM2

C
C NEXT APPROXIMATION
C

DO I = 1, N1
DO K = 2, M

UK(I,K) = UK(I,K) - SS*R(I,K)
END DO

END DO
C
C EXIT FROM THE ITERATIVE PROCESS BY THE DISCREPANCY CRITERION
C

SUM = 0.D0
DO I = 1, N1

DO K = 2, M
SUM = SUM + (FID(I,K) - FIK(I,K))**2*H1*TAU

END DO
END DO
SUM = SUM/((X1R-X1L)*TMAX)
SL2 = DSQRT(SUM)
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IF ( SL2.GT.DELTA ) GO TO 100
C
C SOLUTION
C

WRITE ( 01, * ) ((UK(I,K), I=1,N1), K=2,M)
WRITE ( 01, * ) ((FID(I,K), I=1,N1), K=2,M)
CLOSE (01)
STOP
END

C
SUBROUTINE FLUX (U, X1, T, N1, M)

C
C BOUNDARY CONDITION
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION U(N1,M), X1(N1), T(M)
DO I = 1, N1

DO K = 1, M
U(I,K) = X1(I)*T(K)/T(M)

C IF (T(K).GT.0.5D0*T(M)) U(I,K) = 2.D0*X1(I)*(T(M)-T(K))
END DO

END DO
C

RETURN
END

C
SUBROUTINE FDS (A0, A1, A2, F, U, H1, H2, N1, N2, TAU, G)

C
C GENERATION OF DIFFERENCE-SCHEME COEFFICIENTS
C FOR THE PARABOLIC EQUATION WITH CONSTANT COEFFICIENTS
C IN USING THE PURELY IMPLICIT SCHEME
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION A0(N1,N2), A1(N1,N2), A2(N1,N2)
+ ,F(N1,N2), U(N1,N2), G(N1)

C
DO J = 2, N2-1

DO I = 2, N1-1
A1(I-1,J) = 1.D0/(H1*H1)
A1(I,J) = 1.D0/(H1*H1)
A2(I,J-1) = 1.D0/(H2*H2)
A2(I,J) = 1.D0/(H2*H2)
A0(I,J) = A1(I,J) + A1(I-1,J) + A2(I,J) + A2(I,J-1)

+ + 1.D0/TAU
F(I,J) = U(I,J)/TAU

END DO
END DO

C
C BOUNDARY CONDITION OF THE SECOND KIND
C

DO J = 2, N2-1
A2(1,J) = 1.D0/(H2*H2)
A2(1,J-1) = 1.D0/(H2*H2)
A0(1,J) = A1(1,J) + A2(1,J) + A2(1,J-1)+ 1.D0/TAU
F(1,J) = U(1,J)/TAU

END DO
C

DO J = 2, N2-1
A2(N1,J) = 1.D0/(H2*H2)
A2(N1,J-1) = 1.D0/(H2*H2)
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A0(N1,J) = A1(N1-1,J) + A2(N1,J) + A2(N1,J-1)+ 1.D0/TAU
F(N1,J) = U(N1,J)/TAU

END DO
C

DO I = 2, N1-1
A1(I,1) = 1.D0/(H1*H1)
A1(I-1,1) = 1.D0/(H1*H1)
A0(I,1) = A1(I,1) + A1(I-1,1) + A2(I,1) + 1.D0/TAU
F(I,1) = U(I,1)/TAU

END DO
C

DO I = 2, N1-1
A1(I,N2) = 1.D0/(H1*H1)
A1(I-1,N2) = 1.D0/(H1*H1)
A0(I,N2) = A1(I,N2) + A1(I-1,N2) + A2(I,N2-1) + 1.D0/TAU
F(I,N2) = U(I,N2)/TAU + G(I)/H2

END DO
C

A0(1,1) = A1(1,1) + A2(1,1) + 1.D0/TAU
F(1,1) = U(1,1)/TAU

C
A0(N1,1) = A1(N1-1,1) + A2(N1,1) + 1.D0/TAU
F(N1,1) = U(N1,1)/TAU

C
A0(1,N2) = A1(1,N2) + A2(1,N2-1) + 1.D0/TAU
F(1,N2) = U(1,N2)/TAU + G(1)/H2

C
A0(N1,N2) = A1(N1-1,N2) + A2(N1,N2-1) + 1.D0/TAU
F(N1,N2) = U(N1,N2)/TAU + G(N1)/H2

C
RETURN
END

C
SUBROUTINE FDSS (A0, A1, A2, F, U, H1, H2, N1, N2, TAU, G)

C
C GENERATION OF DIFFERENCE-SCHEME COEFFICIENTS
C FOR THE CONJUGATE STATE
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION A0(N1,N2), A1(N1,N2), A2(N1,N2)
+ ,F(N1,N2), U(N1,N2), G(N1)

C
DO J = 2, N2-1

DO I = 2, N1-1
A1(I-1,J) = 1.D0/(H1*H1)
A1(I,J) = 1.D0/(H1*H1)
A2(I,J-1) = 1.D0/(H2*H2)
A2(I,J) = 1.D0/(H2*H2)
A0(I,J) = A1(I,J) + A1(I-1,J) + A2(I,J) + A2(I,J-1)

+ + 1.D0/TAU
F(I,J) = U(I,J)/TAU

END DO
END DO

C
C BOUNDARY CONDITION OF THE SECOND KIND
C

DO J = 2, N2-1
A2(1,J) = 1.D0/(H2*H2)
A2(1,J-1) = 1.D0/(H2*H2)
A0(1,J) = A1(1,J) + A2(1,J) + A2(1,J-1)+ 1.D0/TAU
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F(1,J) = U(1,J)/TAU
END DO

C
DO J = 2, N2-1

A2(N1,J) = 1.D0/(H2*H2)
A2(N1,J-1) = 1.D0/(H2*H2)
A0(N1,J) = A1(N1-1,J) + A2(N1,J) + A2(N1,J-1)+ 1.D0/TAU
F(N1,J) = U(N1,J)/TAU

END DO
C

DO I = 2, N1-1
A1(I,1) = 1.D0/(H1*H1)
A1(I-1,1) = 1.D0/(H1*H1)
A0(I,1) = A1(I,1) + A1(I-1,1) + A2(I,1) + 1.D0/TAU
F(I,1) = U(I,1)/TAU + G(I)/H2

END DO
C

DO I = 2, N1-1
A1(I,N2) = 1.D0/(H1*H1)
A1(I-1,N2) = 1.D0/(H1*H1)

A0(I,N2) = A1(I,N2) + A1(I-1,N2) + A2(I,N2-1) + 1.D0/TAU
F(I,N2) = U(I,N2)/TAU

END DO
C

A0(1,1) = A1(1,1) + A2(1,1) + 1.D0/TAU
F(1,1) = U(1,1)/TAU + G(1)/H2

C
A0(N1,1) = A1(N1-1,1) + A2(N1,1) + 1.D0/TAU
F(N1,1) = U(N1,1)/TAU + G(N1)/H2

C
A0(1,N2) = A1(1,N2) + A2(1,N2-1) + 1.D0/TAU
F(1,N2) = U(1,N2)/TAU

C
A0(N1,N2) = A1(N1-1,N2) + A2(N1,N2-1) + 1.D0/TAU
F(N1,N2) = U(N1,N2)/TAU

C
RETURN
END

In the subroutine FLUX, boundary conditions of the second kind for the test direct
problem (exact inverse-problem solution) are introduced. In the subroutines FDS and
FDSS, difference-scheme coefficients for the ground and conjugate states are gener-
ated, respectively.

8.3.6 Computational experiments

The input data for the inverse problem are obtained as the solution of the direct problem
(8.91)–(8.95) with the boundary condition (8.94) given as

μ(x1, t) = x1
t
T

.

The direct problem is being solved in the rectangle � with l1 = 1, l2 = 0.5 at T = 1
on the grid ω with N1 = N2 = 50 and τ = 0.01. The solution of the direct problem at
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the times t = 0.25, 0.5, 0.75, 1 are shown in Figures 8.12–8.15.

Figure 8.12 Direct-problem solution (t = 0.25)

Figure 8.13 Direct-problem solution (t = 0.5)
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Figure 8.14 Direct-problem solution (t = 0.75)

Figure 8.15 Direct-problem solution (t = 1)

The found solution of the direct problem at the grid nodes closest to γ∗ (the func-
tions ϕn(x1) in (8.115)) at the same times are shown in Figure 8.16. These data were
randomly perturbed to be subsequently considered as input data for the inverse prob-
lem:

ϕ̄n(x1) = ϕn(x1) + 2δ(σ (x1, tn) − 1/2), x1 ∈ ω, n = 1, 2, . . . , N0.
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Here, σ(x1, tn) is a random function distributed normally over the interval [0, 1]. The
approximate solution of the inverse problem obtained with the inaccuracy level defined
by the parameter δ = 0.005 is shown in Figure 8.17. The same figure shows the exact
and found boundary conditions at the times t = 0.25, 0.5, 0.75, and 1. The end-time
reconstruction accuracy (at t = 1) is seen to be very poor. In fact, here there is no other
thing to expect since the changes in the boundary condition at times around t = T do
not affect the solution at the observation points (on the other portion of the boundary):
the perturbations do not arrive at the observation points. The effect due to the accuracy
in setting the input data can be figured out considering Figures 8.18–8.19.

Figure 8.16 Unperturbed initial data for the inverse problem

Figure 8.17 Inverse-problem solution obtained with δ = 0.005
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Figure 8.18 Inverse-problem solution obtained with δ = 0.01

Figure 8.19 Inverse-problem solution obtained with δ = 0.0025

8.4 Coefficient inverse problem for the nonlinear parabolic

equation

In this section, we consider the inverse problem in which it is required to determine
a coefficient that depends on the solution of the one-dimensional parabolic equation
from the solution observed at some internal point/points. Algorithms of functional and
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parametric optimization are discussed. Primary attention is paid to the construction
and realization of computational algorithms.

8.4.1 Statement of the problem

In many applied problems, there arises a problem in which it is required to identify
coefficients in a partial differential equation. Coefficient inverse problems for second-
order parabolic equations are typical of heat- and mass-transfer problems and problems
encountered in hydrogeology. The inverse problems in which it is required to identify
coefficients in linear equations are nonlinear problems. The latter circumstance sub-
stantially hampers the construction of computational algorithms for the approximate
solution of coefficient problems and makes complete and rigorous substantiation of
their convergence hardly possible. That is why the emphasis here is placed on maxi-
mum possible approbation of numerical methods aimed at obtaining most informative
solution examples for inverse problems.

Very often, of primary interest are problems in which it is required to find nonlinear
coefficients that depend on the solution. Let us formulate a simplest of such a problem.
Suppose that in the rectangle

QT = � × [0, T ], � = {x | 0 ≤ x ≤ l}, 0 ≤ t ≤ T

the function u(x, t) satisfies the equation

∂u
∂t

− ∂

∂x

(
k(u)

∂u
∂x

)
= 0, 0 < x < l, 0 < t ≤ T . (8.132)

We assume that k(u) ≥ κ > 0. Consider the boundary value problem with the first-
kind boundary conditions

u(0, t) = 0, u(l, t) = g(t), 0 < t ≤ T (8.133)

and the homogeneous initial conditions

u(x, 0) = 0, 0 ≤ x ≤ l. (8.134)

The direct problem is formulated in the form (8.132)–(8.134).
In the coefficient inverse problem, the unknown function k(u) is to be found, for

instance, from additional observations performed at some internal points zm ∈ �,
m = 1, 2, . . . , M . Considering the fact that these data are given inaccurate, we put

u(zm, t) ≈ ϕm(t), 0 < t ≤ T, m = 1, 2, . . . , M. (8.135)

It is required to find the functions u(x, t) and k(u) from the conditions (8.132)–(8.135).
In the consideration of coefficient inverse problems similar to problem (8.132)–

(8.135), much attention is paid to problems of solution unicity in the case of exact
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measurements. In the case at hand, under the assumptions that the coefficient k(u)

and the solution itself are smooth functions, it suffices to additionally demand that the
function g(t) be a monotonic function. For definiteness, we assume that

dg
dt

(t) > umin = 0, 0 < t < T, g(0) = 0, g(T ) = umax. (8.136)

In the inverse problem (8.132)–(8.135), we can pose a problem in which it is required
to find the functional relation k(u) in the case of umin ≤ u ≤ umax.

8.4.2 Functional optimization

In the approximate solution of the inverse problem (8.132)–(8.135), we can use the
variational formulation of this problem. We use the settings

K = L2(umin, umax), (k, r)K =
∫ umax

umin

k(u)r(u)du, ‖k‖K =
√

(k, k)K .

In gradient iteration methods, we have to minimize the discrepancy functional that,
with regard to (8.135), looks as

J (k) =
M∑

m=1

∫ T

0
(u(zm, t; k) − ϕm(t))2 dt (8.137)

under the conditions (8.132)–(8.134). In the Tikhonov regularization method, to be
regularized is the smoothing functional

Jα(k) =
M∑

m=1

∫ T

0
(u(zm, t; k) − ϕm(t))2 dt + α‖k‖2

K .

In using gradient iteration methods for the minimization of the functional J (k), we
have to calculate the gradient of the functional. Some difficulties arise owing to the
fact that the functional here is not quadratic. The gradient of J ′(k) referring to the
increment δk is given by

δ J (k) = (J ′(k), δk)K + s,

where δ J (k) = J (k + δk) − J (k) is the functional increment and

|s|
‖δk‖K

→ 0 for δk → 0.

As we saw previously, the gradient of the discrepancy functional can be expressed
through the solution of some conjugate initial-boundary value problem. The most
general approach to the formulation of this problem is related with the consideration of
a problem on conditional minimization of the discrepancy functional on the solutions
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of the boundary value problem for the ground state as a problem on unconditional
minimization by introducing Lagrange multipliers. As applied to the minimization
problem (8.137) under constraints (8.132)–(8.134), the Lagrange functional has the
form

G(k) = J (k) +
∫ T

0

∫ l

0
ψ
(∂u

∂t
− ∂

∂x

(
k(u)

∂u
∂x

))
dx dt, (8.138)

where ψ(x, t) is the Lagrange multipliers.
Let δG be the increment of the functional G corresponding to the increment δk and

δG = δ J + δQ. (8.139)

We denote as δu the increment of u; then, we have for δ J :

δ J = 2
M∑

m=1

∫ T

0

∫ l

0
δu(u − ϕm)δ(x − zm) dx dt, (8.140)

where δ(x) is the δ-function. Neglecting the second-order terms in (8.139), for the
second term in this formula we obtain

δQ =
∫ T

0

∫ l

0
ψ
(∂δu

∂t
− ∂

∂x

(
k(u)

∂δu
∂x

)
− ∂

∂x

(
δk

∂u
∂x

))
dx dt. (8.141)

For the solution increments, from (8.133) and (8.134) we obtain:

δu(0, t) = 0, δu(l, t) = 0, 0 < t ≤ T,

δu(x, 0) = 0, 0 ≤ x ≤ l.

Hence, we have ∫ T

0

∫ l

0
ψ

∂δu
∂t

dx dt = −
∫ T

0

∫ l

0
δu

∂ψ

∂t
dx dt,

provided that
ψ(0, T ) = 0, 0 ≤ x ≤ l. (8.142)

In a similar manner, on setting the boundary conditions for ψ(x, t) in the form

ψ(0, t) = 0, ψ(l, t) = 0, 0 < t ≤ T (8.143)

we arrive at the equality∫ T

0

∫ l

0
ψ

∂

∂x

(
k(u)

∂δu
∂x

)
dx dt =

∫ T

0

∫ l

0
δu

∂

∂x

(
k(u)

∂ψ

∂x

)
dx dt.

Besides, in the case of boundary conditions (8.143) we have∫ T

0

∫ l

0
ψ

∂

∂x

(
δk

∂u
∂x

)
dx dt = −

∫ T

0

∫ l

0
δk

∂u
∂x

∂ψ

∂x
dx dt.
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Now, we can rewrite expression (8.141) in the form

δQ =
∫ T

0

∫ l

0
δu
(

− ∂ψ

∂t
− ∂

∂x

(
k(u)

∂ψ

∂x

))
dx dt

+
∫ T

0

∫ l

0
δk

∂u
∂x

∂ψ

∂x
dx dt. (8.144)

With (8.140) and (8.144), we determine the function ψ(x, t) as the solution of the
equation

−∂ψ

∂t
− ∂

∂x

(
k(u)

∂ψ

∂x

)
+ 2

M∑
m=1

(u − ϕm)δ(x − zm) = 0,

0 < x < l, 0 ≤ t < T .

(8.145)

Thus, for the conjugate state to be found, we have to solve the well-posed initial-
boundary problem (8.142), (8.143), (8.145).

From (8.139) and (8.144), we obtain

δG =
∫ T

0

∫ l

0
δk

∂u
∂x

∂ψ

∂x
dx dt.

With regard to (8.138), this increment of the functional can be expressed in terms of
J ′(k):

δG = (J ′(k), δk)K .

In the calculation domain QT we introduce new independent variables u(x, t) and
v(x, t), with the transformed Jacobian D(x, t)/D(u, v) �= 0. With regard to our as-
sumptions (8.136) concerning the boundary condition (function g(t)), such a transform
is indeed possible. We therefore have:

∫ T

0

∫ l

0
δk

∂u
∂x

∂ψ

∂x
dx dt =

∫ umax

umin

δk(u)

∫ v2(u)

v1(u)

∂u
∂x

∂ψ

∂x
D(x, t)
D(u, v)

dv du

and, hence,

J ′(k) =
∫ v2(u)

v1(u)

∂u
∂x

∂ψ

∂x
D(x, t)
D(u, v)

dv, umin ≤ u ≤ umax. (8.146)

The obtained representation (8.146) is not convenient for use in the development
of practical iteration solution methods for the coefficient inverse problem (8.132)–
(8.135) because, in this case, we have a rather complex computational procedure for
the gradient of the discrepancy functional.
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8.4.3 Parametric optimization

In the approximate solution of coefficient inverse problems, special attention should be
paid to parametric identification methods. In the gradient methods discussed above the
approximate solution is sought as a function of a continuous (or discrete, in the case
of difference approximation) argument. That is why here we use the term “functional
optimization”. Yet, another approach is possible, which can be considered as the pro-
jection method for solving inverse problems. In this method, the approximate solution
is represented in parametric form, and what is required is to find the parameters in this
representation.

In a function space K , we choose a finite-difference subspace K p with some basis
ηβ(u), β = 1, 2, . . . , p. In the approximate solution of the coefficient inverse problem
(8.132)–(8.135), the coefficient to be found is represented in the form

kp(u) =
p∑

β=1

aβηβ(u). (8.147)

In solving the inverse problem, the unknown coefficients aβ , β = 1, 2, . . . , p are to be
found.

The parametric identification algorithm can be realized in two variants. We assume
that the accuracy in setting the input information is defined by some quantity δ. Next,
we assume that in the model problem (8.132)–(8.135)

u(zm, t) = ϕδ
m(t), 0 < t ≤ T, m = 1, 2, . . . , M, (8.148)

M∑
m=1

∫ T

0
(ϕδ

m(t) − ϕm(t))2 dt ≤ MT δ2. (8.149)

In solving the coefficient problem (8.132)–(8.134), (8.148), (8.149), the first vari-
ant of the parametric identification algorithm is related with using a sufficiently high
dimensionality p of K p, in which case the inaccuracy in the approximation of k(u)

with the function kp(u) results in much lower solution inaccuracies at observation
points compared to initial inaccuracies (see (8.149)). In other words, the inaccura-
cies in (8.147) can be ignored in solving the inverse problem. Similar situation takes
place in difference discretization of the inverse problem: here, with sufficiently fine
calculation grids used, we neglect the inaccuracies generated by the discretization.

Like with functional identification, in the case under consideration the approximate
solution (8.147) can be regularized by minimizing the Tikhonov smoothing functional
for the vector a = {a1, a2, . . . , ap}:

Jα(a) =
M∑

m=1

∫ T

0
(u(zm, t; a) − ϕm(t))2 dt + α

p∑
β=1

a2
β (8.150)



400 Chapter 8 Other problems

Figure 8.20 Piecewise-linear approximation

provided that the value of the regularization parameter α is properly matched with the
input-data inaccuracy (i.e., with the value of δ in (8.149)). An alternative here is an
iteration method for determining the vector a.

In the second variant of the parametric identification algorithm, specific features of
parametric identification are taken into account more fully. Here, the dimensionality
of K p, or the number of elements in the expansion (8.147), is used as the regulariza-
tion parameter. Here, we can speak of self-regularizing properties exhibited by the
discretization algorithm (8.147).

As a typical example of (8.147), consider piecewise linear approximation. We as-
sume that a grid

uβ = umin + (β − 1)
umax − umin

p − 1
, β = 1, 2, . . . , p.

is introduced, uniform over the variable u. In this case (see Figure 8.20), the piecewise
linear finite functions ηβ(u), β = 1, 2, . . . , p are given in the form

ηβ(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, u < uβ−1,

u − uβ−1

uβ − uβ−1
, uβ−1 < u < uβ,

uβ+1 − u
uβ+1 − uβ

, uβ−1 < u < uβ,

0, u > uβ+1,

β = 2, 3, . . . , p − 1,

and the coefficients are aβ = kp(uβ), β = 1, 2, . . . , p. In this representation of the
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approximate solution, the mesh size over u or the total number p of nodes can be used
as a regularization parameter.

In the use of the regularization method (8.150), the computational algorithms for
parametric identification (8.147) are related with the minimization problem for the
function p of the variable Jα(a). Let us formulate a necessary condition for a
minimum that can be used to construct numerical algorithms for the parameters aβ ,
β = 1, 2, . . . , p. Immediately from (8.150), we have:

∂ Jα

∂aβ

= 2
M∑

m=1

∫ T

0
(u(zm, t; a) − ϕm(t))

∂u
∂aβ

dt + 2αaβ. (8.151)

Relations (8.132)–(8.134) and representation (8.147) for ∂u/∂aβ yield the following
boundary value problem:

∂v

∂t
− ∂

∂x

(
k(u)

∂v

∂x

)
= ∂

∂x

(
ηβ(u)

∂u
∂x

)
, 0 < x < l, 0 < t ≤ T, (8.152)

v(0, t) = 0, v(l, t) = 0, 0 < t ≤ T, (8.153)

v(x, 0) = 0, 0 ≤ x ≤ l. (8.154)

To obtain a more convenient representation for the first term in the right-hand side
of (8.151), we formulate a boundary value problem for the conjugate state. Let the
function ψ(x, t) with some known u(x, t) be the solution of the boundary value prob-
lem (8.142), (8.143), (8.145). We multiply equation (8.152) through by ψ(x, t); then,
integrating the resulting equation over x and t , by direct calculations we obtain the
desired system of equations:∫ T

0

∫ l

0
ηβ(u)

∂u
∂x

∂ψ

∂x
dx dt + 2αaβ = 0, β = 1, 2, . . . , p. (8.155)

Around (8.155), we can construct the computational algorithms. In particular, we can
use iteration methods for determining the parameters aβ , β = 1, 2, . . . , p. Here, the
complication owing to the nonlinear dependence of the ground state u(x, t) on the
sought coefficient k(u) = kp(u) must be taken into account.

Under monotonic conditions for the boundary conditions of type (8.136), successive
identification algorithms can be constructed. A similar local regularization procedure
was discussed above, in the consideration of evolutionary inverse problems in which
it was required to reconstruct the initial condition and the boundary conditions. In
the case of (8.132)–(8.136), at each time in the interval t ≤ t∗ < T we can find
the relation k(u) for u ≤ g(t∗). Such specific features of the coefficient problem
under consideration can most easily be taken into account in the case of parametric
optimization of (8.147) in the class of piecewise constant functions. In the latter case
(see also Figure 8.21), with the use of the uniform grid

uβ = umin + β
umax − umin

p
, β = 0, 1, . . . , p
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Figure 8.21 Piecewise-constant approximation

the trial functions are given in the form

ηβ(u) =
⎧⎨
⎩

0, u < uβ−1,

1, uβ−1 ≤ u ≤ uβ,

0, u > uβ,

β = 1, 2, . . . , p. (8.156)

In the case of the latter parameterization, with uβ−1 ≤ u ≤ uβ it is required to find just
one numerical parameter aβ since the parameters aν , ν = 1, 2, . . . , β − 1 were found
previously. Such a procedure is possible not only with piecewise constant completion
of the unknown coefficient, but also in using other approximations of (8.147), for
instance, with the piecewise linear approximation (see Figure 8.20).

8.4.4 Difference problem

Consider problems that arise when the parametric optimization algorithm in the vari-
ant of local regularization is used in the approximate solution of the coefficient inverse
problem (8.132)–(8.135). Under the assumptions of (8.136), we solve the identifica-
tion problem for the coefficient k(u) in the class (8.147), (8.156).

We begin with constructing the difference analogue to the direct problem (8.132)–
(8.134). Over time, we introduce the simplest uniform grid

ω̄τ = ωτ ∪ {T } = {tn = nτ, n = 0, 1, . . . , N0, τ N0 = T }

with some step size τ > 0. To find the approximate solution by the time t = tn , we
use the notations yn(x) = y(x, tn).
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We complement the time-uniform grid with a grid non-uniform over u. With
(8.133), (8.136), we define

gn = g(tn), n = 0, 1, . . . , N0,

umin = g0 < g1 < · · · < gn−1 < gn < · · · < gN0 = umax.

Using these data, one can construct a cruder grid over u:

uβ = uβ−1 + N (β)

0 τ,

u0 = umin, u p = umax, β = 1, 2, . . . , p.
(8.157)

In this way, between the nodes uβ−1 and uβ we make N (β)

0 time steps.
We denote as ω̄ a uniform grid with a step size h over the interval �̄ = [0, l]:

ω̄ = {x | x = xi = ih, i = 0, 1, . . . , N , Nh = l}
Here, ω is the set of internal nodes, and ∂ω is the set of boundary nodes. We define
the difference operator

A(v)y = −(d(v)yx̄)x , x ∈ ω.

Then, we set the coefficient d(v) in the form

d(v) = k(0.5(v(x) + v(x − h))), d(v) = 0.5(k(v(x − h)) + k(v(x))).

At the internal grid nodes over space, we put in correspondence to equation (8.132)
the purely implicit difference scheme

yn+1 − yn

τ
+ A(yn+1)yn+1 = 0,

x ∈ ω, n = 0, 1, . . . , N0 − 1.

(8.158)

The approximation of the boundary conditions (8.133) yields

yn+1(0) = 0, yn+1(l) = gn+1, n = 0, 1, . . . , N0 − 1. (8.159)

To the initial condition (8.134), the following condition corresponds:

y0 = 0, x ∈ ω. (8.160)

The matter of construction and computational realization of difference schemes for
the approximate solution of direct initially boundary problems of type (8.132)–(8.134)
was considered in more detail in Chapter 4. Of our primary concern here is the fol-
lowing question: how, based on the difference scheme (8.158)–(8.160), computational
algorithms for numerical solution of the coefficient inverse problem (8.132)–(8.134)
can be constructed.



404 Chapter 8 Other problems

In using the piecewise constant approximation (8.147), (8.156), (8.157) of the un-
known coefficient k(u), we can use the step-by-step identification method. We assume
that some approximation for the nonlinear coefficient is available for 0 ≤ u < uβ−1.
The difference solution at the corresponding time, and at preceding times, is also
found. We seek the solution of the inverse problem for uβ−1 ≤ u < uβ .

We denote as L (β) the number of the time layer at which the solution uβ is achieved.
With (8.157), we obtain:

L (β) =
β∑

γ=1

N (γ )

0 , L(0) = 0, β = 1, 2, . . . , p.

In solving the inverse problem, the solution yl , 0 ≤ l ≤ L (β−1) is known; according to
(8.147), (8.156), (8.157)), also known is the sought coefficient ku in the same interval
(0 < u < uβ−1).

Next, we solve the difference problem

yn+1 − yn

τ
+ A(yn+1)yn+1 = 0, x ∈ ω,

n = L(β−1) + 1, L (β−1) + 2, . . . , L (β)

(8.161)

yn+1(0) = 0, yn+1(l) = gn+1,

n = L(β−1) + 1, L (β−1) + 2, . . . , L (β).
(8.162)

Here, only the coefficient aβ is unknown. To determine this coefficient, we invoke
additional available information (see (8.148), (8.149)).

We assume that the observation points zm, m = 1, 2, . . . , M are some internal
nodes of the calculation grid over space. As the criterion for closeness of the ap-
proximate solution at these points to measured values, in solution of problem (8.161),
(8.162), in line with (8.148), it seems reasonable to use the criterion

J (β) =
M∑

m=1

L(β)∑
n=L(β−1)+1

(yn(zm) − ϕδ
m(tn))2τ. (8.163)

In view of J (β) = J (β)(aβ), the parameter aβ can be found from the minimum of the
function J (β)(aβ). In computational realization, to find the minimum of (8.163), we
can use standard minimization methods for a function of one variable (the golden-
section method, the method of parabolas, etc.).

In the local regularization under consideration, matching with the input-data inac-
curacy can be achieved through a proper choice of the interval [uβ−1, uβ] (choice of
N (β)

0 = L (β) − L (β−1) in (8.161), (8.162). Using the discrepancy principle and inequal-
ity (8.149), we choose a maximum N (β)

0 for which

J (β) ≤ M N (β)

0 δ2. (8.164)
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In some critical cases, relation (8.164) can be violated at all N (β)

0 ; then, we have to
choose N (β)

0 = 1.

8.4.5 Program

The computational algorithm for the successive determination of the nonlinear coeffi-
cient k(u) is realized in the program PROBLEM18. Consider some specific features of
this program.

The time interval is divided into equal subintervals; the total number of these subin-
tervals is p = 2ν , ν = 0, 1, . . . , νmax (in the case of N0 = 2νmax). The refinement is
terminated on achievement of a certain level of discrepancy or on the condition that
subsequent densening of the grid does not decrease the discrepancy. To approximately
solve the nonlinear equation for the constant, we use the golden-section method.

Program PROBLEM18

C
C PROBLEM18 - COEFFICIENT INVERSE PROBLEM
C QUASI-LINEAR 1D PARABOLIC EQUATION
C

IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( DELTA = 0.02D0, N = 100, M = 128 )
DIMENSION X(N+1), Y(N+1), Y1(N+1), YT(N+1)
+ ,U(N+1,M+1), AKS(M+1), PHI(M+1), PHID(M+1)
+ ,BR(M+1), UL(M+1)
+ ,A(N+1), B(N+1), C(N+1), F(N+1)
+ ,ALPHA(N+2), BETA(N+2)

C
C PARAMETERS:
C
C XL, XR - LEFT AND RIGHT END POINTS OF THE GEGMENT;
C N + 1 - NUMBER OF NODAL POINTS OVER SPACE;
C M + 1 - NUMBER OF NODAL POINTS OVER TIME;
C XD - OBSERVATION POINT;
C PHI(M+1) - EXACT SOLUTION AT THE OBSERVATION POINT;
C PHID(M+1) - DISTURBED SOLUTION AT THE OBSERVATION POINT;
C

XL = 0.D0
XR = 1.D0
TMAX = 1.D0
XD = 0.6D0
EPSA = 1.D-4
EPSH = 1.D-4

C
OPEN (01, FILE=’RESULT.DAT’) ! FILE TO STORE THE CALCULATED DATA

C
C GRID
C

H = ( XR - XL ) / N
TAU = TMAX / M
DO I = 1, N+1

X(I) = XL + (I-1)*H
END DO

C
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C NODE CLOSEST TO THE OBSERVATION POINT XD
C

ND = (XD-XL) / H + 1
IF ( (XD-XL - (ND-1)*H).GT.0.5*H ) ND = ND + 1

C
C DIRECT PROBLEM
C
C BOUNDARY CONDITION
C

DO K = 1, M
T = K*TAU
BR(K) = AG(T)

END DO
C
C INITIAL CONDITION
C

T = 0.D0
DO I = 1, N+1

Y(I) = 0.D0
U(I,1) = Y(I)

END DO
C
C NEXT TIME LAYER
C

DO K = 1, M
T = K*TAU

C
C DIFFERENCE-SCHEME COEFFICIENTS
C PURELY IMPLICIT LINEARIZED SCHEME
C

DO I = 2, N
U1 = (Y(I) + Y(I-1)) / 2
U2 = (Y(I+1) + Y(I)) / 2
A(I) = AK(U1) / (H*H)
B(I) = AK(U2) / (H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
F(I) = Y(I) / TAU

END DO
C
C BOUNDARY CONDITION AT THE LEFT END POINT
C

B(1) = 0.D0
C(1) = 1.D0
F(1) = 0.D0

C
C BOUNDARY CONDITION AT THE RIGHT END POINT
C

A(N+1) = 0.D0
C(N+1) = 1.D0
F(N+1) = AG(T)

C
C SOLUTION OF THE PROBLEM ON THE NEXT TIME LAYER
C

CALL PROG ( N+1, A, C, B, F, ALPHA, BETA, Y )
DO I = 1, N + 1

U(I,K+1) = Y(I)
END DO

END DO
C
C SOLUTION AT THE OBSERVATION POINT
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C
DO K = 1, M+1

PHI(K) = U(ND,K)
PHID(K) = PHI(K)

END DO
C
C DISTURBING OF MEASURED VALUES
C

DO K = 2, M+1
PHID(K) = PHI(K) + 2.*DELTA*(RAND(0)-0.5)

END DO
C
C INVERSE PROBLEM
C
C CHOICE OF THE STEP IN THE PIECEWISE-CONSTANT APPROXIMATION
C

L = 1
100 CONTINUE

ML = M / L
DO LK = 1, L+1

T = (LK-1)*ML*TAU
UL(LK) = AG(T)

END DO
C
C INITIAL CONDITION
C

T = 0.D0
SD = 0.D0
DO I = 1, N+1

Y1(I) = 0.D0
END DO
DO LK = 1, L

C
C DETERMINATION OF THE UNKNOWN COEFFICIENT OVER THE SUB-INTERVAL
C ITERATION GOLDEN-SECTION METHOD
C

AS = 0.1D0
BS = 10.D0
R1 = (DSQRT(5.0D0)-1.D0)/2
R2 = R1**2
HS = BS - AS

C
C SOLUTION OF THE PROBLEM OVER THE SUB-INTERVAL
C AT A GIVEN COEFFICIENT
C

CALL STEPB ( N, ND, M, ML, LK, H, TAU, A, C, B, F, AL, BET
+ ,Y, Y1, AS, AKS, UL, PHID, YA )

CALL STEPB ( N, ND, M, ML, LK, H, TAU, A, C, B, F, AL, BET
+ ,Y, Y1, BS, AKS, UL, PHID, YB )

CS = AS + R2*HS
DS = AS + R1*HS
CALL STEPB ( N, ND, M, ML, LK, H, TAU, A, C, B, F, AL, BET

+ ,Y, Y1, CS, AKS, UL, PHID, YC )
CALL STEPB ( N, ND, M, ML, LK, H, TAU, A, C, B, F, AL, BET

+ ,Y, Y1, DS, AKS, UL, PHID, YD )
KS = 0

200 KS = KS + 1
IF (YC.LT.YD) THEN

BS = DS
YB = YD
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DS = CS
YD = YC
HS = BS - AS
CS = AS + R2*HS
CALL STEPB ( N, ND, M, ML, LK, H, TAU, A, C, B, F, AL, BET

+ ,Y, Y1, CS, AKS, UL, PHID, YC )
ELSE

AS = CS
YA = YC
CS = DS
YC = YD
HS = BS - AS
DS = AS + R1*HS
CALL STEPB ( N, ND, M, ML, LK, H, TAU, A, C, B, F, AL, BET

+ ,Y, Y1, DS, AKS, UL, PHID, YD )
END IF
IF (DABS(YB-YA).GT.EPSA.OR.HS.GT.EPSH) GO TO 200

C
C FOUND SOLUTION
C

PS = AS
YP = YA
IF (YB.LT.YA) THEN

PS = BS
YP = YB

ENDIF
DO I = 1, N+1

Y1(I) = Y(I)
END DO

C
C TOTAL INACCURACY
C

SD = SD + YP
END DO
WRITE(01,*) L, KS, SD

C
C EXIT FROM THE PROGRAM BY THE DISCREPANCY CRITERION
C

L = L*2
IF (L.EQ.2) THEN

SD0 = SD
IF (SD.GT.TMAX*DELTA**2 .AND. L .LE. M) GO TO 100

ELSE
IF (SD.LT.SD0) THEN

IF (SD.GT.TMAX*DELTA**2 .AND. L .LE. M) GO TO 100
END IF

END IF
C
C RECORDING OF THE SOLUTION IN A FILE
C

WRITE ( 01, * ) ((U(I,K),I=1,N+1), K=1,M+1)
WRITE ( 01, * ) (PHI(K), K=1,M+1)
WRITE ( 01, * ) (PHID(K), K=1,M+1)

WRITE ( 01, * ) (AKS(K), K=1,M+1)
CLOSE ( 01 )
STOP
END

C
SUBROUTINE PROG ( N, A, C, B, F, AL, BET, Y )
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IMPLICIT REAL*8 ( A-H, O-Z )
C
C SWEEP METHOD
C

DIMENSION A(N), C(N), B(N), F(N), Y(N), AL(N+1), BET(N+1)
C

AL(1) = B(1) / C(1)
BET(1) = F(1) / C(1)
DO I = 2, N

SS = C(I) - AL(I-1)*A(I)
AL(I) = B(I) / SS
BET(I) = ( F(I) + BET(I-1)*A(I) ) / SS

END DO
Y(N) = BET(N)
DO I = N-1, 1, -1

Y(I) = AL(I)*Y(I+1) + BET(I)
END DO
RETURN
END

C
DOUBLE PRECISION FUNCTION AK ( U )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C COEFFICIENT AT HIGHER DERIVATIVES
C

AK = 0.5D0 + U
C

RETURN
END

C
DOUBLE PRECISION FUNCTION AG ( T )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C BOUNDARY CONDITION AT THE RIGHT END POINT
C

AG = T
C

RETURN
END

C
SUBROUTINE STEPB ( N, ND, M, ML, LK, H, TAU, A, C, B, F, AL, BET
+ ,Y, Y1, AK, AKS, UL, PHI, FD )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C CALCULATION OF THE DISCREPANCY ON THE SUBINTERVAL
C AT A GIVEN CONSTANT COEFFICIENT
C

DIMENSION A(N+1), C(N+1), B(N+1), F(N+1), Y(N+1), Y1(N+1)
+ ,ALPHA(N+2), BETA(N+2), PHI(M+1), AKS(M+1), UL(M+1)

C
AKS(LK+1) = AK
FD = 0.D0
DO I = 1, N+1

Y(I) = Y1(I)
END DO
T = (LK-1)*ML*TAU
DO K = 1, ML

T = T + TAU
C
C DIFFERENCE-SCHEME COEFFICIENTS
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C PURELY IMPLICIT SCHEME
C

DO I = 2, N
U1 = (Y(I) + Y(I-1)) / 2
U2 = (Y(I+1) + Y(I)) / 2
A(I) = AFK(U1, LK+1, UL, AKS, M) / (H*H)
B(I) = AFK(U2, LK+1, UL, AKS, M) / (H*H)
C(I) = A(I) + B(I) + 1.D0 / TAU
F(I) = Y(I) / TAU

END DO
C
C BOUNDARY CONDITION AT THE LEFT END POINT
C

B(1) = 0.D0
C(1) = 1.D0
F(1) = 0.D0

C
C BOUNDARY CONDITION AT THE RIGHT END POINT
C

A(N+1) = 0.D0
C(N+1) = 1.D0
F(N+1) = AG(T)

C
C SOLUTION OF THE PROBLEM ON THE NEXT TIME LAYER
C

CALL PROG ( N+1, A, C, B, F, ALPHA, BETA, Y )
C
C DISCREPANCY AT THE OBSERVATION POINT
C

FD = FD + (Y(ND) - PHI((LK-1)*ML+K+1))**2*TAU
END DO
RETURN
END

C
DOUBLE PRECISION FUNCTION AFK ( U, L, UL, AL, M )
IMPLICIT REAL*8 ( A-H, O-Z )

C
DIMENSION UL(M+1), AL(M+1)

C
C PIECEWISE-CONSTANT COEFFICIENT
C

AFK = AL(2)
DO IL = 2, L

IF (U.LE.UL(IL) .AND. U.GT.UL(IL-1)) AFK = AL(IL)
END DO

C
RETURN
END

In the subroutine-function AK, the nonlinear coefficient for the direct problem is
specified; the data obtained by solving this program are used as input data for the
inverse problem. The subroutine-function AG calculates the boundary conditions at
the right boundary. The piecewise constant completion is effected in AFK.
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8.4.6 Computational experiments

For input-data setting, we solve the direct problem for l = 1, T = 1 on the uniform
grid with h = 0.01 and τ = 2−7. Here, the simplest linearized difference scheme is
used in which the nonlinear coefficient was taken from the previous time layer, i. e.,

yn+1 − yn

τ
+ A(yn)yn+1 = 0, x ∈ ω, n = 0, 1, . . . , N0 − 1.

Below, calculation data are given, obtained for the case in which the exact solution
was obtained for

k(u) = 0.5 + u,

so that the coefficient to be found exhibits three-fold variation in the calculation do-
main. The direct-problem solution is shown in Figure 8.22.

In solving the inverse problem, we have restricted ourselves to one observation point
and to the case in which

z1 = 0.3, M = 1, ϕ1(tn) = yn(z1), n = 1, 2, . . . , N0,

where yn(x) is the mesh solution of the direct problem. These data were perturbed
with a normally distributed function:

ϕδ
1(tn) = ϕ1(tn) + 2δ(σ (tn) − 1/2), n = 1, 2, . . . , N0.

The solution of the inverse problem obtained at the inaccuracy level defined by
δ = 0.02 is shown in Figure 8.23. Considering the fact that the boundary condition
was set in the form g(t) = t , in one and the same graph we have plotted the exact and
approximate input data for the inverse problem (the solution at the point x = z1 = 0.6
and the sought coefficient k(u)). At the chosen level of inaccuracy, for the coefficient
to be reconstructed it suffices to have two subintervals (p = 2 in (8.147), (8.156)).
The effect due to inaccuracies can be figured out considering Figures 8.24 and 8.25.
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Figure 8.22 Direct-problem solution

Figure 8.23 Inverse-problem solution obtained with δ = 0.02
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Figure 8.24 Inverse-problem solution obtained with δ = 0.04

Figure 8.25 Inverse-problem solution obtained with δ = 0.01
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Figure 8.26 Calculation domain

8.5 Coefficient inverse problem for elliptic equation

In this section, we consider a problem in which it is required to find the lowest coef-
ficient in the second-order elliptic equation from data given at the calculation-domain
boundary. We assume that the unknown coefficient is independent of one of the vari-
ables. With this simplest example, we illustrate the possibility to examine the solution
unicity for coefficient inverse problems. The computational algorithm is constructed
for a model problem in a rectangle.

8.5.1 Statement of the problem

The problem is considered in its simplest form, with the calculation domain being a
rectangle:

� = {x | x = (x1, x2), 0 < xα < lα, α = 1, 2}.
For individual segments of the boundary of �, we use the following settings (see
Figure 8.26):

∂� = �1 ∪ �2 ∪ �3 ∪ �4.

As usually, we start from the formulation of the direct problem. We assume that the
function u(x), x = (x1, x2) satisfies the equation

−�u + c(x2)u = 0, x ∈ �, (8.165)

where

�u ≡
2∑

α=1

∂2u
∂x2

α

.
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Equation (8.165) is supplemented with boundary conditions of the first kind:

u(x) = ϕ(x), x ∈ ∂�. (8.166)

In the direct problem (8.165), (8.166), the lowest coefficient is assumed to depend just
on x2.

In the inverse problem of interest, the coefficient c(x2) is unknown. This coefficient
is to be determined from some additional data. We consider the case in which the
additional data are obtained from measurements performed on the domain boundary
in the form

∂u
∂n

(x) = ψ(x), x ∈ ∂�, (8.167)

where n is the external normal to �.
Previously, we considered a linear inverse problem in which it was required to

determine the unknown right-hand side independent of one of the variables. The
posed inverse problem (8.165)–(8.167), in which it is required to find a function pair
{u(x), c(x2)}, is a more complex problem. The difficulties in the consideration of this
problem largely result from its nonlinearity.

8.5.2 Solution uniqueness for the inverse problem

We can speak of a certain overdetermination of the coefficient inverse problem under
consideration. In problem (8.165)–(8.167), identification of the unknown coefficient
c(x2) implies determination of a function of one variable over the interval [0, l1] from
two functions of the variable x2 (the function ψ(x) on the sides �2, �4) and from
two functions of the variable x1 (the function ψ(x) on the sides �1, �3). Hence, in
general it would be reasonable to pose the question about sufficient additional data for
determining the coefficient c(x2).

To examine solution uniqueness for the inverse problem (8.165)–(8.167), one can
follow the traditional approach that is normally used in the cases of direct nonlinear
boundary value mathematical physics problems and nonlinear inverse problems. Sup-
pose that there exist two solutions of the inverse problem (8.165)–(8.167); we denote
these solutions as {uβ(x), cβ(x2), β = 1, 2}, i. e.,

−�uβ + cβ(x2)uβ = 0, x ∈ �, (8.168)

uβ(x) = ϕ(x), x ∈ ∂�, (8.169)
∂uβ

∂n
(x) = ψ(x), x ∈ ∂�, β = 1, 2. (8.170)

For the differences

v(x) = u1(x) − u2(x), θ(x2) = c1(x2) − c2(x2),
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from (8.168)–(8.170) we obtain:

−�v + c1(x2)v + θ(x2)u2(x) = 0, x ∈ �, (8.171)

v(x) = 0, x ∈ ∂�, (8.172)
∂v

∂n
(x) = 0, x ∈ ∂�. (8.173)

The solution uniqueness for the inverse problem (8.165)–(8.167) will be proved if we
show that equalities (8.171)–(8.173) are only valid with v(x) = 0, θ(x2) = 0, x ∈ �.

Problem (8.171)–(8.173) is considered with given c1(x2) and u2(x). Here, we deal
with an inverse (but linear) problem in which it is required to determine the pair v(x),
θ(x2), the identification problem for the right-hand side. Let us formulate some suffi-
cient conditions that guarantee that v(x) = 0, θ(x2) = 0, x ∈ �. Apart from the usual
assumptions that the solution and the coefficient are smooth functions, we assume that
the solution u(x) in (8.165)–(8.167) is a constant-sign function, for instance,

u(x) > 0, x ∈ �.

This condition is guaranteed (maximum principle) by the assumption that

c(x2) ≥ 0, x ∈ �, ψ(x) > 0, x ∈ ∂�.

Under such constraints, from (8.171) we obtain the following composite equation:

∂

∂x1

( 1
u2

(−�v + c1(x2)v)
)

= 0, x ∈ �. (8.174)

It is required to prove that the solution of the boundary value problem (8.172)–(8.174)
is v(x) = 0. Then, from (8.171) it immediately follows (u2 > 0) that θ(x2) = 0 as
well.

We multiply equation (8.174) by some function η(x) such that

η(x) = 0, x ∈ ∂�, (8.175)

and integrate the resulting equation over the domain �. In view of (8.175), we obtain∫
�

w(−�v + c1(x2)v) dx = 0, (8.176)

where the following notation is used:

w(x) = 1
u2(x)

∂η(x)

∂x1
.

With regard to the homogeneous boundary conditions (8.172) and (8.173), from
(8.176) we obtain: ∫

�

(−�w + c1(x2)w)v dx = 0.
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This equality yields v(x) = 0, x ∈ � provided that we can choose η(x) so that

−�w + c1(x2)w = v(x), x ∈ � (8.177)

holds. For the calculation domain under consideration (see Figure 8.26), consider the
following boundary value problem for equation (8.177) with mixed boundary condi-
tions

w(x) = 0, x ∈ �1 ∪ �3, (8.178)

∂w

∂n
(x) = 0, x ∈ �2 ∪ �4. (8.179)

There is no doubt that the solution of the standard boundary value problem (8.177)–
(8.179) does exist. In more general problems, we can use the result about solution
existence for equation (8.177), in the case in which the boundary conditions are given
in the form

∂w

∂x1
(x) = 0, x ∈ ∂�;

here we have a boundary value problem for the second-order elliptic equation with
given angled derivatives on the boundary.

It only remains to identify the form of η(x). To this end, using the function w(x)

found from (8.177)–(8.179), we solve the boundary value problem

∂

∂x1

( 1
u2(x)

∂η(x)

∂x1

)
= ∂w

∂x1
(x), x ∈ �

with boundary conditions (8.175).

8.5.3 Difference inverse problem

Let us formulate the difference analogue of the coefficient inverse problem (8.165)–
(8.167). In �, we introduce a grid with step sizes hα, α = 1, 2 uniform along both
directions. First, we define the set of internal grid nodes

ω = {x | x = (x1, x2), xβ = iβhβ, iβ = 1, 2, . . . , Nβ−1, Nβhβ = lβ, β = 1, 2}

and let ∂ω be the set of boundary nodes. We designate as ∂ω∗ the set of near-boundary
nodes, i.e.,

∂ω∗ = {x | x ∈ ω, xβ = hβ, xβ = lβ − hβ, β = 1, 2}.

First, we approximate the direct problem (8.165), (8.166). For internal nodes, we
define the standard two-dimensional difference Laplace operator � on a five-point
mesh pattern:

�y = yx̄1x1 + yx̄2x2, x ∈ ω.
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We put in correspondence to the boundary value problem (8.165), (8.166) the differ-
ence Dirichlet problem

−�y + c(x2)y = 0, x ∈ ω, (8.180)

y(x) = ϕ(x), x ∈ ∂ω. (8.181)

In the inverse problem, the mesh function c(x2), x2 ∈ ω2 is unknown, but additional
conditions are given which correspond to (8.167). On the passage to the discrete prob-
lem, additional conditions can be put in correspondence with setting the mesh solution
at the nodes of ∂ω∗. The latter is the case in using the simplest approximation with
directed differences (with first-order approximation accuracy). A similar situation is
observed in the case in which second-order approximations of the boundary condition
(8.167) are used. As an illustration, consider approximations of boundary conditions
on �2.

For the near-boundary node we have

u(h1, x2) − u(0, x2)

h1
= ∂u

∂x1
(0, x2) + h1

2
∂2u
∂x2

1
(0, x2) + O(h2

1). (8.182)

With regard to the boundary conditions (8.166), (8.167), we arrive at the expression

y(h1, x2) = ϕ(h1, x2) − h1ψ(h1, x2).

The use of this expression corresponds to the approximation of boundary conditions
(8.167) of first order. The higher (second) approximation order is achieved for the
solution of the boundary value problem (8.165), (8.166). In this case, it follows from
(8.165) that

∂2u
∂x2

1
(0, x2) = �u(0, x2) − ∂2u

∂x2
2
(0, x2) = c(x2)ϕ(0, x2) − ∂2ϕ

∂x2
2
(0, x2).

With regard to (8.182), for the near-boundary nodes we can put

y(h1, x2) = ϕ(h1, x2) − h1ψ(h1, x2) + c(x2)ϕ(0, x2) − ϕx̄2x2(0, x2).

Yet, such approximations are not too much suitable for us in solving the inverse prob-
lem since, here, the value at the near-boundary node depends on the unknown (sought)
coefficient c(x2). That is why we will use the simplest first-kind approximations; in
this case, the additional conditions can be formulated in the form

y(x) = φ(x), x ∈ ∂ω∗. (8.183)

In the solution of applied problems the input data are normally given with some
inaccuracy. We assume that, compared to these inaccuracies, the approximation inac-
curacies can be disregarded with sufficiently fine calculation grids used. In the exam-
ple under consideration (8.165)–(8.167), we restrict ourselves to the case in which the



Section 8.5 Coefficient inverse problem for elliptic equation 419

largest inaccuracies are the measurement inaccuracies of the normal derivative at the
boundary. Hence, in approximating the solution of the inverse problem with input-data
inaccuracies, we can leave the boundary condition (8.181) unchanged, and instead of
(8.183), put

y(x) ≈ φδ(x), x ∈ ∂ω∗, (8.184)

where the parameter δ defines the inaccuracy level.

8.5.4 Iterative solution of the inverse problem

In the approximate solution of the inverse problem (8.180), (8.181), (8.184), we will
use gradient iteration methods. Here, the sought mesh function c(x2) is to be refined
at each iteration step using the criterion for minimization of the discrepancy functional
(the discrepancy here is the accuracy with which the condition (8.184) is fulfilled).

We define the discrepancy as

J (c) =
∑

x∈∂ω∗
(y(x) − φδ(x))2h(x), (8.185)

where

h(x) =
⎧⎨
⎩

h1, x2 = h2, l2 − h2, x1 �= h1, l1 − h1,

h2, x1 = h1, l1 − h1, x2 �= h2, l2 − h2,

(h1 + h2)/2, x1 = h1, l1 − h1, x2 = h2, l2 − h2.

We assume that the sought function c(x2) belongs to the space of mesh functions
L2(ω2), in which for the scalar product and norm we use the settings

(c, d) =
∑
x2∈ω

c(x2)d(x2)h2, ‖c‖ =
√

(c, c).

To derive an expression for the gradient of J (c), we assume that, to the increment δc,
some increment δ J of the functional (8.185) and some increment δy of the solution of
problem (8.180), (8.181) corresponds.

Accurate to terms of second-order smallness, from (8.180) and (8.181) we obtain:

−� δy + c(x2) δy + δc y = 0, x ∈ ω, (8.186)

δy(x) = 0, x ∈ ∂ω. (8.187)

For the discrepancy functional gradient, we immediately obtain:

δ J (c) = 2
∑

x∈∂ω∗
(y(x) − φδ(x)) δy h(x). (8.188)

The gradient of J ′(c) corresponds to the functional increment represented as

δ J (c) = (J ′(c), c).
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To rearrange the right-hand side of (8.188), we multiply the equation (8.186) by
some mesh function ξ(x) h1h2, x ∈ ω and sum up the obtained equation over all
nodes in ω: ∑

x∈ω

ξ(x) (−� δy + c(x2) δy + δc y)h1h2 = 0. (8.189)

We assume that
ξ(x) = 0, x ∈ ∂ω. (8.190)

Under such constraints, equation (8.189) yields:∑
x∈ω

δy (−�ξ + c(x2)ξ)h1h2 +
∑
x∈ω

δc yξh1h2 = 0. (8.191)

To derive the desired representation for J ′(c), we relate the first term in (8.191) with
the right-hand side of (8.188).

Let the function ξ(x) be defined as the solution of the equation

−�ξ + c(x2)ξ = −F(x), x ∈ ω. (8.192)

Here, the right-hand side F(x) is

F(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2(y(x) − φδ(x))/h2, x2 = h2, l2 − h2, x1 �= h1, l1 − h1,

2(y(x) − φδ(x))/h1, x1 = h1, l1 − h1, x2 �= h2, l2 − h2,

h1 + h2

h1h2
(y(x) − φδ(x)), x1 = h1, l1 − h1, x2 = h2, l2 − h2,

0, x ∈ ω, x �∈ ∂ω∗.

For this right-hand side, from (8.188), (8.191), and (8.192) we obtain:

δ J (c) =
∑
x∈ω

δc yξh1h2 =
∑

x2∈ω2

δc
( ∑

x1∈ω1

y ξh1

)
h2.

With this equality, for the functional gradient we have the representation

J ′(c) =
∑

x1∈ω1

y ξh1, x2 ∈ ω. (8.193)

To calculate the gradient, we have to solve the boundary value problem (8.180), (8.181)
for the ground state (the mesh function y(x)) and the boundary value problem (8.190),
(8.192) for the conjugate state (the mesh function ξ(x)).

In the case of the two-layer gradient iteration method the quantity ck(x2) (k is the
iteration number) is to be refined using the scheme

ck+1 − ck

sk+1
+ J ′(ck) = 0, x2 ∈ ω2, k = 0, 1, . . . . (8.194)

Here, it should be taken into account that the equation J ′(c) = 0, to be solved, is a
nonlinear equation. The iterative process (8.194) can be terminated by the discrepancy
criterion.
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8.5.5 Program

The gradient method described above was realized in its simplest version with constant
iteration parameter sk+1 (simple iteration method). In the perturbation procedure for
input data, a situation with perturbed boundary conditions of the second kind (8.167)
is modeled.

Program PROBLEM19

C
C PROBLEM19 - IDENTIFICATION OF THE LOWEST COEFFICIENT
C IN THE ELLIPTIC EQUATION OF SECOND ORDER
C TWO-DIMENSIONAL PROBLEM
C

IMPLICIT REAL*8 ( A-H, O-Z )
PARAMETER ( DELTA = 0.02D0, N1 = 51, N2 = 51 )
DIMENSION A(12*N1*N2), X1(N1), X2(N2), CK(N2), GR(N2)
+ ,YG1(N1), YG2(N2), YG3(N1), YG4(N2)
+ ,YD1(N1), YD2(N2), YD3(N1), YD4(N2)
+ ,YY1(N1), YY2(N2), YY3(N1), YY4(N2)
COMMON / SB5 / IDEFAULT(4)
COMMON / CONTROL / IREPT, NITER

C
C PARAMETERS:
C
C X1L, X2L - COORDINATES OF THE LEFT CORNER;
C X1R, X2R - COORDINATES OF THE RIGHT CORNER;
C N1, N2 - NUMBER OF NODES IN THE SPATIAL GRID;
C H1, H2 - SPATIAL STEP OF THE GRID;
C TAU - TIME STEP;
C DELTA - INPUT-DATA INACCURACY LEVEL;
C CK(N2) - COEFFICIENT TO BE RECONSTRUCTED;
C YG1(N1),
C YG2(N2),
C YG3(N1),
C YG4(N2) - MESH FUNCTION AT THE NEAR-BOUNDARY NODES;
C YD1(N1),
C YD2(N2),
C YD3(N1),
C YD4(N2) - DISTURBED MESH FUNCTION AT THE NEAR-BOUNDARY NODES;
C EPSR - RELATIVE ACCURACY FOR THE DIFFERENCE-PROBLEM SOLUTION;
C EPSA - ABSOLUTE ACCURACY FOR THE DIFFERENCE-PROBLEM SOLUTION;
C
C EQUIVALENCE ( A(1), A0 ),
C * ( A(N+1), A1 ),
C * ( A(2*N+1), A2 ),
C * ( A(9*N+1), F ),
C * ( A(10*N+1), U );
C * ( A(11*N+1), US )
C

X1L = 0.D0
X1R = 1.D0
X2L = 0.D0
X2R = 1.D0
EPSR = 1.D-6
EPSA = 1.D-9
SS = - 40.D0

C
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OPEN (01, FILE=’RESULT.DAT’) ! FILE TO STORE THE CALCULATED DATA
C
C GRID
C

H1 = (X1R-X1L) / (N1-1)
H2 = (X2R-X2L) / (N2-1)
DO I = 1, N1

X1(I) = X1L + (I-1)*H1
END DO
DO J = 1, N2

X2(J) = X2L + (J-1)*H2
END DO

C
N = N1*N2
DO I = 1, 12*N

A(I) = 0.D0
END DO

C
C DIRECT PROBLEM
C
C BOUNDARY CONDITIONS
C

CALL BNG (A(10*N+1), X1, X2, N1, N2)
C
C LOWEST COEFFICIENT
C

DO J = 1, N2
CK(J) = AC(X2(J))

END DO
C
C DIFFERENCE-SCHEME COEFFICIENT IN THE DIRECT PROBLEM
C

CALL FDS (A(1), A(N+1), A(2*N+1), CK, A(9*N+1), A(10*N+1),
+ H1, H2, N1, N2)

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), A(10*N+1), A(9*N+1), EPSR, EPSA)

C
C OBSERVATIONAL DATA
C

CALL BNGDER (A(10*N+1), H1, H2, N1, N2, YG1, YG2, YG3, YG4)
C
C DISTURBING OF MEASURED VALUES
C

DO I = 2, N1-1
H = H2
IF (I.EQ.2 .OR. I.EQ.N1-1) H = (H1+H2) / 2.D0
YD1(I) = YG1(I) + 2.*H*DELTA*(RAND(0)-0.5)
YD3(I) = YG3(I) + 2.*H*DELTA*(RAND(0)-0.5)

END DO
DO J = 2, N2-1

H = H1
IF (J.EQ.2 .OR. J.EQ.N2-1) H = (H1+H2) / 2.D0
YD2(J) = YG2(J) + 2.*H*DELTA*(RAND(0)-0.5)
YD4(J) = YG4(J) + 2.*H*DELTA*(RAND(0)-0.5)

END DO
C
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C INVERSE PROBLEM
C
C ITERATION METHOD
C

IT = 0
C
C INITIAL APPROXIMATION
C

DO J = 1, N2
CK(J) = 0.D0

END DO
C

100 IT = IT + 1
C
C GROUND STATE
C
C DIFFERENCE-SCHEME COEFFICIENTS IN THE DIRECT PROBLEM
C

CALL FDS (A(1), A(N+1), A(2*N+1), CK, A(9*N+1), A(10*N+1),
+ H1, H2, N1, N2)

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), A(10*N+1), A(9*N+1), EPSR, EPSA)

C
C SOLUTION AT THE OBSERVATION POINTS
C

CALL BNGDER (A(10*N+1), H1, H2, N1, N2, YY1, YY2, YY3, YY4)
C
C CONJUGATE STATE
C
C DIFFERENCE-SCHEME COEFFICIENTS
C

CALL FDS (A(1), A(N+1), A(2*N+1), CK, A(9*N+1), A(10*N+1),
+ H1, H2, N1, N2)

C
C RIGHT-HAND SIDE
C

CALL RHS (A(9*N+1), N1, N2, H1, H2, YD1, YD2, YD3, YD4,
+ YY1, YY2, YY3, YY4)

C
C SOLUTION OF THE DIFFERENCE PROBLEM
C

IDEFAULT(1) = 0
IREPT = 0
CALL SBAND5 (N, N1, A(1), A(11*N+1), A(9*N+1), EPSR, EPSA)

C
C SIMPLE-ITERATION METHOD
C
C FUNCTIONAL GRADIENT
C

CALL GRAD (A(10*N+1), A(11*N+1), H1, H2, N1, N2, GR)
C
C NEXT APPROXIMATION
C

DO J = 2, N2-1
CK(J) = CK(J) + SS*GR(J)

END DO
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C
C EXIT FROM THE ITERATION PROCEDURE BY THE DISCREPANCY CRITERION
C

SUM = 0.D0
SUMD = 0.D0
DO I = 3, N1-2

SUM = SUM + (YD1(I) - YY1(I))**2 * H1
SUM = SUM + (YD3(I) - YY3(I))**2 * H1

END DO
SUMD = SUMD + 2.D0*(N1-4)*H1*H2*DELTA**2
DO J = 3, N2-2

SUM = SUM + (YD2(J) - YY2(J))**2 * H2
SUM = SUM + (YD4(J) - YY4(J))**2 * H2

END DO
SUMD = SUMD + 2.D0*(N2-4)*H1*H2*DELTA**2
SUM = SUM + (YD1(2) - YY1(2))**2 * (H1+H2) / 2.D0
SUM = SUM + (YD4(2) - YY4(2))**2 * (H1+H2) / 2.D0
SUM = SUM + (YD3(2) - YY3(2))**2 * (H1+H2) / 2.D0
SUM = SUM + (YD3(N1) - YY3(N1))**2 * (H1+H2) / 2.D0
SUMD = SUMD + 2.D0*(H1+H2)*DELTA**2
IF ( SUM.GT.SUMD ) GO TO 100

C
C SOLUTION
C

WRITE ( 01, * ) (A(10*N+I), I=1,N)
WRITE ( 01, * ) (CK(J), J=1,N2)
CLOSE (01)
STOP
END

C
DOUBLE PRECISION FUNCTION AC ( X2 )
IMPLICIT REAL*8 ( A-H, O-Z )

C
C LOWEST COEFFICIENT IN THE ELLIPTIC EQUATION
C

AC = 10.D0*X2
C

RETURN
END

C
SUBROUTINE FDS (A0, A1, A2, CK, F, U, H1, H2, N1, N2)

C
C GENERATION OF THE COEFFICIENT ARRAY FOR THE DIFFERENCE SCHEME
C FOR THE ELLIPTIC EQUATION
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION A0(N1,N2), A1(N1,N2), A2(N1,N2)
+ ,CK(N2), F(N1,N2), U(N1,N2)

C
DO J = 2, N2-1

DO I = 2, N1-1
A1(I-1,J) = 1.D0/(H1*H1)
A1(I,J) = 1.D0/(H1*H1)
A2(I,J-1) = 1.D0/(H2*H2)
A2(I,J) = 1.D0/(H2*H2)
A0(I,J) = A1(I,J) + A1(I-1,J) + A2(I,J) + A2(I,J-1) + CK(J)
F(I,J) = 0.D0

END DO
END DO

C
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C FIRST-KIND HOMOGENEOUS BOUNDARY CONDITIONS
C

DO J = 2, N2-1
A0(1,J) = 1.D0
A1(1,J) = 0.D0
A2(1,J) = 0.D0
F(1,J) = U(1,J)
F(2,J) = F(2,J) + U(1,J) / (H1*H1)

END DO
C

DO J = 2, N2-1
A0(N1,J) = 1.D0
A1(N1-1,J) = 0.D0
A1(N1,J) = 0.D0
A2(N1,J) = 0.D0
F(N1,J) = U(N1,J)
F(N1-1,J) = F(N1-1,J) + U(N1,J) / (H1*H1)

END DO
C

DO I = 2, N1-1
A0(I,1) = 1.D0
A1(I,1) = 0.D0
A2(I,1) = 0.D0
F(I,1) = U(I,1)
F(I,2) = F(I,2) + U(I,1) / (H2*H2)

END DO
C

DO I = 2, N1-1
A0(I,N2) = 1.D0
A1(I,N2) = 0.D0
A2(I,N2) = 0.D0
A2(I,N2-1) = 0.D0
F(I,N2) = U(I,N2)
F(I,N2-1) = F(I,N2-1) + U(I,N2) / (H2*H2)

END DO
C

A0(1,1) = 1.D0
A1(1,1) = 0.D0
A2(1,1) = 0.D0
F(1,1) = U(1,1)

C
A0(N1,1) = 1.D0
A2(N1,1) = 0.D0
F(N1,1) = U(N1,1)

C
A0(1,N2) = 1.D0
A1(1,N2) = 0.D0
F(1,N2) = U(1,N2)

C
A0(N1,N2) = 1.D0

F(N1,N2) = U(N1,N2)
C

RETURN
END

C
SUBROUTINE RHS (F, N1, N2, H1, H2, YD1, YD2, YD3, YD4,
+ YY1, YY2, YY3, YY4)

C
C RIGHT-HAND SIDE IN THE EQUATION FOR THE CONGUGATE STATE
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C
IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION F(N1,N2), YD1(N1), YD2(N2), YD3(N1), YD4(N2)
+ ,YY1(N1), YY2(N2), YY3(N1), YY4(N2)

C
DO I = 1, N1

DO J = 1,N2
F(I,J) = 0.D0

END DO
END DO
DO I = 3, N1-2

F(I,2) = 2.D0*(YD1(I) - YY1(I)) / H2
F(I,N1-1) = 2.D0*(YD3(I) - YY3(I)) / H2

END DO
DO J = 3, N2-2

F(2,J) = 2.D0*(YD2(J) - YY2(J)) / H1
F(N2-1,J) = 2.D0*(YD4(J) - YY4(J)) / H1

END DO
F(2,2) = (H1+H2)* (YD1(2) - YY1(2)) / (H1*H2)
F(2,N2-1) = (H1+H2)* (YD4(2) - YY4(2)) / (H1*H2)
F(N1-1,2) = (H1+H2)* (YD3(2) - YY3(2)) / (H1*H2)
F(N1-1,N2-1) = (H1+H2)* (YD3(N1) - YY3(N1)) / (H1*H2)

C
RETURN
END

C
SUBROUTINE BNG (U, X1, X2, N1, N2)

C
C FIRST-KIND BOUNDARY CONDITION
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION U(N1,N2), X1(N1), X2(N2)
DO I = 1, N1

DO J = 1, N2
U(I,J) = 1.D0 + X1(I)

END DO
END DO

C
RETURN
END

C
SUBROUTINE BNGDER (U, H1, H2, N1, N2, YD1, YD2, YD3, YD4)

C
C MESH FUNCTION AT THE NEAR-BOUNDARY NODES
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION U(N1,N2), YD1(N1), YD2(N2), YD3(N1), YD4(N2)
DO I = 2, N1-1

YD1(I) = U(I,2)
YD3(I) = U(I,N2-1)

END DO
DO J = 2, N2-1

YD2(J) = U(2,J)
YD4(J) = U(N1-1,J)

END DO
C

RETURN
END

C
SUBROUTINE GRAD (U, XI, H1, H2, N1, N2, GR)
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C
C MESH FUNCTION AT THE NEAR-BOUNDARY NODES
C

IMPLICIT REAL*8 ( A-H, O-Z )
DIMENSION U(N1,N2), XI(N1,N2), GR(N2)
DO J = 2, N2-1

SUM = 0.D0
DO I = 2, N1-1

SUM = SUM + U(I,J)*XI(I,J)*H1
END DO
GR(J) = SUM

END DO
C

RETURN
END

In solving the direct problem, the coefficient c(x2) is set in the subroutine-function AC.
In the subroutine BNG, the boundary condition (8.166) is set. The coefficient array for
the difference equation is generated in the subroutine FDS. The difference problem for
the conjugate state (8.190), (8.192) differs from the difference problem for the ground
state (8.180), (8.181) in the right-hand side and in the boundary conditions only (see
the subroutine RHS).

8.5.6 Computational experiments

In solving the problem on identification of the lower coefficient, the input data were
taken from the solution of the direct problem (8.165), (8.166) in the unit square �

(l1 = l2 = 1) with
c(x2) = 10x2, ϕ(x) = 1 + x1.

The problem was solved on the uniform grid with h1 = h2 = 0.02. Difference-
solution contour lines spaced 0.05 apart are shown in Figure 8.27.

From the approximate solution of the direct problem, the values at the near-
boundary nodes of the calculation grid are extracted; in this way, a condition of type
(8.183) is being set. These input data for the inverse problem are perturbed with some
random function. Conditions are modeled in which an exact first-kind boundary con-
dition (see (8.166)) is set, whereas the additional, second-kind boundary conditions
(see (8.167)) are set with some inaccuracy. In these conditions, for instance, at the
near-boundary nodes closest to the boundary �2 we have:

y(h1, x2) = φδ((h1, x2)) = φ((h1, x2)) + 2h1δ(σ (h1, x2) − 1/2),

where
φ((h1, x2)) = ϕ(h1, x2) − h1ψ(h1, x2),

and σ(h1, x2) is a random function.
The data obtained in the reconstruction of the coefficient with δ = 0.02 are shown

in Figure 8.28. The solution of the direct problem obtained with this value of the
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coefficient is shown in Figure 8.29. The effect due to the inaccuracy level can be
figured out considering Figures 8.30 and 8.31 (twice decreased and twice increased
inaccuracy, respectively).

Figure 8.27 Solution of the direct problem

Figure 8.28 Reconstruction of the coefficient with δ = 0.02
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Figure 8.29 Contour lines for the inverse-problem solution obtained with δ = 0.02

Figure 8.30 Inverse-problem solution obtained with δ = 0.01
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Figure 8.31 Inverse-problem solution obtained with δ = 0.04

8.6 Exercises

Exercise 8.1 Consider the matter of using the quasi-inversion method in continuation
over the spatial variable in solving the boundary value inverse problem in the rectangle

� = {x | x = (x1, x2), 0 < xα < lα, α = 1, 2}
for the two-dimensional parabolic equation

∂u
∂t

−
2∑

β=1

∂2u
∂x2

β

= 0, x ∈ �, 0 < t < T,

u(0, x2, t) = ϕ(x2, t),
∂u
∂x1

(0, x2, t) = 0,

u(x1, 0, t) = 0, u(x1, l2, t) = 0, 0 < t < T,

u(x, t) = 0, x ∈ �.

Exercise 8.2 Examine the convergence of the difference scheme (8.43) in the approx-
imate solution of the Cauchy problem (8.12), (8.13), (8.25).

Exercise 8.3 Based on the program PROBLEM15, write a program that realizes the
quasi-inversion method in the variant in which the equation

∂2vα

∂x2
− ∂vα

∂t
+ α

∂2vα

∂t2
= 0, 0 < x < l, 0 < t < T

is to be solved. Perform a comparative analysis of the variants of the quasi-inversion
method as applied to the approximate solution of the model problems.
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Exercise 8.4 In the Tikhonov regularization method as applied to approximate solu-
tion of the boundary value inverse problem for one-dimensional parabolic equation, to
be minimized is the functional

Jα(v) =
∫ T

0
(u(0, t) − ϕδ(t))2 dt + α

∫ T

0
v2(t) dt

with the constraints

∂u
∂t

= ∂

∂x

(
k(x)

∂u
∂x

)
, 0 < x < l, 0 < t ≤ T,

k(x)
∂u
∂x

(0, t) = 0, 0 < t ≤ T,

u(l, t) = v(t), 0 < t ≤ T,

u(x, 0) = 0, 0 ≤ x ≤ l.

Obtain the optimality conditions for this optimal control problem (Euler equation).

Exercise 8.5 In the uniform norm, examine stability of the difference scheme (8.79)–
(8.82) as applied for the solution of the problem with a non-local boundary condition.

Exercise 8.6 In the program PROBLEM16, provide a scheme for mesh smoothing of
input data for obtaining a smooth solution of the inverse problem. Perform numerical
experiments showing how the smoothing parameter affects the approximate-solution
accuracy in model inverse problems.

Exercise 8.7 Construct a gradient iteration method for the approximate solution of the
boundary value inverse problem

∂u
∂t

+ b(x)
∂u
∂x

= ∂

∂x

(
k(x)

∂u
∂x

)
, 0 < x < l, 0 < t ≤ T, (8.195)

k(x)
∂u
∂x

(0, t) = 0, 0 < t ≤ T, (8.196)

u(0, t) = ϕ(t), 0 < t ≤ T, (8.197)

u(x, 0) = 0, 0 ≤ x ≤ l, (8.198)

by refining the boundary condition (function v(t)) on the right boundary:

u(l, t) = v(t), 0 < t ≤ T .

Exercise 8.8 Construct an additive difference scheme (splitting scheme) over spatial
variables for the realization of the method with non-locally perturbed boundary condi-
tions in solving the boundary value inverse problem in the rectangle �:

∂u
∂t

−
2∑

β=1

∂

∂xβ

(
k(x)

∂u
∂xβ

)
= 0, x ∈ �, 0 < t < T,
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∂u
∂x1

(0, x2, t) = 0, u(0, x2, t) + αu(l1, x2, t) = ϕ(x2, t),

u(x1, 0, t) = 0, u(x1, l2, t) = 0, 0 < t < T,

u(x, t) = 0, x ∈ �.

Exercise 8.9 The program PROBLEM17 implements an algorithm for iterative refine-
ment of a second-kind boundary condition. Modify this program to realize an algo-
rithm for iterative refinement of the third-kind boundary condition

∂u
∂n

(x, t) + σu(x, t) = μ(x1, t), x ∈ γ.

Perform computational experiments to investigate the effect due to the numerical pa-
rameter σ ≥ 0.

Exercise 8.10 Suppose that in the problem

∂u
∂t

− ∂

∂x

(
k(x, t)

∂u
∂x

)
= 0, 0 < x < l, 0 < t ≤ T,

u(0, t) = 0, u(l, t) = g(t), 0 < t ≤ T,

u(x, 0) = 0, 0 ≤ x ≤ l

the coefficient k(x, t) is a piecewise constant function, but the position of the interface
between the medium is unknown. In the representation

k(x, t) =
{

k1, 0 < x < γ (t),
k2, γ (t) < x < l

the constants kβ , β = 1, 2 are given, and the function γ (t) is to be determined from
additional observations of the solution performed at the internal points zm ∈ �, m =
1, 2, . . . , M :

u(zm, t) ≈ ϕm(t), 0 < t ≤ T, m = 1, 2, . . . , M.

Examine the possibility of constructing gradient iterative methods for the approximate
solution of this coefficient inverse problem.

Exercise 8.11 Examine the possibility of successive identification (local regulariza-
tion) of the nonlinear coefficient k(u) in the approximate solution of the inverse prob-
lem (8.132)–(8.136) using the parametric identification (8.147) in the class of piece-
wise linear functions.

Exercise 8.12 Modify the program PROBLEM18 using the gradient iterative method
for determining the piecewise constant coefficient k(u) instead of the golden-section
method applied to minimize the discrepancy functional on an individual subinterval.
Compare the computational efficiencies of these approaches as exemplified by the so-
lutions of model problems.
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Exercise 8.13 Consider the matter of solution unicity for the coefficient inverse prob-
lem on finding the function pair {u(x), k(x2)} from the conditions

2∑
β=1

∂

∂xβ

(
k(x2)

∂u
∂xβ

)
= 0, x ∈ �,

u(x) = ϕ(x), x ∈ ∂�,

∂u
∂n

(x) = ψ(x), x ∈ ∂�.

Exercise 8.14 Consider on the difference level the coefficient inverse problem formu-
lated in the previous exercise. Obtain the gradient of the discrepancy functional under
the assumption that the first-kind boundary conditions are given exactly and that the
second-kind boundary conditions are given approximately.

Exercise 8.15 Using the program PROBLEM19, perform numerical experiments on
the determination of the lowest coefficient c(x2) in equation (8.165) with additional
information available not on the whole boundary ∂�, but only on some individual
segments of the boundary, namely, on the sides �β , β = 1, 2, 3, 4.
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algorithm
for solving evolutionary problems

global, 176
local, 176

Thomas
for five-diagonal matrix, 165

B

boundary conditions
first kind, 2
third kind, 2

C

canonical form
three-layer iteration method, 65
two-layer iteration method, 61

choice of regularization parameter
based on the difference between

the exact and approximate solu-
tion, 136

optimal, 135
quasi-optimal, 137

coefficient stability, 7

D

difference derivative
central, 21
left, 21
right, 21

difference scheme
ρ-stability, 96
stability, 95

with respect to initial data, 95
two-layer, 93
conservative, 25
monotone, 37
stability

with respect to right-hand side,
96

three-layer, 93
canonical form, 102

two-layer

canonical form, 95
weighted, 93

direct sum of spaces, 104
domain

irregular, 52
regular, 52

E

equation
second-order elliptic, 1
second-order hyperbolic, 3
second-order ordinary differential,

2
second-order parabolic, 2
convection-diffusion, 35

with dominating convection, 36
with dominating diffusion, 36

Poisson, 1

F

Friedrichs inequality
difference, 28

multi-dimensional, 55
function

trial, 24
verifying, 24

functional
stabilizing, 128
discrepancy, 128
smoothing, 128

G

general discrepancy principle, 161
Green difference formula

first, 28
second, 28

grid
structured, 52
uniform, 20
unstructured, 52

Gronwall lemma
difference, 96
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I

inequality
Friedrichs, 16

L

lemma
Gronwall, 6

M

method
finite element, 23
iteration

variation, 64
balance, 25
decomposition, 54
finite-volume, 25
Gauss, 34
generalized inverse, 243
integro-interpolation, 25
iteration, 60

steepest descend, 64
Chebyshev, 63
conjugate gradient, 65
Jacobi, 66
minimum correction, 64
simple iteration, 62
stationary, 62
three-layer, 61
two-layer, 61

of fictitious domains, 53
regularization

Tikhonov, 128
simplified regularization, 132
sweep, 32

for five-diagonal matrix, 165

O

operator
factorized, 67
regularizing, 129
transition, 95

P

Peclet number, 35
mesh, 38

principle
maximum, 8

difference, 37

for parabolic equation, 17
problem

conditionally well-posed, 11
direct, 13
ill-posed, 10
inverse, 13

boundary value, 15
coefficient, 14
evolutionary, 16
retrospective, 16

well-posed, 4

R

reconditioner, 66
regularization parameter, 128

S

stability
with respect to initial data, 7
with respect to the right-hand side,

7

T

Thomas algorithm, 32
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