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Preface to the English edition

In the relatively brief time that has passed since the appearance of this book in
Russian. a range of new results have been obtained in the theory of strongly non-
stationary evolution equations, the main problems of this arca huve been more
clearly delineated, specialist monographs and a large number of research papers
were published. and the sphere of applications hus expunded. It turns out, that as far
as nonlinear heat equations with a source term are concerned. the present authors
have, on the whole, correctly indicated the main directions of development of the
theory of finite time blow-up processes in nonlinear media. We were gratified to
see that the subject matter of the book had lost none of its topicality, in fact, its
implications have widened, Therefore we thought it right to confine ourselyes to
relatively insignificant additions and corrections in the body of the work.

In preparing the English edition we have included additional material, pro-
vided an updated list of references und reworked the Comments sections wherever
necessary.

It is well known that most phenomena were discovered by analyzing simple
articular solutions of the equations and systemis under consideration. This also
applies to the theory of finite time blow-up. We included in the introductory Ch. |
and II, and in Ch. IV, new examples of unusual special solutions, which illustrate
unexpected properties of unbounded solutions and pose open problems concerning
asymptotic behaviour. Some of these solutions are not self-similar (or mvariant
with respect to a group of transformations). Starting from one such solution and
using the theory of intersection comparison of unbounded solutions having the
same existence time, we were able to obtain new optimal estimates of evolution
of fairly arbitrary solutions. This required changing the manner of presentation of
the main comparison results and some subsequent material in Ch. IV,

We hope that this book will be ol interest not only to specialists in the area
of nonlinear equations of mathematical physics, but to everyone interested in the
ideas and concepts of general rules of evolution of nonlinear systems. An impor-
tant clement of evolution of such systems is finite time blow-up behaviour, which
represents a kind of stable intermediate asymptotics of the evolution. Without
studying finite time blow-up, the picture of the nonlinear world would be incom-
plete. Of course, the degree to which a reader manages to extract such a picture
from this somewhat specialized book, is entirely a matter for the authors’ con-
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science; in writing this book they set themselves originally a much more limited
goal: to present the mathematical basis of the theory of finite time blow-up in
nonlinear heat cquations.

The authors are grateful to the translator of the book, Dr. M. Grinfeld, who
made a number of suggestions that led to improvements in the presentation of the
material.

The authors would like to express their thanks to Professor J. L. Vazquez for
numerous fruitful discussions in the course of preparation of the English edition.

Alexander A. Samarskii, Victor A. Galaktionov,
Sergei P. Kurdyumov, Alexander P. Mikhailov
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Introduction

Second order quasilinear parabolic equations and systems of parabolic quasilinear
equations form the basis of mathematical models of diverse phenomena and pro-
cesses in mechanics, physics, technology, biophysics, biology, ecology, and many
other areas. For example. under certain conditions, the quasilinear heat equation
describes processes of electron and ion heat conduction in plasma, adiabatic filtra-
tion of gases and liquids in porous media, diffusion of neutrons and alpha-particles:
it arises in mathematical modelling of processes of chemical kinetics, of various
biochemical reactions, of processes of growth and migration of populations, etc.

Such ubiquitous occurrence of quasilinear parabolic equations is to be explained,
first of all, by the fact that they are derived from fundamental conservation laws (of
energy, mass. particle numbers. etc). Therefore it could happen that two physical
processes having at first sight nothing in common (for example, heat conduction
in semiconductors and propagation of a magnetic field in a medium with finite
conductivity). arc described by the same nonlinear diffusion cquation, differing
only by values of a parameter.

In the general case the differences among quasilinear parabolic equations that
form the basis of mathematical models of various phenomena lie in the character
of the dependence of coefficients of the equation (thermal conductivity. diffusivity,
strength of body heating sources and sinks) on the quantities that define the state
of the medium, such as temperature, density, magnetic field, ete.

It is doubtful that one could list all the main results obtained in the theory
of nonlinear parabolic equations. let us remark only that for broad classes of
equations the fundamental questions of solvability and uniqueness of solutions
of various boundary value problems have been solved, and that differentiability
properties of the solutions have been studied in detail. General results of the
theory make it possible to study from these viewpoints whole classes of equations
of « particular 1ype.

There have also been notable successes in qualitative, or constructive, studies
ol quasilinear parabolic equations, concerned with the spatio-temporal structure of
solutions (which is particularly important in practical applications). Research of
this kind was pioneered by Soviet mathematicians and mechanicists. They studied
properties of a large number of self-similar (invariant) solutions of various nonlin-
car parabolic cquations used to describe important physical processes in nonlinear
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dissipative continua, Asymptotic stability of many of these solutions means that
these particular solutions can be used to describe properties of a wide variety of so-
lutions to nonlineur boundary value problems. This demonstrates the possibility of
a “classification™ of properties of families of solutions using a collection of stable
particular solutions: this classification can, to a degree, serve as a “superposition
principle” for nonlinear problems. Studics of this sort engendered a whole direc-
tion in the theory of nonlinear evolution equations, and this led to the creation of
the qualitative (constructive) theory of nonlinear parabolic problems'. It turns out
that, from the point of view of the constructive approach, each nonlinear parabolic
problem has its own individuality and in general cannot he solved by a unified ap-
proach, As a rule, for such an analysis of certain (even very particular) properties
of solutions, a whole spectrum of methods of qualitative study is required. This
fact underlies the importance of the information contained even in the simplest
model parabolic preblems, which allow ug to single out the main directions in the
development of the canstructive theory.

The main problens arising in the study of complicated real physical processes
are related, primarily. to the nonlinearity of the equations that form the base of
the mathematical model. The first consequence of nonlincarity is the absence of a
superposition principle, which applies to linear homogeneous problems. This leads
to an inexhaustible set of possible directions of evolution of a dissipative process,
and also determines the appearance in a continuous medium of discrete spatio-
temporal scules. These characterize the properties ol the nonlinear medium, which
arc independent of external Tactors. Nonlinear dissipative media can exhibit a
certain internal orderliness. characterized by spontancous appearance in the medium
of complex dissipative structures, In the course of evolution. the process of self-
organization takes place,

These properties are shared by even the simplest nonlinear parabolic equations
and systems thereof, so that a number of fundamental problems arise in the course
of their constructive study. The principles ol evolution and the spatio-temporal
“architecture™ of dissipative structures are best studied in detail using simple (and
yet insightful) model equations obtained from complex mathematical models by
singling out the mechanisms responsible for the phenomena being considered.

It is important to stress that the development of nonlinear differential equations
of mathematical physics is tnconceivable without the use of methods of mathe-
matical modelling on computers and computational experimentation. It is always
useful to verify numerically the conclusions and results of constructive theoretical
investigation, In fact, this is an intrinsic requirement of constructive theory: this
applies in particular to results directly related to applications,

"Clearly. such a subdivision of the theory ino general and constructive parts is arbiirary.
The two directions of study are closely imerlinked.
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A well designed computational experiment (there are many cxamples of this)
allows us not only to check the validity and sharpness of theoretical estimates,
but also to uncover subtle effects and principles. which serve then to define new
directions in the development of the theory. It is our opinion, that the level of
understanding of physical processes, phenomena, and even of the properties of
solutions of an abstract evolutionary problem. achieved through numerical experi-
ments cannot be matched by a purely theoretical analysis,

A special place in the theory of nonlincar equations is occupied by the study of
unbounded solutions, a phenomenon known also as blow-up behaviour (physical
terminology). Nonlinear evolution problems that admit unbounded solutions are
not solvable globally (in time): solutions grow without bound in finite time inter-
vals. For a long time they were considered in the theory as exotic examples of
a sort, good possibly only for establishing the degree of optimality of conditions
for global solvability., which was taken to be a natural “physical™ requirement.
Nonetheless, we remark that the first successful attempts to derive unboundedness
conditions for solutions of nonlinear parabolic equations were undertaken more
than 30 years ago. The fact that such “singular™ (in time) solutions have a phys-
ical meaning was known even earlier: these are problems of thermal runaway.,
processes of cumulation of shock waves, and so on,

A new impetus to the development of the theory of unbounded solutions was
given by the ability to apply them in various contexts. for example, in self-focusing
of light beamis in nonlinear media, non-stationary structures in magnetohydrody-
namics (the T-layer). shockless compression in problems of gas dynamics, The
number of publications in which unbounded solutions are considered has risen
sharply in the last decade,

It has to be said that in the mathematical study of unbounded solutions of
nonlinear evolution problems, a substantial preference is given to questions of
general theory: constructive studies in this area are not sufficiently well developed.
This situation can be explained, on the one hand, by the fact that here traditional
questions of general theory are very far from bheing answered completely, while,
on the other hand, it is possible that a constructive description of unbounded
solutions requires fundamentally new approaches, and an actual reappraisal of the
theory, The important point here. in our understanding. is that so far there is
no unified view of what constitutes the main questions in constructive study of
blow-up phenomiena, and the community of researchers in nonlinear differential
equations does not know what to expect of unbounded solutions, in either theory or
applications (that 1s. what properties of non-stationary dissipative processes these
solutionsg describe).

These properties are very interesting: in some sense, they are paradoxical, if
considered from the point of view of the usual interpretation of non-stationary
dissipative processes.
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In this book we present some mathematical aspects of the theory of blow-
up phenomiena in nonlinear continua, The principal models used to analyze the
distinguishing properties of blow-up phenomena, are quasilinear heat equations and
certain systems of quasilinear equations,

This book 18 based on the results of investigations carried out in the M, V.
Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences
during the last 15 or so years, In this period, a number of extraordinary propertics
of unbounded solutions of m:ny nonlinear boundary problems were discovered and
studied. Using numerical experimentation, the spatio-temporal structure of blow-up
phenomena was studied in detail: the common properties of their manifestations
in various dissipative media were revealed.  This series of studies defined the
main range of questions and the direction of development of the theory of blow-
up phenomena, indicated the main requirements for theoretical methods of study
of unbounded solutions, and, finally, made it possible to determine the simplest
nonlinear models of heat conduction and combustion, which exhibit the universal
properties of blow-up phenomena,

The present book is devoted to the study of such model problems, but we em-
phasize again that most general properties are shared by unbounded solutions of
nonlinear equations of different types. This holds, in particular, for the localization
effect in blow-up phenomena in nonlinear continua: unbounded growth of temper-
ature, for example, occurs only in a finite domain, and, despite heat conduction, the
heat concentrated in the localization domain does not diffuse into the surrounding
cold region throughout the whole period of the process.

The theory of blow-up phenomena in parabolic problems is by no means ex-
hausted by the range of questions reflected in this book. It will not be un exag-
geration to say that studies of blow-up phenomena in dissipative media made it
possible to formulate a number of fundamentally new questions and problems in
the theory of nonlinear partial differential equations, Many interesting results and
conclusions, which do not have as vet a sufficient mathematical justification, have
been left out of the present book.

One of the main ideas in the theory of dissipative structures and the theory of
nonlinear evolution equations is the interpretation of the so-called eigenfunctions
(e.f.) of the nonlinear dissipative medium as universal characteristics of processes
that can develop in the medium in a stable fashion. The stady of the architecture
of the whole collection of e.f. of a nonlinear medium and, at the same time, of
conditions of their resonant excitation, makes it possible to “control™ nonlinear
dissipative processes by a minimal input of cnergy.

Development of blow-up regimes is accompanied by the appearance in the
medium of complex, as a rule discrete, collections of e.f, with diverse spatio-tem-
poral structure. An intrinsic reason for such increase in the complexity of organi-
zation of a nonlinear medium is the localization of dissipative processes.
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The problem of studying e.f. of a nonlincar dissipative medium, which is stated
in a natural way in the framework of the differential equations of the corresponding
mathematical model. is closely related to the fundamental problem of establishing
the laws of thermodynamical evolution of non-equilibrium open systems.

Related questions are being intensively studied in the framework of synergetics,
In open thermodynamical systems there are sources and sinks of energy, which,
together with the mechanisms of dissipation, determine its evolution, which, in
general, takes the system to a complex stable state different from the uniform
equilibrium one. The latter is characteristic of closed isolated systems (the second
law of thermodynamics).

The range of questions related to the analysis of fine structure of nonlinear
dissipative media, represents the next, higher (and. it must be said, harder to
investigate) level of the theory of blow-up phenomena.

The first two chapters of the book are introductory in nature, In Chapter [
we present the necessary elementary material from the theory of second order
quasilinear parabolic equations. Chapter 11, the main part of which consists of
results of analyses of a large number of conerete problems, should also be regarded
as an introduction to the methods and approaches, which are systematically utilized
in the sequel. These chapters contain the concepts necessary for a discussion of
unbounded solutions and effects of localization of heat and combustion processes.

Chapters 11, 1V ure devoted to the study of localization of blow-up in two
specific problems for parabolic equations with power law nonlincarities, In subse-
quent chapters we develop methods of attacking unbounded solutions of quasilinear
parabolic equations of general form: relevant applications are presented. At the end
of each chapter we have placed comments containing bibliographical relerences
and additional information on related results. There we also occasionally give lists
of , in our opinion, the most interesting and important questions, which are as yet
unsolved, and for the solution of which, furthermore, no approuch has as yet been
developed.

Chapter 111 deals, in the main, with the study of the boundary value problem
in (0. T) x R, for the heat equation with a power law nonlincarity 1, = (1 u,),.
o = const > 0, with a fixed blow-up behaviour on the boundary x = 0: u(1,0) =
(), (1) —ooast — T < ox.

For o > 0 we mainly deal with the power law boundary condition, u (1) =
(T — )", where n = const < (), In this class there exists the “limiting” localized S

blow-up regime, u, (1) = (T — 1) """ heat localization in this case is graphically
illustrated by the simple separable self-similar solution’:
LN 2 gy) Ay 12
.- X o +1)
He(t, x) = (" —1) ”"(l————-> L Xy = [ﬂ_ ..ﬂ} . (n
Xy ) r

Here (1), = max{z, 0},
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By (1), heat from the localization region {0 < x < x4} never reaches the
surrounding cold space. even though the temperature grows without baund in that
region. In Ch, III we present a detailed study of localized (n = —1/0) and non-
localized (n < —1/0) power law boundary conditions; corresponding self-similar
solutions are constructed; analysis of the asymptotic behaviour of non-self-similar
solutions of the boundary value problem is performed, and physical reasons for
heat localization are discussed.

The case o = 0 (the linear heat equation) has to be treated in a somewhat
different manner, Here the localized S-regime is exponential, u (1) = exp{(T —
1) '}. In this case the heat coming from the boundary is effectively localized in
the domain {0 < x <2} (. v)y = ooast = T7 0 < x <2 and (T " x) <
for all x > 2. The study of the asymptotic phase of the heating process uses
approximate self-similar solutions. the general principles of construction of which
are presented in Ch, VL

Chapter 1V contains the results of the study of the localization phenomenon
in the Cauchy problem for the equation with power law nonlinearity: u, = V.
(Vi) +uf. 1 > 0. x € R¥. where o > 0. 8 > | are constants. A number of
topics are investigated for o > (. We construct unbounded self-similar solutions.
which describe the asymptotic phase of the development of the blow-up behaviour:
conditions for global insolvability of the Cauchy problem are established, as well
as conditions for global existence of solutions in the case 8 > o + | +2/N1 we
prove theorems on occurrence (8 = o + 1) and nan-occurrence (1 < 8 <o + 1)
of localization of unbounded solutions,

Localization of the combustion pracess in the framework of this model is illus-
trated by the self-similar solution (S-regime) far 8= o+ 1. N = |, in the domain
(0. To)xR:

Lior
i 2oy’ .
P e COST . < Lg/2.
wg(tox) = (Ty— 1) Vfer (n’((MZ! l.\) |1 s/

0. (x> Lg/2,

whete Lg = 2w (o + 1)'/2 /e s the fundamental length of the S-regime. The main
characteristic of this solution is that the camhustion process takes place entirely in
the bounded region {{a} < Lg/2} outside this region ug = O during all the time
of existence of the solution which blows up (1 € (0. Ty)).

The study of the spatio-temporal structure of unbounded solutions is based
on & particular “comparison”™ of the solution of the Cauchy problem with the
corresponding self-similar salution (for example, with (2)). The main idea of
this “comparison” consists of unalyzing the number of intersections N(r) of the
spatial profiles of the two solutions, u(r, x) and wg(r, x). having the same blow-
up time. The fact that N() does nat exceed the numher of intersections on the
parabalic boundary of the domain under consideration (and in a number of cases is
a non-decreasing function of 1), is a natural consequence af the Strong Maximum
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Principle for parabolic equations and goes back to the results by C. Sturm (1836).
It turns out that in the comparison of unbounded solutions with equal intervals
of existence. N(1) cannat be strongly decreasing: in any case, if N(0) > 0 then
N(t) > 0 for all 1 € (0, Ty). In Ch. IV we use comparison theorems of the form
N < land N1) = 2.

Let us stress that to study particular properties of unbounded solutions the
usual comparison thearem far initial conditions is not applicable. The reason is
that majorization of one solution by another. for example, u(r. x) < ug(r, x) in
(0. Ty) x R, usually means that the solutions 1 2 1y have different blow-up times,
so that from a certain moment of time anwards such a comparison makes no sense.

In Chapter 1V we also consider the case of a semilincar equation (o = 0).
Unbounded solutions of the equations with “logarithmic™ nonlinearities, 1, = Au+
(L) P (L4 u), 1 > 0. x € RY, have some very interesting properties for 8 > 1.

In Chapter V we prove comparison theorems for solutions of various nonlinear
parabolic equations. based on special paintwise estimates of the highest order
spatial derivative af one of the solutions: applications of this theary are given.

The idea of this comparison is the following, In the theory of nanlinear segond
order parabolic equatians

=AW, 1.x)eG=(0T)xQ, 3)

where € is a smooth domain in R, A(u) is a nonlinear second order elliptic
operator with smooth coefficients, there is a well-known comparison principle for
sub- and supersolutions. Let 1 > 0 and v > O be, respectively, a super- and a
subsolution of equation (3), that is,

= Al vy = AQw) in G 4)

and « > v on dG, where 3G is the parabolic boundary of G. Then 1 > v everywhere
in G.

Prapositions of this sort are often called Nagumo lemmas. A systematic con-
structive analysis of nonlinear parabolic equations started precisely from an under-
standing that a solution of the problem under consideration can be quite sharply
bounded from above and below by solutions of the differential inequalities (4).
Nagumo type lenumay are optimal in the sense that a further comparison of differ-
ent functions u and v is impossible without using additional information concerning
their properties.

The same operator A appears in both the inequalities of (4). Let us consider
now the case when we have to determine conditions for the comparison of solutions
u'"" > () of parabolic equations

W = LM Ve A oy e G, v =12, (5)
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with different elliptic operators L' s L' where L"(p. ¢, r) are smooth func-
tions of their arguments. Parabolicity of the equations means that

I

T L“p.g.r)=0. p.geR,. reR. (6)
ar

From the usual comparisan theorem of classical solutions it follows that the in-

equality #'® > 4 will holdin G if #'*" > 'V on 9G and forall v € CHHGNC(G)
L™ (e, \Vol. Ap) = L', |V, Av) inG (7)

(this claim is equivalent to the Nagumo lemina). The latter condition is frequently

too cumbersome and docs not allow us to compare solutions at equations (5) for

significantly differing operators L',

Let us assume now, that, in addition, #*?" is a critical solution, that is

W >0 inG. (%)

so that L2 ? [ Vu'?|, Au) > 0 everywhere in G. Parabolieity of the equation
for v = 2 allows us, in general, o solve the above inequality with respect to Au'?).
$o that as a result we obtain the required pointwise estimate of the highest arder
derivative:

Au? > 1:,2)(11(2" Ve ') in G. (9)

Therefore for the comparison 1 = 4V it suftices to verify that the inequality (7)
holds not for all arbitrary v, but only for the functions that satisty the estimate (9).
This imposes the following conditions on the operatars LY in (5):

— (L (poger) = LVpgorm) = 0L (pog 5 (pog) < 0.

For quasilinear equations L") = K»' (p. g)r + N (p. ¢) these conditions have a
particularly simple form: K > K0 KNG > KON i R x R,

The criticality requirement (8) on the majorizing solution is entirely dependent
on boundary conditions and frequently is casy to verify,

Vast possibilities are presented if we compare not the solutions themselves.
but some ponlinear functions of these solutions: for example, v = E@My in
G. where £ : [0.00) — [(). 00) is & smooth monatone increasing function. The
choice of this function is usually guided by the form of the elliptic operators L'
in (5). In Ch. V we consider yet another direction of development of comparison
theory; this is the derivation of more general pointwise estimates, which arise as
a consequence of t-criticality of a solution: u!® > (u'2) in G. where ¥ is a
smooth function.

As applications. we obtain in Ch. V conditions tor lacalization of boundary
blow-up regimes and its absence in boundary value problems for the nonlinear
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heat equation of general type (by comparison with self-similar solutions of the
equation u, = (u"u),. o 2 0. which are studied in detail in Ch. 1II.) Using the
concept of -criticality. we derive conditions for non-existence of global solutions
of quasilinear parabolic equations.

In Ch. VI we present a different approach to the study of asymptotic behaviour
of solutions of quasilincar parabolic equations. There we also talk about comparing
solutions of different equations,

As already mentioned above. an efficient method of analysis of non-stationary
processes of nonlinear heat conduction. described. for example. by the boundary
value problem

w, = Alny = (k(wu),. 1€ T), x>0 ”
(1
(., ) = w1y > oc.t— T ¢ w(. x) =ng(x) =0 x>0,

is the construction and analysis of the corresponding self-similar or invariant so-
lutions. However, the appropriate particular solutions exist only in relatively rare
cases. only for some thermal conductivities k(u) > O and boundary conditions
w(t, Q) = u(ry > 0 in (10). Using the generalized comparison theory developed
in Ch. V. itis not always possible to determine the precise asymptotics of the
solutions by upper and lower bounds. On the whole this is related to the same
cause. the paucity of invariant solutions of the problem (10). In Ch. VI we employ
approximate self-similar solutions (a.s.s), the main feature of which is that they
do not satisty the equation, and yet nonetheless describe correctly the asymptotic
behaviour of the problewn under consideration.

In the general setting. a.s.s are constructed as follows. The elliptic operator
A in equation (10). which by assuimnption. dees not have an appropriate particular
solution is decomposed into a sum ol two operators,

Ay =B w) -+ (|AG) — B 1)) (rn

so that the equation
w, = B, u) (12)

admits un invariant solution 1 = n, (7. x) generated by the given boundary condi-
ton: w,(71.() = npr). But the most important thing is that on this solution the
operator A — B in (11) is to be “much smaller” than the operator B, that is, we
want, in a certain sensc. that

A (1)) =BG (o 0l < (IBGL (1Dl

as 1 — T . This can guarantee that the solwtian u, of (12) and the solution af the
original problem we asymptotically close.

In Ch. VI, using several model prablems, we solve two main questions: 1) «
correct chaice of the “defining operatar B with the above indicated properties: 2)
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justification of the passage to cquation (12), that is, the proof of convergence, in a
speciad narm of u(r, ) — wu,(1,-) as 1 — T 7. It turns out that the defining operator
B can be of a form ut first glance completely unrelated ta the operator A of the
original equation. For example, we found a wide class of prablems (10). the as.s.
of which satisfy a Hamilton-Jucabi type equation:

k ,
(u), = ;jL‘)-[(u\)\l‘EB(u\-). (13

Thus at the asymptotic stage of the process we have “degencration™ of the original
parabolic equation (10) inta the irst order equation (13).

Using the coustructed fumilies of as.s. we solve in Ch. VI the question of
lacalization of boundary blaw-up regimes in arbitrary nonlincar media.

A cansiderable amount of space is devated in Ch. VII ta the method of stationary
states for nonlinear parabolic problems, which satisfy the Maximum Principle.

It is well knawn that if an evolution equation 1, = A(u) for 1 > 0, #(()) = g,
has a stationary solution u = u, (A(u,) = 0), there exists an attracting set M in the
space of wll initial functions, assaciated with that stationary state: if ng € M, then
u(t,-) — u, as 1 — oo. This ensures that a large set of non-stationary solutions
it close ta u, for large 1.

Far strongly nan-stationary solutions, for example, those exhibiting finite time
blow-up (Jlu(r, )| = oc as 1 — T, < 00), stabilizatian to u, is, of course,
impossible. Nevertheless, as we shaw in Ch. VII, there still is a certain “closeness™
of such solutians, naw to a whole family of stationary states {U,} (parametrized
by A). Using a number of examples we find that a family of statianary states {U,}
(AU,) = 0), continvously depending on A, contains in a “parametrized” way (in
the sense of dependence A = A(r)) many unportant evolution properties of the
solutions of the equation, Since to use the method we need only the most general
informatian cancerning the family {{/,}, this fact «llows us ta describe quite subtie
effects connected with the develapment af unbounded solutions.

In uddition, in Ch, VII we unalyse blaw-up behaviour and global solutions of
boundary value problems for quasilinear parabolic equations with a source. In
the last section we consider difference schemes for quasilinear equatians admitting
unbounded solutions.

In the first two intraductory chapters we use a consecutive enumeration (in cach
chapter) of thenrems, propuositions and auxiliary statements, In the following, more
specialized chapters, theorems und lemmas are numbered unew in cach sectian.
In caeh section formulus are numbered cansecutively ag well, The number of
references to formulas from other sections is reduced to . minimuny; an the rare
occasions when this is necessary, a double numeration scheme is used, with the
first number being the section number.

The authars are grateful to their colleagues V. A. Doradnitsyn. G. G. Elenin,
N. V. Zmitrenko, as well as to the researchers at the M. V. Keldysh Institute ot
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Applied Mathematics of the Russian Academy of Sciences, Applied Mathematics
Department of the Mascow Physico-Technical Institute, and the Numerical Anal-
ysis Department of the Faculty of Computational Mathematics und Cybernetics of
the Moscow State University, who actively participated in the many discussions
concerning the results of the wark reported here. We are also indebted to Professor
S. L. Pohozuev und all the participants of the Moscow Energy Institute nonlinear
equations seminar he heads for {ruitful discussions and criticism of many of these
resuits.
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Chapter |

Preliminary facts of the theory of second
order quasilinear parabolic equations

In this introductary chapter we present well-known fucts of the theory of second
order quasilinear parabolic equations, which will be used below in our treatment
of various more specialized topics.

The muin goal of the present chapter is to show, using comparatively uncompli-
cated examples, the wide variety of properties of solutions of nonlinear equations
of parabolic type and to give the reader an tdea of methods of analysis to be used
in subsequent chapters. In particular, we want to emphasize the part played by par-
ticular (self-simifar or invariant) solutions of equations under consideration, which
describe important characteristics of nanlinear dissipative pracesses and provide a
“basis™ for a description, in principle, of a wide class of arbitrary solutions. This
type of representation is dealt with in detail in Ch. VI

In this chapter we illustrate by examples the simplest propositions of the theory
of quasilinear parabolic equations. A mare detailed presentation of some of the
questions mentioned here can be found in Ch. II; subsequent chapters develop
other themes.

§ 1 Statement of the main problems. Comparison theorems
1 Formulation of boundary value and Cauchy problems

In the majority of cases we shall ded with quasilinear parabolic equations of the
following type: nonlineur heat equations.

wo=A ) = V- (k(u)Vu), V()=grad (-). x € RY, ()
or with roplinear lear equations with source (sink),

, = Bu) = V- (k(t)Vu)+ Q(u). (2)
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y y

Here the function k(x) has the meaning of nonlinear thermal canductivity, which
depends on the temperature © = u(r, x) = (). We shall take the coefficient £ to be
a non-negative and sufficiently smoath function: k(u) € C2((0. 00)) N C(]0. 00)).

If w > 0 is a sufficiently smaoth solution, then (1) can be rewritten in the form

u, = A(n) = k(u)Au+k'(u)|Vu|2. (1

where A is the Laplace operator.

N N

Fu 2 D\
An = Z PySE |Vul™ = Z (T)\T>

t i [
Equation (1) is equivadent ta the equation

w, = Al = Ad(w). (1

Plu) = / kmydn. uz=0.
Jo

The function Q(#) in (2) describes the pracess of heat emission ar combustion
in a medium with nonlinear thermal conductivity if Q(u) > 0 far u > 0. or of heat
absorption if Q) < (. Unless explicitly stated otherwise, we shall consider the
function Q(u) to be sufficiently smooth: Q(m) € C'([0.00)). In most cases we
assume that there ts na heat emission (absorption) in a cold medium, Q(0) = (.

In the following, we shall mainly deal with the first boundary value problem
and with the Cauchy problem for the equations (1), (2). In the first boundary
value problem we have to find « function u(s, x), which satisfies in (0, T) x €},
where 7' > () is a constant and () is a (possibly unbounded) domuin in RY with
a smooth boundary d€1, the equation under consideration, together with the initial
and boundary conditions

(0, %) = up(x) =2 0, v € uye C(d), supug < oo, (3)
w(t,x) =, x) >0, 1e€(T), x el

w € C([0,T) x 9Q). supuy < 00.

The function ug(x) in (3) can be considered a8 the initial temperature perturba-
tion. The condition (4) describes the cxchange of heat with the surroundings on
the boundary 9€} of the domain. The condition sup uy < o¢ is af ttmportance i the
case of unbounded (1. The salution af problems (1), (3), (4) or of (2)-(4) is then
also sought in the class of functions bounded uniformly in x € Q for 7 € [0, 7).

Apatt fram the ticst boundary value prablem, we shall also constder the Cauchy
problem i (), T) x R with the initial condition

B

w0, x) = upg(x) >0, ve R": Hy € C(RN). SUp 1y < 00.
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We are Jooking far a solution in the class of functions bounded uniformly in x € R¥
forr € [0.T).

In the abave statement of the prablems we omttted some detatls, which need to
be clarified. First of all, it is not made clear {n what sense the solution (7, x) is to
satisfy the equation, and the boundary and initial conditions. This question s easily
solved if we are looking for a classical solution u € C,'(l((O. T)x)NC(0, T) x £1).
which has all the derivatives entering the equatton, and which satisfies it tn the usual
sense. Naturdly, for a classical solution ta exist, we must have & compatibility
condition between the initial and boundary coaditions in the first boundary value
problem:

ty(x) = (0. 1), v e Jl.

In this cuse conditions (3). (4) or (5) are satisfied in the usudd sense.

Secondly, the coefticients k, ) were defined only for 1 > 0. Therefore the
fortmulation of the prablems assumes that the solutian #(r. x) is everywhere non-
negative. This is ensured by the Maximum Principle, which plays a fundamental
part in practically all aspects of the theary of nonlinear parabolic equations.

2 The Maximum Principle and comparison theorems

The Maximum Principle characterizes a kind of “monotoniaity” property of solu-
tions of parabolic equations with respect to initial and boundary canditions. We
shall not present here the Maximum Principle for linear parabolic equations, which
serves as the basis of proof of similar assertions for nonlineuar problems. It ts ex-
tensively dealt with in muny textbooks und monographs (see, far example, [282,
101, 378, 338, 357, 320, 22, 361, 365, 42]). There the reader cuan also find the
necessary restrictions on the smoothness und the structure of the boundary 94 (they
are especially important when the domain £ is unbounded). Therefore we move
on directly to assertions pertaining ta the nonlinear prablems discussed above.

Assertions af this kind are knawn under the heading of Maximuem Principle,
since they all share the same “physical™ interpretation and are praved by broadly
the sume techniques. which ace frequently used in the caurse of the baok.

The comparison theorems we quote belaw wre proved tn detail, far example, in
[101, 338, 356. 40[. We state the theorems in the case of boundury vadue problems,
but they apply without changes wlso to the case of Cauchy problems.

Theorem 1. Ler #*) and u'® be non-negarive clussical solutions of equation (2)
it (0, T) x Q. such that, moreover,

10, ) = 10, x). v e (6)

WP = e e [00T) v e L (7)
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Then
2 ) = u L x) in [0.T) x £} . (8)

The theorein can be casily explained in physical terms. Indeed, the bigger the
witial temperature perturbation, and the more intensive the baundary heat supply,
the higher will he the temperature in the medium. The proof of the thearem is based
on the analysis of the “lineur™ parabolic equation for the difference z = ' — 4t
and in essence uses the sign-definiteness of the derivative Az at an extremum paint
of the function =

As a direct u)mllary of Theorem 1 we have the following

Proposition 1. Ler Q(0 ) and let u(x. 1) he a classical solution of the problem
(2)-(4). Then u = 0in [ LTy x (L

Indeed, #'" = ( is a solution of cquation (2). Then by setting u#'? = u, we see
that conditiang (6), (7) hold, so that ' > u'" = () everywhere in [0, T) x ().

The comparison thearem makes it passible to compare different solutions of a
parabolic equation and thus cnables us, by using some fixed solution, ta describe
the properties of a wide cluss of other solutions. Hawever, the tact that this theorem
invalves anly exact solutions significantly restricts its applicability.

The following theorem has much wider applications in the analysis of nonlinear
parabolic equations [101, 377, 338, 365].

Theorem 2. Let he defined on [0, T) x 0 a classical solution u(x. 1) > O of the
problem (2)-(4). as well as the funuz(ms 1wy (1, x) € CHA0. Ty x M NC0, T) x

). which satisfv the inequalities

Ouy ot = By ), du. for < Bu ) in (0, T) x £, (9)
and furthermore
w (0, x) <up(y) < uy (0,0, xell (10
uox) <, x) <o, (,x)0e|0.T), x e ofd ah
Then .
. <u <, in]0,T)x Q. (12)

Let us emphasize that here we wre talking about comparing a solution of the
problem not with wnother solution of the same problein, us in Theorem 1, but
with solutions of the corresponding differential inequalities (9). This extends the
possibilities for analysis of properties of solutions of nonlineur parabolic equations.
since it is much simpler to find a useful solution of a differential inequality thun
itis to find an exuct solution of & parabolic equation.

The functions «, and u . which satisty the inequalities (9)—(11) ure called.
respectively, w supersolution and u subsolution of the prablem 2) (4).
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Statements similar to Theorems 1, 2 hold also for nonlinear parabolic equations
of general torm, in purticular, for essentially nonlinear (not guasilinear) equations

= F. Vi, At x). (13)

where F(p.g.r.1.x) is a function which is continuously differentiable in R, x
RY x R x [0.T) x (). The parabolicity condition here hus the form

OF(pogoritox)/or = 0. (13"

If we take for £ the operator in (1) or (2), then condition (13) becomes the
inequality k(p) = 0 for p = 0,

Under some additional restrictions on the domain ) und its boundary, these
assertions also hald for the second boundary value problem, in which instead of
(4) we have on 3{1, for example, the Neumann condition of the following type:

au/on = (1. x).1 € (0.T). x e 3 1ur € Cosupus < o, (14)

where 9/dn denotes the derivative in the direction of n. the outer normal to 9€L
Condition (14) makes sense if the partial derivatives o, are continuous i [0, T7) %
. Then a new compatibility condition arises:

dug(x)/on = ux(0, x).  x € oL,

and then we can talk about a classicad solution of the second boundary value
problem.
In this case tn Theorem 1 instead of the inequality (7) we must have the
inequality
ou'? Jon = oV jon. 1€ [0.T). ve ¥l (14"

Since the product k(un)dir/dn equads the heut flux on the boundary, (14') has a
simple physical meaning. Correspondingly, in Theorem 2 the inequalities (11) are
replaced by the inequalities

B /o < dufon < du, fon, 1 €0, T), x € () (15)

(in this case additional smoothness conditions have to be imposed on super- and
subsolutions 1y),

With the required changes, the theorems still hold if we have more general
nonlinear boundary conditions of the third kind on €1, such as

dufdn = a(u,1.x). 1€ [0, T), x € ). (16)

where a(u. 1, x) is a sufficiently smooth function [101, 338].
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§ 2 Existence, uniqueness, and boundedness of the
classical solution

Questions of existence and uniquencss of classical solutions of boundary value
problems for nonlinear heat equations are studied in detail in the well-known
monographs [282, 101, 361}, where a wide spectrum of methods is used. Below
we consider some important restrictions on coefticients, that are necessary for
existence and uniqueness of a classical solution.

We shall be especially interested in questions of conditions for plohal solvability
of boundary value problems. when the solution u(r, x) is debined for all 1 > 0, and.
conversely, in conditions for global insolvability or insolvability in the large. In
other words, we want to know when a local solution u(r. x), defined on some
interval (0, 7), cuan be extended to arbitrary values 1 > (), and when it cannot.
Local solvability (solvability in the small) holds for a large class of quasilinear
equations with sufficiently smooth coetlicients without any essential restrictions on
the nature of the nonlinearity of these cocfficients. Such restrictions arise in the
process of constructing a global solution,

For equations with a source,

i, = V- (k(in)yVu) + Qu), (h

the existence of a global solution is equivalent to its boundedness in () on an
arbitrary interval (0, T). Namely: a global solution is defined and bounded in ()
for all 7 > 0. while an unbounded solution is defined in ) on a finite interval
(0. Ty), such that moreover

lim sup a(r, x) = o0, (2)
Pl )

which makes it impossible to continue the solution to values of 1 > T,
Questions related to the loss of requisite smoothness of & bounded solution are
discussed in § 3.

1 Conditions for local existence of a classical solution

This question is now well understood [260, 282, 363, 101, 213|. Classical solutions
of boundary value problems and of the Cauchy problem exist locally for smooth
boundary data and under the necessary compatibility conditions for quite arbitrary
quasilinear parabolic equations with smooth coefficients of the form

N
= Z ay Vot w4+ atu. Vit x), (®))]
i je=t
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if they are uniformly parabolic. This means that

N
vp e £ D agtpogo e, < wp) el (3)

1 jel

for arbitrary 1 € [(0. T), x € Q, p=0.q.re RY, where the continuous functions
v(p) and p(p) are strictly positive. Condition (3’) means, in particular, that the
second order elliptic operator in (3) is non-degenerate and that the matrix el
is positive definite. Local solvability has been established also for a wide class
of more general equations of the form (1.13)' (see [261, 69]). In this case the
uniform parabolicity condition has the form

v(p) < 0F(p g, ro . 0)/or < p(p).

For equations of the form (1) the uniform parabolicity condition has a particu-
larly simple form.

Proposition 2. Let the funciions k(n), Qu) be sufficienily smooih for > 0,
QW) = 0. If 1he condition

k(i) > ey = const > 0 foru > 0. (4)

holds, then there exists a local classical solution of 1he boundary value problem
(1.2)=(1.4); moreover, if upz O in  or if (0. x) &0 on 9, then u(, x) > 0 n
Q for all admissible 1 > (.

A non-negative solution of a uniformly parabolic equation (1) is strictly positive
everywhere in its domain of definition. In other words, in heat transfer processes
described by such cquations, perturbations propagate with infinite speed. If, for
exanple, in the Cauchy problem, the initial function g g4 0 has compact support
and possibly is non-differentiable, the local solution will still be « classical one
for 1 > 0, Moreover, for all sufficiently small 1 >  the function u(s, x) will be
strictly positive in R, Under appropriate restrictions on the coefficients of the
equation in any admissible domain (0, 7) x {1 it will possess high order derivatives
in 1 and x,

If condition (4) does not hold, a solution of the Cauchy problem with an initial
function up of compact support, may also have compact support in x for all 1 > 0,
and as a result even its first derivatives tn 1 and .« can be not defined at a point
where it vanishes. We shall treat generalized solutions in more detail in § 3, where
we state & necessary and sufficient condition for existence of a strictly positive
(and therefore classical) solution.

"In this way we refer to formulue from previous sections; in this case it is {rom § 1.
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2 Condition for global boundedness of solutions

First of all let us observe that in the boundary value problem (1.1), (1.3). (1.4)
without source, 0 = 0, the question of boundedness of solutions does not arise,
This follows directly from Theorem | (§ 1), Setting in that thcorem

)
u'™ (1, x) = M = const > max{sup g, sup i}, (5)

(ll(

weo(ox) = al, X)),

we see that conditions (1.6) and (1.7) hold, so that u(r. x) < M, that is, n is
bounded in 1 for all 1 € (0, T), where 7' > 0 is arbitrary. It is easy to verify that
the same is true for cquation (1) with a sink, when Q(u) < 0 for all 4 > . For
equations with a source the situation is different,

Proposition 3. /n equarion (1), let Q(uy > O for u > . Then the condition

B el el 3 ((
S0 )

is a necessary and sufficient condition for global houndedness of any soluion of
the problem (1.2)—(1.4).

Proof. Sufficiency. Let us use Theorem 1. As (1, x) let us tuke the spatially
homogencous solution #'7 (1) of (1):

e 2= QP (), 1> 05 1 P(0) = M = 0, (7

where the constant M satisfies (5). The function 12 (1) is determined from the

equation
/-u"’(n dn
M Q(T] ) B

where, moreover, by (6) 1) (1) is delined for all 1 € (0, o). Then from Theorem 1,

by setting u'"? = u we obtain that

u(r, x) < a1y, 1€ (0. 7). v e,

that is, u is globally bounded.
Necessity. This follows from the following simple example,

Example 1. In the Cauchy problem for (1) let

J
Ho(x) = m = const > 0, v eRY,
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and let (6) be violated, that is,

~

dn
Ji Q)
where Q(u) > 0 for u > 0. The solution of the problem will then be spatially

homogeneous: u(r. x) = u(1), where u(r) satisfics (7) and the condition u(()) = m,
that is,

<<

oo, (8)

() MdT] _
J Q(TI)
From this it can be seen that 1(1) is defined on a finite time interval (0. Ty) where
. ~od
Ty = L
S Q(TI)

furthermore
u(y ~ oo 1 — T,

0

Proposition 3 reflects one aspect of the problem of unboundedness of solu-
tions. In a number of problems with specific bounduary conditions. the existence
of a global upper bound for the classical solution depends on the interplay of the
coefficients &, (. functions entering the statement of the boundary conditions, as
well as the spatial structure of the domain £}, In the general setting the problem
of unboundedness is quite a complicated one. For some classes of equations this
problem will be analyzed in subsequent chapters (some examples are given below).

Let us observe that the necessary and sufficient condition (6) of global bound-
edness of all classical solutions arises in an analysis of un ordinary differential
cquation. In Example 1 we constructed an unbounded solution which grows to
infinity as 1 — T on all of the space RY at the same time.

What happens if we consider a boundary value problem in a bounded domain
€1, such that, furthermore, on (2 the solution is bounded from above uniformly in
1?7 Can such spatially inhomogeneous solutions be unbounded in the sense of (2)?
The following example gives a positive answer,

Example 2. Let us consider a boundary value problem for a semilinear equation,
o= Au+ Quny, 1 > 0, xe ] (9)

in a bounded domain () e RY with a smooth boundary 902, Let u(0, x) = 1p(x) >0
in L, uy e C(Q), myz 0. and

u(r, x) =0, 1 >0, v e al (1)
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Let us denote by A} = A (Q) > 0 the first (smallest) eigenvalue of the problem
A 4+ Ap =0, x € () th(x) =0, x € ), (1

and by ) (x) the first eigenfunction, which ig known [283, 362) to be of constant
sign in ), LL[ i (x) > 0 and

”’/’l“l,‘((l) = /“ l//l(,()d,t = |, (12)

Let Qi) — Ay > 0 for all 4 > 8y = const > 0, and furthermore

v

dn

— 2 (13)
J g Q(TI) - AlT]

(let us note that if Q(u) > 1 as 1 — oc this condition is the same as (8)). Let us
also assume that Q € C*(R,) is a convex function;

Q') = 0,10 >0, (14)

Then for any initial functions uy(.x) > 0 such that

Ly = / 1y (. l//1 Jdy > 5(‘
S

the solution of the prohlem is unbounded and exists till time

o~ /
'r() f. T* - ”——(‘L" < 00
Je, Q) — A

To prove this, let us introduce the function

E(I)::/ u(r, Xy (x) dx.
J

Then 1:(0) = Ky and furthermore, as follows from (9), E(r) satisfies the equality

1E
‘ (Q: Au(r, Xy (x zl\+/ Qulr, )N (x (15
dt Ja

Integrating by parts and taking into account (10) and (11), we obtain
/ Antr, Xy (x) dx =
Ja

::/ut VAP () dx = — A /ut O () dx = —A (),
Ja Q
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Furthermore, from Jensen’s inequality for convex functions [211) we obtain

‘/“ Oy dx > Q </“ fr, dx> = Q(E)

(for this estimate to hold it is essential to have ¢, > 0 in () and for ¢ to be
normalized by (12)), so that from (15) we have the inequality

EI%Q > ~NME+QE). 1 >0 E()) = Ey > 8.
Hence under our assumptions we have that E(1) > E, for all 1 > (), and conse-
quently

Ly (IT]
T, Qe —Am =

Therefore by (13) E(1) — oo as 1t — T < T,, and since E(1) < sup, u(r. x), the
solution u(r, x) satisties (2) for some 7(, T, and is unbounded.

The interest of this example lies in the fact that for sufficiently “small” initial
data 19(x) this houndary value problem has « global solution defined for all r = 0
(sec Ch. VI, § 2). For “large™ 1, it grows unboundedly as + — T, Ty < 00,
One can then pose the question: in what portion of the domain {2 does it become
unbounded as 1 — T ? This question, of localization of unbounded solutions, is
considered in subsequent chapters,

We close the discussion of glohal boundedness conditions by an clementary
example of a second boundary value problem.

>1, 1> 0.

Example 3. Let ) be a smooth bounded domain, £2 € RY. Let Q(u) be a function
convex for 1 > (), which satisfies (8), For (1), let us consider the second boundary
value problem with no-flux Neumann boundary condition,

dufon =0, 1 >0, x € 34, (16)

with initial perturbation (0, x) = up(x) = 0 in €1, Let us show that any non-trivial
(11 £ 0) solution of the prohlem is unhounded.

Assuming sufticient smoothness of the solution, let us integrate equation (1)
over the domain (). Then, if we introduce the energy

H{) = / u(t, x)dx, 1 =0,
Ja

and integrate hy parts, taking (16) into consideration, we have

dH
dt

/Qut\)d\ 1> 0;
(17
H) = Hy = / Xy dx > 0,
J
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Using the Jensen inequality

Qu(r, ¥y dx = (meas (1) / Quuti, x)dx >
0 Ji

, meas )

1 Hn
> as () e 1(1, XY d X} = (meas () — ],
> (meas {)) O (/“ - ”u(l \)d\> (meas 1) Q (mcas())

we obtain from (17) the inequality

H H
d~~—(-l~)» > (meus ) Q (I-T%> 10> 0
neas

Therefore by (8) it follows that the encrgy H (1) (and therefore 11, x)) is defined
and bounded only on a bounded interval (0. Ty), where

N ’
T, <T,= / A
Juymeas o Q)

and therefore limsup, u(r, x) = o0, 1 — Ty < T,

3 Uniqueness conditions for the classical solution

Under the assumption of sufficient smoothness of the coefticient Q in (1), the local
classical solution is always unique. This follows directly from Theorem I of § 1.
Indeed, if we assume that there exist two different solutions " and #, of equation
(1) corresponding to the same initial and boundary conditions, then it follows from
Theorem 1, by first setting o' = u*. 0/ = u, and then exchanging u* and u,,
that we have at the same time ¢* < o, and u* > u,, that is, u* = u,,

It remains to check how essential is the smoothness requirement on the coeffi-
cient Q. which is a non-negative function. In case of a heat sink (Q(x) < 0, u > 0),
it is not hard to verify that uniquencss of the solution holds without any restrictions
on the smoothness of Q).

Thus, let a continuous function Q(u), (Q0) = 0; Q) > 0, u > 0) be non-
differentiable for 1 = 0, Q € C'((0. 00)). The following exumple shows what this
cun lead to.

Example 4. lLet us consider the Cauchy problem for the equation
u, = A+ 0, xe RY. (18)
where a € (0, 1) 1s a constunt. Here Q(n) = u™, Q(0) =0, 0'(0") = x. Let

w(0, ¥) = uy(x) =0, x e RY. (19)
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It is clear that the problem (18), (19) has the trivial solution u(1, x) = 0. However,
in addition it has an infinite number of other spatially homogencous solutions
u(r, x) = u(1), which satisty the ordinary differentiul equation

W) =u"w). 1> 0 u) =0 (20)
Solutions of this problem are the functions

0.0<1 <.

= p () = 2
u(r) = v=(r) {(lma)l/’ll W~ e s g (21)

where 7 2 () is an arbitrary constant,

Therefore, due to non-differentiability of the source for n = 0, there appear
from the zero initial condition (19) non-trivial solutions that grow at the same rate
on the whole space. Let us note that for a € (0, 1) all the functions v, (1) are
classical solutions. since v, € C'([0, o).

It is not hard to sce that similar non-trivial solutions of the Cauchy problem
can be constructed in the case of arbitrary sources Q(u) > 0, u > 0, if

I
/ o (22)
Jno Qi)
Hence we obtain the condition
o} I
/ NCL/ENEN (22')
Jo Q)

which is at least necessary Jor the uniqueness of the solutions of the Canchy
problem.

This example is entirely based on an analysis of spatially homogencous so-
lutions, which satisfy an ordinary differential equation. What if we consider a
problem with boundary conditions that do not allow the solation to grow at the
boundary? It turns out that in this casc also lack of sufficient smoothness of the
source for 1 = () may cause the solutions to be non-unique.

Example 5. Let {) be a bounded domain, 2 ¢ RY, and let Ay > 0, ¢y (x) > 0
in ), be, respectively, the first eigenvalue and the corresponding cigenfunetion of
the problem (11). Let us consider in R, x () a boundary value problem for the
equation

i = Au 4+ Aju+ l//: om0, vell, (23)

with the conditions

wO. =0 v el ur,x)=0, 1 >0, xe (24)
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Let « € (0. 1)) then the source r//'“" x)u”®, which depends not only on the
solution u, but also on the spatial coordinate x, is non-differentiable in u for
1 = 0% everywhere in £1. It is not hard to see that the problem (23), (24) has, in
addition to the trivial solution u = 0, the family of solutions

u(t, x) = v (N (x > (), x el

where v..(/) are the functions defined in (21).

To conclude, let us observe that non-unigueness is related to the particular
formulation of a problem. If, for example, we take in the Cauchy problem for (18)
an initial condition ug(x) > 8, > 0 in RY, then its solution will be elassical and
unique, since by Theorem 2, the solution will satisfy the condition u(r, x) > &y in
RN, In the domain u > 8, the coefficients of the equation are sufficiently smooth,
which ensures uniqueness of the solution. Similarly, if in the problem (23), (24)
up > 0 in {1, then its solution will also be unique.

§ 3 Generalized solutions of quasilinear degenerate
parabolic equations

In this section we consider equations (1.1), (1.2) which do not satis{y the uniform
parabolicity condition. As ub()vc. we shall assume that the functions & and Q are

s‘ufﬁcicmly smooth: k € C*((0, 00)) NC([0, 00)). Q € C'(0, 20)) (as was s'lmwn
mé2 llus last conditioh is nuussdry for the umquenms of the solution), k(u) > 0

for i > 0, and furthermore

k() =0, ()

that is, the equation is degenerate. Formally this condition means that the second
order equation (1.17) that is equivalent to (1.1) degenerates for u# = 0 into a first
order equation (if k'(0) # 0 and u(s, x) has two derivatives in v).

Before we move on to examples that elucidate certain properties of generalized
(weak) solutions, we shall make a remark. When we dealt with classical solutions
u € (‘,‘;2, there was no need to require continuity of the heat flux W, v) =
~k(u(r, x))Vu(r, x). This condition, as well as continuity of the solution itself
(temperature), is a natural physical requirement on the formulation of the problem.
In the present case we shall constantly have to monitor this property of generalized
soltitions.
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1 Examples of generalized solutions (finite speed of propagation of
perturbations, localization of boundary blow-up regimes and in media
with sinks)

Example 6. (finite speed of propagation of perturbations) Let us consider equation
(1.1) in the one-dimensional case:

u, = (k(wu,), (

(38

and let us construct its particular self-similar solution of travelling wave type:

us(r, x) '-“-l/ls(f), E= x — AL, 3

where A > ( is the speed of motion of the thermal wave. Substituting the expres-
sion (3) into (2), we obtain for fg(§) = () the equation

4 <k(f )‘If‘> s g

dé dé dé )
or. which is the same,
(Us ’
k(=L +Afs = C. (3)
Setting C = () (what this Lorruspnnds to will be made clear in the following), w
obtain the Lquallly
k([s)dfs
e e - A 4)
fs dé€
Let us assume that
'k
/ () dn < 00, (5)
0 n
so that the function
vk
D(u) = / Ml)dn. =0, d) =0, (5)
Jo n

makes sense. Then it follows from (4) that
D(Ss(E)) = —A(E — &n), € < &y = const.

Let f() = (). then
Jsté) = ® N =2, € =

where @' is the function inverse to @ (it exists by monotonicity of ®; see (5)).
Let us extend f into the domain {& > 0} identically by zero; it follows from (3')
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that contintity of the heat flux —k(/y) [ will still hold at the point ¢ = () for
C = 0. As a result we obtain the following self-similar solution:

ug(t, x) = b "[A(AI — x>0, xeR. (6)

where we have introduced the notation (k). = [k, if k > 0 and 0, if ¥ < QL.
Let us set Ty = d(o0)/A* < oc. Then (6) can be considered as the solution
in (0, Ty) x R, of the first boundary value problem for equation (2) with the
conditions

wO. 1) =0, x>0 u(r,0) =0 A, O<1<Ty. (7)

Thus if condition (5) holds, the problem (2), (7) has a solution with everywhere
continuous heat flux, which has compact support in x for each 1 € (0, Ty):

us(r,0) =00 x> M, 1 e (0.Ty).

Therefore equation (2) describes processes with finite speed of propagation of
perturbations. At the point where i« > (), the solution of the problem is a classical
one and it is not necessarily sufficiently smooth at the front (the interface) of the
thermal wave, x/(r) == Ar, where it vanishes.

For a more detailed study of the behaviour of the solution at the points of
degeneracy, let us consider the case

k(10 = u”, o = const = ().

Then O) = u”/or, & () = (o), Ty = oo and the travelling wave solution
has an especially simple form

ws(r, %) = [ A =~ X))V 1 =0, x>0, %)

Let us check again that the heat flux is continuous at the points x, (1) = Af.
Indeed,
W, x) = —uilug), = ()‘I/"A("H)/"[(A] -, II/I’.

that is. W(r, x/ (1) = W, x7(n)) = W@, xp(n) = 0 forall 1 > 0. At the same
time. if & > 1, at the degeneracy points .x = x;(f) the derivatives w,. u,. u,, are
not defined, In the cuse o € [1/2. 1) the denivatives ,. 1, exist, but the derivative
w1, xp(n) is not defined. If. on the other hand. o € (0, 1/2). w,ou. uy, are
defined everywhere (that is, the compactly supported solution (8) is a classical
one), however, higher order derivatives do not exist at the front points.

These are the main differentiability properties of the generalized solution we
have constructed. The function (8) is schematically depicted. for different times,
in Figure 1. This solution represents a thermal wave moving over the unperturbed
(zero) temperature background with speed A = dux (n)/ds.
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us(t,1)

Fig. 1. Travelling wave in the case of finite speed of propagation of perturbations

us(t,r)

[ ar = = |

0

o z

Fig. 2. Travelling wave in the case of infinite speed of propagation of perturbations

Condition (5) is necessary and sufficient for the existence of a compactly sup-
ported travelling wave solution. 1f it is violated, that is if

LA
/ KO 1 = o V)
J0 n

then, as lollows from (4), the function [g(£) is strictly positive for all admissible
& € R, and therefore (3) represents a positive classical solution of the equation (2)
(sce Figure 2).

It is obvious that in the case k() > (. that is, for wniform parabolicity of the
equation (sce Proposition 2. § 2). condition (9) holds. However. among coefficients
k(). k(0) = 0, there are some for which (9) holds. This is true, lor example,
for the function k(u) = |Ing] ' u e (O, 1/2), k(u)y > O for u > 1/2. Then the
travelling wave solution is strictly positive and therefore classical. Moreover, if
k(u) € C™~(Ry), then « can be differentiated in r and x in the domain (0. Ty) xR,
any ntmber of times.
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It is interesting that the condition (5), which was obtained without any diffi-
culty, is not only sufticient, but also necessary for finite speed of propagation of
perturbations in processes described by equation (1.1).

A travelling wave type solution has another exceptional quality: it demonstrates
in a simple example localization in boundary heating regimes with blow-up. The
study of this interesting phenomenon in various problems occupies a substantial
part of the present book.

Example 7. (localization in a boundary blow-up regime) Let
k() = wexpl—ul. u = 0.

Then it is not hard to gee that the solution (6) has the following form:

(1

{—m[l =AM =], 0= xS,
Ug(to ) =

0, X > AL

which is defined for a bounded time interval [0.Fy), where Ty = 1/A°. The
boundary condition at x = 0 corresponding to (10) has the form

ws(1.0) = u, (1) = —In(l =A%), 0 <t < Ty, (1

and therefore w (1) — oo as 1 — T,. However, though the temperature at
the boundary blows up, heat penetrates only to a finite depth L = 1/A, that is,
us(r, X) = 0 for all x > L for all the times of existence of the solution, 1 € (0. Ty)
(see Figure 3).

Here we have that everywhere apart from the boundary point x = (. the solution
is bounded from above uniformly in r;

—In(Ax), 0 < x < l/A

(X)) < (T, ) =
ug(r. x) < ug(Ty, x {()‘ x> /A

and it grows without bound due to the boundary blow-up regime at the single point
x = (). The limiting curve u = ng(7;, x) is shown in Figure 3 by a thicker line.
Let us note the striking difference between this halted thermal wave and the usual
temperature waves shown in Figures 1, 2.

It is easy to see that in this case every boundary blow-up regime leads to
localization. Indeed, for any boundary function w;(r) — oo as 1 — Ty (for
simplicity we set up(x) = (), we can compare the solution w(s, x) with the
“shifted™ self-similar solution us(r. x — 1/A), which is defined for x > xp(r) = Ar.
We have that « < ug = oo for x = xp(s) for all 1 € (0, Ty). Therefore by the
comparison theorem u < uy in (0, To) x {x > xo(N} and finally w(Ty. x) <
ug(To. x = 1/A) < oo for x > /A,
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s ({1}

R R

L=l

Fig. 3. Travelling wave self-similar solution (10) localized in the domain (0, 1/A)
R

It is clear that the same comparison argument and thus the same result on local-
ization of arbitrary boundary blow-up regimes. also holds in the case of coefficients

k that satisfy
~ ok
/ ) dn < o,
Jy mn

This follows immediately from the representation (6) of the corresponding travel-
ling wave solution generated by the blow-up regime.

et us consider an example of a generalized solution of the heat equation in
the multidimensional case,

Example 8. Let us find a solution of the Cauchy problem for an equation with a
power law nonlinearity

=V (V). 1> 0. x e RY) (12)

having constant energy
/ u(t, x)ydx = Ey = const > () (13
Jry

(this is a solution of the instantancous point source type).
We shall look for it in the self-similar ansatz.

ur, x) =1"0(¢), &= x/1* eR", (14)
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where «, § are constants, and where #(§) > 0 s a continuous function, Substituting
(14) into (12), we obtain the following equation:

e ) - (’0 u(rr+|)~»2[3 or
o Br § Ve - (87V:0). s
B dt, ¢ (07V; (15)

Ju

From here we have the necessity of the equality a — 1 = a(o + 1) — 28; then the
terms involving time can be caucelled, Furthermore, using the identity

/ (. x) zl.\'E/ r"()( > (I;\‘EI"*Nb‘/ O(EY dé
Jry Jrs 1# Jre

(it is assumed that # € L'(RY)), by (13) we have that @ + N3 = 0. Hence we
obtain a unique pair of parameters o = ~N/(No + 2), B = 1/(No + 2), that is,
the desired solution has the form

u(f, x) = "-N/(Nrr+3)9(§). { o _\‘/,I/{NrHZ)’ (16)

Then it follows from (15) that the function 6 > () satisfies the following quasi-
lincar elliptic equation:

AT/ N N
Ve (07V0) 4 e e £ —f = (), & € R", 17
¢ £)+N{}‘+2,_Z]H§,‘£—*N(}‘+2 £ (n
as well as the condition
) l)(E) (Itf == I‘:(). (IS)
Jre

Let the function 6 be radially synmerric, that is, let it depend only on one coor-
dinate: 8 = 0(n). n = |£| > 0. Then equation (17) takes the form

| N
N - gy i\ ! ‘
e () TG A e ) —f =0 7>} 19)
nV 7 (7 No +2 77+N(r+2 m (
moreover, by symmetry we have to require that the condition
o' =0

holds. Equation (19) is equivalent to the equation

N per gyt 7 ] Nyt
Y070y 4 ——— (™) =0, = 0.
No 42
Integrating it, and setting the integration constant equal to zero (this, as is casily
verified, is necessary for the existence of a solution with the required propeities),
we aitive at the first order equation

WHWA =0, 7 =0, 07¢(0) =0,
a -+ 2z

A
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Its solutions have the form

a 9 3 Ve
f(n) = [2 (M “77’)4} =0 (20)

(No + 2)
Here ¢ is a constant, which s determined from the condition (18);

o/ INaT+2)

ea

o(Eo) = 4 72 {Z(Nrr + 2)} VTN 4+ 1/o) s
-t Fd/o + 1D

Thus the required self-similar solution with constant energy has the form
V/er

.2
- NJINaor &) o 2 I\l

(1, X) =1 o= . 21
“.\( ~-/\) Z(N(}' T 2) U ( )

12/ N
t

Forany 1 > 0 1t has compact support in v, while as 1 — 0%, it goes to @ 5-function:
ug(r,x) — Eyd(x), + — 0'. Everywhere exeept on the degeneracy surface
R, x {|x] = 7or'"N* DY it is classical (and infinitely differentiable), while on the
surface of the front (on the interface) it has continuous heat flux, Differentiability
properties of the solution (21) are the same as those of the particular solution of
travelling wave type considered tn Example 6. Stnce equation (12) is invariant
under the change of 1 to T 41, where T = const > 0, wg(r 4+ 7. x) will also be a
solution with constant energy.

In the following example we use the solution constructed above to Hlustrate an
intriguing property of a quasilinear degenerate parabolic equation with a sink.

Example 9. (Jocalization of heut in media with absorption) et us consider the

equation
w= V(" Vuy — yu. 1 >0, x e RY, (22)

where ¥ > (} is a constant, Compared with (12), this equation has a lincar sink of
heat. Let us sce how this is reflected in the propeities of the generalized solution,
In equation (22) let us set
u(t, Xy = expl{—ytivls. Xy,
wheie v is a new anknown function, Then the eguation for v takes the form

explyortiy, = V. (0'Vo). 1 >0, x e RY.

Intraducing the new independent (thme) variable

]
T=70) = —|[1 —expl—yor}l. 7 e [0 1/ (yo)).
‘y(}'
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we obtain for v = v(r. x) the equation
v, = V. ' V),

which we considered above: its particular solution we already know. Choosing as
v, for example, the function wg(1 + 7. x) (see (21)). and inverting all the changes
of variable, we obtain the following solution of equation (22):

u(f. x) =
[ l., Vo
. ~N/tNot 2) o 2 NS
- lx . , f , —
¢ p[ Y }[}v( )] 2(N{J" +2) T [.K’([)]:/(N”+2)
where ¢g(1) = 1 4+ 7(r), This solution has the degeneracy surface
| — expl—yorr} /N
[er (D] = 1o [l + __,J_{_Z_l} R (23)
Yo

on which the flux is continuous, But this is not its main distinguishing feature.
As in Example 8. the support of the generalized solution grows monotonically,
however here we have

F/ANa+ Y
L=1limx, ("N = | + —~> < o,
“w| N =mno o

that is, heat perturbations are localized due to the action of the sinks of energy in
4 bounded domain in the space, a ball with radius L.

2 Definition and main properties of generalized solutions

The examples we considered tn subsection 1 allow us to demonstrate many of the
properties of generalized solutions of quasilinear degenerate parabolic equations.
Let us note again that a generalized solution does not necessarily have everywhere
defined derivatives, but at points of degeneracy it possesses a certain regularity: the
heat flux is continuous. At all other points where the equation is non-degenerate
(and is, therefore, uniformly parabolic in a neighbourhood of these points), the
solution is, as is to be expeeted, classical. Let us give w definition of a generalized
solution, which takes into account all the indicated properties.

Let us consider in (O, 7) x ) the first boundary value problem (1.2)~(1.4) for
an equation with coefficients k(u), Q(i) sufficiently smooth for u > 0, such that,
furthermore, k does not satisfy the uniform parabolicity condition, that is k(0) = 0.

Definition. A nop-negative continuous bounded function «(r, x), which satisfies
the boundary conditions (1.3). (1.4) will be called a generalized (weak) solution
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of the problem (1.2)~(1.4) if the generalized derivative V(1) = k(1) Vu exists,
is square integrable in any bounded domain o' < (0, T) x ), and if for every
continuously differentiable in (0, T) x €} function f(r. x) with compact support,
which is zero for (1. x) € [0.T) x 8Q and for r = T, we have the equality

/ / <u—— ~ k(i)Y -V + (O u)f) dxdr + / (X)) (O, ) dx =0, (24)
Ja

Let us note that formally the equality (24) is obtained by multiplying equation
(1.2) by f and integrating over the domain (0, T) x ). Integration by parts (in
the variable x) is then justified if the function k() Vu is cobtibuous in ). This re-
quirement is not contained in the definition, where weaker restrictions are imposed
on the dertvative V(i) (existence in the sense of distributions and the condition
Vé(u) € Lfm ((0.T) x Q), for which the integrals in (24) make sense). However
for a wide range of degenerate equations the above restrictions are sufficient in
order to prove continuity of k(#)Vu (we deal with this in more detail below).

Naturally, it is necessary to define a solution in the generalized sense in the case
when the solution u(s, x) has degeneracy points in (0, T) x £, where u(s, x) = 0. In
the opposite case, if, for example, up(x) > 0 in Q and Q(x) = 0, thn u( x>0
in (0.7) x Q and the solution is a classical one, since the equation does not
degenerate in the domain under consideration.

Generalized solutions of quasilinear degenerate parabolic equations were stud-
ied in detail ib a large number of works (see, for example, [319, 341, 86, 377, 296)).
Without entering into details, let us note one important point. As a rule, the gen-
eralized solution «(r. x) of an equation with smooth coefficients is unique and can
be obtained as the limit as 1 - o of a monotone sequence of smooth bounded
positive solutions i, (1, x) of the same equation. As a result, in a neighbourhood of
all the points (1. &) € (0. T) x £}, where > (), the solution is classical, and it loses
smoothness only on the degeneracy surface, which separates the domain {u > 0}
from the domain {i = 0}. To prove continuity of the heat flux ~k&(«) Vi, additional
techniques must be mobilized (see, for example, [16]). Some additional informa-
tion concerning differentiability and other properties of generalized solutions can
be found in the Comments section of this chapter.

Below we shall treat in a more detailed manner the restrictions, under which it
is necessary to consider solutions of a purabolic equation in the generalized sense.
This will be done using the example of the nonlinear heat equation

= Vo (k()Viy, 1> 0. x € RY, (25)

for which we consider the Cauchy problem with an initial function of compact
support
(0, %) = wo(x) 2 0, x € RY; dug) e C'RY), =~ (26),

L
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so that
to(x) =0, |x] > = const > (). (27)

We return now to the condition we obtained in Example 6 concerning compact
support of a travelling wave solution. It is quite general.

Proposition 4. Convergence of the integral

bk
/ o (28)
4] n

is a necessary and sufficient condition for the solution of the Cauchy problem
(25)~(27) to have compact support in x.

In other words, if the integral in (28) diverges, then u(f, x) > 0 in RY for
all 1+ > 0. The proof of this assertion is based on the comparison theoretns for
generalized solutions, which are essentially similar to the ones quoted in § 1. The
second of these theorems is slightly different in the generalized setting.

3 Comparison theorems for generalized solutions

Theorem | extends to the generalized case word for word, In the general case its
proof is based on the analysis of integral identities of the form (24) for solutions

I . - . . .
u'™, 4 or by comparing a sequence of positive classical solutions «{, {2, which

converge, respectively, to the generalized solutions u™, %
The statement of Theorem 2 has to be changed. In specific applications we

shall use the following version.

Theorem 3. Ler there be defined in [0, Ty x Q a non-negative goneralized solution
of the boundary value problem (1.2)-(1.4) as well as the Junctions uy € C(|0, T x
W, iy € CV2 everywhere in (0, T x Q apart from a finite nunher of smooth non-
imtersecting surfuces (0, TY x S,(1) on which the function V() = k()Vu is
continuous. Let the imequalities (1.9) hold everywhere in (0, T x ( Q\{,\ e S;(nh.
while on the parabolic houndary of the domain (0, Ty x 4 we have the conditions
(LA, (1D, Then

w < n<u,in(0,T)yx . (29)

The new element in comparison with Theorem 2 is just the fact that the gen-
eralized supetsolution 1y and subsolution u can have compact support, while
on the degeneracy surfaces (0, 7) x S,(n) the corresponding heat fluxes must be
continwous. Thus, roughly speakinbg, we are imposing the same rcquircmcms on
the functions oy as on the generalized solution of the problem. 1f in (1.9) we
replace the inequality signs by equality signs (in (0, 7) x (Q\{x € §,(N}). then
the functions v, will be simply different gcnumhzud solutions of equation (1.2).
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4 Proof of Proposition 4 (concerning finite speed of propagation of
perturbations) and some of its corollaries

Sufficiency of the condition (28) follows directly from the analysis of self-similar
solutions of travelling wave type. which was undertakep in Example 6. Let us place
a bounded domain w = supp 1ty in a parallepiped P = {|x,| < ly. i=1.2,..., N}
with sides parallel to the axes x; so that @ ¢ P. Let us show that the speed of
propagation of perturbations along the i-th direction is finite. As in Example 6, let
us construct a particular solution of travelling wave type, having the form

o1, x) = 0(x, — Ly — A1), w(0. x) = 0(x, = ly) =0

far v, = [y, 1 is strictly positive in the left half-neighbourhood {ly — € < x, < Iy}
of the plane x, = I, However SUPp g C P. so that there exists € > 0. such that
u“( () = 0 for x, = I — €. By continuity of u(1, x) for x, = ly — € for some time

€ (0. 7). we shall have the nequality u(r. x) < u((z. x), and by the comparison
lhcorem Theorem 1, w(r. x) < wy(z, %) in the domain {1 € (0. 7)., &, > [y — €}
Therefore (s, .x) has campact support in v alang an arbitrary danumn X, As
supp u(r, A) grows, the parallepiped P becomes larger. and the same argument
applies.

To prove necessity we use a different self-stmilar solution of equation (25):

us(rox) = f(&), £=x[/1'"? 1> 0. x e RY, (30)
where the function f > O satisfies the ordinary difTerential equation
l . A .
a7 (£ KNS H5rE=0. 650, (31)

Lemma. Condition (28) is « necessary and sufficient condition for exisience of
a non-negative generalized solution of equation (31), which vanishes at a point
&= &y > 0 where the heat flux =&Y 'k([) [ is continuous.

Proof. Thc existence ()f i s\()lulion J = f(&). such that [(£&y) = KOS IE) =
0. /(& > Ofarall £ € (0. &y is cxlabhshul by reducing (31) in a nubhh()uxhood
of the pmnl &=¢&ylo lhe ulmvaanl integral cquation with respect to the manatone
decreasing function & = £( /).
1 2N Yk () d
B =M = b= [ T 0, (32)
st/ Joo T ENO dE
Lacal solvability fallaws from the Banuch contraction mapping theorem, If the
integral in (28) diverges, there is no salution with a finite front paint § = &,.
Indeed, on the ane hand
lxm ECf)y =&y = 00,
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while on the other hand we obtain from (32) that

lim £(/) = Lim MENS) = & — 2&," lim // Ao dn = —oc
[ T [0 T h f=0 Jy 7
In this case (31) has a monotone solution [ = f(£), strictly decreasing in R,
such that f(£) — O as & = oo (see e.g. {337, 24, 327

Necessity of condition (28) is also proved using Theorem 1. Let the integral
in (28) diverge. Let us show that uir, x) > (Vin RY for all 1 > (. Let us take the
solution f(€) of the lemma and set

N, x) = foad/) > 000> 000 € RM\(OL (33)

The function J(£) can he undefined for ¢ = 0, but that is not essential. For us
it is important that by (33) «'"(s, x) — 0 as t — 0" uniformly in any domain
{1x] > 8}, & = canst > ().

Without lags of generality let (0 € suppug. Let ug pick 6 > 0 small enough,
so that {|x] =< 8} C suppup. Then. obviously, there exists 7 > (), such that
w1 x) < nirox) for |x] = 8.1 € (0.7).

Let us use now the fact that the solution of the problem (25), (26) can be
obtained in the form

u(, x) = l'n?)x‘ u 1. x), 1 >0, v eRY,
where # are classical solutions of equation (25), which correspond to the initial
conditions (0, x) = € + up(x), x € RY. But, as is casily seen, for every € >
we can always find 1, € (0, 7) (1, — 0 us € — 0, such that o'"(1, x) < 1 (0, x)
in {|x] = 8} for 1 € (0, 1.]. while by construction of the family {r¢} we have
M1 X)) <ux) for |3 =8, 1€ (0.7 —1,).

Therefore from comparison Theorem | we obtain the inequality u'' (141, x) <
(1. x) for v € R¥\{|x| < 81,1 € (0.7 — 1,). Passing in this inequality to the
limit € — ', we obtain that #™"' (7, ) < u(r, ¥) for ¥ € RV\{|y] < 8}, 1 € (0. 7).
which by (33) implies strict positivity in RY of the solution of the problem (25).
(26) for all wbitrarily small 1 > (). This concludes the proof of Proposition 4. O

Therefore if the condition

o] I\'
/ tm) dn = 00 (34)
Jo n

holds. there is no need to define the solution of the problem (25). (26) in gen-
ceralized (weak) sense: any non-trivial solution is strictly positive and therefore a
classical one. Naturally, this will also be corréct for any equation (1.2) with a
source.
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Proposition 5. Ler Q(u) = 0, Q € C'([0. o)) and let the coefficient k(i) sarisfy
condition (34). Then if uy(x) #0, the solution of the Cauchy problem (1.2), (1.5)
is strictly positive in RY fm all admissible 1 > .

Proojf. By comparison Theorem 3 the generalized solution of the problem under
consideration (denoted by (1, x)) is everywhere not smaller than the solution
w = u'" of the Cauchy problem (25), (26) for the equation without a source:
u'? > o'V, However, from Proposition 4 it fallows that & > (0 in RY for 1 > 0;

therefore this also holds for «'?, 0

For an equation with a sink the situation is more complicated, Here even
if k(0) > 0. the selution u(r. x) can have compact support. However. for that
to happen the sink must be very powerful for low temperatures # > 0 and the
function Q(1) must be non-differentiable gt zero. Otherwise, as shown in the
example below, the solution will still be positive and a classical one.

Example 10. Let us consider the Cauchy problem for a semilinear equation \gilh
a sink:
i, = A — Q(u), 1 > x € RV, (35)

with an initial function uy(x) # 0 with u)mpdu support, 0 < uyg < M. suppiy C
ffxl < Iy} Let Q) > 0 lor >0, 00) =0and Q € C'([0, o0)). Let us show
that u(r, ¥) > (}in RY for 1 > 0.

First of all we immediately obtain from Theorem 1 that

0<utr.x) <M. 10, xeR"
Next, taking into account the restrictions on the coefficient ¢ we deduce that
Q) < Cu. ue[0.M]; C = const > (L
Then, using Theorem 3 to compare the solutions of equation (35) and of the

equation
yo=Av~Co 1 =0 xeRY

which satisfy the same initial condition, we convince ourselves that
w(r, x) > v, x)in Ry x RV, (36)
However, v > 0 for 1 > (). Indeed, setting
v expl—Criw (37)

we obtain for w the heat equation w, = Aw, w(0, x) = uy(x) > 0 in RM. ny £90.
and therefore 0 > 0 in RY for 1 » (0. The required result follows from (37). (36).
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The next example shows that in a medium with a strong sink the thermal wave
can be not only compactly supported. but also localized.

Example 11. Let us consider the first boundary value problem for a heat equation
with a sink in the one-dimensional setting:

= - ut >0, x> 0, (38)
(0, x) = up(x) =0 x> () (39)
w(r, ) = u (1) =0, 1> 0, (40)

where a € (0, 1) is a constant, so that the function —u“ is non-differentiable for
u = () (strong absorption), Let the initial perturbation ny have compact support:
up(x) = O for all x = Iy > (), while the external heat supply is bounded: (1) <
M < oo for all 1 = 0. Let us show that under these conditions the solution always
has compact support (even though A(x) == 1 = 0) and is, moreover, localized in a
bounded domain,

Both these assertions are proved by comparing the solution of the problem
(38)~(40) with the stationary solution v == v(x) of the same equation

v, - v o= (), 41)
which is determined in the following fashion,

Let us hx [ = O and consider Tor (41) the Cauchy problem in the domain
{) < x < I} with the conditions

() =0, v'() =0, (42)

One solution of the problem (41), (42) is the trivial one, However. it is casily
verified that there is another solution, which is positive on (0, 1),
Any solution of (41) satisfies the identity

1 , 1
—(v,) — MU”H - (‘l~

2 | o+ 1

where the constant €'y must be zero, which follows from (42), Then

v, = w\/l/(a+l)v("“‘”/3

__..%mu“ M) = _‘/——L,\' + Ca.
| — -+ |

and therefore
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Here the constant €5, which is determined from the first of conditions (42), has

the form Ca = [/2/(a + 1) and therefore

| — 270w
vix) = [—~—-(3-~(1 - .\')] L <l
20 + 1)

By construction the function

| —w

2l -
e ([ — Lox o> (), 43
2(Cl+l)( \)i} X > (43)

ey (x) = {
is a classical stationary solution of equation (38) und has for x > 0 continuous
derivatives u,, u,, (let us note that at a front point x = [ higher derivatives do not
necessarily exist). Let us choose now [ = [, > () large enough, so that g < wy, (x)
for v > 0 und furthermore

| — ‘ 201 my
w () = |~z > M.

V2a+1) '

Then wi(r) < wy () for all 1 > 0. Therefore by the comparison Theorem | we
have the estimate
xeR,.

N

u(t, x) < wy (x). =0

Thus, first, the function u has compact support in v for all 1 > () and, second,
heat is localized in the domain {x € (0. 1,)} at all times 1 € (0, o0).

Let us stress that these properties are passible only in the case a ¢ (0, 1): for
a > 1, as shown in Example 10, the solution is strictly pasitive for 1 > (). Absence
of non-trivial solutions of the stationary problem (41), (42) with finite / > 0 in the
case a > | ulso testifies to that,

5 Conditions of Iocal and global existence of the generalized solution

On the whale, all the assertions stated in subsection 2 of § 2 concerning classicul
solutions, are valid here. Local existence of the generalized solution follows from
the ability to construct it as a limit of a sequence of classical solutions defined on
a finite interval (), 7). Naturally, Proposition 3 is also valid. since the condition
entering it has been obtained in an analysis of classical solutions. Analysis of un-
bounded classical solutions in Exumples 2, 3 upplies also to generalized solutions.
Let us consider the following exumple (in a more general setting such problems
are considered in § 2. Ch. VID.

Example 12. Let Q be a bounded domuain in RY with g smooth boundury 9():
o > () is a fixed constant, For a degencerate equation

u = V(") + 0, 1> 0 x e (. (44)
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let us consider the boundary value problem with the conditions

w(,x) = up(x) = 0, x €, uy e C(LY).
(45)
u(t, x) = 0.1 >0, x € .

Let us denote by ¢ (x) > O in Q, [ 11, = 1. the first eigenfunction of
the problem Ay + Ay = 0 in Q. oy = O on 90, and by A, > 0 the corresponding
cigenvalue.

We shall show that for Ay < o + | every non-trivial solution of the problem
exists only for a finite time. We shull proceed as in Example 2. Let us form the
scalar product in LZ(Q) of the equation (44) with . Introducing the notation
E(1) = (u(1. x), 4y (x)), we obtain

([[I; (1 = / ()Y (" V) dx + / Y ( u (46)
(

Here. as in the case of a classical solution, we can integrate by parts the first term
in the right-hand side of (46).
Let us show that

/ Y)YV (" Vau) dx = /u"”Ar//ld\ 47

(r+l

U wg = 0 in ) then u(s, x) is u classical solution. Let Suppuy C . Let us
denote by dw(r) the degeneracy surface of equation (44) in this problem, that is,
the boundary of' the support of the solution w(f) = suppu(s, x). Then u(s, x) =0
in N\ w(1r), and by Green’s formula

l .
/ V(W Vuydx = — / r//lAu"'H dx =
Ja o+ 1 Jun

] Jue 44 p)
- Ayyu”t Pdx + / A “ ds — / —,—lﬁ,—lu'”'l dx o .
o+ 1 1. wln) Jika(n) o, NE) an,
(48)

where we denoted by 3/, the derivative in the direction of the outer normal to
dw(1). However, u” "' = () on dw(r) and by continuity of the heat flux du™'/on, =
Vu = 0 for x € dw(r). Therefore the last two integrals in (48) are zero,
which leads to the equality (47).

It must be said that in the analysis above we did not consider the question
of regularity of the surface dw(r) (in particulr, the existence of the derivative
At Jin, on dw(1)): for certain classes of equations this problem is quite well
understood (see the Comments section). In this particular case this is not necessary;
the definition of u generalized solution implies that integration by parts is justified
and allows us to prove the equality (47).
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Using (47) and taking into account the fact that Ayyy = —A i, in {1, we obtain
from (46)
([E A[
Sy == ) ™ ), 0. 49
(“() < (T+l>(“ ). 1> (49)

or+1

If Ay < o +1, then using Jensen's inequality (i is a convex function for 1 > 0),

we arrive at the estimate

([L A( A[ N
— > 1~ - ol — e | BT 0.
it _’< (r+l>(“~‘//l) <l (r+l>b =

Hence it follows that £(1) (and thus u(s, x)) remains bounded for time not greater

than | |
. o+ -7
T, = ydx| < o0,
el Ao [/‘ Hy (X (v) ¢ \} o0

that is. there exists Ty € (0, T, ], such that Iim sup, (1, x) =00, 1 — Ty

Let us note that for Ay > o+ 1 it follows from (49) that E(1) is bounded for all
1 = 0. This can be considered as evidence of global boundedness of the <oluuon
(see § 2, Ch. VII).

To conclude, let us give some simple examples of unbounded generalized so-
lutions which illustrate the property of heat localization in nonlinear media with
volumeltric energy sources.

Example 13. The cquation
u = (1), +u""", o =const > 0.
has in the domain (—oc, Ty) x R the following self-similar separable solution:

u(t.x) =Ty =1 """05(x) =

\/a
ert ) 2oy i i (50}
=(Ty -0~ (rrurm Cos™ 1, ) .l = Lg/2,

0. |x| =z Ls/2. 0 <1<T,

where Ly = 27 (o -+ 1)!/?/or and Ty > 0 is an arbitrary constant,

Let us indicate the main features of this solution. First of all, it has compact
support in x and is a generalized solution; at the points of degeneracy v = tLg/2
the heat flux is continuous.

Secondly. it exhibits finite time blow-up: u(r, x) — oo as + — Ty for any
Ix| < Lg/2.

Thirdly. its support. suppu(t. x} = {|x| < Lg/2}. is constant during the whole
time of existence of the solution. It is localized; the heat from the localization
domain {|x| < Lg/2} does not penetrate into the surrounding cold space (see
Figure 4), even though at all points of the localization domain the temperature
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Fig. 4. Localization of a f{ivite time blow-up combustion process in the S-regime (self-
similar solution (50))

grows without bound as 1 — T';. The half-width x.,(1) > 0 of this fast growing
heat structure. that is, the coordinates of the point at which u(r. x. (1) = u(1,0)/2
are also constant in time,

Example 14. The equation i == (17 u,), 4+ 1™ ' o = (), also has quite an unusual
exact non-self-similar solution of the following form:

(1, x) = {z/)(l) [(1) + cos(2ma/Ls)], }l/‘r > ()
for v € (~Ls/2, Lg/2y and u, (1, x) = 0 for x € R\(—1L¢/2. Lg/2). where the
function (1) € (1. 1} satisfies for 1 > () the equation

/2

r//' = (o + l)"C,)[l - r//zl > 000y = 1,

St 2)/2

and P(1) = Col1 — ()] . If the constant Cy ts chosen in the form
Co=Co(Ty) = (o + 1o 'T;'BU +a/2.1/2),

then it is not hard to see by integrating the equation for (r) that the solution
1, (1, x} will blow up at time Ty: 1,(4,0) — oc as 1 — T, Itis easy to see that
the fronts of the generalized solution u, are at the points

(1) = £(Lg/2m)|mw/2 + arcsiny(1}] — +L¢/2

ast — T, and the solution grows without bound only in the localization domain
{1x] < Lg/2}. It is interesting to note that since y(0) = —1_ we have the equality
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I (0) = ( and the exact solution satisfies in the gencralized sense the singular
tnitial condition
i, (0, x) = Ey0(x) in R,

where 4(x) stands for the Dirac delta function, and the constant £y depends only
on Ty and . More precisely, for small 1 = () we have the representation

1 31 b/
_ 2 2 7H\-
“‘((1”\4) =~ dpt I/er v 20 I:] - (/\,/[)”/ [l,’(ﬂi_)> ] i

t

where ¢, and by are constants,
o : N 2ar(ers 2 2 2
dy = 2o+ Do o 42 VTP BA o2, 12

bo = (o + ])U_J(U_ + 2)2/(";.21»’-” 2/(:192)IB“ + (J‘/2_ I/Q)IZ/('HZ’,

Therefore it is casy to see that

ERa
/ w1, x}(xydy — EpéOyast — 0
A o

for any smooth compactly supported test function £(x). From these asymptotics it
follows immediately that Eo = aghy>B( + 1/, 1/2).

As far as the behaviour of the solution u, (7, x) close to the blow-up time is
concerned, it is not hard to check, by computing the asymptotics of the functions
W1y and (1) as 1 — T, that this exact solution converges asymptotically to the
simpler self-similar solution (50}, which we considered in Example 13, Below
(see § 5, Ch, 1V) we shall show that precisely this self-similar solution describes
the asymptotics of a wide variety of unbounded solutions close to the blow-up
time.

Finally, we observe that the abave solution u,, which is not self-similar, can be
treated as follaws. Setting 1 = v yields an equation with quadratic nonlinearities,

] ) 1
=AWy =ve 4+ — () + o,
o
The nonlinear operator A admits the following two-dimensional linear invariant
subspuce
W, = 1. cos(Ax)} =
={w(x) : 3Cy. C; € R, such that w(v) = Cy + C| cos(Ax}}.

where A = 27 /L ((F{-} denotes the linear span of given functions). This means
that A(W,) € W,, Therefore substituting v, x) = Co(1) + Ci(1}cos(Axy € W
into the equation gives us a dynamical system on the coefficients {Cotr). Ci(1}),
which is precisely the parabolic equation on Ws.
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6 Examples of non-uniqueness of the generalized solution

Obviously, the requirement of smoothness of the source Q = 0 in equation (1.2),
which is necessary for unique solvability of the Cauchy problem (see subsection 3
of § 2) in the class of smooth functions, is still in force in the generalized setting,
Example 4 applies in this case without changes. In addition, it is easy to give an
example of a degenerate equation, constructed as in Example S, which has in a
bounded domain a non-unique spatially nonhomogencous solution.

For example, the problem

; . L=a)/(er + 1)
o= A 4 A 4 r//'l @il

w=0in Qforr=0ad in R, x 3 @ € (0, 1), & > O are constants; the rest
of the notation is the same as in Example 5 of § 2. has the family of non-trivial
solutions

u(t, x) = v,(l)r/:/('” I)(,\'), >0 xefl

Let us congider an example which demonstrates explicitly that if uniqueness
conditions do not hold, the comparison theorems for generalized solutions are no
longer valid,

Example 15, Let us fix an arbitrary o € (0. 1) and let us consider for 1 > 0,
x = 0, the equation
1 =), 4u ", (51

Here Qu) = u'™", so that Q(0) = (0, but Q'(0') = 0o, Let us find a travelling
wave solution.
Setting u(1, x} = [5(£), £ = x — Ar. A > (). we abtain for f¢ > 0 the equation

~AfS =S+
which has for A > 2 two different solutions
F(6) = Cel(=€r, 1M

i/or
AE VN !
prEVA —4

C, =
' 2

> (),
Therefore the required self-simijar solutions have the form
Wy = Cyl =0 YT =0, x>0,
Let us compare these generalized solutions with the spatially homogeneous

solution (Figure 5)
Wy = (N 1> 0, x>0,
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Fig. 5. Three diffcrent solutions of cquation (51), which do not satisfy the Maximum
Principle

First, all these solutions, as solutions to a boundary value problem in Ry x R,
satisfy the same initial condition
L

vt 0 = (0. x) =0, x>0,
Secondly, for A > 2 the boundary values satisfy the inequalities
) <m0 < ut@ 0. 1> 0,

Nonetheless, as seen from the position of these sojutions refative to one another in
Figure 5, they do not satisfy the comparison theorem. Let us note that already the
existence of two solutions 1* of travelling wave type with same speeds of motion
and coinciding fronts, which correspond however to boundary regimes of different
magnitudes., contradicts physical intuition.

Remarks and comments on the literature

The necessary bibliographical references for most of the contents of § 1, 2 are
contained in the text. Concerning Propositions 2, 3 in § 2. see [282, 320, 101, 338];
the restriction (6} in § 2 coincides with the Osgood criterion for global continuation
of solutions of an ordinary differential equation [354]. The result stated in Example
2 wis first obtained in [243]. Concerning Example 5. see [243, 116]. Non-
uniqueness of solutions of boundary value problems in a bounded domain for
a semilinear equation with saurce concave in @ was proved in [116] (see also
[114]). The generalized self-similar solution of Example 8 was constructed in
[385] (N = 1) and [28, 386] (N = 1 arhitrary). Asymptotic stability of the
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self-similar solution (21} of § 3 was cstablished for N = 1 in [234] and by a
different method in [187]. The proof of stability in the multi-dimensional case
was done in [107] (qualitative formal results were ohtained carlier, for example,
in [5, 384, 386]); see also Ch, 1L

The localized solution of Example 9 is taken from [302]. The definition of a
generalized solution in subsection 2 of § 3 for a degenerate equation of general
type without a source was formulated in [319, 341, 342]. These authors also prove
existence and uniqueness theorems for generalized solutions for boundary value
and Cauchy problems. For quasilinear parabalic equations with Jower arder terms
such theorems are proved, for example, in [377. 231, 21, 43203, 294, 344, 345].
where in a number of cases weaker generalized solutions are considered),

Differentiability properties of generalized solutions of the equation u, =
(" o> 0, were studied in [16, 17. 18]. in particular, continuity of the
heat flux ~(u"*'}, was established, certain results concerning degeneracy curves
were obtained, and Hdlder cantinuity in x with exponent v = min{l. 1/0} was
proved. This implies Holder continuity in 1 with exponent v/2 (see [202, 258]).

Under certain additional agsumptions, it is shown in [75] that the Holder con-
tinuity exponent in ¢ is alsa equal to v (from the form of the solution in Example
8 it follows that this is an optimal result). Later some of these results were ex-
tended to the casc of more general degenerate equations |230. 248, 203, 252, 253].
Properties of the degeneracy surface of the equation u, = Au’*! were studied in
[18, 58, 59, 252]; there it is shown that starting from some moment of time it is
differentiable (many of these results are summarized in [103]: see also [328)]).

We shall discuss in more detail the properties of generalized solutions of de-
generate equations in Ch, II, III, and in Conunents to these Chapters.

Sufficiency of condition (28) in § 3 in Proposition 4 (finite speed of propagation
of perturbations) was established in [319] for the one-dimensional case: see also
[33]. Necessity under some additional assumptions was proved in [229]. In the
proof of Proposition 4 we use a method that was employed in [327] for N = 1.
Concerning Theorem 3, see [231, 232, 248]. In the presentation of the resuit of
Example 11, we used the approach of [231] (compuarison with the stationary solu-
tion): in that paper conditions for localization in arbitrary media with volumetric
absorption were obtained. For mare details on localization in media with sinks
see Ch, 11 and the surveys fn [233, 162]. In the analysis of the parabolic equation
in Example 12 we used a generalization of the method of [243] to the case of
quasilinear problems [120, 121, 124] (see also [225], where the same method is
used to study a quasilinear equation of a different type). The Jocalized unbounded
solution of Example 13 was first constructed in [391, 353] (see Ch, IV),

The localized solution of Example 14 was constructed and studied in [134, 176].
There one can also find a method of constiucting similar exact solutions for a large
class of evolution equations and systems with quadratic nonlinearities. Let us note
that thig solution is not invariant with respect to Lie groups or Lie-Bicklund groups:
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see [221, 322]. An example of this unusual kind of exact solution for a quagilinear
equation with a sink was constructed in [49] (see also a similar solution in [313].
Some general ideas on construction of finite-dimensional linear subspaces that
are invariant under a given nonlinear operator and of the corresponding explicit
solutions via dynamical systems are presented in [136] and [139]. Example 15
is taken from [122]. In that paper were established conditions on the coefficients
k(wy, Q(0), under which a parabolic equation of general type admits at least two
travelling wave type solutions. Existence of different travelling waves for an
equation with power type nonlinearities, u, = Au™ + 0", p <1 <m. m+p 2
2. was established in [323]; sce also the general results of [324] on “almost”
uniqueness (for m 4+ p < 2} and nonuniqueness, and [6] for the case m = 1.



Chapter 11

Some quasilinear parabolic equations. Self-similar
solutions and their asymptotic stability

In the present chapter, which, like the previous one, is of an introductory character,
we briefly present results of analysis of specific quasilinear parabolic equations. As
can be seen from the title, one of the principal methods of investigation consists of
constructing and analyzing self-similar (or, in the general case. variant) solutions
of the problem being considered.

Using various examples, we shall try to show, what role these particular solu-
tions play in the description of general properties of solutions of parabolic equa-
tions of most diverse types, Here we also introduce the concept of approxi-
mate self-similar solutions (a.s.s.) of nonlinear parabolic equations. Use of the
construction of as.s as a tool in its own right will be considered in other chap-
ters.

The examples presented below cover a sufficiently wide spectruin of nonlinear
equations. Comparatively simple and trequently well known examples illustrate
many tdeas and methods of analysis. which will be developed in subsequent chap-
ters in a more explicit and detailed fashion.

Many of the problems and questions considered below have been exhaustively
rescarched; the corresponding references are given at the end of the chapter, From
all the available results we choose only those that are, first, constructive, that is,
ones that make it possible to show explicttly certain properties of the solutions of
a problem, and second, which is particularly tmportant for an introductory chapter,
those that can be proved in a relatively simple and brief manner at least on the
formal level, Wherever this cannot be done, we restrict ourselves to short remarks
on the proof, or discuss only the “physical meaning”™ of the result, which contains
the ideus of a rigorous proof. For that reason, we do not aim at a great generality
in our presentation; frequently other proofs of well known facts are given; these, in
our view, either make explicit the “physical basis™ of « phenomenon, or illustrate
mathematical methods to be used in the sequel. Let us note that this approach
(frequently using stmilarity methods) makes it possible to obtain more optimal,
and even new results.
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We want to emphasize in particular the concept of asymptotic stability of self-
similar solutions of nonlinear parabolic equations with respect to perturbations
of the boundary data of the problem, as well as with respect to perturbations
of the equation itsell. Self-similar (invariant) solutions are not simply particular
solutions appearing serendipitously. In many cases they serve as a sort of “centres
of gravity” of a wide variety of solutions of the equation under consideration. as
well as of solutions of other parabolic equations obtained as a result of a “nonlinear
perturbation”™ of the original equativn. The sense in which the expression “centre
of gravity” {s to be understood, will become clear below.

The specific form of self-similar solutions is to be determined from the condi-
tions of invariance of an equation with respect to certain transformations. In the
general case families of self-similar solutions are determined by a group classifica-
tion of the equation. This allows us to find all cluasses of equations invariant with
respect 1o a certain group of transformations (such as Lic groups of point transfor-
mations. or Lic-Biicklund groups of contact transformations; see [221, 322]).

We start with an analysis of a simple linear problem; however, as we show
below, this analysis will allow us to determine properties of a whole family of
nonlinear problems. *

§ 1 A boundary value problem in a half-space for
the heat equation. The concept of asymptotic stability of
self-similar solutions

For the linear equation
o=, 1> 0, x> (), (1

let us consider the houndary value problein with boundary data
w( vy = ug(x) 2 0, x> 00 supuy = oo, (2)

u(t, ) = uy(r) > 01> (. (3)

It is assumed that the function uy(x) is Lipschitz continuous in R,. Here we
analyse the “dimensionless™ equation with thermal conductivity coetficient kg = 1.
This does not restrict the gcncrulil%of the results, since by sculing time 1 — kgt
(or the spatial coordinate x — £, /’,\') the linear equation u, = kou,, reduces to
the original one. Thus in equation (1) the variables 7, x are also dimensionless
quantities,

As we already mentioned, the problem (1)-(3) models the process of heat
action on a medium with a constant thermal conductivity. Our goal is to describe
explicitly the evolution of the heating process, establish the law governing the
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motion of the wave of heating, find how its depth of penetration (half-width)
X7 (1) depends on time!, and to determine the spatial profile of the wave.

Solution of the stated problem can be written down explicitly in terms of heat
potentials [282]:

5

') x /’ X uy (1) I+
(T, X) = e exp{ — dr
( LIl N T

x > (x — &)° (x4 &)° o
st 558 ol 5 e

(4)
However it does not seem possible to glean directly from (4) the features of the
process we are interested in. Therefore we proceed in a different way,

1 A self-similar solution
Let us consider a special form (power law) boundary regime;
i (0) = (L4 0" 1> 0. (5)

where m > 0 is a constant, For such a boundary function equation (1) has a
suitable self-similur solution:

wglr, ) = (1 +0)"05(&), &= x/(1 +0)'"°. (6)

Substituting the solution (6) into equation (1), we obtain for #5(&) the ordinary
differential equation
]
0 + 5(;;5 —mls =0, £ 0. (7)

Let
Hs(0) = 1. (8)
Then the solution ug satisties the boundary condition (3), (5). Tuking into consid-
eration the condition of boundedness of uy us x — o (sec (2)), we shall require

the inequality #g(oo) < oo to hold, From equation (7) it is casy to deduce that
such a solution has to satisfy the condition

Oy(oc) = 0. )]

IThe guantity x, (1) is determined for cach time 1 > 0 by the equality (1, X)) =
a(r, /2, that is, this is the point where the temperature is equal to half the temperature on
the boundary.
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Thus the problem of constructing a self-similar solution (6) of a partial differential
equation has been reduced to the boundary value problem (7)-(9) for a considerably
simpler ordinary differential equation.

The solution of the problem (7)-(9) exists, is unique, monotone, and strictly

positive:
2m r(l + ”’) é:z é::
Os(&) = 27 ”chp —y H (21:141)(5)' (10)
where H.(2) is the Hermite function:
Hos) = — /x expl—1* = 2zl " (1)
I'(=v) Jo

(¢ special function of mathematical physics |35, 317]). The function #(¢) decays
rapidly as & — oo;
Os(€) ~ exp|—&2/4}, € — oc. (12)

The self-stmilar solution (6) constructed above his 4 simple spatio-temporal
structure, From the form of the solution it is easy to determine the dependence of
the depth of penetration (half-width) of the thermal wave on time;

X = Eptl+ 02 (13)

where the constant €., = €., 0n) is such that 0g(£,./) = 05(0)/2 = 1/2. The
function #(£) characterizes, for each 1 > 0, the spatial shape of the thermal wave,

2 Comparison with other (non-similarity) solutions

By the comparison theorem, wg majorizes a large set of solutions of the problem
(H~(3).

Proposition 1. /et

() < (L4+0" 1> 0, ugly) < fg(x), x>0, (14)
Then the solution of problem (1)-(3) saiisfies the inequality

wit, x) < (14+0"05(x/(1+0"), 150, x>0, (15)

Therefore if the inequalities (14) hold, we have an upper bound for the solution
of the problem; this bound allows us to understand the form of the distribution in
space of the heat coming in from the boundary. For example, let the boundary
regime be of the self-similar form,

) = (1 4+0" 10, (16)
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while the initial perturbation satisties wy(x) < fy(x) in R .. Then by (15) x./(1) <
x3,(1), that is,
X ) = Eeptm) (] + 0>,

Inequality (15) also gives us some information about the spatial profile of the
non-gelf-similar thermal wave,

3 Asymptotic stability of the self-similar solution with respect to
perturbation of the boundary data

Let us consider a different aspect af the problem, What would happen if the
restrictions on the initial function wy(x) in (14) were not satistied, for example.
if ug(x) =1 in R, (then by the condition #3(x) — O as v — oc the inequality
tg{x) < B5(x) does not hold tor all sutticiently large v > 0). In this cuse the self-
similar solution allows us to obtain sharp bounds on the spatio-temporal structure
of the heating wave, but, naturally, only for sufticiently large 1. Below we shall
deal with asymptotic stability of the solution (6) with respect to perturbations of
the initial function,

Let equality (16) hold. Let us introduce the similarity vepresentation (similarity
“rransform™) of the solution of problem (1)-(3), defined at cach moment of time
in accordaiice with the form of the self-stimilar solution (0);

Ol &) = (140 "ul, £ +0"2), 15 0,€ > 0, (17)

This expression is arrunged in such a way that the similarity trangform of wg(s, x)
gives us exactly the function #g(&),

Proposition 2, Ler wy(1) = (1 + 0", 1 > 0, The self~similar solution (6) is
asymptotically stable with respect 1o arbitrary (bounded) perturbations of the initial
function: Jor any ug(x)

1601, ) = Ost)llem, ) = sup; o |01, &) ~ B5(£)] =
(18)
= O +0)7") — 0, 1 — 00,

Proaf. 1t follows from the Maximum Principle. Let us set 2 = u — uy, Then -
satistics the equation
Ton I > o> 0,

and furthermore z(r,0) = 0, 1 > 0, and sup, _, |2(0, x)| < co. From the compari-
son theorem we obtain

[z(r, %) < M = sup |2(0, 0, 1 > 0,

v}
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Hence it follows immediately that
B, &) — O5(E) = M1+ 07" — 1), 1 — o0,
for all £ = (. ]

Thus for any initial function, the solution of the problem with a power law
boundary regime after a certain time becomes quite close to the self-gimilar so-
lution, From (I18) it is not hard to derive, for example, the asymptotically exact
expression for the depth of penetration of the thermal wave;

N (1) = Eapm) 1 4 ('), 1 = 0, (19)
which, for large 1, is close to the self-similar one;
X (1)/x2,(0) = 1, 1 = o0,

Here by (18) the similarity function correctly characterizes the profile of the hmlmg
wave at an advanced stage of the process.

This does not exhaust the properties of the constructed self-similar solution, It
turns out that it is also stable with respect to small perturbations of the boundary
regime, A general assertion concerning asymptotic stability of the self-stmilar
solution (6) with respect to perturbations of the boundary data looks as follows (it
is proved in exactly the siame way as the previous one),

Proposition 3. Lt
L+ 0" - 1, 1 - o0, (20)

Then
16, ) — O (Vler,, = Olmax{t™, |1 = wuy (1) /1" [} = 0, 1 — 00, (21)

If (20) holds, we have the same exact estimate (19) for the depth of penetration
of the wave. This result gives us an explicit form of the evolution of the heating
process for arbitrary initial perturbations and for boundary regimes asymptotically
close in the sense of (20) o a power law dependence,

4 Asymptotic stability of the self-similar solution with respect to small
perturbations of the equation

Let us show now that spatio-temporal structure of the self-similai solution is pre-
served for large 1 > 0 in the case of a “smull nonlinear perturbation™ of the original
parabolic heat equation,
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Suppose a sufticiently smooth thermal conductivity coefficient is not constant:
k = k(u) » 0 for n = 0, However it is close to a constant for large temperatures;

ki) — 1, - 00, (22)

Let us consider the same process of heating, but now in a nonlinear heat conducting
medium:
= (k(iu),. 1t > 0 x>0, (23)

where (1, x) satisfies the boundary conditions (2), (3). For convenience, let us
introduce the function

Gilu) = / 1=k dy, w= 0.
Jo

Proposition 4. Ler uy = (1 +0)", 1 > 0, uy € L*(R,); 1y s non-increasing in x
and condition (22) holds, Then the self-similar solution (6) is stable with respect
1o the indicated perturbations of the thermal conductivity coefficient, and we have
the estimate

16,0 = 650,y = [ 160.€) = 0560 dE =
JO I (24)
=0 | 4yt mux{l, / (4 7)" G +T)"'|¢1¢H — 0

J0

as 1 —» 00,

If condition (22) holds, the right-hand side of the estimate (24) does tndeed go
to zero as 1 -+ oo, which is not hard to see by evaluating the indeterminates

i ol 7" PG+ 1) dr
I-«l»tx, (1 w|_”2HHI/2 -

1 . G () | ‘ s .
o | = 1 1 —k'=(s)) = 0.
A 12 T T g2 R ()

Let us note that convergence of #(r,-) to Og(-) as 1 — o¢ in the L*(R ) norm
tmplies. in particular, pointwise convergence almost everywhere.

Proof- The function v = u — ng satisties in R, x R, the equation
w, = |k{u)t, — (ug), .. (25)

with w(r,0) = 0, w(r, x) - 0 as x — oo (this follows immediately trom the
Maximum Principle) and w(0,-) € L*(R,). The latter assertion is ensured by
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the requirement that 1y € L*(R,); by (12) the self-similar solution ug(r, <) is in
L2(R ) for all m > 0. We restrict ourselves to a formal analysis of cquation (25),

Let us take the scalar product of equation (25) with w in LY (R,), and, having
convinced ourselves that thig product makes sense, let us integrate the right-hand
side by parts; this is allowed in view of uniform boundedness of the derivatives u,
and (ug), in R, x R, and the condition w — () as x — oc. As a result we obtain

1 d

Ezllwllizm_) = (k) e — (),

It is not hard to verify the identity
~ ity = (i) ) k() — (ug),) =

= —(k'"200u, ~ (1g))" + (1= k') e ug) =
" ,
=~ (K" — (ug) ) + T;—\:Gk(“)(“.\').\-
[¢R
using which the preceding equality takes the form
1 d N dJ
EI”"’”iﬂR.) = k" (wyu, — lus), ||f_:(R‘, + (E\_Gk(u). (ll_g')_‘> }

Under our assumiptions on up(x), 1,00, x) < 0 in Ry forall 1 > 0 (this follows
from the Maximum Principle; see § 1 of Ch, V). Taking into account in the last
equality the fuct that (ug), < O in Ry x R, we amrive at the estimate

| d 5 Jd .
.:,_':[-[||“)||},;(R_, = (E‘)“‘\:C’k(“). (lls)\> =
(26)
>~
< —sup(ug(r. x)) | —~—Gr(u(r. x)) dx.
\ J0 ox
It is casily checked that
st = (140" 216561,
while sup [05(6)] = s < o0. Then fiom (26) we obtain
I d 2 - ] m I/IC ] m 27
51—[;”1““"1“(') =ystl +1) e 4+n"]. (27)

Since. as follows from (17).

et e, = (14D 210G = O050) 152 )
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from (27) we immediately obtain the estimate

16(1, ) = 0o, = (L1 " gy = 05 g, +

i
+2([,\‘(l +[) ni--1/2 /(l +7_)mAl/ZGkI(l +T),"Id7.-
40

(28)
which is the samie as (24). 0

Remark. The estimate (24) holds for sufficiently arbitrary (non-monotone in x)
initial functions uy € L2(R ). such that 0 < ug < ug = uy in Ry, where u are
monotone functions, u{f(()) = 11,(0). Then the samie method can be used to derive
estimates of the form (24) for the similarity representations 8 (. &) of the solutions
wt (1, x), which satisfy the initial conditions u¥|,.o = u} in R,. Therefore the
stabilization 6(1, £) - fg(€) as 1 — oo will follow from the incqualities u™ <
w < ut (or, equivalently, ° <6 < 6%) in R, x R;.

Thus, the self-similar solution (6) correctly describes for large 1 properties of
solutions of a large set of quasilinear parabolic equations. The estimate (19) of the
depth of penetration of the thermal wave also holds here, while the function #¢(§)
determines its spatial form as 1 — oo. The function uy will be an approximate
self-similar solution for the equation (23): uy does not satisfy that equation, but
correctly describes asymptotic propertics of solutions of this equation.

Therefore, using just the self-similar solutions (6) we can describe asymp-
totic behaviour of solutions of boundary value problems corresponding to different
boundary data ug(x), u(r) and different equations (in this case, cquations with
different heat conductivity coefficients k(u)). However, (1) admits also other self-
similar solutions, such as, for example, a travelling wave type solution.

netr, x) =explt — x}o 1> 0,x >0, (29)

for which 1 (1) = explr}. It is not hard to show that this solution is stable with
respect to perturbations of initial and boundary functions, as well as to perturbations
of the equation, which allows us to find asymptotically exact solutions for the class
of boundary value problems with houndary regimes of exponential form.

Finally, let us observe that the properties of self-similar solutions of equation
() (for example, of form (6) or (29)) are preserved also under perturbations of
boundary regimes and the equation more drastic than those of (20) and (22) (sce
§ 4, Ch, VI).
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§ 2 Asymptotic stability of the fundamental solution of the
Cauchy problem

In this section we consider the Cauchy problem for the heat equation,

wo=u,,. >0, xeR. (n

(0, x) = ny(x) >0, xeR: uy e CR), (2)

where the initial function has finite energy:
Ey = |luglly gy < 20, Eg > 0. 3

Then the solution of the problem (1), (2) will have the sume property: its energy
is constant in time:
~
/ u(t, ,\')(1.\' == E(). r > 0. 4)
Joo~ &
For simplicity we shall assume in the following that ug(x) = atexp{—|x|*}) as
lx| —» oo,

We set ourselves the same questions: how does the initial temperature profile
spread, how do its amplitude and width change in time as 1 — oo?

We stress that this problem in the above setting is very different from that con-
sidered in § 1. Unlike the boundary value problem, here there is no “forgetting” of
the properties of the initial condition, since the amount of encrgy Eg in (4) (which
is a characteristic of the function ng) plays an important role at the asymptotic
stage of the process. This fact imposes additional restrictions on the methods of
studying asymptotic properties of solutions of the problem (1), (2).

Equation (1) has a well-known self-similar (fundamental) solution in R, x R:

ug(r, x) = (1 +0 2 fe8), €= x/(1 + 07, (5)
where
) Eqy £
_/_\.(g):zﬁl/zgxp{—z}. & e R, (6)

It satisfies the conservation law (4).
Solution (5) will solve the problem (1), (2) only if the initial function ug(x) is
also of a self-similar form, that is, it

I x?
to(x) = ug(D, X) = 57;%3 exp {*Z} , veR. (7



48 1l Some quasilinear parabolic equations

1 Stability with respect to perturbations of the initial function

The analysis of this problem is not very complicated, since there is a representation
of the solution of the problem (1), (2) in terms of a heat potential [282]:

N R (-] <
u(t,.\)_m- Nu(,(_\-)gxp T dy. (8)

For convenience, let us introduce the similarity representation of the solution
of the problem (1), (2) which corresponds to the spatio-temporal structure of the
solution (5):

Ja o= +0"u0 &0+, 150, £€R 9)
(substitution of the solution (5) into (9) gives us the function [¢(§)).
Proposition 5. The self-sondar solution (Sy is stable with respect 1o arbitrary
perturbetiems of the self-similar initiad Junciiem (7), which preserve its energy: if
(3) halds, we have pointwise cemvergence:

fu. &)~ fg(é), 1 — 00 £€R. (10)

Proof. Let us fix an arbitrary ¢ = x/(1 + 1)!/%. Then, using (8). after elementary
transformations, we obtain

L (14+\'" £
f('~§)——§(”;;*> U‘P{—Z‘}X

- §2+)’2~2§_\’(l+1)l/2
X / up(v)exp§ — " dx.

Since uy € L'(R) satisfies condition (3). the integral in the right-hand side con-
verges to Eq as 1 — oo, This means that (10) holds. a

What are the consequences of this result? First of all, it means that the amplitude
of the thermal profile evolves for large times as

Eo p

sup u(r, x) = 3771/2[

weR

Y e e &N

so that the width of the temperature inhomogeneity is

Xeg(n) 22 20227 o
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2 Stability with respect to nonlinear perturbations of the equation
Here we use the self-similar solution (5) to study the nonlincar heat equation
i, = (k(m)n,),. 1 > 0. x e R, ()

Since in the Cauchy problem (11), (2) the amplitude of the solution, u,,(1) =
sup, u(r, X), goes to zero as 1+ — oo, the asymptotic propetties of the solution
u(r, x) depend on the character of behaviour of the coefficient k() for small
values of the temperature © > 0.

Below we shall demonstrate stability of the self-similar solution (5) of the heat
cquation with respect to the following perturbations of the constant coefficient:
ke CH0, 00) NC0. 00)), k(u) = 0. k'(i) > O for u > 0,

(k) /K ()]~ o0, 1 - (), (12)
and furthermore,
lin}‘[k(fu)/k(u)[ =1 &>0. (13)

These conditions are satisfied, for example by the coefficient
k() = |Inu| ., a=-const > (), ue (), 1/2). (14)

which differs significantly as « — 0 fiom the coefficient & = 1. Nonetheless,
asymptotic properties of solutions of equation (11) can be described using the fun-
damental solution (5) by transforming it in a convenient manner. Therefore the
problem of stability of the selt-similar solution with respect to nonlinear perturba-
tions of equation (1) is considered here in a new setting (compared to § 1). At
the same time we shall prove stability of uy with respect to small perturbations of
the thermal conductivity coefficient in the case k(u) — 1 as v — 0.

In addition to (14), all the conditions are satistied by the coefticients k(n) =
(In|Inul]", a > 0; k(u) = exp{—{Inul“}, @ € (0. 1), and so forth.

Equation (11) with an arbitrary noalinearity has no self-similar solution de-
scribing the “spread”™ of the initial profile in the Cauchy problem. Therefore we
shall look for an approximate sell-shmilar solution u, which does not satisfy equa-
tion (11):

1. ) = < [({). { = . (15)

where (1) is a monotone increasing positive function, (1) — oo as 1 — oo, while
Fs(£) is the function (6) (it is precisely this function that conneets the a,s.s. with
the fundamental solution (5)). The function u, satistics the energy conservation
law (4).
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The main problem is to determine the function ¢p(1) in (15), which depends on
the behaviour of k(u) for low temperatures. 1t provides both the rate of amplitude
decay:

_ Ey 1
(1) = ‘(/)_(}—)m, [ = OO,

and the law governing the rate of change of the width of the temperature profile
Xep(1) = 200 2) (1), 1 - 0.

Let us introduce, as usual, the similarity representation of the solution of the
problem (11), (2).
0. ) = pyut, LPh(r))

It is convenient to carry out the proof of convergence of 0(1, ) 1o f({) (which
establishes similarity of asymptotic properties of the solution of the problem and
a.s.8. (15)) by considering u(r. ) us an element of the Hilbert space /1 Y(R). To
this space belong functions w € L'(R), which satisfy the conditions

/ w(x)dx = 0. /A‘w( Vdy € LAR). (16)

I/ l[\ w(y) dy / (l\/ w(y)dy

In the usual way we can introduce in this space the scalar product

<7

< 0. (17)

(v, w). | = (v, (—(12/(1.\'2) Y,

where the function W = (—d?/d.®) " w is the solution of the problem *W/dx* =
—w, x € R; [W(koo)| < oo, 1tisnot hard to verify that by (16) and (17) a solution
of this problem exists. We shall denote by | - |l (g, the norm in i "(R):

12

-
~ d?
-l vy = (. rzr)}_/lz = /m w(x) <~(~[—A—2> wi (x)dx =

(2) ] L s

Proposition 6. Ler conditions (12), (13) hold, and let wy satish (3), such the,
. 172 .

nmareover, iy(- )— T € "NR). Then (1) = |1 + l(I)| " for all sufficiently

large 1, where ' denotes the Jinetion inverse 1o the memateme increasing functiom

LUR) LRy

) u dr | +1 .
= et . 3 X
K= A+ 72 = k(T + 0 7
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The solution of the problem (11), (2) canverges to the a.s.s. (15);
||9(1~ ) = f&()lll: "Ry T (). I = OO,

Proal. Let us make the change of variable 1 — w(7) n the problem (11), (2).
Then®
du(n) = (1 +0'",

and u(u(1), x) satisties the equation
w, = () k() .
Then the a.s.5. (15) becomes the function (5), that is,
(), x)=ugll, x) as 1 — oC.

Let us set w(r, x) = (1), x) — uy( (1), x)., Then

S
/ w(t, Ody=0,1>0 ¥

o

(since by assumption n and uy have the same energy) and w € Ji"'(R) for all
1 = 0. The funetion ur satisfies the equation

wy = | w (k) — () |-

Taking the scalar product of this equation with (—d?/dx*) "'w and integrating by
parts ity the right-hand side, we obtain

1 d 3 , d l
Emllwllf, "Ry T (M(t)(k(u)u.) = (1), (J:;) 1“) . (18)

It is casily verificd that

(W (k) ~ (ug) .. (d/dx) L (1~ ug)) =
= —p () (F ) ~ Fug)., u - ug) + (' (Dk(es) ~ Dag) . (dfdx)” L)
where F(u) = [ k() dn. Since the fist term in the right-hand side is non-

positive, estimating the sccond one using the Cauchy-Schwarz inequality, we obtain
from (18) that

- ||“)||h "Ry = ||W k(ug) ~ Cs) Il an -

2For the proof it is sufficient fot this cquality to hold for large 1 > 0.
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Hence it follows (see the proof of Proposition 4) that

Kwlly vry = 1O, ) sy +

. (19)
+ (2q5)'? / (1 4+ 7) V2HY2(FoO)(E 4772 7) d
J0

gs = sup | f(D] < oc.

where the function H has the form

N

H(s;1) = / (' (Nk(n) — 1) dn.
J0
Since
T, Yy sy = (1 + 0700, ) = [5sCll 1 ery-

we derive from (19) the estimate
16C(r). )= F sty vy = (10w ), sg) +

!
+ Qg+ / (L7) "RV a0 + 7)Y 1) dr
Ju

(20)
Resolving congecutively all the indeterminacies that arise in the right-hand using
the equality
s

w )y = 1/k[(L+0) P — .

we obtain

Tim (0. ) = [5IE y =

, ol g ! ,
< 324y “']l(l +n'? / [ (k) ~ 17 dny =
e J0

RVt kool 172 :
= 32¢5 lim / { !é( + 1)' i l} & =0,
A 2

I~ )

Convergence to a.s.s. now follows from condition (13). O
Remark. If in addition to (12), (13) we also impose the condition
k(u)/k(uk'/?(u)) — | as v — 0, then asymptotically we have

h(r) == (L4+ DRI + 072 1= e

This relation will hold, in particular, for the coefticient (14).
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Example 1. Let k(u) = |Inu|™ for small 4 > 0, @ = const > 0. As we already
mentioned, conditions (12), (13) are satistied. From Proposition 6 we obtain in
this case that

Gy =29 P - oo, 2h
and therefore a.s.s. (15). to which the solution ol the problem (11). (2) converges
(uqy satisfies (3)}), has the form

1 2 v
Y~ o 42 S - -
w1, x) (2 7Tln"t> Eqyexp T (-

where Ey = lupll (g, < 2. From here we obtain an estimate of the umplitude,

supu(r, x) ~ u (1, 0) = (2 2y R (I 1/1)”3, 1 — 00,
&R

An estimate of the effective width of the inhomogeneous temperature protile for
large times is given by (21).

In the next section we move on to analyze self-similar solutions of nonlinear
heat equations.

§ 3 Asymptotic stability of self-similar solutions of nonlinear
heat equations

Let us consider first the example of a self-similar solution alicady encountered in
Ch. 1, which exists for arbitrary coetticients k(x) = 0.

1 A self-similar solution with constant temperature at the boundary

This example helps us to emphasize « fundamental property of self-similar solutions
of nonlinear heat equations: their asymptotic stubility with respect to perturbations
of the initial function.
As in § I, let us consider the boundary value problem in R, x R, for the
¢quation
;= (k(up ), (h

(k(uy > O for 2 > 0 is a sufficiently simooth tunction) with the initial and boundary
conditions
w(0, Xy = up(x) =20, v >0 uy e CRY), (2)

w(t, Oy =1, 1> 0. (3
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For arbitrary k(«) equation (1) admits a selt-gimilar solution which satisfies
condition (3):
wg(r, ) = go(&) &= x/(1+ 02 ) (4)
where gs({) solves the problem

0

N .
(k(gg)gg) +54¢ =0, >0, goOy =1 gy} =0 (5)

this solution will or will not have compact support depending on whether equation
(1) admits tinite speed of propagation of perturbations, or does not.

Below we restrict ourselves to the analysis of the case when the coefficient k
satisfies the condition for finite specd of propagation of perturbations:

/l k(mtl'q<'x;
Ju n o

and we take for gg(&) a solution of the problem (5) with compact support. We
shall assume that gy in (2) also has compact support.

Existence of a selt-similar solution of the form (4} is related to invariance of
equation (1} for arbitrary k(¢) under the transformations 1 — r/a, x — x/a'/%
o > 0. Thercfore, if (. x) is a solution, so will be u(r/a, x/a'?), Let us try
to find « solution whuh is invariant under these transformations, that is, such that
u(r, x) = u(t/a, x/a'’?) for all @ > 0. Setting in that equality @ = 1, we obtain
u(r, x) = w(l. x/1'%). Denoting «(1, ) by gs(¢) and using the change of variable
t = | 4 1. which does not atfect the form of the equation, we obtain (4).

Cleaily. (4) is a solution of the original problem (1)~(3) only if wy = wg(0, x) =
gs(x), Below we shall show that tor any perturbations of initial function with
compact suppoit up(x) the asymptotic behaviour of solutions u(r. &)y for large 1
is deseribed by the self-similar solution ug. Therefore the law of motion of the
half-width of the sclf-similar thermal wave, determined from (4):

=Ll 400 0> 00 (gl = t/2), (6)

remains valid as 1 -> oo for other solutions of equation (1), Therefore the depen-

dence of the wave speed on time is the same for equations (1) with a wide clasg

of coetticients k(w). Formulae (6) for different coetficients k(«) differ only by the

magnitude of the constant ¢, . which. of course, depends on the form of k(u).
Let us introduce the similarity representation of' the problem.

0(1.0) = ur. £(1 + 0"

and show that g(r. {) — g({) as 1 — oo, This ensures that the main propertics
of the solutions «(r. v) and wg(r. x) are similar for large 1, so that, in particulas,
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the estimate (6) holds for u(s, x) as 1 — o00. In this case it is convenient to prove
asymptotic stability of the self-similar solution in the norm of the space &~ '(Ry).

The Hilbert space &7 (R,) is the space of functions v(x) € L'(R,), which
satisty the conditions

AV 5 e A
/ r(vidy e L°(R,). ' / dx / u(y) dy
J Jo Ju

The scalar product in & '(R ) has the form

o o* !
(vow) ) = / v(y) e w{ (v)dy, (8)
Jo dx-

where we have denoted by W = (=d*/dx*)" 'w the solution of the problem

< oC. (7

FPW/d? = —w, x > 0, W) = 0. |W(oo)| < co.

1t is not hard to check that it (7) holds, a solution of this problem exists and is

unique:
{ s
:/ (l_\'/ u(z)dz, x = 0.
J0) J

The norm in &°'(Ry) is detined using (8):

12
Nl ng,) = (w, w) ',

that is,

AR

In the norm of 4" '(Ry) convergence of g7, -) to gs(-) is especially easy to
prove (naturally, it also holds in stronger norms; see the bibliographic comments).
Convergence in i '(R,) implies, in particular, pointwise convergence almost ev-
erywhere.

Nl 1r.) = H

l\ :
¢ LUR . 1-(R))

Proposition 7. Ler ug(x) be a function with compact support. Then
374

letr ) = g5l r.y = O ((1 +1) ) 0.1 = .
Proof. The function 7 = u — uy satisties the equation

<

(k) — k(ug)(ug) [0 > 0,0 = 0, (9)
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moreover, z(1,0) = 0, z(1, x) has compact support in x and z(1, -) € A~ (R,) for
all 7 > 0. Taking the &~'(R}) scalar produet of equation (9) with 7 and integrating
by paits, we obtain the equality

1 d

> ||:||,2, nry =~ (EG) = Flug) a— ug). (1M

l"(u)::/ k(n) dn
Ju

is a monotone inereasing function. Therefore (F(u) ~ Flug), u — uy) > 0 and then
we have from (10) that

Nz M vry =120 )y rry = Mo = g5 1w

for all + > 0. Since in view of (4) and the way we defined the similarity represen-
tation g(r, ¢). we have the identity

lztr, My o = (0 Hgin ) = 50 gy
we obtain the required estimate of the rate of convergence:
et ) = gs Ol o,y < 12000 oo, (10
0
Obviously, there is no need to discuss here usymplotic stability of the self-

similar solution (4) with respect to perturbations of the coetticient k, as to each &
corresponds a different solution of the form (4).

2 The nonlinear heat equation with a power type nonlinearity

In this subsection we consider certain self-similar solutions of the boundary vitlue
problem for the quasilinewr parabolic equation

o= (" u), 1t >0, x> 0; o= const > (), (rh
w0, x) = ug(x) > 0, x> 0; w e C'(RL ), (12)
w(t,0) = u (1) >0, 1 >0, (13

where the boundary regime is strongly non-stationary: u (1) grows without bound
with 7. Some examples of generalized self-similar solutions of this problem were
considered in the previous chupter.

Let us muke the prefutory remark that an equation with heat conductivity coef-
ticient k(i) == kou”, where ky > () is « constant of, in general, physical dimensions
(in (1D) it is assumed that &y = 1), cun be non-dimensionalized by u chunge of
vitriuble of the torm 1 — kg,
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LA power lww boundary regime

Asin § 1, let
() = (t+0".1 >0 m = const > ().

Then equation (11) has a self-similar solution of the following torm:
gt X) = (14 0)"84(£), & = x/(1 4 n)HHmnid, (14)

which can be related to its invariance with respect to the transtormations

I
”“"‘”'“. W — a"u; « >0 (15)

I —1/a.x— x/a
Gf u is invariant, that is, if #(r. %) = o (1 /a, x/at P72 hen, setting o =1
and then by the change of variable 1 — 1 4 1, we obtain (14)).
The function #4(£) in (14) satisfies the following ordinary differential cquation.
obtained by substituting (14) into (11):

o ,
(0705) + 0y ¢ — mby = 0. = 0, (16)

where, as follows from the formulation of the problem and the spatio-temporal
structure of the solution (14), the appropriate boundary conditions are

0s0) =1, 04(0) = 0. (17)

A generalized solution of the problem (16), (17) exists, is unique and has
compact support. This is not hard to see by transforming (16) into a first or-
der equation (see Ch, 111) or by first proving local solvability cloge to the point
of degeneracy and then extending the obtained solution up to the point ¢ =
(“shooting™ to the first boundary condition in (17) is done by using the similarity
transformation, which leaves equation (10) invurianl) For m = 1/o the problem
(16), (17) has the obvious generalized solution #¢(£) = [(1 —'728), [l/ In this
case e = (1 +0'"700(8), £ = x/(1 +1), and lhcrdom the self-gimilar solution is
just the travelling wave considered in Example 6 of Ch. |

The depth of penctration of the thermal wave described by the self-sumilar
solution (14) has the following dependence on time:

.\'fj(l) = £l o pfHran2 ), Bs(£op) = 1/2. (18)

The wave moves at a higher speed than in a medium with constant heat conductivity
and the same boundary regime (§ 1), since in (11) the thermal conductivity is an
tncreasing function of temperitture. This is also the speed of motion of the froat
of the thermul wave (the point at which wg vanishes) X} (1) = §,(t + )L emns2
where &; = meas supp Ay < 00, The cvolution of this self-similiar heating process
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ug(t,2)
0<t,~t,<
\\t\/ .
”’ /(
\tﬂ /,/ :
{ |
L:.i N e R
0 () zit,) I

Fig. 6. Evolution of the selt-stmifir solution (14) (m > 0,0 > 1)

is shown schematically in Figure 6. The trajectory of the half-width of the thermal
wave is shown by the dashed line.

As in § 1, this self-similar solution is asymptotically stable with respect to
small perturbations of the functions wo(x). « (1), k(u) entering the formulution
of the problem (for the method of proof of such agsertions see Ch. VI, § 3, 4).
Therefore the expression (18) for the half-width is asymptotically true for a large
class of quasilinear equations (1) with coefficients k() not of power type. which
are close to u” as ¢ — oc.

2 Exponential boundary regime

A different asymptoticalty stable self-similar solution of equation (11) exists in the
case 1 (1) = ¢’ for+ > 0. Here uy has the form

ug(t, x) = ¢' fo(m), 1 = x/ explor/2}. (19)

The function f¢ > O satislies the boundary value problem
oF gt o\t T . ,
SSL + 5 fsm=fs=0.m1>0, fs(0) =1, f5(00) =0, (19)

solvability of which is proved as in the analogous problem for power law regimes.
The nature of the motion of the thermul wave in this case is more or less the same
as in Figure 6, the difference being that due to the more vigorous exponential
boundary heating, the half-width of the wave grows with time faster than any
power:
X5 = merexplat/2h 0> 0 (fy(n) = 1/2).

Due to asymptotic stability of the self-similuar solution (19) this estimate holds
for large 1 for a lurge class of non-self-similar solutions. The sume is true about
the law of motion of the front point of the thermal wave:

.\"7-(1) = nrexplot/2},1 > 0; ny = meas supp [ < o0
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(if the perturbed equation admits finite speed of propagation of perturbations and
up(x) s a function with compact support).

Analysis of self-similar solutions discloses the physically reasonable principle:
the more vigorous the boundary regime, the higher will be the speed of the resulting
thermal wave. If the regime is of power type, then so is the depth of penetration;
if the regime is exponential (as 1 — oc the heating is more intense than for any
power type regime), then the motion of the half-width is given by an exponential
function, The following question arises: do there exist boundary regimes to which
correspond “slower™ moving thermal waves? Such regimes exist, and to one of
them corresponds a simple self-similar solution,

3 A power tvpe boundary blow-up regime. Heat localization

Let the dependence of the temperature on the boundary v = 0 exhibit finite time
blow-up:

) = (To =01, 0 <1 < Ty (20)

where 0 < T, < oo is a constant (blow-up time). The boundary function in (20)
becomes infinite in finite time: u,(1) — oc as 1 — 7. To this regime corresponds
a self-similar solution of (11) of an unusual form, a standing thermul wave:

gt x) = (Tog = 1) 7 [(1 = x/x0) [P, (21

where xy = [2(0 + 2)/1r]|/2. The position of the froat point in (21}, x;(1) = xq.
is constant during all the time of existence of the solution 1 € (0, Ty} and heat
from the localization domain v € (0, xy) does not penetrate into the surrounding
cold space, even though everywhere in the domain ((, x¢) the temperature grows
without bound as 1 — T .

A schematic drawing of such a heating process (heat localization in the S-
reginme) is 1o be seen in Figure 7, which shows the essential difference between
the influence on u nonlinear medium of a boundary blow-up regime (20) and of
ordinary regimes (see Figure 6). The depth of penetration of the localized wave is.
just like the position of the front point, independent of time; from (21) it follows
that ,\"f,(l) =20l =2 N 0 <t < T

The self-similar solution (21} is asymptotically stable. In Ch. V we shall show
that the heat localization of boundary heating regimes which exhibit finite time
blow-up oceurs also in arbitrary nonlinear media described by general heat equa-
tions of parabolic type,

It is timportant to note that not every boundary blow-up regime guarantees heat
loculization. For example, if we take a different power type regime:

l(](f) == (T() - 1)”. () <1 < T(\. (22)
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us(t.1)

()<t’< £,< t;‘ t4< T

Fig. 7. Evolution as ¢ — T of the localized self-similar soltion (21) (S blow-up regime)

where n < ~ 1/ (in (20) 1 = —1 /o). then there is no localization. To the regime
(22) corresponds the self-similar solution

uelt. Xy = (T — 1)"0(&), & = x)(Ty — )72, (23)

where #y 2 0 satisties an ordinary differential equation. For n < -1/ the
function A5(£) has compact support, £; == meas supp g < oo (see Ch, III). Then
it follows from (23) that the front point of the thermal wave moves aceording to

.\'7(1) = f[(T() . [)ll‘Q*lllt\/'.’.‘

and x}(1) = oo as 1 - T

Evoluwtion of the thermal wave in this case is not substantially different from
that of Figure 6; however, the heating of the whole space {v > 0} to infinitely
high temperature tukes only a finite amount of time (15(7. x) — 00 as — T for
all ¥ = 0). For u « —1/o the boundary regime (22) is called the HS hlow-up
reginie.

On the other hand, if 7 € (—1/0 0). then it is the LS blow-up regime, which
leads to heating localization. Furthermore, from the spatio-temporal structure of
the self-similar solution (23), unbounded growth of temperature as 1 — T oceurs
only at the point x = 0 everywhere in the space {x = 0} it is bounded from above
uniformly in 7 € (0. Ty). This is indicated, in particular, by the law of motion of
the half-width of the thermal wave:

\,Sj([) — E;v/(T() _ [)(I Hllf\/.’_‘ I e (()' T()).
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where the constant £, € R. is such that 85(§,,) = 1/2. For n € (=1/a, 0} we
have that .t;‘f[(t) - 0 as 1 — T, so that the half-width (in a certain sense the
depth of penetration) of the thermal wave decreases during the heating process
down to zero. A detailed analysis of the localization phenomenon in boundary
valye problems for heat equations is presented in Ch, I (for equation (11) for
o > 0) and in Ch. V (for arbitrary nonlinear heat equations).

Equation (11) has @ number of other interesting self-similar solutions (see Com-
ments).

Let us present. for example, an interesting invartant solution, which especially
clearly demonstrates localization of a thermal wave front uader the action of the
S boundary blow-up regime. It is not hard to check that cquation (11) has the
following exact generalized solution:

/ ) Yert D Ve
U o x) = (To—1) ' [(l - x/x0) = (1 =1/Tg)" ’"’]’ . (24)

where xo = |2(o 4+ 2)/er|"2. It corresponds 1o the initial function u, (0. x) = 0
and & boundary regime which is close to a power type one;

V/er

W1, 0) = (Ty — 1y~ [1 - I/TU)”‘"”’] (25)

and obviously
(0, M =(Ty—1n Vel g o) ast — Ty,

so that this is indeed a boundary blow-up S-regime and the solution (24) grows
without bound in the loealization domain x € 0, xg). However, the front of the
thermal wave, which corresponds to (24), is not (unlike (21)) immobile. It moves
according to
Xy = xoll = (1= 1/To)" /"2, 1 e 0, To).

the wave is localized and x7 (1) — xp as 1 — T . By comparing (21) and (24) it
is casy 1o see that close to the blow-up time 7 = T, the solution u, (1, x) is close
to the self-similar solution (21). In Ch. IV we shall show that this self-similar
solution is asymptotically stable not only with respect to small perturbations of the
boundary function, as in (25), but also to perturbutions of the nonlinear operator
of the equation, that is, of the thermal conductivity coefficient.

§ 4 Quasilinear heat equation in a bounded domain

In this section we consider other problems for the nonlinear heat equation in the
multi-dimensional case:

w, = Ay o = const > (). (h
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Let €2 be a bounded domain in RY with « sufficiently smooth boundary 9€). Assume
that in ) an initial heat perturbation is given,

(0, x) = up(xy > 0, x € u‘(;" e C(CYyNnH' Q). (

o

1 The boundary value problem with Dirichlet conditions
Let zero temperature be maintained on the boundary 8€) of the domain )

wr,x) =0, 1>0, xve i, (

o

which corresponds to outflow of heat from the boundary (processes with the adi-
abatic “isolation™ condition on the boundary are considered in subsection 2.)
Clearly u(r, xy — Qus 1 — o0 everywhere in (), as heat is taken away through
the boundary. How does the evolution of the initial perturbation proceed? At what
rate does the extinction process occur’?
These questions can be answered by analyzing the self-similar solution admitted
by equation (1):

wg(t,x) = (T +1) Yfgx), 1 >0 xe Q. 4)
Here ' > (} is an arbitrary constant.

Substituting this expression into (1) and taking into consideration the boundary
condition, we obtain for f¢ > () the following elliptic problem:

I
Afitt ¢ 7-/"' =0, x e ) f(x)=0, xed.
[}

)

For any ¢ > O it has a unique solution, strictly positive in () (existence of the
solution can be established. for example, by constructing sub- and supersolutions
of the probleny; see |7, 21}

It turng out that (4) is stable with respect to arbitrary bounded perturbations of
the initial function wy(x). that is, for 1 — oo the expression (4) correctly describes
the evolution of any heat perturbation. Without considering the details of this, let
us restrict ourselves to proving a simple assertion.

To describe the asymptotics of the solution, let us introduce, as usual, a simi-
larity representation of the solution of the problem (1)-(3) by the expression

fu,xy= A+ x5y, 1 >0, xe Q. (6)

Stability of the self-similar solution (4) will mean that f(7, v) — fe(x) in € as
1 — 00.
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Proposition 8. Ler the initial function ug(x} in (2} be such that
-1/ O |
s < wlyy < T /”f_s'(.\‘), re ), (N
where O < Ty < T2 < o0 are constants. Then

Wiy = fsClean = O 'y — 0, 1 — oc. (8)

Proof. Validity of (8) follows from the comparison theorem. Indeed, by (7)
(Ta40 M fox) <. x) < (T4 Y fox)in Ry x € (9)

Hence (8) follows immediately. m

Therefore if conditions (7) hold, the amplitude of the heat perturbation decreases
at the rate

sup (. Xy = (sup f.s‘(.\')) AT al VLA W vy
acfl 1ef)

and furthermore the maximal value of the temperature is attained at an extreraum
point of f¢(x). Thus in the framework of Proposition 8, the evolution of the heat
conduction process for large times is entirely determined (in terms of the function
[s(x)) by the spatial structure of the domain (@ and by the exponent o in the
thermal conductivity coefficient k(u) = (o + D",

The proof of convergence in the case of arbitrary 1, 3 0 follows in essence along
the same lines. We have to show that after a finite time 1y > 0 the temperature
distribution w(tg. x) will satisfy (7), whence the estimate (8) will follow. Let us
clarify this assertion (the arguments below illustrate an application of criticality
conditions for solutions of parabolic equations, which will be used systematically
i Ch. V).

Let the initial function ug € C((}), g % (), be sufficiently small and have com-
pact support in {2 Suppuy C Q. Then the lower bound of (7) does not hold
for any Th = (. since fg(x) > () in . Let us show that we still have stability
of the self-similar solution in the sense of (8). The equation for the similarity
representation (6) has the form

-

l
Af"“ ~fir=0, 0l =070 xe il (10
a7 a

where we have introduced the pew “time™ 7 = In(1 +1): R, — R,

Since fg(x) satisfies the problem (§). the equality (8) has the interpretation that
a8 7 - D0, lhc solution of (10) stabilizes to its stationary solution, which, as we
have mentioned already. is unique. For simplicity, let () € ) and O € supp up. Let
us consider the family of stationary solutions v = v(r}. r = |x|, of equation (10):
—L(N‘ "“’)’+l =0 (1

NI :

r
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which satisfy for r = 0 the condition v'(0) = 0 (condition of symmetry with
respect to the point r = 0) and v(0) = vy = const > (.

The solution of this Cauchy problem for the ordinary differential cquation (11)
exists and is strictly positive in some ball B, = {r < rg}, where ry = ro(vg) < o<,
such that v(ry) = 0. Here ro(vy) — 0 as vy — 0 (see § 3. Ch. 1V). Let us choose
vy so small that B,, ¢ €. Then we claim that the solution of equation (10) with
the initial function

ra

SO, = v(jah.x e B [0 =00 B, (12)

is critical:
dfjor = 0m R, x Qnfxe Q| f(r.x) > 0}

This is a direct eonsequence of the Maximum Principle (see Ch. V).

Therefore the function f(7. x) does not decrease in 7 everywhere in Q) and, if
ug is small, is bounded from ubove by the stationary solution fg(x). Therefore ut
each point x € ) there exists the lunit f(7. x) = f,(x), 7 — oc. Then, by the
usual Lyapunov arguments (see § 5, Ch. IV), we can prove that the limit function
£+(x) has to coineide with the unique solution of the stationary problem (5).

As far as arbitrary, sufficiently small initial perturbations of f(0. x) are con-
eerned, note that under cach of these we can “place™ the indicated critical solution,
whieh, by the comparison theorem, by stabilizing to the stationary solution, will
force stabilization to it of any other solution lying between itself and the stationary
solution.

Thus the self-similar solution provides us with information concerning the be-
haviour for large times of a wide variety of solutions of the problem for more or
ﬁlécss arbitrary initial perturbations, Let us emphasize that the asymptotic spatio-
temporal strueture of solutions of the problem (1)~(3) depends in an essential way
on the geometry of the domain ). A slightly diffcrent situation arises in another
boundary value problem for equation (1),

2 The boundary value problem with the Neumann condition

Let now the no heat flux condition
o™y =000 > 0 x € M), (13)

be imposed on the boundary, Here /dn denotes the derivative in the direction
of the outer normal to 3. It is not hard W foretell the asymptotic properties
of the solution, based on physical intuition concerning the behaviour of diffusion
processes. By the adiabatic condition (13), the total heat energy in Q is conserved:

/ w(r. x)dy = / wp(xydy = Ey. (f4)
Ja Ja
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Due to diffusion all inhomogeneities of the initial perturbation will be smoothed
out with time, and as a result as 1 — oo the temperature field must stabilize to a
spatially homogeneous state. Its magnitude is uniquely determined from (14), and
therefore we can expect that

1
u(r, Xy — ———— / Xy dy =T, 1 — 00, (15}
meas () /g

Without giving the detailed proof of (15}, let us make some clarifications, using
only two standard identities satisfied by the solution of the problem (1), (2}, (13).
The first of these is obtained by taking the scalar product in L7 (€)) of cquation (1)
with #*! and integrating by parts:

5

| d 50 -
— O 3, = — Ve Ol g, 12 0. (16)

(¢ +2) dt L

The second one is derived by multiplying the equation by (u"''), and then inte-
grating the resulting equality in 7 (see § 2, Ch. VII). As a result we have

4o+ 1)

of l
P terf2 2 . o il 2 —
o 27 ./() e 2 (0 g, S A §||Vu T, =

(17

I ;
. il 2
= 3||V"() [PRITITS
Passing in (17) to the limit as 7 —» oo, we see that the first integral converges,
so that the limit
IVE O g, = a0 2 001 = oo, (18)

exists. Comparing (18) with the equality (16}, we obtain ¢y = () otherwise the
function ||u||’,’l,’,"3(m > (0 is negative for large 1.

The condition ag = 0 in (18) means that ¢ "1z, v} converges to a spatially ho-
mogeneous state alimost everywhere (in fact, by sufficient regularity of the general-
ized solution, everywhere in 1), Then the energy conservation law (14) guarantees
stabilization (15).

It is not hard to derive an estimate of the rate of stubilization to the average
value of the temperature.

Proposition 9. We lve the estimate

e, -) — Ti,,,,llllj(m = / (u(r, xy — ??,,(‘)3 dy < Ke " — 0,1 — o0, (19)
‘ J0

where K > (0, v > O are constants. atd v depends only ot o0 Ty and the
dowin ),
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Proof. Let us take the scalar product in L*(()) of the equation (1) with w. Then,
after integrating by parts, we obtain

1 d , )
5(—([71114(1)117,:(“, = —(g + l)‘/“ W (1, )|Vl oY dx, (20)

In view of stabilization of « to i, > 0 as 1 — oo, there exists 1, = 0. such that
for all 1 > 1, we have the inequality w(f. x) > 7,,/2 in ), Then, estimating from
above the right-hand side of (20), we obtain

1 d 9 Hul " 2
S MO, = —(0 4+ 1) (;—) ‘/“ Vut, o dxo 1>, (21

Setting « — M, = w, we substitute in (21) u = u,,. + w. By (14)

/ w(t, x)dy =0, (22)
Ju

Then, since Vie = Vi and

d ) d ' ] )
— )7y, = — [ (W +T0,, + 2Hw) dx =
di 121 dr . Q a1 ai

d N ) d ,
= " + l_(-; . dx 2"‘111»/ ! [\} = e (Ol '
di {/n e ,/Q " + Q e dt llu )”L "h

we derive from (21) the estimate

Uap

d 4 v 9
(—17”1“(1)”;_:(“, <=2+ 1) (*2—> NV, (23)
Using the well-known inequality [362]

IVl = Aol e
which holds for all functions w e H'({}), dw/on = 0 on aQ, which satisfy
the condition (22) (here A} = A((}) > O is the first eigenvalue of the problem
A+ A = 0. x € L dyfr/dn = () on 3€)). we obtain from (23) that

‘(%Hu)(l)”}um < =2a 4+ 1) (%)H Ao, 1> 1.
Hence
) 70 < N0 sy, €XPL=200 + DA T /2) 1), 1> 1o
which coincides with the estimate (19), if we set K = ”“'(’*)”iluu < mo and

po=2(0 + DA EN(,,./2)" > 0. 0
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§ 5 The fast diffusion equation. Boundary value problems in a
bounded domain

In this section we shall consider properties of solutions of quasilinear parabolic
equations of nonlinear heat transfer with coefficient k(x) > ) which grows un-
boundedly as « — (). These are the so-called fast diffusion equations. These
include the equation with the power type nonlinearity

1y = Au', hH

where () < nt < | iy a constant (if. as usual we set m = o + 1, then in this case
o=m—1 € (~1.0)). The heat conductivity k(u) = ™Y grows without bound
as n — (),

The name ““fast diffusion™ is related to the fact that since the heat conductivity
is unbounded in the unperturbed (zero temperature) background. heat propagates
from warm regions into cold ones much faster than, say in the case of constant
(nt = 1 in (1)) heat conductivity, and even more so than for m > 1. where we have
finite speed of propagation of perturbations. This super-high speed of “dissolution”
of heat implies a mumber of interesting properties of the process. We shall describe
these in some detail. using mainly the technique of constructing various self-similar
solutions of equation (1),

As we have not encountered such equations before, let us make the preliminary
observations that for m € (0, I) solutions of boundary value problems and of the
Cauchy problem exist. are unique and satisfy the Maximum Principle: in particular,
comparison theorcms hold. Here. wherever this does not contradict the boundary
conditions, the solution can be taken locally to be strietly positive and therefore
clasgsical (see the Comments),

Let us consider for (1) the boundary value problem in & bounded domain €1
(A€ is its smooth boundary) with the conditions

w0, x) = () > 0.x € s uy € CY). (2)
w(t. x)=0.1 >0, xed. (3)

In this problem we have total extinetion in Jinite time. This is relatively simple to
prove by constructing the self-similar solution

ws(t. x) = [(To = 04 [V "™ pg(r), Ty = const > 0, (4)

The function (4) is such that «s = 0 for all 1 > Ty, Let us note that for
m € (0. 1) the derivative duy/dr has no jumps at 1 = Ty, so that g is a classical
solution. Substituting the expression (4) into the equation (1) and taking into
account the boundary conditions, we obtain for the function pg > ) the elliptic
problem:

]
APy + l ps =0, v py=0.v€dd (5)
—m
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i

Setting p¥ = wy, we arrive at the equation

Awy + wwlw«wgf =0,y = i =1, (5)
| —m nt
with the saime boundary condition wg = 0 on ).

The function wys does not exist for all y = 1/miif N = 3andy = (N+2)/(N—
2). then the equation (5) has solutions that are strictly positive in RY, while for
Q a ball of arbitrary radius, there is no solution with the condition wigly = 0 (see
§ 3, Ch. 1V). On the other hund, if 1 < y < (N + 2)/(N — 2y, the required
similarity function can always be found,

However, for our ends it is not essential for the problem (5) to be solvable.
We shall use the self-similar solution (4) only to find majorizing upper bounds for
the solution of the problem (1)-(3).

Proposition 10. Let O < mt < 1. Then for any taitial finetion g in the problem
()~(3) there is complete extinction in fintte time: there exists Tog > 0 such that
u(t, ) =0in Qorallt > T,

Proof Mfme (N -2)/(N+2),1), N >3 orme (0. 1), N <3, let us take
an arbitrary bounded domain €)', such that { ¢ ' and let us denote by pg(.v) the
solution of the equation (5), which is positive in €)' and satisfies ps = 0 on ().
Then, since Q0 C (', we have ps > 0 on 3 and therefore we can always find
Ty > 0, such that uy(x) < 7’(',/“' " o), ¥ € (1. By the comparison theorem we
have

0 < i1, x)

tA

[(To =), 1" pg(v), x e Q.
and therefore wz 0 in Qif 1 > Ty.

If on the other hand m € (O, (N —2)/(IN + ). N = 3 (y = 1/m = (N +
2)/(N — 2) and the boundary value problem (5") can be insolvable), we take as
ps(x) the solution vf equation (5) which is strictly positive in RY. Then ps >0
on €} and the same argument applies. rl

§ 6 The Cauchy problem for the fast diffusion equation

Let us see, whether it is possible to have rotal extinction in finfte time in the Cauchy
problem for the fast diffusion equation

= A" 1> 0. xe RY: me (0.1). (1
u(0, x) = uy(x) > 0. x € RY: supug < oc. (2)

The situation here is more complex than for a boundary value problem in a
bounded domain; however, it can also be analyzed using self-similar solutions,
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It s assumed that up(x) — 0 as |x] —» oo, Naturally, if this condition is not
met, and for example uy(x) > & > O everywhere in RY | then by the comparison
theorem w(r. x) > & in RY for all 1 > O, that is, in principle there can be no total
extinction,

1 Conditions for total extinction in finite time

Let us econsider the self-similar solution, which describes the total extinction process
in the Cauchy problem. We can derive a whole family of such solutions:

ug(r. x) = I(TU -1, INP.‘.’(f)- E = »\‘/I(T() —1), IlHn(m l)l/'J. (3)

where Ty > 0 and »n > 1 are constants. Substitution of (3) into (1) gives the
following elliptic equation for wg = p{f = O

1 +nultm-1) !
———-;)—————VII'S/N,

- 1 .

Atrg — CE A+ mux/'" =0, £ e RY, (4)

For our ends, it suffices to consider radially symimetric solutions, which depend

on one variable, = [£]. All these satisfy a boundary value problem for an
ordinary differential equation,

| v , I 4ntm-=1)

) _ryrmr ,l/m
FT(U ".\) 5 ("S )

1

n+ nlul/'" =0, 7 >0, (5)

wi(0) = 0, wglow) = 0. (0)
This problem (in fact, just as (4)) is solvable not for all nr € (0, 1), n > 1.
Lemma l, Lt N >3, 0 <t < (N = 2)/N. Then Jor any’

n >N -—=2)/N—m| ' (7

the problem (5), (6) has an infintite nunther of strictly positive solutions.

Proof. Let us consider the Cauchy problem for (5) in R, with the conditions
w(0) = w. uw’(Q) =0, (%)

where p > 0 is an arbitrary constant. let us prove that every solution of this
problem defines, under the above assumptions, a required function ws. Local
solvability of the problem (5). (8) for small - 0 is established by considering
the equivalent integral equation.

"()hvinusly, in this case n > 1, so that for ¢ = T (ug), 15 continuous and (3) 1s a
classical solution wn R, x RY.
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Let us show that this local solution can be extended to the whole positive semi-
axis n € R, und satisfies the second of conditions (6). First let us note that the
solution is monotone decreasing in 7, since zmuming that at some point n,,, > 0
the function w has a minimum (w(n,,) > 0, w'(n,,) = 0) leuds to a contradiction:
this follows from the form of the equation.

Assume the contrary, that is, that the function v vanishes at some point 77 =
7. > 0, so that w(n) > O on (0.7,) and w(n,) = 0. Cleary. w'(n.) < 0.
Integrating equation (5) with the W(,lghl function 7! over the interval (0. 1,).
we obtain the equality

S

7Y ') + CN ) / w" ¥l dn = 0. )
Jo

where we have introduced the notation
- N N-2
C(N.m,n) = ——|n ———~——~m> -1

C(N, m.n) < O if strict inequality in (7) holds, Therefore the equality in (9) is
impossible, since its left-hand side is strictly negative.

Thus, w(xn) cannot vanish. From equation (5) it follows then that w(x) — 0
as 7 — oo, that is, w satisfies the boundary conditions (6).

If, on the other hand. we have in (7) the equality n = [(N = 2)/N — m[’l. then
the problem (5). (6) has solutions of the form

] — m ) O -
w(n) = o+ .m€Ry, (10
us(m) 2m[(N — 2) — mN[(n” +) m * )
where 77 > 0 is an arbitrary constant, 0

The family of self-similar solutions (3) makes it possible to obtain, using the
comparison theorem, a condition on uy(x), which is sufficient for total extinction
in finite time, For example, if up(x) < ug(0, x) in RY, then u(r, x) < us(l, x)
in R, x R¥, and therefore u(r, x) = 0 for all 1 > T,. Self-similar solutions (3)
provide us with the following law of motion of the half-width of the heat extinction
wave:

I/m(

5
[ll ttm I)]/_‘ g

o (Ol =n,[(Ty -~ 1), Ney) = iml/"'(()).

where, moreover, 1 + n(m — 1) < 0 for all 1 satisfying (7). Therefore {x,. (1)] —
oo as 1 — T, . which agrees wdl with the property of fast diffusion processes
mentioned above: with ever increasing speed heat flows out of the region into
infinitely distant regions, where the thermal conductivity coefficient is infinitely
large.
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It is convenient to formulate an optimal condition on the initial perturbation
up(x), which ensures total extinction, employing a solution of equation (4) of
special form, 1t is not hard to check that for 0 < < (N —2),./N there exists the

solution
ImN N — 2 1/ 0~} )
pilé) = wy b (n) = []"—j‘;‘, ( N —'”>] g E £ 0.

Here pt(§) — ¢ as € — 0., which, as will be scen below, is not essential, This
function corresponds to a solution, which becomes extinguished cverywhere (apart
from the point x = 0).

welr, x) =

ImN N -2 /el - .
= [(Ty =0, {—-—-l = ( - ——111)] el FOTm e RVA(0).
- "
an

Using (11) as the majorizing solution in the comparison theorem, we obtain

Proposition 11. Let N = 3, 0 < m1 < (N = 2)/N, and let the titlal function ng(x)
he such that

up(x) < Kjx|7210m v e RN [0} K = const > 0, (12)
Then theve exists Ty > O such that u(r, x) =0 in RY farall t = Ty,

Corollary. For O < m < (N = 2), /N, in general. there is no conservation af
energye if uy € LYRY) and condition (12) holds, then

“ll(’.’)“l_l(R\)* 01— T(}. (]3)
that 15 |, ) wey 2 Ho O ks

Proof of Proposition 11, By condition (12) there exists Ty = 0, such that up(x) <
n%(0, x), x € RY\{0}. Therefore from the comparison theorem we obtain that
n(tox) < wi(r,x), 1+ > 0. x € R¥\[0} and therefore n(r, x) = 0 in R\ [0} for
1 = Tq. 1t remains to show that total extinction also occurs at the point x = (), For
that it suffices o notice that the function ug(r, x — xo) where .xg % ) is an arbitrary
point of R¥ is also a solution of cquation (1) in Ry x [RM\ [x == xgy}). and then
compare 1(7, ) with this solution using similar arguments, 0

Example 2. Let us set

() = minfku, "}, 0 >0 k=1.2,....
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It is clear that the functions ¢ (1) are continuous for 1 > O and ¢p(u) — o™ as
k — oo for any « > 0. Then the solution of the Cauchy problem far

(1), = A (uz). 1= 0, x € RV,

with the initial condition (2) exists and is unique for any k. Since ¢ (1) is not
singular at 1 = 0, generalized solutions conserve energy:

/ w1, x) dy = / noN)dx. 1 =00 k=12, ..
JRY JRY

(the fact that ¢ (u) has a jump discontinuity at « = & /""" is not important,
since, for example, we could smooth ¢ in a neighbourhood of the point of discon-
tinuity of the derivative). Therefore under the conditions of Proposition 11 (sec
the Corollary) the sequence (7. x) cannot cunvgrge in the norm of L' RN) to
(1. x), the solution of the original problem (1), (2), which corresponds to & =

2 Conditions for existence of a strictly positive solution

Let us show first that for m < (N — 2)/N, N = 3, not every initial perturbation
ug(x). such that ug(x) — 0 as |x| - oo, ensures total extinction in finite time,
This is established by constructing other self-similar solutions of equation (1) in
R, x R", which do not have that property:

(1, x) = exp{—a(T + D)}gs(£), (14)
= x|/ explall — ) (T 4+1)/2}, T = const > (),
“where « = (. Then wg — 0 in RY as + — oc and wy > 0 everywhere. The
function gy > 0 satisfies the ordinary differential equation

!
o 7__m) V'E+age =10, &> 0, (15)

26(0) = 0, gy(00) = 0. (16)

Exactly as in Lemma | in subsection 1, we show that this problem has non-
trivial solutions if m < (N —2), /N, that is, also in cases when total extinetion in
finite time is possible. However, (14) are strictly positive in RY for all 1 > 0. In
particular, if m = (N ~ 2)/N (the “critical™ case), the problem (15), (16) can be
integrated explicitly and the self-similar solutions have a stmple form:

EN - l m +

'l‘r

tg(t, x) =

N iy
| — e
=¢ " v(-«w'w'z»)-u -~—~«‘«~\-~‘n— ~~~~~~ -+ _E(z, >0, 1>0.xeR",
expla(l ~ m)r}
(17)
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£ > 0 is an arbitrary constant.

Therefore for 0 < m < (N — 2),/N there exists a solution ol the Cauchy
problem that becomes totally extinguished (Proposition 11) and a solution that
does not. It is of interest to compare for which initial perturbations «, one or the
other mode of evolution will occur. Determining the asymptotic hehaviour of the
problem (15), (16) as § — o<, we obtain the following

Proposition 12. Ler N > 3, 0 < m < (N = 2)/N and let the initial function wy(x)
he such that for all sufficiently lurge |X|

wo(x) = Klxp 0 a7 "™ K = const > 0, (18)
Then w1, x) > 0 in RY forall t > 0.

Proof. 1f (18) holds. we can always pick @ > 0 and T = 0 in (14), such that
(X)) > 105(0. x) in RY, and then #(1. ) > ug(r. x) in R, xRY, which ensures strict
positivity of the solution (so that there is no total extinction). This same inequality
allows us to estimate the rate of decay of the amplitude of the temperature profile:
it can be at most exponential, O

Let us note that the “houndaries™ of the sets (12) and (18) in the space of initial
functions (in the first set we have total extinction, which is absent in the second
one) are very close and differ only by a slowly inereasing logarithmic factor.

Let us show now that the restriction m € (0, (N — 2),/N) is essential for
total extinction in finite time to occur. Below we provide examples of positive
self-similar solutions, which exist for m = (N - 2) /N and conserve energy. Let
us seck these solutions in the form

us(r.x) = (T + 0 pe(m). = [x|/(T 4 pltHiem D2 (19)
where 1 < 0, T > 0 are constants, Here g > 0 in RY forall 1 > 0.

Substituting (19) into equation (1), we obtain for the function wg = p¢(n) > 0
the equation

l q BN l +I('” - ) mat m
gV (" 'wy + »M'z——————«(w” ) - Iuvf,/ =0,n>0, (20)
wg(0) = 0, wg(s0) = 0. (21)
It is not hard to show that if the condition (N — 2),/N < m < | is satistied

for any / < [(N —2)/N — | ' < 0, there exists an infinite number of functions
ws(n) > 0, which satisfy (20), (21) (see the proof of Lemma 1). In the particular
case J = —[m — (N —2)/N| ' there exists a self-similar solution (19), which can



74 Il Some quasilinear parabolic cquations

be written down explicitly:

(1 —m)
(1.x) =(T +1 N/D‘*N(IH-I)'{
ug(t.x) =(T +1) 2m[mN-—(N«—2)[x
/el m (22)

Bk
(T + [)I/Kru:V»»(N/ 2

x |+ .1>0.xeRY

(m} = const > 0). It exists for all (N ~2),/N < m < | and has finite energy,
which is conserved:

/ us(t, ) dx = / s (0, X)dx = || psllrrs
I Jre

The self-sumilar solution (22) is the analogue of a solution of instantancous
point energy source type, which was considered in Example 8 of Ch, 1 for the
case m > | (thatis, ¢ = m — | > 0).

Thus, for m > (N — 2), /N there arc solutions with conserved finite energy. In
other words, in this case there is no absorption of heat in infinitely distant regions,
which happens when 0 < m < (N - 2), /N (Proposition 11). Furthermore. using
the self-similar solutions (19) and the method of proof of Proposition 4 of Ch. I.
it is not hurd to show that in this case there is no finite time extinction and cnergy
is conserved (see Comments),

§ 7 Conditions of equivalence of different quasilinear
heat equations

Above, using a range of examples, we demonstrated asymptotic equivalence of
solutions of nonlinear parabolic equations corresponding to different boundary data,
as well as equivalence as 1 — oo of solutions of different parabolic equations
obtained by perturbing nonlinear operators. The idea of this asymptotic equivalence
(asymptotic stability of approximate self-similar solutions) will be widely used in
the sequel.

Here we consider the question of equivalence of equations, understood in a
strict sense. Are there different quasilinear equations that can be reduced to each
other by a certain transformation? In other words, is it possible to transform a
nonlinear heat equation with a source or a sink into a simpler equation, one with
better understood properties? In the general setting this problem is gtudied in the
framework of the theory of transtormation groups and is known as the Bicklund
problem (its precise formulation and constructive methods of solution are to be
found in [221]).
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The examples of really non-trivial and “non-obvious™ strict equivalence are
relatively few, For that reason their réle in the systematic study of properties of
solutions of quasilinear parabolic equations is, in general, not an important one.
Nonetheless. this approach sometimes affords a considerable simplification of the
problem.

We consider below certain simple transformations that establish equivalence of
different equations, We will not analyse in detail the structure of such transforma-
tions or discuss their constructive aspect: how simple is it to reconstruct a solution
of one equation using a solution of the other? From the practical point of view
this last question is very important: frequently it is easier to solve numerically the
equation itself than to implement numerically the equivalence transformation.

In most cases we shall deal with an equation, without posing a specific boundary
value problem for it, and for that reason we will pay no attention to the behaviour
of its coefticients, These have to be taken into account in the formulation of
boundary value problems,

1 Simplest examples

We have already encountered an equation which can be reduced by an equivalence
transformation into a simpler one. This is a quasilinear equation with a linear sink:
w, = Au”*! — u, which can be transformed by a change of variables u = ¢™'v,
e™"'di = d7 into an equation without a sink; v, = Av’*!, Using these elementary
transtormations we can establish localization of heat perturbations in nonlinear
media with volumetric absgorption, Let us consider another simple example,

Example 3. The semilinear parabolic equation

E"(u
u, = Au + «T»)|Vu|z. (1)
L' (u)
where £ : R, — R,. [ € C°, is an arbitrary monotone function, can be reduced
by the change of variable v = E(x) to the linear heat equation

p, = Ap. (2)

Let us consider more complicated transformations,

Example 4. Let v = u(s.r). r = |x|. be a solution of a nonlinear heuat equation
with a source:
Iy

e N ), (3)
p

i, =

where o # -1, Examples quoted carlier show that solutions of equations with
a source have properties that are significantly different from those of solutions of
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nonlinear heat equations, let us try to get rid of the source in the right-hand side
of (3). so that only a diffusion operator remains there, To that end let us use the
transformation

y = (). WL ) = . y).

Then it is easily verified that the function v > 0 satisties the equation

(U_+ l)l//l/“”'“”( l/urn\ — l//(/) vy, +

1 , 1 o )
+~~A7-T[r~”‘r//'t/) Y lr//(/) NS R i U Nty 4 (o 4 | v
N N
To get rid of lower order terms in (4), we set
l AN

r—N"_"l*(l‘N‘wll// ) A+ (o 4 l)l// = (), (5)
R lr//([)’ + (I‘lelp(/)l), =0, (6)

If the function ¢ satisfying (5) is known, then

dr
) e ; ) 7
¢r) / R (7

The gystem (5). (6) can be solved explicitly, for example, in the case N = |
(concerning this see below), ag well as for N == 3, when by the change of variable
th(r) = k(r)/r equation (35) reduces to

K+ (o + Dk =0.

In particular, iff o 4 1 < 0, then for N =3

l /1
$(r) = —explx|o + 1],
v

! l/_
PO = Ty xplEe + 1,

If conditions (5), (6) hold, then the equation for the new function v has the
form

G 4t D)
(v”‘”" n) i ( )v
f ’(N l)((-,- + 1 )

Setting v'/“"*1 = [/ we obtain the one-dimensional equation without a source,

l// Gerp by /r H\(,,)

U, = "“"*“““;SW’“(U”U\)\- (8)

It has a particularly simple forin in the case N = 1, o = —4/3. Then the
system (5), (6) is easily solved. As a result we obtain the following
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Proposition 13. [n the equation
wp = (a0 9)

the transformation

J3 2x X
Y= Tcxp {i;—/—i} oot x) = exp {i;_/—i} u(1.y) (10)

removes the source in the vight-hand side, while the function v satisfies the equation

)y (I
For equations of general form

1, = Adp(u) + Q) (12)

there also exist transformations that remove the source term Q(u); however, here

the resulting equivalent equation is no longer autonomous.

Example 5. Let us set in (12) « = E(. v). Then for v = v(r. x) we obtain the
new cquation
E 4+ Evy = APEW. 0) + Q(E(, 1),

Let us choose the function £ by requiring that 9E /dr = Q(F), that is,
L) dn
= I + c(v),
/ Q)

where ¢(v) is an arbitrary function, After this change of variables we obtain for v
a parabolic equation, whose cocfticients depend on the variable 1:

1
M = —EWA(/)(IL“U))' (13)

For example, in the case of an equation with power law coefticients
wo= A" P e >0, B>, (14)

which will be studied from different points of view in subsequent chapters, the
transformation [ has the form

E(r,v) = [(B — D(c(v) —n[ V8D

It is convenient to choose the funetion ¢(v) so that for 1 = () the transformation
is the identity, ££(0. ) = v. This gives us e(v) = v #/(B ~ 1), so that finally we
have
LB

L, v) = [z'l - (B — i
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Equation (13), which is equivalent to (12), then has the form

- (B-1) - ~{r4 (B 1)
vo= Pl A~ (B~ P A{[u'”-(ﬁ-l)t[ TV }

Transformations of this kind turn out to be quite useful in the study of semi-
linear parabolic equations and will be employed in § 7, Ch. 1V,

2 The “linear” equation 1, = (1 2u,),

We move on now to more complicated equivalence transformations, Let us show
that the nonlinear heat equation with coefficient k(1) = 12 is equivalent to the
lincar equation.

Let (1, .x) be a solution of the equation

u,:(u"lu()\. (15

such that r(r, x) is a sufficiently smooth function which is not zero in the domain
under consideration, Let us fix a point (1, xo). Integrating (15) in x we obtain
the equality

Ja

- =3
il I VY dy = 1 (1, X, (1, %) — 101, Xo)u (1, Xo),
o, i)

or, equivalently,

0
o |,

Denoting the expression in braces by

A o}
/ u(t, y)dy + / u 2(7'. Xo)u (T, ,\'(,)rl'r} = u“zu\.

‘u L

1 !
¢, x) :/ (((1.)')(1)'+/ u’lu(l(,‘\“)d'r
it !

{ @

(from which it follows that ¢, = u), we obtain a new parabolic equation for the
function ¢:
J
"(.—(é = (b)) .- (16)
ot
Let us introduce the new independent variables
=l f=1. (17)

Solving the first equality with respect to x, we obtain

X = (i, X). (18)
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Let us derive from (16) an equation for the function . It is easy to check that
dp oy (a,// “oagp (aw g Py (a,// =
a9 \ax/)  oax \aw)  Coaxr T ax2 \ox)

(a:p ‘ {aw 33;//}
= e o o)
ax‘> o axl

Since (f,)"' # 0 (which is equivalent to the condition « # 0). (7, %) satisfies
the linear heat equation

and therefore

th = .. (19)

It is not hard to effect the inverse transformation and to show that a solution of
equation (19) transforms into a solution of the original equation (15),

Example 6. Let us consider the fundamental solution of the heat equation (19):

. l e .
Wi, 3% = 7 cxp{—«z_} . (20)

Equalities (17), (18) define the required function
G, x) = |~ ln(,\'[l/:)]l/z_

However, 1/ = ¢, is the sotution of equation (15), that is, the fundamental solution
(20) transtorms into the following solution of the “linear™ equation (15):

N

u(t, x) = -—\—: [* In (.w'/z)] e .

It makes sense for x1'/? € (0, 1).
The equation with the coefficient k(1) = 1 * has other interesting properties,

Example 7. Let us consider the “multi-dimensional™ equation

!
N b, -2
Hu = -*-'V-':T(I' W ou,), . (?-l)
r

It ts easy to check that the same transtormations
w(t. r) = r' ‘N(/),(I. Py, F==1, F=d¢dU,ryr=1 r).
reduce (21) to the form

U = gt g (N — Dy (22)
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For N = 1 we obtain a linear equation; for N = 2 we have the equation

i = 1//21//,,». + |//l//,2 = (il

By a change of variable fi(7, r) = lny this equation reduces to a one-dimensional
equation with exponential nonlinearity:

“ it -
ity = ((‘“"l(,) .
+

If, on the other hand, N > 3, then, setting i1 = ¢
equation

2N we obtain from (22) the

i, o= (A" it,), .

where yy = 2(N - 1)/(2 ~N) < 0.

3 Equivalence conditions for equations of general form

Below, using the same transformations, we show that to cach heat equation corre-
sponds an equivalent heat equation with a different heat conductivity coefficient.

Proposition 14. The transformation

A 1
[ =1 1= / a(t, vydy + / k(u(r. xp))n, (1. xg)dT. (23)
AT Sl

a(r, x) = t/u@, x), (24)
takes the solution a(1, x) # 0 of the equation

w, = (k(u,), (25)

into a solntion (i, &) of the equation

!
w= (ot (5)n) (26)
- i1 \

Proof. Let us compute the derivatives that enter equation (26). From (24) it

follows that |
(@7, X)), = ( > L hm (27)
u(t '

3
[{d

From the second equality in (23) it follows that

0= ux, + / (A y 4+ ko, - (28)

]
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However, from equation (25) we have that

/ i (1, ¥y dy =k, — kG, g, .

Sy

and therefore (28) means that
xXpo= —=k(uu Ju.
Then from (27) we obtain

T k(u) -
i, = «-—I; - 1)11“\ . 29)
"- iy

Furthermore, since x, = | /u, the other derivatives are casily computed:

! ! .
w=(2) =(;) v =% (30)
"/, u/, "

”

_ o= 3u

iy = -2 (31
I

Finally, we obtain from (29)~(31)

! ! !
i, - (_—;k (j>i2_\> = ——u ~ (kuw)u,) ] = 0,
i it . u’

which completes the proof. t

Therefore equations with coefficionts

! !
k). Ky = ki -], (32)
w \u
are equivalent. For a power coefficient k(v) = «, the equivalent equation has the
coefficient K(u) = #~"*?, which means thut equations with coefficients k(i) =

|

W, ka(u) = u”* are equivalent if
oy oy = -2 (32"

If oy = 0, then according to (32') 3 = —2 and we obtain the known result on
the equivalence of the equation with k(«) = « * and the linear heat equation,

Proposition 14 opens new possibilities for constructing particular solutions of
certain equations.

Example 8. The equation
1, = ("), (33)
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has a wide variety of symmetrics. For example, it is invariant with respect to the
transformations
P tfa, X = X, u—=> —Ina+u,

that ts, — Ina + u(t/a, x) 18 a solution of the equation if it is also satistted by
u(r, x), Setting here & = ~1, 1 < (), and then making the change of vartables
11— Ty, Ty=const > 0, we see that (33) has the seltf-similar solution

U, x) = =In(To — 1)+ 0s(x), O <1 <Ty. (34)
Substituting (34) into (33) provides us with the following equation tor the function
H‘q(.\'):
(™) =1,

that is,

(e
n

Bs(x) = (X" /2 4 hy + ¢). (

where b, ¢ are arbitrary constants.
The above equivalence of (33) to the equation (see (32))

| .
i = (T;(’I/”l—(i> (36)
it .

allows us to construct a particular solution of the latter equation, For example, let

b = ¢ =0 in (35). Then, as follows from (23). (24), « solution of equation (36)
will be a function i(7, ¥), which ig implicitly defined from the equalities

V-

e e . X)

i, )=<In{(Ty—1 'L—;;——

where the function (7, ¥) is such that
)

UAUNS ] |V
X = / In|(Ty -1 - dy=y¢in
Jo

r//z(Tn -7
5 rare

2¢?

To conclude, let us state equivalence conditions for more general quasilinear
parabolic equations.

Proposition 15. The equations

! ! i
up=(ku,uJu), = | Zk{z.—=x . ] .
i nooou .

are equivalent.  Transformation (23), (24) takes « solution v £ O of the first
equation into a solution of the second one.
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Let us note that the same method can be used to construct an unusual exact
solution of the super-stow diftusion equation

A IO (37

H, = (¢
Its name reflects the fact that the corresponding thermal conductivity coefficient
k(u) = u *e " changes for low temperatures # > () more stowly than any power.
Therefore equation (37) can be formally considered as the limit as o — o of the
nonlinear heat equation w, = («”u,),, some properties of whase solutions were
deseribed in § 4,
It we consider for (37) the Cauchy problem with a continuous non-negative
compactly supported initial function ©(0, x) = wg(x) tn R, then the generalized
solution u(r. x) will satisty the conservation law

/ wit.)dy=Ey= / wplx) dx foraltr > 0

x, NS

(see § 3 in Ch, I). The exact solution given below satisfies the conservation Jaw,
Formally it is implicitly given by 1, (1. 1) = — 1/ In(v. (1. X1 0)),

9 l
v (1 X)) = ;;(('” - W)y,

where ¢ > 0 is an arbitrary constant and the function w = (1, x2¢) is determined
from the equation

x| = (2 4+ 2)w 4+ (¢ — w)In(e — w) ~ (¢ + w)In(e + w). (38)

It is not hard to check that for 1 > ¢*/2 equation (38) is uniquely solvable with
respect to the function w(z. x;¢) € [0, ¢) in terms of x € [0, x,(1:¢)). where

)
"

X.(rne)=chr+cin <--—;> )
2¢-

Setting v, (1. x;¢) = O for |x| > x.(1;¢), we obtain a generalized solution with
compact support of equation (37). w, (1, x), which has continuous thermal flux at
the front paints of the solution x = £.x,(1:¢). Itis eagy ta see that the conservation
taw

(1
(1

~
/ u (1, )dx = Ey = 2c¢ forall1 > (‘2/2
o X

is satistied. It is interesting that at time 7 = r‘2/2 the solution u,(x, 1p) behaves
close to the point x = (0 as the unbounded singular function |x| */?, which is
integrable, but not a delta function,
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§ 8 A heat equation with a gradient nonlinearity

In this section we consider the properties of generalized solutions of quasiltinear
parabolic equatians, which describe diffusion of heat in a medium, heat conduc-
tivity of which depends not on the temperature, but rather on its spatial derivative
(gradient). Typical examples of such equations are:

u, = (u,|"u,).. (1)

in the one space dimension, while in the multi-dimensional case we have the
equation
w, = V. (|Vul" Vu), (2)

where ¢ > () is a constant. These equations are parabolic and degenerate; the
thermal conductivity coefficient & = k(|Vu|) = |Vu|" > 0 vanishes wherever
Vu = (), in particutar, at points of positive extremum of the function u = u(r, x) >
0, or, for example, at the points of the front of a therma! wuve which propagates
with a finite speed. Therefore, in general, solutions of the equations (1) and (2)
are gencralized ones.

Example 9. The Cauchy problem for (2) in R, x R has the solution

us(t, x) =A, (T + 1) NN

i (erd Diter i by
« gy _»_H_..,l;)f.lﬁ..,ﬁwm
(1 + [)I,/lcr(h $ 1y 2

A ( o ertdy/er l | jer
N o+ 2 (N + 1) +2 '

T =0, a > 0 are arbitrary constants, This is a4 self-similur solution of un instanta-
neous point energy source type. It is determined exactly as the analogous solution
for the equation with A(x) = «'" which has constant energy:

/ g, V)dx = / ws(O0, x)ydx.1 > 0.
Jrr Jre

The solution (3) has compact support at each moment of time: ws(r, x) = 0 for
alb |x] 2 |x /(0] = a(T 4+ '™ hg degeneracy points are v = 0 (a positive
maximum point) and the front surface {|x| = |x ()|} From (3) it follows that at
x = () the second derivative A(ug) does not exist, but that the product |Vuy|” Aug
is finite, so that for x = 0 the dertvative u, is defined. since (2) is equivalent to
the equation

(or-+- 1Y/ or

+

where

;= |Vl " [Au + oV V| - (Vu/|Vu))|.
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At points of the front of the solution, [Vaug| = 0, Aug(r. x) ~ (lxg| =[x~/

as |x| — |x;| . Therefore it er < |, then Aug(r, xp) = 0 ((3) is a classical solution
for x # O); it o = . then Aug(r, xy) # O, while if & > | then Aug = oo for
|x] = |x/17. In the two last cases Aug has on the front surface a discontinuity of
the first or second kind, respectively. Let us note in particular that at all pomts of
degeneracy the heat flux

Wa.xv)y= —kVu = _|V”|rrvu

is continuous. This is an important property of the generalized solution, which is
taken into account when one introduces the integral identity which s equivalent
10 (2). The generalized solutiong satisty the Maximum Principle; comparison
theorems with respect to boundary data hold for these solutions.

Equotion (2) describes processes with a finite speed of propagation of heat
perturbations over any constant temperature backgraund. For example, the function

wlt.x) =+ uct, 2y 0> 0.x € RY,

is u solution with a finite front an a (temperature unity) background.

Equation (1) has a power nonlincarity. Therefore it is not difticult ta construct
self-stmitor solutions for it in the half-space {x > 0} with a regime prescribed on
the boundary » = 0 (see § 3). For example, if (1. 0) = (1 + )™, m > 0. then the
corresponding solution has the form

usrox) = (140" f5€), € = x/(h 4 ntHHmnietd,

If on the other hand w(r. 0) = ¢'. then

(52

t -
uglt. x) = ' fo(6). & = xfexp{ ———1 3.
f [P 5
These self-similar solutions ure asymptotically stable in the sense indicoted
above (see § 1. 2).
We shutt consider more closely solutions evolving in a blow-up regime, which
demonstrate the fiear Jocalization phenomenon.

Example 10. In a boundary value problem for equation (1) in the domain (0. Ty) x
R. . let
wt. M =1+ (Tog~0"0<1 <Ty n =0, (4)

The corresponding self-similar solution has the form

st x) = b+ (T — 1)"g(&), & = x/(Ty — )P et (5)



86 I Some guasilinear parabolic equations

us(t,1)

[)<t{<zz<t3<t4<r

Fig. 8. Evolution as ¢ — T of the localized § blow-up regime (5%

where the function 6y > 0 is a generalized solution of the boundary value prablem

L+ no
— e = (). 0.
g+ 2 56 + nbs L& > (6)

05(0) = 1, #s5(00) = 0.

(07 0¢)" ~

In the particular case n = — /o (the S blow-up regime), equation (6) is cusily
integrated. The corresponding self-simitar solution

welt. x) =1+ (Ty—1) [t - X/xo0), ]“Hz'/" .
(5"

Ap =

a4+ 2 2(1-(0.+ l) e 2y
o (0 +2) ’

represents @ thermal wave with a fixed front point, localized in the domain 0 <
X < xg during all the period of action of the boundary blow-up regime, Heat does
not leave the localization domain, and for x > x, the homogeneous temperature
buckground remains the same (Figure 8).

The spatio-temporal structure of the self-similar solution (5) indicates that if
n < —1 /o, the influence of the blow-up regime will not be localized and x, (1) ~
(To=r) o2l oo gs 1 — T, (HS-regime), while in the case n € (~1/,0)
we do have localization, such that, moreover, temperature grows without bound
only at the point x = 0 (LS-regime). This classiticution coincides with the one
given in § 3 for the thermal conduélivily coefticient & = u”,
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§ 9 The Kolmogorov-Petrovskii-Piskunov problem

From this section we begin to analyse specific self-similar solutions of quasilinear
parabolic equations with an additional term Q(u) (either a source or a sink} in the
right-hand side. Some examples of such equations were given in Ch. L

First we consider self-similar solutions of travelling wave type in active media
with a source. This problem was studied first, and in an exhaustive manner, in the
well-known paper [255]. It generated a whole range of papers (see Comments}),
which is the reason this problem is named after the authors of [255].

1 Statement of the problem

We consider the diffusion process
y=u, + Q). 1 >0, xeR, (€D
in a medium with a source of a particular form:

Q) =y =0, Q) >0, ue(0 1)

) ) (2}
QW) =a>0 Q) <a, ue@ 1]

The behaviour of the function Q) is shown in Figure 9. From the stated restric-
tions on Qu) it follows thai
Quy < au, uel0, 1] (3

(this is essential in the following). Al the above conditions are satisfied, for
example, by the source

QUuy = au(l —u), 0 < u=<l, (4)

Fig. 9.
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hult,x)

0<t,<t, <ty <L, <t,

Fig. 10. Formaiion of a thermal wave in ihe problem (1), (6). The inirial Tupction is
indicaied by a thicker line

For equation (1) we consider the Cauchy problem with the initial condition
w0, x) = up(x) = 0, uy(x) <1, x € R, (5

This problem is well-posed. Though we did not detine the function Q(u) for u < 0
and « > 1 this is not important, since from (5) and from the comparison theorem it
follows that O < w(r, x} < 1. Indeed, v, = | and v _ = 0 are solutions of equation
(1}, and by (5), v. < ug(x) < uy; therefore u. < w1, x) < u, in Ry x R,

Let us consider now an initial perturbation of a simple form (see Figure 10):

Hp(xy =1, v <0, uplx) =0, x> 0. (6)

Then it is clear that the thermal wave will start 10 move to the right as shown in
Figure 10. What is the law governing its motion? What is its spatial profile for
large times?

In ]255] it was shown that the asymptotic behaviour of the solution of the
problem (1}, (S} is determined by a self-similar solution of (1) of the travelling
wave type:

ws(t, x) = 0g(£)., & = x — AL, (7)

where A > 0 is a constant (the speed of motion of the wave). Substitution of (7)
into (1} gives us the ordinary differential equation

05 + A + Q(0y) = 0. &€ € R; Os(—00) = 1, Os(oc) = 0. 8)

The boundary conditions here were chosen based on the form (6) of the initial
function.

The stmilarity equation (8} reduces to a first order equation. 1t is not hard to
check |255] that this problem has a solution tfor any

A= Ay = 2. (9)
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The solution #s > 0 corresponding to a given A > Ay is unique up to a shift. This
fact is important: if g is a solution, so will be O5(€ + £*), £ = const.

The natural guestion that arises is: what speed is selected for an initial per-
turbation of the “mesa”-like form (6)7 In |255] the authors prove the following
fundamentally important result: in the problem (1), (6). for large 1 the wave
moves at the speed A = Ay, that is, the minimal possible speed. For other non-
compactly supported up(.x) the wave may move as 1 — 20 with a speed A > Ay,
It we denote, as usual, by x,. (1) the depth of penetration of the thermal wave
(u(t, x,0(1}} = 1/2}, then

dx,g/dt = 2Ja+ o), 1 — o0. 10

In addition, at the asymptotic stage of the evolution the profile of the thermal wave
coincides with the function #1(£), the solution of the problem (8) for A = A,. This
means that the similarity representation of the solution of the original non-self-
similar problem, 8(:. €} = u(1, £ + X, (1)}, converges as 1 — oc¢ to a shift of the
function #9(£). that is,

0. ) = 85 ey — 0, 1 = o0, an

Below we treat in detail several simple questions reluted to this problem, which
at the same time illustrate methods of unalysis to be used later.

2 Upper bound for the penetration depth of the wave

Proposition 16. In the problem (1), (5). (6) we have the following estimate for
the penetyation depth of the wave:

i
.\'(,,(1)52\/&1”—«—ﬁ nr+04), 1 > oo (12)
44

Proof. By condition (3), the function v(r, x), which satisties the equation

vy, =uv,+av, >0, vek, (13
and the same initial condition (5}, (0), is a supersolution of equation (1) (by the
comparison theorem, Theorem 2 of Ch. 1), Therefore wufr, x} < (s, x) in Ry x R.

The function v can be casily computed (the change of variable v = ¢ w reduces
equation (13} to the heat equation for w):

sl ~ -
u{t, x) < v{1,x) = ;)—;Tvm- / exp {A% } dn.
2 X ‘/,)_’
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By this inequality the required half-width x,, (1) will not exceed s(r}, “half-width”
of the wuve that corresponds to the function v, i.e.. the solution of the equation

] o ~ Tll
I exXp< —— » dn. (14)
2 2771/2 .K(’)/”" p{ 4 an

Hence we obtain the estimate (12). 0

Itis of interest to note that the exact value of x,., (1) does not differ significantly
from the expression in the right-hand side of (12) (see [195]):

3
_\-,.,(1):2\/51~T—(;lnt+()(l),1—»oc. (12"

3 Asymptotic stability of the travelling wave
Let us show that the self=similar solution (7} is asymptotically stable: stability is
not necessarily with respecet to small perturbations of the initial function wup(.x).
Proposition 17, Let there exist a constant & € (0, 1} such that
Qéu) = Q). ue (0,1) s

(this condition is satisfied by the source (4}). Then the solution of the Couchy
prahiem for (1) with initial function

w0, x) = nplx) = 66%(x), v e R, (16)

couverges asymptotically 1o the similarity function 84&) in the following sense:
theye existy a constant &y, such that

u(t, € + Agt) — OUE + £3) — 0, 1 — oo, a7
for all £ € R,

Proof. The proof is based on the lemina stated below (similar assertions in 4 more
general setting are used in Ch. V). As u preliminary step. we pass from equation
(1} to the equation satisfied by the function 6(1. &) = ult. & + Ayt ):

0 = O+ Apl; + Q0}, 1 >0, £ € R. (18}

Under this transformation the initial function 6y(€) = #(0. £) does not change.
Compurison of (18) with the ordinary ditferential equation (8) shows that the
problem of asymptotic stability of the travelling wave self-similar solution is re-
duced by the transtormation to the analysis of stability of stationary solutions of
the new equation (18).
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Lemma 2. Under these assumptions, the solution of equation (18} is critical:
0,.6y>0,1>0,£€R.
Proof. The function ; = 6, satisfies the lincar parabolic equation
o= e F Az + QO 1= 0.£ € R,

which is derived from (18} by differentiation in 1. In view of sufficient smoothness
of 6 and Q, this manipulation is justified; however, one can weaken the requirement
g€ C,Z; (sce Ch. V). Therefore by the Maximum Principle 2¢(7. £) = 0 in Ry x R
if this inequality holds at the initial moment of time, that is, if

20,6y =6,0.6y 2 0. £ e R, 19

Taking into consideration (18) and the form of the initigl function 84(£) =
uol€) = 864(£), we obtain that it is necessary to verify the inequality

0,00, £) = (Ho)es + Ao(Be + O(By) = (0 + 808} ) + Q(80%) = 0. £ € R. (30)

The function #3(£) satisfies equation (8) for A = A,. Therefore (20} is equivalent
to the inequality
—8QH3(EN + QBH3(£)) = 0, £ €R,

which holds by assumption (15). 0

To conclude the proof of Proposition 17, it suffices to observe that the function
0(1. £} s non-decreasing in 1 for all £ € R, und is. moreover, bounded from above:

O, £y < 00E). £ € R, 1)

since this incquality holds for 1 = 0 (see (16), where 6 € (0, 1), and 69 is the
solution of equation (18)).

Therefore for any £ € R there exists o 1tmit 6(7, §) — 0"(£}, 1 — oo. Passing
to the limit us 1 — oo in the integral equation equivalent to (18), we see thut 8*(§)
is u stationury solution of the equation (18}, that is, a solution of the problem (8)
for A = Ay- As wus mentioned earlier, it is unique up to a shift. 0

Remark. It is not hurd to estimate just how different ure the golution u(r, x) and
the corresponding limit function 65, which depends on the magnitude of & in (17)
(that is, on the amount of shitt). First of all, by (21} & > 0. Second. let us
compare the asymplotics of the function #3(£):

80(&) = Coexpl—Jatl+ ..., £ — oo,
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and of the initial function
On(&Y = 53‘;(@ = 5C()CXP{“\/E§} Y o

(here Cy > 0 is a constant). Taking into account the fact that by Lemma 2
01, &)y = 0p(€) in Ry x R, we obtain from the inequality 02(._5 + &o) = Hy(8), or.
which is the same, from the condition

Coexpl—Valé + §)) = 8Cyexpl~Jat} as & — oc.

an upper bound on the magnitude of &: Cyexpl—a&ol = 8Cy. that is. & <
-~ IS 18 > 0in (16) is small and therefore 0y(&) is very different from
65(£). then the difference between this function and the limit function. to which
01, £} converges as 1 — oo, can also be large.

Let us emphasize that the mitiad function ug(x) in (16}, with which u(r, x)
stabilizes to the gelf-similar solution, is substantially different from (6): it does
not have a finite front, and (the main difference} up(y) — & < 1 us x — —o<.
However, the law of motion of the half-width of the wave is in this case closer to
that of the selt-similur solution. It is not hard to deduce from (11) that x,, (1) =
2J/ar 4+ 0(), 1 — oo (compare with (12'), where there is another term, which
grows logarithmically as 1 — 00).

To conclude, let us note that using the proof of Proposition 17 under the assump-
tion of criticality of uy, we can demonstrate stabilization of (17} to the minimal
function 6 without the restriction on the source term Q'(u) < a. u € (0, 1). In this
context, let us quote some exanples of stable travelling waves ug(r. x) = 6%(¢).
£ =X = Adl, which cun be written down explicidy.

It

Qu) = u(l — ") + (@ + D", ue (0, 1), v =const > 0,
then for A = Ay = 2/a = 2 4 solution of the problem (8) ig
5y = {f’”"é/ (l + (’”"é)}”u. feR.
For a source of “trigonometric” type,
Q) = 7' sin(ru)(2 — cos(mu)), u € (0, 1),
such a solution is
()2»(§) = 7 ' uiccos {(02{ -~ 1)/0 4+ r’”)} . EeR,

In both cases 63(£) = ¢ us £ — oo.
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§ 10 Self-similar solutions of the semilinear parabolic equation
w=Au4+ulnu

In this section we consider the Cauchy problem for a semilinear equation of the
particular form
= Au4ulnu. 1> 0, x € RY, )

w0, x) = ug(x) =0, v € RY: SUp Uy < ¢, (2)

Here the function Q(u) = ulnu is a source (Q = 0) for « > 1 and u sink
(Q < 0) for low temperatures u € (0. 1).

Equation (1) is interesting in that it admits g large two-parameter family of self-
similar solutions, which wllow us to give a detailed description of solutions of the
Cauchy problem and. in particular, to determine conditions of asymptotic stability
of the principal self-similar solution (it will be the first to be defined below).

The source Qu) = ulnu > O for 1 > | satisfies the condition

> du /"‘ dn
e o OO0
Jg2 Q(U) Jm2 N

Therefuore all solutivns of the Cauchy problem are globally defined, that is,
they exist for all 1 > 0. Since the function Q(u) is differentiable everywhere apart
from the point 1 = 0, in a neighbourhvod of which it is a sink, the solution of
the problem exists, is unique, and satisfies the Maximum Principle. Moreover,
using the self-similar solutions constructed below, it is not hard to show (as in the
proof of Propusition 4 of Ch. 1) that every solution of the Cauchy problem with
uo(x) # 0 is strictly positive in Ry x RY and is a classical one,

1 A one-parameter family of self-similar solutions
We shall scek the principal® separable self-similar solution in the form
WL X) = g (8.(X), 0.(x) = exp{—|x]"/4]. (3)
Then from (1) we vbtain for ¢, (1) > 0 the equation
W) = ~-/,\7/(//,(1) + 0 Ing (Do > 0,

from which ¢, (1) = exp{Bye’ + N/2} and

Wit x) = exp{Byc’ + N/2} expl—|x|*/4}. (4)

*The sense in which “principal™ is tw be unterstood will become clear Trom the following.
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Here By is an arbitrary constant,
This solution corresponds to the initial perturbation

to(x) = ug(0, x) = exp{By + N/2 — [x|*/4), v e RY. (5)

It follows from (4) that if By > 0, u§tr, x) grows without bound in RY as 1 — oo;
if By < 0 then ujr.xv) — 0 in RY as 1 — oc. The value By = 0 corresponds to
the stationary solution of equation (1), which is independent of time:

uss(x) = exp{N/2 — |x|*/4}, x € RV, (6)

Thus, there are thiee types of essentially different self-similar solutions (4):

1} a growing solution (By > 0);

2} a decaying solution (By < 0);

3) u stationary solution (B, = 0).

All these solutions can oceur if we use quite a restricted set of initial functions
(5). What is the domain of attraction of each of the three types of the principal
self-similar solution; for what ug(x) will each type of evolution occur?

2 A two-parameter family of self-similar solutions

We can give partial answers to the questions posed above by constructing a larger
fumily than (4) of self-similar solutions of equation (1}. We shall look for these
solutions in the self-similar form (now the variables do not separate as in (3)):

uslt, Xy = p()b,(£), € = |x|/dl1), 0,(€) = exp|—£7/4). ()

Substituting the above expression into (1) leads to the following system of ordinary
differential equations with respect 1o the functiong (1}, ¢t ):

/ N yln)
(1} = ———; (yln ). (8
Yty 200 + iy In 1) )

2’ (1) 1
= —— =1, 0. 9
R T &

The second equation can be easily integrated:

H) = (1 —age N1 =0, (10)

where g s a constant: here for (10) to make sense for all 1+ > (0 we must have the
inequality ay < 1. Then (8) gives us the following expression for the amplitude
of the self-similar solutiont

N
i1} = exp {c’ [B(, -5 In{l — u(,r'”’)” . (1)

<Ly
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where By is 4 constant (the same as in (4}).

The constructed family of solutions (7} has the properties 1)-3}, however, it
is a larger family than (4). as it depends on two parameters a4 and By. The
corresponding initial functions have the form

N - ,
wo(X) = u(0.x) = exp{ By — — In(l —¢y) — ————— ), X € RY. (12
2ag (1 — ag)
For a fixed By the one-parameter family of these initial functions (ay < 1 is a
parameter) characterizes the domain of attraction of each of the three types of the
principal self-similar solution (4).

3 Condition of stabilization to the stationary solution

Let us consider the case By = 0 in (12). Then it casily follows from (7} that
the corresponding self-similar solution converges as 1 —» o0 to the principal gelf-
similar solution (4}, that is, in this case, to the stationary solution (6). From (10),
(11) it is not hard to derive an estimate of the rate of stabilization to ugg(x).

For cach fixed x € RY (for By = )

Tk N(l() LN
N2 + _(,r\//_()

Plr) = ¢ "ote ). ‘/)2(” = | — aye - oo,

Therefore for large 1

ugr, x) = exp {—/:—/ - l}:} [l + i:—:—)(N — |xPye "+ o).

Hence it follows that on any compact set Ky = {[x] < L} in R
s, <) — ll,s'ts‘(‘)”(‘ql\‘,_\ = (¢’ ') — 0, 1 - 0.

The process of stabilization tu the stationary solution is schematically depicted
in Figure 11,

Thus the stationary solution (0) is stable with repect to perturbations of the
initial function, not to ones of arbitrary form. but to ones which make up the self-
similar initial functions (12) for By = 0. Here the perturbations can be arbitrarily
large in amplitude: see Figure 11, where ug(r;. 0} is several times larger than
ugs (),

This result is interesting, since with respect to arbitrary perturbations, no matter
how small, the stationary solution ngy is wnstable, This is demonstrated by the
following simple claim.
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us(tr)

f,<t2<tj<t,’

0 Izl

Fig. 11. Swabilization as 1 — 20 ol a self-similar solution wg(z, x), By = 0 to the unstable
stationdry solution uyg(x)

Proposition 18. et
iy x) = SugglX), X € RY. (13)

where 8 > 1 is a constant (deviation from the stationary solution |Jug(:) —
ugs (Y lews, = (8 — D2 can be arbitrarily small if 8 is close to 1), Then

,li‘m ulr, x) = 00, x € RV, (14)

that is, there is no stabilization 10wy,

Proof. 1.et us tuke in (5) an arbitrary By = B} € (0.1n8). It is not hard to check
that in that casc
nolx} = SuselX) > ug(0.x), v € RY,

and therefore by the comparison theorem
ult, X}y 7wyt x) = cxp{B(:‘c' + N/2}exp{~|x]*/4} — o6, 1 — oo in RY,

This concludes the proof of instability of the stationary solution (6) from above.
In a similar manner we can prove that it is also unstable in C(RY) from below:
to any initial function (13) with § € (0, 1) corresponds a decaying solution:
u(t, x) —~ 0 as 1 — oo in R, that is, again there is no stabilization lo ugy. It is
proved exactly in the same way by comparing #(r, x) with a self-similar solution
(4), in which By = B, € (In8,0), Then u(1, x) < uylr, x) — 0.1 — oo, in R¥

since By < 0. 0
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Therefore the family of functions in (12) with By = 0 is the attracting set of
the unstable stationary solution in the space of initial functions, We note that it is
unbounded in C(RY).

4 Decaying solutions

These exist if By < 0 in (12); then us(t, x) — 0 as 1 — oo for all x € RY,
Then it can be seen from (10), (11) that for large 1 uy(r. x) has practically the
same structure as the principal self-similar solution (4). To be more precise,
introducing the similarity representation of the solution (7) (the similarity transform
corresponding to the principal solution (4)).

uglt, x) x|
0, x) = R el I 15
.x) () ( ((l —(l(,v")'”) (1)

we see that
16G. ) = 0. leryy = O 1 — 00 (16)

Here 0.(x) = uils, x)/ . (1) has the meaning of the similarity representation of
the principal self-similar solution (4),

This estiinate implies asymptotic stability of the principal solution with respect
to perturbations of the form (12) of the initial function (5).

5 Growing solutions

If Bg > Oin (12). it follows from (11) that ug(r, x) — oc in RY as 1 — oo. Using
the same formula (15) to introduce the similarity representation of the solutions
wglt, x), it is not hard to check that all these solutions (for any By > 0, ag < 1)
converge in the sense of (16) to the principal self-similar solution (4),

It is important to emphasize the following point, Let us determine the rate of
change of the effective half-width of the growing heat structure 1,/ (1} = | (1]
defined by ug(r. v (1)) = 1)/ 2. Using the explicit forin of the function ug we
obtain for the half-width the expression

) =42 (1 —ape™) = 4ln2, 1 — o0,

that is, for large 1 it becomes practically constant.  Nonetheless, the solution
ug(r, x) grows without bound on the whole space (compare with example 13
of § 3, Ch. 1, where the half-width being constant went together with localization
of the thermal structure in space).

To conclude, let us observe that it is very rarely that one is able to construct
a large family of exuct self-similar solutions which coineide asymptotically with
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the principal (“‘generating”) solution. Frequently one can determine generating
solutions in the framework of the theory of approximate self-similar solutions (see
Ch. Vi),

Remark. It iy easy to construct a family of self-similar solutions of the form (7)
for the equation

wy=Au~nlna, >0, xeRY. (17)

Then. taking into account the fact that the function Q(u) = —ulnu > 0 for
u € (0,1} is a source and (0} = (1} = 0. we obtain a problem similar to the
one considered in § 9. However here Q'(0%) = oo therefore the speed of the
motion of the thermal wave will not be asymptotically constant,

Self-similar solutions of equation (17) have the form

N X : |
tsll, x) = exp {t" ! \:B() ~ 570 lﬂ(tl()t" — l)} - Z(—(;i'(;’ly:—l')} L1 >0, ve RA .
(18)

where By, ay > | are constants. et

N
By — — Intag — 1) < 0.
2(!()

Then, obviously, § < ug(0. x) < lin RY . and therefore, by the comparison theorem
ug(ro vy € (0. 1y in R, x RY (this can be seen immediately from (18)). In this
case (18) represents a thermal wave with nearly constant (as 1 — oc) amplitude
that propagates in all direetions (Figure 12), Its effective width has the form

|x, (D] = 2ayIn2)' 262 1 — o0,

that is, the speed of motion grows exponentially as 1 — oo,

us(t .z)

0<t,<t,<ty

Fig., 12. A travelling wave in the Cauchy problem for equation (17)
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As far as asymptotic stability of the family (18} is concerned, we have for all
By the estimate

1P
4({()

K
uglt, x} = exp h4n o
0

so that the principal self-similar solution here is a different one.

sup
£eRY

llg(l,:f()”z) -~ exp {~ H =0(e™ ")y > 0, 1 = oc.

Therefore for large 1

§ 11 A nonlinear heat equation with a source and a sink

Let us consider the quasilinear parabolic equation

&

= ), + e —u > 0.ve R o > 0. (h

1t differs from the one encountered before (Example 3. Ch. 1) by the presence
of the sink —u. This can significantly change the character of evolution of the
combustion process,

We shall look for self-similar solutions of equation (1) in the separable form

wglt, Xy = (nyf(x). 1 > 0, v € R,
Substitution into (1) leads to the problem

W)+ ) (070 + 67"
ity T o

= —A = const. (2)

For convenience let us set A = 1/, Then we obtain for the function 6(x)
exietly the same equation as for #g(x) in § 3, Ch. 1. Therefore we can take 8 = 6.
The amplitude of the solution (1) is casily computed from (2}, and as a result we
obtain the family of self-similar solutions

] -
us(t.x)y=¢' (—(' oy C(,> Bs(x). 3
o
where Cy is a constant, To each of those solutions corresponds an initial function

uolx) = ug(0, ) = (1o +Co) " 0(x). v eR. (4)

Hence we have that it is necessary to impose the restriction Cy > —1/0.
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ug(t, &)

4 b
/r O<tt et <t <,
1
!
I
I
h (30,0540
{

1, 5(x), 4= 0

O<tlet?ay?

U (4, 2),0, >0

Fig. 13. Evolation of sclf-similar solutions (3) for Cy < 0, Cy = 0. Cy > 0

For different Cy in (3) there exist three types of self-similar solutions having
different spatio-temporal evolution, If Cy = 0. then (3) is a stationary solution
(Figure 13):

wys(¥) = o7 05(x), x € R (5)
If Cy > 0 then the solution uy decays (quenches):
gt x) = Cg e M 0g(x) +ole '), 1 - o, )

These solutions are below the stationary ohe on Figure 13, and their existence has
to do with the presence in (1) of a heat sink. which for small « > 0 is more
powetful than the source.

On the othet hand, if Cy € (=1/0, 0). that is, if the initial function lies above
the stationary solution, then finite time blow-up occurs;

]
U, Xy » oo 1 — 1Ty = — - In(—-oCy) > 0
(
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everywhere in the localization domain |x| < (meas supp 6¢)/2. The perturba-
tions do not leitve this domain. even though the temperature grows without bound
(see Figure 13). From (3) it follows that the solution ug grows according to the
power law

ustr. x) = (To ~ 1)1 05(x). (7N

Therefore the stationary solution (5) is unstable: small negative perturbations
lead to stabilization to a different stuble stationary solution wugy = 0. positive
perturbations lead to growing solutions which blow up in finite time.

Let us observe that the spatial dependence of heat transfer processes in this
nonlinear medium (combustion or quenching) are determined by the same function
As(x); it is only the equations governing the change of the amplitude of the heat
structure that depend on the type of the process. In this medium there is also a
characteristic spatial scale, which is common to all the processes. the fundamental
length Ly = meas supp g = 2w (o + 1) /o,

§ 12 Localization and total extinction phenomena in media
with a sink

In this section we consider in more detail certain properties of solutions of the
nonlinear parabolic equation with a sink

wy = (0w ), ~u"o 1> 0, xeR, (1

where o > 0, v > (),

1 Localization of heat perturbations

We ate already familiar with one of the important propetties of solutions of this
equition. the localization property (§ 3. Ch. 1)t if the initial function uy(x) in the
Cuuchy problein is of compitet support, then as 1; — 0o heat perturbations do not
propagate beyond a certain finite length. As in example 11 of § 3. Ch. 1. we can
prove a4 more general assertion concerning localization conditions of solutions of
the Cauchy problem for (1).

Proposition 19, Ler ug(x) be a function with compact support and v < o + 1.
Then therve exists d constant L o> O sueh that w(r,x) = O for all |X| = L jor any
1> ()

This result can be extended to an arbitrary number of space variables. 1t is not
hard to carry through the same Kind of analysis for equittions of the type (1) with
arbitrary coefficients k(u) > 0. Q(u) < 0.
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The localization condition v < o + | for heat perturbations is obtained by a
simple compatison of the solution of the Cauchy problem with a suitable station-
ary solution: moreover, this condition is both nceessary and sufficient, This is
indicated, in particular, by the fact that for v > o + | there are no non-trivial
stationary solutions that vanish together with the heat flux in some finite point. We
shall return to consider the character of the motion of heat fronts a bit later. while
now we consider another curious property of solutions of equation (1).

2 A condition for total extinction in finite time

In this citse this phenomenon is related to the presence of heat sinks in the medium,

Proposition 20. Let v < |, supuy = M < oc. Then there is Ty <= T, =
M/ = ), such that w(t, x) = 0 in R jorallt = Ty

Proof. Let us compare u(r, x) with the spatially homogencous solution v(s) of
equation (1):
() =~ (), 1> 00 v()) = M.

By the compatison theorem, u(f. x) < v(1) in Re x R. However. it is not hard to
see that v(r) = 0 lor 1 = T,. which completes the proof. O

From these arguments it follows that if’ we replace the term —u” in the equation
by an urbitrary sink —Q(x) (Q(u) > 0 for « > 0), total extinction oceurs if'

3|
/ dn
Jo Q)

By the comparison theorem, the same result holds in the multidimensional case.
Formally, we may asume that the asymptotic stage of the total extinction process
(1 — Ty} is described by self-similar solutions

(. X)) = ('I'(‘ - [)I/(I M_/‘S(()' { = .X/(T() - [){rr} Ve /(200 =) € R. (2)

whete Ty = 0 is a constant (the total extinction time) and [g(£) > () satisfies the
equittion

!

N4y = [5=0.geR @)

o+ 1)-v

LI AN (
(sl 20~ m

However, this fact depends strongly on the existence or nonexistence of non-trivial
solutions of this ordinary differential equation which satisfy the condition /¢ — 0.
|{| — oo (similar problems are treated in § 1. 3. Ch. 1V). Then the expression
(2) shows us the evolution of the extinction process. Asymptotic stability of these
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self-similar solutions can be studied by the methods used in § 4-6, Ch. 1V 1
the analysis of self-similar solutions with blow-up (the difficulties that arise in the
process are on the whole of the same nature, and have 1o do with “singulanity” in
time of the solutions under consideration). See also the Comments.

Both those properties, localization and total extinction, are illustrated by the
following example. which demonstrates specificities of motion of heat fronts in
media with volume (body) sinks.

Example 11. Let o € (0, ). Let us consider in R, x RY the Cauchy problem for
the equation

", = V(" V) ~a' v, 3)
Let ug assume that at the initial moment of time 7 = () all the heat energy is
concentrated at the point b = (), that is «(0. x) = 0 in RN\{()} and that #(0.0) = ¢
This is a typical “self-similar™ statement, containing minimal information about
tnitial data,

We shall look for a solution of the problem in the form

s ( = PNe(&£). € = |xX|/(1). “(4)

where (1) > O and ¢(1 () are. respectively, the amplitude and the width of the
heat structure, while lhc u)mpaclly supported function #(£) > () has the form

OE) = [(1 - &),1"". £ eR.

Its regularity properties are satisfactory from our point of view: at the front points
£ = %1 the heat flux is continuous.
Substituting the cxpression (4) into the original equation, we obtain for the
functions ¥, ¢ a system of ordinary differential equations:
22+ No) 204" S

- —- = (),
”-3 + o (/,u-fl

(5)
e — E—— =0 1> 0 (0) = oo, p(0) = ()

Setting here =Y. th "7 = Z(1), we obtain the system

22+ No) | , 4
wzy = 220N Ly vz o .
o o

which can be eastly integrated.
l.et us write down the expressions for the amplitude and the width of the thermal
structure:
l//"([) — ”0[~-Ncr/(24-N¢r) (A _ I)(‘[H{H Nay /(2 l«N:r)) i
' @)

}

2 02+ ) ENEY LN
1) = cor¥ N (/\ — P EN «r\) i
}
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#

Fig. 14. The dependence of the amplitude ¢(¢) and half-width (1) of the localized sotution
(4). (47 on time: ¢ = Ty is the total extinction time

Here

‘:2(2 A N(l‘)} ~No /(24 N [2(2 + N(r):ll/(l'Ncr)
Ty = Oy = .

a a

”.3 2(2+N(’.) 2 Nay 2 Ner)
g [
A > 0is o constunt, Graphs of the functions (1), ¢(1) are sketched on Figure 14,

It is interesting to note that the size of the support of the generalized solution
does not change monotonically with time. On the interval (0, 1,), where

A 24 N2 4 Nory)
1y 72 ] e N
{(2 + N(r)b(,}

T

the width of the structure (1) grows: subsequently the surfuce of the heat front
starts moving bick towards the origin v = 0, and finally, at time

[ = T() - (A/b())c t Nerd /1201 1 Nemd

the functions (1) and ¢ (1) vanish simultancously. that is, we have total extinction.

The self-similar solution (4) is localized: wt every moment of time the diameter
of the support does not exceed 2¢h(1,). Ohserve that (4), (4) imply that ag 1 — Ty
the solution hus the following asymptotic extinction behaviour:

;
5 {/ar

wstin = [o(To =0 = €9, A +o01)

with & = |xl/do(Ty — )" and df = 22 + No)T. Thus it is not self-similar (cf
(2) with v = | ~¢) and is governed by the equation without diffusion, 1, = ~u'*
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3 The motion of the thermal wave in the absence of localization

Forv > o+ 1in (1) a compactly supported initial perturbation will hot be localized.
This is because at low temperatures the strength of heat absorption is not sufficient
to halt the thermal wave. The nature of the motion of a front point in these cases
is determined from the analysis of exact or approximate self-similar solutions of
equation (1),
If v = o4 1, then (1) admits a self-similar solution of a relatively unusual
form:
ws(t. ) = (T +0) "7 J(m). n=x—AIn(T +1). (6)

where 7 > | und A > () are constants, The function [(n) 2 0 satisfies the equation

VAPRIE VAL Sl '=0.neR. (7)

To formulate correctly the boundary conditions for this equation, let us consider

the following analogy with the results of § 9. The quasilincar parabolic cquation
o I il .
po= (), + v -1 > 0.0 e R,
o

contains in its right-hand side the function Q(v) = v/o — 1 > (0 for v €
(L o™y and Q) = QoY) = 0. Therefore we could formally consider
a Kolmogorov-Petrovgkii-Piskunov problem for that equation and try to find a
travelling wave self-similar solution, v(r.x) = [(n). 7 = x — Ar. Then the
function /' > 0 is a solution of equation (7). and therefore it is necessiry to
impose the boundary conditions

/(~O(.,) = ]//”.A/'(OO) = (). (7,)
We restrict ourselves to deriving estimates of the size of the support of the
generalized solution of the Cauchy problem for v = ¢ -+ 1, when wp(x) = «((, x)
ts a function with compact support.
First of all, it is casy to prove the following claim: there exist constants A > ()
und T > 1, such thet
meas supp a(r. x) < A4 o (T 1), 1= 0, (8)
To prove this, it suffices to check that the function

W= (T2 Vg =+ x— o "I+ 1),

is & supersolution of equation (1), and to choose the constants 7 = | und 7y € R
$O that «g(x) < w, (0, x) o R,



100 II Some quasilinear parabolic equations

Secondly, we have a lower bouad: theye are constams B > (0, A € (0, 1), such
thet
meas supp (s, x) > B+ Aln(l +1). 1 >0, (8')

The proof proceeds via construction of a subsolution of 4 different form:
w =40 YHA =9 /1 =m0+ x = Al + 1),

where H > 0, « »> 0, A € (0. 1) satisfy certain tnequalities; if they do, they can
be chosen to be arbitrarly small, Therefore there exists an 1, € R, such that
to(x) = w. (0, x) in R.

In view of the lust estimate (8'), compactly supported solutions of the Cauchy
problem are not localized for ¢ = o + 1.

A sharp estimate of the support of any compuactly supported solwtion can be
derived by using a differeat purticular solution, Namely, using the equation v, =
A(w] = voy, 4 (1/0) (v,)? — ov?, where v = u”, we observe that the guadratic
operator A admity a linear tovariant subspace Wa = Sl cosh(An)}, A = /(o +
)72 Therefore subsmmb u(r, x) = Colr) + Cy(r)cosh(Ax) € Wa, yields the
dynamical system (cf. [49})

AP olo+ 1)

l 2
Cy= —rr(C(,+-——-——»C]).C,:~*————-— CoCyo 1= (),
o IT-—+—

+ 1
which can be casily studied. By uging weak solutions of the form (v), in compar-
tson with #(r. x) from above and from below, we derive the following estimate:

2 ]
meds suppu(r, x) = m Int (l + 0 (E)) asi — o,
p 2

For ¢ > o4 1 asymptotic behaviour of the process is deseribed by a self-similar
solution of the usual form,

Wy = ([+1) ]/(:r»l) p [ _ |\|/ [v+”|l ter y D/ 200 - I- (())

where the function gy = () satisfies the problem

b ook 1) ] )
O e el T dh = SRS Le=0,4 > 0.
s8s 2(,/ l) &s 1 s (10)
25(0) = 0, gg(00) = 0.

A von-trivial compactly supported generalized solution of this problem exists
for o +1 < v < o+ 3 (similar problems are considered in Ch. 1V). In this case
usthg the comparison theorem, we obtain from (9) an cstimate of the support of
the generalized solution:

f -
l'\-/([)l "“lh Gr b D20 - 1 = o0, [ — 00,
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that is, unlike the case v = o + 1, for ¥ > o + 1 the thermal wave moves
according to a power type law (faster than in (8)). In this case (9) determines
also, for example, the relation governing the change (n time of the amplitude:

-1/

supu(r, x) = ge(0)1 L 00,

1eR

The situation for v > o + 3 is simpler. The problem (10) has no compactly
supported solution. For ¥ > ¢ 4 3 the heat absorption on the wave front i3 so small
that it exerts practically no influence on the speed of its movement for large 1. As
a final result we have that as 1 — 20 the character of the motion of the front does
not depend on absorption and is determined solely by the diffusion operator, that is
u(r, x) is in some sense close to the solution of the equation v, = (v v,),. But for
this equation we know a self-stimilar solution, which describes the asymptotic stage
of spread of the heat perturbation (see Example 8, Ch. ). Therefore |x, (1)} ~
M s oo, and furthermore sup, g (. x) ~ 17 a1 > oo,

Heat perturbations penetrite arbitrarily far, there is no localization,

§ 13 The structure of attractor of the semilinear parabolic
equation with absorption in RV

In this final section we study in tore detail the asymptotic behaviour of solutions
of the Cauchy problem for heat equation with absorption in the multi-dimensional
case:
- B . . N, — oS
t, = A ~uP 1= 0. xe R B =const > 1. (1

0. x) = wp(x) = 0 (£0). veRY; supuy < oc. (2)

The initial function g is uniformly Lipschitz continuous in RY. This is u semilinear
equation (o0 = () however, the same analysis can be carried out for the more
general quasilibeir equation considered in § 12,

Equation (1) is one ol the few nonlinear parabolic equations in R, whose
asymptotic behaviour as 1 — oo has been studied in sufficient detail. At present
there exists a relatively complete, and for some parameter ranges, exhaustive,
description of the attractor of the Cauchy problem for (1) uas the manifold of
asymptotically stable states (cigenfunctions of the nonlinear medium, ¢.f1), to each
of which corresponds its attracting set ‘W in the space of initiul functions. A more
detailed discussion of e.f. of a nonlincar medium can be found in Ch. IV (see
[162. 268, 269]).

Below we present a simplified description of the structure of the attractor of
equation (1), which determines the asymptotic behaviour of solutions of the Cauchy
problem as 1 — oc.
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We purste two aims in concluding this intraductory chapter with a detailed
analysis of & particular problem. First. this is @ result of & complex study of a rather
complicated nonlinear problem. It turns out that the process of heat conduction
with absarption in this case can cvolve as 1 — o¢ in many different ways, In
particular, & measure of this varicty is the fact that the attractor of the equation is
infinite-dimensional .’

Secondly, we want to emphasize the essential difference in the structure of the
attractor of the nonlinear equation with absorption (1) and of an equation with a
source, which admits unbounded solutions. Analysis of the latter takes up a major
part of this book. Without entering into details, let us indicate the main difference.
If, roughly speaking, the equation with absorption has, for nearly all values of
parameters, & “continuous™ attractor, then in the cuse of an equation with a source
term the attractor is “quantized” in a special way, and consists, apparently. of
several collections of discrete states, combustion cigenfunctions of the nonlinear
dissipative medium. Principles of constructing a discrete attractor are discussed in
Ch. IV,

Let us return to the problem (1), (2). The first “candidates™ to be elements of
the attractor of the equation are, of course, its self-similar solutions.

1 Self-similar solutions and conditions for their asymptotic stability
Below we consider, for simplicity, radially symmetric self-similar soldtions of
equation (1) of the form

g, x) = (T 41) P Do), & =[x/ (T + 1), (3)
where T > () is & constant, while the function #¢ > 0 satisfies the ordinary

differential equation

7 2 l ’ l
Arts) = £ MgV 0y + S0+ B":THS — 08 =0. & >0. (4)

It has the obvious homogeneous solution
OsE) =60, = (8~ 1) D ¢ =0 (5)
We shall be interested in its non-trivial solutions, satis{ying the boundary conditions
He(0) = 0, #g(00) = (. (6)

A formal asymptotic analysis of equation (4) as & — oo (that is, 8y — ()) yiclds
the possible asymptotics of the problem (4), (6): a power law one,

Os(&)=C& PN 4 e C =0, (7

SFor N = 1 for N o= 1t is ol leust two-dimensional.
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or an “exponential™ one:
Bo(&) = DEVPD Noxpl—£2/4) + ... E— oy D = 0, (8)

Actually (8] is the limiting case of (7) for ¢ = ().

1.l The set of similarvity functions {64} i the cases B = 1 +2/N and B <
I 4+ 2/N. The seis of the functions {#¢} in these ranges of the parameter 8
are significantly different, which eventually leads to differences in the asymptotic
behaviour of solutions of the Cauchy problem (1), (2) for 8 = | 4 2/N and
B < 1+4+2/N.

Proposition 21. Ler 8 = 142/N. Then there exists an infinite number of solutions
of the problem (4).(6) with posver Ly asymptoties (73 and therve are no solutions
with the exponentiol asympiotics (8).

i the case B € (1.1 + 2/N) there is an infinite collection of finctions 6¢(€)
of the form (7) and at least one solution O of exponentiad form (8).

Proof. 1t is based on constructing super- and subsolutions, #, and 6§ ., of the
problem (4), (6). We shall first seek them in the form

0. (6)= A @d +¢H) VP g0,
It is not hard to check that

AR((}:k) = AJ (”21- +E:.’) Qp-hip h %

O N LAV P S L. Y S 1
B -1 B—1 T (B-1P

and therefore Ag(f,) < 0 in R, (that is, €, is a supersolution), if

P - 2N 4
A s TR - (9)
B—1 (B-1)>
Similatly, Ap(#,) > 0 in R, (# is & subsolution) in the case
) 2N
a? > 2N AP < Tt (10)
B—~1

Varying the coustants ey, Ay > () which satisfy (9), (10), we can find an infinite
nutnber of distinet paies of functions ¢, > #. in R,. Then, using it well-known
principle in the theory of semilinear clliptic equations (see ¢.g. [356, 357, 378(), to
each pair {#,. 6 .} corresponds at least oue positive solution H5(£) of the problem
(4], (6), such that, morecover, . < #y(&) <6, inR,.
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Let us try now to find 64 of exponential type:

0x(£) = Ay expl—asé). ¢ = 0. (1)

Then

il

Ar(0y) = Ay expl—ay £ x

X

2 1 3
{a&mm - Dé + —B”:T —~2Na; — Ai expl—ay € (B — l)}} .

which gives us the following restrictions on the values of the constunts «,, Ay > 0:

a, < 1/4,
. ! -1 1
A¥ lz(—»-w~~2Na, cxp{-ﬁ (——-—wlNcu)}‘ (12
B—1 | 4, \B -1
a =1/4.42 P <1/ (B~ 1) - N/2 (13)

From the last inequality it follows that the subsolution of the form (11) exists
only if 8 < I 4+ 2/N. In this case we can always pick, without violating (12),
(13), the constants ey, Ay so that ¢, > 6 in R, which proves the existence of
a function 04(£) with exponential asymptotics for 8 < 1 + 2/N. O

Non-existence of such a solution for 8 > 14-2/N is established by the following
lemma, which will play an important part below. In preparation, let us formulate
a family of Cauchy probletns for equation (4):

Ap(B)y =0, € >0 0'(0) =0,000) = u, (14)

where p € (0,6y) is an arbitrary parameter (clearly, § = 6(&p) — o0 as
& — oo in the case p > #y). Naturally, if # = 8(£: 1) > 0 in Ry for some u
and #(oc; u) = 0, then the solution H(£: ) defines the required similarity function
f5(£). We have the Tollowing

Lemma 3. Let 8= 1 4+2/N. Then 0(& m) > 0 in Ry Jor all e (0.6y). and 0
cannol have expomential asympiotics.

Pyoof. Let us multiply equation (14) by ¢¥ ! and integrate it over the interval

(0. &)
N Ly I v C N N I B
06+ :;9(§)§ = /“ n" 0 {‘:)‘ - E*:—l + 6 (T])} dn. (15)

For 8 = 1 +2/N(N/2 —~ 1/(B — 1) = 0) the right-hand side of this equality is
strictly positive. If on the other hand #(£,) = 0 (0 > 0 on (0, §,). . < 00), then,
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e

Fig. 15. The cuse 8 = 1 + 2/N

obviously, #'(£,) = 0 and the left-hand side is non-positive for & = £,, so that
(15) cannot hold.

The second assertion of the lemma also follows from (15). If § has exponemml
asymptotics (it is easily shown that in that case the dmvauvc 9’ will have the same
property), then, getting £ = ~c in (15). we arrive at a contradiction in a similar

way. 0

Figure 15 shows schematically the functions § = #(¢: u) in the case 8 = | +
2/N for different values of w € (0, #;). From (15) it follows that for 8 = 1+2/N
the function #(&: ) is monotone increasing i u for £ € R, so that different
curves in Figure 15 cannot intersect.

In the case B8 < | ++ 2/N the functions #(£: u) have a more varied behaviour,

Lemma 4. Let B € (1.1 + 2/N). Then there exists a value py € (0, 6y), such
that for all w € (0, uy) the solution of the problem (14) vanishes ar some point
&= ¢, < oc For pe [y, 8y) there exists at least one positive solution 6 with
exponential asymptotics and an infinite number of solutions satisfving (7).

Proof. The second assertion has already been proved. The first one is established
by “linearizing” equation (14) around the trivial solution 6 = 0. Setting f,(£) =
(& w)/ m, we obtain for the new function f, the equation

¥y f _-El N ]t# __t £+[ f;(“ B ltli (16)

(it is clear that f,(0) = 1, f,,(0) = 0) with a small parameter 1A~ multiplying
the nonlinear term, The corresponding linear problem for p = () has the form

Fr(fo) =0.€ > 00 fo(0) = 1, f,(0) = 0.
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By e e e e

LN\ s

Fig. 16. The case 8 e (1. 1+ 2/N). ‘The thick line denotes the Tupction g(&) = 8(&; w,)
with “exponential™ asympiotics

Using the change of variable & = 2(—m)'*. 5 < 0, it reduces to the boundary
value problem for the degenerate hypergeometric equation:

” N " Lo
nfi+ (”2* - 77> fo— E“:‘:‘l’/u =0, <00 fo(0) =1,
all solutions of which for 8 < | + 2/N vanish at some point (sce, for cxample
[35]). By continuous dependence of solutions ol equation (16) on uf ' this is
also true for all sufficiently small u € (0, uy). 0

Figure 16 shows schematically the behaviour of solutions of (14) for differcat
M€ (0,0p) inthe cuse B € (1. 1+ 2/N).
" To conclude, let us write down the solution of problem (4), (6), for the case
B = 2, which hus the explicit form

S
(an + &1 dy + -

O¢(&) = > 0. € =0, (17)

AN = 48(~(N + 14) -~ 101 4 N/2)]/2).I)’N = 24(2+(l + N/z)lll)~
ay = 2(N + 14+ 1001 + N/2)'%).

It has power law asymptotics (7) us & -» o0,

2 Stability of self-similar solutions

The main problem consists in determining in the spuce of initial functions the
domains of attraction, corresponding to each ¢igenfunction of the nonlinear problem
under consideration. ln subsection 1.1 the similarity functions #4(£) > () were
ordered by introducing the parameter = 6¢(0) € (0, §;1). We shall denote the
attracting set corresponding to a self-similar solution (3) by W, und the solution
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us ttself, by ug(r, x; 7). By asymptotic stability we tnean, as usual, convergence
of the similarity representation of the solution of the original Cauchy problem (1),
(2),

Or(1. &) = (T + 0B D, €T + 1), 1> 0,6 e RV, (18)

to the corresponding function g = #(]&]: ). The quantity 7 > 0 is conveniently
determined from the form of the initial function uy € W, It is clear that rep-
resentation (18) of the self-similar solution (3) gives us precisely the function
Os(&).

The question of asymptotic stability of self-similar solutions is very casily
solved in the case 8 > | + 2/N.

Proposition 22. For 8 > | +2/N the atrracting set W, corresponding to a given
self-similar solirion (3) has the form

W= luy = 0137 >0 wo(x)=T B0 x1/T?) = o[ x| 1) x| - o
(19)

From Proposition 21 it follows that this attracting set is defined in an optimal
fashion.

Proof. Let uy € W,. Let us set wy(x) = de{ll() XLous(O T, wy (x) =
minfug(x), us(0, v T}, and let us denote by w? (1, x) solutions of equation (1),
w0, ¥) = wi (x) in RY, Clearly. w' > ug, w <ugow <u<w' iR, xRY,
The function 2t = w' — g = 0 is such that

=A< A s 0. 0e RY. (20)
and therefore
o) < *—l—,—; / cxp{——L‘;E}:.(",(.\"+_v)¢l_\‘. (21)
(4rn)Ne fpy 41
By condition (19, 2 (x) < (lx]) in RY, where ¢(Jxh) = o(|x] VP71 us x| —

0. Then we obtamn from (21)

sup (L Y) = Ot ‘W:/ )‘N exp Y h(y)dy}.
VORY J0 4[

Deriving a similar estimate for o = ug ~ w . we have

“x 2
167 = Oshems = O (:‘/‘/‘“' / N 'cxp{w%} (p(:‘/lnmn) R )
JU

and it is not hard to see that the right-hand side goes to zero as 1 — 0o, 0
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A simpler estimate of the rate of convergence can be obtained under different
restrictions on uy. For example, from inequalities of the form (21) it follows that
in the case

- : o172 N
w(x) =T YE Ve x)/T'?) e LYRY)
we have the estimate

651, = O5(] - Dl = Ot VEHVEY 01— 0. (23)

1t 15 interesting to note that from (19) we cun deduce uniqueness of the similarity
funetion # with a fixed principal term in power type asymptotics (7).

As can be seen from the estimate (22), this method of proof does not work
lor 8 = 1 +2/N. In this case (as, in fact, for any 8 > 1) the question of
asymptotic stability cap be partially resolved by using information about super-
and subsolutions, #, and ¢ | of equation (4).

Let us write down the equation for the similarity representation 6, = #y(7. £)
in a new titne variable 7 = In(1 + 1/7T):

86
o7
040, &) = TV V(T2 ¢), ¢ e RY. (25)

i

AlBy), 7> 0. £ € RV, (24)

Here A Is the stationary operator

I
= A0 ——4; — 98, 26
e+ - Z l (26)

All the functions #y = H¢(|£]) satis{y the equation A(#y) = 0 ia RN, Therefore it
is necessary to study asymptotic stability of stationary solutions of equation (24).
An important pait is played by

L.emma 5 I(’I 0, (6 ) b(' same supersolttion (subsoltion) of equation (4), thet
s Agp(6,) O (Ag(#.) > 0) in RY, Then the solution of equation (24) with

initial tum tion G40, &) = 0, 0D (040.€) = 0 (|€]) ) is non-increasing (non-
decreasing) in 7

a0y /o <O (g Jdr = 0), 7> 0, ¢ € RY.

Proof. The proof is based on the Maximum Principle. Indeed. the function © =
(04), satisfies a lincar parabolic equation, z < 0 in RY for 7 = 0 and so0 on. a

Let us note that the subsolution # i Lemma 5 does not have to be smooth;
it is sufficient, for example to have # e C? wherever it is positive, Therefore, if
the radially symmetric function

00, &) = TYVE Vyy(1'2¢) £ € RV,
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is a super- or subsolution of equation (24), then #7(7. £) is monotone in 7 and
bounded: therefore by a standard monotone argument for semilinear parabolic
equations (see [22, 357, 378]) there exists a solution 8y == 65(|£|) of the problem
(4), (6], such that (7, &) — B5(|£]) in RY as 7 — o0.

In the general case the problem of determining attracting sets is related to the
problem of uniqueness classes of similarity functions 6 = 65(1€]). Namely. we
have

Proposition 23, Ler 6., 0. € C2(RY) he, vespeciively, radially symmeiric super-
and subsoluiions of equation (14), 10 which corvesponds the sane similarity func-
rion B = (& ). 6 <0y <8, in RY, Then the ser

W, =1{ug = 013T >0 0. (&) < TVP VuT'2¢) < 6.(1&) in RV}
is conined in'W .

In the case 8 < | + 2/N it is important to note the following asymptotic
property of solutions.

Lemma 6, L¢r B € (1. 2/N). If ug #0, then for some T = ()

llm Op(7.€) 50, (27)

Praof, Without loss of generality we shall assume that 1(0) > 0, Then it follows
from Lemma 4 that there exist sufficiently small 7 > 0, g = 0, such that

uplx) = T YD1 w1y < T meas supp O(1E]: w). (28)

where 801&|: 1) is a solution of (14), Therefore by the Maximum Principle (the
function 6 in (28) is a subsolution of cquation (24))

Wi, x) > (T + 1) "B DO JT + 0.
1= 0, )x] < (T + 0 Pmeas supp O€]: 1)
and consequently
Or (7. &) > 0( & ) = 0. |&] < meas supp OUE|: u).

which ensures that (27) holds. 0

This is an important result, Practically, (27) shows that for 8 € (1, 14-2/N) the
asymptotic behaviour of all small solutions is desertbed precisely by self-similar
solutions of the form (3). We shall show below that the situation for 8 > 14+ 2/N
is different, Let us indicate another interesting property which follows from the
method of proof of Lenuna 6.
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Proposition 24, For 8 € (1. 1 +2/N) among sahuions Og(1€|) of ihe problem (4),
(6) there is a solwion 6% having the expeneniial asypiatics (8), which is minimal
among all (ineludiug radially novn-symuneiric) solutions of the ellipic equaiinm
A(0) = 0 in RY. The anraciing set W, p. = 030), conuins all sufficient]y
small infiiad funciions wy, and, in parvcular, the sei

W, =iy = Qg #£0|3T > 0 wptx) < T VB Vg x/TV?) in R}

Proef. From Lemma 5 it follows that the solution of the Cauchy problem (24).
(25) with the initial function 64(0, &) = (1] u). where 8(|£|; 1) is given in
the proof of Lemma 6, is critical, that s (8707, §)); = 0 in R, % RM. Since
O7(7. &) is bounded from above (for example, by a function 65(£) with power
law asymptotics). the limit Tli’mx O (7. &) = GL(€) exists. and. obviously. #; has
the exponential asymptotics (8). Monotone stabilization 87 — 63(&) as 7 — oc
ensures that 63 is mininal among all solutions of the equation A(#) = 0 in RY. as
well as the inclusion €, < W, . This follows from the fact that we can provide
the estimate (28) for any wy(v) 0. 0

2 Non-self-similar eigenfunctions (approximate self-similar solutions)

Self-similar solutions with spatio-temporal behaviour (3) do not exhaust the set of
clements of the attractor of equation (1), The remaining elements of the attractor
are a.s.5,, which do not satisfy cquation (1), unlike the exact solutions (3),

I Candirions of asympiotic degeneracy of the absorption jrracess for

B>1+2/N

Let us return to Proposition 22, Setting in (19) #y = 0, we obtuin the attracting
set

Wo = {uy = 0 uplx) = o(]x| IR | x| — >} (29)

If uy € Wy, then 04 (1, &) — U uniformly in £ ¢ RY as 1 — 2. It is interesting to
note that this simultancously proves the known assertion (see Lemma 3) that for
B > 14 2/N there are no functions #y with exponential asymptotics.

Therefore in the set Wy the solution a(r, x) does not evolves according to self-
similar rules, The asymptotic behaviowr of uli, x) for 1y € Wy is determined by
self-similar solutions of the heat equation without a sink:

u, = Au, 1 >0, ve RY, (30)

If 1y € Wy, then the sink —u? becomes negligible as 1 — oc¢ in comparison with
the diffusion term,
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We shall need the following self-similar solutions of cquation (30):
LTy = (T 40 [, n=[xI/(T+n"% (31
Here y > O is a parameter; the function f, > 0 solves the problem

' 1
| -N N ooy o .
( foy+sfm+vfi=0.7>0
! 2 (32)

N}

£.0) =0. fi(x) =0,

It is well known |35, 317] that for y € (0. N/2) this problem has a solution with
power law asymptotics:

‘/‘\(n):Mn'z"%-k..,-qQ s, M o= const > (), (33)
If ¥ = N/2. then the only appropriate solution i3
[ = fim) = Mexpl—n'/4). n= 00 M > 0. (34)

For y = N/2 (32) has no positive solutions,

Let g € Wy, 1t turns out that self-similar solutions of the form (33). (34)
determine the asymptotic behaviour of almost all solutions u(r. x) in the cases
uy ¢ LY (RYy and uy € LY(RY). respectively.

Let us consider first the case ny ¢ L'(RY). 1o which correspond the values
¥ < N/2. Let us introduce the similarity representation of the solution of the
original problem (1), (2)

ot =+ 0%t g(T+ 0" .1 > 0.7e RY, (35)

Proposition 25. et B> 1 +2/N and
BN ~2) < N, (36)
thatis, B e (1 +2/N. o) for N=1or N =2and B € (1 +2/N.N/(N~12)) for
N = 3. Lei there exisi y € (1/(B ~ 1), N/2) and positive consianis T, M. A, such

thai
() — w0 (0, 1y € LYRMY, (37

() < Aug(0, ;7). xe RY (37)
Then Wfp( o — f\(')”,‘l“(v\, - (Jas 1 — >
Proof. et us set = = u, — u. Then

=Az 40P >0, x e RY 20 x) € LIRY). (38)
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Let zt =max{0,z} =0, 27 = —min{0, z} = 0 in R X RY. Clearly

2l sy = 2 Dl + 127 O e
and, furthenmore, by (37) z5(0, ) € L'(RY), From (38) it follows immediately
that I |
“(‘||~'-’(’)||:.‘u<'~) < / P, Xy dx. ‘-||:_'(/)||,v‘(k‘\, < 0. (39)
di Jre i

Since by (37') 1 < An, in R, x RY, from the first estimate (39) we deduce that

; .
e R R U / WP e Tydx =
di JRY

= (T +1) PR £ 15,

AR 1= 0.

It is easy to check that for y > 1/(8 — 1) and under condition (36). we have
the inclusion f, e LA(RY) (see (33)), and therefore

/ s
L;II:‘ (Dllraen, < consts (T 4+ nN278 05 0.
4

The second estimate in (39) means that {27 (D gy, < const for 1 > 0. Taking
now into account the fact that

— AN/
”3(””1,‘(]{*‘) = (T +n " / Hfre. ) — f\ My RN
we obtain now an estimate of the rate of convergence:

Out Ty < (N +2)/2B).
Ny = fuollmy, =S OuY Mnn, y= N+")/ 28).
O My, ¥ > (N +2)/28).

Therefore if y € (1/(8 — 1).N/2), f) — [, as i — oo in L'(RY), a

The restriction (36) in fact is not significant, and we can get rid of it by
analyzing the stabilization fy — f, as 1 — 00 in the norm of LP*'(RY), where
it > 0 is a constant (above we considered the case jr = ),

Next we shall touch on the case up € Wy N L'(RYY if y = N/2. Tt is not hard
to derive the equation for the similarity representation (35) for y = N/2 in the
new time 7 = In(l 4+ ¢/7T):

i

3 f ,
(_A-’%L B(fy) ~ (e ‘N‘/"‘“/jf‘./f' 7= 0.n¢eRY, (40
[¢

d N
B =4,fr+5 Z ,;'n,+3-_t',u

1=z ]
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We shall assume that
Fr(0 gy = TN 2uy(InI T < C expl—Inl*/4}. € RV,

where C > () is 4 constant.
From (40). invoking the Maximum Principle, we obtain

fr(7.m) = C expl—inl*/4} in R, x RY,

so that f4 is uniformly bounded. The differential operator in (40) is casily reduced
to divergence form by multiplying both sides of the equation by exp{ini®/4}:

ol dfe i .
e T“Vn'cllvn_tl +

N 2, = A LansY o fE ot
+ M’;f'elni i (I‘,T)l» (B ly,\/.,lt_/'_c,r]. /4.

from which, after taking the scalar product in L*(RY) with (fy),. we easily obtain
the important estimate

I

It allows us to prove that every partial limit fy(7. ) — f,(n) as 7 — o
in L7(RY) 15 a solution of the stationary equation B(f.) = 0 in R¥, As 7 <
Cexpl—inl*/4} m R, x RY, we have that f, = f, = Mexp{wlnll/4} (see (34)).

The fact that the limit (7. ) — f.(n) for 7 = 7, — o0 does not depend
on the choice of the sequence {7,} follows from a kind of monotonicity of the
solution:

1y @
el! /XTL (7. )H dr < oc.
g7 1RY)Y

d
——*”fy(’l' )” LURY) = 0. 7>0
dr

(here we have used the fuct that the functions f, = M cxp| ~|17|3/4} are monotone
in M in RY),

It remains to show that f,20 (that is, M > (), This is casily done by
constructing a special subsolution of cquation (1):

w.(x) = g 4+ 07" expl=1a P 14T + D). f
1t is not hard to check that (¢ ), = Au — ¥ in Ry x R¥,if !
W) < =BT 40 B S0, 18
For 8 > 1 + 2/N we can take as r(/) the function b“{'{,‘\ ;

Yy =y + AT 407 1> 00y > 0,4 >0,

where € = N(B —1)/2 = | and €A > (r/./(, + AT 3%, Therefore. under the
appropriate restrictions on u#p(x), we have n > u in R, x RN that is. fy(7, 1) >
Jryexpl—1n1*/4) for any 7 > 0, n € RV,
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2 Conditions for asympiatic degeneration of the diffusion pracess
Let us summarize briefly the above results, Let
wp(x) ~ |x] 7. x| — o0; @ = const > (), (41)
Then above we congidered the case a > 2/(8 — 1) a = 2/(8 — 1) is the
“resonance” case, while for a > 2/(8~ 1), 8 > | + 2/N. the absorption process
degenerates. Thus it remains to consider the case @ < 2/(8 — 1) in (41),

It turns out that in this case as 1 — oo diffusion degenerates, and as a result the
asymiptotic behaviour of u(s. x) is expected to be deseribed by self-similar solutions
of the first order equation

w, = —uf, 1> 0. xeR". (42)

which can be conveniently written in the form

(1 x) = (T 4 1) VB-D g £y,

(43)
E= /(T + 0!/t bBle RV 1 = congt > 0.
Substitution of (43) into (42) gives us the following equation for f, > 0:
] r’f\ . I N
e S S~ B = 0. £ R
(B~ 3 B-1 ‘ (44)

i€y = 00161 — oo,

1t i5 easily integrated, and the general solution of the problem (44) has the following
forn:
fU@ = (B =1+ GRE gD g ER e RY, (45)

where G(w) > 0 is a sufficiently smooth function defined on the unit sphere
S = {w € R¥||wl = 1}. Let us note that in the general case the functions (45) are
not radially symmetric,

Let us move on now to determine attracting sets corresponding to each of the
a.5.5. (43). Below we denote by

fra & = (T 4+ 0" Du, g1 4 plias-hl (40)
the similarity representation of (s, x) defined using (43).

Proposition 26. /.¢/

9 9
(:_B—:/le‘ < < MIn {B:—T N} (47)
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and, mareover, assume thai in (45)
Glw) > 0.we § Gw) e CHS)

Then ihere exists p > 0 such Ilz(u f(n any iniiiel ﬁuu'u'(m uy, which saiisfies for same
T > 0 the condition Tup(+) — 1,0, ' i e HURY), stubilizarion Srey = [,
in L' RY) ocewrs as 1 — oc.

Praaf. We proceed with a formal analysis. The function o == u — u, satisfies in
R, > R" the cquation
So= Az~ opli, )+ h(i xy, (48)
!
=p (muti. x) + (1 — (s, of ! dn > 0,
Jo
hir, x) = An (1. x

By assumption (0.} € L”*Y(RY), V0. 71 e LXARY). lLet us take the
scalar products in L*(RV) of both sides ()f (48) with |z} 'z, Then using natural
agsumiptions concerning the regularity of the generalized solution of the linear
equation (48), we obtain

I d | 4 1y
- ;n. L V:U'i /2 TR
o E1 II” M ge, T s HVIz] (PR (49)

‘ |,r l All ) — |:|;7<61.H) I |p l All
Let the condition
N—-(a+2)(p+ 1) <O N+JaB-1-21(p+1) >0 (50)

be satisticd. Then it is casy to check that Agf, € L”*'(RY). Using the Holder
inequality
| |” l A“ = ” “,, RN ||A”\||U"'(|(\)~

as well ag the identity
”A“,\(’)”]_/”'(I(") = I + 7 “A f ”lr RNy

N—(a+2)(p+1) -0
af-Dip+1)

which follows from (43). we obtain from (49) the following estimate

o=

/
l‘“:(’)”]‘]ﬂl(“‘\ = (I +,) Hl\ I > ():
di
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my = HAf ey < 00
Taking now into account the fact that
He e ey = (T + D 70,9~ FiO e,

where

! N
€= —0 ——
B—1la(p+D
we obtain the final estimate of the rate of convergence:

0uttt 5, 8> -1,
e = fill e qey, = OU “nn. &= ~1. (51)
o “). < ~1,
as 1~ 00, One cansee that § + 1 — e < 0 if & > —1. Let us require in addition

to (50} that € = 0, that is.
N—ap+1)>0. (52)

Then it is not hard to see that (51) guarantees stabilization of fy to f, as 7 — oo,
and that the system of inequalities (50}, (52} is compatible under the condition (47).
o]

3 A, far the evitical value of paramerer B =14 2/N, 1y has exponeniial
decay ar infiniry

In this ease there ariges probably the most unusual a.s.s.:

IR X
L) = 1A+ Vel ———— ) T > 1. 53
w (r, x) = (T 4+ D 1In(t + 1)) g ((7‘+/)‘/3> > (53)
whete the fuanetion g, (£) > O will be defined below, This a.s.s. corresponds to
the similarity representation

¢ (1L &) = (T 4+ 0 InT + 0" 2u, £+ n''?). (54)

The fact that Tor small tp(x) > O, u(s, x) evolves as 1 - oo according to the spatio-
temporal structure (53), follows from the existence of a super- and subsolution of
equation (1) of the following fonn:

w1 x) = AT + 0t + 0] M exp {“ZE'III‘\A: ,~)} . (55)

A = const € (0, (N/Z)N/Z)'
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| }
5 0. (56)
4T+ D1 +aln™ (T + 0]
a =const >0, H = H(a) > 0 can be arbitrarily large. This is casily verified by
substituting these functions into (1),

It can be shown that for all sufficiently small uy(x) (for example, for uy ~
expl{—{x[*}. lx] — oc). after a finite time 7y > 0, the condition v < u < uy will
hold for 7 =7y, x € R". and therefore 1 < « < u, for any 7 > 1y, x € R”, Then
from (54) we obtain the esthmate

€17 &1
Aex = gl §) = Hex ‘ i
e p{ 4 }“g = p{ 4Il+uln’"'('l‘+’)|3} o

Therefore this is also true for any possible limiting function g.(&) and the estimates
have the form

wie(r, x) = H(T 4+ 1n(T 4+ 1] ¥ exp {~

Acxp{~I67/4} = g.(6) = Hexp {~161 4} €€ R (5T)

The precise form of g, (&) becomes clear by using the equation satisfied by the
similarity representation gq = g, (7. &), with 7 = In(l + /7).

B v+ 5 Z oy St e (S ). o

By uniform boundedness of g (7, £) (see (57)). from the last equation (which
cah be put in divergence form by multiplying by exp{i£i2/4}), it is not hard 1o
deduce boundedness of expti£]? /81 (gr), in L2((1, 00) x RY). Thig estimate allows
us to pass to the limit as 7 —» o0 in (58). As a result we obtain for g.(&) the
stationary egoation

’)
B(g,)=Acg. + = Z ‘)Z ——g* =0, £ e RV
t
Therefore
g.(&) = Mexpl—1€1°/4}, M = const, (59)

and by (57) M € |A, H.
Below we only prove unigueness of the limiting function g, (&),

Proposition 27. Ler 8= 1 +2/N. uy = up(jxf) ~ expl—1x1*} as |x] — oo, Ler
gri(m, &) — g, (&) as 7 — o0 unifermly on every campract ser in RY. Then

@ (£) = NV 4 2/ NN P expl—1£17/4). € € RY. (60)
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Preaf. By (59) we only have to show that

M = (N/2)NV2(1 + 2NN 61)
Integrating (58) over RY, which can be done by (57), we obtain
d t
— Al gy (T, - o) = e (G (2 e
dTllJ,I(T vy STl (gr)(7)
| (62)
=IIWT ['“é‘”ﬂ'r(f. My = U r(m I g |7 = 1

From (57) we have that {ig(7. -}, g, is bounded from above uniformly in 7.
Therefore it follows from (62) that the integral

/"’ G (gr)(7)
"""‘""‘“""“"T’” (17.
| 74+ 1In7T
must converge.
Since under the conditions of the theorem G*(g)(7) — G™(g,) as 7 — 00,
we obtain the condition fig. | (rs, = 0 (see (57")) and

" N 2
380 = S gy = gl e, = 0.

from which follow (61) and (60). 0

Remark. An clementary analysis of the behaviour of trajectories of the “ordinary
differential equation”™ (62) as 7 — oo also allows us o prove the stabilization
2r(7. ) = ¢.&) in RY a5 7 — oo, where g, is the function (60).
Under the stated conditions a.s.s. (53) satisfies the linear equation
I N i,

et = Agry - e et 5 (), v € RY (03)
1 200 41
which differs considerably from the original one.

To canclude, let us agatn remark ou the curious transformations the semilinear
pavabalic equation (1) can undergo at the asymptotic stage. Depending an the
magnitude of B8 aund the initial function wg(x), it is equivalent (in the sense of
a.s.5.) to ahe of three types of cquation: linear equation without sink (30), first
order equation without diffusion (42). or, finally, equation (63) with a linear sink.

Remarks and comments on the literature

§ 1. Basic material needed to derive the celementary results of subsections 1-3 is
contained (n the well-known manographs [282. 101, 338] (see alsa |378, 357, 361,
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3651]). Praposition 4 is proved in |119]; see also the more general statements of
1187] and § 4. Ch. VI

§ 2. Concerning Propasition 5, see |380, 384|. The presentation of subsection 2
follows [187]. Another method of proof of a statement similar ta Proposition 6 is
contained in ]234] (let us note that the method of |234] cannat be used to derive
an estimate of the convergence rate of @ — f as 1 — oo, which is of importance
in applications),

§ 3. Existence of solttions af the problem (5) tthder quite weak restrictions an the
coefficient k() has been proved by different methods in 123, 24, 68]. The proof of
Proposition 7° uses the methad of |187]; justification of the transformations used
there can be found in |330].

The self-similar solutions (14) af subsection 2.1 were considered firgt in
132, 29. 30]. where existence and uniqueness of solation of the prablem (16),
(17) were established (subsequently, they were established by a different method
in |205]). Asymptotic stability of the solutions (14) with respect to perturba-
tiobs of the initial function, boundary regitme and the equation (the coefficient
w” — k(u)) is praved in | 119, 184]: in this context, sce Ch, VI, where similar so-
lutions are used to construet families of a.s.s. aof nonlinear heat equations with
non-power type coefficients, Solvability of the problem (19’) and uniqueness of
fs are established in |28, 29. 30. 32, 205]. Questions relited to asymptotic stability
of the solution (19) and construction of the corresponding fumily of ass. of a
large class of boundary value problems are considered in |184] (these questions
are alsa briefly discussed in § 3, Ch. VI), The localized self-similar solution (21)
is studied in |351, 393, 352]. Its asymptotic stability is praved in 119, 153] (see
§ 4. Ch. 1I); the corresponding family of a.s.s, is constructed in {119, 184, 187]
(see § 3. 4, Ch. VI), Analysis of self-siiilar salations (23) is the subjeet matter
of much of Ch. 111, where additional informationh and the relevant references can
be found. The exact solution (24), which is invariant with respect to a Lie gtoup
of transformations (see ]322]), is constructed {rom general considerations by the
methods of 1134], [176]. though, of course, it is well known; see |44],

§ 4. Existence and ubiqueness of the self-similar function f¢ in (5) has been es-
tablished by different methads in 17, 21]. The estimate of the convergence rate (8)
for arbitrary initial fubctions uy % 0 has heen abtained in |21]. Ib subsection | we
present a different (and, in our opinion, simpler) method of proof of convergence.
The botndary value problem with the condition (13) has been thoroughly consid-
ered in |10], where solutions aof variable sigh were also studied. 1t is of interest,
that in that case, in distinction to Propasitian 9. it is possible for a salution (s, x)
to stabilize, i a special norm, as + - oo ta a spatially inhomageneous function.

“Other estimates of the convergence rate are obtained in {300, 320.
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§ 5. First existence and uniqueness theorems for fast diffuston equations of general
form are proved in |343] (N = 1), where the tatal extinction effect was discovered.
Stmilar studies of the multi-dimenstonal case for ne € (0, 1) include, far example,
119, 43, 53, 328]. In ]43] a method of proof of total extinction in the boundary
problem (1)—(3) is presented,

The proof of Proposition 10 uses a different approach. Asymptotic stability of
the self-similar solution (4) under some restrictians on @ © RY was established
in 147]. Let us note that in the course of the argument of |47]. conditions of
stabilization to an unstable stationary solution of a quasilinear parabalic equation
are found (such problems arise in §§ 5, 7, Ch. 1V).

§ 6. Here we mamnly fallow |168]. The first result concerning the total extinction
phenomenoh in the Cauchy problem (1), (2) was abtained in [43] in the case
0 <m< (N=2)/N.N =3 u € L'"R" )N L/RY, p > (1 ~ /(2N
Conditions tmposed on ¥, in Propasition 11 are weaker. In case 0 < m < (N ~ 2)
equation (1) is shown [251] to admit a unique self-sitilar solutioh (3) with finite
mass (this determines the exponent n > (1) which is asymptotically stable ]166].

Example 2 is taken from |43]. Proposition 12 is proved in | 168] by constructing
a strictly positive in R, x R" subsolution of the problem. Prapositions 11, 12
pravide a fairly precise description of the boundary between the sets of {ug) far
which there is, ar is na, total extinction in finite time. Non-occurrence of total
extinction for all m > (N — 2); /N is proved in |19] (see also |328]).

§ 7. The clementary transformations v — £y (Example 3) will be used in §
2, Ch. V, to present the special compirison theory for solutions of two different
nonlinear parabolic equations. The substantial simplificiation of equation (3) in
Example 4 (the right-hand side of (8) is independent of r) obtains i the case
o = =43, N = 1. when cquation (9) is invariant with respect to a five-parameter
Lie group of point transformations |80, 81]. Concerning the transformation (10)
and other propetties of solutions of equation (9, see |278]. For an application of
the transfarmation of Example 5 see § 7, Ch. 1V, as well as | 112, 114, 150]. The
fact that it is possible to linearize equation (15) has been knawn for some time
(for related results, see the references in | 12]).

Graup-theoretic aspects of the ability to linearize this equation were analyzed
in |51] (note that (15) is the only nonlinear heat equation u, = (k(x)u ), invariant
with respect to a non-trivial Lie-Bicklund graup; see 1221, 51, 262]). Example
6 is taken from |51]. Example 7 demonstrates new propetties of the “multi-
dimensional” equation with the coefficient k(uy = ™2, Propositian 14 is proved
it ]57]; we remark that that paper uses the same transformations as in [262, 221,
Equivalence of equations with &, = o™, o) + o2 4+ 2 = (), was established first
in |310]; using group-theoretic methods the same result was proved in |221]. In
Exatuple 8 we present @ new particular solution of equation (36). which cannot be
obtained by known graup-thearetic methods. Proposition 15 is a natural general-
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ization of the result of |57]. An exact solutian of the super-slow diffusion equation
(37) is constructed in |250]. using the approach of 157]. In |191] it is shown that
precisely this solution describes the asymptotic behaviour of an arbitrary solution
with the same initial mass. Estimates of solutions of the super-slow diffusion
equation of general form are obtained in |99]. Asymptotics of solutions of the
boundary valie problem for equation (37) with the Dirichlet boundary conditions
is contained in | 145].

§ 8. Existence and uniqueness theorems for solutions af degenerate equations of
the form (1), (2) with lower-order terms are proved in {375, 296, 224, 371",
Continuity of the modulus of the gradient of the solution (that is, of the heat flux)
of an equation of the form (2) has been established in |9]. The self-similar solution
(3) in Example 9 is a particalar instance of solutions of quasilinear equations of a
more complex form, which were first constructed in {28]. By the change of variable
u, = v equation (1) reduces to the previously considered equation v, = ({v}”v),,:
therefore all results concerning asymptotic stability and a.s.s. extend with minor
modifications to the case of gradient nonlincatities (this refers also to the localized
solution of Example 10y, 5

§ 9. For some generalizations and extensians of the results of 1255] see |241. 242,
95, 195. 357, 358, 361|. The praof of Proposition 17 illustrates the technique of
derivation of paintwise estimates of solutions of parabolic equations, as well as one
af the simplest methods of comparison of different equations; more complicated
examples are given in Ch. V.

§ 10. The families of self-similar solutions (3), (7) were constructed in |80, 81]:
presentation of the main conclusions uses the results of |82]. The result formulated
here, concerning instability of the stationary solution (6) and the existence of the
non-trivial attracting set carresponding to it, illustrates the analysis of §§ 5, 7, Ch,
IV (where in principle we present a method of constructing a large attracting set
of an unstable stationary solution of a quasilineir parabolic equation). The idea of
tsing a two-parameter family of invariant solutions (18) to study the properties of
travelling waves in the Cauchy problem for (17) is due to V. A. Dorodnitsyn.

§ 11. The one-parameter family of solutions (3). feasibility of construction of
which was discussed on group-theoretic grounds tn |80 81]. is considered in |82].

§ 12. The first example of a localized solution in a medium with a sink (v = |
in (1)) is constructed in 1302]; for details on that see the survey in |162]. A more
general statement than Proposition 19, is proved in |231]. The first mention of
total extinction in a medium with a absorption is contained in |343]: an analysis of
this phenomenan for equatians of general form was undertaken in 231} Ta study
asymptotic stability of self-similar solutians (2) and solvability of the problem (2')

"See also the references contained theredn.
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we can apply the methods of §§ 1, 5, Ch. IV. See also |192]. A particular
solution of equation (3) (Example 11) in the case N = | is contained in |248];
its multi-dimensional analogue is to be faund in [301]. This explicit solution
admits a natural N-dimensional generalization. Setting tn (3) #” = v yields the
cquiation v, = vAv + (1/0) IVol* — o = A(v). where the quadratic operator A
has ah (N + |)-dimensional invariant linear subspace given by the linear span
Wyt = P{IL. \:I RN ,\'%.}. that is, AWy, 1) € Wya, . For more general examples
of invariant linear stubspaces for nanlinear operators sce |136]. Substituting into
the equation v = Co(1) +C) (I).\ﬁ R +C',V(I).\',2V € Wa, 1. we arrive at a nonlinear
dynamical gystem for the caeeficients. By analyzing its propertics we derive. in
particular, compactly supported solutions exhibiting non-syvimmetric extinction in
finite time | 167]. Asymptotic extinction behaviour of solutions of (3) is studied in
[188]. Some of the results of subsection 3. which deal with estimating the size af
the support of a generalized solttion, are praved in [48], where references to earlier
wark can be found. More details concerning properties of solutions af nonlinear
heat equations with a sink term can be found in [230, 231, 237, 248, 11, 50, 89,
208, 253} (see the survey of [162] and |233)).

§ 13. Presentation af all the results of subsections 1 and 2.1 follaws ]162]. Solution
(17) was found in |34].

Let us nate that in the case T = 0 every non-trivial self-similar solution (3)
is gencrated hy a singular initial function wg(x) of the fallowing form: if 1 <
B < 14+ 2/N and (&) is a solution of the form (8), then uy(x) = D'8'(x),
where | = 2/N(B— 1) > | (by a different method existence of such very singujar
self-sintilar solutions is proved in ]55]; uniqueness is proved in {2400): if O5(&)
has the power law asymptotics (7). then ag(x) = Clx| ¥%#- " in RVM\{0}. where
C > 0is the constant of (7). For | < 8 < 1 + 2/N all these functions are not
in L'(RV). Therefare the self-similar salutions we construct seem ta indicate the
optimal degree of singularity necessary for the existence of a non-trivial salution
of the Cauchy problen.

The above conclusions agree well with the results of 54, where it is shawn
that for 8 = | + 2/N and ny(x) == §(x), a non-trivial solution does not exist. i.c..
wz=01in Ry xRY (let us note that for 8 > 1 +2/N there is no self-similar solution
(3) with ¢ # 0 of the form (8)).

An assertion, which is stronger than Proposition 22, is proved in |235]. where
for B8 > 142/N the authors prove existence and asymptotic stability of an infinite-
dimensional set of asymmetric self-similar solutions (3y, £ = x/(T' + 1}'? € RV,

A genetalization of Proposition 25 to the case of more general initial functions
g (B > 14+2/N) is contained in | 208, 235]. In|235] the reader can find conditions
of stabilization of u(/. X) to stationary solutions of the form (31). where n =
XT 407" e RN and f, ¢ 'Ry (g ¢ L'(RY)): the case up € LY(RV). is
considered in |208].
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Results of subsection 2.2 are contained in |163]. The stabilization 4 — f,.
t — oc. of Proposition 26 means. in particular. that /¥y vy — (B —
Iy VBNt oo for any x € RY. This result was proved first in |208] (ob-
viously. it does not give any information on the spatial structure of the thermal
perturbation). Let us note that since the function Gw)y in (45) is sufficiently ar-
bitrary stnooth. the set of asymptotically stable a.s.s. (43) is infinite-dimensional.
A more complicated situation of extinction in finite time for the porous medium
equation with absorption. when the limit profile satisfies the first order Hamilton-
Jacobi equation is studied in | 188]. Proposition 27 and all the auxiliary statements
required in its proof are established in [162]. A lower bouand for the amplitude
was discussed previously in ]208]. The same phenomenon of the appearance of
unusual logarithmic perturbations of the asymptotics arises in the Cauchy problem
for the quasilinear equation 1, = A" — B, (o > ). wy € L' (RY) has compact
support, for the critical value of the parameter 8 = 8, = o+ 14 2/N. Sce the re-
sutlts of [178. 179] for the one-dimensional equation (N = 1) and | 190]. where this
equation is studied by a different method for arbitrary N > 1. In this connection.
let us also mention the paper [239], whete the occurrence of logarithmic perturba-
tions of the asymptotics for @ = 8. is related to the behaviour of () > x|~
as |x] — oo. A general classification of asymptotics of solutions depending on
the parameters o > 0 and 8 > o + | is more or less contained in the papers
[236. 237, 238, 239, 240, 178, 179. 188. 190, 74|. Sce also the references in the
last papers and in the survey ]233]. For the equation with absorption with gradient
diffusivity u, = V- (|Du|” Duy — P, o > O, the critical case 8 = o+ 1 + (o +2)/N
is considered in 1190 (a uniqueness theorem for the asymptotics was proved carlier
in | 178, 179]). Therefore existence of a critical value of the paranteter, for which
the nonlinear interaction of various diffusion operators of diffusion equations with
absorption generates an unusual non-self-similar asymptotics, is of it fairly genetal
nature.
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Heat localization (inertia)

This entire chapter is devoted to the study of unbounded solutions of parabolic
equations. Here we consider the character of heat transfer in a medium. the tem-
peratare on the boundary of which follows a blow-up regime. We deal with the
cases of power law dependence of the thermal conductivity coefficient on temipera-
ture. and of a constant coefficient. The study is based on an analysis of unbounded
self-similar solutions and does hot require any special athetnatical methods.

The main effort is directed towards the study of physical properties of boundary
blow-up regimes. We consider it detail different types of propagation of thermal
waves, establish conditions for the appearance, and the physical meaning of the
heat localization phenomenon, which reflects a kind of inertia of strongly non-
stationary diffusion processes. Analysis of the heat transfer processes is conducted
in dimensional form, which immediately allows us to use the obtained results to
derive realistic physical estimates. These results are used in Ch., V, VI in the study
of heat inertia in media with arbitrary thermophysical properties.

§ 1 The concept of heat localization
1 A boundary blow-up regime

We consider a one-dimensional process of heat propagation in a medinm that
occupies a half-space {.x > 0} with thermal conductivity coefficient which depends
on the temperature: & = k(w) > O for u > 0. k(0 > 0.

On the boundary x = 0 the temperature follows a blow-up regime. that is it
becomes infinite at a certain finite moment of time 1 = 7 > 0 (T is the hlow-up
time). »

The process is described by the first boundary value problem for the quasilinear
parabolic equation

= Uy, = knn),. ke C (0, 00)) N C([0. 00)). (I
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with the initial condition
w0, x) = up(xy = 0, x> 0; supuy < 20, supi|dh(ug) | < oo, (2)
and the boundary condition
wr. Oy =y =0, 0 <1 < T e C'QO T )y = e 1= T . (3
The compatibility condition 1 (0y = uy(0) is taken to hold.
The main goal is 10 study the behaviour of the solution of the problem as
t — T . We shall be particularly interested in the conditions for heat localization,

a paradoxical property of the heat conduction process. which shows itself at the
asymptotic stage of u blow-up regime.

2 Examples of localization in boundary value problems

Example 1. A standing thermal wave (see § 3. Ch. 1), Let us consider the problem
(=(3). where

k(wy = ko™, o = const > 0, ky = const > ().

gy = Ag(T — 1y "7 1 < T. Ay = const > (.

(4)
AsT V7 = x/x0)¥?, 0 < x < xy.
y(x) =
0. X > Ay,
This problem has u separable solution:
AT =1y Y7 (1 = x/a . 0 < A= xyg
gt X) = 3 /s ! (5)
0. o X
where
Xy = | 2kg AV (o 4 2)/1r||/3. (6)

Let us indicate the main properties of the solution (5), (6):

a) for O < x < xg the temperatuie «g(r. x) goes to infinity as r — T ¢

by ng(r. x) = 0 forall 1 € (0. T) for any x > xy (Figure 17): the point x = xj.
in which both the temperature and the heat flux are zero. is a fixed boundary.
which separates heated matter from cold.

The process of heat transfer is localized in the finite domain (0 < v < xy, even
though in that domain the tenperature grows without bound as r — 77,
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u(t.x)

Fig. 17, A standing thermal wave. The parameters are: o = 200 = 0.5, kg = 0.5,

Ag = 0354 ag = 05, 7 = 1o Lo T oor s 12510 2,2 T =1 = 531001 3
T—1=29 10 4T -129. 10"

Example 2. Effcctive heat loculization in a medium with constant thermal con-
ductivity. The problem (1)~(3). where
k(uy = kg > 00 uy(ry = Ag exp{Ro(T — 1) "Rg = const > (7 wp(x) = 0,

has the solution

o 3 1n
2Xp { e b (1= 7) P Agexp{Ro(T =7y 'Vd7. (T)
N ./) ¢ P{ TN »~~n} ) sexp{Ro(T'=7) "} d7

satisfying the fullowing properties:
a} for

0= v =y = ?.(I\'()R())U2 (8)

tA

the temperature goes to infinity as ¢+ — 7' ;
b} for x = xy the temperature is non-zero and is bounded for all 0 <+ < 7" by
the function

w(T . xy= Lim w(r.n) =
T

-2 -]

¢) for any x; = xy the energy

(9)

- "
/ e v VT de < oo
G )Gkl

~
Eit.x)) = / w(t, Eydé < const. r € (0.T),

Jag
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contained in the donmuin {x; < x < oo}, iy bounded.

As in Example 1, practically all the energy is localized in the finite domain
(v < xy = xs5(ko. Ryy). The difference is that the temperature to the right of the
point xg is nonzero (Figure 18), but is uniformly bounded during the entire course
of the process.

3 Definition of localization and its physical meaning

Definition 1. The problem (1)-(3) exhibits soricr hear Jocalization if there exists
a4 constant / > 0 such that n(r, x) = 0 everywhere in (0, 7y x (/, o¢).

We shall call the smallest such numbet / the Jocalization depile 7, and the set
{0 < x < '} will be called the Jocalization donain,

This definition has content if the following two conditions are satisfied:

, "k i
i) /) ‘:"‘E‘—J (Itf < X,

which is a necessary and sufficient condition for finite speed propagation of distur-
bances in processes described by equation (1) (see § 3. Ch. D). Therefore Definition
I makes seuse. for example. for k(x) = kou, o > 0 (but is not applicable to a
medium with constant therinal conductivity & = &j > O).

by oy = 0 for x = Iy, 1y < oo, that is, the function wy(x) must be of compact
support (there must exist a region of “cold hackground™ wtitial temperatare in the
mediumy.

wit,r)

lal77z) = o0, <y
I

i
[
i
t
i
1
|
|
|
{
i
|

u(T r)e oo, 27,

Fig. 18. The concept of effective heat loculization
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Example | demonstrates strict heat localization, and in this case the depth of
localization is I* = xg (see (6)).

Definition 2. Problem (1)—(3) exhibits effective Jocalization if the set
w) = {.\‘ > ()]ﬁlﬁ, oo vy = tx,}

is bounded.

We shall call the quantity L* = meas ;. the effecrive lacalizarion depih, while
the set {0 < x < L*} will be called the effective localization danain,

tn Example 2 we have heat localization in the sense of Definition 2 with effec-
tive depth L* = xg (see (8)).

For most physical problems the function u(r, x) (temperature) is never zero:
therefore Definition 2 is the more wntural one.

Heat localization (inertiad of hear) makes it possible to attain any temperature
and concentrate any amount of energy in @ bounded portion of space. and to contain
them for a finite time practically without loss from the localization domain. This
tnasual property of the heat transfer process can be used in tmany applications.

The concept of localization for media without heat absorption makes sense only
for boundary blow-up regitmes. If, on the other hand. instead of (3), we have in the
problem (1), (2), a boundary regune without blqw-up. that is u(r. 0y = (1) — o0
as 1 — oo, then, as is castly shown, u(r, x) — oo for all 0 < ¥ < oo, that is.
there is no localization. The proof of this fact proceeds by comparing u(r, x) with
self-similar solutions of equation (1) of the form wg(r, x) = 6(x*/1) > 0. which
exist for arbitrary functions k(u) (see § 3, Ch. 1.

There are two possible regimes (modes) of heat propagation with locilization.
We shall say that an S-regime obtains if 1.0 > (. Then the temperatare and the
energy grow unboundedly in the localization domain as + — T . 1f L* = 0, then
we have the LS-regime: ui. xy — 0o as + — T only on the boundary x = 0.
The amount of heat that enters the domain (0, x),

IZ(r x) = / e, &Y — (&Y dE, O < x < o0, 1€ (0LT),
J0
can in this case be either bounded or unbounded as 1 — T
H. on the other lind. we have

for any x > O, then there is no Jocalization and we say that the HS-regime obtains,

In the present chapter we consider the case k(wy = kgu . o > (), kg = const > (.
We study the heat localization effect both in the strict sense (§§ 2. 3y and in the
effective sense (§ 4). There is @ close relation hetween the two definitions; it is
established n § 4.
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§ 2 Blowing-up self-similar solutions
1 Formulation of the problem
[n this section we construct self-similar solttions of the prohlem (1.1)-(1.3) in the
case k(1) = ko', o > 0. Together with comparison theorems. they provide an
efficient apparatus for studying the localization property.
For k() = kg, equation (1.1) has power law self-similar solutions corre-
sponding to houndary regites with blow-up:

Wt Oy = 1wy (1y = Ag(T — )", Ag = const > 0, n < (.

The required self-similar solution g satisties the following problein:

w; = (ko 1y, —¢ <1< T, x>0 (h
w(~o00, x) =0, x>0, (2)
w(t, Oy = AT — )", —oc <t <T. (3)

Its solution has the form

ust. Xy = Ag(T — 1) [(€), (4)
where N
£ = k(l)/z/\:"/g(’l‘- — )02 z0 S}
is the similarity variable. The heat flux W = —k(u)u, has the representation
Wi, xy = AR T - e N2y (6)

Here f(£) and (&) = = f(EV (&) ([ = df/déy are dimensionless functions of
temperature and flux, respectively.
The function f(£) > O is determined from the equation
T =1 4 ne) 21 E+nf =0, 0 < £ < o0, (7
with the boundary conditions

Jy =1, [(x) =10 (8)

We remind the reader that in order for the solution to make physical sense, we
are secking a non-negative, continttous solution of the problem (7). (8). while the
function w(&) has to be continuous and bounded,
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2 Construction of self-similar solutions

Equation (7) admits the similarity transformation

= b, [(§) = & [(£), (9)

rei

and, using the change of variables

e ¢ 2 YT
n=1In¢, J(§) = Ny = 0, = (_I; = ~~~;_(/) 4 &7 '_/ . (10

reduces to the first order equation

dip I [27/72 - 4 - w1, b l4ne
;T(/_) = M(/)"lﬁ [;; (o‘ + l> 10 + ((7 + 3> ST+ od” Y - o -w—2—~—l//
(1
We shall say that a point £, € (0,2¢) is a front point if /(&) = 0, & > &,
Sy = 0for & < £, lnthe (¢h. yr) plane a front corresponds to ¢ = O, the value
of ¥ is not known a priori. The behaviour of integral curves of the equation (11)
ts different in the cuses | 4+ no < O and 1 + no > (),
In a neighbourhood of the line ¢ = () the integral curves of equation (11) have
the form

4 .
‘/I = A(/) v -+ "'+’—;'lir (l’l " + ()((/’“ ” IR A = const, ( 12)
2 5
e atand O ). 13
v I+ mr(p O 0

Only the curve (12) with A = () satisfies the second of conditions (8) for | +no < ()
(the heat flux be contintous at a front point only for this choice of the constant
A). For | 4+ no > () the condition on the front is satisfied by the curve (13).
Therefore il the solution exists, it is unique.
From (10), (12), (13) we obtain the asymptotics of the solution in a neighbouy-
hood of the front: for | 4 no < ()

. 1+ nor i "
J(g) = (““' “;““W(Tf/> (& -6y

|~ ner It no b c e ¢ -
+ Ko+ D\ 2 1y (&= &) g b
(14
for 1 +ne = ()
f(t‘;) - (k'afl”/”“”” 4 ('LE(ZH 1700 vnry Y SN (15)

where £ = &£/(n, o) < oo is the similarity coordinate of the front, C = C(n. ) >
0, Cy = ~C"'""20(2n 4+ no ~ 1|/(1 + no)? < 0. In general case the values of
£, and C are to be determined numerically,
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On the straight line i = ~2¢ /¢ we have the inequality
difr 2 nor 2
dp o 247 o
that is, as ¢ is increased the integral curves intersect the straight line ¢ = =2/ o

with a slope larger than that ol the straight line itself. Since for ¢ > 0, ¢y < =2¢/ 0
there are no isoclines of infinity, the integral curves do not leave that region. The
desired trajectory (see (12)) for A = () lies below the straight line ¢ = ~2¢ /0,
and therefore we may restrict ourselves to the analysis of the equation (11) in the
region ¢ > O, ¢ < =2/,

Then it follows from (10) that [, < 0, £ < &;. that is, the required solution
is a monotone decreasing function (monotonicity of the solution can be casily
established directly from equation (73).

In the {¢. r}-plane, 1o the boundary point € = () correspond ¢ = no, th = —20,
In the domain ¢ > O, i < =2/ there is a unique direction, ¢ = —2¢/ o, ulong

which there is a bundle of integral curves
2¢ 2 R
= =24 By " ot T, (16)
o

where B < () parametrizes the bundle, which enter the point ¢p = o¢, ¢ = —oc,
The required solution corresponds to some value B* = Cy(n, o) < (),

In the plane {£, [}, to any curve in the plane of ¢b. ¢, there corresponds a
family of similar curves, obtained by the transformation (9); the solution J(£) is
chosen using the first of conditions (8).

Integrating (10), taking into account (10) and (8). we obtain the first terms of
the asymptotic expansion of the solution in a neighbourhood of & = ()

/(é“) = | +('”(N.(T)E + ..,

where Cy(n. oy = [7(0) = () is computed numerically.

The expression in square brackets in (11} iy a quadratic polynomial in ¢ with

a non-negative discriminant. Therefore (11) can be rewritten in the form

d == L [ = (p)] |~ ()]

dé ¢ '
where ¢y = ' (¢h) are isoclines ol zero of the equation. The c¢ontinuons curve
=4 (¢} is wholly contained in the domain ¢p > 0,¢p < -2 /o, The isocline
= ' (p) lies above the line o = —2¢1/ 0.

Once the eritical points corresponding to the front and the boundary, are ana-
lyzed (the other critical points are of no interest}. it is not hard to construet the
whole field of integral curves, using which we can prove existence of the solution,
a trajectory that conpeets the front point with the boundary point.
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Fig. 19. The phase ponrait of (11) in the case | 4+ no > 0

p
h
a6
92
| ST R T b3 1
0 70 70 30 70 3

Fig. 20. Numecrical solution of the problem (7). (8) for o0 = 2, n = —0.25

Figure 19 shows the “phase portrait” of equation (11} in the case | + no > 0.
The thick line denotes the required solution, while the dotted one shows the null-
isocline ¢ = (¢p). In Figures 20, 21 we present results of numerical solution of
the problem (7). (8) for | + no > 0 and 1 + no < O, respectively.

Thus, the solution of the problem (7). (8) exists, is tnique and monotone. For
I + no < 0 the front of the solution is at a finite point. If | + no > 0, then
Sy > 0forall 0 < £ < oo,

Remark. In the case n = —1/(o + 2), equation (7) has a first integral £ =
SUS = JE/ a4 2). E = const. 1t is easy to establish existence, uniqueness and
monotonicity of the solution for some £ = E(o) € (—oc, 0).
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Fig. 21. Numerical solution of the problem (7). (8) for o = 2, n = ~1

3 Physical properties of solutions

Solutions of equation (1} and of similar equations describing diffusion of heat from
the boundary x = 0 tn a half-space are usually called thermal woves. ¥

Let us review some concepts related to thermal waves (see Ch, 1, 11}, The front
of a wave ts the point with the coordinate ., (1), such that

(.} =0,0> x, 0y ut.xy>0,x < x,0).

The quantity v, (1) determiines the depth of penetration of heat into the medium.
The point with the coordinate x,.;(r), such that u(r. X, /(1)) = «(1,0)/2, is called
the holf-widih point of the thermal wave,
For the self-similar solutions, from (5} we have

Xty = €k AN T — 2 (17)
Xop(r) = Eng kAP (T — U2 (18)

where the constant £, > 0 is such that f(£,,) = 1/2,
The amount of heat contained in wave at time / is

e V3
E(/):/ i, xydx,
Jo

For the self-similar solution we obtain

20 AR . 1
Sy = S0 itz A 19
1) P e n I 1 o (19)

where w((}} = — £'((}) > 0 (the heat flux at the boundary is positive).
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Below we shall make use of the following fact. For a fixed coordinate () <
xq < 0o the similarity coordinate € = £(r, xy) changes in time according to (see
(5)H .

£ o) = xof (K7 AT T =t (20)

that is, £(f.xg) — oo, t = T ifn > ~1/o and £G.xg) — O as 1 — T if
n < -1/,

Let us now analyze the physical properties of the self-similar solutions.

In the ease n = — 1/, the solution of the problem (1)-(3) (the S-regime) is
aiven in Example I. The front of the thermal wave and the half-width are constant.
EGy<oo,t€(=cc, TYyand (1}~ ocas t — T

For n < —1/o the solution has the following characteristics;

1) The front is at a finite point &, < oo and in a neighbourhood of the front
we have the asymptotics

1ar

aol(E— &) + .

l

. . - G L+
uglt, x) = Ag(T = 0)" (&) = Ag(T —1)" 1 -~

2) The width x,(r) and the effective depth of heat penetration x, /(1) grow
withott bound as time approaches the blow-up time, In the limit the thermal wave
covers all the space. '

HWEWy <o e (o, Tyad Kty —»ocast—T

4y oyt xg)/ugt, ) — 1 as 1 — T that is, in time, at every point of the
space the temperatttre behaves essentially as on the boundary x = 0.

Thus there is no localization for n < —1/o, and the HS-regime obtains.

In some seunse the HS-regime is sinnlar to regimes without blow-up:  with
time, the nfluence of the boundary condition is felt in more and more distant
regions of the meditin (compare this. for example, with the self-similar solutions
of subsection 2, § 3. Ch, 1l und of § 3, Ch. 1, which correspond to boundury
reginies without blow-up: n(r, 0y = Apt", Ay > 0. n > 0,1 > (). However,
infinite values ol temperature are reached not for ¢ = o, but at the finite btow-up
time. The HS-regime (HS comes from “higher™ than S) is a “superfast” way of
heating the medium; the boundary heating for + — 7 is “faster” than in the
S-regime: see Figure 22,

Let us enumerate the physical properties of self-stmilar solutions for n > ~1/0.

1} It follows from (15) that the fiont of the wave is at an infinitely far point';
Xy = o0, 1 € (—oo. T), This result is a priori obvious from physical consid-
erations. Indeed, from (17) it can be seen that under the assumption &, < o0,
Xy (1) wottld go to zero as + ~» T . This would mean shrinking of the domain
encompassed by the thermal wave, which would be impossible.

“This yesult does not contradict the linite speed of propagation of heat in a medinm
with k(i) = ko', o > O infinite time elapses from the start of the process 1l time
1€ (-0, T).
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u(L,0)

Asi> Asp > Agy

- —

ol }
lo0) o7 4 Loy

T ot

Fig. 22, The ficld of boundary blow-up regimes

2) The half-width decreases as + — T at the rate given by (18). Energy
which enters the medium is concentrated in @ part of the space, which becomes
smaller with time, We shall call solutions of this kind thermal waves of decreosing
effective dimension.

3) Taking into account (20) and the asymptotics (15), for all x > () we obtain

20 )70 f )
Ao ) Apxt2 D/t
. ~ J2ngi) ) » M g
nglr, X)), . = - e (T ey
s( B - C (koA(,')“/” + 5 F (k()A(l)(“ Il/(Hmrl( )+
2
2n
Wa.xy, o = ——C'”' Mvz\'” lk(|~rli/(|!luri.\,(lu}lur /0 i) 4
L +neg' ¥ Y

that is, the self=similar solution converges from below to a limiting curve, The
presence of this limiting curve, the “trace™ of the boundary regime for+ = T,
which restricts the growth of heat-related quantities at cach point of the material,
is equivalent to the definition of the LS-regime, and 1s an important property of
that regime (from that we also have shrinking of the half-width in the case of
LS-regime).

4) From (19) we obtain the following, For —1/o < n < =1/ 4+ 2} = n,
the amount of energy is finite: E(r) < oot € (—oo, T), and E(r) — =0 — T,
that is, the medium is imparted infinite energy, which is being concentrated in a
neighhourhood of the boundary. For n = n* we have K@) = oo, 1 € (—00, 7).
neighbourhoods of the front contain an infinite amount of energy. However,
E(T™)y— K@) < oo forall 1 € (=m0, 7], which means that only a finite winount
of energy enters the medium as the blow-up time approaches. Finally,

Fy=o00, (T y=Fu) =00, 1€ (—00,T), i

when no=n,
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Thus, for n > —1/o self-similar solutions belong to the class of LS-regimes
(LS comes from “lower,” the boundary regime as 1+ — T 7 is “slower” than the
S-regime; see Figure 22) and we have effective heat localization,

Remark. Suppose it is not the temperature, but the heat flux on the boundary, that
blows up in finite time:

zin

W({.()) = ‘—l\'('H(’( \ ‘\ o= "V(|(r“[)”l, Hy < *‘l/?..f < T. (22)

The problem (1}, (2) with condition (22) also has a self-similar solution:

nell, x) = k() V/ter W'W"/”” l(7 ”(2“14 |)/(1r+3)l.‘(’[)‘

H

J = l\ 1/terd HW s \'(T _ [)(~xrmHrHj/(xr«iZ!‘

The function JF(/) > 0 satisfies an equation which reduces to (7) by the change
of variable n = (2n;+1)/(or+2), and the vonditions F(oc) = 0, —F7(F'(0) = 1.
Taking into account (9}, we have for F(J)

Fy=C gy, 0 =07 e Cotn, oy =~ f110)

Therefore self-similar solutions of the second boundary value problem (1), (2),
(22) can be expressed in terms of already analyzed solutions and have the same
propeitics. For ny < —(o 4 1}/or, iy = ~(o+ 1}/or and 1y > —(o + 1y/o, HS-,
S-, and LS-regimes obtain, respectively.

Analysis of self-similar solutions that blow up in finite time is the first important
step in the study of the localization phenomenon. The ideas of three types of
thermal waves, of “fast™ and “slow™ solutions, will be frequently used in the
sequel, Comparison theorems, which express continuous dependence of the heat
conduction process on boundary data, together with self-similar solutions, allow
us to map out the classes of blow-up regimes with differing physical properties.

§ 3 Heat “inertia” in media with nonlinear thermal conductivity

In this section, using the self-similar solutions of § 2 and comparison theorems, we
study the influence of boundary blow-up regimes on a medium with a power law
dependence of the heat conductivity coefficient on the temperature: k(n) = kgn”,
o > (0. Physical grounds for heat “inertia™ are discussed in the framework of
studying the evolution of an initial temperature distribution in the Cauchy pioblem,
Localization of heat in multi- dnmcnxmndl problems of nonlinear heat conduction
is also considered.
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1 A class of boundary regimes leading to heat localization

Theorem 1. Let the houndary conditions i the problem (1.1)—(1.,3) sotisfy the
megnalities

AT V(] — x/xg )’/" X< Xy
my(a) < (h
0. x > xg = (koA (0 2y oy 3
miy < AgT —1y " 0 <t <T. (2)

where Ay > 0 s o constont. Then we hove heot locolization. I particular, the
following estimates hold:

Ag(T — 1) 171 = x/x )7 x < xg,

o (3
0 x> xy = (koA (0 + 2}/ ey, )

1" < Xy (. x)y < ng(l. \)__{

By comparison theorems, validity of the estimates (3} follows immediately from
the properties of the self-similar solution uy.

The self-similar S-regime detines a class of “slow" boundary regimes, which
easure heat localization. It is interesting to note thut the estimate (3} of localization
depth is independent of the period of uction of the boundury regime.

Figure 23 shows the dynamics of the thermal wave in the case ng(x) = 0,
m (1) = Ag(T — 1} "V, The half-width of the wave (crosses) increases initially,
and then stabilizes. The front of the wave does not penetiate beyond the localization
depth /* = x; = (0.5, The dashed line in that Figure shows solution (1.5).

Another assertion concerning loculization is established using the self-gimilar
solutions of the L.S-regime constructed in § 2. Let us consider first the case
np(xy = 0 for v > 0.

Theorem 2. If in the problem (1.1)-(1.3)
my < AT -~ 1y 0 <1t < T n=conste (—1/o.0}, (4)
then we have heat localization in the LS-regime, and the following estimates hold:
I < Xy = (2k('A:)’((T + 2)/(}_)1/17'(]-4411”/3. (5)
m’ ool xy < Con, (r)(Aul\—u)l/(l Mnrjr\,llt/(l fnor) (6)
Proof. Since n > —1/or. (2) follows from (4) for some constant Ag, that is,
the boundary function is majorized by the self-similar S-regime. To determine the
smallest constant Ay in (2), we insist that at 7 = O the temperature on the boundary

does not exceed the boundary value (Figure 22) of the solution (1.5):

my < AgT" = AT 7, )
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u(t,x)

Fig. 23. Heut localization in the case of o boundary S-regime. The parameters arer o = 2.
n= =05 kg = 05, Ag = 0354, T 22 01125 1 Teg = 1105107, 20 Tt = 4041077,
BT 0 =305 0107 K T o= L0510 2, 5 T = 6510 F 6 T -1 =25107 %
T —1=5.107"

Taking into account the fact that 1y(x)y = (), we obtain localization from Theo-
rem |, while from (7) follows the estimate (5) of the localization depth.

For x = 0, 0 = 1 < T the solution u(r, vy is majorized by the self-shmilar
solution ug(r, xy for the LS-regime, which corresponds to the same values of
the parameters o, 1, Aq, kg (this follows from (4) and the condition wg(0, x) >
(0, x) = ). Then from the nequality 1 < wy in (0. 7) x R, we obtain the

estimate 12(r, xy < (T, x), which is the ssme as (0); see subsection 3, § 2. O

The theorem s true for any initial function 1y (xy with compact suppoit, since
we can always find a constant Ay = 0, such that 1 x) < (0. vy it R Then
the estimates (5), (6) would depend not only on the parameters of the boundury
regime, but on the nitial data as well,

Thus, if condition (4) holds, we have localization in the LS-regime, there exists
a limiting curve, and the half-width of the thermal wave decreases. Since the
boundary regime acts Tor a finite time, unlike the case of self-similar LS-regime
(see subsection 3. § 2) the thermal wave has a finite front, The estimate of the
magnitude of J* tn terms of the localization depth of the majorizing S-regime
depends on the length of time of the heating process.
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Figure 24 shows the results of numerical computation of solution of the problem
(1.h=(1.3}, Here ug(xy = 0 and the boundary regime wu; (1) = AyT — 1" cor-
responds to the self-sunilar LS-reginmie, The half-width of the thermal wave first
nicreases and then begins to shrink. The solution is bounded by the limiting curve
(6} (dashed line): the front of the wave does not penetrate beyond /* < xg = (.87,

2 Conditions for the absence of localization

Theorem 3. If in the problem (1.1)-(1.3y the houndary regone satisfies the in-
equality
iy > AT —n", 0<i" <t <T:n < ~1/o. (8)

then there is no localization (HS-regime) and as t — T~ we have the estimates

lim u(r. v} = oo everywhere in Ry,

-1
’ 9
12 . ; o
X0 = EkY AT = T ool T
where Ay > O is some constant.
huttr)
!
|
Fig. 24. lleat localization in the LS-regime. The parameters arc: o = 2. n = (.28,

ky = 05.Ag = 1.06. T = Q1125 s T 7= bO2- 107 20 T -0 = 3110720 %
Tt = 10510 LT o133 10N T—1=24-10° 0T -1=1.10°
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Fig. 25. Heat propagation in HS-regime. The parameters are: o = 2, n = —1. ky = 0.5,

Ap =012 T = 01125, up(xy =00 x> 0 1 Tep= 1023107 .20 T e = 411410 77,
T -0 =30910 2,4 T -1 =207 10" 5 T—1=105-107

Here £, = £,(n, o) > 0 is the dimensionless coordinate of the front of the
corresponding self-similar HS-regume,

Progf. Let us show that under the assumptions made 1 > ug in (15, Ty x Ry,
where ug = us(r, 11 Aj) is some non-localized self-similar solution of the HS-
regime (2.4}, (2.5) for Ay = A)).

Without loss of generality let (', v) > O on an interval (O, x*). x* > 0. Letus
choose the value of Ay = A > 0 in the self-similar solution (2.4} for n < ~1/or
$0 siall that

*

(', v AL < n(@t, xy, x = 0. (10)

Existence of such a constant Aj > 0 follows from the obvious conditions (sce
(2.4), (2.5)): ug(r', xi Agy — 0L suppug(r®, x1 Af) — {0} as A, — 07F.

Then by (8), (10) and the comparison theorem we have that u(r, x} >
us(1, x0 AL (', Ty x Ry, which proves (9), .|

Numerical golution of the problem (1.13~(1.3) in the case (1) = AT —
" n < —1/o (HS-regime}, is shown in Figure 25.

Theorems 1-3 allow us to classify boundary conditions that lead to blow-up,
and establish important properties of regimes of heat propagation. The “boundary™
between different regimes is the boundary condition corresponding to the self-
similar S-regime,

Let us note that il on the boundary we are given not the temperature, but time-
dependent heat flux that blows up in finite time: W(r, 0} — oo, 1 — T then if
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the inequalities
)) W(\(r - ” ((r»H)/rr
1.0y s W(T =0y, ~(o+ 1Yo <nm < —1/2:
W0y 2 W(T = ™. ny = —(o + 1)/o.

are satisfied. respective analogues of Theorems 1-3 hold. These results follow from
properties of self-stmilar solutions of the seumd boundary value problem, which
blow up in finite time.

3 Physical basis for heat localization. A class of temperature
profiles with inertia

Results of subsections 1. 2 show that localization is conditioned not only by the
speed of the process, but also by “internal™ properties of the heat conducting
medium.

Let us consider the evolution of a thermal perturbation in a medium, whigh is
not acted upon by any boundary regime, or the Cauchy problem for equation (1.1)
with the initial condition

w((), ) = ay(x} > 0, =00 < ¥ < 00, (1

The function up(x} has conpact support and suppuy = (—Xxg. %), xp > (O is a
constant.

Definition. There is hicat localization (ertia} in the problem (1.1}, (11). if there
exists 17, such that supp ie(r. x) = suppuy for all 0 <1 <1y,

In other words, heat contained initially in the domain |x| < xy does not propa-
gate out of the domain during the finite localization time 1, = 17(a, ko.ug). In the
following theorem we characterize a class of “inertial” temperature profiles.

Theorem 4. If the initial heat profile satisfies the condition
0 < mo(x) < (1 = |x1/x0)™" Jx] < xq. (12)

then there is heat localization in the Cauchy problem (1.1}, (11y and the localiza-
tion time satisfies the estinate

=1 \(,(r/ [2ky (o + 7)11“,] . (13}
Proof. By the Maximum Principle.

ut,0y <1, 1 >0 (14)



148 111 Heat localization (inertia)

The function in the right-hand side of (12) has for x = () the same initial data
as (1.5). the self-similar solution ug(r, x) of the S-regime. if we set there T =
o /[ 2kolo + 2l ), Ay = {xho/[2ko(o 4+ 2) )7 (here xy = xo, u5(0. 0) = ).

Let us compare the solutions u(r, x) and ug(r. x)in (0, Ty x Ry, From (12),
(14), we have that #(0, x) = (1) < us(0. vy forx > Qand u(r, 0y < u,, < us(1. )
forall O <+ < T Therefore by the comparison theorem

ult, xy <ust,xy, =0, <1 <T.
Hence, using the properties of the solution uy (see (1.5)), we obtain
w(t,xy =0, x> 3.0 <t <T =1, (15)
Stmilarly, it is proved that
u(t, xy =0, x < —xg. 0 <1 <17, (16y

Combining (15) and (16), we have that (. xy =0 for [x[ > x5, O < 1 < 1*,
which concludes the proof, U

Thus. there always exists @ class of initial temperature profiles which have
the localization property. The estimate (13) of localization time depends on the
parameters of the medium (ky, oy and the initial temperature profile (parameters
Xy Hy)e

The lieat inertia phenomenon his a simple physical nterpretation. The rate of
temperature growth at any point of the medium is determined by its spatial profile
#n a neighbourhood ol that point, 1f the temperature profile is sufficiently “convex™
(in the case o = 2 convexity has the usual meaning), the temperature does not
change, or changes only slightly in a neighbourhood of the front points v = 2.

Therefore immobility of the thermal front depends on the behaviour of ug(.x)
tn a small neighbourhood of the front, though, of course, the length of localization
time is determiined by the globul spatial structure of the initial perturbation (in
other words, by the “degree of convexity™ of its profile everywhere in supp ug: this
is reflected in the estimate (12)).

1tis clear that in @ medivm without absorption i convex teniperitture profile can
exist only for a finite time?. Thermal energy eaters colder regions from the hotter
ones. a “concave” tepperature profile is formed, and the wave starts to move.

This is casily scen by comparing o (x) 0 with the function

A0, x) = Ty(x) = (01 = 2/ 3 (0" (17

i . - . N . . N . . -

~Localization of thermal perurbutions coming from the presence in the medium ot heat
sinks, which was Driefly considered in Ch. L 11, is of a different “physical™ nature. In
particular. in the presence of absorption, loculization for any length of time is possible.
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that is. the self-similar solution
B, x) = Al ~ 22/t (18)
of equation (2.1) at time 1 = 0; here

.\’/(l) C ((}')I\l/(lrL1 Q:r/(lfi—! [+[“)I/(rr‘ll‘

Vitery 2 ;QZ/(,ro-; T/iers )

(1 = Caloyk, (1 + 1y)

and Cy. C; are some positive constants.  This solution of “instantancous point
source” type describes the evolution of a thermal perturbation of energy Qy > 0
concentrated at the point & = 0 at time 1 = —19 < 0 (see § 3, Ch. 1.

Choosing the magnitudes of 7y and Qqy so that umy(x) > 7g(x) in R, by the
comparison theorem we have that «(r. v) > ug. vy in Ry x R, and therefore
meas suppu(r., xy > meas supp (s, xy ~ 713 oo as 1 — oo, Localization
in the Cauchy problem is possible only for a finite period of tinie.

The initial function (17) is an example of a “concave™ temperature profile,
which does not have the inertia property. Here the thermal wave is in motion for
all 1 > 0. By the comparison theorem the same is true for all initial perturbations
(). which majorize (17). when the fronts of the perturbations ug(x) and fy(x)
are the sante.

Figure 26a shows the results of a numerical computation, which illustrates
Theorem 4 in the case ug(x) = u,, (1 ~|x|/ m)'/ “Till time 7 = ' heat is localized
in the domain (—xqg. xq). In the course of time. the teperature profile rearranges
itself into @ concave shape, and the wave starts to move. Evolution of an initially
concave profile is shown in Figure 26b, where the initial function has the form
(17 (the size of both perturbations and the amount of energy they contain is the
sanie in both cases).

Figure 26¢ shows the dynamics ol a “combined”™ profile: for v > 0 we have
taken ug(xy = 1y, (1 — ,\‘/.\‘(,)3/". while for x = 0 we have taken the function (17).
As a result the right side is localized, while on the left the wave starts to move
immediately, that is, for a finite time we have directional heat conductance,

The above properties of temperature profiles allow us to explain the physical
nature of the localization phenomenon under thé action of slow blow-up regimes
on the medium (subsection 1). Boundary S- and LS-regimes expose the inertia
of the heat conductance process by creating and supporting localized teniperature
profiles. In the S-regimie the rate of energy supply into the nuaterial is so adjusted
to the properties of the medium that the heat is distributed over the whole profile
(see (1.5y and Figure 17y. With a slower energy “provision,” heat is mainly
concentrated near the boundary, the profile is more “convex™ (compare Figure 24
with Figures 23. 17), and the LS-reghme is brought about.

Formation of inertial profiles takes place at the localization depth, which is
determined by the paraneters of the problem.
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Lu(t,r)

Fig. 26. Heat localization in the Canchy problem, The parameters are: a) o = x; = 2.
ky =ty =" =11t =0252 =13 =25 b)0c=x,(0)=2 ky= I, W)y =
062 1 =05. 201 =2, 3 i=5 Yo == YO0y = 20wy = Wy (0) = kg = 101
(=052 =13 ¢=2

Ag the thermal wave approaches the boundary of the localization domain, the
concave propagating profile rearranges itself into a convex form, which is easily
seen in Figures 23, 24, From that moment the localization effect becomes manifest;
the size ol the heated domain does not change significantly, the half-width is either
constant or decreases. heat does not penetrate beyond the localization depth. If,
after the formation of the inertial profile, energy is no longer supplied (the heat flux
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at the boundary x = 0 vanishes), then during the period leading 10 blow-up of the
original boundary regime, the thermal wave hardly propagates (see Figure 26, «).

During heating which is faster than that of the S-regime, a concave temperature
profile is formed (compare Figure 25 with Figures 24, 23): the domain occupied
by the thermal wave expands, there is no localization, and we have the HS-regime,

Let us note that the action of boundary regimes that do not blow up always
creates concave profiles und there is no localization (see the Remark in subsection 3.
§ 1)

Therefore the heat localization phenomenon is related not only to the speed
of the process. Interuction between the rate of heating of the medium and ity
properties determines the hature of the temperature profiles being formed, inertial
or otherwise. This conclusion is also true b the case of arbitrary media (see
Ch. V), including media with volumetric energy sources (see Ch, 1V),

4 Heat localization in multi-dimensional problems. The “thermal crystal”

The main properties of blow-up regimes in heat conducting media established in
subsections 1-3 for one-dimensional media. also characterize the case of many
spatial variables. The method of analysis of multi-dimensional equations is also
based on the construction of certain particular solutions and the use of comparison
theorems.

The new element, v comparison with one-dimensional geometry, is the shape
of the heat localization domam, which can be quite contrary to intuition about
diffusional dissipative processes.

Let us illustrate this remark using easy examples. First of all let us find a
particular solution of the equation

du i d (I\( du > (19)
— — { k(uy— | .
i e dx, )Ei,\‘,

which is the nulti-dimensional analogue of the self-similar S-regime. In equation

(19 x = (xy....,xy) € RY are the spatiul coordinates, u = u(1, x) > 0 is the

temperature; k(u) = kou'’, o = const > (), is the thermal conductivity coefficient.
As in (1.5), we shall seek a separable solution of (19):

uy(t, xy = V(ney), (20

Substituting (20) into (19), we obtain the following equation for the functions V(r),
O(xy;

N

1 dV ] ] o )
e i — A k= | = C > (. (21
Vel (g t ; i, ( o i),\',) )
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Hence
V) = AT =1y " Ag = (Co) "0 <1< T < oo, (22)

that is, the required solutions will blow up as 1 — 77 at the same rate as in the
one-dimensional case,

The elliptic equation (21) satistied by the function # has a solution of the
following kind:

N N

0 =6(n).n= Z X,y = const > () Z a,z =1,

(=R I8

Then () = 0 satishies the one-dimensional equation

4 xtlf
1d (k(,,,u 4.!2,) AT
0 dn dn a

and, for example,

Therefore the desired solution has the form

N
. [¢TRY
(1oxy = AT =y =y . (24
uy (1, 8y = Ay( ) ( o ) )

fal

The spatio-temporal structure of this solution is the same as that of the one-
dimensional one. 1t can be considered as the solution of the boundary value
problems in (0. Ty x{x e RY | x, = 0.i=1..... N} with the corresponding initial
and boundary conditions,

Let us indicate the main properties of the solution. first of all in two-dimensional
(N = 2) geometry, The boundary temperature is prescribed on the x,. x; axes,
is equal to zero for xy > x¢/ay, x2 = xg/ca und blows up in finite time for
0 < xy < ag/ay. O = xv < xy/n, Nonetheless, unbounded growth of the
temperature as 1 — 77 takes place only in a finite localization domain, the miangle
with vertices at (0. 0y, (xy/a;. Oy, (O, x¢/any. 1o the rest of the medium (for
7 > ay) the temperature is zero for all 0 < 1 < T. The localization domain is
separated by the stationary Iront, which ts the piece of the straight lihe connecting
the points (xg/ay, Oy, (0, xg/cr),

In the three-dimensional case the localization domatn is the pyramid with
the apex at (0. 0,0y, triagonal base and vertices at (xvy/ce; 0,0y (O, xy/aa. 0y,
(0. 0. x¢/ vy, On the lateral boundaries of the pyramid the temperature blows up
in finite time in accordance with (24), while outside the boundaries it is equal to
zero, Inside the pyramid ag(1, vy — ~0 as 1 — T, The temperature is maximal at
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the apex of the pyramid and decreases to zerp as we approach its base (n — xg),
wlhich is the stationary boundary of the localization damain,

By analogy with (1.5). the solution (24y can be called a mulii-dimensional
standing thermal wave.

Let us clarify the relation between the solution constructed above with the
onc-dimensional one (Figure 27):

(T =0 77— fa) 7 = a
uglr. xy) = Agl ) ( Vi /xy) vy o (
0. Xy o> oAy

[ 8e)
N

which does not depend on other spatial coordinates in the planes vy = const. In
Figure 27 the coordinate axes are oriented so that the vy axis is perpendicular to
its plane.

Let us rotate the xy, x> axes by an angle 8 € (0, 77/2) with respect to the
xi axis and let us consider solution (25) in a triangle with vertices at the pointy
(0.0 (xg/ay 0), (0, xg/a2): ay = cos B, ey = sin B. Inside it the temperature
depends on (/. xy. x3). therefore ag(s. xy can be considered as a solution of the
two-dimensional equation (19). The boundary conditions and the solution itself
are easily computed from (25). with rotation of the x), x> axes taken into account.
and coincide with (24). The three-dimensional solution is obtained in a similar way
after un additional rotation of the vy axis. This method can be used to construct
multi-dimenstonal standing thermal waves in more complicated domains (dashed
line in Figure 27). Bouandary conditions are detepmined from (25) il the boundary
of the domain is preseribed,

If the boundary regime in the multi-dimensional problem is slow (majorized
by the S-regime boundary dependence). then we have heat localization. and upper
bounds both for the solution and the localization domain can be obtained using
the function (24). Figure 28 shows the results of numerical solution of equation
(1Y) for N = 2 in the domain {x, ~ 0. x> = 0} with zero mitial conditions and
boundary conditions

or

u(t, vy ) = Apg(l — 0"l - m.\‘./.\'.\-)l,/

(1, 0. x2) = Ag(l = 1"(1 = ayxa/xg)7"
which are majotized by boundary values of the solutivn (24) for Ay = 0.5, ay =
(t = l/\/.;_, T = 1. The localization domain is the triangle with vertices at
(0.0), (v/2.0). (0, v2). The results illustrate heat localization in the LS-regime.
when n > —1/0. The thermal wave for all O < 1 < | is inside the domain of
localization of the majorizing S-regime.  From some moment of time onwards,
a concave temperature profile is formed, and the effective dimensions of the hot
domain shrink.

As in one-dimensional geometry, under the action of fast blow-up regimes there
ts no localization. Figure 29 shows the evolution of the multi-dimenstonal HS
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Fig. 27. Gevmetrie tnterpretation ot the solution (24)

blow-up regime under the same jnitial and boundary conditions as in the previous
computation, but for 1 < —1 /0. Here a convex temperature profile is formed and
heat propagates into infinitely far regions during the finite time of existence of the
solution,

Therefore the main results and intujtion concerning the influence of boundary
blow-up regimes in a heat-conducting medium extend to the multi-dimensional
case. Let us note that the rate of temperature growth in the S-regime. which
separates slow and fast blow-up regimes, does not depend on the dimension of the
space and is determined only by the propetrties of the medium,

A new feature of multi-ditmensional geometry is the shape of the heat localiza-
tion domain, which can vary considerably. Let us give some appropriate exanples,

Let us consider a solution u(s, xy, x3) of the problem for equation (19), N = 2,
it the domain (0, 7) x {x; > 0. x> > 0} with the initial function (24) for r = 0.
Let us prescribe zero heat fluxes on the axes xy. w2 kou'u,, = 0 for x» = 0,
kou’ny, =0 for xp =0, r € (0.7, so that no epergy enters the medium,

Since heat fluxes on the houndary, corresponding to the self-similar solution
ug(f, x). are positive, by the comparison theorem we have (s, x) < ug(f. x) in



§ 3 Heat “inertia™ in media with nonlincar thermal conductivity 155

%4

b
IZ
N
N
NN
VNN N
Fig. 28. LS-regime in two-dimensionat geometry. The paramelers are: o = 2, 0 = 0,25,

kp= 1. Ag=05Te= o= = /2 xg= ha) ' —1=022.0)7—1=9.1-1075,
AT rmdo 107



56

1 Heat localization (inertya)

1 u(1,1,,,)
1.9

Iy 4
1

</ /

T T 7

L2 o
=

p A
X

=
/?

Fig. 29, HS-regime of hem
ares o = 2090w | kg
T1=87. 102

Propagation i two-dimen
= b Ag = 0.5, 7 = |
T -t =430 2y 7

stopal geomelyy, “The parameicrs
N A YNGR a7 -1 =027 b)
1=27.10 2



§ 3 Heat “inertia™ in media with nanlinear thermal conductivity 157

(0, 7) x {xy = 0. x> >0}, and therefore
w(t,x) =0, t € (O, T), ayx; + arx2 > xy. (26)

Moreaver, by construction «(t, x) > O for t € (0. 7) and ayx + arxy < x5,
X 20, v =0,

Solutions of equation (19) in the spatial domains {x; > O, xy < 0}, {xy < 0,
xa > 0} and {xy < 0, x3 < 0} with the same boundary conditions have the same
properties. Therefore u(r, x) = O for 1+ € (0, T) for all a,|x,| + aa|x2| = xy.
However, by symmetry all these solutions coincide, in their respective quadrants,
with the solution of the Cauchy problem for equation (19) in R, x R? with initial
function

(0, xy, x2) = i, |1 — (e || + agl,\‘3|)/.\'(,[i,/", (27

where u,, = AgT Y7, xg = Xy = (2koA{ (0 + 2 /o)

Thus, the initial temperature distribution (27) is localized in the yiombuys (dia-
mond) x| + as]xa| < xy for time not less than 1, > 1* = (rxf,/(Zk(,((r + 2)).
The estimate of localization time is identical to formula (13) for one-dimensional
geometry,

Performing the same construction for the three-dimensional case. we see that

the initial perturbation

1

. 2o
S o
ty | 1~ § - [0 . E , I”l'-‘r' = Ao
(X, va, xy) = -

Ay
3

0, Z |(1,|,\',| > Xp.
1

is localized for a finite time (1; is estimated using a similar formula) in the ocra-
hedron Z} Py, < xg.

For a finite time a thermal crystal. an octahedron that preserves its shape.
exists i the medium, Inside it. the temperature is different from zero, while on
its boundavies and outside. it is zero for all 1 € (0, 1)),

A numerical sunulation of a two-dimensional analogue of the thermal crystal
is shown in Figure 30. Initial data is the function (27). For a finite length of time
thermal energy is localized inside the square. With time. the temperature profile
wside the localization domain vearranges itself into a convex shape. and heat starts
to spread (compare with Figure 26. a).

By the comparison theorem, the functions (27), (28) define a class of inertial
temperature profiles in multi-dimensional geometries. The temperature distribution
is localized if for each of its front points we can find a function of the form (27)
or (28), which majorizes this distribution and hay the same fronts. By this method
it is not hard to consteuct localization domains of various shapes (hall, ellipsoid,
cte.) and to determine the corresponding mitial temperature profiles.

(28)
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Sy

R 7] ! b

Fig. 30. Thermal crystal n two-dimensional geometry, The parameters ave: o = 2, kg = 1,
U = 05, xg = 1Ly = ar = /200 = 1o 1= O, max a0, x. ) = 0.5, b) 1 = 0.8,
max u{t, 1. X2) = 0.24, ¢) r =4, max u(r. 1. x;9) = 0.18

§ 4 Effective heat localization
I Independence of effeetive localization on the initial state

In the study of the thermal inertia phenomenon m § 2, 3, we approximated the
“zevo background,” by taking the initial function to have compact support.

Let us consider the original problem (1.1)-(1.3), i which the bounded contin-
uous function ug(x) is arbitrary. In this case heat localization is to be understood
in the sense of effective localization,
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First of all let us establish the connection between two solutions 1" (v =
1.2) of problem (1.1)~(1.3) corresponding to different constant initial functions,
W (x) = C" = const > 0 and the same boundary regimes as 1 — T, u"'(1.0) =
W) > 0.1 € (0. T).

1

- . . 1 .
Lemma 1. Let C' < ¢ and assimne that the fimctions u‘l" da not decrease iy
1€ (0. T). and that there exisis v € (0. T) such that

“‘:I)(’) = “(f)(l) =um(), 1 €|r. Ty
y ) (h
iy =t e (00T,
Then
AE(1) = AE® (1)~ AE" (1) < AE(T). 1€ [7.T). (2)
where

S

AEUYN (1) = / W' vy - C"dye|0.00), re 0. Tyv=12 |,
JO

The functions AE" (1) have the meaning of energy supplied to the medium up
to the moment 1 € (0. T).

Proof. First of all let us note that by the Maximum Principle /' > C" in
(0. 7) x Ry, so that AE™ (1) > 0. Under the assumptions of the lemma, equation
(1.1) can be integrated over (7.1) x Ry, 1 € (. T). This follows from an integral
identity satisfied by the generalized solution for a particular choice of a sequence
of test functions with compact support [ = f(x/a) — | as a — 0o everywhere
in Ry, [f(&) < 1. and known regularity of the generalized solution (see § 3,
Ch. 1. The result of formal integration of equation (1.1) over (7,1) x Ry, is:

!
AE" (1) = AE"(r) = — / ka6 0)] S5 00 ds 2 0. w = 1.2

(modulo sign, the integrands are heat fluxes at the boundary). By (1), we have for
allrer. T)

. . 2
! F o It

AE() ~ AE(r) = | Kkl ()] [»---f-?m(.\-.()) Py 0)} ds. (3)

Jr ox ox

By the comparison theorem 1! < ¢ in (0, ') x Ry, Since "' (1. 0) = 01, 0
for r € [7. T), we ubtain

At

e e (A

ox
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Therefore the integrand in (3) is non-positive, which is equivalent to (2). 0

Therefore, for the same heating regime, the amount of heat cmering a colder
medium is not less than that supplied to a warmer one (if AE(7) < (

of coursu lhxs lemmia can be extended to cover a wider class of xmlml pertur-
bations. If u(, are non-constant, but. for example,

h 2y . ] .
y' <uy x> 00wy € LYR,). {(/) 110 ]‘ — 0, v— . (4)

then if conditions (1) hold, instead of (2) we derive the estimate

~ N .
ki -
0< / [ — u‘“l(l. X)dy < / [a'? — u”'[(’r. X)dx. (5
Q0 g0
or, in other words, [ (1. ) — 1" (1. )|l g, is non-increasing in 1 € [7, 7).

The lemma we proved ub()vc cxpresscs a kind of stability in L'(R,) of the
heat diffusion process to perturbations of the initial function. Using it, we can
establish the following assertion concerning independence of effective localization
depth from the initial function.

Theorem 1. Lm u" (1 = 1,2) be solutions of problem (1.1)~(1.3) with boundary
(1)

conditions w1\, vespectively, such thar conditions (1) hold. Furthenmore, let
(ry « oo, 1t -» T
Y (6)

[u, (:)] > 0. 1el0.

1) are non-increasing in x > O v =12, Let u'Y he effectively localized and
¥ . . . 2 - .
let the depth of localization be LY. Then u'® is also localized, and L3 = L=,

l(l)

Proof. Let us consider ", @'%), solutions of problem (1.1)-(1.3) satisfying the

conditions 70, x) = 0,
D0, 0) = C = max{sup ), sup b’} = maxiu) (0), 1 (O},

e =100 = w(ry forr e [r.7).

Let us extend the functions 7% (1, 0) in [0, 7) so that Lemma | could be applied

to the solutions " and 71, 0) < u‘l“(r). 0 () 5 1 0).

From the compirison theorem it follows that
" e P P = ¥ 0, 7) x R, (7)

Applymf, the lemma to the functions ', we rewrite inequality (2) for €' = 0,
C? = C in the form

.
/ a0, ) - C 1", 0 dy < coust. 1 € |1, T).
Q0
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Decomposing this integral into the sum of integrals over (0, xy) and (xy. 00), where
xp > LU s an arbitrary constant, we obtain

/ TN vy~ 7ty }z/\w/ c'(/.\-+/ T, x) - Cldx —
JO JO Jay

~
_ / M ydy sl —Ir4+ 1y —1y <const. r€|r.T)

o

Let us prove uniform boundedness in 1 € [7. 7') of the integral /5. Since by the
Maximum Principle 7' > @' in (0. T) x R, we have that /; > 0. Furthermore.
1. = Cuxy and therefore /4 < const + /1, for all 1 € |7, 7).

Let us consider the integral /4. Since the solution «'" is localized and x, >
Lt there exists a constant M > 0, such that #t" < M i (0, T) x [xg, oc). By
(7) this means that ' < M in (0. 7) x [xg. 2¢).

Then by the comparison theorem @' < uy in (0. 7)) x (.x), 00). where ug(1, x) =
Oy — .t())/!l/z) is the self-similar solution of equation (1.1), which satisfies the
conditions ug(0.x) = 0. x > xot uglt.xg) = M, t € (0.7)., Concerning the
existence and uniqueness of the solution 1y = 0 see subsection 4, § 3, Ch. 1, as
well as the Comnients to Ch. 1. Here 6 € LY(R ;).

Thus

~ >
145/ Ti"’(!,.\')zl.\'f/ ug(t. ydy =

o A
~ X=X 12 > 12 3
E‘/‘” ? '-,“‘l'm— dy =1t A H(f) (Ifi 7 NH”L‘(R,) < XD

for all + € [7.T). Therefore

[ = / {H‘l‘(!. 1) — Cldx < const (8)

it

for uny 1 € [7. 7). From this we immediately deduce uniform boundedness of 7t

in [7. T) x (xg. 00). Indeed, by monotonicity in ¢ € (0, Ty of the boundary function
2 N —2 . . —_ . . . .

H‘l"(!), first, @2 > C (that is. /3 > 0y, and, second, T2 (1, 1y is non-increasing in

xforany £ € (0, Ty (see §§ 1, 2, Ch. V). Therefore for any x; = x

I > (v — .\'())[l'l‘u'([v Xp) - C

.

and therefore the assumption
im, .y 820, 0 = 00

leads to o contradiction with (8
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By the second of inequalities (7) we have that for any x, > LM there exists
a constunt M > 0, such that " < M in (0, T) x (x9. o). Therefore the solution
2 s localized and L&V < [0

Exchanging " and u®, and using the same argument, we obtain the opposite
estimate L'V < L2 go that L'V = LY whicli concludes the praof. o)

Let us now consider a case of absence of localization,

Theorem 2. Under the conditions of Theoremi | let the solution u'"' be not local-
ized (HS-regime). Then u® is not localized citler.

Proof. If we assume the contrary, viz., that 4% ig localized, then by Theorem |
1M i also localized, which contradicts the assumption, 0

Remark. The requirements (6) on the boundary data can be substantially weak-
ened. Actually, for Theorems 1, 2 to hold, it is sufficient to satisfy the first of
conditions (6), and to have the continuous initial functions u,” uniformly bounded.

Thus, the properties of regimes that blow up as ¢+ — 7~ do not depend on
the initial temperature profile. If a boundary dependence ensures heat localization
(in either strict or effective sense) for any initial condition, then localization will
oceur for any other bounded nitial perturbation. Depth of localization and class
of regime (S- or LS-) are also preserved.

In particular, many asymptotic properties of heat diffusion processes in the
problem (1.1)=(1.3) remuain the same. These were studied in §§ 2, 3 for k(u) =
kou” and a function ue(x) with compact support. For example, we have

Theorem 3. Assume that in the problem (1.1)~(1.3)
k(i) = ko o > O and 1, (1) = AgT — 1) Y0 e 0. Ty,
Then the solution (s effectively localized and
LY = (2kgAl(or + 2 /(r)

Figure 31 shows the results ol a numerical computation, which illustrates The-
orem 3,

Asymptotic stability of self-similar solutions of the HS-. S-. and LS-regimes is
proved in Ch., VI, where we also derive convergence rate estimates. For example,
Figure 32 shows the “arrival”™ of u non-self-similar solution at the spatio-temporal
structure of the self-similar HS-regime (thick line).

Without introducing a precise notion of closeness. let us observe that the influ-
ence ol initial data in & domain covered by a thermal wave becomes negligible if
the medium is supplied with an amount ol energy. which is at least an order of
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u(1,1)
401
7

Z

Fig. 31. Effective heat localization in a medium with nonlinear heat conduetivity, The
paramelers are: o = 2, I\‘(, =l =l Ag=T=1 L =2 T ~t=17-10"",

T o1 =548-10 2.3 Tt ~237-10 2 b T 810 5 T == 3.9, 10“
6: 7 —1=1.58. m*‘ 7 Ietl=637-10 4 ¥
7(¢,¢)
!

a8y

0,61

04

02

0 04 08
Fig. 32. "Arrival” of a solunon at a self-similar HS-regime. The parameters ure: o = 2,
n= =Lk =05, Ag = 012, T = 10210 L1 T = 92400 3,2 Tt = 6151073,

o _ 3, ot Edkodp it -0y
3T == LOS- 10 % fu, &) = T

magnitude larger than the initial amount, For example, for the S-regime, when the
characteristic size ol the resulting thermal wave is constant. convergence to self-
similar structures occurs when the temperature at the boundary is approximately
10 times larger than the characteristic initial temperature, This fact is reflected in
Figure 31.
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Therefore the self-similar solutions that blow up in finite time, which were
constructed w § 2, are stable asymptotic states of thermal processes.,

Heat localization in a medium, or the lack thercof, is determined only by the
form of the boundary regime, unlike some other phenomena of nonlinear heat
conductance (for example, finite speed of propagation of perturbations), for the
existence of which special initial data are vequired.

These results extend the sphere of applicability of the phenomena we are con-
sidering in various physical situations. However, the following question arises:
is heat localization a property of a medium with precisely the nonlinear thermal
conductivity k() = kou”. o ~ (. or is the localizatton phenomenon present in
arbitrary media? In particular. js it possible to obtain the different heat diffusion
regimes in a medium described by the classical heat equation?

2 Infiuence of boundary blow-up regimes on a medium with constant
thermo-physical properties

Let us consider the problem of heating a medium with constant thermal conductivit
o y
in a boundary blow-up regime,

9 4
kgt 0wt < Tox = 0, (9)
ot dx-

(O x)y =0, x > 0. (1

u(t, 0y = () 2 0.1 € [0.T);
(Ih
wy €CUOTH uy — ot = T
which is a particular case of the problem (1.1H)-(1.3). For simplicity, we have
taken the mnitial temperature of the material equal to zero. which is not essential,
due to the superposition principle (see also subsection 1y,
In processes described by equation (9). perturbations propagate with infinite
speed, so that localization must be tindevstood in the effective sense,
Solution of the problem (Y9)--(11) is expressed i terms of the double layer
potential

(1. x) L[ v iy 12)
I I B R .l e NI (2
2 ko Jo P kot =Ty | (1~ 7)V2

To determine conditions for localization in the problem (9)—(11). let us pass in
(12) to the lLimit ag ¢ —~ 7

Lim u(r, x) (T . x) t l i i) /
m u(e, Xy =1 X)) T e e eX - T — T,
=7 2V ko Jo P dko(T — 1) | (T~ 1)/

(13)
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From (13) it can be seen that the most interesting class is of “exponential™ blow-up
regimes. ladeed, if

(1) = Ag(T — ¥ exsplRo(T — 1y '}, Ro. Ag = 0. (14)
then u(r. vy — >c ast ~ T, where v € (). xy). where
xs = 2 koRy. (15)

For any x > xg the temperature at ¢+ = 7 is bounded:

a4 o
At o\~
R N {' -(%) }
(16)

Fort =T the heat flux and the amount of contained energy in the domain x > xy
are bounded, The parameter v determines the nature of the change in temperature
and heat flux at the point x = x¢; for v > 1/2 (v > 3/2) the temperature (heat
flux) is bounded at + = T . while for v < 1/2 (v < 3/2) it is not,

Solution (12). (14) is an cxample of the S blow-up regime. It is the analogue
of the standing thermal wave (1.5) for the case of constant thermal conductivity.

From the comparison theorem we obtain, that for boundary regimes majorized
by (14),

~
VS
/ e "ut Vo de < oo,
(F kel

(1) < Ag(T = )" explRo(T = )Y, 1 € (0. T). (17)

localization of depth L.* < xg occurs. and for x > xy the solution is bounded for
all 0 < t < T by the limiting curve (16). Condition (17) distinguishes the class of
slow boundary blow-up regimes in this problem. If

(1) < Ap(T — D explRo(T — "}, 0 <t < T

~l <n<0 Ay>0 (18)

(for 1 = 0 we assume v < 0), the integral (13) converges for all x > 0 and the
function u(r, x) is infinite only at the point x = 0. In the rest of the space it is
bounded:

w(l . x) = e o /q expy ~u + Rox™ w "yut Ygu (19)
T - 2 P 0 Jo skt (4/‘:())11 )

Therefore if condition (18) holds, we have the LS blow-up regime,
Finally, in the case of fast regimes

(1) = AT = D explRo(T = 0", O <t = T.n < ~1, (20)

the integral (13) diverges for all x = 0, u(t. ¥y — oo ast — T cverywhere in
R... and the HS-regime obtains.
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Thus, in a medium with constant thermo-physical properties. exactly as in the
case k(i) = kg™ (o > 0), there are three regimes of heat diffusion. Heat inertia,
and the appearance of a finite thermal process localization domain also occurs in
a homogencous medium with infinite speed of propagation of perturbations.

Let us consider the question of localization in the multi-dimensional case. Here
a great variety of localization domain shapes can be constructed, in particular,
domaing with a non-smooth boundary.

Solution of the heat equation (kg = 1)

o i u 9 ..
— e s O 2 T X 0, 00 < Xy <,
at axy 0x;

with the conditions

(O, X, 0 =05 u(.0,x02) = A, x) >0, 1€ (0.7, x» € R,

where (s, xa) — ocus s — T forall xa € Ey € R, Ey # ¢, has a representation
in terms of the two-dimensional heat potential:

u(r, X 1) = - lcx R x
T am P 41 — 1)

8 dr /"‘ W= 200y D vy
- eXp { — = 7. vy dy.
TE=T N AN R T e

Taking 1 to 77 . we obtain the limiting temperature distribution:

T 3 2

Xy Xj 443

T xp, X)) = — Xp g
1( Yi, X2) 477,/” pr{ 4(7‘_7)} x

) dr /.m '\,2 —_ 2_\'1.\' b ) d
g X ——— TN AV,
(T~ )7, \L P KT —7) T

For example. let the boundary regime have the form

where

o
~
=
——
lw
=
o
jra
|
——
A
-
s
IA
-
[
i
[}
=2
=
Z
\

M) =
0.x3 > d. x5 < (.
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Ty

Fig. 33. Heat localization domain (dashed) wiil a non-smooth bounduary (P is a corner
poini)

where b > 0 is a constant The inner integral in (21) converges for all x» € R and

equals )
2T ~7) (xy + b)d} ‘
Ix2.7) =9 x2+b [pr{ AT —7) Hoxa# =
d.xy = —h.

Then we have from (21) that the localization domain is the set
.\'f + (X2 —dY < d* +2db. x; > 0.

the boundary of which is composed of a segment of a straight line and a half-circle.
Inside the domain the temperature goes to infinity as + — 77, while outside it is
bounded uniformly in time.

Using (21) it is not hard to devise localization domaing with boundaries given
by any second order curve (parabola, ellipse. hyperbola). The principle of superpo-
sitton allows us to combine domains corresponding to different boundary regimes
and to obtain as a result localization domains with non-smooth boundaries. In
Figure 33 the boundary consists of segments of u circle and an ellipse.

3 Asymptotic stage of development of blow-up regimes in a medium with
constant thermal conductivity

Using the integral representation (12) of the solution of problem (9)-(11). it is
hard to characterize in detail the asymptotic stage of the process. To do that. we
shall construct self-similar and approximate self-similar solutions of the problem.
Let us consider two important examples,
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l. Boundary regimes of power type.
() =AT =", O0<r1 < 7T, n<0, (22)

lead to the occurrence of LS-regime. We shall analyse the problem (9)-(11) using
the self-similar solutions

ug(r, %) = Ag(T ~ N f(€), & = xlky(T — 1}] A s <t < x> 0.

For the function f¢(&) we then obtain the problem
[i= s g nfs=0.0 < £ <o f3(0) =1 fg(x) =0,

which has a unigue positive monotone solution

: I'(1/2 - n) /* £y | 1
. T et 3 —_ N n 1 5 [ PR (‘) < < DO,
S Jaron exp 3 $ (1 4+ %) ds &«

From the Maximum Principle it follows that the difference between a self-
stmilar and a non-self-similar solution satisfies the estimate

O < ug(r, 2y = u(r, x) < ug(0,0) = AT, (23
Introducing the “similarity representation™ of the solution,
[0 = A T = 1) "t Eko(T = 0",
we obtain from (23) for all 0 < 1 < 7" the estimate
.

NS ) = fsOleamy STUT =07 =001 - T,

that is, asymptotic stability of the self-similar solution (for results of a numerical
computation see Figure 34.) Stability ensures that all the main properties of the
solutions u(r, x) and ug(r. x) are the same at the asymptotic stage of evolution.
For example, the half-width of the thermal wave x.,(r), determined from the
equation

1 1
wir, X (1) = _;u(r.()) = ;A(,(T -0 e T
satisfies by (23) the inequalities
/2 < [l S Nho(T = )2y < 124 7T =1y ", (24)

Let f.'(1/2) = £ < oo, where [ is the function inverse to (&) (it
exists by monotonicity of f¢(£)). Then we obtain from (24) an expression for the
half-width,

X () =& (T =" 4 OT =1y "2 — T,
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£t

o Tas "8 12 N

Fig. 34. Convergence of a solution 1o the power law self-similar LS-regiime iit a medium
with constant thermal conductivity, The parameters are: kg = L. = -05. Ag =T = |1
T -1 =072 T -1y =070, 3T ~1 =055 4 T« =04l

A similar expression is true for the quuntity x.. (/). defined by the equation

Wu, v =-Wu, 0., 0<r < T,

91—

where W, v) s the heat flux, so that v, () is the coordinate of the point on each
side of which the amounts of energy entering the medium are equal.

Figure 35 shows the results of a numerical solution of problem (9), (10), (22)
for n = —1. Dashed und dash-dotted lines show, respectively, the trajectories
of x = x () and x = x,(¢). Self-similac behaviour is established once the
temperature on the boundary becames 5-10 times larger than the initial one (which
is close to the criterion obtained for media with k(u) = kgu”, o = 0).

Nonetheless, there are certain differences hetween the solutions w(r. x) and
tg(r, x). The asymptotic behaviour of the limiting distribution of u (s, x) us v — oo,
A().\'zu - ~

N VR
) = ek ety My (25)
pRUNES Sk

is exponential, unlike the power law asymptotics of the self-similar solution,

A ..214 ]
(T . x) = ot k "l'(;} ~n> SR U S N

(T . x
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A e I —
0 10 20 T

Fig. 35. Dynamies of the power law LS-regime in a medium with constant thermal
conductivity. The parameters are; kg = L0 Ap =T = L L T -t =0113.2: T -1 =
SEM0 R T o= 35100 8 T =23 008 Ty = 18107 6
Ter= L2 102 T 127107

This, naturally, has to do with the fact that the self-sinular profile ug(T™ . x)
takes the infinite amount of time 1 € (~00, T') to form,
2. Let us consider now the asymptotic stage of exponential boundary blow-up
regimes:
ll|(I) == A()ICXP{R()(T - ’)"} - lI () <t <Tin<( (2(‘))

For v = 0, (26) differs from (14) by a constant, which is not essential,

The problem (9). (10, (26) contains at least two purameters with the dimen-

. . o 12 . o
sion of length, 1ko(7 ~ 1)]"/? and [koR, """ and, therefore, has no self-similar

solutions. We shall show that the asymptotics of the solution of the problem ag
t — T7 is described by self-similar solutions of a “degenerate™ equation.
It is constructed as follows. The change of variable

Virox) = Agln]l 4+ u(r, x)/Ag) (27
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takes the original problem into the form

W FV ok [OVN?
‘—~:AL+53(‘—~>.<)<,<'r,_\->(), (28)

v o T Ay o
V. 0) = AgR(T — )", 0 <t < T, (29)
VO, x)y =0, v >0. (30)

If we neglect the highest order dernvauve term in (28), we arrive at the degenerate

problem

I AT AN .

. :ﬂg(;—) L0 < T >0,
ot Aqg ox

Vo 0y = AgRy(T = )" 0 <1 = T,

which has the self-similar solution

v
Vi x) = AgRo(T — 1'0UE), € = —rmree (T = ) W/ 31
(r.x) o Rol IR (k(,R(,)‘v’~( ) («)
The function 6,(£) > 0 satisfies the equation
]
@) - ; DO E 4 nf, =0, £ 0 6,00) =1, (32)

and wherever it is positive, is defined implicitly from the equality

= (in)2
1 - 1
(O

(33)
(t-my2 -
Il +n l —»n (=n)'/=
e | = i . T —
" \/< 3 > M :
At all the other points we set 8,(£) =0
The properties of the monotone function ), depend on the parameter n.
O If =1 < n < 0 (LS-regime), then 6,(£) > 0 for all £ > 0 and
O.(&) = CmE¥ T L g - oo
C “)‘__L_'*'” b em W, .
2” Ry “—"
2) For n = —1 (S-regime) the solution has the form L
|~ &/2)° 0« =<2, [
b8 =4 &/ ¢ .
0, &= 2 M.ys
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3) In the case n < -1 (HS—re'gime) #, is a function with compact support:
0,(6) > 0for 0 < & < & = 20-m"2 (=1 — )"0 g (£) =0 forall & > &,
such that moreover

05(&) = —[(L +m/21§/ (£ = O Foll&y — €N as & — &

In all the cases HL(0) = —(—m)'7?, 87(£) > O wherever 8, > 0 and 6/(¢) <
670 = (1 —n)/4 for £ € (0, &)).

From the properties of the self-similar solutions and the Maximum Principle,
we obtain the estimates (see § 2, Ch. V1)

—A()R()T“ <V, x)y -V, (1,0 < A()||0(/(£)||(-((‘.gl, In

!
L1e 0. T,y > 0.
T ( Yo >

Then for the solution of the original problem we obtain from (27)

Vit x
o {S5 - - )<

, V. x
< u(f,x) < AT VYT = I)‘"”””cxp{»—w—-x v } .
Q0

For the similarity representation of the solution V.,
B E) = (AgRy) (T = 1) "V(r, ElkgRy) 2 (T = 1172y,

we obtain from the preceding inequalities the following estimate of the rate of
convergence to the approximate self-similar solution:

16, ) ~ 0. llcwy = 0T =1 “I(T =) = 0. 1—T . (35

In the case of the S-regime, convergence (35) is illustrated by the results of nu-
merical solution of the problem (28)-(30), shown in Figure 36. Significant growth
of the temperature m the main part of the localization domain, as compared with
the temperature for x > vy = 2kgR)'? . oceurs when the temperature on the
boundary grows by a factor of 10-20.

The estimate (34) makes it possible to analyze in detail the fully developed
stage of the process. For example, in the S-regime we obtain, as + — 7 . from
(34) for all O < x < xy = 2(koRy)"? the estimates

AplexplRu(T = 1y 'l — x/a ) = RoT )= 1] < wr, 2y =
< AoTV(T — 1y V2 explRo(T — 1y M1 = x/x5)°),

whence it follows that inside the localization domain the temperature changes ac-
cording to

w(r. x) ~ explR(T ="'l = x/xgl’l. O« x < xgs 1= T .
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o(t.£)

¢

Fig. 36. The parameters are: n= —Lkp=Ap = Ry=T = [, ay =2, 1 T —1 = 0.95,

2T =047, T =024 T - =0 S T 510 3,6 T-1=25.10"2%
7o T -1 =1.2-1072

In the case of the HS-regime, we have for all &« = 0
u(r. ) ~ explRy(T — 0" — x(—=Ron/kn) (T = D2y T

which means that at cacli point in space the temperatuse grows to infinity, but more
slowly thai thie temnperature at the boundary.

Using (34), it is also wot hard to detenmine the dynantics of the evolution of
the process at the asymptotic stage:

. 12
X (1) =1n2 —-Ii”—ﬁ (T —n'* "2 40 {(7‘ -t “’/3] .
R()("‘N) (1()

20

, 12
kg } .l,:J,'(T - ,)tl m/2 +0 [('I‘ . ,)13 u)/zl )

X1} m= | oo
" [R()(-‘N)

Unlike @ medium with a power law nonlinearity, in all the cases here x,., — 0,
Xen ~ Oast — T tncluding the HS-regime. when the temperature grows without
bound in all of R, . This shows, in particular, that shirinking of the half-width is
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not a sign of localization in a blow-up regime. Let us note that the frequently used
dimensional estimate of the half-width. x., (1) ~ |ko(T ~ N2, in this case does
not describe the process correetly at the fully developed stage.

Thus, under the influence of exponential boundary blow-up reginies there is a
kind of degeneration of the parabolic equation (9) into the first order equation

B (@Au/dxy’
il 0 Ay +u

self-similar solutions of which provide us with the principal term of the asymptotics
as r - T,

The function (31) is an approximate self-similar solution of the problem (28)-
(30). The general theory of a.s.s. of parabolic equations and its applications are
preseated in Ch. VL.

Results of this chapter testify to the generality of the heat inertia phenomenon
and show that conditions for its occurrence are not hard to satisfy. These results
will be used in Ch. V, Vlin the study of boundary blow-up regimes in media with
quite general thermo-physical properties.

Remarks and comments on the literature

§ 1. The selt-similar solution of the S-regime (5) was constructed in [351] (exis-
tence of separable solutions for equation (1) was known before; see, for exaniple
133]. where for the first tine the standing thermal wave was studied; that paper
also verified numerically its asymptotic stability. The paper |351] led to detailed
studies of the heat localization phenomenon in media with nonlinear thermal con-
ductivity 1390, 264, 265, 2606/|, where all the main concepts and definitions are
developed. A detailed analysis of the localized solution of Example 2 is presented
in |347, 348, 149].

§ 2. The three types of self-similar blow-up regimes (S-, LS-, and HS-regimes)
were studied in 352, 393, 267, 165]. 1a the presentation of subsection 2 we follow
] 165]. By a different method the existence and unigueness of self-similar solutions
are proved n | 2035, 206].

§ 3. Theorems on presence or absence of localization (subsections | and 2) are
proved in |304] (an nteresting criterion of localization depending vn the form of
the boundary function which blows up in finite time has been obtained by |204]).
A more detailed discussion of the physical basis of localization can be found in
1393, 267, 268]; these papers also discuss the possibilities of its experimental
study. Localization in the Cuauchy problem has been studied in |352, 393, 267].



Remarks and comments {75

An interesting example of a localized initial function was construeted earlier in
{17], where the exact value of the localization time was caleulated; it agrees with
the calculations of subsection 3. Results of subsection 4 are contained in the main
in 1277, 331, 267].

A list of papers dealing with the analysis of local properties of the degener-
acy surface in problems for quasilinear parabolic equations can be found in the
Comments sections of Ch. 1 and 11

§ 4. Results of subsection | appear partially in [153]. The study of subsections 2,
3 was published in |348. 347, 149],

An elementary presentation of some of the questions relating to the localization
phenomenon can be found in ]394,

Possible applications of the discugsed phenomena were considered in [392. 350].
Blow-up reginies in compressible media with various physical procesges are studied
w 15,70, 71,72, 73, 382, 387, 388. 389, 366, 318|. A more complete bibliography
can he found in |267. 268, 269|.



Chapter IV

Nonlinear equation with a source. Blow-up regimes.
Localization. Asymptotic behaviour of solutions.

The present chapter deals with the study of spatio-temporal structure and conditions
for the appearance of unbounded solutions of the Cuuchy problem for quasilinear
equations with power law nonlinearities:

o=V (" Vuy +uP, 1> 0.1 € RY. (0.1

w0, x) = np(x) > 0. x e R¥. /" e C'(RY), (0.2}

where o > (0, 8 ~ | are constants.

Equation ((.1) describes processes with a finite speed of propagution of per-
turbations (see § 3, Ch. 1), Therefore, if ug is a function with compact support,
u(r. x) will also have compact support in x for all O < ¢ < Ty, where Ty < ~x¢ is
the time of existence of the solution, The main question, considered in §§ 1,2, 4
is to define conditions of localization of unbounded solutions.

“Definition 1. An unbounded solution of the problem (0.1), (0.2) is called (smictiv)
localized if the set

Q = {,\' e RN | w(T, . vy =Tim, oy, U0 > ()} (0.3)
is bounded.

The set €2, is called the Jocalization domain, Boundedness of {1, means, in
particular, that (s, xy = 0in RM\Q, forall 0 < 1 = T4, This follows from general
properties of solutions of parabolic equations with a source. A strictly localized
solution grows unboundedly as 1 — T, in a domain

wp = (v e RY [u(Ty. v = x}
of finite size, which, in general, is different from (1. As in the case of boundary

vilue problems (Ch, 11D, localized solutions can be conveniently divided into
two classes: S-regime solutions, for which (0 =< measw; < oo, und LS-regime
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solutions, for which meas w; = (. In the latter cuse the solution u(s, x) grows to
infinity. for exaniple, in one point, while at all the other points it is bounded {rom
above uniformly in 7 € (0, T'y). In the most general case the classitication of blow-
up regimes should be based on the measure of the blow-up set having the form B, =
{xe R¥{3 sequences 1, — Ty and x, — x, such that u(r,. x,) — o0 as n — oo},
Obviously, by definition of an unbounded solution B # # for bell-shaped data,

Definition 2. There is no localization in the problem (0.1), (0.2} if the domain
€, in (0.3) is unbounded.

We put non-localized unbounded solutions in the elass of HS (hlow-up) regimes.
A combustion process is not localized if as + — T, heat propagates into arbitrarily
distant regions. In a number of cases the condition of Definition 2 is equivalent to
the requirement

I*lﬁ\T u(r, x) = 0o. v € RV,
0
that is, the non-localized solution grows to infinity as + — T, in the whole space,

In §§ 1, 2. 4 it is shown that for 8 > o + | the problem exhibits localization:
the case 8 = o+ | corresponds to the S-regime of combustion, while the case § =
o+ | corresponds to the LS-regime: for | < 8 < o+ 1 there is no localization (HS-
regime). The study is conducted by constructing unbounded similarity solutions
(§ Dy, as well as by the qualitative method of averaging (§ 2). which establishes
their asymptotic stability in certain purameter ranges.

th § 3 we prove various assertions concerning conditions of existence of un-
bounded solutions of the problem (0. 1), ((1.2), aund we show that for 8 = o+ 14+2/N
it can be globally solvable (for “small™ data w«y), which contirms the qualitative
conclusion of § 2.

Rigorous results on the existence (8 = o + 1) und non-existence (1 < 8 <
o+ 1) of localization of unbounded solutions for N = 1 are given in § 4.

The next section, § 5. is wholly devoted to the study of asymptotie stability of
similarity solutions.

In § 6 we show that for some ug(a)y inthe case o+ 1 < B < (0 + DN/(N=2),
the problem (0.1). (0.2) evolves in LS-regime of blow-up, tn which meas w, = 0,
There we also obtain bounds from above and below for (T . x) in a neighbour-
hood of the singular point where w(T, . vy = .

In § 7 we use the above approach to stucdy the semilinear equation (0.1) for o =
() with a reasonably general form of source, There we obtain, in pasticular effecrive
localizurion conditions for blow-up regimes, that is, conditions for boundedness
of the set w,. We consider in detail the phenomenon of degeneration of the
equation 1, = Au+ (1 4+ 0y Inf (1 + w0y, B > 1. at the asymptotic stuge of blow-up.
Asymptotics of the combustion process is described by tvariant solutions of a
Hamilton-Jucobi tirst order equation. This degeneration phenomenon has already
been considered in the context of boundury value problems (see § 4, Ch. 1.
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§ 1 Three types of self-similar blow-up regimes in combustion

It is convenient to start the study of the relatively complicated problem (0.1). (0.2)
by an analysis of particular self-similar solutions of the equation ((.1). Here we
construct unbounded self-similar solutions, the spatio-temporal structure of which
is substantially different in three cases: 1 < 8 < ¢ + | (HS blow-up regime).
B = o+ 1 (S-regime: a solution of this type in the one-dimensional case was
considered in Ch, 1. Example 13 of § 3). 8 > o + | (LS-regime). Though these
particular solutions arise only for a special choice of the initial function uy(x). the
analysis of their spatio-temporal structure allows us to make assertions concerning
the character of evolution of combustion processes with finite time blow-up in
the general case (sce § 5). Moreover, they can be used to establish conditions
for existence of blow-up. that is. conditions for global insolvability of the Cauchy
problem (see §§ 3, 4). They ure also used to prove localization of unbounded
solutions in the case g = o + L.

The spatio-temporal structure of unbounded self-similar solutions contains im-
portant and nearly exhuustive information about general properties of evolution of
unbounded solutions of the equation (0.1). Therefore it 1s not an exaggeration to
call the particular solutions we construct ergenfonctions  (e.f.) of combustion of
the nonlinear dissipative medium corresponding to the equation (0.1).

1 Formulation of self-similar problems

For any' o > O and 8 > |, equation (0.1) has unbounded self-similar solutions of
the following form:

ns(,xy = (To—1) VB NGe(gy, &= x/(Ty—n". (h
where
m= 18— (o + 1}/]12(8 - 1]
Here the constant Ty > () is the time of existence of the solution wg, for 1 > Ty
the solution (1) is, 10 general, not defined and the amplitude of the solution grows
without bound as 1 — 7. The function #4(&) > 0 satisfies in RY an elliptic
equation obtained by substituting the expression (1) into (O.1):

Ve (05Vebs) = mVellg - § ~

Oy + 68 = 0. £e RV, (2)
Gl =0 ¢
This equation has the trivial solution #¢(£) = 0, us well as the spatially homoge-
neous solution

Os(£) = by = (B —1)""F 1 (3)

IThe ease o = ) is considered in § 7.
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According to (1), this solution corresponds to the process of spatially homogeneous
(homothermic) combustion with blow-up.
Below we restrict ourselves to ap analysis of radially symmetric self-similar
solutions:
E=r/(Ty—~ 0" r=|x| (4)

Then (2) becomes the ordinary differential equation

(& 0 ~ mbE s+ 05 =0, £ >0, (5

e B

The first operator can be written in the form
g\ N =1 (r
(056) + -E—-0505-.

and therefore. it we want the solution #g to be defined in RN, we have to impose
the symmetry condition
000y = 0 (85(0) > 0). (6)

Moreover. we shall require the following condition to he satisfied:
Hy(n0) = (), (7

In this section we manly deal with a study of the problem (5)~(7), and with an
analysis of the properties of the corresponding radially symmetric solutions of (1),

The equation (7) is degenerate for 8y = (; therefore mn general (5)-(7) admits
a generalized solution, not having the requisite smoothness at the points of de-
generacy. However, in all cases the self-similar heat flux, —~§N”"0f;()f3., must be
continuous (similarly, in the cuse of equation (2) the derivative V()fq’“ must be
continuous in RY). This means, in particular, that {6 = 0 wherever 6 = 0.

Any solution of the equation (5) can be considered in its domain of non-
monotonicity as some Kind of oscillation around the homothermic solution § = 6y,.
This analogy has to do with the fact that the maximum of the function g can be
attained only at a pont where —8g/(8 ~ 1) + ()f > O, that 15, for 8g > 8y, and
the mintmum at a point where (0 < 8y < 6,

2 Localization of combustion in the self-similar S-regime, 8 = o 4 1

I this case equation (2) assumes the simpler form

I I
e D T — g+ 097 =0, £ € RV, 8
ST s+ 0y ). & (8
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while the corresponding radially symmetric problem (5)—(7) can be written as

1
ENT

I

(EY 1000 — ~05+ 00 =0, £ 0. 9
or

G () = 0 (B5(0) > 0), Os(x) = Q. (1

I The case N =1

In one-dimensional geometry the equation (9) becomes an autonomous one. and
can be imtegrated. In particular. it is not hard to obtain the following solution of
the equation (9):

2 41 s e\ 1o
04(£) = (,_“J_Ll cos’ fﬁ) £ 0 (11)
(o + 2) §
where 5
Ly = (o + 1) (12
o

As follows trom (1), for 8 = ¢ + 1. & = x7 therefore (1) is a separable solution:
ns(r. vy = (To ="V 0¢(x). 0O <1 - Ty, xe R (13)

(the function @ 1s here evenly extended into the domuin of negative values of x).
The solution (13) looks unusual from the point of view of traditional ideas
about propagation of heat in diffusional media. The point is that in (11) 64(v)

is a periodie function: it vanishes at the points v = (1/2+ )Ly (A =0.1....):
furthermore the heat flux —#76¢ = 0 is continuous: 8 — 0 as x — ;.

fTherefore a generalized solution of the problen: (9}, (10} will be obtained i take
a function #y consisting from only one “wave” of the general solution (11}, while
at all other points we can set g = 0.

Hence it follows that, m particular. the following function is also a self-simular
solution:

ol d S N

0, |\| s l,‘\'/?.: O <1 =Ty

P
’ 2
(Ty-—1)y V7 (;(-'LL” cos’ ',-'4) . |x] = Ly/2.

tg(l, x) = (14)

This is the clementary temperature profile of the self-similar S blow-up regime.
which is localized  the domain {{x] = Lg/2} during all the course of its existence.
Despite unbounded growth of the solution as 1 — T at all points of localization
{tal < Lyg/2}. heat does vot penetrate the surrounding cold space.

The quantity Ly is called the fundamental length ol the S-regime of combustion
in the nonlinear medium, 1t is shown by numerical computations that tor practi-
cally arbitrary non-mionotone initial perturbations, tor 8 := ¢ ++ 1. the unbounded
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Fig. 37, Numerical munifestation of ibe S-regime. The parameiers wre: o = 2. § = 3.
Nzl Ly=2mo+ 00 ~5440 1) =002 1p = 79210 %30 44
13 = T3.0.5: 15 = 749, 6: 14 = T4950. 70 17 = THO548. 81 15 = 749551

i

o
o8
=

solution goes to infinity on a set of length Ly, If, on the other hand. we have that
up(x) > 0 on a small interval, meas suppug < Ly. then we have strict localization
on an interval of length Ly. Furthermore. Ly characterizes the maximal length
of propagation of heat perturbations with compact support during the course of
existence of the unbounded solution (sce § 4).

We present here the results of two nwmerical computations. In Figure 37 we
show the evolution of an initial perturbation 1p(x) of small epergy, distributed
over a small region (smaller than Ly). It can be clearly seen that first the heat
profile spreads to a certain resonance (criticaly length: only after that, starting with
time 74, does the combustion process become intensive, and as 1 — T, it evolves
according to the self-similar solution (14).

In Figure 38 the initial energy is large and occupies an extensive domain.
tnside which wug(x) is close to a spatially homogencous profile iy = 1. Actually
Figure 38 shows instability of the spatially homogencous (homotherimic) solution
in the S-regime.

In both cases an unbounded heat profile ts formed. which follows. as 1 — T
(To is the taterval of time for which the protile exists: it is different for different
profiles), the course of evolution of the self-similar solution (14). In the first case.
as can be seen from Figure 37, the solution is strictly localized in an interval
of lepgth Lg. In the second case (sce igure 38) there is no strict loculization,
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Fig. 38. Nuwerical manifestation of the S-regime. The parameters are: o = 2. 8 = 3,
No= 1. Ly=S54d 1y = 0020 1y = 043, 30 13 = 0dd6d. 40 1y = 04484, 5 15 = ().4491.
6: 1 = 04495, 72 17 = 0.44063. 8: 1y == 0.449699. O: 1y = 0.440738. 10: 1,4 = 0.449747

however unbounded growth tukes place with the fundumental length scale Lg.
Similarity trunsformation of any non-stationary solution of the problem shows that
its solution for all initial data is in a certain sense closc to the corresponding
self-similar solution (14), the spatio-temporal structure of which is a fundamental
propeity of the S-regime. The proof of this fact is given in § 5.

For N = 1 there exists a countable set of different self-similar solutions, com-
posed of an arbitrary number of the elementary solutions (14), which by the thermal
solttion condition, burn independently of each other. Any elementary structure
cun be removed, without any consequences for the evolution of the neighbouring
ones. It turns out that u finite spectrum of similarity structures is also possible for
B > o+ 1. Howevei, in this case the principle of superposition, of combining
clementary structures to give more complex ones, is not as simple (see Remarks).

2 The multi-dimensional case N >

A self-similar solution of the S-regime exists in spaces of arbitrary dimension.
However. unlike the one-dimensional case here there are no non-monotone solu-
tions.
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Theorem 1. Forany N = | there exists a solution 85(£) of problem (9), (10) with
compact support. The function g is monotone decreasing wherever it is positive.
The problem has no non-monotone solutions,

First of all let us note that the fuct that any possible solution 6 has compact
support follows from an analysis of the equation for small #y > 0 using fixed point
theorems for continuous mappings (first (9) is reduced to the equivalent integral
equation). This stmple analysis provides us with the only possible asymptotics of
the function #,: it has compact support und if meas supp gy = &g > 0, then

P
o8 4 !
(&) = e (€ — £)° I+ €(é)). & = 15
(&) {2((r+2)(§0 &) } (1 4+ €(&)). &= &y (15)
(B5(&) = 0 for all £ = £y), where €(£) — O as £ > £).

For the proof of existence, it is convenient to consider, side by side with (9).
(10). the family of Cauchy problems for equation (9):

I .1 " "
ém(g”*‘mr'o) - ;;0 + 10178 = 0. £> 0. (16)

00) = m. 0'(0) = 0. (7)

where u > () is a constant. At the points where # > (). equation (16) coincides
with (9). We nust find a value u = gy > 0. such that the solution of the Cauchy
problem (16). (17). § = O(& ), is non-negative for all ¢ > 0 and satisfies the
second condition of (10). that is, #(oo; u) = 0. Local existence and unigueness of
solutions of the problem (16), (17) for all sufficiently sinall £ = 0 is established by
analyzing the cquivalent integral equation using the Banach contraction mapping
theorem.

The main interest lies in the global analysis of properties of solutions #(&; u),
which is presented below. First of all let us note that every local solution 8(£+ u)
can be extended to the whole semi-axis & € R, 0(&; ) can go only to the values
Oor o Y7 as & — oo,

Proof of Theorem 1 is bused on the following lemmas.

L.emmma 1. Ler

2 1 b
7 )} . (18)

() « L= |- -
p=H [(r((r+ 2)

Then (& p)y > O for all ¢ > O Furthernmore, for any g > 8y = o W the
solution is hounded in R, :

O )| < p £ > 0O (19)
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Fig. 39. The function O(p) (see (21)) for B = o + 1

Proof. The proof relies on an identity, to derive which we multiply (16) by 870
and integrate the resulting equality over the interval (0. ). taking into account
conditions (17). As a resalt we have

l 72 ¢ I TA /
E(IUI"H )+ (N - 1) / (16176 () 5;771 + DUOE)) = D(p). (20)
JO
where
1 242 T 0 .
D) = wer R )
(k) 2o + l)'u (o + 2) K= 2h

(the graph of this fupction is sketched in Figure 39).

From (20) «t follows that ®(16(£)]) < D) for all £ > O (the equality is
attained only in the case ¢ = 0. u = 0y;). Therefore if u < w,. the solution of
the problem satisfies the estimate

po o< 06 p) < p £ 00 # 8y

where py > ()18 the second (different from w) root of the equation b (u,) = D).
The estimate (19) follows immediately from the inequality G(A(£)) < O(p) for
Mu > 0. )

Remark. By (20)) the possible oscillations of # around the homothermic solution
0 = 0y are damped, that is, if & < & are maxima (minima) of the function § = 0,
then

O(Eipm) > 0(Eip) (D p) < O(Enp)). (22)
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Let us show now that for some sufficiently large p the solution 6 1s not strictly
positive.

Lemma 2. There exists p = p" > Oy, for which the solution of the Cauchy
problent (16), (17) becomes zero at a point £ > 0.

Proof. Let us assume the contrary. let (£ p) > 0 in R, for all & > 8. The
problem (16). (17) is equivalent to the integral equation

L 1 /
P (€Y = (o + 1) N / 77’\“' {w](/)| it “(/)(17) - (f)('r})] dn. &€ >0, (23)
o

g0

where we have mtroduced the notation ¢(&) = |0]76(£: @), b)) = u”' ' Let us
set 4, (€Y = &)/ p(0y = H(&y/pu” ', Then the equation for i, takes the form

» |
(&) = (o + D N/ V! {;# Tl | T, - 1//#} dn, £>0. (24)
10
and by (19)
W (&) = 1.€2 00 > by (25)

Moreover, from (24) we derive the estimate

1 ré l
||//“ &N = g«—t» / ! {;,uf" -+ l] dn =
Jo (26)

lr-é—l |
= - L4 —u "] &> 0.
N £{+”# ] 3

From (25} and (26} it follows that for any s > 6 the functions 7, and r//;‘ are
uniformly bounded on any compact interval [0. £,,|. Then fTom the Arzela-Ascoli
compactness theorem it follows that there exists a sequence gy — oo, k — o0,
such that the corresponding sequence ifr, (£} converges uniformly on (0, £,] to
some function w(g£). The equation for w is obtained from (24} by passing to the
Bmit = gy — oo (convergence of v, " to w' is established hy passing from
(24 to the corresponding integral equation). It has the form

¢
w'(&) = ~ (o + et ¥ / ¥ Yy dy. £ > 00 w) = 1. 27
Jo

and we C(|0.o0n NCHR, ).

Taking now Tnto account the assumption that o7, = 0 in R, for any > 0.
we obtam that w(£€) = 0 i R,. However, by (27) w(£) is a monotone strictly de-
creasing function, so that w = 0 in Ry . This immediately leads to a contradiction.
because (27) is equivalent to the hboundary value problem

N -1
' e (A D =00 & O ' (0) = 0, () =
&
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8(¢;p)

Fig., 40. A sketeh of the curves 6 = 08, w), sohwmions of the problem (16). (17) for
different w0 > fy. B = & 4+ 1 (S-regime)

whose solution w = C 2 M2y yn(o+DY2E) (Cr > Oisa constant, Jiy 2,
is a Bessel function) vanishes at the point £ = &, = 23" /(0 + D' where 2§’ > 0
is the first root of the function Jnv 1,2, o

Propeities of solutions of the problem (16), (17} are shown in Figure 40. To
values py > fy. g2 >y there correspond solutions (& u} that are strictly
positive in Ry (Lemma 1}, while to a value p3 > u» there corresponds a solution
A& pma), which vanishes at a point (Lemma 2). Therefore there can exist 2 value
uo= 0y € (. m3]. for which the function 07 '(£:8y) is “tangent”™ to the & axis
at some point € = £n. and this "tangency™ allows us to extend #(&: 6y} into the
domain ¢ > & identically by zero. As u result we have a generalized solution
of the original problem (9). (10} with a continvous heat flux —&V NOs1" 0 it is
marked by a thick line in Figure 40,

But to be able to use the above properties of the solutions #(£: u), we shall need
a condition of contintous dependence of #(£: w) on the parameter u. Observe that
in general there is no continuous dependence. This is clearly seen in Figure 40,

Lemma 3. Lct the solmion 0 = 0(&, wy), my > 0 be such. that on the compact
set K = 0. &, | there are no points Jor which 10170 = (101”0 = 0, Then 6(&; p)
and (10)70")(& p) depend contimponsly on the paraeter p in a neighbowrhood of
pmo=pu, on K.
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Proof. Let us consider equation (23), which is equivalent to the problem (16},
(17), for w = p;. The integrand contain the function ||~/ D, which is
not differentiable at ¢ = 0, Obviously. if #(&1 ) > 0 on K, then we have
continuous dependence on u. Let £ = &) be the first point where #(&: u;)} = 0.
By assumiption. (|6]"0)'(£y: 1y) # 0. Then we have continuous dependence on u
on any interval [0, €} — €|, where € > 0 is a small number. In a neighbourhood
of ¢ = 0 the operator in the right-hand side of (23} is not a contraction, but the
term || " Pehis small on (&) — €. £ + €). Therefore, as we extend 8(&: p).
with |g — pyl small, into this neighbourhood. we shall preserve continuity of the
derivative ¢'(£) in & and w. and. of course, of the solution G(§) = (18|79 (&- u),
which has a unique extension. In a similar way, we can extend #(&; u} to the
whole compact set K. preserving in the process continuous dependence of ¢ and
¢’ on u in a neighbourhood of u = u;. i

Proof of Theorem 1. It is based entirely on Lemmas [-3. Let us introduce the
set M o= {(u” > 0l6Ew > 0in R, forall 0 « u < u'), From Lemma
I it follows that M # {u” < #y}. By Lemma 2 M is bounded from abeve.
Therefore there exists #y = sup M < oc. From Lemma 3 it follows then that the
solution of problem (16). (17) is the required function fg, satisfying (10}, with the
asymptotic behaviour given by (15). Monotonicity of any non-negative solution
of the problem (9). (10} follows immediately from the Remark to Lemma 1. O

3 Non-localized self-similar solutions of the HS-regime, < o + 1

Here we use the same method to prove the theorem concerning solvability of the
self-similar problem (5)~(7) for B € (1. o + 1). Direct inspection of the equation
shows that a solution #¢(£) can only be a function with compact support, having in
a neighbourhood of the degeneracy point £ = meas supp fg asymiptotic behaviour
different from that of (15):

r+ 1 - Byor o
('f—i‘“‘ﬁ)“(“‘fn(fo - &) (1 + w(é). (28)

Oe(&) =
s(€) B

where (&) — 0 as &€ — &, .

Theorem 2. Forany | < B < o + | there exisis a compactly supported solution
Os of the problem (5), (7). which [s strictly decreasing wherever 6 > 0. The
problem has no non-moenotone solutions. For N =1 the compactly supported
solution O is unique,
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Let us briefly describe the main steps of the proof. The counterpart of identity
(20) has here the form

T o
B8 (E+(N ~ 1)/ qo ey o
- Ju 7 .

3
- In / 7)(|()|"0'2)(7)) dn + P& = P(u).
Jo

where the function

I Bl I a2

(B~ e +2)
has the same form as in Figure 39, Therefore, taking into account that m =

|8 — (o + 1|/12(8 — 13| < 0. we have that D(|0(&)]) < D) 0 particular,
8(&) > 0in R, for all

0~ pepu, = {Mﬁ_‘* o i‘..“]”w””
CHEEREIB T e '

Hence it also follows that for any w = 0y = (8 — 1}7V#-1 the solution
is unifoninly bounded: [9(&)| = w in R,. Thus we have proved for the case
B < o 41 the counterpart of Lenuna 1,

To prove the counterpart of Lemma 2 problem (5). (7) (first equation (5) is
extended into the domain of negative values of #) is reduced. after the change of
variable ¢ = |6]” 4. to the integral equation

(&) =m(a + DE|P] T N

‘
+ (o + 1t /( 7! {(2{1“—1 - mN) lp] 71D — (e "“N“M"H)} pdn.
Jo -

which after the transformation
Wy (€)= Wby, (mufw) (30}
DM o 3 -
,U-W tr v DI/

asstumes the form

l//;‘(f) = (o + l),u.l /3‘;‘;'[//," l!,’(:r”)l//“ 4 (7 4 l)fl N x

&
x / TIN I {(le . "'N> ’U.l ”ll///,Ll o/l b1y ll//uliﬂ (U}‘)]/(U"‘)} l//# ([T]
Jo B-1
(300

As in the proof of Lemma 2, we have from here that the assumption ¢, > 0
in Ry for any u = 6 leads, by the compactness theorem. to the existence of a
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sequence {ug ). such that ¢, — w > 0 for = gy — oc. where w(€) satisties
the problem

£
w' = —(r 4+ gty / Y P aydn s 00 w0y = 1L
Jo

It is equivalent to the problem

i

N-1 Bitrs 1) ’
T »—-E-wn + o+ D7 =0 &> 0 () = 0, () = 1. (30

whose solution has a zero, This is proved in subsection 4.1 of § 3, where the case
of arbitrary 8 > 1. o > 0, ts considered. Proof of Theorem 2 is concluded as in
subsection 2, using an assertion analogotis to Lemima 3,

Uniqueness of the compactly supported self-similar function 6y, N = 1, will be
proved in § 5. by analyzing a quasilinear partial differential equation. Dependence
of B(&; p)y on p for B < o 4 | is in principle the same as in Figure 40.

Having convinced ourselves of the existence of a suitable function #y. let us
now indicate the main properties of the self-similar solution (1) for 1 < 8 < o+ 1.
This is the HS blow-up regime, and the unbounded solution is not localized. This
last property follows directly from the change with time of the radius of the support
of the unbounded solution ny in (4), Indeed, from (4) we obtain the following
expression for |xy (1}, the radius of the spherical front of the propagating therimal
wive:

L (1)] = &0(Ty — V@il

In view of the condition 8 < o + 1. we have that [x (1}] = 20 as 1 — T,
that is, the thermal wave engulfs the whole space in finite time, Furthermore, it is
not hard to deduce from (1) that in the HS-regime

Ny, ) = oo In RN, 1 — 'I‘(), (32)

From (4) we can also derive the analogous expression for the half-width of the
spatial profile of the wave:

|xy ()] = E,(Tg — W 1o DUVRE DL gy

where £, > O is a root of the equation O¢(&) = 05(0)/2, By monotonicity of 6y,
£, 1s unique.

It turns out that sufficiently general initial perturbations 1o(x) in the problem
(0.1). (0.2) behave according to self-similar rules. For 8 < o 4 | all unbounded
solutions u(r, x) satisfy (32} and are not localized. The theorem concerning absence
of localization for 8 = o 4+ 1 is proved in § 4. As an illustration, we show in
Figure 41 the results of a numerical computation of the Cauchy problem (0.1},
(0.2) for N = 1. It is clearly seen that here. in distinction to the S-regime (see
Figure 37). as 1+ — 7', . the thermal wave accelerates, engulfing and heating to
infinite temperature all the space {—0o < ¥ < o0}
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ult.r)
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Fig, 41, Numerical manifestation of the HS- n.z,img The parameters are: « = 2, 8= 5/3,
N=Tibry =0.2 1 = 103, 3017 = 2.030, 47 15 = 2.3200 51 15 = 2,410, 6: 14 = 2.5058

4 Localization in the self-similar L.S blow-up regime, § > o + 1

In this subsection we consider self~similar solutions for 8 > o+ 1. which illustrate
even more clearly than in the S-regime the propeity of localization of processes of
heat diffusion and combustion.

Let us consider the boundary value problem (5)—(7) for 8 > o + 1. It is not
hard to show that unlike the cases 8 = o + | (subsection 2} and 8 < o + |
(subsection 3), for 8 > o + | there are no generalized solutions with compact
support, and #y has the following asymptotics:

Og(&) = Cyé MW O L p(E)), w(g) — 0, £ — 0. (33)

where Cy = Cy(or, 8. N) > (0 is a constant (see Remarks) The fact that there does
not in%l a point € = £y > 0 such that G, (&q) = 0, (B¢H)(E) = 0 and H4(£) > 0
for 0 < & < & follows directly from a local analyms ()I cquam)n (5) in a left
half- nughbou;h()od of & = &,

Below we shall prove existence of the simplest monotone solution of the
problem (5)-(7). More complicated non-monotone solutions (so-called com-
bustion eigenfunctions of the nonlinear medimn) were studied in detail in
[349. 391, 267. 268. 274, 90. 1. 2[.

As usual, side by side with the boundary value problem (5)~(7). we consider
the family of Cauchy problems for the same equation:

~--—l~(£N‘ "oy — me'E —-mlml; + 108 0 =0. £>0 34
le_ l ) mt & /3—1 ——'f/ . (34)
, B~ (or+1)
OO0 ) = w00 pw) =00 m = — > (), (35)
B = 000 p WB-D
where ,u. > 0 is a constant.  Let us show that for some u the solution § =
§ @) = 0 satisfies condition (7 at infinity, and thus defines the required function

» Ob.st.wg the following property of solutions of the problem (34)_ (35). Earlier,
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in the cases B8 = o + 1 and B8 < o + | it wag shown that in the class of all
solutions #(£: u) of the Cauchy problem for different x> 0, there was always a
family of strictly positive functions 6. oscillating around the spatially homogeneous
(homothermic) solution # = 6, (see Figure 40). The oscillations there were
damped, and their amplitude decreased with £, which ensured strict positivity of
the solutions. For 8 > o + |, when m > O, this, in general, is not the case.

For example, for N = | the identity (29) ensures exactly the opposite, ie., if
for some u > 0 there exists a solution § = §(£, u) > 0. which oscillates about
6 =6y and £, & (&) < &) are any two maximum (minimum) points, then

OE 1wy < B(Ex ) (B ) > O(Ex ). (36)

We shall take into account the following easily established fact: if 0(& u) — s
as £ — o< (s = 0). then s = 0 (to prove this, it suffices to analyse the equation
locally in a neighbourhood of § = oo (see [1. 2[)).

I Linearization aromd 6 = 0y

A fairly precise picture of undainped oscillations for w sufficiently close {0 8y
is provided by solutions v(&) of the problem obtained by linearizing the original
problem around the homogeneous solution ¢ = 6y;.

Let us set

O(Ep) = By + €ud). €20 6y = (8- 1)/, (37)

where € > () is a constant, which plays the role of a small parameter in the sequel.
Then, after substitution of (37) into (34). (35) we obtain the following probtem
for v(éy:

l '
4 T ((EN” 'v') — '+ v =ed(v), ¢ >0, (38)

vy = p, () = 0, (39)
Here W, (v) : €7 — C is a bounded quasilincar second order vperator. Boundary

values » in (39) and p in (35) are related by

n= 0y + er. (37"

From (38) it follows that by continuous dependence of the solution of the
equation on a parameter, for sufficiently small € = 0 the solution v(£) of the
problem (38). (39) is close to the solution of the corresponding linear problem:

l i’ ! 7 -
Vs (€1 ) —my'e+y=0.8>0, (40)
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0y = v # 0, ¥() =0, 41y

Because of that, let us consider the problem (40). (41) in more detail. The
change of the independent variable

1,2
ol s 172 ” 4 -1 looig=y ]/~ )
é‘ = (..Jl) 771'- = ..(Ew__.;)__._ ,,,,, T)I’I' (42)
m B - (or+ 1
reduces (40) to the degenerate hypergeometric equation
My V(=) = ay =0, 7> 05 ¥(0) = v, (43)
where ¢ = N/2, g = —1/Q2m) = —(B -~ 1H)/[B — (¢ + 1)]. Then the second
boundary condition assumes the farm
77” g n)lr} =) = ()

Therefore a suitable solution of (43) is ane with a bounded devivative y, (0). It
can be wiitten down in a convergent Kummer series [35, 317]

F et 3 (4

an  aa+ Dy’ u(a+l)(n+7)77
' e+ )2 e

o= (1404

which defines the degenerate hypergeometric function

r((') ! apy w1 a
¥(m) = vMa, ¢, m) = vl g e My (1 - "ds.
e — axtcay o

tn general, the function (44), and thus the solution v(£) of the problem (40). (41),
is non-monotone. fn the cases when

~a= (8- N/[B—-(c+1H]|=K, (45)

where K > 1 is an integer, the function y(7) is a polynomial of degree K. since
the series (44) terminates at the (K + Dy-st term. Furthermore, it is known [35]
that it has for 5 > 0 exactly K “zeros”. Equality (45) holds if

1 K
b (e 1) K =230 16
B=Br=—rp+ o+ (46)

(for convenience we set By = oo). For example. if 8 = B2 = 20 + 1. then

TR e S >0
yim =1 N N(N+2)">'"”'

and therefore the equation y(z) == 0 has two positive roots:

a = [N +24 QN + 2))”’] /2,



§ | Three iypes of self-similar blow-up regimes in combusiion 193

to which there correspond the following zeros of the solution y(£) of the original
problem (40), (41):

172
&t = 2V2020) (m{) > (),

The equality (45) determines the number of zeros (and thus the nature of non-
monotonicity. or, we might say. the degree of complexity) of the function v for
all values B > o + 1. Namely. for any By = B < By (K = 1.2....) the
function v(£) has exactly Krlzeros in £ > O (see [35]. where approximate formulae
for computation of zeros and positions of extremum points of the function y(£)
can be found),

Combining all the cases considered above. we obtain a general formula for the
number of zeros of the solution of the problem 40y, (41):

K=—lal. a=—(B~1/|B~(oc+ D] =<0, (47)

which is valid for any 8 > o+ 1. By (47) K > 2 forall 8 > o + I, that is,
the solution y(£) will always be non-monotone”. Let us note that the oseillations
around zero are undamped (this follows direetly from the form of equation (40)).
Returning to the original linearized problem (38). (39), we sce that by con-
tinuous dependence on the parameter € > 0 in a neighbourhood of € = 0 of the
solution v on any compact set, there exists an € > 0 simalf enough, such that for all
[] < 1 the function v(€) has for £ > 0 at least K (K = 2) zeyos. For the original
problem (34), (35) it means that for any 0 < #; ~ € < u < 0y + € the solution
O(& p) has for & > 0 at least K extrema. In particular, if 0y < u < 6y + €, then
there exist at least |K/2] minima and K ~ |K/2| maxima, for which (36) holds.

2 Global properties of the solutions #(€: i)

Thus, we have determined the hehaviour of #(&: ) for all u close to 8. Let us
show now that for large enough g the function §(£, u) vanishes at some point.
For that we could use the same method as in the case B < o + | (though due
to (36) some additional difficulties appear). However, for N = | this result can
be obtained in a wnuch simpler way. In the following we confine oursclves to a
fairly brief analysis of the case N = 1, and at the same will preseat some results
pertaining to the multi-dimensional case,

Lemma 4. [t N =1, B > o+ L. Theu for all

Y 4+ | b
AR o YA
(B-Do+2)
2Let us note th in e case of a semilinear equation (o = ). K = | for all 8. This

conclusion plays un importapt part i § 7.
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the solution 0 = 6(&; w) of the problem (34), (35) vanishes at some point and has
1o extrema i & > O|Ew) > 0,0 < § < &} (that is, it is strictly decreasing).

Proof. Let us consider the identity (29), which for N = 1 has the form

l r 2 ¢ 2
;(Iﬁl'rﬁ ) () —m / (01" @) ) dn + PO = D(w). (49

0

Here the function

— | EERLEN] ! o2
Y= et T et RED
has the same form us in the case 8 < o + | (see Figure 39),

Let us assume the opposite. For example, assuming that (48) is satisfied, let
the solution #(&: 1) have a point of minimum at £ = £, < oc, where, naturally.
@ < Oy. Then, setting in (49) ¢ = £,, in view of the condition i > 0, we obtain
the inequality P(#(£,)) > P(u). and therefore we must have that (£, u) >
u > By which is impossible, In the same way it is proved that for u > u” the
function #(&; u) cannot be a positive solution in R, (i.e. the case §, = oo is also
impossible). m]

In a similar fashion, we derive from (49}

Corollary. Auy solution of the problem (5)—(7y satisfies for B > o+ 1. N = 1.
the estimaie

I VT
Bro+ ] . (50)

'R PR N O S
s(€) < m [(B~ (o + 2)

Proof. Let £ = £, be a point of absolute extremum of the function #5(£). Setting
in (49) first § = oo, and then ¢ = ¢, and subtracting the second equality from
the first, we obtain d(f#g(£,)) < (0, which guarantees (50). 0

Let us move on now to prove solvability of the problem (5)~(7) for 8 > o+ 1,

N = 1. Let us set N = {u > 6] there exists a compact set K = |0, &£x]. such that

8(&:wy > 0 on K and has at least one minimum point on K}. Then N # ¢ (by

the analysis of the linearized equation) and N is bounded from above (Lemima 4).
Therefore there exists

sup N = 6, € (0, 00). (51

It is not hard to see that by the choice of 8y the function #(&: 8y), first, has
no minima for £ > 0 (this follows from continuous dependence of #(&; 1) on u
on any compact sct, where 6 > (), and. second. cannot vanish (sec Lemma 3).
Therefore #(£&;0y) is a positive, strictly monotone solution #5(£) of the problem
S)y-(NHhforB>c+1, N=1 ‘
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8(&; 1)

Fig. 42, The funciion @ = (&, w) for differem p. B > o + 1

In Figure 42 we sketch the behaviour of the functions #(&; w) for different
values of u = #(0; u); the thick line shows the solution #5(&), which corresponds
to u = fy = sup.N.

Thus, we have proved the following

Theorem 3. j.or B > o+ |, N = L. Then the problemt (5)~(7) has a stricily
monotoue positive solution.

Some additional properties of the function f5(£) will be mentioned in subsection
4.3 as well as 1 § 6.

Remark. As we already mentioned above, in Theorem 3 we determine the simplest
self-similar solution: in fact the problem (5)-(7) has at least K" = K — | different
solutions (}_‘-, (}i (}Q ! Each onc of these has one more extremum point than
the preceding one. Among these there are at least |K'/2] solutions for which
050y < Oy (§ = 0 is a point of minimum) and at least K" — [K'/2] solutions
such that 85(0) > 0, (£ = 0 is a point of maximun1), Proof of existence of these
solutions follows the same lines; the set N # ¢ now including values of u for
which the corresponding function #(£; u) has a more eomplicated spatial profile
than the desired function #¢(&) (see |1, 2]).
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3 The multi-dimensional case, N > 1

The method of proof of Lemma 2 can be used to show quite casily that whether or
not a statement analogous to Lemma 4 holds for N > | depends on the properties
of the solution of the stationary equation
!
&V

(&) e =000

FOy =1, f1(0

fi

Indeed, let us rewrite (30') in the form

l//'ﬂ(.f) = — (o + HE' N / 7~ '|r//,llm '“””““”‘”u//mln + BGap,y.  (53)
Jo

where 11, (0) = 1, 4/, (0) = 0 and G(p,) is the following integral operator, which
is bounded in C:

G, = m(r + DéERp,| "'/“””r//,t +

¢ .

+(r+ D' Y / V! [le_ - mN} | 7 Ny d,
J0 B - l .

wlhich is not a contraction in a neighbourhood of v, = 0.

Unlike the case 8 < o+ 1, for 8 = o + |, a priori nothing can be said about
boundedness of 1, and v, on compact sets, since possible oscillations of #(£; p)
around # = #;; are undamped (see (36)). Therefore we shall use a method based
on continuous dependence of v, on u i a neighbourhood of u = oc.

For p = 00, (53) becomes fonually the equation

W (&) =~ + gV / ol eV Dy & > 0,
S0

W Oy = 1ol (0) = 0,

and its solution comcides with the function |17 /(£), where f(£) is the solution of
the problem (52). In § 3 we shall show that for any 8 < (7 + I} (N + 2)/(N =2y,
the function f(£) of (52) vanishes at somie point £ = £, > 0, and, moreover,
o (€,) < 0. Therefore on every compact set K, =10, ¢, — €], e > 0, on which
e > 0 there is continwous dependence of (&) on u in & neighbourhood of
wo= oo, that is, ¥, (£) is close to - (£) on K¢ fou all sufficiently large p > 0.
Let us fix a sufficiently small € > 0. Then

Puléy =€) = fTUE — e (£ —€) = (f7E, —€) < Das pu — oc.

But Gy = Oy, ||:./"""”) — 0 as |[¢ulle — O Therefore in order to extend

(&) from a point & == £, ~ € into a neighbourhood of ¢ = £, we can use the
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Schauder fixed point theorem. Then by “smallness™ of G(tf,,) the derivative i), (§)
does not change significantly and as a result i, (&) will be zero if u is sufficiently
large ('8 is a small number). This fact allows us to prove the following result.

Theorem 4. Jetr v+ 1 < B <o for N =1orN=2ud oc+1 < f8 <
(0 4+ DN + 2y/(N ~ 2y for N = 3 Then the problem (5)—(Ty has a siictly
posite monotone solution,

Remark. In the case 8 = (o + H(N + 2)/(N — 2}, the solution f(£) of (52)
is strictly positive in R, (see Lemma | in § 3) and the question of existence of
0(£) remains open.

In the sequel we shall need the following surprising property of the self-similar
function .

Theorem 5. Let g+ 1 < B < (or+ WNJ(N =2y, and let §(€) be an arbitrary
solution of the problem (5)~(7y. Then

. B—(o+1y ! . .
F = e ) o e ff ¢ =0, &> 0, (54
(&) 281D (E)E -+ -1 (6 &=z )

Inequality (54) displays some important properties of the unbounded self-similar
solution (1), (4). For example, from it immediately follows

Corollary 1. Foroa+1 < 8 < (o+ LHNJ(N =2y, the solution ug(1. x) (s critical,
that (s,

d I
Suglt,xy = (T~ 1 VB D ) E 4 ——mg(E) | = 0, (55)
ot i B - |

1€ (0, Ty x € RY,
and therefore far any t € (0. Ty)
wglt, vy < ug(T5 . x) = Cglx] P 0 e RM\(0), (56)
where Cy = Cy(o, B. Ny > 0 is the constant of the asyiptotic expansion (33).
Integrating the inequality (54), we obtain the following estimate, which again
demonstrates strict positivity of 0g(£) (it correctly reflects the asymptotie behaviour
of the function 0y as & — 20).

Corollary 2. let o+ 1 « B < (a0 + DN/N = 2),. Then for all £ = & > 0

O4(£) = Og(Eg)(E]Eg) 2P i,
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Proof of Theorem 5. Let us rewrite equation (5) in the form

N—1 ‘
0 (Hf; B (ra'!()'s) + 08 = 1g), (57)
C R

Let F(£1) <0, 0¢(£)) > 0, & = 0. Then #(£)) < O and therefore

’ "o - A
(&) = mé, {”S(él)'*' B+ 8(51)] -

B—(or+1) &

< mg {0”(5 L v = 20 0, ]
< méy _s',l)+£| ( B—-((r+l)> sENT

as (B=—a+ H/|B—(oc+ D] 2>2N-1=-20/B-(c+DH]forc+1 < B =
(o0 + DN/N -2,
Then from (57) we have

07 (E))
"(é')-l-‘(f.) < F(&) <.
mé,

sinee
I8 | 1

LI P — - —,

s = m(B—1)¢&
From here it follows that F(€) < 0, su that the function F(£) is decreasing on an
mnterval (g,. & + 8), 6 > (), where

a4 ( , )
J—Ql" (&) < F(&) < 0.
mé
Therefore IF(£€) < O for any £ > £,. But by (57) it ulso means that
L (g '0"9’)#0“ <0, &> & 0g(€)) <0
EN"'(& sy s < W &> a0 0508 .

The last inequality, under the assumptions we have made, ensures that the
function §g(£) vanishes at svme point and, consequently, is not a solution of the
problem (5}~(7). This is especially simple 10 prove when N = 1,2, 8 > o+ |,
Analysis of the case N = 3 uses the sume method as in the proof of Lemma I in
subsection 4.1 in § 3, 0

4 Properties of the self~similar LS-regime

Let us aguin write down the expression for the time dependence of the half-widih
of the self-similur thermal structure:

L (D] = E(Tg— P ibvRE- o p o7
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Hence we have that in the LS-regime (8 > o + 1) the halt-width decreases
with time and |x.(T;)| = 0. Thus intensive combustion takes place in an ever
shrinking central region of the structure. As a vesult blow-up occurs only at one
point; in the rest of the space the temperature is bounded from above uniformly in
1 by the limiting protile ug(Ty . x} (see (56)).

Thus the self-similar solution is effectively localized, Striet localization, how-
ever, cannol obtain here, since ug(s. x) is strictly positive in (0. 7)) x RY, Numer-
ical computations show that self-similar estimates hold. and, moreover, testify to
the occurrence of strict localization in the LS-regime (for a proof see § 4),

An example of such a computation is presented in Figwe 43, Here uy(x) is
a compactly supported (not self-similar) initial function. Up to the time 7 = 1,
the initial perturbation spreads out, then reaches its resonance length (1 = 12).
after which fast growth of the solution starts. It is clearly seen that as 1 — Ty
combustion oceurs i1 an ever narrowing central region of the structure. During
the process the front points of the solution «(r. x) hardly move at all and heat is
localized in the fundamental length Ly s of LS-regime. We emphasize that here,
unlike the situation in the S-regime, L;¢ depends on the initial perturbation ug(x).

Figure 44 shows the LS-regime, which is close to the self-similar one as 1 —
T, . which develops fram a spatially homogeneous initial perturbation up(y) = 1,
due to instability of homothermic combustion with finite time blow-up.

il

fvu(t,z)
100}
80
60

40

20

Fig. 43. Numerical manifessation of the LS-regine. The parameters are: o = 2. 8 = 5,
N=1 1= 114,20 10 =234, 3 17 = 3.559, & 14 = 3.5712, 5. 15 = 3.5714
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u(t,x)

180}

140

100}

Fig. 44. Numerical manifestiuion ol the LS-regime
N = 10 1o o= 02824, 20 1,

= 008358, 3 1y =
15 = (0.283079. 61 1, = (0.2830681

The puarameters tre; o = [3
Iy = 0283650 4 1y — )283(

§ 2 Asymptotic behaviour of unbounded solutions. Qualitative
theory of non-stationary averaging

In this section we consider questions connected with asymptotic stability of self
similar solutions of the problem

AQ) =1, — V(" Vu) — W =0.1>0 xvecRY )
e HI(RY). (2)

10, x) = uy(xy = 0, v e RV, uy € C(RY). u(,’”
We shall be interested in the following question

under what conditions does
the unbounded solution of the problem, u(/

x), acquire in the domain of intense



§ 2 Asympiotic behaviour of unbounded solutions 201
heating the spatio-temporal structure characteristic of the self-similar solution

gt x) == (Ty — 1) Y2 DO(E), & = x/(Ty — D)™,

3
o= |8 — (o + 1)]/]2(8— D] )

Ditficultics of the analysis of asymptotic behaviour of unbounded solutions are
related 1o the speed of evolution of the blow-up regime. which is not stable with
respect to arbitrary, even infinitesimally small. perturbations of the initial function
up(.x).

Here we present the results of a qualitative analysis. Qualitative theory allows
us to obtain « number of quite subtle results: for example, for 8 > o + | + 2/N
we can find a fumily of global solutions of the problem (1), (2), which correspond
to sufficiently small initial functions wg(x). At the same time we show that for
B < 1+ +2/N there ate no global solutions « £ 0. These results wre justitied in
§3

The idea of the averaging method consists of reducing the problem (1), (2) fora
partial differential equation to a system of two ordinary differential equations with
respect to certain purameters that characterize the evelution in time of the spatial
profile of the thermal structure. As such parameters we can choose. for example.
the amplitude and the half-width of the structure, or the amplitude and the position
of the front of a radially symmetric structure which has compact support in x. The
latter averaging, “wnplitude-front position™ allows us, in particular, to describe
the localization of unbounded solutions in the S- and LS-regimes. und ubhsence of
localization in the HS-regime.

I The non-stationary averaging “amplitude-half-width”

Let the initial function uy € L'(RY) in (2) have compact support and be elementary
in the sense that () has a unique maximoem wt x = 0. We shall take gy to
be close to a radially symmetric function. Then we should expect that the solution
u(r, x) will also be almost radially symmetric and that the half-width of the evolving
thermal structure will be approximately the same in all directions. Taking this as
our departure point, let us seck an approximate solution of the problem (1), (2) in
the form

u(r, X)) = d(nOE). & = ([ l/ht). oo [xnl/eh()). (4)

where (7)) and (1) are, respectively, the amplitude and the halt-width of the
structure, which depend on time, and #(€) is some fixed function of compact
support, which is monotone decreasing i all its arguments and such that 6(0) = 1,
941*%[ e HI(R.’V)‘ —— -
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In its form (4) is the same as the self-similar solution (3), which was studied in
§ 1, where the specitic form of the functions (1), ¢ (1) is determined by substituting
(4) into the original equation (1), Therefore the scll‘-similnr solution (3) satisties
the problem (1), (2) for some specially chosen initial functions ug(x).

In our case ug is, in general, an arbitrary function; therefore we do not require
that the approximate solution satisfy equation (1) in strict sense. Instead, we shall
demand that (4) satisfy the two following equalities (conservation laws)?:

Au(r. x))dx = 0, Alutt, x)u, x)dx =0, 1 > O, (5
Jr Jro

After integrition by parts, these equalities have the form

I 8

;ﬁilll(f)!'[_}(k,\) = "“(I)HLH(R\)' (6)
1 d 2 . vt dx Bl 7
57”“ Oy =~ Jre WAVHTdx A+ (a1 g - t

In the first equality, which is the energy equation, there is no contribution from the
diftusion operator, while in the second there are contributions of both the source
term and the diffusion operator.

Substitution of (4) into (6), (7) gives us the following system of ordinary
differential equations for the functions (1), ¢(1)

f/?lr/t(:)d»”(r)l = vpP g (o), (8)
[4
till_lh/lz(l)t/)N(l)] = —uph" DY (1) + P (). )

wlhere vy, v, 3 are positive constants:

_ IR,\ o8&y d €

Jr 006 A&
py = 2dw O7IVOI 48 (10)
- Jor 2 dE
Im e ! ¢I§
I e
YT fe 0PdE

Here we are assuming that the function 4 in (4) is such that all these expressions
make senge.

Ynstead of hese two laws we could take others; for exumple, instead of the second one
we could 1ake the identiay (A(x(1, v)). v) = () und rewain the first one a8 i1 is the simplest
possible. This does not affect the resulis of the unalysis below.
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It is not hard to resolve the system (8), (9) with respect to derivatives:

o+1
W= ‘/'d)r [(Vz — P g llj] . (1)
¢ = KI/(/) [(21/1 — oINPT l’z] >0, (12)

while from (1), (12) we easily pass to the single equation

(Il// [// (l‘//lf"(lrﬂ)(/)l -1
A R S B Surs R = (), = (), 13
de N(/) In/,/i»-(u-n)(bz ] W ¢ (13)
where
a = (03— vy e, b= (vy — 2u) [va, (14)

We shall take the condition vz > 2r; to hold, so that
a>0b>0 (15)

The inequalities (15) are, generally speaking, necessary for (11), (12) to admit
blow-up regimes. :

Let us move on now to analyse the equation (13), which describes the depen-
dence of the amplitude of the thermal structure on its half-width.

I S-regime, B = + 1

In this case equation (13) has an especially simple form:

dipr N(// ad® — 1

= N >0, >0 1
dg oppr =1 V0> (18)

It is easily integrated, and its general solution has the form

VTR ITI,
| vy — 2p ) /{20 - 2]

5]

C() = l/[4_|(15-.N (17)

where Cy > 0 is a constant deterntined by the initial conditions: it 4#(0) = ¢y > 0
and ¢(0) = ¢y > 0, then

- N {20 =217}
Vg”‘2V| 2 !

0

Co = iy '(/)(;N | —

where ¢p # va/(y — 22y). For (17) to correspond to a blow-up regime, we have
to demand that the inequality #3 > 21, holds, that is, that both conditions (15) are
satisfied.
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We are in a position to check how exact the averaging is, using the self-similar
solution of § 1 forthe case B=o + . N = It

e (2o A1) 2y Voo )
(To—1) (MU'((I+2) cos T;) Xl < Lg/2. (18)

s

gl X) =
0, i.\'I > LS/2‘, 0«1« T().

where Ly = 27 (0 + l)'/z/(,r is the fundamental length,
Taking the precise structure of (18) into account, let us set

i 2T 2 <
(](éf) - cOs (7T§/ )~ *é‘! (l())
0, 1€y = 1,
to which corresponds the amnplitude
(1) 2T+ l)}W(T 1y~ (20)
(1) == | s - . 2
i oo+ 2) !
as well as the half-width
(1) = L_g/z. (20)
For the function (19) the coefticients vy, 13, 3 have the following form;
o+2 7’ o 44
I g T e S V3= s (21
2+ 1) (r((r 4- 2) a+2

(let us stress that here 3 > 2, so that the inequalities (15) hold). Subsiitution
of the tunctions (20), (20') into (16) leads to un identity. Thcrcforc the averaging
method gives us an absolutely exuct deseription of the selt~similar solution (18).

A clear understanding of the evolution of the thermal structure (the dependence
of the amplitude on the half-width tor differen: initial data) can be obtained from
congsidering the behaviour of phage trajectories of equation (16), which are depicted
schematically in Figure 45. The thick line denotes the trajectory

o)

2 12
(/) (bs =1 -,--———~——)h‘ ~ 3111 > .

which corresponds to the self-gimiluar solution of the S-regime (it is also the isocline
of infinity of equation (16)): the dashed line denotes the nullcline ¢ = o 12 < ¢y,

That figure shows, in particular, that for 8 = o + 1 all solutions become in
fact infinite in finite time, and as the amplitude (1) grows, ull the trajectories
converge to the seltsimilar one: (1) — by, 1 — T . Using this conclusion, we
immediately obtain from (11) for g = o + 1

W) =Y ey 10— T,
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0

12 14
Fig. 45. Phase plane of cquation (16) (8 = ¢ + 1, S-regime)

that is,
W) = (av) YTy~ T
which is the same as the dependence on time of the amplitude of the self-shmilar
structure (see § 1), If for N = | we take the value of »; from (21), then we obtain
precisely the expression (20) tor the self-similar solution,
In conclusion, let us remark that the results of numerical computations agree
well with the phase plane picture of Figure 45.

2 HS-regie. B < g + |

Let us first deterimine the general solution of equition (13) for 8 # o + 1. Let us
set P gt — z(¢h). Then from (13) we obtain a separable equation:

dz az — 1
— =7 |2~ —a— 1) . 22
¢1¢;5(/) [ NB -0 )b: — l] (22)
the general solution of which for 8 # o 4 1 + 2/N has the form
B—(or+1)
(W) NI~ (o +1+2/N)| ‘,/,/3*-(" PO gt = O, (23)

where

nlm  B=(r+ 14 2/N)

. B~ (r+1) {L’-j_./j“("+l+4/N) '
NIB = (o +1+2/N)

ERIE ﬁ—((r%-l+4/N)}’
o == | -~

(23"

i B—(or+1+2/N)
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0 ' )

Fig. 46. L:volution of trajectories of equation (13) in the HS-regime (8 < o + 1)

Thus, let 8 < o + 1. Using (23), it is not hard to draw the phase plane of
equation (13). For convenience, we have shown in Figure 46 the nullcline

W= tho(d) = a »I/lﬂww»u\I(/fl/lﬁ*ur-»«l)l (24)
and the isocline of infinity

U= o () = V1 eV =218 s D], (25)
The thick line is used to show the separatrix

Y= thg(p) = (JH1B 1)](/)02/]/34"«,«“]' (26)

which is an exact solution of the equation. In (23) to this trajectory there
corresponds the value Cy = 0. For 8 < o + | we have the inequalities
Woo(d) < () < thy(¢p). which define the nature of the evolition of trajectories
in Figure 46.

Thus, as can be seen from that figure, in the HS-regime all the trajectories
converge as iy — oo to the separatrix f = thg(¢p), that is,

l/l(f) ~ ‘ll/[/lw(/nl)l(/)-2/1/i—~(:r+nl([)' ! — T(‘)" (27)

Substituting this estimate into equations (11), (12), we deduce that at a fully
developed stage of evolution

W(r) ~ (To—1) 1B D ghiry ~ (T — l#-tr e VIE-DI (28)

that is, as 1 — T unbounded solutions develop a spatio-tetnporal structure which
is closed to the self-similar one.
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T~ % o~

Y P
Fig. 47. Evolution of trajectories for B € (o + Lo+ |+ 2/N)y (LS-regime) =

3 LS-regime, B> o+ |

As can be seen from (23), for 8 > o + | the phase planes are different in the
cases o+l < B<o+ 1 +2/N B=c+1+2/N,and 8> v+ 1 +2/N.

The case o+ 1 < B < o+ 1 + 2/N: unbowunded solutions. Figure 47 shows
the phase portrait for 8 € (o + 1, + | 4+ 2/N). Here the separatrix y = g(¢h)
(sec (26)) lies above the isoclines (24), (25). With time, all trajectories converge
to the separatrix, that is the asymptotic equality (27) holds, so that as 1 — T the
estitates (28) are satisfied. Thus for 8 < o+ 14 2/N all solutions of the problem
are unbounded and as 1 — 775 their evolution follows that of the self-similar
solution.

The case B = o + 1 + 2/N: wnbounded solutions. For 8 = o + 1 4+ 2/N
equation (22) assumes the form

5

dz or
([(/)(/) = 2([) (l)[;":":“T
Its generul solution is determined from the algebraic relation
o o#) s Uy a2 .
YI\T W exp «;)——«(/) Ry =Cy = 0. (29)
=y

For 8 == ¢ + | 4+ 2/N the phase plane of equation (13) has no separatrix; this
follows from (29). As « > b, () < o (). and the trajectories behave more
or less as in Figure 47, except that in this case there is no special trajectory .
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Thus, for 8 = o+ 1+ 2/N, as before, all the trajectories correspond to unbounded
solutions of the problem. Moreover, as the amplitude (1) grows, the half-width
$(1) decreases.

Let us find out what is the asymptotic behaviour of i, ¢pas 1 — T, From (29)
or directly from equation (13) it is eusy to deduce that as the solution grows without
bound, the relation between i and ¢ can be determined from the approximate
cquality

NP (30)
deh bb
that is,

W) = Bodp V" b — 0. (30°)

where By > 0 is & constant that depends on the initial conditions. The dependence
(307) s not a self-similar one, which corresponds to the asymptotic equality (27).

since here
14 2

e 2z [\ (31)
b B—(oc+ 1
(we remind the reader that @ = b by (14)).
The estimate (3()) gives us the following asymptotic expressions for the am-
plitude and the half-width of the thermal structure as 1 — T

Pty ~ Ty~ 1) VBV pay ~ (Ty — 1) (32)

where
I

Na ! a
= B 1) - | = |- 2y~ |
«@ [ b (8 ) } = [[J(N(r+ ) }

Let us compare (32) with the self-similar expressions (28). The amplitude (1)
is the self-similar one (there is a rigorous justification for that), while the half-
width ¢(r) behaves as 1 - T in a non-self-similar way, since in general a i
different from the exponent |8 — (o + 1)[/]2(8—1)| = 1/(No +2), which appears
in (28). Thus there urises the question: what invariant or approximate self-similar
solution describes the asymptotic (1 — T,,) stage of the process?

Therefore for 8 = o+ 1 +2/N we can in principle expeet unbounded solutions
which evolve not gccording to self-similar laws at the asymptotic stage. lLet us
note that in (30) and (32), apart [rom the non-self-similar exponent, we also have
significant dependence on the initial conditions (through the constant By in (30').
which differs from one trajectory to unother); we recall that for 8 < o+ 14+2/N all
the trajectoties converged to the self-similar separatrix (26) with a fixed constant
d determined from (23').

At this point it has to be stressed that the averaging theory considers solitions
with compact support, u(f,-) € LY(RY) for any 1 < Ty. It is well known (see § 1)
that for 8 > o+ 1 self-similar solutions ug do rot have compact support; however,
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Fig. 48. LS-regime. B = o + 1 + 2/N

il or+1 < B < o+ 14+2/N, the inclusion uy € L'(RY) still obtains, that is, ug have
finite energy. This. apparently, can guarantee self-similar asymptotics of compactly
supported solutions. For 8 = o + | + 2/N (and a Jortiori for 8 > o + 1 +2/N)
the energy of ug is infinite? and therefore ug does not necessarily describe the
agsymptotics of 4 solution with compuact support and finite energy.

The case B > o+ |+ 2/N: wibounded solwions, In this case there exists o
separatrix (26). and in the phase plance it is placed so that () < thy(h) < Y ().
This determines the behaviour of trajectories in Figure 48, The asymptotics of
unbounded solutions as 1 — T, here is the same as in the case 8 = o + | 4+ 2/N,
that is. it is non-self-similar (see (307), (32)),

The case B > o+ 14+2/N: glabal solusions, From Figure 48 it can be scen that
for 8 > o 4+ 1 + 2/N there are initial conditions to which thete correspond global
solutions (that do not blow up in finite time). The corresponding global trajectories
lie below the separatrix o = iv(¢p). As 1 — oo, the umplitude of the global
solutions goes to zero. while the half-width grows without bound (extinction), A
rigorous construction of the fumily of global solutions is presented in § 3.

Let us determine the dynamics of this extinction process, First of all let us
note that to the separatrix o = () there corresponds a thermal perturbation for
which

gy ~ 1 BNy ~ 1B EDURE DL (33)

“This follows from the nature of asywptotics of O(&) as & -+ oc (see § 1) 0¢(&) =
(‘:X_E-.’/U"(H‘! “I.
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In § 3 we shall construct a family of global self-similar solutions of equation (1)
with the spatio-temporal structure of (33), so that the separatrix o/ = ¢(¢h) is the
image of some self-similar solution.

What s the behaviour as 1 ~ oc of the remaining global trajectories? From
(23) it is not hard to deduce that for them

W) = Dyp ™. ¢ — oo (34)

where the constant Dy, which depends on initial conditions, has the form

N 142N
[)(‘ = IC()([» "I B4l i (35)

Substitution of (34) into the original system (11). (12) gives us the following
asymptotics of global solutions:

l/l(l) ~ N/(Nrr-q'.’)‘ (f)“) ~ II/(N1r+2)‘ I — nC, (36)

It is clear that the dependence in (34) corresponds to the energy conservation
law (d /dD) (N (1)) = 0 (see (8)), t.e., as 1 — oo the self-similar solutions are
close in a certain sense to the self-similar solutions of the nonlinear heat equation
without & source term,

=V WV, 1 > 0.xeRY (37)

(for a proof of this fact sec § 3). Another indication of this is given by the
asymptotics (36) (a sclf-similar solution of equation (37), which satisfies (36). is
given in § 3, Ch, 1),

Therefore for 8 > o + | 4+ 2/N, the separatrix, to which there correspond self-
stmilar solutions, is unstable in the cluss of both unbounded and of global solutions,
Therefore it has to be expected that at the asymptotic stage the combustion process
evolves according to different, non-self-similar rules, and, as shown by averaging,
the form of the limiting thermal structure depends on initial data.

These are the qualitative propetties of the evolution of thermal structures ini-
tiated by an elementary perturbation with finite energy, As shown by numerical
experiments, this method of “amplitude-half-width™ averaging affords us quite a
precise description of the behaviour of unbounded solutions on  large time intervat,
The guestion of the nature of the front motion, and thus the question of combustion
localization, remain unanswered. To that end, we present below another method
of averaging.

2 Non-stationary averaging ‘“amplitude-wave front position”

Let an clementary initial perturbation uy € L'(RY) be radially symmmetric and have
compact support, Then v = u(s. p), r = |x|, for all 1 € (0. Ty), We shall look for
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an approximate solution of the same form:

w(r, Xy = (NB&). & = |x|/gn), (38}

where (1) > 0 is the amplitude of the solution, and now g(1} > 0 is not the
half-width. but the position of the front of the solution (in the symmetric case the
front is the surface |x| = g(7)), The function (&) > (O is such that 8(¢) > 0 for
£e]0.1), 86 =0forall £ =1, 6(0)=1.60) =0. 7% € H' ((0. I)).

As the first equation for the functions . g. we choose the energy equation

) ,
i[—l- {;//(1)3"\(1)] = uu//’(l)gN(l). 1 >0, (39)
[

The sccond equation is obtained from the well-known expression for the motion
of the front of a thermal wave (see Remarks):

dg Ou(r.ry/or
8() =~ lim e ( _.._.__)/f . (40)
di r g il r)/or
Hence, using the original equation (1), we obtain N
dg(n) " p NN b
= F .
dr 1+ u,

r

and. finally. resolving the indeterminucy in the right-hand side, using the known
differentiability properties of the solution u(1. x), we arrive at the equality
51—‘5- = — lim u”“'u',. 4
dr ==}
In the derivation of this cquality we assumed that the singularity of the solution
close to the front has the algebraic form u(r, x) ~ (g(1) — |x|); ”” Therefore the
presence of the source term «f has no bearing on the final lorm of (41).
Substituting the approximate equality (38) into (41). we obtain the second
equation:
dg(1) Y
TR q(l) ‘
where vy = —(07Y (1) /or > 0,
The required system of equations for . g has been obtained, Solving (39) for
(1), we rewrite it in the form

W= vt - Nogh” g (43)
¢ =vahg " (44)

> (), (42)

il

and then pass to the single equation

_(_[i/-/_ - l// [ //l (r |)“- . l] L8> ()‘ (45)
dg 8



“
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which describes the evolution of the amplitude of the thermal structure as & function
its front position, Here p = vy /(Nvy) is a constant,

Equation (45) 1s much simpler than the one obtained using the “amplitude-
half-width™ averaging. Let us write down its general solution and discuss its main
properties. Let us note that (45) is not applicuble for the S-reginie, when 8 = o+ 1,
From the analysis of self-gimilar solutions (see § 1) it is known that the asymiptotics
close to the front it this case must have the form u ~ (g(1) — |x])¥ )27 that is, in
thig case we should put (87)'(1) = 0, vq = 0. As a result, we oblam from (42)
g = const. while for 8 = o 4 1 (43) becomes the equation

W) = v, 1> 0.

From that we derive the self-similur dependence of the amplitude of the localized
unbounded solution on time;

Wy~ (Ty =1y M7 1 T,. (40)

For the HS- (B8 < o+ 1) and 1.S- (B = o+ 1) regimes equation (45) makes sense,
In the case B # o+ 14 2/N its gcncrul solution hits the form

B 1A g e =By N e (47)

where | L+ 2/M)
“ o+ 142
ly= B ot 2/ / . (48)
n B~ (or+1)
Cp = 0 is a constant detertnined by the initial values gg. thy. lu the case 8 =

o+ 1 -+ 2/N we have, instead, the exptession
PN = |g4Co~ 2ulng)| . Co = const > 0. (49)

Schematic behaviour of trajectories of equation (45) in the cases 8 < o + I,
o+l < B <o+ 142N B >0+ 1+ 2/N is shown in Figures 49-51,
respectively. The dashed lines in all these figures denote the non-trivial nulleline:

Po(chy = p M1 r Dl Tl

For 8 < o+ 1.8 = - 14 2/N equation (45) has a special wgjectory, the
separatrix
o= hs(eh) = ll/m urql)l ~2{8- mnn (50)

which corresponds to Cy = O in (47). Forao +1 <« 8 < o + 1 4+ 2/N we have
from (48) Iy < 0, and therefore there is no separatrix,

Let us indicate the muain properties ol the solutions, For 8 < o 4 ) (see
Figure 49) all the trajectories evolve to the sepatatrix (50), which determines the
asymptotic self-similar regime

) ~ (T~ 1) 1P D ey~ (T — plE o0z iy e
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7

Fig. 49. Evolution of trajeciories of cquation (45) in the HS-reginte (8 < o + 1)

and bere g(1) — ~cus1 — T, that is, there is no heat loealization inif 8 < 41,
Foro+ 1 < B8 < o+ 1+ 2/N (see Figure 50) each trajectory has its own
vertical asymptote with coordinate

LB tei)
N B i R2/N)
8 = (() '

that is, g1y ~ g, as 1 — T,. This implics heat localization in the domain
[x] < g,. In this case the amplitude grows according to the self-similar tule

Bty ~ (Toy—0) "N s Ty (51)

The same conclusions are true also for B = o+ 1+2/Nand 8 > o+ 1 +2/N,
except that in the first case the expression for the wave penetration depth has the
form g, = exp{Co/ 2wy}, which follows from (49).

In the case 8 = o + | 4+ 2/N (sce Figure 51) there exists the separatrix (50)
in the phase plane. It separates unbounded trajectories from the family of global
solutions. It follows from (47) that the latter evolve according to

W) = Fog V. Fo=Coly' P 50, g > o0,

From (43). (44) we then obtain the following asymptotic bounds for the global
solutiohs:

NNy ) /(N )

() ~t Ry~ 1 — 0,
which are typical of self-stmilar solutions of equation (37) without a source tern.

which have finite energy: |[u(r. )|, gy, = const,
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0 g

0
Fig. 51, LS-regime. 8 > o+ 1 -+ 2/N

§ 3 Conditions for finite time blow-up. Globally existing
solutions for 8 > o+ 1+ 2/N

In this section we justify some of the qualitative derivations, obtained in § 2 and
deal with conditions of global solvability and insolvability of the Cauchy problem
for equations with power type nonlinearities,

Ay =1, — V- " Vuy —u? =0, 1> 0, xe RV, (hy

w(0, x) = up(x) 2 0. x € RY; up € C(RY), 1" € H'(RY), (2)

The main approach is to construct and analyze suitable sub- and supersolutions of
cquation (1).
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1 Construction of unbounded subsolutions

Let us consider the function®
u (1.x) = (T~ B9 (&), &= |x/E). 3)
0. (& = A = E/aH" 0 <t <T. &0, 4

where (1) = (T — !B+ DVI2B- 11 A 4 T are positive constants, The function
u. blows up as r — T~ in a self-similar fashion,

Let us find under what conditions this function will be an unbounded subsolution
of equation (1). From Theorem 3, Ch. [, it follows that for this it is sufficient
for u_ to satisfy everywhere in (0. 7) x R, , apart from on the degeneracy surface
(0. T) x {Ix] = af(n}. the inequality

l :
A(i.y = (n.), — LT Y (., ) — (u. ¥ <0,
(= (o, = = (¢ ) - s
which reduces after simplifications to

Net g at ot B (0'+l ] 5

076 ) — - =0 +6° =0 £ (0, 5
§N,(f ) 2B-T) V& 51 + fe0.a, 5
where () = (d/d£)(+). The left-hand side of the resulting inequality contains the
operator of the self-similar equation (1.5), which is not surprising, since . and
ug have the same spatio-temporal structure, Substituting here the function 6_(&)
of (4), we obtain after relatively simple computations the inequality

Dy p(A) = — nd + AP QBTN S (6)
which is equivalent to (5). Here

A= (1~ &/,

4AY - 1 l A7 2
= 17+B th [14—7( (N+ ]
o-a” (8- Ho I a? o

Inequality (6) must be satisfied for all A € (0, 1. Let us determine the restrictions
on A, d.
First of all, we must have the inequality

(l),,lg(()) > ()
from which we obtain the restriction m > (), that is
447 o+1-p

.1 - F 7
oa B -1 0

SHere, us usual, (f) 4 = max{0, [}
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Secondly, it is easy to see that for n > 0 inequality (6) holds for all A € (0, A*),
where A* = m/n € (0, 1), Hence it follows that (6) will be satisfied for all
Ae (0 1]if

0 - A 4 APTIAB DI S A e (A1),

which is equivalent to the condition
Aﬁ» | > (4~ '”)Aw»(/ﬂ o1
z . .

Therefore the second inequality. which, together with (7), guarantecs that (5) holds,

has the form
2 A“ (Brio-1ijo
1 +2(N+ “) s
o

a-

| 2N AT
s (w NA ‘
/ - B~-~l+(r o’ B“((T+l)+if\: (8)

B~1 T a’

The system of inequalities (7), (8) has a solution (a. A) forall ¢ > 0, 8 > 1.
Indeed, for 8 < o+ 1 condition (7) imposes a restriction on the ratio A"/az, Then,
by increasing A and « in such a way that the ratio A” /a* does not decrease, we can
always cause (8) to be satisfied. 1f 8 > o+ 1, everything is much easier, since then
(7) is not taken into account, Therefore we have established the following assertion.

Theorem 1. Let

. L B |x] e RY ¢
up(x) = ar. (0, 0y =1 0"'(7“1/1 TR x e R"Y, )
where # (&) = A(l — _é‘z/az),'o/" and T, a, A are positive eonstants, the nwo last
ones heing related by (7Y, (8). Then the solution of the Caucliy problem (1), (2)
is unbomnded and exists at most for time T,

An clementary analysis of the subsolution (3) for 8 < o + | leads to the
following result,

Corollary. Lei | < 8 < o + 1, ug(xy 0, Thew the solution of the problem is
thomded.

Proof. Since w0, there exists a ball {x € R¥||x - xo] < p}, p > 0. in which
p(x) > € > 0. Then, choosing in (3), (4). T so large that the inequalities
AT BN e B @y DVRAE-DE o hold, we have that uo(x) > 1 (0. x = xq).
Therefore by Theoremt | the solution is unbounded and blows up at Ty < T,
where

T, = max {(A/G)ﬂ 1 (a/p)2{/3~-ll;’ursl /n} ‘

A stronger result will be obtained below,
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2 Non-existence of global solutions for 1 < 8 < oo +1 4 2/N

Theorem 2. Let B € (1. o+ 1 +2/N), mo(x) £ 0. Then the solution of the Cauchy
problent (1) (2y iy unbounded.

Proof. It proceeds by comparing the solution (7, x) with a known sclf-similar
solution of the Cauchy problem for the equation without a gource,

= V-V, 1> 0. xe RY, (1
In the N-dimensional case this solution has the form (see § 3. Ch, Iy

NN ) s ||
N/ (N v 2) (ll)

ve(t, x) = (T 4+ 1) Sl m= T, 4 e

where

1/er
() = B(nd — )V B = | —T 12
_f(ﬂ) (o — 1), [2(N(r+2) (12)

Here T, g are arbitrary positive constants, Let us show that in the case 8 <
o+ 14 2/N for any uy s 0, after a finite time the solution (s, x) of problem (1),
(2) would have to satisfy condition (9) of Theorem 1, and thus is unbounded. The
stage at which the initial perturbation spreads, when the amplitude of the spatial
profile decreases, will be described using the solution (11) of equation (10), in
which production of energy due to combustion is not taken into account (for most
of the spreading stage it is negligible).

Without loss of generality, let uy(0) > 0 and up(x) = € > 0 in a ball {x €
RM||x| < 8}, Let us choose the number 7, = 7o(T'1). such that 1g(x) > vs(0. x)
in RY, For this it is sufficient that

2/ N/No 2y 1/(Ner ) 2)
B (r | JIN o _‘EE. )I’ o 55 (13)

(here Ty can be arbitrary).
Then by the compirison theorem (sec Ch. 1)

(. )y = o,y 1 >0, xe RY, (14

Let us show that for 1 < 8 < a + | 4 2/N there exists 71, such that for some 7'
the function v(1y, x) satisfies condition (9), Then by (14) this condition will also
hold for the solution «(7y. x). The inequality vg(ry, x) =« (0, x) in RY will hold
if
(T + 1)) N/lN(rs2)B77(3'/” >T 13- ”A. (15)
77“(1-| +1 )I/{N(roz) > a'l-i/i S D128 D (16)

(here A, a is an arbitrary solution of the inequalities (7). (8))
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Let us show that the system (15), (16) is always solvable with respect to 1y, T
B <o+ 14+2/N,
Suppose that equality is attained in (15), that is

Tl iy = (1),77(2)/(1//‘)(,\/(!42)/NT(N(rpZ)/(N(/}flii‘ (17)

Here T’ is fixed and T is sufficiently large. It remains to check, whether for
sufficiently large T inequality (16) is satisfied, 1t then has the form

m)(BmZ)/rr/A)1/;\/74/1/\/(;3 1 > aT”’" tor+ DA |)1‘

or, which amount§ to the same.

VN
T I CAARRTI 1 (§> N (18)

w \ A o
It is clear that in the case 8 € (1, o+ 142/N) it holds for large 7. which concludes
the proof. 0

Remark. In the course of the proof we have in fact showed that for 1 < 8 <
o+ 14+ 2/N the blow-up time is composed of two parts: Tg < 1, + T. where 1,
i8 the time of spreading out of the initial perturbation practically with almost no
energy production. T is the time of rapid growth of the resonant solution towards
finite time blow-up, which was determined in Theorem 1.

For 8= o 4+ 1 + 2/N the spreading out stage can take infinitely long time, so
that non-trivial global solutions are possible. Justification of this conclusion is the
subject matter of subsection 3,

Let us use inequalities (13), (18) to analyze the case of the “critical” value
B=oc+1+2/N.

Corollary. Let 8= o+ 14 2/N and let the initiad function be such that uy(x) = €
i {lx] < 8) e > 0,8 >0, where

edy = Aa®. (19)

where a, A satisfy the equality (8). Then the solution of problem (1), (2) is
tnihotnded.

Since the product €8 chiracterizes the amount of energy of the initial pertur-
bation, condition (19) means that for 8 = o + | 4+ 2/N unbounded solutions are
all solutions with sufficiently large energy. Let us recall that the qualitative results
of § 2 indicate that in this case all non-trivial solutions are unbounded. This can
be proved: see Remarks. This is also attested to by the analogy with the results of
§ 7 concerning semilinear (o = ()) equations,

To conclude this subsection, let us note that {u the case 8 > o+ 1+2/N analysis
of inequalities (15), (16) allows us to enlarge substantially the wnstable ser V' of
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Theorem | (if g € V', then u(r, x) is unbounded). The set V' contains not only
resonant initial perturbations, solutions through which start growing immediately
and blow up in finite time (these are displayed in Theorem 1), but also uy(x), to
which there correspond unbounded solutions with initially decreasing amplitude.

3 Conditions of global solvability of the Cauchy problem for
B>0o+1+4+2/N

This will be obtained by constructing bounded supersolutions u,. which, as in
subsection 2. are sought in the self-similar form

w3y = (T 1) VB DG (£, & = |x|/(T 4 -t =g (20)

where 0, (€) = A(l - £2/d%) '/" AT, a > () are constants.

The choice of the luncuon (70 is suggested by the form of the global self-
simnilar solution of equation (1), whicli is considered in subsection 4, Taking into
consideration thie fact that u, (1, x) has a continuous derivative Vi/I*! we conclude
that (20) will be a supersolution if A(uy) > 0 in R, x RM\{£ = «}, which gives
us the inequality

+ 1 1
EV ' B7(B((r 4£+E—HT0 +()ﬂ ::() §;ﬁu (21

(comipare with (5)). whicli is equivalent to the incquality

(EN I(rl(}g )r+

Fop(d) = .+ n A4 APTABY T <00 A e (0,1, (22)

where

A=(l-£/u%,

i — l l [~ ’)Alr ’)
:11.:4?,—6 (o & )‘:1,:m{l~w-(N+ >]
oo’ a(B-1) o - o

Since the function F, 5 ts convex (F, > 0). to satisty (22) it is sufficient to

have F,5(0) < 0 und I,,5(1) = 0. From that we obtain the required restrictions
on the numbers A, «: m, <O, i, + 1, + AF <0, or

4AT B-(r4])

oy S T (23)
ol o aB -1
AP < ﬂé? - __”l_A__ (24)
oo B-1

Let us shiow that the systemi of inequalitics (23), (24) lLas a solution only
in the case B > o+ 1+ 2/N (for B8 < o + 1 + 2/N by Theorem 2 there
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cannot be any solutions), From (24) it follows the necessity of the restriction
2NAY /(oa*) > 1/(B ~ 1), which, combined with (23), gives us

2 4 A" B-(st1)

< 25
NoB—1) = alat T o(B-1) (£3)

The quantity A”/«?. which satisfies (25). exists if 2/|No(B ~ 1)| < |8 — (o +
DI/l (B~ 1)], which is equivalent to the inequality {8 —~ (o + 1 + 2/N)|/lo(B ~
1] > 0. Hence ariges the restriction 8 = o+ 1 +2/N. Then, varying the numbers
A and ¢ so that the ratio A” /¢ remains constant and within the bounds of (25).
we can ensure that (24) atways holds by decreasing A, Thus we have proved

Theorem 3. Let 8 = o+ 1 + 2/N, and let the function wuy(x) satisfv for some
T > 0 the inequality

| x|

o(x) £ g (0,x) =T HHDY, (W

>. xeRY  (20)
where 0,(£) = A(l ~ Ez/ul)',/'r and the constants A, a > 0 satisfy inequalities
(23), (24). Then the Cauchy problem (1), (2) has « global solution and

|t
(T + pl# e

a(t. x) < (T'4+1 V4B Vg, ( > mR, xRY, (27

Remark 1. From this follows, in particular, the cstimate

¥

supu(r. x) < AT+~ 1 15,

Furthermore, using (27) we can estimnate the diameter (1) of the support of a
generalized solution: d(1) < 2a(T 4 A=t i HVIRG-DE Naarally, these estimates
coineide with the self-similar ones.

Combining the results of Theorems 1. 3, we arrive at the following statenient;
Sor B = o4 1+ 2/N for al layge initial funictions the probleny (1), (2) is globally
insolvable, while for sufficiently small wg there exists « global solution.

Remark 2. For 8 > o 4+ | + 2/N. we distinguished in Theorem 3 the stable
set W of the Cauchy problem (1), (2). such that the inclusion 14, € W entails
global solvability of the problem. The set W = {uy = 0] 3T > 01 ng(x) <
1, (0, x) in RV} contains only functions with compact support, and its “boundary™
consists of a one-parameter family (with parameter T > 0) of also compactly
supported functions. This does not mean that only compactly supported solutions
can be global. In subsection 4 we construet a non-compactly supported stable set
in the case 8 > o+ | + 2/N, the boundary of which consists of non-compactly
supported global self-similar solutions of equation (1).
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4 Global self-similar solutions for 8 > o + 1 4+ 2/N. A lemma concerning
stationary solutions

This subsection is wholly devoted to the study of one particular case of global
solutions of equation (1) of the form

ug = aslt, 3 Ty = (T 407 B rod), (28)

E=x/(THn". m=[B8~(o+ H|/I2B - D).

where T > 0 is an arbitrary constant.
After substitution ol (28) into (1). we obtain for f¢ = 0 the following elliptic
cquation;

: ] _
Ve (S3Vef ) +mVefs &b gy (s + [5=0.éeRY, (29)
fs(€) — 0.1€] - 0.

which differs from the equation which corresponds to self-similar blow-up regimes
only in the signs of the second and the third terms, This, however. significantly
alters the propertics of the solution [y as compared with g of § 1.

At this stage we confine ourselves 1o the study of radially symmetric solutions

Jy= &) 20, E=X|/(T+D" e Ry, (30)
which, as follows from (29). satisfy the equation

l
ENT

itnd the boundary conditions

LN g l .
&V NI A mfE E’if‘l”f s+ /=060 (31

F0y = 0. fg(o0) = 0 (fe(0) = 0), (32)

The generalized solution [ must have continuous heat flux, that is, if fg is u
NIEN

function with compact support. thea ( e ) (£0) = 0 at the point of degeneracy

£o = meas supp f.
Let us consider a family of Cauchy problems for the same equation;

! N ot g\ vy ! ” .
v ey ’ —— =0, § > 0. 3
i (877 ) Al e g =0 (33)

JO0)y =0, /0y = > 0, (34)
and choose w so that [ = [(£ u) satisties (32), Before stating the main theorem,
let us note two properties of the solution /¢ which follow directly from the form
of equation (31).
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First of all. f¢(&) is monotone, since (31) does not admit points of minimum
& = &, osuch that f5(€n) > 00 fo(éw) = 00 f5(&) = 0. Therefore for all u > 0
any monotone classical solution of the problem (33), (34), defined for small £ > 0,
can be extended either onto the whole axis § € Ry (then it is the required solution
S5y, or till it becomes zero. Local solvability of (33), (34) is demonstrated by
analyzing the equivalent integral equation using the Banuch contraction mapping
theorem,

Secondly, analysis of (31) for small [ reveals the possible forms of asymptotic
behaviour of the solution as [y — 0, First ts the asymptotics of a non-compactly
supported solution;

[y =Cg MBI L ey e(f) — 0. § > . (35)

where C = 0 is « constant. Sccond is the asymptotics of a solution with compact

support

B - (or+1) bor

e - I+ w(é.
5B oo — &) u(£))

¢ — £ = meas supp fg < 00,

S5t = 36,

where w(£) — 0as ¢ — £ . The asymptotics (35). (36) make sense for 8 > o+1.
Let us note that a solution with compact support (36) formally corresponds to the
value C = 0 in (35), that is, (35) becomes (30) for C = (.

Properties of various solutions of the problem (31}, (32) depend on the relation
among the parameters 8. o and the dimension of the space N.

Theorem 4, [et 8> 1. o > 0. Then:

(2) if B < o+ 1 4+ 2/N, then the problem (31), (32) has no positive solutions
{i.e., for any p > O the fimetion [(&:w) becomes zevo at some point € = £, and
S p) #0)

by jorall B> o+ 14+2/N, if N =12 orforo+1+2/N < f <
(o +DN+2)/(N=2),if N =3, the problem (31). (32) has at least one sohaion
L5 with compact support and an infinite manber of strictly positive solutions;

() if B=(+DN+/N~—2), N =3, thew the problem (31), (32) has
no solutions with compact support. For any p > O the solution of the Cauchy
problem (33), (34) iy strictly positive and satisfies conditton (32) at infinity.

By analogy with results obtained for the case o = 0 (see § 7). we can expect
that for 8 = ¢ -- | 4 2/N all non-trivial solutions of the problem (1), (2) are
unbounded, and therefore a function f¢ > 0 does not exist in this case. Tbis is
true for o > 0, see Remarks,

Proof.  Assertion (a) follows immediately from Theorem 2 concerning non-
existence of non-trivial global solutions of the problem (1). (2) for | < 8 <«
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o+ 1 4+ 2/N. Indeed, there were the function fg > 0 to exist, (28) would have
been the global solution uy s 0. which, as we showed above, does not exist.

Let us note a peculiarity of this argument. Here, in order to study an ordinary
differential equation, we use results from an analysis of much more complex partial
differential equations. Advantages of this approach in this case are not significant,
since (a) admits another, simple proof. However. in the sequel (in the proof of
(c)) this approach leads to a noticeable simplification.

The same result can be obtained by u different method. By (35) for 8 <
a4+ 1+2/N equation (31) can be integrated over (0. oo) with the weight function
V71 As a result. after integration by parts we obtain the equality

~ , 2 ~ N
/ fRopm¥dy = - o ld - /3> / fsemnm™ dn. (37)
Jo J0

=
2B - 1)
whieh for 8 < o+ 1 +2/N cannot be satisfied. as in the right hand-side we have a
negative quantity (to derive (37) we need an estimate of [((£) as € — oo, which
is easily obtained from the equation).

(by. (e). Proofs of these assertions are buased on the properties of a family of
stationary solutions of the original equation (1), which are established below. #

I A lenima concerning stationary solutions
Let us consider the stationary equation
V- (U'VU) +UP =0 (38)

for arbitrary values of parameters o > (. 8 > 0. For our purposes it suffices
to analyze the family {U > 0} of radially symmetric solutions, which satisfy the
equation

W YUY +UP =0, 5= x| > 0. (38')

Let us set U7 = V and make the change of variable r — r(or 4+ 1)'/?. Let us
denote by V, the solution of the following problem:

"lefT(r‘”"v’A)’+ T=007r = x>0, (39)

Va0) = A, V,(0) =0, (40)

where A > 015 a constant (which parametrizes the family {V D). a = B/(o + 1)
> 0.

Lemma 1. Ler v > 0. Then:

D Forany o >0, f N =12, or0 = e« < (N+2}/(N—=2), y N =3, the
problem (39), (40) has no solutions Vy = O in Ry (that is, Jor any A > O the
fimction V , becomes zero at some finite point, where V', # 0);
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) if @« = (N +2)/(N=2) for N > 3, then for any A > 0 the solution of the
problem is defined and stricily /m.\:m'c’ n R‘%, Valtry — 0 as r — oc.

Proof. Local solvability of the problem is proved by reducing (39). (40) to an
equivalent integral equation.
1) Let us first consider the case N < 2. From (39) we have

'.N«»IV/A('.) - M/ n’V'*'V‘j(W)‘/"' (41y
Jo

and therefore (if we assume that V, > 0 everywhere), for each r = |

1
Vi) < et N ey = / T/N*]V‘j(n)dn => (.
40

Hence )
vA(,~)1\/(1)~(l/ ' Ndg. r> 1.
i

that s,

Valr) < Val) —¢y(r — 1) (N = 1),
Valr) < Vall) ~eylnry (N=2):r>1.

This meang that for N < 2 V, becomes zero at a point: furthermore, by (41) at
that point V', (»') % O (that is, the heat flux cannot be continuous).
Now let N > 3. Then by nwonotonicity of V, we have from (41)

PN < =V / " hdn = “V‘A'(r)lﬁ- 42)
J0

Integrating this inequality we derive the following estimate; for v < |

N Iyl ay
. r-
V,\(I') < {Al‘“ — m(l o~ a)} .

and therefore V(r) is defined on an interval of length not exceeding ry = [2N/(1—
a)ll/ZA(l ~~(r)/3’

Let us note that for o < | the function V, depends in a monotone way on the
boundary value A = V,(0) (Figure 52),

For a = | the function V, is positive on the interval (0, z§"). where ' > 0
is the first root of the Bessel function Jy..2,o.

If, on the other hand, ¢ > 1, then from (42) follows the “non-compuet™ estimate

3 /a1
Valr) < [)\‘"” -+ é—}v(rr - l):} o> 0, (43)
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”

Fig. 52. Soluwtions of the problem (39), (40) for differemt A = () in the case « < 1.

from which we cannot draw a conclusion concerning extension of V,(r) > 0 into
the domain of large ». From here it follows that

IN /e~ 1) ,
Valr) < ( > poAeh s, (43)

a— 1

Let us assume that 1) does not hold, and that V, > 0 in R, for some a <
(N +2)/(N —2). N > 3. Then, using the identities we derive below, we shall
arrive at a contradiction. To derive the first of these, we multiply (39) by »V~1y,
and integrate the resulting equality over the interval (0. 7). As a result we have

——:"V"V:\(r)\/,\(r)%-/ 7" 'Vf(n)zln:/ Vvt ydn. r > 0.
Jo Jo

Since V', (r) < 0 and (by assumption) V, > (. we have from here

~ ~
/ 7N W mdy < / ¥ e ap)dy < oo, (44)
J0 Jo
where convergence of the integral in the right-hand side is ensured by the estimate
(43).
Now let us multiply (39) by #¥V/ () and integrate over (0. r). This results in
a different equality:

P

S} '.N

Sviton + P

verlip) =

(45)

i

_AN,,_, ’ N-1yail __N"‘_?_: i N-lyr? N

(r+l’/(, "V () dy R A n Vit dn, r > 0.

It is not hard to see that p(r) = V7 (1) 24"V Gy J(a+ 1) = 0 as r - oo.
Indeed. from (45), since the integrals converge, it follows that p(r) — py as

r ~ oo, while from convergence of the integral [ [ p(n)/7]dn. which follows
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from (44), we deduce that pg = 0. Passing in (45) to the limit as » — oo, we

have
N -2

2

/ Y VT dy = oV hyettay,

Jo a+ 1o

which, combined with (44), gives us the inequality (N — 2)/2 > N/(a + 1), i.c.
a > (N +2)/(N—2),. which leads to a contradiction.

2) Assume the opposite, that is, that there exists « = (N + 2)/(N — 2), (the
case of the equality will be considered separately). such that for some A > 0
the solution V, vanishes @t some point ry > 0. Then V, % 0 is a solution of
the boundary value problem (39) on the interval (0. r,). satisfying the boundary
conditions

Vi) = 0.V,(rp) = 0. (46)

However, as we shall show, the problem (39). (46) has no solwtions. For that,

as in the proof of 1), we first take the scalar product of (39) with Neyr¥ 'V, (1)

and then with Nkyr™ V' (r), where ky is the volume of the unit sphere in RY, Ag

a result, after integrating by parts and taking into account the conditions (46), we
obtain

||VA||1’ = |Vallf.), VLT = LP({x] < mh). (47)

NK 2 N"‘?_ 2 N v
VARG + =5 IVill = — VAl = 0. (48)

Substituting into (48) the expression for ||V’A||f_,‘ from (47), we obtain the equality

KN N
N—rV"
2 ( A = 2+ 1)

N -2 [(N+2)

(HI
o ]nvu (49)

which. of course, cannot be satisfied for @ > (N +2)/(N - 2) .
Finally, for the critical value e = (N +2)/(N — 2), the problem (39), (40) has
for all A > 0 the positive solution

Valr) = =0 Va0 = AL (50)

NN — 2)A0 (N=2)/2
N(N = 2) + AN -2,

Insolvability of the boundary value problem in this case also follows from (49),
since here V' (ry) # 0 by (41). 0

Remark. Returning to equation (38) we obtain that for all 8 > 0. N = 1.2 or
for 0 < B < (o 4+ )N +2)/(N—2), N > 3, there are no stationary solutions
in R, . On the other hand. for 8 > (o + )(N + 2)/(N — 2), all its solutions wre
strictly positive.
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I ———

0 P
Fig. 54. Functions V(r) for a = (N 4+ 2)/(N ~ 2),

In Figures 53, 54 we sketch the behaviour of the functions V,(r) for different
A > 0 in the compactly supported (Figure 53) and non-compactly supported (Fig-
ure 54) cases. For o > | (unlike @ < 1) there is no monotone dependence of
Vatryon Aifa < 1 +4/(N~4-2N~ 1), N > 11227, 378].

In conclusion, let us note that a statement similar to the one proved above, is
valid in the case of equation (39) with a fairly general nonlinear term ¢(V) in the
place of V* (see § 1. Ch. VII).

2 Proof of assertion (h) of Theorent 4

Let us first establish u simple claim, which is relevant to assertions (b), (c).

Lemma 2. Ler 8> o+ 1 +2/N. Then for all

N 2 p-
oenz{mple-(reg)]) e
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the solution of problem (33

). (34) iy strictly yositive in R (und, conseq wently, has
yi 4 / A
the (l.\'_\‘m/)l()lic behaviour (35)).

5))

Proof. Let us rewrite the equality obtained by integrating equation (33) multiplied
by &Y ! aver the interval (0. £). as follows:

EVLT 4 m N =
. (52)
= f(f UARMAE/) {F(Zf/fn [ﬁ - ((f + 1+ -,f,*)] - ,/'/3'](77)} dm.

By (51) and monotonicity of f the right-hand side is strictly positive for £ > 0. Let
us assume that f(n) vanishes at ¢ = &, € R, Then [Yf'(£) < 0, f(£,) = 0,
o that the left-hand side of (52) 1% non-positive for ¢ = ¢,. which leads to a
contradiction, 0

Thug we have established the second part of assertion (b). Its proof is completed
by appealing to the following lemma,

Lemmal3. Lot B> 04 1+2/NiYN=12 orog+1+2/N <f < (o5+
DN + 2)/(N = 2) f N = 3. Then theye exists > 0. such that the solution of
the problem (33), (34) hecomes zero,

Proof of the lemma follows the lines of the proof of Theorem 4 in § 1 (see
also the analysis of the case 8 < o + | in subsection 3, § 1). In the final count,
the assumiption contrary to Lemma 3, that is, that for all & > 0 the solution of
problem (33), (34) is strictly positive in Ry, leads, after passing to the limit, to a
conclusion that for A = 1 there exists a strictly positive solution of the stationary
problem (39), (40}, which is impossible by Lemma 1.

Next, denoting by M the set of all x" > 0. such that f(£&;p) > 0 in R, for
all 0 < u < u' we have that MM # ¢ (see Lemma 2) and that M is bounded
from above (see Lemma 3). Therefore there exists g, = sup < oo, and, using
standard methods, we can show that the function fy = [(£: u,), which corresponds
to p = u, is & solution of the problem (31), (32) and has the asymptotics (36),

In Figure 55 we show curves /(€7 ) for different values of g > 0. The thick
line shows the compactly supported solution.

1 Proof of assertion (¢) of Theoyvem +

Let us first note that strict positivity of all radially symmetric solutions of the sta-
tionary equation (38) for 8 > (o Y(N+2)/(N-2). N = 3 (Lemmina 4), indicates,
in principle, that assertion (¢) is true. A proof which proceeds by analyzing the
ordinary differential equation (31) encounters various difficulties. Therefore our
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1973

AL
fi(€)

o §

Fig. 55. Solutions of the problem (33). (34) for differemt p = ((0). the case o+ 1+2/N <
B < (r+ HN + 2)/(N ~2),

proof will be based on a curious property of solutions of the corresponding partial
differential equation (1),

Thus, let us assume the opposite: that in the conditions of (¢) there exists
wo> O, such that /(£ u) vanishes at some point, Observe that by Lemma 2

o (T

Then, as in the proof of (b), we conclude that there exists a non-trivial so-
lution [5(£€) = O of the problem (31). (32}, with compact support and having
the asymptotic behaviour (36). As we show below, this conclusion leads to a
contradiction,

We established that for 8 = (o + 1Y {(N -+ 2)/(N — 2),. the Cauchy problem for
cquation (1) has the self-similar solution

— ot ey o (T (1B Ly Lx|
=gt xy= (1 +1 O ((7‘+1)Ili"“”UI/IZ(/i—UI . (53)

which has finite energy

il o+ 1 Byl
AR e 1 AT

f
E(1y = — P
o B4+o+1

2((r+ 1y

(54)

Indeed, [ has compact suppoit, and [ /% € C(R4); it is not hard to check
that Y'Yy € LRy, u(ry € IV RNy, so that [E(] < oo for all 1 > 0O,
Energy functionals of the form (54) are an important attribute of solutions of the
problem, and we shall frequently use them in the following (see § 2, Ch. VIL).
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It is casy to see that E(r) is non-increasing. Indeed, using equation (1) we
obtain

E'()

il

l ) l '
[ — / |V dx — Tt e (1.\'] =
2o 4+ 1) Jry B+o+1 /n :

—/ ( An’”'+uﬁ>(”“")d\—~/ w Yy, dy = (59)
vt \No+ 1 JRr?

4o+ 1) o/
. (TR

i

(or 4 2)°

Miege, <O

For convenience, let us introduce the functional
- N TR e
G(r) = '+’ 7y = / 1"t
. Jee
Then

|
G'(1) = (o +2) / W dx = (o + 2) / Tias (~—Au‘”' + u”) dy =
Ju A

o+ 1
B+o+1 [ I | o+ Bertl
= — 2 Vil o Ny T AT wer -
(o +2) P Brotl Il ||, AR Brotl Neellpaew-1iRs,
(56)
Since B8 > r + 1, we have hence the estimate
2 1

Gz ~CXDBrot e, (57)

o+ 1

All the above transformations are justified for the function (53).
Let us see now what energy coriesponds to a global solution (53). It is easily
computed that for it

£ -(r+l)‘ul S8 ey 43| %

I ol gy 2 o+ 1 . B il (58)
X {m“vé/ ENy: = ml|./.\'(§)|ll_u....: } .
Let us show that for 8 > (o + 1)/ (N +2)/(N —2). N > 3, a global solution cannot
have such energy. For the critical case 8 = (o4 1)(N +2)/(N —2) this is obvious,
From (58) it follows that E(1) = const, that is, £'(1) = 0, which contradicts (55),
as o, % 0,

Assume now that 8 > (o + 1) (N +2)/(N = 2),.. Then from (58) we have that
for the energy [ to be strictly decreasing (see (55)). we must have E(0) < 0. Then
E(1) < O forall r > 0 Gf £(0) > O, then by (58) E'(ry > 0. which contradicts
(55)).
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It turns out that the resulting condition
E(y<0,1>0, (59)
is incompatible with global existence of a solution.

Lemma 4. Ler u(r.x) 32 0 he a solution of the Cauchy problem (1), (2) having
compact support, which satisfies condition (59). Then w(1, x) exists Jor a finite
time.

Proof. Under the above assumptions we can take G(1) > 0, [0 1 (1)]l,: # 0. and
Ve (@1)]2 5 0 forall 1 > 0. Then by (55), (56) we have G'(1) = 0, E'(1) < 0,
and. furthermore, the inequality (57) is strict:

(c+2D(B+o+1) .

G - Ly, 0. 60
(1) > pep (.1 > (60)

Using the Cauchy-Schwarz inequality, we derive from (55), (56), (60) the
following estimate: ’

- o4+ 1V 202 e 2
~GE () = o e, I 2
Yo+ iwn tsen 2 He+ 1D GOG) Bro+1 . .
. ol pory2y 2 DT - G (HEW).
2 I R, = TR T s BTG )
that is,
]
o~ Brotler 0 o0
o+ 2

or, which is the same,
(Glﬂhml)/l:r{.‘ll/[:‘)'(,) > 0v 1= O,

Hence, taking tnto account the fact that £(1) < 0, we obtain for all 1 = * > 0 the
estimate
G(/i~nril),lzr«il)(” < (\E(l), (61)

where ¢, = GBHo O by /121,y < O, From (60), (61) it follows the inequality

o+ 1 led Gy 1~ 1

G(ﬂur;l),’(ui]l < |ellE < [
(0 < leflE@] = c+2B+a+1

From the inequality

CHLEATE L Gurionesagy g

Gy >
70z o+ 1 [y
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it follows that the function G(r) = [l'+/2(1)])7, cannot be bounded for all 7 > 0.
and that there exists

o+ 1

Ew) "G,y < .

T() =1,

such that G(1) — 20 as 1 — T’y f.e., the solution #(z. x) is unbounded, a

Therefore for 8 = (o + YN + 2)/(N — 2),. the compactly supported solution
s in (53) cannot be a global one, so that in this case all solutions (33), (34) are
strictly positive, which concludes the proof of assertion (¢) of Theorem 4. a

This analysis establishes a certain similarity of solutions of equation (31) and
of the stationary equation (38'). which is quite obvious for sufficiently large values
of = [(0). There are also significant differences between them: for small g > 0
lower order (linear) terms in equation (31) are of mmportance. A consequence of
this is existence for a vange of 8 of the solution (&) with compact support. In
the case of the stationary cquation (38') (see subsection 4.1) a solution with the
required asymiptotic behavionr exists only for the one value 8 = (o + (N +
2)/(N =2),.

5 A non-compactly supported stable set

Using the resnlts of subsection 4, it is not hard to determine the stable set W of the
problem (1), (2) for B = o+ 1 +2/N, which consists of non-compactly supported
functions. The boundary of W consists of non-compactly supported global self-
similar solutions (28). Here we shall assume that the solution «(r. x) obeys the
Maximum Principle and depends monotonically on the initial function (see § 3,
Ch. D).

Let us denote by % the set of non-compactly supported solutions [s(£) of the
problem (31), (32): to :F belong, for example all /(& p) of Lemma 2 (% # ¢ for
B>+ 14+ 2/N). The set W is determined in the following statement.

Theorem 5. Let 8 = o+ 1+ 2/N. Then there exists a wm-compacily supporied
stuble set W of the prablent (1), (2):

W fug(x) =03 g e . T >0 =const:

, (62)
”0('\.) < T (WY "f\'(|-\'|/7‘w Gr e IV 1248 l)I)}.

Prooj. By the Maximum Principle the restriiction (62) on the initial function
provides us with the bound for the solution:

n(. ) < (T 40 YD N/ r 40", 0> 0, v e RY,
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Therefore the solution n(1. x) is globally bounded:

sup u(t, x) < LT+ YD 00— 0.

veRY

6 Asymptotic behaviour of global solutions for 8 > o + 1 4+ 2/N

Let us find out the relation of the self-similar solutions constructed in subsection
4 to the asymiptotic behaviour of arbitrary global solutions of the Cauchy problem.
Is it true that the particular solutions (28) describe for large ¢ the amplitude and
spatial profile of decaying thermal structures. which exist for 8 > o + 1 4+ 2/N?

Below we present an analysis of asymptotic stability of symmetric in x self-
similar solutions (28).

First we shall show that the question posed above can he answered in the
affirmative if [5(|£]) has the power law asymptotics (35). In particular. if we
denote by f, (1. &) the similarity representation of the solution of the Cauchy
problem (1), (2).

Lo & = (T + 0" a7+ ™). 1> 0. & e RY,
the following statement is true:

Theovem 6. Let B> o+ 1 4+ 2/N, and let the self-similar function [ in (30) be
snclt that

5= > SO <
— 0= m ((f+ | +- *}V - /3) +/3(/g( ))) < (), (63)

Then the self-similar solution (28) is asvmpiotically stable in 1,'(R™) in the fol-
lowing sense: if Jor some T = 0

olx) < (0. x; Ty, x e RY. (64)
(0. s Ty ~ o (y e 1LY(RY), (64')

then
S = s sy = O %) = 0. 1= o, (65)

Remark. The incquality (68) provides the following restriction on the size of
1500y = sup [s(€]):

N 2 g O
I = {m [/3 - ((r 41+ ﬁ)” ,
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From Lemma 2 (see subsection 4.2) it follows that then [¢(|£]) > 0 in R, and
therefore the theorem deals with asymptotic stability of a non-compactly supported
self-similar solution ng. Let us note that by (35) ug(r. < 7) & L' (RN} for any 1 > 0.

Proof. Formally, the argument is the same as in § 13, Ch, 1l Let 2 = ug ~ w1 €
LY(RY) for cach 1 > 0. By (64) « < us. te. 2 = 0 in R, x RV, From the
parabolic equation for the function z it follows that

/
?‘17”:'(”"""“" < (=(1). atur. ug)). 1 > 0.
where
i
ati, ug) = B / (its + (1 — PV dy < B0 (T + 1)L,
J0
Therefore
Nzl ey = O (1/“"‘“”" ') L1 0. (66)
However
Iz gy = (T 4+ OFFBE DT e ra e, (67)

and the estimate (65) follows from (66), (67); by (63) it implies the stabilization
[+ = [sast— oo in the norm of L'(RY), O

Theorem 6 demonstrates asymptotic stability of non-compactly supported self-
similar solutions in the class of initial functions (see (64'))

lg(x) ~ Clx} 2B Dy s so, (68)

Thus if uy(x) satisfes (68) (then 1y & L'(RY)), and to a given initial function
there corresponds a global solution of the Cauchy problem, then the amplitude and
the half-width are estimated asymptotically exactly as 1 — 0o by

sup a(r, x) > 0 VBT ()] ~ et bz by (69)
e RV

What will happen if (68) is not satisfied, for example, in the case of an initial
perturbation with compact support my € L'(R¥)? 1t follows from Theorem 4 that
foro+142/N < B < (o+ 1) N+2)/(N—2), there exists a compactly supported
self-similar solution iy of the form (28), which, it would seem. should describe
the asymptotic behaviour of such solutions. However, this is not the case. Unlike
the non-compactly supported solutions in Theorem 6, this self-similar solution is



§ 3 Conditions for finite time blow-up 235

unstable as 1 — o0. In this case the asymptotic stage of combustion with extinction
is described by self-similar solutions of the equation without source:

v =YV, 1 > 0. xeRY, (70)

i.e.. for large times combustion is negligible compared with diffusion.

A similar situation was already encountered in § 13, Ch. 1l Therefore we
shall not attempt an exhaustive analysis, and will study only the most interesting
(and hardest where proofs are concerned) case of a compactly supported nitial
function uy € L'(R™). It will be shown that in this case the global solution of
the Cauchy problem evolves as 1 — oo according to the rules determined by the
spatio-temporal structure of the self-similar solution of equation (70) (see § 3. Ch.
e

velt.x; Toa) = (T + 1) ’\/(N'r”)ks(‘fli ay,
(7h
= /(T 4 )N,

where T > 0 is an arbitrary constant, gg(n: a) > 0 satisfies in RV the equatiop

, 1
’L(“\’S) = vn . (.&’,’qvn&’x) + “‘”—'MVYIJ\'S /i + = () (72)

N+ 2

and has the form

” o 1/er
es(my a) = Agla® — InH". A":[Wm} ‘ 73

Here @ > 0 is a constant,
To prove the above-mentioned fact, let us introduce, corresponding to (71), the
similarity representation of the solution u(r. &) of the problem (1), (2):
el = (I + [)N/lNcr‘il)“([’ T](T + [)l/lNlr%?.)). (74)

and write down the equation it satisfies with the new time 7 = In(T + 1):

()g

=B (g) =V, (g"Vye) +
d’r
| Ne (75)
UG v A I e VT OB = N
+N(r+2 iy 77+Nr+,)+z grr>7my=InT, neR”,
QT ) = 7-N/1N4r+2)“0(n'1~l/lN:M«l)) = go(n). 7 € RV, (76)

In (75) we denoted by v the constant » = N|B8 — (o + | +2/N)|/ (N + 2). For
B > o+ 1+ 2/N itis positive. which is important,
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Let us prove first that in the case of a function uy(.x) with compact support the
behaviour of global solutions of the problem (1), (2) as 1 — oo “obeys™ (71).
First of all, it is clear that the function (73) is a subsolution of equation (75). since

0gs -
—— =0 < Bo(gg)=¢ "gf.
o7

Thus if #5(0) > 0, there exist constants 7" > 0, ¢.. > 0. such that
g(x) = T NNt 6 (VN Dy i RV, 7
Therefore g(r. ) = ge(n:a.) in RY for all admissible 7 > 7.

It remains to construct a similar supersolution of equation (75). Naturally, the
functions gg cannot be used to that end. However, they can be easily modified to
give a supersolution.

LemmaS. Let B> o+ 1 4+ 2/N and

| - fI/\ff l(u:)'ﬂ hiop-v o, (78)
v

Then the [unction

urli/cr

g (. =1 — be gs(n/11 = he T . (79)
where b = u-/\{f” “aHy B0 s s g supersolution of equation (75).

Proof. We shall seek a supersolution in the form g, = Y(m)gs(n/p(7):¢). Then
we have dg, /iT = B,(g,) in R, x R¥\{|n]| = ad(m)}. if

! o} 2 o ’
il :(Hf'—)mml-v »»»»»» [1 v ~+~(N(r+2)% +

1%

i o d | (No+2) s
/ b (80))
N U/ 1
VIR B [N T B iA/} 1[;—1)/",
" No+2 ( e ) Fe T Ay

where o = (f — £%), € (0. ¢?].
Let ¢ > 0, 4" = ¢p* (this holds in (79). Then validity of (80) follows from

the following inequality:
s . | . .
e L 2 l(T)A{f (a)P Mz,

Setting here (1) = | — be *7 (by (78) oy > 0 in Ry). we see that g, is a
supersolution if b = o A2 ' (a®) B Vi,
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Thus, if #y(x) is a function with compact support and there exist constants
T > 0, ¢4 > 0, such that
golm) = (1= T Y"gs(n/(1 = bT™ ") P1a,), m € RY, (81)
where b = (rA{f' Yl )y A=D1y then we have in (7. 20) x RY the estimate
glr.m) < g, (r.m) (82)

(and, actually, problem (75), (76) will have a global solution). a

Combining the above results. we arrive at the following conclusion.

Theorem 7. Let B> a4 1+2/N, and let the function wo(x) satisfy the conditions
(77), (81). Then, if g(o0. M) exists.

gs(mia.) < gloo. ) < gs(nias). n € RY, (83)

This result shows that for 8 = o + 1 + 2/N the evolution of global solutions
of the Cauchy problem (1), (2) is described by the self-similar solutions (71) of
equation (70). The estimates (83) mean, in particular, that

=N/ (N 2y | 1/(Nr D)

sup u(t, x) ~/ 1 — 0o.

RN

X (D] ~1

Recall that the same conclusions were obtained earlier using the qualitative non-
stationary averaging theory (see § 2).

As far as asymptotic stability of the self-similar solutions (71) is concerned,
we shall confine ourselves here to proving one simple asseition.

Theorem 8. Ley N =1, 8> o+ 1 +2/N = o+ 3 and let uy(x) have compact
support. Then mder the conditions of Theorewn 7 we can find a € la.. a,). such
that

g ) — gg(nia), 1 —» 00,

ahnost everywhere in R,

Proof. First of all, by (83) the Cauchy problem (75), (76) is equivalent to a
boundary value problem in some bounded domain 2 D ja., a, |, g =0 on R, x
€}, In addition, we can derive the estimates

("7, e LI((ri 00) x ), g7 € L™((r1,00) Hy(). Ty =T+ 1, (84)

by taking scalar products in L*((7,. 00) x 1) of both sides of equation (75) with

d I ol ! &
i (”’ + l"‘ K o+ 2 ‘/(, 8(. {){tl{) :
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These estimates show that the e-limit set. w(gy) = {g"(p) | 37, - 0
g r ) = 1t i L)), consists of “stationary” solutions of equa-
tion (75) for 7 = oo, that is. By (g*) = 0. Indeed, using the estimate (83) and
(84) in passing to the limit in equation (75). we have that, given a monotone
sequence T, —» 00, g(Ty +$.°) = h(s, ) in L} ((1y. 00) x (1), where li(s. ) is
a weak solution of the limit equation hy = B (h) for s > 0, h(Q) € w(gy). It
follows from (84) that uniformly in s € [0, 1] (@ = | + ¢/2)

-

Tu b ("
e (7o + )~ (T oy < / 17*3’"(7’) dr <
I, ar LA
7, b :’ M
¢ i
5/ —g"(7) dr - 0
™ T LA

as 7, —~ oo, that is, h does not depend on s and is a weak stationary solution.
B., (1) = 0. By (83) g* wie functions with compact support, and therefore w(g,) €
{gs(m: ), a € la . ua,|}. Finally, independence of the limit function g”(n) of the
choice of the sequence 7, ~» oo follows from “monotonicity™ of the solution of
the problem (75). (76):

d - pr
:,’;ll.ﬂ(’f)thm) =¢ ||.k’(7')||f,¢(m >0, 7>0

(=18l gy is & Linpunov functiom), and also strict monotonicity in a > 0 of
the expression llgs(-s @)l o

Remark. It is not hard to show by the Berastein technique that the derivative
(g"*"), is uniformly bounded in (744 1. 00) x R, so that stabilization g7+ (1. ) —

g9 @) as T — oo is uniform in R.

§ 4 Proof of localization of unbounded solutions for 8 > o 4+ 1;
absence of localization in the case l < B < o +1

Results of preceding sections give us quite a good overall picture of the main
properties of unbounded solutions of the Cauchy problem we are considering.
The aiin of the present section is to prove localization of unbounded compactly
supported solutions of the S- (8 = o + 1) and LS- (8 > o + 1) regimes. as
well as absence of localization in the HS-regune (1 < 8 < o + 1). At the same
time we shall obtain ¢ aumber of important estimates of the size of the support
of unbounded solutions. The method of proof presented here will be used in § 5.
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where. applying this method. we shall solve the question of describing asymptotic
spatio-temporal structure of unbounded solutions for times close to the blow-up
time.

We shall consider the Cauchy problem in the one-dimensional case,

m=wu)+1’. 1>0xeR >0 > 1. (1)

Q. x) = uy(x) > 0. v e R v e C'(R). (2)

where the initial perturbation iy (x) # 0 is a compactly supported function with a
connected support:

w(0) = suppry = {x € Rug(xy > 0 = (h.(0). h (Q)), (3)

o0 < I () < h, (0) < oc

Then. for all 7 > 0 for which the solution exists. the support of the Eenemlmed
solution u(r. vy will also be bounded and connected.

w(r) = suppu(tr. x) = (h.(1), hy (1)), 4)

—-00 < I (1) <l (1) < 2.

The functions /r_(1) and /1 .(1), which determine at each moment of time the
position of the (left and right, respectively) front points of the generalized solution,
are, respectively. non-increasing and non-decreasing, so that the length of the
support meas w(r) = h, (1) — Ir..(1) is non-decreasing with time, It is not hard to
show by comparison with travelling wave solutions that 1y € C(10, Ty)).

Let 1 = Tolup) < oo be the blow-up time of the problem (1), (2). First of
all we shall be interested in the behaviour of the functions fiy (1) as 1 — T,
It turns owt that for 8 > o 4+ 1 the functions /1y (1) are bounded on (0. Ty) and
[l (T5)| < oc, which, as can be casily seen. is equivalent o localization of the
unbounded solution. Conversely, it will be shown that in the case 8 € (.o + 1)
the functians /1y (1) are unbounded, and f1y (1) - o0 as 1 — T (there is no
localization).

In § | we studied n detail self-similur unbounded solutious, which explicitly
illustrated varous interesting properties of blow-up regimes. To prove that these
properties are shared by a wide class of solutions of equation (1), we shall use the
method of intersection comparison of the solutions being considered with exict
self-similar solutions having the same blow-up time. We start by presenting the
main ideas of this comparison theory, which is especially suited to analyze the
spatial structure of unbounded solution close to the finite blow-up time.
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1 The number of intersections of different unbounded solutions having the
same blow-up time (main comparison theorems)

Let us observe at the outset that Proposition | below, concerning the non-increase
of the number of spatial intersections of two different solutions u(r, x) and v(r. x).
is an immediate corollary of the Maximum Principle for linear parabalic equations.
Certain technical difficulties, which crop up also in the definition of the intersection
used here, have to do with the fact that (1) is a degenerate equation, which adnits
generalized solutions. Therefore we shall not present this result in its maximal
generality. or in all the possible detail. We shall mainly emphasize the parts of
comparison theorems that make essential use of uaboundedness of solutions under
consideration.

Thus, let v, x) be a generalized salution of equation (1) with a baunded non-
negative initial function

p(0, x) = uy(x) > 0. v e R; v{,’"" e C'(Ry. (5

We shall assume that the function vz, 1) is defined for [0, Ty) x R.

Definition. For a fixed 1y € 10. Ty the interval jay. aa] C R is called an intersec-
tion trterval (or an intersection point if ¢y = a3) of functions u(1y, x) and v(1g, X)
if the difference w(tg, x) = u(ty. x) — v{1y. Xy 15 such that w(ry. x) = 0 for all
X € fay, aafy for any sufficiently small § > 0 the function 1y, x) does not have
the sume sign n [a) — 8. ax + 8] and sy, x) 0 for all x € (a4 ~ 8. ay) and
X € (ty, a0 + 8). If, on the other hand, w(rg. x) = 0 on Jay, a>]. w(ty. x) hus
constant sign on |y — 8, a; + 8] for any sufficiently small § > 0 and w(1y, x) £ 0
for all x € (ay — 6,ay) and x € (aa, ar + §), then we call Jay, a2 a tangeney
interval (or point if ay = a7) of the functions u(ry, 1) and v(fy. x).

We shall denote the number of spatial intersections in R (of intervals or points
of intersection) of the solutions (ry, x) and v(ry. ) by N (1), und we shall always
assume that N(Q) = oo, It is clear that N(1ry) is precisely the number of sign
changes in R ol the difference (1, x).

Proposition 1. The function N(1) is non-increasing sith thne, and in particilar
N = Ny Jorall 1e (0. Ty, (6)
Proof. As we already mentioned above, technical difficulties arise in the analysis
of generalized solutions n(r, x) and v(1, x) having compact support. In this case,
in accordance with the method of construction of generalized solutions (see § 3.

Ch, 1) we shall first consider the functions . (1, x) and v (1, vy, classical strictly
positive solutions of equation (1) with initial functions

1 (0, ) = 1p(x) + €, v, (0, xv) = vg(x)y+ €, v €R, (7)
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where € > 0 is a fixed sufficiently small positive constant. By the comparison
theorem 1, > €, v > € everywhere in the domain of existence of the solutions,
and therefore equation (1) is uniformly parabolic on these solutions. Let us denote
the number of spatial intersections of the functions u (1, x) and v.(1, x) by Nc(1).
It is easily seen that by construction N.(0) = N () for every € > 0,

The difference u(r, x) = (1. x)— v (1. x) satisfies the linear parabolic equation

wy = (a(t, X)) A bt ), (R)

where the coefficients of the equations

1 1
alt, x) = / Imue + (1 =" dn. bit, 1) = B / Inu, + (1 = P dn.
Jo Jo

are sufficiently smooth, and a(r, x) = €”. Equation (8) is uniformly parabolic in
the domain under congideration, Therefore Proposition | is valid for the function
Ny, which is a consequence of the Maximum Principle. A simple short proof
of this fact ts presented, for example, in [355]; for sumilar statements see |13, 316,
303, 315, 171, 175, 263|. The original general ideas of such a comparison go back
to C. Sturm, 1836 |368].

Thus, N (1) ts non-increasing and N, (1) < N (0). Using now the fact that
te(r, Xy — 11, x), ve(t, x) — v, x) as € — (O uniformly on every compact
set in [0, Ty) x R, after the necessary elenentary consideration of the possible
configurations of the intersections of the generalized solutions #(r. x) and (1, x)
and the corresponding regularized solutions (7. ) und v (1, x), we arrive at the
desired result for the function N(r); see | 140, 175]. 0

Let us note that for 11 > € the coeflicients of equation (1) arc anulytic. Therefore
its soluttons ne(r, x) and ve(r, x) for 1 = O are analytic in x functions (see, e.g.
1100, 249, 2561). Therefore each of their tersections for ¢+ > () is un isolated
point. However, as we pass to the limit € — (), an intersection point of we(r, x)
and v (1. v) can be transformed into an interval of intersection of the generalized
solutions (. x) and v(r, xv). Nonetheless, any intersection in the domain of strict
positivity of the generalized solutions #(r. x) and w(r, x), where the equation (8)
for their difference w = — 1 is uniformly parabolic, and the solutions are classical
and as smooth as is allowed by the coefficients (therefore we can also claim that
the solutions are analytic in x in the domain of their strict positivity), is an isolated
point. Hence an intersection interval can only arise when it contains end-points of
the supports of the functions under consideration,

Thus the number of spatial intersections is non-increasing in time. As we al-
ready observed. this fact is true for a wide range of parabolic equations, and we
always have the upper bound (6) for the number of spatial intersections. How-
ever, to be able 1o use intersection comparison of solutions we also need, roughly
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speaking, a lower bound of the number of intersections. Indeed, for example, the
fact that the number of intersections cannot decrease to zera during the evolution
of solutions would mean that there exists a certain relation between spatial profiles
of the solutions on the whole interval of their existence, Unfortunately, it does not
appear possible to obtain such a lower bound for the number of intersections in
the general case; for that, solutions must share some common properties. In this
case such a shared property will be equality of blow-up times,
Thus we shall agsume that #(7, v) and v(r, x) have the same blow-up time:

i sup ez, x) = Tim sup v(r, x) = oc. (9)
Ty \¢R T (e R

Let us now state the main intersectian comparison theorem.
Proposition 2. Ler u(1, x) and v(i, x) have the same blow-up time 1 = Ty. Then

W ={1e 0. Ty lut, x) > (. x)in Rand
(10)
suppv(r, x) C suppu(i, x)} = .

Proof. Let us assume the contrary: let ‘W™ s ¢4 and there exists 7, € [0. To). such

that
m(t,, x) > v(t,, x)in R,

supp u(r,, x) C supp u(s,. x).

Then, first of all. by the Strong Maximum Principle, applied to equation (8)
in any subdomain where it is uniformly parabolic, in which (1, x) and v(1. x) arc
separated uniformly from zero, and also uging continuity of solutions and of the
boundaries of their support, there exists a sufficiently small time 7, > ), such that

(t, -+ 7. X) > v, 4 7, x) in SUPp w1, + 7y, X),
supp (1, -k 7y x) C osuppu(r, + Ty, X),

Using again continuity of the solution v(r, x) and of the boundaries of its support,
we conclude that there exists a sufficieatly small 75 > (), such that

u(ty + 70, X) = w1, + 1)+ 72, X)in R,
Therefore by the usual comparison theorem
w(t, x) > u(t 12, x)in (1, + 7. Ty) x R,
Setting here 1 = Ty — 73, we arrive at the estimate

Ty, x) < 1Ty — 19.x) In R,
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which, obviously, contradicts (9), since the function in the right-hand side is uni-
formly bounded in R. O

Proposition 2 can be described (with certain caveats) as providing a lower
bound for the number of intersections: under the above assumptions N (1) > 0 for
all 1 € [0. Ty). Without any caveats, vne such result 1s presented below,

Corollary. Let u(tr. x) and (1. x) have the same blow-up tinie 1 = Ty assume
that ng(x)y has compact support and vy(x)y > O in R. Then the solutions u(r, x)
and v, x) intersect for all 1 € |0, Ty). Furthermore,

N(I)};?.”l [().T()). (ll)
Proof. Since under these assumptions the solution u(r, x) has compact support,
and v(7. x) > 0 in [0, Tp) x R, the estimate (11) follows immediately from (10) if
we replace u(r. x) by v(r, x). 0

In the sequel we shall have ta campare a solution of the problem (l),§(2)
with exact solutions. which are not defined everywhere in [(), ) x R, Below we
formulate an intersection camparison thearem for a solution u(r, x) of the Cauchy
problem and a solution (s, x) of a boundary value problem for equation (1),

Thus, now we shall assume that a gencralized solution v(r. x) is defined in
some domain of the form [0, Ty) x (7,(1). n2(1)), where 7,(1) < 12(1), v(1. 4(1))
are continuous functions in [0, Ty), and it is unbounded in the sense that

Iim sup u(1, x) = 00,
ETu ey

In this context we shall denote by N(rg) the number of spatial intersections of
the solutions u(ry, x) and o(ty, x) in the domain (n(1y), 72(1)). We shall take
N(0) < oo,

Proposition 3. 1) For anv 1y € [0. Ty) the munber N(1g) does nat exceed the
number of changes of sign of the difference w(1, x) = u(t, x) — v(1,x) on the
parabolic howndary of the domein [0, Ty) x (n(1), 7201}

2) Let the solutions v(1. x) and u(i1, x) exist for the sane time Ty, Then

P = {1(, € (0, Ty) | ury, x) = iy, x) i (y{1y), n2(1y)).

(12)
sup w0y < nf a0 fori = 1.2} = .

reta T tett T

Progf. The first statement is a corollary of the Maximum Principle and. as Propo-
sition 1, is praved by first regularizing.
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The proof of statement 2) is also similar to Proposition 2. Indeed. if there
exists 19 € V*, 1y < Ty, then, after “small translations in time” of size 7, and 72,
justified by the Strong Maximum Principle and boundary data comparison theorem,
we conclude that the solutions u(7, x) and u(r, x) have different blow-up times (that
of (1, x) is somewhat larger). Observe that Proposition 2 is a direct corollary of
this more general assertion. 0o

Remark. Since piroof of statement 2) is entirely based on the Strong Maximum
Principle and boundary data comparison theorem, it will still hold if (7, x) is a
generalized subsolution of equation (1) in the domain [0, To) x (7,(1). n2(1)) with
blow-up time T.

We shall start our applications of the intersection comparison theory by analyz-
ing the S blow-up regime.

2 Localization for 8 = o + 1 (S-regime)
The main locitlization result s the following claim.

Theorem 1 (localization in the S-regime). For 8 = o + | wihowded solution
of the Cauchy problem (1), (2) is localized, and if (3) halds. we have for all
1 € (0. Ty) the estimaies

Iy <l Oy + Lyg/2 0 (1y = h (0) — Ly/2 (13)

and, fu particular,
meas (T ) = measw() + Ly. (13

where Lg = 27 (o + 1)V Jor is the fimdamewal length of the S-regime.

Below we shall also prove other theorems, which describe more precisely the
penetiation depth of the thermal wave for specific initial perturbations.

Actually, the word “unbounded™ in the statement of the theorem is superfiuous,
sinee, as we showed in § 3, for all B e (1.o -+ 3. N = 1. to any initial function
tro % O of the Cauchy problem there corresponds a solution that exists only for a
finite time.

The estimates (13) mean that in the S-regime the front of a thermal wave can
advance a distance which does not exceed half of the fundamental leugth Ly, We
stress that the estimates (13) and (13 are tndependent of the spatial structure
und amplitude of the initial perturbation uy(x): therefore the length Ly is indeed o
fundamental (independent of 11g) characteristic of the nonlinear medium.

Proof of Theorem | is based on intersection comparison of the solution (1. x)
with u family of exact non-self-similar solutions n, (1. x) presented in Example 14
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in§3 . Since during the time of existence thermal fronts of suclt an exact
S()lunon lmvd a distance exactly equal to Lg/2. for arbitrary compactly supported
solutions the estimates (13) are optimal.

I Comparison with an exact self-similar solution

Proot” of Theorem | proceeds in two stages. First we shall prove a weaker re-
sult. which will serve as a simple and illustrative example of the power of the
intersection comparison method applied 1o an exact self-similar solution.

Theorem 1. /u the conditions of Theorem 1. for all 1 € (0. Ty)
hoty<h, (O)+ Le.h (= h (0) ~ L. (13

Proof of Theorent 1'. In § 1 we presented an example of a simple localized self-
similar unbounded solution for 8 = o + 1:

waltox) = (Ty—1) Y 0g(x). 0 <1< Ty, xeR. (14)
where
| /er
(r41) ™ | a
Oy(x) = [’””1) cos” (1,\ )] .l = Lg/2, (15)
0. |x| > Lg/2.

The support of this solution is constant in time, and its length is Ly = meas supp 6.
We shall prove the estimate (13) by intersection comparison with the above self-
similar solution existing for the same length of time. Since (14) is a solution in
separated variables and has « very simple spatio-temporal structure, this allows ug
to give an exhaustive graphical illustration of the proof.

Let us denote by (1. £ xg. Ty the self-similar solution (14), symmetric with
respect to the point x = xy ((14) is symmetric with respect to x = ). Let us prove
the first inequality (13”); the second one is established n a similar manner. Let us
sel .\'(, = N, (W + Lg/2. and in addition to (1. ©) let us consider a different solution

LX) = gt & xp. To). localized in the domain {|x — xgl < Lg/2}, having the
same blow-up time 7 = 7'y, The interrelution ol graphs nl the umupondmg initial
Tunctions mo(x) and w(0. x) = 1g(0. v xg. To) = Ty Os(x = xp) is shown in
Figure 56. 1t is clear that they intersect only at the point v = /4, (0), so that
N(() = 1. Then by Proposition |

Ny < NO) =1 forallr e (0, Ty). (16)
Let us prove that 1, (1) < e, (0)+ Ly, ... that the thermal wave cannot advance

beyond the right [ront point of the solution a1, x). Let us assume the cmurury Lcl
1= osuplt > Ol (< b (04 Lg} < T, that s, n(ro v,y > Oforall 1 € (14, Ty)
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Fig. §7. N(1}) = 2: such a sitwation coniradicis Proposition |

at the point x, = I, (0)+ Ly, Then there exist two ways the front point x = lt,.(1)
can move past the right frout peint x = x, of the self-similar solution uy.

The fist of these corcesponds to the case N(r*) = . Then, siuce, as is well
known_ the moving front of the solution (1, x) cannot stop, for any arbitrarily
small 7 > () there exists 7, € (¢*.1* 4+ 7) such that N(f;) > 2. This situation is
shown in Figure 57, where N(7y) = 2. Indeed, by continuity of the solutions,
under a small shift i time the intersection that existed for 1 = 1* persists, and at
feast one “new” one is created to the left of the point x = x, due to the wmotion
of the right front of the solution u(r, x). Hence N(ry) = 2. In other words, duriug
the evolution the nwmber of tntersections of u(r, x) and v(1, x) increases, which is
forbidden by (16) (and coutradicts the Maximum Principle).

In accordance with (16). the only other way of violating the first bound in (13")
is by having N(1*) = 0. Then by Proposition 1 we have N(1) < N(r*) = 0 for all
1 € (1", Ty), and therefore by the usual comparison theorem with respect to initial
functions, at auy momeut of time 1 = 1, € (1. Ty) we must have the situation
as in Figure 58. (The case of wg(2. x:xq. To) being tangent “from inside” to the
spatial profile of u(r4, x) is ruled out by the Strong Maximum Principle applied
to equation (8) for the difference of these solutions in the domain of uniform
parabolicity, where the solutions are uniformly separated from zero.) Clearly.
such a configuration of the graphs of the functions w(r2, x) and ng(ra, &1 x0. To)
contradicts the condition of them having the same blow-up time.
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Fig. 58. N(12) = (7 such a situaiion is prohibiied by Proposition 2

Thus, we have considered the two cases: N(1*) = | (which leads to Figure 57)
and N(1*) = 0 (sce Figure 58). By (16) there are no other possibilities. Therefore
1* = Ty, which concludes the proof of Theorem 1’ ¥ 0

Next we are going to exploit similar ideas of the intersection comparison method
applied to the self-similar solution (14), (15) to study in more detail the dependence
of the character of the motion of the front of a thermal wave in the S-regime on
the spatial structure of the initial perturbation ().

2 Condition of time-independence of the support of an unbounded solution

The support (localization domain) of the self-similar solution (14), (15) does not
change during the time of existence of the solution 1 € (0, Ty). Let us show that
in addition there are many other (non-self-similar) solutions, that are localized in
the domain supp 1o (x) of their positivity at the initial moment of time,

Theorem 2. Assione that B = o + 1, conditions (3) are satisfied and
meas (supp o) > Ls. Let the initial fimetion 1y(x) satisfy the following condition:

there exists a constant Ay > O, such theat
150, 1 %o, Ag) < ug(x) 1 R, where xg = h(0) — Lg/2,
while the fimctions 1y(.6) and 1g(0. x; xg, A) have exactly
one intersection point for all A € (0, Ag)

(this situation is shown in Figure 59). Then

hy (1) = ho0) for all 1 € (0, Ty).
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Proof. Let us denate by N(r; A) the number of spatial intersections of the solutions
n(r. x) and ng(1. x; xy, A). From the condition of the theorem it follaws that 7y <
Ap. If Ty = Ap, that is, if N(0; Ay) = 0, then the hypothesis concerning the motion
of the right front leads to a contradiction with Proposition 2 (here obtains the
situation of Figure 58). Therefore we have to consider the case Ty < Ap. Let us fix
A = Ty and consider the solution 1ig(1, X3 xg, A), which has by construction blow-up
time 7. Then for 1 = () there is # unique intersection point of the initial functions
t(x) and g (0. x3 x0, A) = A~ Y704(x — &), e N(O;A) = I Arguing now as
in the proof of Theorem 1, we conclude that there are two possible scenarios for
the molmn of the right front of the solution (s, x). According to the first of these
(N(17) = 1), we arrive at the configuration of spatial profiles as in Figure 57 (which
conlrudicls Proposition 1). The second scenario (N(1*) = 0)leads to Figure 58,
that is, to a contradiction with Proposition 2. Hence the front of the solution (s, x)
must be perfectly immobile, which concludes the proof. )

Remark. It is of interest that for the right front point of the solution to be immobile
throughout all the time of its existence. we need a non-local condition on the
behaviour of the initial function () in an Lg-neighbourhood (1, (0) — Ly, 1, (0))
of the front point & = i, (0). If the condition of Theorem 2 holds, the behaviour
of uy(x) in the rest of the space, {x < I, (0) — Lg}, has no influence on the
immobility of the right front of the soluuon. Formally, the initial function can
£o to any large value as © — —oo (g8 long as a local (in time) solution exists),
This again emphasizes the universality of the fundamental length Lg characteristic
of @ nonlinear medium, which here plays the part of « kind of effective radius of
influence of thermal perturbations,

Imposing similar conditions on the behaviour of wg(x) 1n « neighbourhood of
the left front point, we obtain a set of initial perturbations uy(x), which generate
unbounded solutions with a constant support. It is casy to show that this set {ug}
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is quite Turge and contains functions other than the initial functions corresponding
to the self-similar solutions (14).

3 Condition for localization on the fiidamental length L

Let us show that under certain conditions an initial perturbation with a small support
(meas(supp 1) < Lg) cannot propagate beyond the domain {|x] < Lg/2} in hnite
time of existence of the solution. Here we shall assume that in addition to (3) we
also have the conditions

y(—X) = uy(x). v € Ry uy(w) 1s non-inereasing for 1 > 0. (17

Under these conditions, due to uniqueness of the solution und the Maximum
Principle we have that ¢ = a(r.]x]), u (r.x) < 0 for x € |0.h.(1)) and
sup, n(r, x) = (1, 0).

Theorem 3. Assume that B = o + 1, conditions (3), (17) hold wand
meas(supp tg) < Ly Let tg(x) also satisfy the condition

there exists Ag > 0, such thar ug(0. x:0, Ay) > up(x) in R,
while the functions ug(x) and ug(0. x;0. A)
intersect precisely di two points for all A > Ag

(see Figure 60). Then
[y ()] < Lg/2 forallt € (0, Ty)

and b particular
meus w(Ty) = Ly. (18)

Proof. By Proposition 2 Ty > Ag. Setting A = T’y and denoting by N, (17 A)
the number of spatial intersections of the solutions w(r, x) and ue(r. x50, A) in the
domain {x > 0}, we obtain N, (0:A) = 1. Then by Proposition 1, in view of the
condition i = u(s. |x]), we have that N, (1;A) < | forall 1 € (0. Ty). Therefore
we can now use the method of proof of previous theorems. a

Thus in the conditions of Theorem 3 the thermal wave can move in any direc-
tion, but the total distance covered by the thermal perturbations up to the blow-up
time cannot exceed

Ly — meas w(0) < Ly. (19)

4 Comparison with a family of exact yon-self-similar solutions. Proof of
Titeorem |

We move on now to prove the optimal bounds (13). As we already mentioned. the
proof is based on intersection comparison with the more complex solution 1,(1. .x)
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of equation (1), presented in § 3, Ch. 1. It has the form

(1, x) = {([)(1)]1//(1) + cosRma/Lg)], }l/" > () (20)
for x € (—=Lg¢/2, Lg/2) and u, (1. x) = 0 Tor x € R\(—Ly/2. Ls/2). The function
(1) is determined from the equation

~er]2
W= oo+ l)N'Co[l -1//2] > 05 (0) = —1. (21

and (1) = Co| | ~ (1)) 127 where
Cy=Co(Ty) = (0 + Do 'Ty'B(l + /2. 1/2). (22)

Then (1) is defined on (0, Ty, and (Ty) = | (hence H(Ty) = +00), so that
(20) is an unbounded solution with blow-up time 7%, The generalized solution
(1, %), which is symmetric with respect to v = 0, has compact support, and its
right front is located at the point

I () = g(1) = (Ly/2m)|r /2 + aresin (1) (23)

Clearly, 11", (1) is a strictly increasing function and /5 (1) < Ly/2 forall 1 € (0. T'),
so that the unbounded solution (20) is localized in the domain {|x] < Lg/2}.

In § 3, Ch. | we showed that u, (s, x) satisfies the singular initial condition
(0, x) = I,6(x), Iy > 0 is a constant, and suppu,(r, 1) — {0} as 1 — 0.
Therefore for intersection comparison we shall in the following take functions of
the form u, (14 €, x) (the constant € > O is taken to be sufficiently small), to which
correspond regular bounded initial funtctions 1w, (€, x).

In view of the fact that the support of this exact solution (unlike the self-similar
one) varies with time, we shall modify somewhat the proof. We shall exhibit new
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facets of the intersection comparison method by comparing not with a single fixed
solution, but in fact with a continuously parametrized family of exact solutions,
all having the same blow-up time.

For a fixed € > 0, & € R, let us denote by v(r, x) = v(1, x: €. 8) the function
(1 + €0 — (h.(0)+ ). where Cy = Co(T'g+ €). Then v(s. x) is an unbounded
solution of the Cauchy problem (1), (2) with initial function uy = u.(e, x —
(11.(0) + 8)) and support supp v(r. x) = {lx— (h(0)+ )| < g(r+¢€)}. Let us note
that the function u, (1 + €. x — (1,.(0) + §)) is continuous in €,6 in 10, Ty) x R.
By construction, for all 8 € R the solutions u(r, x) and v(s. x: €, §) have the same
blow-up time Ty. For any 1 € 10, Ty) let us denote by N(i: €, §) the number of
spatial intersections in R of the functions u(r, x) and v(7. x).

It is not hard to check that for any € > 0 and § > 8. = g(€) supports of the
initial functions 1o(x) and p(0. x) do not intersect, so that N(0:€.8) = 1. Then
by Proposition | we have that

N(rie, 8) < 1 forallr € (0. Ty). (24)

Thus, let us fix sufficiently small € > 0 and 6 = 28, then supp v(1, i€, 28, ¥ =
{lx = le] < gt + €)}, where I, = 11,(0) + 28,. Obviously, I, — h,(0) as € — 0.
Let us show that i (1) <[, + gt 4+ €) in |0. Ty). Assume that this is not the case
and

=suplt € 0. T 1 (1) < e+ gt + €)

. (25)
for all 1" €10, 1]} < T.

Clearly, &1 .(1,) = I, + g(1, + €) = x,. By Proposition 1, two eases are possible.

Case I: N(1,;€,26,) = 1. Here we shall arrive at a contradiction similar to
the one tn Figure 57, where uy(-) should be replaced by the solution u,(+). In this
case the difference w(r,, x) = u(r,, x) — v(1,. x) changes sign in R exactly once.
Then we can find —o¢ < xy < 1 < x, = 1, (1,), such that either

u(r, . xy) < vt,, X12€.20,). ult,, Xx2) > v(t,. X1, €.28,), (26)
or, on the contrary,
u(t,, x1) > (.. x15€,28.), ull,, x2) < v(l,, X25€, 26,). 27

If (26) 1s satisficd, then choosing 8y € (8., 28,), 8; ~ 28;. we have that by continu-
ity ol'lhc function v(1, x: €, 8) in &, inequalities (26) would still hold if the function

v(t,, 1€, 26,) is rcplaud by v(r,, £ €, 8y) and furthermore v(r,, x";€,6)) =0 <
u(t,, 'y at the point &' = Jx, - 76 -~ 1) | € (1. .t,). Therefore N(r, €, 61) > 2
wlmh contradicts Propo.sluon 1. If, on the mhu hdnd, we have (27), then the same
contradiction iy obtained by comparing the functions v(r,, x5 €, 61) and u, (1. x) for
6y > 26.. with 8y — 28, sufficiently small.
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Case 2: N(1,.€,26,) = 0. We shall show that this case leads to the situation
of Figure 58 (ug(+) is replaced by u,(+)). Then either u(r,, x) < v(1,, x) in R (but
then by the usual comparison theorem u(r, x) < v(1, .x), supp u(1, x) € supp v(1, x)
in |7,.Ty) x R, which contradicts (25)). or u(r,, x) > v(1,, x) in R. In the latter
case by (25) there exists 15 € (1,, Ty), such that 1o (1) > I, + glt» + €) and In
addition obviously u(f2, £) > v(12, x) in R. But then we can find 8, € |0, h, (1;) —
(l¢ + #(12 4 €))), such that SGPP v(1a, x5 €, 6y)  supp ulzs. x) and v(1a, X5 €, 8;) <
u(r, x) for all v € R. This contradicts Proposition 2.

Thus, 4 (1) < 1o+ g1+ €) n (0, Tg) for any arbitrarily small € > 0, Passing
in this inequality to the limit € —> () (then /, — /1, (0), g(1+€) — g(1)), we obtain
the first of the bounds (13), which completes the proof of Theorem 1. O

Let us note that the above argument proves a sharper optimal time-dependent
upper bound for the motion of the front.

Corollary. In the conditions of Theorem |

ho ) < h ((0) + (Ly/2m) /2 4 arcsing(n)]. 1 € 10, Ty). (28)

Clearly, by (23), for the solution u, (s, x) instead of the inequality we have

in (28) an exact equality. Since the initial function for the solution u, (1. x) is

singular. the estimate (28) describes, in particular. the maximal speed of motion
of the thermal front for small 1 > 0. It is not hard to compute from (28) that

I (1) < By 0) + BV I 4 og1)) as 1 — 0,
where

bo = (o + Do 2o+ 207771 BB 4 /2 1P
0

3 Localization for 8 > o 4+ 1 (LS-regime)

The main assertion concerning localization in the case of the LS blow-up regimes
has the following form:

Theorem 4 (localization in the LS-regime). Let 8 > o + 1. Then an umbounded
solution of the problent (1), (2) having blow-up thme Ty = Ty(uy) < o0 is localized
and

Iy (Tg) = hy(O)+ ETE h (Ty) = h.(0) = £'Ty. (29)

Le.,
meas w(l'y) < meus w(() + 28Ty < o, (30)

where m =18 — (o + D/12(B ~ V)] > O and € > 0 is a constant that depends
only on . 3.
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Remark. For 8 = « + | we have m = 0. and as will be seen in the following,
&* = Lg. ie. in the case 8 = o + | this theorem becomes Theorem 17,

Let us stress that unlike the S-regime (Theorem 1) the “fundamental” length
of the LS-regime L,y = measw(7) depends. via its dependence on Ty, on the
initial function. An upper bound on the blow-up time Ty = T(uy) in this problem
was obtained in § 3.

I Construction of a self-similar subsolution

In § I it was shown that for 8 > o + | equation (1) has no localized self-similar
solutions. All the self-similar solutions constructed there are strictly positive and
are only effectively localized (ug(r. x) grow without hound as 1 — T'; only at the
point x = () and remain uniformly in 7 bounded in R\{0]).

However, it iy easy to verify that Proposition 2 still holds, if #s the second
solution v(r. x) we tgke some unbounded subsolution of equation (1). We shall
construct such a subsolution for the LS blow-np regime, and, since it is not defined
in (0, To) x R, we will in fact be using as our main intersection comparison theorem
Proposition 3, which is specifically suited to deal with this case. We shall seek the
self-similar localized subsolution in the usual form:

ug (1. x) = (To~—1) "0 (&), = x/(Ty—1)". (31)

where the function # (£) > () satisfics almost everywhere in R the equation
TR ;e 1 e
(#.0 )y —mb & — —/;——»l-([ + 67 = (). (32)

Lemma 1. Forany 8 > o+ | there exists a non-trivial solution 0..(£) satisfying
(32) on an interval © (~£*.0), & > 0, as well as the conditionys

6 (0) = 0.6 ¢ )(0) = 0. (33)
0 (&) =0 on (=£.0)and §.(£") = (.

From (33) it follows that the function  (£). which is the same as the function
of Lemma | for £ € (-¢&".0] and zero for ¢ > 0, is a generalized solution
of equation (32) on (—§£*, oo). Then (31) is a generalized unbounded solution
of equation (1) in the domain (0, Ty) x (x,(r), o0) with a moving left boundary
X)) = —=&(Ty — 0", on which ug (7. x.(1)) = 0. Hence we have that (31)
is a localized solution: even though g (7, x) grows without bound in any left
neighbourhood of the point x = (0 as 1 — T}, the front of the solation v, (1) = 0 is
tmmobile. and perturbations do not penetrate into the domain x > 0 (see Figure 61).

“Here the constant €7 = £* (o, ) is the same ag in the stement of Theorem 4,
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Il now we set #_(£) = 0 for ¢ < —£*, then ug (7, x) will be an unbounded
subsolution of equation (1) in (0. Ty) x R,

Proof of Lemma 1. It is not hard to demonstrate local solvability of the problem
(32). (33) for small |£] by reducing it to an equivalent integral equation and using
the Sehauder fixed point theorem. The property of the solution extended into the
domain of € < 0, alluded to in the lemma, follows immediately {rom the results
of § I (see 29 for B>+ 1. N=1, O

2 Proof of Theorem 4

Let us denote by e (1, xixg, Ty) the function which coincides for (0, Ty x
{(—& Ty — " < x = xg =< 0} with QD) (F_(£) = 0 is as in Lemma | and
ny = 0 outside that domain). As we already mentioned », is an unbounded sub-
solution of the Cauchy problem’ in (0, Ty x R, i.c.. if «g(xy = (0, x3x0, Ta)
in R then w(r, x) = w;e(r, X300, Ty) in R for all admissible 1 = 0, Therefore
Proposition 3 remains valid if as the function v(r, x) we take a, (1, xixg, Ty)
(or any other subsolution of a similar form). Let us note that at the same
time the function «, satisties the equation in a generalized sense in the domain

INote that this fact is useful in deriving conditions for global insolvability of boundary
value problems for (1),
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(0. Ty) x {R\{x = xg — E(Ty ~ n'"}}. All this allows us to compare the solution
n(t.x)y with 1/ ¢ as was done in the previous subsection. In brief. it goes like this.

Let us prove localization on the right. Set xg = h, (0)y + £ T, x. (1) = xg —
E(Ty — 0" (Ty is the blow-up time of u(s, x)). Then wp(x) and 1;4(0, x; xy. To)
do not intersect in (x,(0). oc), and, clearly. in the course of the evolution there can
be only one intersection of «(f, xy and wu, (1. x; x4, Tg) in (3, (1), 00) (f 4 >suj
for x = x,(1)). Therefore «(r. xy will becone larger than v = w1 (1. X1 xg. To) at
the point x = .y (there v = 0) only after it becomes at least as large as v(r. x) for
all x < xy. However, by Proposition 3 it contradicts the fact that the solution «
and the subsolution v have the same blow-up time. Therefore h, (1) < g, which
is the same as (29). O

In conclusion, we present a result for the LS-regime, which is similar to The-
orem 2 in statement and method of proof.,

3 Condition of immobility of front points of an unbounded solution

Theorem 5. Assume that B > o + | and let wg(x)y also satisfy the condition

there exists Ag > 0, such that wg(xy = 1;76(0, x5 14 (0), Ag) in R,
while the functions wg(x)y and 15 ¢(0, x5 b, (0, A)
intersect precisely at one point for al O < A < Aq.

Then
hotty = hy Oy for dl 1 € (0, Ty).

where Ty < o0 s the blow-up time of the solution u(t, x).

A graphical interpretation of the conditian of the theorem is presented in Fig-
ure 62, In the LS-regime the length of the part of the support supp wa(x), which,
in accordance with the condition of the theorem, influences immobility of the front
point x = h,(ty = h(0) is £*T§. Unlike the S-regime case. this length depends
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on the behaviour of the initial perturbation wg(xy (via Ty(ug)) on practically the
whole space.

4 Non-localized unbounded solutions of the HS-regime, 1 < 8 < o + 1

Absence of localization of solutions of the Cauchy problem in this case (all non-
trivial solutions are unbounded: see § 3y is casily proved by the method of station-
ary states. which is presented in Ch, VIL It is used there to study the localization
phenomenon in arbitrary nonlinear media.

However, for equation (1) sharper results can be obtained by comparing the so-
lution (1, x) with a self-gimilar solution of the HS-regime, which was constructed
in § 1.

Theorem 6 (absence of localization in the HS-regime). Let | < B < o + 1, and
let condition (3) be satisfied. Then the unbouaded solution of the Cauchy problem
(1), (2) is not localized, and if t = T is the blow-up time, we have the esnmates

hy (= h (0) + &[Ty — o™ =Ty,

(34
h. () < /‘l* (0 ~ f()l(l() ~ [} " T'”l. re (0. Ty).
where m = | — (o + H]/I2(B — D| < 0 and therefore |h (| — o ast — T,
The constant &y > O in (34) depends only on o, B.

Inequalities (34) mean that as r — T
meas (r) = i, (1) — b (1) = meas w0y + 2&(Ty — n"™ = T§} — co.  (35)

Proof. 1t is similar to the proofs of previous theorems: there is a direct connection,
for example, with the proof of Theorem I. Let us wrilc down the unbounded
selt-similar solution of equation (1) for B8 < o + | (see § 1):

us(t, 3y = (Tg — 0" VB Vo(gy, ¢ = x/(Ty - 1" € R. (36)

The function #¢(£) has compact support: meas supp fs(€) = 2£&; < oo, where
the constant £ is as in the right-hand sides of (34). As before, let us denote by
wps(r, X1 xg. Ty) the self-similar solution (36) symmetric in x with respect to the
point x = xg. Let us, for example. sketch the proof of the second bound in (34).
Let us place (0, x5 g, Ty) relative to the initial function wg(x) as in Figure 56
(replace ug in that figure by uys). For that we have to set xy = ho(0) + £&,T.
The relative position of these two f{unctions is, in principle, the same as in the
proof of Theorem 1. However, the general structure of the proof is somewhat
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different due to the nature of the bounds in (34) (they are lower, not upper bounds
as in all the other theorems).

With these positions of the supports of w1y and wys(0. x:xg. To) (Supp uy N
supp uys(0, x;xq, Toy = Wy, the number of their intersections in R is equal to one.
As the solutions evolve, this number cannot increase. Therefore the number of
intersections of different solutions w(r, x) and wuys(r, X3 x4, Ty) having the same
blow-up time 1 = Ttuy) < oo does not exceed one tor all 1 € {0, Tyy. This means
that the left front of the self-similar solution ey, which for all 1 € [0.T) is at
the point

X = xg = E(To — 0" = by (0) = EUTy — 0" ~ T (37

cannot overtake the left front point x = /. (1) of the solution w(r. x). Were that to
happen, then either at some moment of time r = r; we would have two interseetions
of wu(r, x) and w51, 2 x0. Tg). which contradicts the Maximum Principle. or for
some > € (0, Ty) we would have a situation precluded by Proposition 2. Therefore
h.(ty = x;(n. Taking into account (37), we obtain the second bound of (34),
which concludes the proof. g

Therefore tor any compactly supported inttial perturbation. the fronts of the
y pactly supp p
thermal wave in the HS-regime move as 1 — 7T (i) not slower than at the self-
g 0
similar rate
lhy ()] > Eg(Ty — P s DIRE DLy e (38)

In the next section we shall show that as + — T the motion of the front points
x = h, (1) approaches asymptotically the self-similar one, that is, in addition to
the inequality (38) we also have the reverse one.

As far as equivalence of conditions {hy(ry — oot — Ty} and {u(t. x) —
ooin Rt — Tolfor 1l < B < o+ 1 is concerned. we shall prove assertions of
that sort in § 1, Ch. VII. For example, it is especially easy to prove
Theorem 7. Let | < B < o + | and assume that conditions (3, (17 hold, Then
ult.xy — oo in Rast — T Gug).

§ 5 Asymptotic stability of unbounded self-similar solutions

We have already discussed above certain essential difficulties in the analysis of the
spatio-temporal structure of unbounded (singular in time)y solutions, which always
arise when solutions are unstable with respect to small perturbation of the initial
function. Therefore in this section we shall not strive for maximal generality of
presentation, which would entail exerting a great amount of effort in overcoming
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complications that are not of any particular importance. We shall use the example
of the Cauchy problem in N = 1 to present the crucial stages of the proof.

First, to simplify the presentation below, we state in a compact {orm the methods
ot comparison of unbounded solutions we used in § 4 in the study of the Cauchy
problem

= Wuy, +u’. 1>0xeR o>0.8>1. (1)
10, vy = ug(xy > 0, v € R: ug € C(R). (2)

where suppug = (. (0y, 7, (0)), gy is Lipschitz continuous in R: suppu(r. x) =
th_(ty. hy ().

1 A lower bound for the amplitude of the unbounded solution
This is the simplest corollary of the comparison theorem.

Theorem 1. Ler o > (0, B > 1, and let ut, x) be an unbounded solution of the
Cauchy problem (1), (2y. Then

sup (. xy > Oy (T~ 1y VBV 1 e|0. Ty 0y = (B— 1) V-1 (3
1

where Ty = Tolug) is the blow-up time.

Proof. The estimate (3) follows {rom the corollary to Proposition 2 in § 4, il we
take as v(f, x) a spatially homogeneous solution of equation (1) with the same
blow-up time:

U(,):()”(T()__,)‘l/l/f“”‘ ! € l(). T())‘ (4)

Then we have that «(f, x)y and v(r) must intersect for cach t € {0, Ty). Moreover,
each intersection point in the domain of strict positivity of both solutions is an
isolated point. For the number of intersections we have

Ny = 2for all r € {0, Ty). (5)
Obviously, this means that
sup alt, xy > vlry, 1 € {0. Ty, (6)
R
trom which (3) follows. o

Let us note that this estimate can be obtained directly from equation (1).
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2 Similarity transformation. Restrictions on the form of initial functions

Self-similar solutions of equation (1) have the form
uglt, vy = (Ty = "V Doug), €= x/(Ty — " € R, (7
where the function 65(£) > 0 satisfies the ordinary differential equation

T ! l
(O30 = molé = 05+ 6 = 0. £ €R, &

In § 1 we tound that for all o > 0. B > [ it has an even solution #¢(£), which
is non-increasing for & > 0. We shall study asymptotic stability of precisely these
solutions (for B > o + 1 there are other, non-monotone solutions #¢(£)),

Consequently, we shall introduce the following restrictions on the compactly
supported initial perturbation:

ty(—x) = u(x), x € Ry meas supp gy = 2y < o0, (9)
P

wp(x)y is non-increasing tfor x > 0. (10y
Then «(f. x), an unbounded solution of problem (1), (2) is even in x, non-increasing
in v for x > 0. and sup, u(r, x) = «(1.0) for any ¢ € (0, Tylu)).
Corresponding to (7), let us introduce the similarity representation 8(r, £) of
the solution of problem (1), (2):
O, &) = (To — DBV Ty = ™y, 1 €0, Ty. & € R, (n

where m = [ B~ (o + 1)}/]12(B — 1)]. Similarity transformation of the solution (7)
gives us exactly the function g(€).

We shall be interested in the behaviour of 6(f, &) as + — Ty . Asymplotic
stability of the self-similar solution (7) means that

0(/.(5) ned H_\'((f),l - T(;(ll())‘ (12)
for a sufticiently large set of initial functions w.

Let us note that under the assumptions (9), (10 the limiting function is neces-
sarily even and non-increasing for £ > (). Therefore we are analyzing asymptotic
stability of the most elementary (in its spatial “architecture™) self-similar solution,
Many of the results stated below extend to the multi-dimensional case (see § 6).

3 Asymptotic stability of the self-similar solution for f = o + 1 (S-regime)

If (9), (10) are satistied. the only “candidate™ for a stable self-similar solution is
the following one (§ 1):

us(t, vy =(Ty—~1n Vrge(x), 0 <t < Ty x € R, (13
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where the function

o+ 1) 2mx b D)
(«r((r+2>“’“ TC) A< Ls/2. (14)

0,|x] > Lg/2 = m(o+ D'/ /o,

[t} § =

satisfies the ordinary differential equation

’ l )
(6565) ~ — s+ 05 =0, xeR. (15)

r

In the S-regime the similarity transtormation has an especially simple form:
o, Xy == (T — I)”"ll(h XY T() = T()(ll()) < X0, (16)

Theorem 2. Let B = o+ |, assume that the conditions (9), (10) are satisfied, und
let Ty < oo be the hlow-up time for the unhounded solwtion of the problem (1),
(2y. Then

8. x) — fs(xy, 1= Ty (17

wniformiy in R, wheye 0s(xy is the function (14),

The main obstacle that arises in the proof of (17) is the derivation of bounds
in L™(R) for the similarity representation, which are uniform in ¢ € (0, 7).
Upper bounds guarantee glohal boundedness of 6(r, x), while a lower bound is
needed in order that the limiting function #(T;. x) in (17) be non-trivial. These
are the two most crucial stages of the proot. The point is that the function § =
fs(xy is an unstable stationary solution af the parabalic equation satistied by the
similarity representation (s, x) (far a similar example see § 11, Ch. 11y. Therefore
*n the course ol derivatian of (17). we single out in the space of initial functions
{6(0, x)y} the attracting set of an unstable stationary salution. We emphasize that
similar problems of asymptotic stability of stationary salutions arise precisely in
the analysis al singular solutions of evalution problems, which have a singularity
in time.

I Avxdliary results

Lemma L. /n the conditions of Theorem 2, for all t € {0, Ty) we have the estimetes

supp (. Xy C =ty - Ly, Jo + Ls |: (18)
sup e(t, x) > o ety — e, (19
1eR

Ve

there exists 6, > , such that

sup (s, xy < 9,(Ty — 1) Ve, (20)
R
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A sharper estimate than (19), which ig “distributed” over R, can be derived
using the methad of stationary states (see § 1, Ch. VI,

Proof. The estimate (18) was obtained in the course of proving Theorem 1 in §
4. Inequality (19 is none other than (3) for 8 = o + 1.

Inequality (20 follaws from Propasition 3 in § 4. Let us pick the value 6, >
Oy = o ' large enough. sa that, first, HiTG”" > (0, and. second, that the
Cauchy problem for equation (15) for x = 0 with the canditions

B0y = 6,. 6'(0) =0,

has a salution @ = #(.x), which vanishes at a point v = x,(6,) > 0. This is always
possible, as can be immediately seen from equation (15), which can be integrated
in quadratures (see Lemma 2 in § 1). Let us set (—.x) = #(xy in (—x,,0). Then
vt xy = (To ~ 07 Y70(xy is an unbounded solution in (0, Tgy x (—x,. x,).

It is easily checked that x,(8,) — /{20 + L)' [ and (87) (1) — —oC as
f, - oc. Since « i1s uniformly Lipschitz continuous, we can pick ¢, > 0 so
large, that if (9), (10) hald, the initial function «q either does not intersect v(0, x)
at all in (—x., v,y (i.e., N(O) = 0), or intersects it exactly at two paints, which are
symmetric with respect ta & = 0 (N(0) = 2). Then by the camparison theorem
Ny < 2torall 1 € (0. Ty).

Let us shaw that «(r,0) = sup, « < sup, v = v, 0) (this immediately results
in the estimate (20)). If w(ry. Oy > vy Oy for some t; € (0, Ty, then ury, x) >
vy, ) in (—.a,, x,) = supp . Indeed, if this is not the case, then w(ry, vy = 0
for x = ., (since N(1y) < 2), and this equality holds for r € [0.r,{. Therefore
N0y = 0, and by assertion 1) of Proposition 3 N(1y) = (), which is impossible.

Thus, w(ry. v > vy, 0 in (—x,, 0,0 I SEpp vy, Xy C supp ulr, »), we
obtain a contradiction to Proposition 2, § 4. If. an the ather hand. supp «(f. xy =
(—.x,. x,), then, by slightly increasing the value of 6., and thus decreasing 2x, =
meas supp f, we are back at the previous case. O

2 Proof of Theorem 2. «) Equuation for the funcrion 6(1, x)

It is not hard to check that the similarity representation (16) satisties the Cauchy
problem

1
(To— 00, = (@0, ~—H+67'10 << Ty xeR, Q2
a
(0, x) = () = T/ "up(v). x € R (22)
Setting in 21y 7 = ~In(l — /Ty : 0. T4y — |0, 00y, we obtain the equivalent
equatian
1
B, =070, ——0+6""" 750, xeR. (23)

o
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The initial condition (22) remains the same.

Comparing (23) with the “self-similar”™ ordimary differential equation (15). we
see that in the new notation the study of asymptotie stability of the unbounded
self-similar solution of the S-regime is equivalent to the analysis of asymptotic
stability of the non-trivial stationary solution (14) of equation (23). It is important
to note that for arbitrary initial perturbations #y(.v). when the quantity Ty in (22)
has been chosen “incorrectly”. and does not equal the blow-up time of the solution
u(tr, vy, the problem (22), (23) can have both unbounded (sup, €(7..x) — 00 as
T — T, < 00) and global solutions, which stabilize to the trivial stationary solution
f = 0as 7 — oo. In other words, the stationary solution (14) is unstable with
respect to arbitrarily small perturbations. A proof of this fact is presented in § 11,
Ch. IL

b} Estimates of the function 8(r. x). In the conditions of the theorem (with a
“correct” choice of Ty = Tyluy) in (22)), the Cauchy problem (23), (22) always
has a global solution, which stabilizes to the function (14), The proof is based on
the estimates (18)~(20y, which assume the lollowing form in the new notation:

Corollary of Lemma 1. In rlic conditions of Theorem 2

supp (1. Xy C | =1y — Ly ly + Lg|. Ly = 27 (o + 1)'7? /o (24)
supO(r, xy = o M7, (25)

v R
O(r. xy < 0, (26)

Jorall T > (. x e R
From that we immediately have

Lemma 2. Asswmne that conditions (9, (10y hold. and thar Ty = Tolug). Let §)
be « domane in R, suel thar (<1 ~ Ly, Iy + Lsy C ). Then

0" e LR Ly L), 27
@' e LHR, LY. (28)
07 e IRy HA(Q)). (29)

Proof. By (25) 6 = 0 on #) for any 7 > 0. Taking the scalar product in L*({))
of equation (23) with (§”'"), and integrating over 7, we obtain the equality

(e -+ 1) /‘T | 5 2 1 2
RS 0| ds s ||
(o + 22 Jy ll( e($) IRTSY) et Ao+ 1y ( W L2440
o+ T2 ! e i hy l o 2
+ ;m’_‘;—z; “H(T)”I_u\.‘(g“ = E)'ll()(T)lll}m-h(“) + m“(ﬁ() )\”[,,‘(“‘ -
I 2urt by o+ 1 2
- 5”0()“,_.‘..,.1;(“) + m“ﬁ()”,_m:(g“* T > 0.

(30)
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By (26) the right-hund side of (30) is bounded from above, from which we obtain
the estimates (27)~(29) (for details see § 2 in Ch. Vb, 0

¢) Puassage to the limit 7 — o0, Thus, the Cauchy problem (23), (22) is
equivalent to the boundary value problem with the condition

BT x) =0, 7> 0. x e =0\ (22

v

and the estimate (26) ensures its global solvability.

Stabilization of 8(7. x) for 7 = 7, — o¢ o a stationary solution in the weak
sense® follows from the estimates (27)-(29), which ensure boundedness of the
sequence 07N (T vy = 07 N T 4T o = 1.2, in HY(0. 1) x ) (see § 2
Ch. VII). By compactness of the cmbcddmg Hl C L? and the estimate (28), this
allows us to choose from any sequence 7, — o¢ a subsequence (which we also
denote by 7,), such that 7' (. x) — 87 (xy as 7, — oo in L2((0, 1) x Q). See
subsection 6, § 3.

Passage to the limit in equation (23) is also effected by using the estimate (29).
as well as the faet that (22), (22’ admits the Liapunov function

1 2 o+ 1 3 | I
V)T = e ()ml *————-—-—0'”” - __H-:w.} /v,
(01 ./n {2((r+l)< ) vy 2 (

which is non-increasing in 7 on any solution of the problem. By formal computa-
tions, we have

#

d _ f(;[iL (r42)/2 <
Frem = (0 )‘_d.\‘o.

Stabilization in C({}) follows from stronger estimates: using the method of
Bernstein. it is not hard to show that [{(8”1'(7. x)),| < const < o everywhere in
R, x R. By (26) this means that the trajectory {67 (7, x) |7 > 0} is compact in
C(l,

Thus, (7, x) — 6(x) for 7 = 7, — 00, where f is some stationary solution
of equation (23), and 0 e C(,(ﬁ Then, first of all, (25) means that § # 0,
and, secondly, by (9), (10 f(x) is an even function, which is non- mereasing in
r > 0. Now, since 6 is a function with compact support (by (24) suppf C
| —lo — Ls. Iy + Lg}. from the uniqueness of the stationary solution g # (0 (see
subsection 2, § 1), we have 8(xy = 65(v). Stabilization of #(r, x) to #g(x) as
T — oo (that is, on any sequence 7, — 00) also follows (rom uniqueness of the
stationary solution 6 = 6(x) with the required properties. This concludes the
proof. (W]

Let us present a corollary of (17).

:
i “~
i
1

BSee examples of analysis of degencrate equations in [20, 308, 3591,
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Corollary. In the conditions of Theorem 2 w1, xy — o0 as t — T ar any point
of the domain x € (—Lg/2, Lg/2).

Thus, inside the “fundamental™ localization domain {|x] < Lg/2}, a non-trivial
solution of the problem (1), (2), where 8 = o + | and g satisfies (9), (10). grows
without bound as + — T . Here condition (17) does not preclude unbounded
growth of the solution outside the localization domain; this growth has to be at a
rate o((Ty ~ 1) 'Yy, i.c at a slower than the self-similar rate.

In numerical computations "a more striking phenomenon was observed: for
practically all non-monotone initial perturbations ug(.x) in the process of evolution.
a thermal structure was formed in a neighbourhood of an extremum point of ug(.x).
which developed as 1 — Tj (uy) < oo as the self-similar solution (13). (14):
furthermore. outside the localization domain the solution was bounded from above
uniformly in 1 € (0. Ty) (see, for example, Figure 37). It is of interest that an
optimal result of this sort can be obtained by combining Theorem 2 and Theorem
3of § 4.

Theorem 3. Let 8 = o -+ |, meas suppuy < Ly, and assume that couditions
(9. (10y and the condition of Theoyem 3 in § 4 hold. Then u(t, xy — o< as
t = TGy < oo at all points of the localization domain o(T]) = {|x| < Lg/2}
and u(t, xy = O everywhere in |0, To) x {Ix| = Lg/2). At all points x € R the
solution approaches the self-similar one:

(To ~ M7, xy — Og(xy. 1 — T, (31

Proof. From Theorem 3 in § 4 it follows that u = 0in |0, Ty) x {|.x] = Lg/2}, while
from Theorem 2 (see (17)) follows (31). and therefore the fact that u(r. x) — o0,
= Ty in {|x] < Lg/2). O

4 On asymptotic stability of self-similar solutions of the HS-regime,
l< B <o+

We shall consider the Cauchy problem (1), (2y for | < 8 < o + | with initial
function satislying conditions (9), (10). Asymptotic stability ol the self-similar so-
lution means that the similarity representation (11) satisties (12), where 04(£) % 0
is the unique non-trivial compactly supported solution of the ordinary differential
equation (8). Existence of the compactly supported function )y has been estab-
lished in Theorem 2 in subsection 3 of § 1; uniqueness will be proved below. We
start with some auxiliary estimates.

Lemma 3. Under the above asstonprions

supp w(r. xy C |~I() — E()T:;' — f()('l'() - I)m. I() -+ (E()T(,;' -+ g()(T() — ’)m |‘ ("2)
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where £g =meas {¢ > 0] 65(&) > 0) <oco.om=|B~ (o + H|/|12(B- ] <0

supu(t, vy > (B — 1y VB V(T — gy VB
wR
(33)

there exists a constant 0. > 6y, such that

supulr,xy < 84Ty —n V# b (34)
R

Proof. Estimate (33) was obtained in Theorem [, inequality (34) is derived by the
method used in Lemma | to analyze the S-regime. Existence of the unbounded
subsolution v(r. .v) appropriate in this case was established in § 1. The magnitude
of #, here can always be chosen such that 1y(x) and v(0. 1) do not intersect. The
estimate (32) of the length of the support [ollows from Propositions | and 2 of
§ 4 (using an argument as in the prool of Theorem I in § 4). i

Remark. In the course of proof of Lemma 3 we established a stronger result: for
I < B < o+ | and any initial function ug(x)y of compact support we have the
estimates

meas supp, n(r.ox) =ETo— 0" + O, 1 =T, (32

where supp, n(r. x) = {x > 0l u(t. x) > 0).supp n(r. x) = {x < Ol u(r. xy > 0},
Let us show that (32'y implies the following important claim (which could not
be proved in § | by analyzing an ordinary differential equation);

Corollary. Let | < B < o+ 1, Then the compactly supported solution of equation
(8) is even and unique.

Proof. [ Bs # 0 is some compactly supported solution ol equation (8). then the
corresponding self-similar solution ng (see (7)) satisfies the condition

meas supp, us(r. xy = (Ty ~ 0" meas supp, O5(&):

s0 that by (32" supp, g = supp fs = &q. Equation (8) is invariant with respect
to the transformation ¢ — —¢£, and, as can be casily veritied by a local analysis,
admits a unique nontrivial extension from the point ¢ = &, into the domain {¢ <
!
&) with 07 1(&y) = (Hf{‘ ') (£4) = 0. Therelore fg(£) is an even solution. Now,
if there exist two different solutions with compact support 6% and 63, then (32')
ensures that their supports are the same and therefore 8} = 6. which completes
the proof. ]
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From Lemma 3 we deduce the following estimates of the similarity represen-
tation (11):

supp 0(1. £) C | —£g — o + ETHT" explmt) £o + o + ETTT " explmr).

(35)
sup B(r. &) > O = (B—1) VB (36)
£eR
sup (1. &) < B3 7= —In(l —1/Ty) € [0.2¢). 37

SeR

L.et us note that from (35) and from the cstimates of Theorem 6 in § 4, it follows
that
meas |supp (1. O\ (—£o. £0)| — 0. 7 — o0. (35)

Let us consider now the equivalent boundary value problem:

O, = (870:) —mbE —10/(B~ D +6% 750, el (38)
(0. &) = 00(&) = TV Vg (€T, ¢ e Q. (39)
B(r. &) =0, 17> 0. £e . (40

Here Q is a bounded domain in R. such that SGpp (7. £) ¢ £ for any 7 > 0 (such
) exists in view of (35)). The estimate (37) ensures global solvability of the
problem, while (36), by force of an casily derived uniform in |1, 00) x R bound
for (87", precludes stabilization as 7 — o0 to the trivial stationary solution
=0

Therclore, since we have shown that the admissible non-trivial compactly sup-
ported solution of equation (38) is unique. uniform in R stabilization to it as
7 — o¢ would follow from existence of a Liapunov function with appropriate
properties oy the problem (38)-(40). Such a function can be formally constructed
using the general approach of [42, 383). However, it cannot be written down ex-
plicitly and admits a representation in terms of a two-parameter tamily of solutions
of the ordinary differential equation (8). This makes verification of the necessary
propertics of such a Liapunov function difficult, and therefore we do not consider
this problem here; see Remarks.

Remark. Conditions (9). (10) were not used in the devivation of (32), (33). Let
us show that (34) (or, which amounts to the same, 37)) for | < B8 < o + 1 also
holds without these restiictions. Indeed. let us consider a solution #(¢: p) of the
stationary equation (38) for £ > 0. satistying the conditions #(01u) = u > 0.
0 (0 p) = 0. From the analysis contained in the prool of Theorem 2 in subscction
3of § 1 it follows that there are sufficiently large 1 > 0. such that 6(£: p) vanishes
al a point & = ¢,. We also have that £, — oo as u — o0. Let us choose > 0
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so large that 1 C (—§€,. £,) and 0y(g) < 6(1€]: w) in €1, Then by the Maximum
Principle #(7. &) < #(|£: p) in R, x (L ie.. the problem (38)—(40) is globally
solvable and estimate (37) holds. Thus we have proved the following general
statement:

Proposition 1. Ler | < B < o+ 1, let ng(x) be an arbitrary compactly supported
function and Ty = Toluy) < o¢ be the time of existence of the solution of the
Cauchy problem (1), (2). Then for all 1 € 0. Ty) we have the estimates

sup u(r. x) > (B~ Ly VD -y B,
R

there exists 6, > O, such that sup g n(t. x) < 8,(To — 1) VHE D,

meas supp n(r. x) = 2£6(Ty — nlA - HDURE-0 L oy 1 15

5 On stability of the self-similar LS-regime, 8 > o + 1

For B > o + |, the self-similar functions #5(£) (let us note, that in general, thére
is more than one) are strictly positive in R (see § 1). The similarity representation
(1) has compact support in &, but as r — T the size ol the support goes to
infinity:

meas supp 6(1. £) ~ (T — 1P WHWRE-DE o0 5 T

It is not particularly hard to show that under the assumptions (9), (10), (. £) is
unifarmly bounded, for 8 > o + | we have the estimate (34) and, therefore (37).
This is done as in the case B < ¢ + |, using the results of § 1 (see Lemma 4),
By Theorem | we also have the lower bound (36), so that if 6(r. &) — 6(&) as
T — 00, then @ 2 0.

However, the fallowing difficulty arises in the analysis of the behaviour of
. €) as 7 = —In(l —1/Ty) — oo. Unlike the cases of HS- and S-regimes
nothing so far staps #(r, £) from stabilizing to the spatially homogencous solution’
of equation (38). @ = (B8 — 1)~V That would mean that the asymptotic
behaviour of the blow-up process does not follow a self-similar pattern. Sufficient
conditions of non-triviality of the limiting function § (8 % (8 — 1)~V¥-1) are
given by Theorem 4, where we have denoted by #¢(£) the elementary solution of
cquation (8) constructed in Theorem 3 of § 1.

Theorem 4. Let B > o + 1, conditions (9). (10) are satisfied, and Ty = Ty(up) <

oo Is the blow-up time of an unbounded solution of the (n'ohlem (h. (2). Fur-
)

ST . -1 - .
thermare, let the initial function up(x) be such that TP ug(¢T7) huersects the

This aceuts. for example, for o = 0 (see Remarks).
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Fig. 63.

funetion O4(£) exactly at nwo points and 'I‘(l)“” ”u()(()) > 64(0). Then we have the
estimate
u(t,0) > 0s(O)(To~ n"YEN 1el0. Ty, 41)

Proof. In the situation of Figure 63, (41) follows from Proposition 2 in § 4. Indeed,
considering the unbounded solutions u(r, x) and v(f, x) = ug(r, x) we have that
N(@) = 2. Since N(r) > 0 always. and the functions w«, v are cven in x, then
N(r) =2 for all 1 € |0, Ty). This means that

supu = u(1,0) > supv = ugs, 0).
1 1
from which (41) fallows. O

In the conditions of Theorem 4 6(r, 0) > #4(0) > (B—1)"YB Y forall 7 > 0,
and therefore 8(£) # 6. In § 6 we shall obtain a pointwise estimate, which
precludes stabilization of (7, £) to a spatially homogenecous solution.

Thereforc onc of the main difficulties which arise in the proof of stabilization
of §(r,:) 1o G4() as 7 — 00, has to do with lack of a uniqueness thcorem for
a non-trivial gelf-similar function #y of the simplest form. Another difficulty,
mentioned in subsection 4, is of constructing a good enough Lyapunov function,
Seec Comments.

§ 6 Asymptotics of unbounded solutions of I.S-regime in a
neighbourhood of the singular point

This whole section is devoted to the proof of effective localization of uubounded
self-similar solutions of the Cauchy problem (0.1), (0.2) for 8 > o+ 1. Below we
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shall show that under certain restrictions on uy(x) and B, the combustion process in
the LS blow-up regime leads to unbounded growth of the temperature as 1 — Ty
at one singular point only, that is

meas wy = meas [y € RY fu(Ty, x)y =00} =0

(see Figures 43, 44). Let us recall that this is a property of unbounded self-
similar solutions of the LS-regime, existence of which was established in § 1 for
all r+1 < B < (o + )N +2)/(N—2),. Here we shall consider non-self-similar
solutions.

Let us introduce a class of functions ug(jx]) with compact support, for which
we shall show that meus w; = 0. As 1y we shall take functions U(]x|: Ug), which
satisfy the stationary equation

i (YUY U =00 =1x > 0
rte

(1
U:.(():U()) = 0. UW:Uy) = Uy, Uy = const > 0.
It was shown in subsection 4.1, § 3, that for B8 < (o + DN + 2)/(N — 2),.
U(|x|.Uy) vanishes at some point r = ro(Uy) > 0. Let us set U(|x|;Up) = 0 for
[x] = ro(Up).
Leto+1 < B < (+1NN+2)/(N=-2),. Let us consider the Cauchy problem
=V W'V +uP. 1 >0, xRV, (2)

10, x) = Utlxl:Up). x e RY: Uy > 0. (3)

Then u = u(r, |x]) is monotone decreasing in |x| and is unbounded: u(r.0) — o0
as t — T (sce Theorem 3 in § 6, Cli. V. and the Remark following it). Moreover,
the solution, which has compact support in x, is critical:

(LX) = 0.(.x) € (0.Ty) x {x e RY | u(r, x) > O} (4)

see § 2. Ch. V. This means, in particular, that for each x € R" there exists a
(finite or infinite) limit
w(Ty o x) = lim (s x).
1=,
Our goal is to prove that u(T', . x) < > in R¥\{0}. A lower bound for u(T . x)
is proved relatively casily using the method of stationary states. The following
assertion will be proved in § 1. Ch. VII for quite general ug = up(|x]).

Theorem 1. let o2 0.0+ 1 < B < (o0 + YN +2)/(N—=2),. Then

ll(T() ) > C«|X| INB -t |)l‘

2N B=(or+1) Ao sty VA=) (5)
¢, = - .
{ﬂ“ (or + 1) [ B } }
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for all sufficiently small | x| > Q.

Derivation of an upper bound for u(T;, x), which proves validity of the equal-
ity meas w;, = 0 and the fact of effective localization itself, is accomplished by
comparing 1(f, x) with the self-similar solution

us(t,x) = (Ty = 1) Y D04(&), €= Ix/(To =", (6)
where m = |8 — (o + 1)]/{2(B — 1)] (existence of the function #5(£) = 0 has
been established in Theorem 4 of § 1). Solution (6) is effectively localized; in

particulay, for o + 1 < B < (o + DN/(N = 2), (Theorem 5. § 1)

hee(t, x ,
(u,a'(” D 01 € (—oe. Ty x RY: (7)
C

ne(t, x) < ug(Ty, x) = Cylx}” HB bl e R’\'\{()]. (8)

Let us state the main result.

Theorem 2. Ler o 2 0, o+ 1 < B < (o + DN/N = 2),. Then the solution of
the problem (2), (3) satisfies the estimate

w(r, vy < Il(T() LX) =< C.\\-\'| -2/ ((nn]‘
9)
re 0, Ty, x e RM\{0).

Remark. From (5), (9) we immediately obtain the estimate Cy > C,, where
Cy is the constant in the asymptotic expansion of the similarity function fg(£) ~
Cef YW i s o0 (see subsection 4, § 1),

Let us prove first some auxiliary claims.

Lemma L. Ler n = u(r, |x]) and ny = nugQr. |x|) have the same blow-up time
t =Ty < oo, Then the functions uy = Ur.Uy) and us(0, r) intersect (in r = |x|)
exactly at one point.

Proaf. The functions ug (1) and ug(0), 1) have to intersect, siince the corresponding
unbounded solutions have the same blow-up times, and ug is a function with
compact support (see Proposition 2 in § 4).

Let us prove now that

ng(0.7) > U e r > 000 < A < ng(0,0). (1)

It is clear that the condition U(Q; Uy) > ns(0.0) will follow from that, since in the
opposite case u(t, 1) and (s, r) will have different blow-up times. More general
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inequalitics of the form of (10) are derived in § 1, Ch. VIL Below we shall briefly
discuss the main idea behind the proof.

Let us fix A € (0, ug(0.0)]. The self-similar solution (6) is defined in RV
for all + € (—oc. Ty). such that, moreover, uy — 0, (ug), — O as —» —o0
uniformly on every compact set in RY. Therefore there exists 7o < 0, such that
ug(to. |x]) intersects U (r: A) only at one point for v > 0. However, uy and U(r; A)
are classical solutions of equation (2) in (rg. To) x {{x] < ro(A)} and ug > U =0
for r = ro(A). Therefore the number of intersections of uy and U cannot increase
in 1. and thus at time ¢ = r, < 0. when ug(r,. 0) = U A), we must have the
inequality ug(f..7) > U@riA). v > O, By (7), (10) follows from that,

Thus, UO: Uy) > ug(0). 0y and the functions U, Uy) and ug (0, r) intersect, We
shall show that there is precisely one intersection point. Assume that this is false,
and that there ure several inersections, Let us consider the family of stationary
solutions {U(r;A)). For all A < ug(0.0) the functions U(r:A) and ug(0.r) do
not intersect (see (10)). Obviously, for sulliciently large A = 0 there is only one
intersection (this follows (rom well-known properties of the functions U (3 A) for
B < (o + N + 2)/(N —2),: see § 3). Therefore by continuous dependence
of U(r;A) on A there exists A = A, > 0, such that the curves « = U(: A,) dnd
= ug(0, r) in the (u.r) plane are tangent at some point 7 = 7, > (), and at the
tangency point we have uy = U, uy = U, u < U}, But then (3/0n0ug(0.r,) < 0,
and that contradicts (7). (]

The following lemima is a direct corollary of Lemma 1 and Proposition 2, § 4.

Lemma 2. Under the conditions af Lenana 1, w(t, vy and ug(t. vy intersect exactly
at one paint for each t € 0. Ty) for v > O, and therefore

w(r.0) > wg(r.0), 1 €0, Ty).

Praaf af Thearem 2, Let us assume that at some point 1 = £, < Ty, r =7, > 0,
inequality (9) is violated. Then by (4)

u(t.r) > Cor,YP i0 p < T, an

Let ug(r, v) blow up at the same time as u(r, v), Let us compare these functions,
considering them as solutions of boundary value problems for (2) in the domain
(1..Ty) x w,, where w, = {|x| < r,}. dw, is the boundary of w,. From (8). (11)
we have
B AN < vy in (1, To) x dw,. (12)

us(t, X) < Cglx|”

From Lemma 2 it follows immediately that

He(le, X)) < U(1,. X)), X € w,, (13
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But then u, 1y have different blow-up times (see Proposition 3 in § 4). Indeed,
from (12), (13) it follows that there exists 7 € (0, T —1,), such that ue(r, +7, x) <
u(t,, x) in w,. By (12) and the Maximum Principle it means that ug(r + 7, x) <
u(t, x)in (1, Ty —7) x w,. Passing in this inequality to the limit as r — (Th—7)7,
we obtain the inequality ug(T'; . x) < w(Ty—7, x) in w,, which is impossible, since
wg (T3, 0) =00, u(Ty—1.0) < 0. O

From Theorems 1, 2 we immediately have
Theorem 3. 1. Let
ogAT+2/N < B < (o+ 1N+ 2)/(N-2),.

Then far any fived p > |B — (o + DHIN/2 = 1, € > O, solutian of the prablem (2).
(3) satisfies the condition

Hee, g, epy = 00, 1 — T (14)

2. Llet g+ 1+ 2/N < B <o+ DN/N =2),. Then far any 1 < p <
[B—(a+ 1HYIN/2, € >0, and all t € (0, Ty) we have the estimate

D
e, )] gl S
(7, - el < -3 y
: SR T(N/2) ¥
(15)
2[) “/1’ 2/
y (N B __me_m> NP B @D o
B—(or+1)

Let us note the two main requirements on iy = un(|x]), tor which estimate (9)
holds. First of all uy is a critical function, that is, , > 0 almost everywhere in
(0, To) x RN, and, sccondly, ug(|x]) intersects wg(0). |x]) (ug(z, |x]) has the same
blow-up time 7 = T’y < oc) only at a single point r = [x| > 0. As far as the first
requirement is concerned, no special problems arise here. The family of critical
up(]xly includes. in addition to functions U(|x|, Up) with compact support, for
example, smooth tunctions of the form

wp(lx]) = Ald® + [x]%) It e RYD A = 0,07 > 0.
it is easily veritied that V- (uf Vi) + 1l > 0 in RY if A @D = any|1 B -
(or + 1)] (this is sufficient for criticality of the classical solution: see § 1, Ch. V),
The functions my(x) = A exp{—a|x|’} are also critical, il
AB-tr i ?_nchp{w - (o + I)|—-IY——~}. a > 0,
- 2+ 1)

However, for critical initial functions wy(x) different from U(| x|, Uy). the question
concerning the number of intersections in x| of the function w(r. {x]) and the
self-similar solution (s, |x]) with the same blow-up time is a more difticult one.
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Here we would like to stress again that all the assertions of the intersection
comparison theorems of § 4 are applicable to compuarison of radially symmetric
solutions of equation (2) with the same interval of existence. As an example of a
fairly general application we shall now derive an exact “self-similw™ upper bound.

We shall consider the Cauchy problem for equation (2) with a radially sym-
metric initial function

1(0, x) = wy(|x]) =0, ve RV, (16)

where the compactly supported function up(r) is non-increasing in r = |x| >
0. sup|(ug)| < oc. Let Ty be the finite blow-up time of the solution, From
the Maximum Principle, which can be applied to the parabolic equation for the
derivative u, (1. r), we conclude that «(z. ry is non-increasing in r, First of all, let
us note that the elementary intersection comparison with the spatially homogeneous
solution w(t) = G, (T — 1) P Jeads to the sclf-similar lower bound:

supu(r,ry = w1, 0) > Ty — 1) - 0. Ty). (17

r=()

Indeed, as in the one-dimensional case. solutions wu(s. r) and w(¢) must intersect
for each 1 € [0. Ty), otherwise by Proposition 2, § 4 (its proof obviously holds
for radially symmetric solutions of the multi-dimensional equation)y, they will have
different blow-up times. The upper bound is proved by comparison with less
trivial self-similar solutions. We shall state the most general result, which holds
not only for the 1.S-, but also for the HS- and S-regimes of evolution of unbounded
solutions.

Theorem 4. Far | < B < (o 4+ IXN + 2)/(N = 2), there cxists a constant
6, > Oy, sa that

w1, 0) < 6,(Ty—0) YU 1 e]0.Ty. (18)

Proaf. Proofs of all the three cases, 8 ~ o+ 1, B =uo+ 1, and 8 > o + 1
are stmilar; see proof of Lemmas 1 and 3 in § 5 for 8 < o + 1. Here we shall
consider the case B8 > o + 1. As solution v(z, r), having the same blow-up time
Ty as w(r.r). let us take

w(e.ry = (Ty~0) YE N9 wy, g =r)(Ty— )", (19)

where the function #(&; w) (solution of problem (4), (17) in § 1) vanishes for
all sufficiently large p > 6y at some point ¢ = £, > 0 (see subsection 4.3 in
§ ). Therefore (19) is an unbounded solution of equation (2) in the domain
(0.Tp) x {r < £,y — D™}, As shown in subsection 4.3, § |, for all g =<
(@ + DN +2)/(N=2),, £ = O and (07), (£, 1) — —o0 as p — oo Lel
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N, (1) be the number of intersections of the solutions w(r. ) and v(7,r) in the
domain {r < £,(Ty — 1)'"). Then under the above restrictions on ug, we conclude
that N, (0) = 1 for any fixed sufficiently large p. At the same time the following
condition clearly holds for the support of the solution: SUpp v(r, ») C suppu(t, r)
for + € [0, Ty). Therefore by Proposition 3, § 4 (it is casy to check that it is valid
in this context), it immediately follows that N, (1) = 1 (if N (/") = 0 at some time
t = ', then solutions (. ) and v(7. r) would have different blow-up times), from
which we obtain (18) with 6, = u. O

Therefore the estimates (17) and (18) show that in the subcritical case 1 < B8 <
(o + DN + 2)/(N ~ 2), the spatial amplitude of radially symmetric solutions
grows according to a self-similar law,

Remark. From the method of the proof it is easy to see that Theorem 4 is valid
not only for the Cauchy problem, but also for the boundary value problem in
(0, Ty) x Bg, Bg = {lx] < R} (R = const > ()) with the boundary condition
w(t, Ry =0 for 1 > 0; the initial function satisfies the same asswmptions,

§ 7 Blow-up regimes, effective localization for semilinear
equations with a source

In this section we study unbounded, as well as some classes of global, solutions
of the Cauchy problem for semilinear parabolic equations of the form

W= Au+Qu), 1 >0. x e RY, (1
w0, x¥) = uy(x) > 0, x e RY; 1, € C(RY), SUp gy < 00, (2)
which describe combustion processes in a medium with a constant heat conductivity
coefficient k(1) = 1. It is assumed that Q) > 0 for 1 > 0 and that for all s >
~
F(s) = / A/~ (3)
Joo Q)

and that, furthermore, F(0) = oo (this property is necessary for uniqueness of
solutions of the Cauchy problem; see § 2, Ch. ).

Equation (1) with a source term describes processes with an infinite speed of
propagation of perturbations, and if g % 0. then w(s, x) > 0 wherever the solution
is defined. Therefore heat localization in strict sense is impossible here, unlike the
case of §§ 1. 4, and we have to use the concept of effective localization. There
will be two directions of inquiry: first of all, we shall clarify the conditions for
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oceurrence of unbounded solutions and, secondly, we shall establish conditions for
their localization (or lack thereof’).

The main results will be obtained by applying methods, many of which are
fitted to the analysis of semilinear equations of the form (1). This has to do with
being able to invert the operator (8/dt — A), as a result of which the problem (1),
(2) is reduced to an integral equation of a sufficiently simple form.

I A general resuit of non-existence of globatl soiutions

We shall start the study by deriving conditions for unboundedness of golutions of
the problem (1). (2) with a general source term Q(u). A great advantage of the
semilinear equation (1) in comparison with quasilinear ones s, m particular, the
fact that the solution of the corresponding equation without a source term,

vy, =Avr,r>0,x¢€ RY: (0, X) = uplx), X € RV, 4)

can be written down in terms of a heat potential

(. x) _ / ex Iyt (X + v) dy (5)
"7/, X)) = *X — - X . .
@2 Je p a; ity AR A

It turns out that one can effectively compare the solution of the problem (4)
with the solution of the original problem (1), (2).

Let E(p. 1) be a sufficiently smooth function, which is monotone increasing in
=0, E(pory = 0 for all admissible p >0, 7 > 0; E(0.7) = 0 and E(p.0) = p.
The function E has been introduced for un operator (functional) comparison of
solutions ol equations (1) and (4). By the change of variables

w(t, xy = EUu, x), 1, (6)

in terms of the new function U, equation (1) takes the form

U, = AU + 2 v + M (7)
Ey, Ey,
and U(0. x) = uy in RY by the identity E(p.0) = p. Then, compuring (7) with
the linear cquation (4) (see § 1, Ch. 1), by the Maximuin Principle we have that
in order to be able to compare their solutions, that is, in order that we have the
inequality
U, ) = vt x), 1 >0, x e RY,

it is sufficient for the function E(p, 7) to satisty the conditions

I;",/,,,(p, ™ =0, QE(p. )~ E.(p.1)20. (8)
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Lemma 1. Ler Q(u) be a convex function in Ry, that is,
Q"'t)y = 0.u > 0. (9)

Then
E(p.ty=F "(F(p)~ ). {(10)
where ™1 is the fimction inverse 1o (3), (s a solution of the system of inequalities

(8).

Proof. The function (10) transforms the second inequality in (8) into an identity.
Let us write the lirst one in an equivalent form:

F'(p)+ Q(F "(F(p) = ) F(p) = 0.
It is satistied for 7 = (). Therefore it holds for all 7 > O (7 < F(p)) by convexity
of Q and monotonicity of F. o
Operator (1) is the identity for 7 == 0),

Lemma 2. Ler Q(u) be « convex function. Then for the problem (1), (2) we have
the lower bound

u(t, ) > F UF@, 0)) ~ 1.1 = 0. x e RV, (1)
where v(1, X) 1s determined from (4).

Since £ is a decreasing function, inequality (11) is equivalent to the following
one:
Fu(t, x))y ~ Flg. )y =1, 1> 0, x e RY, (12)

In the case of a source term of power type, Q(u) = ul, B > 1. we have F(s) =
s /(B ~ 1y and (12) assumes the form

PPy - a8 - . (13)

These inequalitics come in handy for determining conditions of global insolv-
ability of the Cauchy problem (1), (2).

Theorem 1. Let Q") = O for u = O, and assume that the limit
AN
lim e = ¢ < 0O (14)
v Q(,\')
exists. Then for any initial functions, sech that
laoliy: gey > 12 Nv¥2, (15)

the Cauchy problem (1), (2) has no global solutions.
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Proof. First of all let us note that F~'(0) = oo. Therefore it follows immediately
from (12) that «(s. x) is unbounded, il we can find 7, > O and v, € R, such that
Fu(t,. x.)) — 1, =0, or. equivalently.

Fu(t,.x,Nn/t, < 1. (16)
Let us set x. = (. From (5) and the assumption g € L' (RY) we obtain
v(1.0) > 4wty A”:”ll()lll‘ltk‘\’), ! — OC.

and therefore, resolving the indeterminacy in the expression F(o(r, 0)) /1 as 1 — oo,
we have

Fo@, 0y ax AN \
— = 27 Nlluoll, gy, \h-l?)]' o =27 Nl i,

Therefore by (15) for this class ol initial functions (16) holds for x, = 0 and
some sufficiently large 7,, which entails unboundedness ol solutions of the Cauchy
problem (1), (2). o

lim

iN v
Pt R 7

Corollary. Let v = 0 in (14). Then for any wy # O, solution of the problem (1),
(2y s unbounded.

In the case v > O Theorem | detines a certain minimal initial energy needed for
the oceurrence of finite time blow-up: £, = (2rNv)¥?, In fact, for v € R, in
many cases all non-trivial solutions of the problem are unbounded. In the sequel
this will be demonstrated for the example of a power type source term, Q(u) = u¥b,
Let us note that using the inequality (16), we could establish conditions of global
insolvability also for v = o¢ (in which case conclusions of the theorem to some
extent indicate the possibility of existence of a class of global solutions).

2 Equation with a power type nonlinearity u, = Au + u”

In this subsection we present a detailed analysis of unbounded and global solutions
of the Cauchy problem for an equation with a power type source term:

Ay =, — Au—a? =0, 10, x € RY,
) (17
(@ ) =ag(xy > 0, xe RY: B 1.

Some of the results are the analogues of those obtained in § 3 for quasilinear
equations: therefore they are stated without proofs, Observe that from Theorem |
we immediately have that all selutions «(r. x) 2 () are unbounded for 8 € (1.1 +
2/N). Therefore globally existing solutions are possible only for 8 > 1 + 2/N (in
fact they do not exist for 8 = 1 + 2/N either).



278 IV Nonlinear equation with a source

We shall start the study of the problem (17) by constructing unbounded sub-
and global supersolutions, These provide explicit conditions of local or global
solvability,

I Canditions af glabal insalvability of the prablem

Construction of unbounded subsolutions of problem (17) allows us to derive a sharp
upper bound on the time ol existence of a solution, which due to the technique of
the proof’ was not obtained in Theorem 1,

Let us consider in (0. T) x RY the function

w ()= (T =1y VBN (&), &= al) (T =0 (18)

Let 8 € C3([0.00)), & (0) = 0. For the function (18) to be a subsolution of
equation (17). it is cnough to satisly the inequality A(n ) < O in (0, T) x R,
Substitution of (18) into (17) gives us the following condition:

I Norg N L I A . R
o (g 9 ) =30 E= gl A0z 0650 (19)

We shall seek the function 8 in the form 6 (€) = Aexp{—ag?}, where A > 0,
« > () are constants.,
Then from (19) we obtain the inequality

a(da + DE + AP Vexplall — Bigd) > 2aN +1/(B — 1. (20)
It is casy to sce that it is satistied for any

2aN + 1/(B—=1H]"*

fzt0= ada -+ 1)

and m order that (20) holds for the remaining ¢ € [0. £, ). it is sufficient that the
inequality
AR Vexpla(l = BYE2) = 2aN + 1/(B~ 1) (21)

be satistied.
Theorem 2. Let the initial function uy in (17) be such that
wp(x) > T l/(lf'“lDACXP{__“‘_\.‘Z-[‘ I]- Te RN,

where T. . A are positive constants, and «, A satisfy inequality (21). Then the
solution of problem (17 exists for time not exceeding T.

For convenience, we state an immediate corollary of Theorem 1.
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Theorem 3. Let | < B < 1+ 2/N, uy 5 0. Then the soluion of problem (17) is
unhounded.

It is not hard to obtain this result by reasoning as in § 3. subsection 2. that
is, by comparing the family of subsolutions (18) with an arbitrarily small funda-
mental solution of the heat equation. In the case 8 < | + 2/N this procedure is
comparatively simple. In the critical case 8 = | + 2/N it is much harder to do,
and therefore it is more convenient to construct an unbounded subsolution by an
iterative method. as is done in the proof of the following assertion.

Theorem 4. lLet 8= 1 + 2/N, uy # 0. Then the problem (17) does not have a
elobal soltion.

Proof. We carry out the proof for N = 2, that is, 8 = | 4+ 2/N = 2. With slight
modifications the same argument works for any N.

First of all let us note that for any initial function ngz 0 we can always find
constants 7y, Ag. ap. such that n(ry. x) > Ag exp{—a(,l.\'ll] in R?. Therefore by the
comparison theorem, it is sufficient to prove the claim for functions of the form

(X)) = Ag cxp{~a()\,\'\3]. xre R 22)
The Cauchy problem (17), (22) for N = 2, 8 = 2. is equivalent to the following
integral equation:
 f v = y[
n(r. vy =P = 4w eXP { e b g (V) dy 4
JR? 41
+ /’ |4 (1 T)]"' / X v~ '\"3 w(r ) dydr (23)
- e D Ly cdT. 2
Jo Jre P\ 40 - ) ’ ’
Let us form the recurrent sequence of functions
Uy, x)y = PO Uy 0.0y = PULG ) n= 1.2,
From (23) it follows imniediately that for any »
n(t, x) = U, x). 1= 0.x e R,

Therefore if {{/,} diverges at least at one point, the original problem has no global
solution. Let ug show that this is indeed the case.
First of all we have

Uy, x) = PO) =y (HEQ. v,

where (1) = Ay/(1 + dayt), E(1. x) = cxp{——an\.\‘\z/(l + 4agr)}). Let us now
estimate other terms in the sequence.
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Let us prove by induction that

u

U, xy > }: LfA(I)F (roxy, n=273..., (24)
k":l

where functions 1, 2 0 will be defined below (v, we already know). From (23)
we easily obtain

Upat.x)y = mE+

/ dr/ [47( - 7)) pr{ g—\(«[:_—\«l%} <}: I’A(T)Ek(T. _\')) dy >
A

>k +}: / }:1/,(71/”, () dr x
i

o= 7] L
4 ” 1 o :l\fl oy .
/ Mg -7l pr{ T }l (1, ¥) dy

(25)
The tnner integrals in spatial variables are easily calculated forcach k = 1,2, ... n
and are equal to

1+ door ox (k + Daplap? .
n + daryt ~ 4kaur | + 4k + Dagt ~ dkagr | ™
l *ﬂf}g.()j; ES' N x

(l\ -+ l)(l -+ 4(1’()[

Therefore from (25) we obtain the estimate

UII-!-I(I~ '\') :

EM !
=l b L , | 4 4 !
i +}: (k + 1yl +4an1) / [}-T‘VI(T)H” A+ daoT) dr.
that is, in (24) we can set
| a
vyl T / (T g (0 + dagry dr. (26)
w1 (1) = T l)(l+4(r,)1) ) ? ! Lt 1(T) 0T)

Let us show that hence we can obtain the following inequalities:

A() 4 |
(1) > e [ 0} Ay It (L 4 dergr). 27
nlh) 2 - (“ I( 1 + 4(1’()[) <4(X()> @ I+ o ) ( )
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This estimate is valid for k = 1. Let it hold for all 1 < k < M, and let us show
that (27) holds also for & = M + 1. From (26) we have that

l A M+l s
vai(l) = <~—i> (dag)” x

(M + 1Y(] + dagt) \4ay
M+ dagT)
x e M e NT M 1 = ] (28)
/() | 4 4(1/(;1 g

[tis not hard to verify that =M M +1 =1y = M(M+1)(M+2)/6 > M(M+1)?/6.
so that (27) follows immediately from the inequality (28) for k = M + 1.
Thus, as n — o¢ we obtain the inequality

A()L([ £X) -1
l e kot 29
w0z | + dayt ?: (=)
where AE )
s = 2P dagn = 0,
24ay
However, the series in (29) diverges for z = 1, for example, for x = 0 (F@.0) =

1y. 1 =1,. where

Ao
~———In(l + deyt,) = 1.
Taa n(l + 4agty)

= — | €X ——— .
4(1() P /\()

Therefore solution of the problem with an initial function of the form (22) exists
for time not exceeding 1,. ]

that s,

Summing the series in (29), we can obtain an explicit form of the presumed
“subsolution™ 1 (7. .x), which hag been constructed by the iterative procedure for
the critical case 8 = | 4 2/N, N = 2. It has quite an unusual spatio-temporal
structure:

n(t. Xy > (1y) =

Ay aglrl? o aplx]? h
S AR SN Lok N U O JUACH VY S oL NS S FYS (R P S
| + dayt pr{ | 4+ Aoyt 4(?0 P | + devyt th+ Al

0O<t <1, veR.

Thus, if | < 8 < 1 + 2/N all non-trivial solutions of the problem (17) are
unbounded.
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2 Existence time of elementary perturbations

Using inequality (13), derived in subsection 1, it is possible to obtain explicit upper
bounds on the time of existence of unbounded solutions. In the case of power type
nonlinearity, this inequality has the form

. 2
/ exp {mu—} no(x + vy dy > MN2-HB-D (30)
Jry 41

where M = (4myM2(B 1) VU=V _1f this inequality is satisied at a point (1., x.),
then the unbounded solution exists for time not exceeding 1,.

Let ng(x) be an elementary perturbation: ny(x) = 8 > 0 for all |x} < a < o0,
np(x) = 0 for Ly} 2 a. Using the estimate cxp{—\_\'\z/(41)] > (1 - \_\-\2/(41))4,, we
obtain a lower bound for the integral in (30):

5

(. x) > / <l - DL) (x4 Vydy,
Jivirn 4 3N

1(1y = min{a, 212).

Clearly, in this case we can set v, = 0. Let us assume initially that 7, > (12/4.
Then /(1,) = a, and the upper bound for the time of existence of the solution is
determined from the equation

N+2 N2
N2 D g a T

Mom = 8
frobuson = =7 = M1 ANDN D

For certain 8 this equation can be solved exactly.
For example, for B =1 4 2/N

M,

1, = e 1} Lany > M.
ol jy, — M Heol 1 aemy

This formula is correct if 1, > a/4, that is.
M < ol g < 4Myja* + M.
It 8= (44 N)/(2+ Ny, then

M+ M 4
p= — L Miolonmyy < =5 (M + My).
Neto My e a*

Let us note that this estimate shows that for 8= (4 + N)/(2+N) < | +2/N solu-
tions corresponding to elementary initial perturbations with arbitrarily low energy.
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are unbounded. The same applies to the case 8= (3 4 N)/(] + N), when

lh = L id 2+M :
ST} 2ol e, 2ol we) '

(here we must have 7, > a?/4, that ig. the energy gl 1w, must not be too high).
This estimate is valid, for example, if ngll; gy, < 2M/a.

Let ug now consider the case 1* < a’/4. Then /(1) = 2:Y% in (31), and the
solution of the inequality (30) has the form

p-1 :

M SN L

= | | My = e
Molinolry (N + 2yaV

The estimate T < 1, holds if 1* < a’/4, that is, if

AL
o
ol sy = A (2“) .

3 Global solntions for B > 1 4 2/N
We shall seck a bounded supersolution of equation (17) in the form
ny (o xy = (T 40 VB Vg (&), €= x|)(T +n'l% (32)

where 6, (£) = Aexp{—aé’} and T, A, a are positive constants, Substitution of
(32) in the condition A(n,) > 0 results in an inequality, which can be brought to
the form

a(da — DE + A Vexpla(l = BYgP) < 2aN — 1/(B—-1). ée R, (33)
From this we obtain the restrictions on the parameters A and «. First of all, the
right-hand side of (33) must be positive, that is

O > e (34)

Secondly,

I -1 I

A< <2(XN - ~'"B-:~‘l'> , < (35)
and from thege inequalitics we have the restriction 8 > | 4 2/N. Thus we have
proved
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Theorem 5. Let B> | + 2/N and let the initial function wy be snch that
ne(x) < FooHBh Y exp{-a\.\'\2T"1], x € RV, (36)

where T, A, a are constants, the two last ones satisfying inequalities (34), (35).
Then problem (17) has a global solution, and furthermore

12
nu(t, Xy < (T + 1y~ Vs DA cxp{~;(;‘i‘l} in R, x RN, (37)

In conclusion, let us observe that the stable set W constructed here consists of
functions 1y which decay exponentially as Lv| — oc. As in subsections 4, 5 of
§ 3, for B8 > 1 4+2/N we could construct a different set ‘W with a weaker (power)
decay rate of ug(x) at infinity. In this case the boundary of ‘W consists of global
self-similar solutions ol equation (17), which will be considered in subsection 2.6.

4 Effective localization of unbounded solutions. LS-regime of combustion

In this subsection we move on to a deseription of particular properties of unbounded
solutions of problem (17): their spatio-temporal structure for times close to the
blow-up time. A fundamental property of blow-up regimes, which does not depend
on precise initial functions, is the property of localization. Equation (17) describes
processes with infinite speed of propagation of perturbations, therefore, as in the
case ol the boundary value problem for the heat equation without a source term
(see § 4 of Ch. 111, we shall introduce the concept of effective localization of
combustion.

Definition. An unbounded solution of the Cauchy problem (17) is called effectively
localized if it goes to infinity as 1 — T, (T < o0 is the time of existence of the
solution) on a bounded set

w; = |X € R [ i(Ty ., x) = :lelﬁ u(l, x) = xl.
T
which we shall call the localization domain.

If, on the other hand, w; is an unbounded domain (for example, w; = RY)
then we say that there is no effective localization.

For our purposes the above definition is sufficient. In the general case the
following blow-up set should be considered: B, = {x € R |31, — Tyand x, —
£ sueh that (s, x,) — oo a8 n - oo}, which by definition of an unbounded
solution is non-cmpty for bell-shaped data.

In the following an effectively localized combustion process will be called sim-
ply localized. lo the one-dimensional case it is convenient o introduce localization
depth

Ly = meas {v € R{u(T . x) = oc)



§ 7 Blow-up regimes for semilinear equations 285

u(75,1)
Ty
:Mll;;
[
G
[ P
Py
$J;';ljl|
Provra
T R A
RERERRRERE
[ v !
IR I A
,l“,llill
R R R
Phy Py
RN ,“, 4(T) Ly}
i T ’

! Ly J A
Fig. 64. Lffective localization (L is the tocalization depth)

(that is, Ly is the extent of the domain i which the solution grows without bound
as 1 — Ty; see Figure 64). If u(s. v) becomes infinite at one point, then Ly = 0,
which corresponds to the LS blow-up regime of combustion,

Evolution of unbounded solutions of the problem (17) proceeds for 8 > 1,
as a rule, precisely in the LS-regime and (s, x) — oo on a set oy, of measure
zero. This is indicated, for example, by the estimates obtained in Theorem 2, in
which we derived unbounded subsolutions that do evolve in the LS-regime. And,
of course, this conclusion is corroborated by numerical computations. In Figure 65
we present results of one such computation. It is clearly seen that in the blow-up
process there arises a spatio-temporal structure with ever decreasing half-width and
a conspicunus unique maximum in x of the spatial profile.

Let us consider the spatio-temporal structure of unbounded solutions (or times
close to blow-up time. For that, by analogy with the quasilinear case (§ 1), we
can consider unbounded self-similar solutions

wstt. x) = (Fy = 1) VB Vggg) & = iy (Fy = '3 (38)
where the function #4(£) > () satisfies the ordinary differential equation
! N Ty l ’ I 3 o .
050y = 0. By(o0) = (. (40)

If we assume that the self-similar solution 1y desceribes characteristic properties
of LS blow-up regimeg, then the amplitude of the solution w,,(7) and the half-width
of a symmetric domain of intensive combustion /(1) can be estimated as 1 — ¥,
aecording to

w1y = sup u(t, x) ~ (Fy—1) V3D 1)~ (Ty = '/, al)
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Fig. 65. Numerical solution of the problem (17) for g = 4 N = 11 11 1y = 0.236, 2:
15 = 0.269, 3: 17 = 0.291, 4: 14 = 0.299. 5 15 = 0.3006, 6: 1, = 03018, 72 17 = 0.3022

There is, however, one significant difference hetween this and the quasilinear
case.

Proposition 1. Let N = 1. Then for any B > 1 the problem (39), (40) has no
solutions 0g(&) > ().

For the cuse B = 3 it has been proved in [219]; for arbitrary 8 > 1 it has
been established in [3] (see also |1, 2], where 1 < 8 < 3). In the=course of
the proof (see [3]) it is shown that every solution of equation (39) in the domain
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{£ > & = 0}, satisfying conditions
By = >0y = (B~ 1) VE N 0Ly =0 (42)

vanishes at some point & = £ > &, and is monotone on (£q. £;). Therefore
(39). (42) has no non-monotone positive solutions having a point ul' minimum,
We remind the reader that in the proot of Theorem 3, subsection 4, § 1, we made
essential use of non-monotonicity of solutions,

It is appropriate to recall that the analysis of that subsection concerning the
self-similar equation (39). linearized around the homothermic solution 6 = (8 —
)71 ghows that it has no non-monotone solutions.

Let us observe that this argument correctly indicates non-existence of non-
trivial solutions of the problem (39). (40) for any | < B < (N + 2)/(N - 2).,
[197]. Therefore for those values of B asymplotic evolution of unbounded solutions
follows non-self-similar patterns. In distinction to (41). the half-width of the
combustion domain changes as 7 — T, according to L. (1) ~ (Ty ~ 2| In(Ty ~
01" (see Remarks).

In the case B > (N + 2) /(N —2). the problem (39), (40) may have non- lrxvml
solutions. Then as 1 — T . the solution evolves according to the self-similar laws
of (41).

Example. Let 8 = 2. Then for all N € (6. 16) (note that here 8 > | + 2/N).
there exists a solution of the problem (39), (40)

B5(£) = An/(an + EN7 + By/(an + £7). (43)
where ay. Ay. By are positive constants:

2[10(1 +N/7)"' (N + 14)].

ay =
Ay = 48]10(1 +N/2) -~ (N 4 14)].
By = 24[(1 + N/2)'* = 2],

Non-existence of self-similar solutions in the one-dimensional case requires a
substantial modification of the method of proof of effective localization for un-
bounded solutions.

S Proof of effective localization in the one-dimensional casc

Thus. for N = | the problem (39). (40) has no solutions. However. (39) admits
solutions Ag(£) with the asymptotics

By = 6,(&) = C& VB 4 w(E)). £ — oo, (44)

where w(€) — 0 as & — oo and € > 0 is a constant., Let uy tix a C = C, in (44)
and extend the solution into the donmm of sutticiently small £. Then. obviously.
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Fig. 68. Solutions of equation (76) for | < 3 < 2

Therefore for 8 > 2 the solution is strictly positive in R, u

Let us also observe that for all 8 = 1. the required solution 6y is not smaller
than the decreasing solution of the equation without a source.

L B2 1 : =000, f(0)=9
- — = = (), = .
YB-) B=1 . i
which was considered in detail in § 4, Ch. 111, There it was shown that the function
f(¢&) =2 0 is determined from a urlam algebraic equality, which allows us to derive
lower houn(lx for 6,({). Hence, for example in the case | < 8 < 2, we have

!

2 - ﬁ (2 BBy
meas supp 6, > meas supp f =2 (-—~~~~)
B -1
Quite a good understanding of qualitative properties of the solution 6, can be
gleaned from considering Figures 68. 09, which show the field of integral curves
of the equation

‘ 5 172
o B2 B2 BELEPR"
f = i 1)( {L(B } I +B 10— 0 } . (76)

which is equivalent to (70). The thick line denotes the solution 4, = 0 with the
asymptotics (72). which satisfies conditions (71).

Here it has to be said that for 8 = 2, apart from a solutian of the form (72). there
exists another family of admissible positive salutions with different asymptotics:

O(0) = (B — 1y VB CgRBDED e ) C = const > (. (72)
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0 A
Fig. 69. Solutions of equation (76} far 8 > 2. Solutians of the problem (70), (71) are not
unique

which is not analytic at ¢ = 0 and is shown in Figure 69. Numerical simulations
of the problem (56). (57) indicate that the spatio-temporal structure of a.s.s. (68)
does correctly describe the asymptotic properties of unbounded solutions and that
the function (72) is realized in the LS-regime as 1 — Ty,

Validity of this “slicing™ of equation (56) and passage o a first order equa-
tion has been checked by numerous numerical experiments. which demonstrated
asymptotic convergence of the unbounded solution of prohlem (56). (57) to as.s.
(68). In numerical computations, similarity representation of the solution U(7, x)
was determined from the formula

U (r Qo e )

B, L) = 6,() -~
U,

(17

where [[Ull¢ = sup, Utz x). 6,(0) = (B — D7VH#-D A always, the spatio-
temporal structure of a.s.s. (68) is implicit in the representation (77). and if w(r. x)
evolves according to the rules of (68), we must have the limiting equality

lim 8.0 = 0,0, (78)
T ——

We emphasize that in this case it is hard to accomplish numerically the usual
similarity normalization as, for example, in § 4. Ch. I1l, since here the blow-up
time is not known a priori.

Convergence in the sense of (78) to a.s.s. (68) for sufficiently general initial
functions has been established numerically for different 8 € (1.2|. For 8 > 2
(LS-regime). as we know. the similarity function 6, = 6,(|£]) in (68) is not



298 IV Nonlinear equation with a source

8(t,x)
10

- 1
g 1/ 2 J 4 5 8 g b
L emlm

Fig. 70. Numerical verificmion of asympiotic sabitity in the sense of (78) of a.s.s. (68)
for B=2( =), N= bty =282 15 =303 313 =312 41y =3.16, 5
15 = 3.18

uniquely detined. As an example (Figure 70) we show the results of similarity
transformation (77) of the solution of problem (56), (57) for 8 = 2, when 6, has
a very simple form: see (74). Convergence (78) is clearly seen already when the
solution grows by a tactor of 10-20.

4 Three tvpes of unbounded solutions

From (68) it follows that the spatio-temporal structure of a.s.s. depends on the
sign of the difference B8 — 2. Thus, if 8 < 2, then U, x) — o0 as 1 — T
simultancously in the whole space: this is the HS-regime. and there is no local-
ization. Thus we have found a semilinear equation with unbounded HS-solutions
(vecall that the equation 1, = An + n? does not admit such solutions). Figure 71
shows the results of numerical computation of the one-dimensional problem (56).
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Uft.z)

0 5 0 7 20 7

Fig. 71. Numerical sohnion of ihe problem (56), (57) for B8 = 1.35 (HS-regime), ¥ = 1
by = 200, 20 10 = 287, 3 1 = 3.00, 4 1y = 304 5 g5 = 309, 6 1 = 328, T
17 = 334, 8: 1y = 3,400 9 1y = 345, 100 139 = 3.51

(37) for B < 2, which are in good agreement with (68), in particular, as regards
the change in the amplitude and half-width of the solution.

For 8 = 2, as follows from (68) and numerical results, the combustion process
evolves in the S-regime: u(r, x) becomes infinite on a bounded set. In the case
of a symmetric elementary initial perturbation, the locahzation domain of the S-
regime is the support of the function (74): w; = {|x| < 7} (Figure 72). Similarity
transfarmation of this computation is shown in Figure 70. If localization domains
corresponding to different perturbations are digjoint, combustion inside each one
of them proceeds almost independently as 1 — T (Figure 73).

Remark. Proving localization of sufficiently arbitrary unbounded solutions of
equation (56) for 8 2 2 is an interesting mathematical problem. In particular, in
the one-dimensional case for 8 = 2. one could use to that end the method of in-
tersection comparison of the solution under consideration and an interesting exact
non-invariant solution (it is not invariant with respect to Lie-Biicklund transforma-
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Ult,z)

17 = 3479, 8t 1g = 3,183, 91 14 = 3187

tion groups). This exact solution, which is 27-pertodic in space, has the following
form:
U, (1, x) = D1y + cos x|,

where the functions ¢ (1), (1) satisty the system of nonlincar ordinary differential
equations
==+ 2PN Y =+ p— PPt 1> 0.

as can be casily checked. In fact, this dynamical system is precisely the semilinear
parabolic equation on the linear subspace {1, cos x}, which is invariant under the
nonlinear operator U, + (U,)* + U?. This system is equivalent to the first order
cquation

d/ded = (f + p ~ P’y ) (2p>p — b).

It is easy to show that this equation has a family of trajectories corresponding to
various unbounded solutions of equation (56) for N = 1, 8 = 2, with the following
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asymptotic behaviour close to the blow-up time 1 = 7'
Py = (1/2)(To~ 1) |1 + OWTy ~ Dl In(Ty = n).

Wity =14+ 00Ty ~ D] In(Ty — H)]).

Therefore, as + — T
U.tt.x) = (Ty — 7 eos” (x/2) + O In(Ty — )).

that is, as the blow-up time is approached, the exact solution U, (f, x) converges
uniformly (after the corresponding similarity transformation) to the approximate
self-similar solution (068), (74). Howcver, in the general case the problems of
localization for 8 = 2, N > I, remain for the most part open.

If 8 > 2, then (68) ensures unbounded growth of the solution at one point
only. This is the localized LS-regime: a specitic example is shown in Figure 74, 1t
is clearly seen that everywhere, apart from one singular point, the solution U (1. x)
of (56). (57). is bounded from above uniformly in ¢ by some limiting profile
UT i xy < 2o, 0 # 3.

In those figures. dashed lines indicate the motion of the half-width v, () of the
thermal structure, combustion of which is initiated by the same perturbation. First
the amplitude of the solution U(r. vy becomes smaller and the half-width increases,
which corresponds to the process of spread of the non-resonance perturbation.
Then, approaching finite time blow-up. x. /(1) starts to change in accordance with
ass. (68) x. (1) ~ (Ty — B WRADL T In particular, for 8 = 2
(S-regime) the half-width stabilizes, which can be clearly seen in Figure 72.

Conclusions concerning stability of w.s.s.. which we presented above, are in
good agreement with the qualitative non-stationary averaging theory. As in § 2,
we shall seek an approximate solution U, (1. vy in the form U, (1, x) = () u(€),
E=x/dbny 1> 0, & € RV, and let us demand that U/, satisfy the conservation
laws

/ D(Udx=0, [ UDW,)dx=0.
Jre Jrr

Then we arrive at a system of ordinary differential equations for the amplitude

yr(1)y and the half-width ¢ (1):

(™Y = vyt p™ 2 4 vapPp .
hl i I hl (7())
W™y =~ N T gt f sy Pt gV

where v, (i == 1,2,....5) are some functionals ol u (their exact form can be easily
written down). From the system we pass to the single equation
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Fig. 73. tndependent combustion of thermal structures for 8 = 2 (S-regime), N = L 1:
o= (020 12 o= 2,915, 3 0y = 30260 40 1y = 3.079, 5t 15 = 3015060 0, = 34330 T:
ty o= 30421 8 g = 31459

]

dy _ _n¥ {‘“‘”” @b } > 0. > 0. (80)
dep @ | aryB Vb7 — bah — 1

where ay. ay. by, by are some canstants, which we take ta be positive based on
natural requirements an the behaviaur of the wajectories.

Equation (80) is mare camplicated than the one considered in § 2. The main
difference is essentially the following: (80) contains three independent critical
values ol the parameter 8, which “control” the general structure of the phase plane.
First is 8 = 2: the criterion 8 2 2 determines the presence. or lack, of localization
of unbounded solutions (in the cases 8 > 2 and 8 < 2 the behaviour of the integral
curves is completely difterent). Secondly, 8 = 1 +2/N: for 8 < 1 +2/N equation
(80) has no globally defined trajectories, while on the other hand, for 8 > 1+ 2/N
there are trajectories o which there correspond global solutions ol the original
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Fig. 74. Numecrical solution of the problem (56). (57) for 8 = 2.50 (LS-regime). N = {:
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problem. Finally. the third critical value is 8 = 2 4+ 2/N. Faor large amplitudes o
we can neglect constant terms in the numerator and the denaminator of (80). As
a result we have the approximate equation

oo a0 )
deh P

ar B 2 — by

= |. Therefare the phase
plane behaviaur depends on the candition 8 2 o + 1 + 2/N = 24 2/N. For

B < 24 2/N all unbaunded trajectaries canverge ta the “separatrix™ generated by
a5 (68):

which 1s the same as the one cansidered in § 2 for o

= B

gty ~ (Ty — 1) '/

l/l — O
|)l (’)(,) ~ (T() - ,)(/5~~2)/|3(/§~«'-|)l (8')

as r — T,y. On the other hand. if 8 > 2+ 2/N, then the asymptoticy af unbounded
solutions as + — T 1s a non-self-similar ane (see § 2)
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g

Fig. 75. tntegral curves of equation (80) for B e (1.2). g = t + 2/N

Most of these results are in good qualitative agreement with the conclusions we
arrived at earlier. The estimates (81) give us, in addition, quantitative agreement
for 1 < B < 2+ 2/N, which supplements the evidence that the construction of
unbaunded a.s.s. (68) is valid.

Figures 75-77 show schematically the fields of integral curves of equation (80)
in. respectively, the cases 1 < 8 < 2 (HS blaw-up regime), 8 = 2 (S-regime),
g,B > 2 (LS-regime). In all three igures the parameters 8. N have been sa chosen,
that, first, 8 = 1 + 2/N, sa that there is a class of global trajectaries, and, secand,
B < 24 2/N, that is. unbounded trajectaries behave according ta (81). We denate
by g the separatrix, which separates families of global and unbounded trajectories,
and by iy and i . the isoclines of zero and infinity, respectively.

Thus, localization of unbounded solutions of the problem (56). (57) oceurs for
B = 2 (S-regime) and B > 2 (LS-regime), while for 8 < 2 there is no localization.
Clearly. this classilication temains the same if we go back to the original problem
(54), (55). Setting u, = exp{lU,} — 1, we obtain the tfollowing expression for a.s.s.
of equation (54):

n(t x) = exp{(To =0 VP Do&)) ~1.
(82)
é:: - \'\'l/('r() - I)(/i 120 l)l.

It is not hard to see that it satisties the following nonlinear first order equation of
Hamilton-Jacobi type:

duy /I = Va2 + 1)+ (1 + upy In#( + ay). (83)
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§ 7 Blow-up regimes for semilinear equations

I}
g P ?
Fig. 76. Intcgral curves of equation (80) for B = 2 (the case B » | +2/N for N = 2),
hy = (I)'l/(l'_v)l’/:

g
Fig. 77. Integral curves of equation (80) for 8= 2 (the case | -+ 2/N - B < 24 2/N)

Let ug note that in the original variables 7. .. o the evolution of the blow-
up process looks different. In particular, from (82) it is not hard to obtain an
expression for the dependence on time of the half-width of the structure, L. (7).
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forall B> 1.
Ly ~ (Tg =Mt = Ty (84)

In this sense there is no difference between the three finite time blow-up
regimes. At the same time, for 8 < 2 the solutions are not localized and
w(i.x) — oo in RY 1 — Ty . On the other hand, for B8 > 2 solutions are
localized. The cstimate (84) holds in all the cases. Therefore in numerical simu-
lations of the original problem (54). (55) the difference between the HS- and S- .
LS-regimes becomes apparent only once the amplitude ol the unbounded solution
has grown significantly (by order of tens of hundreds). The logarithmic change of
variable U = In(l 4+ ) removes this inconvenience (see Figures 71. 72, where in
order to identify the blow-up regime it is sufficieat for the amplitude to grow by
a factor of 5-10).

5 Global w.s.s.

For 8 > | + 2/N there exist global as.s. of the problem (54). (55). From the
method of construction of bounded supersolutions in Theorem 9 it follows that at
the asymptotic stage we have to neglect the term | VU|? in equation (56). Therefore
the global w.s.s. U, satisty the parabolic equation

A= AU, 4+ UP. 1 > 0. x e RV,

asymptotic propertics of the solutions of’ which are well known: see subsection
2.6.

Going back to the original notation, we sce that the global as.s. uy = exp{lU.}—
I satisfies the following parabolic equation:

du, /ot = An, — IVu\lz/(l + )+ (14 u)Infd + 0. (85)

Therefore equation (54) has the following interesting property: asymptotic be-
haviour of its unbounded and globhal solutions is described by vastly dissimilar
nonlinear equations of different orders, (83) and (83), respectively.

Remarks and comments on the literature

The first qualitative and numerical results for unbounded solutions of the problem
(0.1, (0.2) were obtained in |349, 353, 391, 89, 92, 268, 276]|. These papers also
contain a preliminary analysis of unbounded self-similar solutions and first formu-
late the concepts of localization in finite time blow-up regimes in heat conducting
media with volumetric energy production.
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§ 1. Numerical examples of evolution of S-, HS-, and LS-regimes are taken from
[391, 92, 353]. The idea of describing non-monotonicity of the functions #g(£)
for B > o + 1 close to the homothermic solution by linearizing the equation,
appears 1 |349, 89] (see also |90, 267, 268], which present numerous examples
of numerical construction of the families of solutions {#g} for various o > 0 and
B > o+ 1. N =1). This idea was then exploited in |1, 2]. where existence of a
finite set of self-similar functions #5(€) of the LS-regime is proved for N = 1 (the
methods of |1, 2| are different from those of § 1). The asymptotic expansion (33)
can be proved by the methods of [210] and |39. 40. 41, 370] (for N = | it was
done in [1. 2]).

§ 2. The idea of methods of non-stationary averaging is due to the authors of
[917; for more on this method sec also [89. 90. 268]. Let us note that simplicity,
constructiveness and sufficient trustworthiness of the method muke it applicable in
a number of other problems. for example, in the study of nonlinear problems of
thermochemistry |56]. There are reasons to consider it as a version of the method
ol radially spherical decomposition ol the function space (as opposed to the method
of spherical decomposition 335, 336]).

§ 3. In the presentation of subsections 1-3 we mainly follow | 152]. We note that
for o = 0 Theorem 2 gives the familiar vesult [296. 112] (the same is true for
Theorem 3), though, of course, the prool in the quasilinear case iy substantially
different from the semilinear case. Theorem 2 is also true for the critical exponent
B = o+ 1+42/N|138]. Let us briefly meation a modified simpler argument based
on inequality (19) (sce a slightly different approach in [244]). As in the proof
of Theorem 2, there exists a solution vy of (10) such that « = vy everywhere.
Integrating equation (1) with 8 = o + 1 4+ 2/N over RY we conclude that

I
~(I«, w(r, X)dx = /u”(l, dx 2 /uf(l. X)dy =
drt, . .

¢
(Ty+1n°

Hence. [u(r.v)dx 2 ¢ In(Ty + 1) — o< as t - oc. Therefore, there exists
t > | such that M| = f w(r. xydx > 1. By comparison we have w(r. x) 2 v(1, x)
for r > ry, where u(r. x) solves (10) with initial data w(r). x). It follows from
asymptotic stability of the self-similar solution (11) (| 107]) that for 12 > 1, there
holds v(f>, x) ~ v,(f2. x) where v, has the same mass M, > 1. Therefore, the
constant m, in (12) satisfies ny = no(My) > 1. Finally, the profile v.(f;. x)
satisfies the property (19). and hence «(f. x) blows up in a finite time.

The survey [290] (see also [292]) contains a large number of nonlmear equations
and systems thereof, for which there exists a critical value of the parameter of the
source term (in the sense of Fujita [112]).

The assertions of subsection 4 were obtained for o = 0 in |210]. The basis
of the proof of Lemma | is the well known Pohozaev tnequality [332, 333].
the scheme of the proof is taken from |210]. The fawily of solutions (50) was
discovered in |298]. where the equation Aw -~ oV 12/ -2 = O was considered.
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Existence of such a family has to do with invariance of the elliptic equation with
respect to a counformal transformation; see the bibliography in [221}, as well as
[220}. Results of subsections 5-6 are obtained using the methods of | 125, 127. 162].
In the passage to the limit 7 — oo in (75) we follow an idea from |178, 179]
where a more detailed analysis is given.

§ 4. Intersection comparison theorems of subsection | were first applied to study
unbounded solutions of equation (1) in |[129] (see also |130], where Theorem
1’ (subsection 2) is proved). The subtler Theorem | is proved in [ 132, 139].
Let us note that intersection comparison with the explicit solution w,(t. x) for
B = ¢ + 1 establishes the following upper bound for an arbitrary unbounded solu-
tion: w(f, ) < sup, 1, (1, Xy = [Pyl + l)I'/" i (0, Ty) (see | 135]), which is
optimal, since it is attained on the solution «, (. x). Furthermore. the saime method
1s used to prove results concerning the structure of the blow-up set B, (see | 140]):
if 2,0 eV, =R\B, and [y — xaf < Lg, then [xy. x2] € V. It is found that
meas By > Lg for any initial function with compact support.

An essentially different example of combustion in the S-regime is presented in
[ 109] (see also | 14]). where the boundary problew with zero Dirichlet conditions on
the boundary is considered for the equation «, = «(u,, + w). The authors prove
localization of the unbounded solution in the localization domain B, = [l <
w/2}). Unlike the example considered above, the problem of agymptotic behaviour
of the solution in B, close to the blow-up time, remains largely open. [t is proved
that «(r, x) &= A(r)cos v in By, but the behaviouwr of the amplitude A(r) as 1 — T,
is at this stage unknown, Note that the conjecture [ 109] A(r) ~ (T —1)" g () with
e(t) = |In| (T - n)j |'/3. t -+ T, seems to be true. since the factor g(r) is a natural
one for the equation without a source tenm. v, = v u,,. which governs the process
in a small neighbourhood of the end point of B, x = 7/2. where |, | > u'. We
invoke now a formal matching argunent. There exists an explicit solution of the
log-travelling wave type, v, (f, x) = (T —1) Vi, =y — /24 AT~ 1)
(cf. Ch. 11 § 12), where / solves the ODE f2f" 4+ Af’" — f/2 = 0. Since
fp ~ (=mla(=m |"* as 3 — —~oc, by slightly perturbing v, (for iustance. by
agsuming that A == A(s) is a slowly decaying function) we have the following ourer
expansion for x == 7/2;

vt ) = AT =07 (T = njgO] 1 = (x — 7/2)/A@) [ In(T = n]].

Then a matching procedure with the inner expansion w(r, x) =~ A(r)cosx for
x & 7/2 (or instance, by taking «, &~ v, at x = 7/2) yields A(t) = (T—1) "' ¢(1).
Proof of localization of unbounded solutious for 8 = o + | (subsection 3) is
given in [129]. The presentation of subsection 4 uses results of [130].
As we mentioned earlier. Proposition 1, on the number of spatial intersections
(or number of changes of sigu of the difference of two solutions) is a natural
consequence ol the Strong Maxiimun Principle for linear parabolic equations and
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has been known for a long time; see the first quite general results by |368] and
[316, 355]. as well as various examples of analysis of the zero set of solutions of
parabolic equations in [303. 315. 13. 171, 175, 180, 263| and others, Among the
general results contained in these papers, let us note those |13] and [263], where
the zero set of solutions of lincar parabolic equations is studied under quite weak
restrictions on coefficients.

The idea of intersection comparison turned out to be very fruitful in the anal-
ysis of unbounded solutions of a wide class of equations. The above results
were obtained by studying the variation with time of the number of interscctions.
More subtle results. obtained for different types of equations with a source in
[170, 171. 175. 180]. deal with analysis vot only of the nwumber, but also of the
character of points of intersection, One of the main results of these papers is the
following conclusion. which has a simple geometric interpretation: in certain con-
ditions a point of “inflection” with a stationary solution can arise, as the solation
evolves, from at least three intersection points. Such a comparison with a family
of stationary solutions allows us, for example. to show that for an equation of the
general form «, = (d(w)), + Qu), a solution that has become sufticiently large at
a point x = xy at time 1 = fy. can only increase W time @ «, (r, xo) > 0 for r > 142
see | 175. 180]. Other applications of intersection comparison with radial stationary
solutions in the multi-dimensional case can be found in [137]. [164] contains a
general description of applications of the method of stationary states (m.s.s.) in
the study of unbounded solutions of nonlinear parabolic cqualimw and systems:
see also other applications in [ 172, 174] (for other details sce § 1, Ch. VII). Mus.s.
provides sufticient conditions for absence of localization of unb()undcd solutions
with arbitrary coefticients.

§ 5. The main results were obtained in | 130]; see also [129]. Everywhere in §
5 we are concerned with the determination of an attracting set ‘W ol an unstable
stationary solution. In the case of cquation (23) it has the form W = {6, =
T(l,/"u(,(.\'). where «, > 0 satistics (9), (10) and 0 < Ty < o¢ is the blow-up time
of the solation of the problem (1). (2) with the given initial funetion wy(x)|. |

is of interest that W is unbounded and contains functions €),, the difference of
which with 6y in R can be arbitrarily large. 1t is important to note that ‘W is an
infinite-dimensional set. which, of course. is not dense in L2,

As of now there are relatively few complete results concerning the structure
of attracting sets of unstable stationary solutions of nonlinear parabolic equations.
In this direction, let us mention [226, 158, 169, 170, 197, 314]; resalts of |47
(Tast diffusion equation in @ bounded domain) are discussed in comments to Ch.
I A large number of papers deals with asymptotic stability of regular (without
points of “singularity™ in time) solutions of parabolic equations: see. for example
[42, 378. 158, 162, 184, 383, 241,242, 10. 11, 20, 21. 22, 50, 107, 208, 213, 234,
235, 308, 344, 356. 359 and references contained therein. We should also like
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to mention the interesting ideas of |8] and |284] concerning stabilization without
constructing Liapunov functions. The problem that arises most {requently in this
coatext is that of finding an attracting set that contains a acighbourhood of the
stationary solution (that is, is deuse). In | 158 we obtain conditions for asymptotic
stability of unbounded self-similar solutions of quasilinear equations with a sowee,
for which boundary value problems in hounded domains with moving boundaries
were formulated. This ensured asymptotic stability of the corresponding stationary
solutions. Let us note that the estimate (20) (or (26)), which plays an important
part in the prool” of Theovem 2 dealing with stabilization, holds also without the
restrictions of the form (9), (10) on the compactly supported function uy(x) (sec
[130, 171]). Asymptotic stability of self-similar profiles for 8 = o + | is proved
in [141].

§ 6. Results preseated here are contained in [ 131, 123]. Statement | of Theorem
3. dealing with the semilinear equation for o = 0. p > (8 — 1)N/2, has been
proved in |379] (see also |26, 213] and comments on Ch. VII),

Of utmost importance in demonstrating localization in blow-up regimes is the
derivation of upper bounds for the solution «(r, x). In § 6 we present an approach
based on intersection comparison with a localized self-similar solution with the
same blow-up time. It is, however, not without disadvantages. In particular, its
use throws up a restriction on the maximal value of the source parameter S. In
this context, very cffective is an idea that first appears in |[108]. where it is used
to prove blow-up at a single point for semilinear equations «, = Au + Q(u). A
certain modification of this approach (see |172, 173]), applied to radial solutions
of quasilincar equations of general form, «, = Ad(u) + Q(u), which consists of
deriving couditions under which w(r, x) = »Y "' (wu, +rV F) < 0in (0, Tp) x
R, for a special “optimal™ choice of the von-negative function F(w) (it satisfies
a certain ordinary diffevential equation), allows [ 173] to prove an estimate of the
form (9) for a special class of g for arbitrary 8 > o + 1. The same approach
to equations of general form [172. 177] provides conditions of localization of
unbounded solutions in terins ol the coeflicients Gp(w), QGw). 1t is interesting that
practically in all cases this approach gives upper bounds that coincide precisely
with the real asymptotic behaviour of a wide class of unbounded solutions.

Questions of camplete blow-up. i.c.. of possible extension of a blow-up solution
for + > T via construction of a certain minimal solution (as the limit of solutions
to truncated equations) have been considered in [27] for semilinear equations «, ==
Aw+ Qu). A criterion of incomplete hlow-up for a general quasilinear equation
u(t) = (P, + Qo has been derived in | 193] via intersection comparison with
the set of travelling wave solutions. For equation (2). N = L, tis p+o < l. o€
(—1,00.

§ 7. Iu the presentation of most of the results of subsections 1 and 2.1-2.3
we follow [150]. luequality (12) was obtaiued carlier by « different method in
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[112, 114], where Theorem 1 is proved. Theorem 3 is proved in [112] (on this see
also |296, 254]). For the cases N = | and N = 2 Theorem 4 is proved in |212]:
a gencralization of the method of [212], which is used in subsection 2.1, to cover
the case of arbitrary N > 1. is contained in |22, 254]. For 8 = 3 Proposition |
was proved in [219]: the case of arbitrary B8 € (1. 00) was considered in |3, 2].
Solution (43) was constructed in [ 158], using the ideas of [34]|, where a solution
of a similar structure was found for an equation (39) with a sink ~6* (8 = 2).
instead of a source.

In the conditions of Proposition 1 the similarity representation 61, &) = (T —
NME Dy E(Ty = NP stabilizes, for a large clags of ug(a), as £ — T on any
set {[x] < Ty — n"?) to the unigque non-trivial solution 8 = (B — 1)~V/E-D
of equation (39) in R [169, 170, 171]. In [170, 171] the estimate n(r, x) <
wa (T — )7 VE1 0 (0, Ty) x R was obtained under the following restrictions
on ny. Sup gy < o0, g is uniformly Lipschitz continuous in R these conditions
are weaker than the ones in [380, 381]. The results of | 170], as well as of |169],
were obtained by applying comparison theorems for different solutions « and v,
based not only on the time dependence of the number of their spatial intersections,
but also on the nature of those iatersections (for example, in |170] under certain
restrictions, a thcorem of the following form is proved: it w(tg, xp) = u(tg. xo) —
ulty, xg) = 0, then w, Uy, xg) # 0). These theorems are fairly general: they hold
true for a large class of quasilinear (degenerate) parabolic equations, including the
multi-dimensional case, « = «(r, |x]). See also general results for linear parabolic
equations in |13] and [263].

Let us note that if there are lower and upper bounds for u(r. ), the stabilization
B(r. &) — Oy, which is uniform on all compact sets in R, follows from the results of
[197]: they also consider the multi-dimensional case, In | 197] it is shown that under
these conditions. stabilization occurs for any | < 8 =< B, = (N +2)/(N ~ 2),,
which has to do with non-existence of non-trivial solutions 8(£) # 60y of the
elliptic equation

I
AcH — Evmg ~0/(B~1+06 =0, £eRY

(Tor ¥ = B(|gh it becomes (39)), il 1 < B =< B,. This is proved in [197] by
deriving Pohozaev type inequalities [332. 333], Estimates of sup, u(t, x). as well
as the structure of the blow-up set, were later studied in [198, 199]. Results
concerning existence of non-trivial self-similar functions #g # const (see (39)) in
the supercritical case 8 > B, were obtained in |286, 287], where it is shown that
for s

) N — 2(N - 1)/~ Y

[N ~ 4 = 2N — Y2, -
there exists an infinite number of solutions |286] (see also the exact solutions
[158] for 6 < N < 16, B = 2 and the existence theorem of [370] for N = 3,

B.<B<p =
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6 < B < 12), while for B* < B < | +6/(N -~ 10), |287| ranges ol B8 with any
finitc number of solutions are determined. In this connection, let us mention the
result of |39, 40], who show that for 8 = B* the asymptotic behaviour of a solution
as t ~ T is not sell-similar if it satisties everywhere the condition «, > 0, that is.
in this case we can say that the non-trivial self-similar solution in unstable in this
clags. The proof uses results of intersection comparison with a singular stationary
solution. The resulting non-self-similar asymptotics will be presented below.
A more accurate gualitative analysis shows that the spatio-temporal structure
of u(r.x) as + — T, is described by ass. of the form fi(r.m) = (Ty —
nYED g )y = 3/ (T~ DY (T ~ 0]Y/?, where the function f,(n) > 0
satisfies in R the first order equation — f'1/2 ~ [ /(B ~ 1)+ [ =0, fiEoo) = (.
It has a whole family of non-trivial solutions f(n) = (8 — 1 + Cn?)~ 1B b,
"= const > 0, Such an a.s.s. was first introduced in [219]. A similar phenomenon
of convergence to a self-similar solution of a first order Hamilton-Jacobi equation
oceurs for solutions of the porous medium equation with strong absorption | 188].
From the requirement of analytieity of the corresponding similarity representa-
tion
fum) = (To -~ 0V Vug gy~ 0V Ty = 01t

at the point 1 = Ty, n = 0, it follows that as 1 — T only one solution in the
family {/} is realized: to it corresponds C = C, = (8 ~ 1)7/(48), and we have
the stabilization f(r,m) — f.(n) as + — T, which was verified numerically,
These conclusions for 8 = 3 were derived in |219] (which containg some results
for N = 2); the analysis of arbitrary 8 > | was performed in | 169, 170].

A rigorous justitication of the non-self-similar asymptotics mentioned above
has been carried out by different methods in |36, 215, 216] (see also the results of
|97, 143}). Upper bounds, which are exactly the same as this asymptotic behaviour,
have been derived carlier by | 172, 177). A similar situation oceurs in the semilinear
equation with an exponential source, w, = Au + ¢". The first qualitative result
concerning non-self-similar asymptotics was obtained in | 78]; see also |79]. Non-
existence of non-trivial self-similar solutions of the form wg(s. ) = — In(Ty— 1) +
Os(x/(Ty ~ 0Y2) was established in |37. 87| for N = 1,2, Such solutions can
exist for N 2 3 |88]. The whole spectrum of results obtained here is presented
in [40]. Justification of the non-self-similar asymptotics as ¢+ — T is carried out
in [52. 36, 215, 216. 217]; see also |143] (whose approach is also used in the
problem for a semilincar equation with strong absorption in the study of the total
extinction phenomenon in finite time |2138, 144]).

Theorem 6 s proved in [169). In |170] it is shown that the eriticality of the
solution condition (¢, 2 0in (0, Ty) x R) can be dispensed with, In 170, 171] it iy
removed by the following quite general result: there exists a constant My = 0, such
that if w(1y, xg) > My, then « (1. xy) = O forall 1 e |ry. T). 1u |380), under fairly

severe restrictions on u{x) and B = 2. it iy shown that the unbounded solution
u(t, [x]) of equation (17) satisfies the condition meas e, = (. so that «(T;. 1) = o<
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only at one point, As we already mentioned, a very effective approach to proofs of
localization is that of | 108], which was used in a wide variety of equations; sce the
references in |40, 104, 133, 164, 172, 173, 177]: for its applications in a problem
of total extinction see | 106, 144]. A special role in the study of semilinear heat
equations with a source is played by methods of analysis of the set of zeros in
spaces, or, which is the same, by intersection comparison methods. This approach
allows us to obtain reasonably complete results concerning the structure of the
blow-up set for semilinear equations with a source (see |62, 104, 115, 65]) and of
the total extinction set |66].

Theorem 7 is taken from |210]. The main results of subsection 3 were obtained
in |150, 127. 347|. The exact solution presented here for B = 2. N = 1 wag
constructed in [134, 176]. convergence as r — T to the self-similar solution of
a Hamilton-Jacobi equation and localization for a large class of equations were
established in [189) (a similar asymptotic technique based on a general stability
theorem for perturbed dynamical systems | 190] can be used for 8 < 2 and 8 > 2).
There it is shown, for example. that measB; = 2. Absence of localization
in the boundary value problem in a bounded domain for | < B < 2 was first
demonstrated by [281]: localization at one point for 8 > 2 and upper bounds
corresponding to spatio-temporal. structure of a.s.s.  were established in [177]:
see also the references there. The asymptotic behaviour of blow-up in the three
parameter ranges, 8 < 2.8 = 2 and B > 2 for a more general quasilinear heat
equation has been established in |192], Proof of convergence of some classes of
global solutions of heat equations with a source to a.s.s. which satisty nonlinear
Hamilton-Jacobi type equations can be tfound in | 160)].

Let us note that for equations of other types the problem of determining the
blow-up set is formulated in a different way, The strueture of the so-called degen-
eracy surface in (1, x) space was studied in |60, 61, 110] for hyperbolic equations
ty = Au+ F(w) and in | 111] for Hamilton-Jacobi equations w, + H (D u) = F(u).

We do not consider here in detail questions of fine strireture of quasilinear
parabolic equations, In this context, we mention |89, 90, 267, 263, 270. 271, 272,
274, 276. 349| (sce also §§ 3, 4, Ch. VII). Multi-dimensional non-symmetric
cigenfunctions of nonlinear elliptic problems, which arise in the construction of
unbounded self-similar solutions. have up till now been studied only numnerically
|274. 276|. They can have a varied spatial stracture: for example, a “star-shaped”
localization domain |274|. Group-theoretic analysis of multi-dimensional nonlinear
heat equations with a source was cavried out in |83, 84. 85]. General ideas con-
cerning the role of eigenfunctions of nonlinear continua in mathematical physics
are developed in [267, 268, 275|. For applications, consult | 267, 392, 350]. as well
as the survey of |269|. which contains. in particular. a bibliography of applications
of blow-1p processes in the theory of self-orgauization of nonlinear systems,




34 1V Nonlinear equation with a source

Interesting properties are also exhibited by unbounded solutions of a different
parabolic equation with power form nonlinearities:

=V (Vul"Vu) + u’; o > 0.8> 1 u=ur. x)=0.

Conditions for unboundedness of solutions of the boundary value problem were
obtained. for example. in |371, 293} (see the survey of | 157)). The Cauchy problem
was considered in | 128]. where it is shown that for 8 € (1. o +) +(o+2)/N) all the
non-trivial solutions « # 0 are unbounded (it is also true for 8 = o+ 1 +(o +2)/N
[138)). while for 8 = o + 1 + (o + 2)/N there is a class of small global solutions,
There it is also shown that for 8 > o + | unbounded solutions are localized, while
for | < B < o + 1 there is no localization. The localization property for B = o+ 1
(S-regime) 1s illustrated by the separable self-similar solution constructed in | 128]:
ug = (Tg— 1) ""6(x) > 0 for [x| < Ly/2, 8 =0 for |x] > Lg/2. where Lg is the
fundamental length of the S-regime: Ly = 7(o + DY g sin(m /(o + 2] "
Fine structure of localized self-similav solutions for B8 > o + | (LS-regime).
ug = (To—1)"VE Vg &= x/(Tog—n".m =B~ (o + D}/ {o+2)(B~ D]
was studied in [155). where the elliptic problem for the function #(¢) = 0 is
considered;

I ,
V- (|VO)"VO) ~ V- &~ E—-I_o +0% =0. £eRY,

It is shown that even in the symmetric case, ¢ = #(|£]). it has quite 4 com-
plicated spectrum of solutions, which consists, roughly speaking. of four familics
of solutions: three discrete (two countable) families and one discrete continuum
of solutions. Existence theorems tor self-similar solutions are proved in [156).
Localization of unbounded solutions for 8 = o + 1 and an estimate for the thermal
front of the compactly supported solution, /1, (1) < 1,(0) + Ly, are proved in | 134]
by intersection comparison with the above exact self-similar solution. Asymptotic
stability of the self-similar solution is proved by the methods of § 5. Blow-up at a
single point for 8 > o + | has been established in | 133] (for N = 1) and in |181]
(arbitrary N > 1),

Open problems

1. (§ 1) Show that the number of positive solutions of the problem (5)~(7) is
finte for 1 <« B < (o + DHN/(N — 2),. Are the predictions of the lincarization
procedure in subsection 4.1 correct?

2. (§ ) Prove existence of solutions for the self-shmilar problem (5)-(7) for
B+ 1)N+2)/(N-2),.



Open problems 315

3. (§ ) Prove existence of radially non-symmetric solutions of the elliptic equation
()yinRYfor B>o+l.o>0,N>1Uore=0.1 <8< (N+2)/(N-2), they
do not exist {197}]). Determine the number and spatial structure of such solutions
(qualitative and numerical analyses are carried out in [274})).

4, (§ 1) Prove uniqueness of the strictly monotone solution constructed in Theorem
4 (it is important for the stability results discussed in § 5) and of any symmetric
solution having a given number of maxima,

5. (§ 4) Demonstrate localization of unbounded solutions of the Cauchy problem
forw, =V (u'Viuy + 1P, 1 > 0. xe RV for B> o+ 1. o » 0 in the case of
arbitrary initia) functions wy. s it possible to derive, as in the one-dimensional case
(§ 4). an estimate of supp «(T . x) in terms of supp gy and the time of existence
of the solution?

6. (§ 4) Prove effective localization in the case 8 > o + | for arbitrary (non-
compactly supported) wy(x) — 0. x| — 20,

7. (§ 5) Prove asymptotic stability of unbounded self-similar solutions of the
LS-regime. B8 > o+ 1 for N > | (for N = | see |141]).

8, (3§ 7) Prove that the asymptotic behaviour of blow-up solutions of equation (17)
is slable with respect to “small” nonlinear perturbations of the equation, whefi it
becomes 1, = V- (k(1) Vi) + Q(u). For which k() is there nonsymmetric single
point blow-up (see [167] for such examples)?

9. (§ 7) Justify in the general case the asymptotics of unbounded solutions of
the problem (17). u(r. x) = (Ty — 0~V f (x/(Ty = D' In(Ty - Y7 as
1 — T . which was suggested. at a qualitative level. in [219. 169] (this problem is
partially solved in |36, 97} and |215. 216}). What is the structure of the attracting
set of non-trivial self-similar solutions. which exist in the supercritical case 8 >
(N +2)/(N—2).7?

10. (8§ 7) Prove effective localization of arbitrary unbounded solutions of the
Cauchy problem for the equation u, = Au + (1 + W) 1n?(1 + ), 1 > 0, x € RV,
for B = 2 (see the partial results of | 189] for 8 = 2 and |177) for 8 > 2 and also
[192}).

11, (§ 7) Determine conditions, under which asymptotic behaviour of nonsymmet-
ric unbounded solutions of the problem (54). (55) is described by the degenerate
a.s.s. (68) (sec the result of |189) for the case 8 = 2 and general analysis of
symmetric solutions in | 192]),



Chapter 'V

Methods of generalized comparison
of solutions of different nonlinear
parabolic equations and their applications

In this chapter we prove comparison theorems for solutions of ditferent parabolic
equations, based on special poinwtise estimates of the highest order spatial deriva-
tive of the majorizing solution in terms of the lower order derivatives. Derivation
of such estimates is done under conditions of criticality of the problem (§ 1, 2).
In § 3 we consider the more general sp-criticality conditions. In § 4, 5, using an
operator version of the comparison theorem. we study the heat localization phe-
nomenon in media with an arbitrary thermal conductivity. In § 6 the results of §
1-3 are used to study unbounded solutions of quasilinear parabolic equations, In
§ 7 we obtain conditions for criticality of finite difference solutions, Using these
conditions, we prove a direct comparison theorem for implicit finite difference
methods for different nonlinear heat equations,

§ 1 Criticality conditions and a direct solutions comparison
theorem

1 Formulation of the boundary value problem and the Cauchy problem

Let Q) be an arbitrary domain (not necessarily bounded) in RY with a smooth
boundary d€). For a nonlinear parabolic equation

u, = A(w) = L(u. |Vu|, Au) ()

(here [Vu| = |grad u}), let us consider the boundary value problem in wy =
(0. 7) x £ with the conditions

w(0, x) = ug(x) >0, vel); (2)
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w x) =, x) =20, 0 <t < T, xe dd, (3)

Let us assume that wg(x) — O, wy(rox) = 0 ag |x] — o0 and u(r, x) — 0 as
|x] = oc for any O < 1 < T. The problem (1)~(3) includes the Cauchy problem
as a particular case (then simply {2 = RY and (3) should be omitted).

The function L(p. ¢.r) in (1) is defined and once differentiable in all its argu-
ments; furthermore dL/dr > 0 in R, x R, x R, which means that the equation is
parabolic.

We shall also assume that there exists a real valued function » = I(p.q.Y)
whicl satisties the identity

Lip.g. lp.g. =Y. (p.g.Y) R, xR, xR, (4)

The function / is differentiable in all its arguments in view of the smoothness
of L and the parabolicity condition. From (4) we obtain the following identities;

Litpog lp g (pog. V) + Latp, g lp.g. YD i(poq.Y) =0,
Lip,q. 10Nty =1, (5)
Latpog 1¢)) + Latpog () =0

(here and below we are using the notation Ly = 3L/3p, Iy = 3l /dp, L, = 3L /8q,
Ly = dL/dr und so forth).
Let us sel
lo(p.og) =1p, q.0). (6)
By (4) the function / satisties the identity

Lipoq. lotpogn =0,(p.g) € Ry xRy (4"

The above requirements are satisfied, for example, by the quasilinear operator

AG) = K, |Vu)Au 4+ NG, [Vul, (7N

where K(p, q) = 0, N(p,¢) are given sufficiently smooth tunctions, In this case
| N(p.q)

Ipoq. Yy =1Y = N(p. )| = lo(poq) = = =, (8

(pogq.Y)=| Pl Koy D) Ko ) )

For the operator of nonlineir heat conduction with a source,
AG) = V- (kGOVI) + Q) = koA + K ) Vul® + Quo. k > 0, 9

the analogous expressions have the form

) 2 l
I(I). q, ¥) = |Y —k (I))(I~ — Q(I))lm—;,
(10)

k’(/))l g )

lo(p.g) = — .
olp ) [l\'(p) )
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We shall assume that in wy there exists a positive classical solution of problem
(1)=(3), and that it is unique,

Everywhere helow we shall take the following restrictions on the function L to
hold;

a) the operator A is parabolic: oL/dr > Oy

b) there exist functions 1, [y satisfying, respectively, the identities (4), ().

2 Conditions for criticality of the problem

Definition. We shall call a problem (1)~(3) and its solution u(r. x) critical if
everywhere in ey it satisties the condition

w,(f, x) > 0. (1nH

Condition (11) will be used to derive a pointwise estimate of the highest order
spatial derivative (Laplaciun) of the solution, Au(r, x). in terms of the lower order
derivatives, |Vu(r, x)| and u(r. x). Indeed, by (1), condition (11) is equivalent to
the inequality

Lu(t, ¥). [Vutr, X)), Aur, x)) = 0 in wy. (1

However, Li(p, ¢, r) > 0. und therefore the inequality (11") can be solved for Au.
This leads to the estimate

Awtr, x) = lplult, x), |Vule, X)) in ). (12)
In particular, for the operator (7) we obtain

N, [Vuh

Au > — { ————— % in wr, 13
u > {K(ll.lvlli)} n wyr (13)

while for the operator (9) we have

k' (u) ,  QuoY .
Au> - { —— |V~ + =~ 7. 14
= { k(u)I " + k(u)} n wy (14)

Pointwise estimates of the form (12)+-(14) are the basis of the approach to com-
parison of solutions of different parabolic equations we propose below,

For simplicity, let us assume initially that 1wy € CHE)NCQ). 1y € 10, Ty
M), u e C,zg"(w,») ﬂ(f,‘;z((?,"»)‘ This allows us to differentiate equation (1) once in
rin wy.
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Theorem 1. For criticality of the problem (1)-(3) it is necessary and sufficient
that
A(ll()) = L(ll(). IVH()I, All()) > () X € il. (15)

Ay e xy/de =0, (1.x) € (0, Ty x KD (16)

Proof. Necessity of the conditions of the theorem is obvious. Let us prove suf-
ficiency. Let us set «,(r. x) = 2 in wy. Then LG, |Vl Ay = 2 and therefore
A = [(u.|Vu|.z). From (1) it follows that the function o satisfies in wy the
equation

= LyGe Yl I IVul) )z 4 LaGel [Vl TG [Nl o) (Ve Vo /| Vul) +

+ Latu. [Vl 1, [V o)Az

(17)
Here Vi - V7 is the scalar product of two vectors obtained as a result of differ-
entiation: |Vu|, = (Vi - Vz)/|Vu|. Formally this equation is a linear homoge-
neous parabolic equation with hounded coefficients, which is ensured by sufficient
smoothness of the solution (s, x) and of the function L. Therefore by the Max-
imum Principle (sce § 1, Ch. I) z > 0 everywhere in the domain wy as soon as
22 0 on its parabolic boundary y, = {r € (0, 7). x € U {r = 0. x € (). This
completes the proof. (]

In the following, inequalities (15), (16) will be called the criticality conditions
for the boundary data of the problem (1)~(3).

Remark 1. It follows from the theorem that criticality of the problem does not
impose any restrictions on the elliptic operator of equation (1) (if it does not depend
explicitly on the variable r): it is tully defined by properties of the boundary data.
For an operator of a more general form,

Aw) = L, |Vul. A 1. x)

the same statement is no longer true.
Following the proof of Theorem I, it is not hard to see that in this case for
criticality of the problem we need in addition the following inequality:

i)
%L”LqJQLN”anwJJ)Zoo“Lq)ER+XI{h(LX)EwT- (18)
(

For example, if
Alwy = V- |k, DVu) + Qe 1),

then condition (18) can be written in the following form:

Pk ookokl\ 5, dQ  WkQ
s e T e e 2 (),
orap  dp ok o dr k
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In view of the fact that the quantities p and ¢ vary independently, this relation
decomposes into the two inequalities

. k! + * N
S LA N [V ')] >0
dr | k(py D ot Lk(pn

Remark 2. let us show that the smoothness restrictions on the solution 1 used
m the proof, may be weakened substantially. Under the natural assumption that
u e C,‘;Z(wy»)h('(“&)”?). the proof follows exactly the same lines, with the difference
that instead of the function 7 = 1, (r, x) we consider the finite difference

)= ~lut + 100 —wt. ) (LX) € wr .

G-

where 7 € (0, T) 15 a fixed constant.

Then a parabolic equation of the form (17) satistied by : can be derived in
a similar manner, As far as boundary duta are concerned, in this case under the
same conditions (15), (16), for (f. x) € (0. T — 7) x € we have

1
20Xy = —|ug(t + 70y — (0} = 0.
T
Furthermore, for t = 0

200 x) = |u(r, x) = up(x)]/7. x € £

However the function v(f, x) = ug(x) is. in view of (15), a subsolution of the
equation (1), in addition, v = 1,(0, x) < (1, x) on #) Therefore 1« > v on yy,
and thus w(r, x) = v(r, x) = up(xX) in wy. The last condition is equivalent to the
condition z(0, x) > 0 in  for any 7 € (0, T).

Thus the function z satisties a parabolic equation in wr , and 2 > 0 on the
parabolic boundary vy.,. Then ¢ > 0 in @y ., from which it follows that for all
(1, x) € wr

w(t + 7, %) — wt, x) -0

w,(r, x) = lim
7 ()’ T

Obviously, using this method of proof, we can replace condition (16) by a
weaker one: (1, 1) does not decrease in ¢ on ). We can also weaken the
smoothness requirements on the initial function ny(x).

3 A theorem on direct comparison of solutions

Let us consider in @y boundary value problems for two different parabolic equa-
tions (v = 1, 2):

“:!1) - A(!’)(“(h)) — L(!‘)(“\(‘)‘ Iv“(l'll‘ A“(l')): (I())
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(0. x) = u:,'/’(.\') >0, xel u:,"’ e C({)y, (20)
W1, x) = tl(lm(l. ), 0<t <T, xe il 21
0 € €0, T) x Q).

The tunctions L™ (p, ¢, r) are assumed to be sufficiently smooth. As in subsec-
tion 1. we denote by [*'(p, q,Y) (I:," = "7 p, ¢, 0)) the solution of the equation

L3p g 19 =Y. (p.q.Y)eR, x R, xR,

Let there be positive classical solutions of these problems in wy, and assume that
1 > 1" on yy. In the following assertion we state two sufficient conditions for a
direct comparison of the solutions of the problems (19)—(21), under which «'*’ >
u'h everywhere in wy. Let us emphasize that we are talking about comparing
solutions of two substantially different equations.

Theorem 2. Let t!? = «'V on vy, that is,
uf,z)(,\') > u{,“(.\'), x e (),
() ) h . . :
a U x) = x), O<tr < Tx e b
In addition, let the solution of the problem (19)~(21) for v = 2 be critical (this
means that “:2) >0 i wr) and that for all (p,g.r) € Ry, x Ry x Rwe have the
inequalities
¢ M
‘TIL (pog.r)y =L (p,yg.r))=0, (23)
ar
.
LYp. g 17 (pog)) < 0. (24)
Then 1 > ut" everywhere in wy.
Proof. Let us set 1t® — 1Y = 2. Then the function = satisfics in ey the equation
= L2 VLAY = LV — 2 19e® - 2 A — Az, (25)

and, by (22), = > 0 on yy. Lincarizing the right-hand side of (25) with respect to
the function = and its derivatives, we obtain for 2 a linear parabolic equation with
bounded coefticients:

2= LG v oAz = LY D V0, AP ) (Y, - V) /| V| —
— [f,“(m, IV, Aty = (20)
— [‘(2)(“(3!‘ |v”(2)|‘ A”(z)) - [‘(l)(”(ll.lv“(l)l. A“(:))‘
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where the bounded smooth functions v,, j = 1, 2, 3 (some average values). depend
on the solutions u'*!, u'?,

Let us consider the right-hand side of (26). By criticality of the solution n*',
we have the pointwise estimates (see subsection 2)

Au'? > I:)z’(um‘ (V™) in wy. (27

Condition (23) means that the function L® (p, ¢. r)— L™ (p. ¢, ) is non-decreasing
in its third argument. Therefore, using (27), we obtain

All)(“(z)) _ Alll(“(l)) > L(Zl(”(ll' |v“(1)|‘ I(l)zl(“(ll‘ IVH(E)I)) _
— LY v, I[,z’(u‘z’. |V '))).
However, by definition L (p, ¢. I;,Z'(p. ¢)) = 0. Hence by (24)
AP )y — AV Gy = LY (v, I:)l’(_u(z‘, (Vi) = 0.
Therefore from (26) we have that

Vuvy - Vz
o, - L(‘“A: - If,”L*z————l - [,(1“: > ()
- |Vl)3|
everywhere in wy. Since - = 0 on yy, invoking the Maximum Principle, we
conclude that = > 0 in @y, that is ' > u'"’ everywhere in that domain. O

Let us see what form the comparison conditions (23). (24) take in the case of
particular parabolic operators.

Example 1. The inequality (23) depends, in general, on the three variables p, ¢, r.
However, for quasilinear operators of the form

A(:')(“u')) — Kll')(”(l‘)' Iv”(l'lI)A“(l‘) + Nll'l(ulu). Iv“(l-)l)‘ o= I. 2.
it depends, as does (24), only on p, ¢. The inequalities (23), (24) in this case have
the form
K(z)(P, q) — K“)(.I’~‘I) > ().

(28)
K2, N (pog) = KD (p. )N (pLg) < 0.

Example 2. For the nonlincar heat equation with a source.

Htr) = V. (k(l')(”(l'))v”(l’)) + Q(l’)(“(“)). (2())
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due to independence of p and ¢ in the second of the inequalities (28), these
incqualities can be written as

k(z)(p) - l\'“)(l’) > () (30)
K2 k) = kY (k2 (p) 2 0 (31
O (kM (py = QV (kP (py = 0 (32)

The inequality (31) can be put into a more compact form:

LKy kM, = 0. 31

Example 3. Let the functions o' satisfy the equations
v = By = oMYA + DY), = 1L 2 (33)

The comparison conditions (23), (24) (or (28)) of solutions of equations (33) have
the form
D (p) —aV (py = 0.
(34)
0.
and look much simpler than (30)-(32) (at least they do not contain derivatives of
the functions entering them).
At the same time equations (29) can be reduced to the form (33) by simple
transformations. Indeed, let us set

B (pyd (py = B (e ()

[AY

"
H" (p) = / K pydn, p> 00 v = 1,2,
Jo

and denote by 1" the functions inverse to H", so that H (" (pyy = p (W'
exist at least for all small enough p by monotonicity of [{'; the latter is ensured
by the conditions &' > ()),

Let us make a change of variable in the equations (29),

W = 0ty e =t 2. (35)

Then, taking into account the fact that k“”(lz“"(p))Iz“”'(p) = |, we obtain for the
functions ™ the equations

U:m - /\’“,)(Il(")(lltm))A])“/) . Q“')(h“/)(U“')))/\'“')(II“,'(I’(M)), p o= |. 2‘
which are the same as (33), if we set in those equations
() = KN (py),

(36)
h(,/)(p) — Q“‘)(Il(")([)) )k(l')(h(nl(l)))-
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From (35) it follows that the inequality v'* > v'" is equivalent to the inequality
H2 W™y > HY D) in wy. (37

As a result we obtain that under the conditions
k‘z’(lz(z’(p)) - k“’(lz’“(p)) > 0, (38)
O (py)y ~ QP (py)y = 0. p = 0, (39)

and also under the other conditions of Theorem 2, in particular the inequality
HY W™y = HYd"y on yy. (40)

(37) holds.
The comparison conditions (38). (39) can be written as:

/\'(2’([7)‘“l\’“’“l(“(Hu)([?))l f()~ (38’)

QU (p) ~ QPR HP (pn] = 0, p > 0. (39)

Then the inequality (37) can be written in the following forn:
“(2) > Il(z)IH“’(ll(“)l in wy. (37')

Therefore, by comparing not the solutions 1" themsclves, but rather some
nonlinear functions of these solutions (see (37) or (37')), we managed to simplify
the comparison conditions considerably: instead of the three inequalities (30)—(32),
only two remain: cither (38), (39), or (38", (39'). We shall call this generalized
comparison method the operator or the fimctional comparison method. 1t will be
considered in more detail in the following section,

Remark. It is not hard 10 see that the comparison conditions (30)-(32) will be
satisfied if and only if the functions k" and Q'"' can be represented as

kY (py = k(I + )]

OV (py = QM+ w() T+ o)

where w. v are arbitrary smooth non-negative functions: in addition g is a non-
decreasing function,

§ 2 The operator (functional) comparison method for solutions
of parabolic equations

In this section we prove a more general comparison theorem for solutions of two
different nonlinear parabolic equations than that of in § 1. We present the material
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using degenerate equations, which, as is well known (see § 3, Ch. 1), do not
necessarily have a classical solution. We shall consider in most dctail the one-
dimensional case, though all the results hold for equations in many independent
variables (corresponding examples are given below).

1 Criticality conditions for sotutions of degenerate parabolic equations

Let us consider in wy = (0, T) x Ry the boundary value problem

= k(i) = (), (1
w(0, x) = 1plxy > 0, x > 05 supuy < oc, sup ||dtun).| < oo, (2)
w(t,0) = (1) = 0.0 <1 < T, (3)

Let the equation (1) be degenerate for w == O, that is k() = O and £ €
C*(R,) N C(]0, 5¢)). The solution of the problem is classical in

Prlul = {{1,x) € w7 | u(t, x) > 0}
and it can happen that at points of
Srju) = Prlul\Prlu|\dwr

(degeneracy points) not all the derivatives in (1) are defined. There the function
k(u(r, X))y (r, 1) is continuous in x in R, for all fixed 1 € (0, 7).,

Asin § 1, we shall call the problem (1)-(3) and its solution eviticad if 1, (1, x) >
() everywhere in Prlu|.

1.1. For convenience, we shall assume below that 1y € C? everywhere where
uy > 0, and that «; € C'(]0, T)) (these restrictions can be weakened substantially),
Under the assumptions made, we have the following theorem.

Theorem 1. For criticality of the problem (1)-(3) it is necessary und sufficient
that
(kG = 0, x € {x = 0] ug(x) > 0}, (4)

u',(l) >0,0 <1< T. (5)

Proof. Let us prove sufficiency of conditions (4), (5). Let us make the preliminary
observation that a critical initial function ty(v), bounded in R, | is non-increasing.
Indeed, by (4), it cannot reach a positive maximum i R;. Let us assume that
at a point &' € Ry, where wug(x*) > 0, it is increasing, that is wy(x*) > 0, Then
tpl ) > 0, 1y(x) > 0 for all x > x*, and we have from (4) that

+

klap(x)ug(x) 2 klugdugl o > 0, x = 2t
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Therefore for all x > 1*
JINIAY]
/ kin)dn = /\‘(ll“)ll(/,l\_:\‘(_\’ —x"),
Jupt)

that is, uy(x) grows without bound as x — oo, which contradicts the assumption
that uy € (‘(ﬁ_,) (sUpuy < 90).

Thus the initiul function uy 1s non-increasing, and we are entitled to conclude
that the set of degeneracy points Sy la] lics on only one curve (0, T) x {x = {(1)},

such that furthermore
klatt, e (. )y =00 <1 < T, (6)

The function v = (1) is nondecreasing and continuous in |0, T) (see, for example.
[18, 252. 328)).

Theorem 1 can be established in a number of ways. Below we briefly present
one of the proofs, which makes substantial use of the property (6) and the assump-
tion that « € C(Pylul).

Let us set o = u, = (K(w,),. The tunction : satisties in Prlul the formally
linear parabolic equation

o= lktz]. (7N

Then (0,0 = 0 in {0 < x < J())) by (4) and, as follows from (5), we can
assume that (7, 0) = 0 tor 1 € (0, 7). It remains to verity that, roughly speaking,
2 = 0 near the curve (0, T) x {x = (1)}, the right lateral boundary of Prlu]. This
follows directly from the equality z = (k(1)u,),. Integrating this equality over a
small interval (J(1) - €, (1)), € > () (it is not hard to check that this makes sense),
by (6) we have

i) 1
/ 0 dy = —(Pptu) o e, 000 = / kin)dn. o)
Jo

JOn e

Since ¢plu(r. x)) > 0 on (L(1) —e. L) and (Plulr. 1)), — O as 1 — ¢ (1),
we can always find un arbitrarily small € > 0. such that (¢(1)), < 0 at the point
(1, {(1) -~ €) and therefore

)
/ (X)) dy = 0.

{)- e

Therefore at any arbitrarily small left half-neighbourhood of the point x = (1) we
can tind &, (1) € ({(1) — €, £(1)), such that z(7, x, (1)) > (),

The function z is a classical solution of equation (7) in the domain (0. 7) x {0 <
X< x, (N}, such that, furthermore. = > 0 on its parabolic boundary. Then,
by the Strong Maximum Principle, z > 0 at all interior points of the domain
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(0.7) x {0 < x < x.(n)]. Since € > () can be arbitrarily small, we obtain that
c=a > 0in Prlul 0O

Remark 1. It is not hard to show that we can take the set (0.7) x {x = x.(1)}) to
be a continuous curve. Moreover, under the conditions of the theorem 1, > 0 in a
neighbourhood (0. T) x {£(1) — 6 < x < {(1)) (see |252)).

Remark 2. Using the same method, it possible to prove that under the conditions
of Theorem |
e (1, 2) < 0in Prlud. (8)

We note that the functions = = 1, and - = e, satisfy in Prlu| the same lincar
parabolic equation (7).

1.2, An assertion, similar to Theorem 1, is true for a degenerate parabolic
equation more general than (1),

w, = Ve (ki) Vi) + Qla) = Adplaw) + Q). (9

where O € C'(]0.0c)), Q(0) = 0, is a given function. Let € be an arbitrary
domain in RY with a smooth boundary ). For the equation (9) let us consider,
for example, the boundary value problem (or the Cauchy problem iff 1 = RY)
with the conditions

w0, ) = uplx) >0, x el (10
wit,x) =0, 0 <1 < T, v el (1

For our aims, the tollowing assertion concerning the criticality of solutions of
the problem (9)-(11), which is far from being optimal in terms of requirements
on uy(.x), will be sufticient,

domain Qo = suppuy < ) have a smooth bowndary 98y and w € CHOQHYNCED,
Then for eviticality of w(t, x) it is hoth necessary and sufficient that

Theorem 2. Let Q € C'(]0.00)). QUO) = O and Q'(w) = O for u > 0. Let the

Adplig) + Qlig) > 0, x € (), (12)

Proof.  As our point of departure we take the fact that the generalized solution
u(1. x) can be obtained as the limit as € — 0 of a sequence of strictly positive
classical solutions u, of equation (9) in wy = (0.7) x {1 with the conditions

1 A0, X)) = Ueply) = (/)"((/)(m)) + €) ~ Uy

uniformly in L as e — 0. e = ¢ '(€) on (0. T) x 3}, Let us tix a small enough
7 > 0 and let us consider the function 2. (7. v) = Jue (7 + 7. X) ~ 1 (1, x)|/7. which
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salisfies in wy. ; the linear parabolic equation
(ze)y = Alaz.) + bz,

where we have denoted by «. I the smooth functions

i
u::/ O (1 + 7.0 + (1 = nudt. ) d.
Jo

i
b= / O (nua(t 7.0 + (1 = udt, rdy.
Jo

Furthermore, 7, = 0 on |0. T — 7] x d€),

Let us consider the function 2, (0), x) = {1 (7. X) — uep(x)]/7 in (1. Since by the
Maximum Principle «, > ¢ Y€) in wy (recall that Q(u) > O for all « > (). then
for atl x € O\, we have 2.0, x) = |u (1, x) — ¢ (e))/7 = 0. Furthermore, let
us consider the function v(7. x), a classical solution of equation (9) in (0. T) x €
with the conditions v(0. x) = uep(x) in o, v = ¢ "(e) on (0.T) x 3. It is
critical, since by (12)

Ad(ute) + Olutey) = Aplugy) + Q(;;S Yep(ug) + €)) = Adug) + Qlug) > 0 in .

and therefore v(z, x) = v(0, x) in (0. T) x 4. From the comparison theorem we
then obtain 1w, = v = u, in (0, T) x £y, Therefore z.(0. x) = O in () for any
T7e(0.7).

Thus, z. > (0 on the parabolic boundary of the domain wy_,, and by the
Maximum Principle z, > 0 in wr.,. Hence, by passing to the limit € — 0% and

7 - 0%, we obtain that «(/, x) does not decrease in 7 in wy and therefore i, > ()
in Pr|ul. Necessity of condition (12) is obvious, O

2 An operator comparison of solutions theorem

We shall tirst demonstrate the possibilities of the operator method of comparison
using relatively simiple equations. The comparison theorem we obtain in the process
will be used in § 4 in the study of the localization in boundary blow-up regimes,

Let us consider in wy boundary value problems for two different (degenerate)
purabolic equations (v = 1,2):

" = D = G ) ()
WO ) = () = 00x > O (1

W) = > 0,0 <1 < T (15)
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Let the functions in the statement of the problems (13)—(15) satisfy all the require-
ments of subsection | concerning the functions k, iy, w; in the statement of problem
(1)—(3), and assume that there are in wy non-negative generalized solutions of the
problem we are considering.

Let us introduce a function E(j7). which is twice continuously differentiable
for all p > 0, such that, morecover, E(0) = 0, E(o0) = oo and E'(p) > 0 for all
p > 0. The last condition means that £ is a bijection R, = R,. Therefore the
inverse mapping £ '(p) is defined on R, ; it satisfies all the requirements made
on the function E(p),

Let « > E 'u'") on y;. The problem of the operator (functional)
comparison of solutions «® and «'" is to determine conditions under which
W > E-Yu'Y) everywhere in @y, In the following theorem we use to that
end pointwise estimates of the highest order derivative of the majorizing solution,
which follow from its criticality.

Theorem 3. Let o' > E- 'Yy on vy, that is,

(h )

u{,z’(.\‘) > [ l(uu (x)). ve Ry,

) 1 (16)
W2 = . 0 < < T

Moreaver, let the solution of problem (13)-(15) be critical for v = 2 and assume
that for all p > O the conditions

K (py — kVE(p)) = 0. amn
II‘Q,(I))/I‘“)(L‘(I’))L,(I))I/ = (). (18)

hold. Then «? > £ YY) evervhere in wyp,
Proof. et us set £ (") = V. The function V' satisties in @y the equation
Yy _ pithy,yth th thy —
v Ly gy vy =

KDEVIDEW) a9
TS Vi,

i

k(i)([:~(v(i)))\/(\|\) +

and, by (16). 1’ = V'V on y4. The solution u'(1. x) of the equation

& 0,02 2 2 2,00, (D n, 2 032
wy” = LW P ey = kP el R et ad ) (20)

)

is critical, that is, 1t~ > O in P¢]u'®], which ensures that in Py|u®| we have the

pointwise bound

My 2
@y KD oy (21)

T e e
RN TEITPAEI
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It is not hard to see that the inequalities (17), (18) are the conditions for direct
comparison of solutions ol parabolic equations (19), (20), if we have the estimate
(21) (see Theorem 2 of § 1),

Let us use the fact that generalized solutions of the problems (13)—(15) can be
obtained as limits as & — o0 of sequences of classical strictly positive and bounded
solutions {1} of the corresponding equations, It is not hard to see that monotone
decreasing with & sequences of infinitely diﬂ‘crgnl'mblc functions {u‘f’(()‘ x)} and
{ukz)(l‘())], canverging to the functions “u (%) and u (1) can be chosen to be
critical.

Existence of the sequence {uf'(l‘ 0)} with the required properties is obvious,
As far us the initial function is concerned, this problem reduces to approximation
of a piecewise smooth convex function U'P(v) = ¢ PP (x) WP > 0 at
all points where U(‘)” = () by a sequence of smooth convex positive functions
{(1)‘2'(1113)((). X))} uniformly bounded away from zero. Clearly, this can always be
done,

In the construction of the approximating smooth solutions {uk’"] it is not hard
to have u(f} > V(kH = [ 1(“1”) on yr for any k = 1,2..... The functions uiz'
are critical and satisty the inequality (21). Therefore by Theorem 2 u( = V”' i
wy for each k& = 1.2,.... Hence by passing to the limit & — oo we lmvu that
12 > Vi wy, O

Corollary. Let the function I be suel that
KB = kP (). p o> 0. (22)
and «'V = E V" on yp. Let us have, furthermore. that
'ty <00 p=0. (23
Then u'? = E 10"y evervichere in wy.
The inequality (23) is equivalent to the following ane:

/\(2)’(/\(2) ‘(I’)) ! .
............ =3 , - bkl
KO RO T () 20 7 (p) # 0. p > 0), (23"

Let us note that in the conditions of the corollary there is no assumption of
criticality of «@. Validity of the inequality 12 > E~ 0"y = VO in wy follows
from a direct comparison of equations (19) and (20). The first of these can be
written in the form

A Dy eyt
KW EWD) e

(2t
VI ._(l\ (V )V\ )\+ E/(V(H) !
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from which, if' (23) holds, it follows that V' is a subsolution of the problem
(13)=(15) for v = 2, and since '’ > V" on yr, ' > VY everywhere in wr.
In the proul“ of Theorem 3 we used our ability to approximate a critical initial
function ut,’ x) by a sequence of positive smooth critical functions. Under the
assumption that this can be done (see Theorem 2), the comparison theorem is valid

in the case ol boundary value problems for parabolic equations with a source:
“;1) V. (l\u‘)(“(lb v“(l " (—(u (u) L= 12 (24)
where Q' € C'(|0. 2)) are given tunctions.

Theorem 4. Let o' = E '™y on yr. and let the solution '™ be critical, that

is, ut "> 0 Prlat?|. Assune, moreover, that we have the inequalities
K2 (py — KYNE(p)) = 0. (25)
K2 /K EENE (P = 0. (26)
QM (KM EPY) = QMEPHEP (pIE (1) = 0. 7

Then !> > E 0"y everywhere in wp.
Proof. To prove the theorem, it is convenient to write the equation satistied by the
function VO = E V(') in the form

kM (EE” g
V}”:V-lk“’(h‘)VV”)I—F (r IVV“)I QFf ) (28)
Then the inequalities (25)-(27) are the conditions for a direct comparison of so-
lutions of equations (24) for v = 2 and (28) (see Theorem 2 in § 1). ]

Using the Maximum Principle it is not hard to check the validity of the following
simplest possible version of the operator comparison theorem;
Corollary. Let the function IX be such that the inequality (22) holds, and let
1 = E- Yy on vy, Assume, moreover, that for all p > 0
E"(p) = 0,0%(p) z Q) /E (p).

2 . .
Then ' > [ Y™y in wy.

Yr-criticality conditions

In this section we present one possible generalization of the concept of criticality
of a solution, and derive a new class of pointwise estimates of the highest order
derivative of a solution of a quasilinear parabolic equation in terms of lower order
ones, These results can be used to prove more general comparison theorems for
solutions of different equations; they can also be applied in other areas,
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1 Definition of a ys-critical problem

Let () be a bounded domain in RY with a smooth boundary 8}, In this section
we consider a boundary value problem for a quasilinear parabolic equation:

o= A = V. k@)Vu) + Qo 1 = 0, x € £ (h
(0, x) = uplx) > 0.x € {; (2)
wt. ) =0.0<1t<T.xed. 3)

For simplicity we shall assume that the positive in wyr solution of the problem
(1)~(3) is classical.

Suppose we are given a function (p). which is twice continuously differen-
tiable for p > 0, ¥(0) = 0, o € C(10. 00))

Definition. The problem (1)~(3) and its solution will be called -critical (with
respect to a given function ), if everywhere in wr we have the inequality

w1, x) ~ (s, x)) = 0. 4

In accordance with the definition of § 1, we shall call a zero-critical problem
(that is, w-critical with respect to o = 0) simply critical. From inequality (4)
follow more general estimates of the highest order spatial derivative of the solution
in terms of the lower order ones, than those obtained in § 1:

k' (10) z//(u) — Q1)
Ay z - ——|Vu e N Wy (5
k| k(1) !
LUsing estimates of the form (5) with a sufticiently general function ¢ widens the
scope of the direct and operator methods of solution comparison.

2 Sufficient conditions for yr-criticality of a problem

Let iy € C*AHYNC . ue C Howr) 0 C,\ (@y). Let us note that the smoothness
requirements on the solution in wy (and. in part. on the initial function 1) can in
principle he weakened, Under these assumptions we have

Theorem 1. For-criticality of the problem (1)-(3) it is sufficient that the function
uy satisfies the condition

AGp(x) — frlig(x)) = 0. v e (), (6)
and that for all p > 0 we have the iequalities

[Ch)' k1 () = 0, o
|k’z/l3 _ Qz(l\'lll/Q)/KI)) > (). (8)
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The inequality (8) can be written in the more compact form

4 1 /Q !
l//'(I){ <%—l>} () =0.p>0. (8)

Let us note that (8') makes sense also for values p > () where (p) = 0 (similarly,
(8) is defined at points where Q = 0).

Proof. Let us set 2 = «, — Q). From (6) and the condition ¢(0) = 0. it follows
that 7 > 0 on yy. Using the equalities

l 2
wy, = 4 ), An = m{: + () - Qta) — k' oV}, (9)

it is not hard to obtain the parabolic equation satistied by =

5 =k(Az = 2k («)Vu - V2 ~

k'(w) k(10 , k')
—_ {l\(u) I\—(W(ZI/I(H QuOY + Q () + k(i) {7(—(—7] [V~ } (10)
, ) 4 ko) } 1 {(k(u)z//(u))’ ' 2
Koo - 0 Ky | ==L gy
{ (o () ~ O (w) [ o } Ko + k() o0 [V

To derive this equation, it suftices to notice that 7, = «, — ' (1)u, and then to
determine from equation (1) the derivative u,,. simplifying by using the equalities
(9.

Conditions (7). (8) guarantee that the right-hand side of equation (10) is non-
negative, which by the Maximum Principle ensures non-negativity of the function
sz~ () inwp if 22 0 an yp 0

Remark 1. In the case v = M = const < 0. criticality conditions for an operator
A have the following torm: (k'/k) = O, |(Q/M — 1)/k|' = 0. They hold, for
example, for k() = (1 + w)”, o > (), and @ = 0. Thercfore the solution of
the equation u, = V- ((1 + 10)” Vi), which satisties conditions (2), (3). has the
following interesting property

(1, x) > 'm‘l; 1,0, x) = 'm$l;{V S 1) Vug) Y.
AL A

that is. for 7 > 0 the solution cannot decrease in ¢ faster than it did at the initial
time,

Remark 2. Let ¢y(p) = 0 for p > O. Then from (4) it follows that everywhere
in wr the solution of a y-critical problem is related to the initial function in the
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following way:

nit ) I
/ _(_7“;:1, O0<t1<T. (Ih
. W1 (m)

Hpy ()
This incquality provides us with a pointwise lower bound from for the solution
(for an application of this kind of bound, sce § 6).

Remark 3. As we already mentioned ubove. the smoothness requirement u €
~2 3 P appeee I . . . - i
ChHwr) N CA(@y) can be weakened, if we prove the claim first for the function

1
() = el 4 T1x) = (e )| = et x)) T € (0.T),
T
and then pass in the inequality £ > 0 in wy - to the limit as 7 — 0F,

Remark 4. Theorem 1 holds also in the case of gencralized solutions of the
problem (1)~(3). If] for example, we use the regularization of the proof of Theorem
2. § 2, then under the assumption ¢liug) € (), Adlug) + Qug) > Pi(uy) in £,
for initial functions weo = ¢ (Plig) + €) > b~ L(e) in ) we obtain

Adluey) + Qliten) — W(iten) = Adplrg) + Qlutey) — i) =
> Quten) ~ Qlug) — | (uen) — g} = o)

as € — 0! in Q. Here (1), — (i) = =i '(€)) = o(l) as € — 0! on
(0, T) x 8Q). Theretore if inequalities (7). (8) hold, by the Maximum Principle we
have that

(1) — yprlue) > 'l;ﬂ'{(“e)r = yr(ue)) = o(l)

as € — 0 in wy. Now, passing to the limit € — (' we derive the inequality
w, — (1) = O in Pelul.

It is possible to give u different proof. Let us consider, for example, the case
of radially symmetric solutions, n == w(z, ¢), r = |x|. Let Prlul = (0.T) x
{0 < x| < (). As in the proof of Theorem 1, § 2, we use continuity of the
derivative: (p(n)),” — 0 as ¢ — ¢ (7). Then we can find in Pylu] a subset
(0.7)x {0 < r < e}, such that, tirst, e,(1) € (L) —€e. L)) for ull 1 € (0, T),
and, second, 1, — fr(1) = =5 at the point (1, r, (1)), where € > (), 6 > 0 can be
arbitrarily smull. In the derivation of the last inequality, the value r = r.(1) is
chosen from the condition 1, (7, r, (1)) > 0, while the estimate 1, — (i) > —8 for
r = r,(1) follows from the conditions r, (1) € ({(1) — €. { (1)), #(0) = (. Therefore
the argument of the proof of Theorem | shows that by the Maximum Principle
2=~ () = —§ in ull interior points of the set (0, 7)) x {0 < r < r. ().
Hence, letting € and 8§ go o zero, we obtain that 2 > 0 in Py ul.

Remark 5. It is not hard to extend the proof of Theorem 1 to the Cauchy problem.
In this case 1g(x) must be such that z = 1, — () — O as |x] — oc lor all
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1 € (0, 7). Under the restrictions of Remark 4, the same statement also holds it 1
is a generalized solution of the Cauchy problem with compact support.

§ 4 Heat localization in problems for arbitrary parabolic
nonlinear heat equations

The main result of this section is the proof of existence of the heat localization phe-
nomenon in media with arbitrary dependence ol the thermal conductivity coefficient
on temperature. In § 5 we obtain a slightly less general result on non-existence of
lacalization.

Proofs of these assertions are based on the operator comparison theorem formu-
lated in § 2. A different approach to the study of the heut localization phenomenon
in general media is suggested in Ch. VI

1 Formulation of the problem

We are going to consider in wr = (0, T) x R,. T <« o0, the first boundary value
problem tor a degenerate parabolic equation:

ll,:(l\’(ll)Ll\)\ E((/)(H))\\: ([)
(0. x) = up(n) = 0.x e Ry g e CRY). sup g < o (2)
(it Q) =y (1) >0, O <t <7 1y € CHO. TH. (3)

where the boundary function (1) blows up in finite time:
(1) - oot — T, 4)

The function k(i) (thermal conductivity coefticient) is sufticiently smooth: &k €
CHR ) N CHO. 20)) and is positive for 1 > 0. k() = 0. Moreover, we shall
assume that the inequality

ok
/ K0 du < oc (5)
0

Hi

holds; this is a necessary and sulficient condition for finite speed of propagation of
disturbances in processes described by equation (1) (see § 3, Ch. ). We shall also
assume that &'(u) > O for all sufticiently small « > (). The initial function rg(.x)
will be taken to have compact support, which by (5) ensures that the solution of
the problem (1)~(3) has compact support in x far cach O <+ < T, Furthermore,
let sup {{d(up) | < oc.
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Under these assumptions there exists in @, = (0. 7) x R, . 7 < T, u unique non-
negative generalized solution of the problem (1)-(3). We remind the reader (see
§ 1, Ch. III) that by definition problem (1)--(3) with the given boundary regime
with blow-up will exhibit hear localizarion if there exists a constant I < oc, such
that

meas supp n(/. x) <0<t <T. (6)

The smallest possible value of [I* in (6) is called the localizavion depih.

If on the other hand meas supp u(s, x) — oo as 1 — T~ then there is no
heat localizedian ia the problem (in this case the thermal wave heats to infinite
temperature the whole half-spuce x > ().

In this subsection we solve the following problem: given a (sufficiently ar-
bitrary) thermal conductivity coefficient k() in equation (1) find the classes of
boundary regimes with blow-up {u, (1)) which lead 1o heat localization.

To that end we use the method of generalized comparison of solutions of two
different parabolic equations (see § 2).

2 Sufficient conditions for heat localization

The main result of this subsection is

Theorem 1. Let the thermal conductivity coefficient k(1)) satisfy for sone « =
const = O the condition
[1(0) < 2., (7)

Then there exist bowndwry blow-up regimes, which lead to heat loealization in the
problem (1)~(3).

Therefore the existence of the heat localization effect is independent of the
behaviour of k(«) #s « — oo, Naturally, the form of the boundary regime with
blow-up, which leads to localization is primarily deterinined by the behaviour of the
thermal conductivity at high temperatures. Sharp estimates for classes of loculized
boundary regimes will be obtained below,

2.1, Let us consider first the case of unbounded coefficienrs k. when

k(u) — ow. u — o, (%)

In this case the localization effect will be anulyzed using the operator compari-
son method for solutions of equation (1) and un equatian with pawer nonlinearity,

= (1), (N

where > ( is ¢ constant,
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The operator method will be used to compare the solution of the problem (1)~
(3) and the separable solution of equation (9) (S-regime):

ey (1 x) = (T = 1) V7 (1 = x/xo) xo = [2(0 + 2/ ]2, (10)

This solution was studied in detail in Ch. III. §§ 2. 3, It graphically illustrates the
heat localization property., Here /* = x4, Note that the function i, is critical,
since (3/dr)n (1, ¥) > 0 almost everywhere in wy,

Given a thermal conductivity coefticient & in (1), let us find out which functions
(operators) £ ensure that if the inequality u,, (7. x) = E '(u(z, x)) holds on yr,
then it holds in wy. It tollows from Theorem 3. § 2, that for that it suffices to
find at least for one & = 0 a solution E(p) of the system of ordinary differential
inequalities

P k(E() =0, p >0, (11
{_“_134___] >0.p >0 (12)
KE()E' ()

We remind the reader that the mapping £ : R, — R, must be bijeetive and
monotone, that is £'(p) > 0 for p > 0, F(0) = 0, F(co) = oo.

Inequalities (11), (12) follow directly from the comparison conditions (17),
(18) of Theorem 3, § 2, if we sct there k™" () = k(w), k' (w) = .

The following assertion gives necessary conditions for solvability of the system
of inequalities (11). (12),

Lemma 1. Let the thermal conductivity coefficient satisfy () for some a > 0.
Then for any O < o < ooy = /o there exists a solution I of the system of
inequadities (11). (12),

!

Proaf. For convenienee let us set £ 7 = A, Then the inequalities (11), (12) take

the form
k(p) < HY. p> 0., (11"
k() } ,
e <0, p>0. (12"
[H"(p)H’(p) P
Let us set
k(p) 1

[ . p >0,
HTH'(p)y  w(p)
Then, clearly, inequality (12) will be satistied if
w(p) > 0.0’ () =0, p> 0. (13)

The function H () has the following form:

7 Lt i 1)
H(p) = [(l “+ (r) / k(n)w(n) (I7)} AR (14)
Ja
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By condition (7) and the assumption o < o, we have

Therefore we can always find a smooth function w(p), satisfying the inequalities
(13). such that

w(p) > [/(”"([7)] . p >0, (15)

since the expression in the right-hand side is bounded for all p > 0.

Let us substitute into (14) an arbitrary function w. which satisfies conditions
(13), (15), and let us show that the operator (14) constructed in this way is a
solution of the system of inequalities (117), (12'). Indeed. in the new notation
(11"y tukes the form

r ,

k(n) {[k'/”(n)] - w(n)} dn <0
Jo
and by (15) is satistied for all p > 0.

Next, from (14) it immediately follows that H(0) = 0, H'(p) > 0 for p > 0
(the latter inequality is ensured by the first condition in (13)). Moreover, using
(15), we have from (14) that

I , LAt tery
H(p) = [(l + o) / k(m) [l\'l/”(n)} (I'q} = k""" (p).
Jo

Hence by (8) H(oo) = o0,

Thus the function H : R, — R, defined by (14) satisfies the system (11"),
(12'y. Therefore = H ' R, — R is u solution of the original system (I1),
(12). m]

Remark 1. [t is not hard to see that the claim of the lemma is still valid without the
restriction (8) on the coellicient &, since no conditions on the rate of increase of the
function w(p) (apart from (13), (15)) arise in the course of the proof. Therefore
we cun always choose the function w so that the integral in the right-hand side of
(14) grows without bound as 7 — oo, which ensures that H(oo) = oo, or. which
is the same, that £(00) = oo.

Remark 2. Let us show that from (7) 1t follows that condition (5) holds. Indeed,
by (7) there exists a constant M > 0, such that k(u) < Ma'/* forall 0 < 1 < 1,
and therefore

'k
/ lﬂ diu < Mo < o,
0 t
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Let us note that there exist coefficients & for which condition (7) does not hold
for any « > 0 and system (11), (12) has no solutions. This is true, for example,
for a coefticient k& which has for u e (0,€].e < 1, the form k() = (= Inw)*,
where 0 < —1 is a constant, At the same time condition (5) for finite speed of
propagation of perturbations is salistied.

Let us observe also that solvability of the system of inequalities (11), (12),
which detines conditions for heat localization in this problem, depends only on the
behaviour of the thermal conductivity coefficient k(u) for small u — 0.

From the method of proof of Lemma 1 we immediately have

Corollary. Let condition (8) hold, and asswne that there exists a constant o > 0,
sueh that
[k ()" = 0, p > 0. (16)

Then £ = k "(pb'™y, where k U is the function inverse to k (k™' exists due 10
monotonicity of k; this follows from (16)), is « solution of the svstem of inequalities
(1D, (12) for o = 1/«

Now using Lemma | and the operator comparison theorem from § 2, we can
formulate sutficient conditions for heat localization in the problem (1)—(3).

Theorem 2. Let the thermal conductivity coefficient k() satisfy (7) for some « >
0; let E be some solution of the system of inequadities (11). (12), corresponding
10 u fixed o € (0, 1/a|. Moreover, let the bowndary conditions of problem (1)—(3)
satisfy the inequalities

SN\ e
uy(x) < E {T'”" <l - ;.L) ] ca > (17
Xy 4
uﬁt)gE[(T»»t)“””}. 0<1<T. (18)
Then evervwhere in wy u(t, X) = Elwg, (1o )| where w8 defined o (10).

Therefore there s heat localization with depth ' = xy in problem (1)—(3).

Remark. In § 4, Ch. 1l it was shown that solution of the problem for equation
(9) with the boundary regime «(r.0) = (T ~ N~V 1 e (0.7) and ap initial
function (0. x) € C(R,) is bounded uniformly in 1 € (0.7) for all x > xy =
[2(or + 2)/er]"*. Using this result, it is not hard to show that the restriction (17)
on uy(.x) in the theorem is not cssential: if 4l the other conditions hold, in order
to have localization, it is sufficient for 1y to be a function with compact support.
A method to prove this type of assertion will be presented below.

The result of Theorem 2 proves Theorem | in the case ol unbounded thermal
conductivity coefficients k, which satisly (8),
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Let us consider now some gpecific examples of the use of Theorem 2 (all
the coefficients of the examples below satisly the condition of finite speed of
propagation of perturbations).

Example 1. Let k(«) = «" /|1 + p(0) | > 0, where p(e) is an arbitrary smooth
function, satistying u(«) > 0, ¢’ > 0, 1 > 0.

tn this case a solution of the syslc,m of inequalities (11), (12) is the identty
transformation £(p) = p. This is cquivulcnl to an application of lhe direct compar-

ison theorem to solutions of equations (1), (9) (sec Theorem 2 in § | and Example
I considered there). Thcrdorc by Thu)rcm 2, there is heat loculization with depth
I* < xo = |2 +2)/0]M in problem (1)-(3) with boundary conditions that

satisfy the inequalities

(X)) < w00, xe R uq() < (T —1)° b 0«t T,

Example 2. Lel k() = [¢" — I]*. where A > 0 is a fixed constunt. in this
case inequality (16) holds for er == 1/A, and therefore a solution of the system of
inequalitics (11), (12) with o = A is the trunsformation

Egpy =k "p"=In(l+p. p>0.

Then from Theorem 2 we conclude that boundary conditions that satisfy the in-
equalitics

wplx) < Injl 4 w00 v e Ry,
w () =l 4+ (F =0 Y. 0<-1<T.

engure occurrence of heat loculization in the problem (1)-(3) with the depth /' <
[2(A 4+ 2)/A]"7? (let us observe that here w(r, v) < Inj14 1y, (2. x)] everywhere in
wy).

Example 3. Let us congider the cocfficient k(1) = wexplu?’}, which satisties
condition (16) for «« = 1. Therefore the transformation E(p) = k '(p) is the
required one, and if inequalitics (17), (18) hold, there is heat localization in the
problem (1)-(3) with the depth I* < \/6 Let us estimate the asymptotic behaviour

as 1 — T of the boundary regime leading to localization. Since

I'Inlnu
k) 2 Int Py — e 1 0,

for localization it is enough that

|“3 I In|In(F - nj

N = | In(F —1 e
() < [In( ) AT~

-
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Example 4, Let k(«) == exp{e”— 1}~ 1. Here the required operator £ corresponding

oo=11Is
E(p) =k Y(py=In|l + In(l + ],

and therefore if 1p(x) < Elu,(0. x)] in R, and

W < {1+ (7 -1 Hhoo<reT

then heat localization with the depth I* < /6 oceurs in the problem (1)—(3).
Using the methods of the theory of a.ss. (see Ch, VI). it can be shown that
the estimates of localized blow-up regimes obtained in Examples 2-4. are optimal
and cannot be improved.
Let us consider now an example for which this is not the case.

Example 5. Let k(u) = In*(1410). A > 0 is a hixed constant. In this case condition
(7) is satisfied. for example, for @ = 1/A, and therefore we conelude from Lemma
I that for any o € (0. A there exists a solution of the system of inequalities (11).
(12). Following the proof of Lemma 1. let us construct the desired £

Let us Jix arbitrary o € (0. Al Inequality (15) is equivalent to the inequality

Ajo ]
(u( I;) > i\. EMN_(_LTMI__)) ,
T 1+ p

> (). (19

The function in the right-hand side is hounded from above by the quantity

A (A Mo A
(',\,,:-—<-~l> cxp{l~~—}‘tr(/\.€.\,\:l-
o

Hence, taking into account conditions (13), we conclude that to achieve the maxi-
mal growth rate of £(p) as p — o0 (and therefore the maximal admissible growth
rate of boundary blow-up regimes «; (1) < E|(T —1) Ml as 1 — T ), it is nec-
essary 1o set w(p) = Cy, in (14), Recall that H = £ !, and therefore the slower
H(p) grows as p — oc, the faster will £(p) grow,
Thus, from (14) for o € (0, A] we obtain
It Lo b
Hip=E '(p) = [(l + 0)C z0 / In*(1 +n) dn
Jo

Hence

] 1L ren

I3 l(p) o u,\,,(pln’\ p)m” ).u,\,, =[] + ) Carl

Egn =a M40y *pM o A p

for sulticiently large p.
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From Theorem 2 we conclude that in this problem localization i1s produced by
any boundary blow-up regimes that satisfy as 1 — ¥ the condition

(Lier)
r

() < ENF =0 Y = Moo+ DIV = 07O e~ 0t (20)

Recall that Itere the value of the parameter « € (0, A] is arbitrary. In particular,
decreasing  we have that any power law boundary blow-up regimes

() =T -=0", 0<1 < T, n=rconst <), (21

will be localized.

However, the right-hand side of (20) does not allow rigorous passage to the
limit as o — 01 (because, among others, the estimate I” < xy = |2(0 + 2)/(r|”3
does not make any sense then) and therefore we cannot obtain in this way the
precise houndary of localized regimes.

Such a boundary will be determined in § 2, Ch. VI by constructing approxi-
mate sell-similar solutions of this equation. To this boundary there corresponds a
function of exponential form,

w1ty = exp{(F —n) "YY< < T,

which agrees on the whaole with the fact that the exponent n < 0 in the family
(21 of localized regimes is arbitrary,

2.2, Let us now consider the case of bounded coefficients k. Without loss of
generality we shall assume that

ktpy <1, p>0. 22

In § 4, Ch. 11 we studied the action of boundary blow-up regimes on a medium

with constant thermo-physical properties, diffusion of heat in which is described
by the linear equation

=0, 0<t-<T, xeRy; (23

v(0, x) = 0 (which is not essential by the superposition principle).
It was shown, in particular, that the boundary blow-up regime

v(1.0) =exp{(F =0 ') 0 <1< T (24)

leads to effective heat localization with depth L' = 2. This means that v(s. x) —
oo as 1 — 1 for all 0 < x < 2, while for v > 2 the solution is bounded from
above uniformly in 1 € (0, )

vl x) < (T ) =

a7 12 ~ : (
=7 [l~<%>} / e " Vdy < .

(VG (4T

1o
N
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This result will be used in the operator comparison of solutions of equations
(1) and (23); comparison conditions are inequality (22) and the inequatity

JKE(PHE (M) =0, p=0 (26)

(this is equivalent to (12) if o = 0),
Setting H = £ '. we rewrite (26) as

IH' (p)/k(p)] = 0. p=0.

Hence "
E I(I;) = H(p) = / k(myom)dn, p > 0. (27)
Jo

where w(p) is an arbitrary bounded function. which satisties (13) and the condition
Y
/ k(mwinydn = o<, (28)
J0

The restriction (28) ensures that /£(o0) = ~o.
From (27) it follows that in the case

X
/ k(m)dn = oo, (28")
S

in order to have the maximal growth rate of £(p) (or minimal for E='(p)) as
p — 00, we have to require that the non-decreasing function w be bounded in R,
for example, by setting o = 1.

Thus, if conditions (13), (28) hold, operator £ in (27) guarantees comparison
of solutions of equations (1) and (23). Without loss of generality we can consider
only the case 1y = 0 in R,. Then, since the boundary condition (24} is critieal,
we conclude from the operator comparison thecorem (see § 2) that the boundary
blow-up regime

m (1) < Elexp{(F =0 ')}, 0 <1< T, (29)

leads to effective heat localization in the problem (1) -(3) with depth L* < 2, such
that, furthermore

Wit.x)y <Elw(T 0], 0<t1<T, x»2. (30)

In the next theorem we “pass™ from effective heat localization to localization
in the strict sense.

Theorem 3. Assume that in the problem (1)=(3) wg(x) = 0, and that the boundary
blow-up regime satisfies condition (29), where £ Ry — Ry iy a solution of the
system of inequalities (22), (26). Then there is heat localization in the problem,
and there exists a constant I* > 0, such that

i, ) =00, 7)) x {x=[I"} 31)
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Proof. Let us fix arbitrary x* > 2. Then it follows from (30) that u(, X') <
Elu(T . a")| < oo for any 0 < 1 < F, and therefore by the comparison theorem
for solutions of parabolic equations (see § 1. 3, Ch. ) in (0.7) x {x > 1"} the
function u(r. x) docs not exeeed the solution of the problem

Uy = k(U 0=1<T, x>,
(32)
UO.x)y =0, x> x" U, ) =EwT 29 0<t<T.

The solution of this problem is a self-similar one (see § 3. Ch. II) and has the
form U1, x) = f({), where { = (x — .\")/1”3. The function f is determined from
the following boundary value problem for an ordinary differential equation:

1
(Y +=]C=0, >0
il 2,/5 4 %

SO = EJu(T™, <M, foo) = 0.

Existence of a solution of the problem (33) for any linite f(0) > () has been
established in |23, 68] (sce § 1, Ch. D). There it is also shown that under condition
(5), the function f(¢) has compact support, that is. f(¢) = O for all { >
(Lo = Lo(x") < oo depends on the choice of 4% > 2).

Thus. everywhere in (0, T) x {.x > x*} we have the incquality

=2
wt, )y < U, x) = f <"",TT"“> .
Hence we immediately infer that
meas supp u(f, x) < x" + meas suppl/(1, x) =

= X Lo e 3 L) TR < oo

Therefore the problem (1)-(3) exhibits heat localization in the sense of (6).
while tor loculization depth we have the estimate

I' < int {\ + g”(.\"y/"”} < oc, (34)
A s2

which completes the proof. O

Remark. In § 4. Ch. Il it was shown that the opposite “passage,” from strict (for a
function uy(x) of compact support) to elfective localization (when wy(x) € C(R )
is an arbitrary (unction) is also possible. It is made by deriving a special energy
estimate for the difference of two solutions of equation (1) which correspond to
the same boundary condition.
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Let us note that there is no restriction (7) on the thermal conductivity coelticient
in Theorem 3: it is sulficient that the condition for finite speed propagation of
perturbations holds. Let us consider some examples.

Example 6. Let k(1) = 27 7 arctan . Then condition (22) is satistied (inequality
(5) also holds). Setting w = | in (27), we obtain
| 7 2 T | 5
E7(p)y= kimydn=p+—p [urcum p— _.} —~ = In(l 4+ p7)
Jo ™ 2 T

~xp—z2inp

for sufficiently large p. Hence E(p) = p+2/m Inp, p — o¢, and by Theorem 3
we conclude that localization with depth (34) is produced by boundary regimes,
which satisty the estimate

2
w1y < Elexp{(T — 0" ")) ~exp{(T =) '} + ;—"T('l" .

as 1 — T .
Example 7. Let us consider the coefficient k() = ufl + 2uln(l + w)| " In thig
case condition (22) holds, since 2uln(l 4+ «) > 2142/(1 + «) for all n > O and
therefore

k() < a1 + 2112/(1 +wy] ‘= a(l + {1 4+ u(l + 2u)] el

for any u > 0. Equality (28") also holds. Then from (27) for w = | we have

ndn o

17
e [ e
» Jo 14+ 2pln(l 4+7)  2Inp P o0

Hence E(p) = 2pln p, and therefore the localized regimes satisty
(1) < Elexp{(T =0 "W =2T =0 YexpT =0 ') 1 =T .
Example 8. Let k() = 2u/(1 + %), In this case conditions (22), (28) hold.

Setting in (27) w = 1, we have E '(p) = In(l + "), E(p) = (e ~ )72,
Therefore any boundary regime of the form

= 1 . .
(1) = fexplexp{(T — 1) l]] - l]"~ 2cxp{—5cxp{('l — 1) ’]}. =T,

leads to strict localization with depth (34) (and to effective localization with

L' < 2).
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Estimates of localized boundary blow-up regimes obtained in Examples 7, 8
are not optimal. Sharp estimates for these cases will be derived in Ch. VL

Example 9. Let k() = /(! +uY). Then condition (28'y is not satisfied. Choosing
w(p) = p (conditions (13) are satistied), we obtain from (27)

l 143
EYp)y==In(l + pHy, E(p) = (u'*” - l) >l p— oo,
3
and therefore the localized regimes are
(1) = explexp{(T — n l]]. - T .

Setting now w(p) = p/In p as p — oo (conditions (13) are still satisfied), we
obtain from (27)

E-Y(py = Inln p, E(p) = exple”), p — 00,
and localization is produced by blow-up regimes
0, (1) < explexplexp{(T —1) "IN 1 — T .

As w we could also take the function w(p) = p/iIn pInln py] as p — o0 and so
on.

Proceeding in this fashion, we conclude that in this case all the blow-up regimes
of the form

wi (1) < explexp ... {exp{(T —~1)”']]...]. 1 —T7.

with any finite number of exponents in the right-hand side, will be localized.
In § 2, Ch. VI we shall obtain results showing that under the condition

/ k) in < 50 (35)
Iy n

all boundary blow-up regimes are localized. (Actually, this can be proved by
comparison with a solution of travelling wave type, which, if (35) holds, blow up
in finite time; see § 3, Ch. Iy, [t is not hard to see that the coefficient & of Example
9 satisties this condition.

3 Effective heat localization

All the results of the previous subsection can be used to analyse effective local-
1Zation,
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A solution of problem (1)-(3), which blows up in finite time, is called effectively
localized if it becomes infinite as 1 — T on a set of finite measure:

L" = meas{x e R, | lilp w(l, x) = o) < oo (36)
[

(L is the localization depth).

In this definition there is no requirement on the initial function uy(x) to have
compact support; it is only necessary for it to be bounded in R,. Moreover,
condition (5). of finite speed of propagation of perturbations, is not necessary.

To study effective localization, it is not hard to modify Theorems 2, 3. as well
as the results obtained in Examples 1-9. Then analysis of unbounded coefficients
k() uses the operator comparison methods and the derivations of § 4, Ch. 1Il. As
a result, for the localization depth we obtain the estimate L < |2(o + 2)/0’]'/2.
where o € (0. 1/er} is the parameter in the system of inequalities (11). (12).

The case of bounded coefficients is analyzed ag in subsection 2, Note that the
boundary blow-up regimes mentioned in Examples 6-9 lead to effective localization
with depth L* < 2, ‘

Example 10. Let k() = 1/(1+4ua). Setting @ = | in (27), we obtain E(p) = c’?—l.
Hence the boundary regimes

m (1) = explexp{(T —1) M- T,

lead to effective localization with depth L™ < 2 (this upper bound for localized
boundary regimes is not optimal; see § 2, Ch, VI).

4 Heat localization in the Cauchy problem
The solution of the Cauchy problem for equation (1) with an initial function of
compact support

(0. x) = ug(x) >0, x € Ry ne C(R), uy 0. [RYD]

is called localized 1Y its support is stationary for some finite time, that is. there
exists T € (0, n0), such that

supp u(z, x) = suppug(x), 0 <1 <71 (38)

(here, naturally, we assume that condition (5) is satisfied).

It is well known (see Remarks) that stationarity of a front point of a generalized
solution of equation (1) is determined by the asymptotics of the initial function in
a neighbourhood of that point. However, the magnitude of the localization time

T*, which is of physical importance, depends on the “global™ spatial structure of

the function ny(.x), This dependence is reflected in the theorem stated below,

|
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Theorem 4. Ler the coefficient k satisfy condition (7) for sone a > 0, and let I
be a solution of the system of inequalities (11), (12), which corresponds 1o a fixed
o e (0, 1/a). Let uy(x) satisfy the inequalities

0 < () < Eltn(l = 1x1/x:077 ], x €R,

where w,, X, are fixed positive constants. Then the solution of the Cavchy problem
(1), (A7) is localized in the domain {{x| < x,,) and for localization time we have
the estimate T* = ox3, /| 2u% (o + 2)|.

The validity of this statement is deduced from Theorem 2 using a technique
applied in § 3, Ch. Ill to a similar analysis of equation (9). To illustrate Theorem
4, let us constder

Example 11. Let k(i) = ¢~ 1. In this case a solution of the system of inequalities
(1, (12) for o = 1 is the function E(p) = In(l + p). Then from Theorem 4 we
have that the solution generated by the initial function

ug(x) = In{l 4w, (1 — I.\'I/,\’,,,)i], reR,

ig localized in the domain {|x| < v, ) for time not less than .\',3,,/(641,.:),

§ 5 Conditions for absence of heat localization
1 Formulation of the problem

As in § 4, we shall consider in wy the first boundary value problem for a degencrate
parabolic equation:
= (ko) (h

wO.x)=0, v eR,; a(t,0) =up(1) > 0. 1€ (0. 7). (2)

where the boundary function «; € C'(JO. T)), «; = 0, blows up in finite time.

Let all the restrictions imposed on the function k(«) in subsection 1 of § 4
hold. In particular, we assume that the condition for finite gpeed of propagation of
perturbations is satisfied:

N l\'
/ () d(m) < oo. 3
JO n

There will be no localization in the problem (1), (2) if

meas supp u(l, x) — oo, + —> T, 4
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that is, as 7 — T heat penetrates arbitrarily far from the boundary v = 0,
Let us remark that (4) is equivalent to the condition

u(t.x)y - ocinR,. 1 - T 5

(the truth of this statement is proved by the method used in the proot of Theorem
Jof § 4).

2 Sufficient conditions for the absence of heat localization

Let us denote by 1, (1. x) the solution of the equation with a power law nonlin-
earity
w, = (" uy),. o =const > 0, (6)

which satishes the boundary condition
Wy (1.O) = (T =", 0 <t <T: n=const < —1/a, (7

ey (0.x) € C(R ).

In § 2. 3 of Ch. I it is shown that the function 1, is not localized. and that
there exists a4 constant ¢y > (), such that

meis supp g, (1, X) = ag(T ~ parOE s s T (8)

This result will be used in the comparison of solutions of equations (6) and (1).
Below we shall assume that the conditions

K@) > 0.1 >0, k(oo) = oo, 9

are satistied, Conditions for the absence of localization in the case of bounded
caefticients k() will be obtained by a different method in Ch, VL

Suppose we are given an arbitrary coefticient & € C'z(R..) N C(]0. 00)), which
satisties conditions (3), (9). Let us find what functions /7 enable us to apply opera-
tor comparison methods to the solution «,,, of equation (6) and the solution of the
original problem (1), (2), that is, when does the inequality «(r, x) > E~ Nitgy (1, 1)
hold everywhere in wy.

Since the solution (s, x) 1s critical, from Theorem 3, § 2 we have that o
that end we must find the solution E(p) ¢ R, + R, of the system of ordinary
differential incqualities

k(p)y —~E7(p) =0, p> 0. (1)
. ,
{m__(i’),ﬁ__} = 0. p >0, (n
TP E(p)
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These inequalities coincide with the comparison conditions (17), (18) of Theorem 3
of § 2, if we set there k' () = u”, kP (u) = kqu). Sufticient conditions for
solvability of the system (10), (11) are given by the following

Lemma 1. Assume that conditions (9) are satisfied and that there exists « constant
@ > 0, such that
1K1 () > 0. (12)

In addition, let the function k| (1) have for n > 0 a finite number of zevos. Then
for o = 1/« there exists a solution E of the svstem of tnequalities (10), (11).

Proof. Let us set k() /IE7(E ()] = ljw(p). The inequality (11) will be
satisfied if’

w(p) =0, w'(p) <0, p>0. (13
Then
p /(o)
E(p)= [(l + o) / k(n)w(n) (IT)] .
Jo
Inequality (10) then takes the form
o ,
/ k(n){{k'/”(n)l - w(m} dy > 0. p>0, (14)
Jo

Assumption (12) for v = 1 /o enables us to construct the function w(p) satisfy-
ing conditions (13) and the inequality w(p) < (kM) (p) for all sufficiently small
p > 0. The second condition of the lemma means that the function {k””]l(p) is
monotone for all suffictently large p > p, > 0 (this condition, obviously, is not
optimal), Therefore there existy lim ,,u.xlk‘/”lr(p) =k, If & > (), we can set
for p > po w(p) = inl’,,u(,v,,,,{{k’/”|I(p)]. It on the other hand k = 0, we sct
w(p) = k'] (p) for p > p.. In both cases such an extension of the function
w(p) for large p > 0, while preserving conditions (13), (14), allows us to achicve
the equality I<(00) = . 0

Remark. There exist coetficients &, tor which condition (12) is not satistied for any
a > 0, This is true, for example, for the tunction k(1) = exp{—1"}, v = const < 0.
From the method of proof of the lemma we deduce

Corollary. Let conditions (9) hold, and let there exist a constant a > ), such that
Ik ()" =0, p=>0, (15

Then the fimction I: = k" (p) is a sohuion of the system of inequalities (10), (11)
foro=1/a,
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It is not hard to see that if (9), (15) hold, then the function k defines a bi-
jective mapping {0, 00) — {0, 00). Thercfore the mapping £ = k“ has the same
properties.

Using Lemima | and the operator comparison theorem, we state

Theorem 1. Ler k(oo) = oo, and suppose, furthermore, that condition (12) iy
satisfied for some a > 0. Let E be « solntion of the system of inequalities (10),
(I for o = 1/a. If for sufficiently large 1 < T we have

(= E7VWT — )%, n = const < —1/cr. (16)

then there is no heat localization in the problem (1), (2): u(t. x) — o everywhere
in Ry ast — T and there exists a constent @y > 0, such thet

meas supp u(r, x) > ao(T — )" — 00, 1 = T, (17)

Proof. The proof ts based on comparing in (7. T) x R, the solution «(1, x) of the
problem (1), (2) with v, = vu(, (1. a0 a self-similar solution of equation (6),
The constants 7 € (0. 7), v > 0, are chosen from the condition u(r, x) > v, (% x)
inR,. Since v.(7. v) — Oand supp v, (7. x) — {0} as v — 0", this can always be
achieved, Then the claim of the theorem follows from the inequality « > E™'(v,)
in (7. T) x R, . Furthermore, in (17) @y = ayt”/*, where ay = ag(n, o) > 0 is the
constant in (8). O

Example 1. Let k() = «’{l + u(u)], o > 0. where x4 € C*(R,) satisfies the
conditions x> 0, &' > 0. In this case a solution of the system (10), (I1) is
E(p) = p. which is equivalent to applying the direct solution comparison theorem
to equations (6), (1) (see Theorem 2, § 1). From Theorem | we then obtain that
boundary regimes 1w (1) > (T =1, 1 — T , where n < —1/o, do not lead to heat
localization.

Example 2. Let us consider the cocfficient k() = In*(1 + ), where A > 0 is a
fixed constant. Then for cv == 1/A, condition (15) holds, and therefore the function

Epy=k"*prsind +p. E Y(p)y=el -1,

is a solution of the system of inequalities (10), (11), which corresponds to o =
I/ = A, Thus there is no heat localization in the problem (1), (2) if

iy =exp{(T-n -1, 1—-T7, (18)
where n < —1/A, There exists a constant @, = (), such that

meas supp w(r, x) = ag(T’ — it oy (52
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Example 3. Let k(u) = Infl 4+ In(1 + ). Since k"Ge) < 0 in R, the required
operator is the function

Ep)y =k(p) E "(p)y =exple’ — 1) - 1.
which satisties (10), (11) for oo = 1. Therefore boundary regimes
w () =explexp{(T ="y =1} -1 1~1T, (20)

for n < —1 lead to absence of heat localization:

(L2

meas supp ulr, x) = aog(l" -1 o, = T (21

The lower bounds of non-localized boundary blow-up regimes we have com-
puted in Examples 2, 3 are not optimal. In § 2. Ch. VL by constructing a.s.s. for
cquations under consideration, we shall establish sharp bounds for such regimes.
In particutar, it will be shown that in Example 2 there is no localization for any
n < —=1/(1 + A in (18), and unlike (19)

meas supp u(r, x) = ho(T — ) e

where by > () is a constant, which depends only on i, A,
In Example 3 absence of localization is caused by boundary blow-up regimes
that are weaker than (20):

wy (1) = cxp{(T — 0 In(T -~ 1} 1}. 1 — T (22)

where n < — 1. Furthermore, estimate (21) hotds for some @y = ag(n) > 0.
Joet us stress that the limiting exponents in these non-localized boundary regimes,
n=—1/(1+A) in (18) and » = —1 in (22), are sharp and cannot be replaced by
larger oncs.

Example 4. Let k() = ue®. In this case condition (12) holds for every e € (0. 1]
(note that (15) does not hold for any « > 0). Therefore it follows from Lemnia
I that for any o = 1/ = | there exists a suitable solution of the system of
inequalities (10), (11). For example, let us set o = 1. Then conditions (13), (14)
are satisfied for w = | and the transformation £ has the form

n 172 5
E(p) = {2 / 71("’(!7)} ~2pel)'7 p = .
Jo

Hence £ (p) = 21n p ~ In(d1In p) for large p. and therefore under the influence
of boundary regimes of the form

u(n > 2T —n '~ ln{4ln|('['~l)“|}, [

there will be no heat localization.
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§ 6 Some approaches to the determination of conditions for
unboundedness of solutions of gquasilinear parabolic equations

In this section the methods of §§ 1-3 are used to derive conditions of global
insolvability of quasilinear parabolic equations of the form

1, = V- (k(\Vu) + Q) = Agi) + Q). (hH

where k, Q are sufficiently smooth non-negative tunctions, such that Q(u) > 0 for
u > 0and QG = 0.
We consider two problems for ¢quation (1): a boundary value problem for
r >0, x € £ () is a bounded domain in RY with a smooth boundary 8€}) with
the conditions
10, x) = 1) = 0. x € £ 1y € CY), (2)

w(t.x) =0.1>0. x e il (3)
and the Cauchy problem with the itial condition
10, x) = uy(x) > 0, x € RY: uy € C(RY). (2"
It is assumed that the function  satisties the inequality

v

dn
L Q)

< . (4)

which, as we know (see § 2, Ch. ). is a necessary condition for existence of
unbounded solutions of the problenis we are considering. In the following we shall
use extensively results obtained for the equation with power type nontinearitics,

=9V +uf >0, B> 1. (5)

which appear in § 3, Ch. V.

1 A method based on i-criticality of the problem

Let ug consider the boundary value problem (1)-(3). A solution of the problem is
called wp-critical, i everywhere in the domain we have

w, (1, x) = flu(r. x)) = 0. (6)

Sufticient conditions of y-criticality of the problem were established in Theorem
t. § 3. Assuming that the solution is sufficiently regular (it is also assumed that
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W€ CH(0. 00)) N C0. 00)). #(0) = 0, uy € C2(€))). these conditions have the
form

Alug) = V- (k(ug)Vig) + Qluy) = plug). x € {1 (7)
[k /K] (p) = 0, p > 0. (8)
Ky = Q7 (kyr/ Q) [(p) 2 0, p > 0. 9

We shall use the inequality (6) to determine conditions for unboundedness of
solutions to the problem. Let the function o be positive in Ry and

~od
/ N . (10)
NI /16))]

Then, if the solution of the problem is -critical. it follows from (6) that the
function u, (1) = max, . u(r. x) will be for all 1 > 0 not smaller than the solution
Y (1) of the following Cauchy problem for the ordinary differential cquation,

1Y
£*~(1)—1/1(Y(1))=()A 1 >0, (1
dt
Y(0) = 1 (0) = nm!;uz(,(.\') > (), (12)
113

By (10) the function Y (1) is defined on the bounded interval (0. 1%). where

~ !
= / “n < 00. (13
Janor ()

Hence it follows that the original problem (1)-(3) has no global solutions and that
there exists Tg < 1*. such that

l_iE,,,-,-“ max u(z, v) = 00. (14)
e}

As g we can take any non-trivial non-negative solution of the boundary value
problem for the quasilincar elliptic equation

V  k(ug)Vig) + Qlug) = Wiug). x € {1 uglyg = 0. (15)

In the one-dimensional case this equation can be integrated in quadratures, which
allows us to give a reasonably detailed description of the spatial structure of ity
solutions (sce subsection 2). For N > 2 the question of solvability of the problem
(15) s an interesting and sufficiently complicated problem in its own right (see §
3, Ch. V).

Let us indicate another application of the inequality (6). If (10) holds then
from (6) we can deduce the following upper bound for the unbounded solution (it
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is derived by integrating (6) over (1, Tqg). where Ty is the time of existence of the
unbounded solution):

~ 4
/ 1> Ty =11 €(0.Ty). xel. (16)
it ) '/f("))

Example 1. Let k(p) = |, and let the function Q be convex: Q“(p) = 0 for all
p > 0. Then as ¢ we can take f(p) = vQ(p). where v € (0. 1) is a constant.
Indeced. inequalities (8), (9) are satisfied. while (10) holds in view of (4). As
an initial function satisfying (7), we can take a solution of the boundary value
problem

All() + (] - l’)Q(ll()) =0, vell; ll(;l;;” =), (17)

This problem does not always have a non-trivial solution. For example, if {2 € RY,
N = 3. is star-shaped with respect to some point (in particular, if it is convex) and
Qi) = uf, then for B8 = (N 42)/(N —2) there are no solutions (see § 3, Ch, 1V),
At the same time, in the case of annular domains 1 = () < a4 < |x] < h <o), a
solution exists for all 8 > 1 (see the Comments section). @
Thus. let the initial function g satisfy (17). Then it follows from (13) that the
solution of the problem grows without bound in finite time not longer than

~ d
;o) / i < 0% U (0) = max .
Juntn QM)

Let us observe that r(p) = »Q(p) satisties the inequality (9) also for arbitrary
non-increasing coefficients & (when &'(p) < 0 for p > 0).

Let us see now what can be deduced from the estimate (16). Let the solution
be i-critical with respect to the function (p) = vQ(p), v € (0, ). Then

> dny :
= (T ~ 1) in (0, Tg) x (1.
.[u‘\) Q) ! )

In particular,
it Qay

i

uf B > 1. then
Bl ) S = DT Ty
2 if Q= (1 + (1 +u). B > 1 (Q" 20 inR,). then
ulr.x) < cxp{]u(B_. DY RRALALIY e 1/(,,_““} _
3) if Qu) = e, then

wr, xy < Inje""(Ty — 1 o1 e (0. Tg).
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All these cstimates are sharp in their dependence on (T4 — r). This 1%
demonstrated by comparing 1(r. x) with the spatially homogeneous solution v
V(1) = Quln)). w(Ty) = 0o. By the comparison theorem of § 4. Ch. 1V, u(s. x)
must intersect v(7) for any 1 € (0. Ty). and therefore sup, u(r. x) > () in (0. Ty).
which produces the following lower bounds for the amplitude:

Dysup u> (B—1) YWE-D(Ty— 1By

2y sup, u > cxp{(ﬁ 1) MB(T, - 1) mﬁm} 1

3)ysup > Inj(To— 07", 16 (0. Ty).

Let us consider two examples of degenerate parabolic equations (the possibili-
ties of derivation of ¢-criticality conditions are discussed in § 3).

Example 2. Let us consider cquation (5) for 8 > o + 1. Let us set ¢ (p) = pp®.
where i > 0, a € (1. 8 — | are constants. Inequalities (8). (9). which reduce,
respectively, to (a — a4+ o) > Oand g — (0 + o — B)p/" @ > (), are satisfied.
Since @ > 1. condition (10) holds as well. Choosing the initial function in the
form ug = (o + Dug]/* . where vy 50 is a solution of the problem

Avg + [+ DugP M p) (o 4+ Dyg)™ Y = 0 in € vy = 0 on 31,

we have that for some To = 1* = [max wo] ™ /|r(a — )] (14) is satisfied.
Example 3. let equation (1) have the form

w, = V- (In(l + )Vuy + (1 + 1) A+ ). (18)

where 8 = 2 is a constant. Let ug take (p) = v(I + p)In"(1 + p). v > 0.
ge(l.p-1 (for e > 1 the integral in (10) converges). Conditions (8) and (9)
assume, respectively, the form o — 1 = O and v ~ (@ 4+ 1 — ) In? (1 + p) = 0.
and since by assumption a € (1. 8 — 1), hold for p > 0. Therefore if wy satisties
inequality (7). the solution of the problem becomes unbounded after time Ty which
is not larger than

1t = || 1 4 max wpl}' " /vl ~ 1] < oo,

There is a close connection between the results of Examples 2, 3. Let us make
the change of variables 1 = ¢!/ — 1 in (18). Then the function U satisfies the
equation

U, = V- (UVU)+ UP + UIVUI, (19)

which differs from (5) for ¢ = | by the presence of the additional non-negative
term {J|VU|* in the right-hand side. Therefore solutions of equations (19) and (5)
for o = 1 are related by U1, x) = atr. x) it it holds for 7 = 0 (here we are in fact
using the simplest version of the operator comparison theorem), This argument
allows us to derive unboundedness conditions for solutions of one equation from
similar conditions for another one (see subsection 3),
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2 Unbounded solutions of the Cauchy problem with a critical initial function

In this subsection we show that criticality of solutions of a wide range of equations
(1) frequently leads to global insolvability of the Cauchy problem,

An initial function and the solution of the problem (1), (2') are called ¢rtical.
it o, > 0 in Ppla]. Thus 1 does not decrease in 7 in (0. T) x RV. As can be seen
from the results of § 2. for criticality of a solution it is, in general, sufficient that
the initial function satisfies the incquality

Vo (k(ug)Viuy) + Qlag) =0, vefxe RY | ug(x) > 0}. 20)

In particular, a critical function is any non-negative solution of the ‘boundary prob-
lem
V- k() Vi) + Q@) = 0.3 € (7 wglag =0 (21)

(1 ¢ R is an arbitrary bounded domain with a smooth boundary 9(}) extended
by zero into RM\(L.

When {1 is a ball, all radially symmetric solutions of the problem (21) can be
determined from the equation

(k(u())uf,)' + iv—%—lk(u(,)u(, + Qug) = 0. 1= |x] > 0. (22)
and the boundary conditions
1o (0) = 1, 10y (0) = 0, (23)
where w,, > () is an arbitrary constant,
In the one-dimensional case cquation (22) can be integrated and the solution
of the problem (22), (23) has the form
up(x) = Xk(l)(,\'). (24)
where X} is the function inverse to
k(n) dn

ll//l
Xipls) = / e 5. 8 € 0. u,,). (
o {2 / k(s’)Q(;)di}
Jy

3]
wn

Hence it lollows that the function (24) is defined and strictly positive for all
lx| < rolte,,), where

1
rolu,,) = Zmeas supp uy = X, (26)
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Equalities (24)—(26) give us an idea about the nature of the dependence of the
spatial structure of a critical initial function g on the magnitude of its maximum
1, and the coefficients k, Q,

For arbitrary N > |, equation (22) can be integrated, for example, if Q(u) =
veh(u). v = const > (). where

() = / k(m)ydn, u> 0. 27
Jo

Then by a change of variable 1wy - é(uy) it reduces to a linear equation, the
solution of which is the function 3 M1 5 (0 ), where Jiv 30 is the
Bessel function,

Let us now state the main results, Let us fix an arbitrary R = (. We denote by
Qg the ball {|x¥] = R} and introduce the function

dr(x) = Cor® M0 12(A ). (28)

which is positive in (Qg¢ here
1 th 2 79
=|zpn /R]. (29)

and :,‘N“ is the first (smallest) positive root of the Bessel function Jy_2,2. The
constant Cy is determined by the condition [[¢hrgll;iqy,, = 1. It is not hard to verify
that g(x) solves the problem

Adrg -+ Adrg = 0, g = 0 on I Yy, (30)

We set ihe = 0 in RV\ (g,
Let us consider the function

Hp() = (1, x). ¢rg) = / u(t, X)pp(x)dx, 3
Sy,
Taking scalar products in L7(€Qx) of both sides of equation (1) with g and as-
suming for simplicity that the function Hg(1) is differentiable in 7. we obtain the
cquality

dHg/dt = (AdpGo. ) + Q0. gg), 1> 0. (32)

Lemma 1. For all admissible 1 >

(A . frg) = —A(p()  frg). (33
Progf, If the solution 1 > (O is a classical one, (33) is timmediately verified, Indeed,
using Green’s formula, we have

dep(u) iy

~ (u
n ¢ )()n

(APQo). ) = (P(1), Adoy) + / (1/’R ) ds. ()
JiaChy
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where d/dn is the derivative in the outer normal direction to dQ2,. However,
Y = 0. 8ihg/on < 0 on 9Qg (the lust statement follows from positivity of g in
Qg). Therefore, taking into account (30), we obtain from (34)

(Adu), ) = (b)), Arg) = —~A(P(1). Yg).

If. on the other hand. 0 is a generalized solution, then the estimate (33) is
proved by a standard regularization argument. i
Using (33) to estimate the right-hand side of (32). we deduce the inequality

dHy/di = = Abn). ¢ + (Q). ). 1> 0, (35)
which forms the basis of the following analysis.

Lemma 2. Asswme that the function Q satisfies condition (4), as well as the in-
equality
Q") = 0. u =0, (36)

and that there exists a constant p > 0, such that .

o) < pQu) in R, 37

Then the solution of the Cauchy problem (1), (2') is unbounded and exists at most

Sor time
LS ~ o d
1" = min e m / ek x, (38)
UM -z N ,u Wty (1)

Proof, Let us choose the constant R > =4 u!'/? such that Hg(0) > 0 (this can
always be done if uy#0). By (37). from inequality (35) we have

dHy R = )
di ~ R?

Hence, using Jensen's inequality for convex functions |211]. (Q(0). ) >
Ol )| = Q(H ) (recall that [[¢helly g, = 1), we derive the estimate

(Q(u dg) 1= 0, (39)

dHy R - ()

: o (H = ().
di — R =0H
From this estimate, in its turn, we obtain
Nty R? ("m a
/ dn_ L N L, (40)
Dy QOp) R?

Hence My (1) is unbounded on (0, 7*]. which, in view of Hgx(i) < max,gp
w(l, x). ensures that (14) holds, O
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Theorem 1. Let conditions (4). (36) hold, and assume that there exist constants
@ >0, h >0, such that for all u > I inequality (37) holds, Let the initial function
wy he critical, and that, moreover, wy(x) 2 h for all |x| < a, where the constant
a > 0 s such that

|~ u(z§ /) > 0. (41)

Then the solution of the Cauchy problent (1), (2') exists at most for time

2 s d
A (1(“ / 1 < 0, (42)
~ (T ) i Q)

Proof. By criticality of the initial function, we have the inequality u(z, x) > h
for all |x| = a and admissible 1 > 0. Let us take R = a. Then é(u) < puQ(n)
everywhere in (1,,. Therefore from (39) follows validity of the inequality

1H, -
e zZ M‘(WL“--_(Q(M Y, =0,
dr o’

which by (41) ensures global insolvability of the problem (see the proof of Lemma

2), O

A stronger vesult than that of Theorem | will be obtained for N = 1, Here we
shall assume that the condition

Pk
/ w(n dn < (43)
Ju n

holds. which ensures that the solution of the problem has compact support in x if
meas supp ug(x) < o¢ (see § 3. Ch, 1),
Let us denote by
ve(t.x) = (). = .\’/11/3. (4d)

the self-similar solution of the equation
v = (k) 1 >0, x e Ry, (45)

which satistics
ue(1,0) = qt,, vyt oxo) =0, 1 >0 (46)
(here 1, > 0 is a tixed constant),

The function () is determined from the following boundury value problem
for an ordinary dillerential equation;

k() +ﬂ~« fC=0, 000 ) = n,. foo) =0, (47)
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where f' = df'/d{, Existence and uniqueness of the solution of problem (47) for
sufficiently arbitrary coefficients & have been established in |23, 24, 68]. There
it is also shown that if (43) holds, the function f({) has compact support; o =
meas supp f < oo and wherever it is positive, it is strictly decreasing.  Thiy
guarantees the existence of a point ¢ = ¢, € R, such that () = n,, /2.

Theorem 2. Assume that the conditions (4). (36). (43) are satisfied and that the
funtction Q/¢h is non-decreasing, that is,

O’y — Quyk(uy = 0. u > 0, (48)

Let the initial function wy be critical*, wid max wg(x) = 1, > 0, Then for N = |
the solution of the Canchy probient (1). (2') exists at most for time

) L 2 ~ /
I*ZQM N +2/ —(JL<C>0. (49)
Q(“m/:-)) i ATV Q(U)

Proof. For definiteness, let sup g be adained at v = 0, that is, 1y(0) = 1,,. Then
by criticality of the initial function we have the inequality u(r. 0) > u,, for all
admissible 7 = 0. Comparing cquation (1) (for N = 1) and (45), we sce that

nit, x) = [t (50

everywlere in the domain of definition of the solution of the Cauchy problem
we are considering, The validity of this conclugion follows from the Maximum
Principle; also taken into account are condition (46) and the assumption (43); in
addition, we make use of the fact that vy — 0 as 1 — 0% cverywhere in
R\ {0].

Let us set fy = 1, /2, o = b))/ Q). Then by (48) for all u > I,
inequality (37) holds for g = w,. From (50) we have that for all 1 > 17, where

,)/J~m (1y,2 AL (/)(“Ill/z (l) 2

R R . (51
gl” Q(lI’”/’) g,n

on the interval [A] < a, = £,00)Y we have the inequality a(r, v) =k, =

ty /2. This choice of the constants fi,. @y, d, ensures that (41) holds (here
,um(:(,J’/u,,,)2 = /2 < 1), By Theorem | this guarantees unbounded growth of
the function M, (1] + 1) in ime which does not exceed

2 ~ / ~ ]
Izz—w—fﬁ’_'___“_ / an 52/ il < 00 (52)
’ /J~m(~ ) i’u,,,(’;) Q(U) d, 2 Q(n)

T'without loss of generality we can take g to be defined by (24). 1t is not hard to show
thitt (24) is the minimal critical initial function baving a maximum w, > 0.
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(in the derivation of the last inequality we used the obvious estimate H,, (1]) >
wy/2). Adding (51) and (52) together, we arrive at the required result, i

The conditions of Theorem 2 are satistied, for example. by coefficients of
equation (5) for 8 > o + 1 (this restriction is connected with (48)). It 1s known,
however (see § 3, Ch, 1V), that for | < 8 < ¢ -+ 3 all non-negative non-trivial
solutions of the Cauchy problem (5), (2') are unbounded in the case N = |, Hence
we have

Theorem 3. [t the initial function wy 20 of the problem (5), (2') for B > 1,
N = 1, be critical. Then the problem has no global solutions.

This theorem can be extended to the multi-dimensional problem (5). (2') under
the condition | < B < (o + )N +2)/(N=2),. Let us briefly explain the method
of proof.

I ag(x) is a critical initial function with compact support. then assuming that
w(t, ) 1s a globul solution leads to the following conclusion: u(r, x) — o¢ in RY
as 1 — oo, If that is not the case, then two possibilities arise: either u(r, x) is
bounded uniformly in 7 in RY, or u(r. x) stabilizes from below as 1 — o o
singular stationary solution fi, (x). defined, for example. in R¥\{0). and i1, (0) = oc
(such solutions exist for 8 > (o4 )N/ (N --2) .2 see 201, 227]). By monotonicity
of u(r. x) in ¢ (which implies existence of a Liapunov function — [ (1. x) dx
with an arbitrary compact subset K < RY, and hence the estimate ’}\ [, ()] €
L'((1,00)), which would be sufficient to pass to the limit as 1 = 14 — 00),
the first assumption leads by standard arguments to the conclusion that u(r. x)
stabilizes from below to a stationary solution u,(x) > 0 in RY, which does not
exit for B < (o + )N +2)/(N —2),. (For the case u, = u(]x]) this has been
established in § 3, Ch. 1V: non-existence of asymmeltric in |x| solutions of the
equation Au”t! + uf = (0 in R has been proved in [201].)

The second assumption reduces to the first one, It means that u — oo as
1 — 00 only at the point x = 0. However. u(r, x) < @,(x) in Ry x lé/". since
t, > 0 in Py ju] by the Maximum Principle 101} (z = 1, > 0 in @ neighbourhood
of any point where the equation for z is uniformly parabolic). Therefore there
exists vy € RY, sueh that u(r. x) < i1, (x + xy), and therefore u(z, 0) < i, (xg) < 00
for all 1 > 0. which means that the solution  is uniformly bounded in R, x RY.

Thus, if 1 is a global eritical solution with compact support. then 4 — ¢ in
RY as 1 — oo, Therefore sooner or later u(r. x) will sutisly the conditions of
Theorem 1 (the case 8 2 o + 1) and eventually will become unbounded, For
I < B <o+ 1 every solution u # () of the Cauchy problem for (5) is unbounded
(see § 3. Ch, 1V).
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3 Application of generalized comparison theorems

In this subsection unbounded solutions of equation (1) are studied by comparing
them with various solutions of equation (5), properties of which were studied in
detail in § 3. Ch. 1V.

For convenience. let us introduce the function

Upplt. 5Ty = (T = 1) VB VAL = |x]2(F = 1) 'lli*(4r+l>]/([3«-l>/(lll1’/"‘
(53)
()f-jl < T, .\'ERNi (r>()_ﬁ>> 1.

where T a. A are some positive constants, the latter two of which satisfy the
relations

1A 4 1-p

= >
oo B-1

. < L, 2N \) |+ 2N + 2/ A" Jd? =i
) L A .
B~ 1 o 1B~ (r + DB~ 1) +4A [ (0a?)

(54)

In § 3. Ch. 1V it is shown (Theorem 1) that it the inequalities (54) hold, the
function (53) is an unbounded subsolution of equation (5). We shall use the fact
that for | < 8 < o + | 4+ 2/N all the non-trivial solutions of the Cauchy problem
(5), (2') are unbounded (Theorem 2, § 3, Ch, IV).

3.1, First we use the direct solutions comparison theorem (Theorem 2, § 1),

Theorem 3. Let the coefficients k. Q in (1y sausfy for all u > 0 the nequalities

k() = a0’ (k) /0"y > 0, Q) > P k(. (55)
where o > 0, Be (l.o+ 1 + 2/N) are fived constants, Assunte that the initial
finction ug(x) £ 0 in (2 iy eritical. Then the Cauchy problem (1), (2') has no
global solutions,
Example 4. Let us consider the equation

;= V. (uc”I Vi) + u”e”l, B 1. (56)

It is not hard to see that conditions (55) are satisfied with ¢ = 1. Then it follows

from Theorem 4 that in the case of | < 8 < 2(N+1)/N any critical initial function
iy # 0 generates an unbounded solution of the problem,
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Let us consider in more detail the problem (56), (2') for N = |, Here

n l 1
() = / k(m)dn = =" ~ D.u> 0.
Jo 2

It 1s casy to cheek that
sen{1Q/@) ()} = sgn [Buﬁ' e = 1) 214’”1] > sgn[(B=2)uP 1| = sgn (B—-2)

Hence it follows that for 8 > 2 inequality (48) holds, and then, using Theorem 2,
we conclude that for N = [ any solution of the problem (56), (2') corresponding
to a critical inttial function (defined, for example, by (24)), is unbounded.

3.2, Below we apply to the Cauchy problem (1), (2') the operator comparison
method in the form presented in the corollary to Theorem 4, § 2. The following
claim 15 proved using the results of § 3, Ch, 1V,

Theorem 4. Let there exist a monotone increasing function E . ﬁ+ — R.. such
that
E') < 0.u > 0, (57

k() = [E@))”. Q) = 1E@P/E . u> 0> 0.8> 1 (58)
Then: 1) if | < B < o+ 14 2/N and 1y #0, the Cavchy problem (1), (27)
has no global solutions*;
i
(X)) > I '{U,,ﬁ((). o), xe R", (59)
Jorsome T < oo (E7V is the function inverse 1w E), then the solution of the problem
sexists for time Ty < T, and for all O <t < Ty we have the estimare

wit, ) = I U 00 0 T)). v e R, (60)

Let us consider some examples.

Example 5. Let E(wy = In(l + ). Condition (57) is satisticd, and examples
of functions k, @ which fulfill the requirements (58) are the coeflicients of the
equation

w, = Vo (In" (1 + V) + (1 4+ ) In? (1 + ). (61)

Therefore for | < B8 < « + | 4 2/N all non-trivial solutions of this equation are
unbounded. In the ecase B 2 o + | 4+ 2/N a solution will be unbounded if the
inequality (59) holds; here it has the torm

tplx) = expll/ g0, i) - 1, x e R,

2 . . . . . . . . .
“1p this case the interval of time of existence of the problem satisfies the upper bound
obrtained in Theorem 2 of § 3, Ch. 1V.
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In § 7, Cho IV 1t 1s shown that for o = 0, 8 > 1| + 2/N for sufticiently small
initial functions ug equation (61) has global solutions.

More detailed information concerning unbounded solutions of equations of the
type of (61) is obtained in § 7, Ch. 1V by a different method.

Example 6. Now let £(u) = u/In(e? 4 w). 1t is not hard to check that the function
E is monotone increasing and concave in R, . Then conditions (58) are satistied
by the functions

k() = o/ In? (¢ + u). Qu) > 20 0B’ + i),

Therefore the Cauchy problem for equation (1) with such coefticients does not
have global solutions inthe case 1 < 8 < o+ 1 +2/N, 0.

As other examples of functions /7 : R, — R., which satisty (57). we could
take, say. E(u) = o' In(e? + u). E(u) = cx[)lln”l(l +)} — 1 and so on.

§ 7 Criticality conditions and a comparison theorem for finite
difference solutions of nonlinear heat equations

In this section we show that the assertions concerning criticality and the com-
parison theorem can be extended without requiring major modifications to cover
the cuse of finite difference solutions of the same parabolic equations. that is, the
solutions of implicit difference schemes constructed using an approximation of
the parabolic operator in divergence (conservative) form. This indicates that quite
subtle properties of the heat transfer process are shared by its correctly constructed
finite difference approximation, This fuct is of supreme importance for us, since
at all stages of the investigation ol nonlinear processes of heat conduction and
combustion we use numerical methods extensively, The theory of comparison ot
solutions of different parabolic equations is one of the main tools of our study.
Therefore it i1s important that this theory can be used alimost as freely at the level
of finite difference solutions.

Below we present our analysis using as an example the nonlinear heat equation

w, = (Plu)) (h

for which we shall consider a boundury valuc problem in (0, T) x (0, /), where T,
[ are fixed positive constunts, with the conditions
w0, x) = up(x) = 0. x e {0, 1} (2)

alt, M) = () = 0,0ty =16() =0, 0<t <T. (3)
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The non-negative function ¢ € C*(R;,) NC(0. 00)) is strictly increasing: ¢’ (1) >
0 for u > 0, () = 0. The functions ug, t;, 1 are taken to be sufficiently smooth,
up(0) = uy (0), gy = ux(0).

Let us introduce a spatial grid

wp=xp=kh,h =0 k=1,2,.... M~ 1. IiM=1j

and a (non-uniform) grid in time .. generated by a system of time intervals

Let us denote by

the corresponding grid functions, which coincide with wy(x) and «,(#) at the nodes
of the grids w, and w,. respectively.

Corresponding to the problem (1)-(3), let us set up the implicit (nonlinear)
difterence scheme:

i — .
(), = ——— = (P (1L 2) € ey = wy X Wy (4)
T
]
0 . .0 0 .
o= wtgn = 0, 8 € wyy vy = ugl0), vy = tp(): 5
By =ty = 0,0y =2, 20, 1 € w;. (6)

Here we have introdueed notation which is standard in the theory of difference
schemes |346): § = r},{' L v, = v} is the unknown function, (1), = (v — v 1)/h.
(Vi) = (D yy — ) /D are first order difference operators, so that

PO 1, D T ) = (b)) = El—zl(l)(ivk D = 2000 + G, 0l (D

The problem (4)—(6) 1s a system of nonlinear algebraic equations, Questions of
existence and uniqueness of the solution of the resulting finite difference problem
are considered in § 5. Ch. VII, lterative methods of solution of similar nonlinear
finite difference problems are considered in detail in |346],

We shall assume that the solution of the difference problem (4)—-(6) is detined
everywhere in wyy,, and that at cach j-th step in time the system of equations is
solvable for all 0 < 7 < 7,, We shall also assume that in some class of grid
functions vi” close to v} the mapping 7 — v,’\’H is @ bijection and continuous
in Clwy,) and that n,’\“ —~ v} as 7 = 0' in wy,. The last requirement is natural:
the two preceding conditions are not restrictive and are satistied in o more general
setting (see § 5. Ch. VII).
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1 A Maximum Principle

Let us denote by dw,, the parabolic boundary of w.,, that is, ()w,,, =[I=0,v€
aplUlt € weodv = 0lU1 € wpo v = 1), @y = [v = kik =0,.... M}, In
the following lemma (it is repeatedly used below) we obtain restrictions on the
finite difference approximation of the parabolic operator. under which the solution
of the problem cannot take negative values. that is, it satisfies a weak Maximum
Principle.

Lemma 1. Let the grid function 2} be the solution of the problem

= 0,0 5 Ske) 0wy, (8)
7y

where the function 8,(a, b, c), wiich is continuons on R x R x R, is sueh that
Oya.b.cy=0uh.b. by >0.a> b ¢ > b (9)

Let 21 > 0 on dwep. Then 2} > () in wyy,

Proof. Let I = max{j|z; > 0. v € wy; 0 = 1§ = j} < N. Then there exists v € wy,

(a point of negative mimmum in ¥ in wy). such that AR (N AR
{H > /” Theretore. using (8), we obtain from (9)

At

<4 “h o A R S BN | P A Y A I R A |

»WTI« = ) (x,k o -~-A-n) = (A Nt ) = 0. (10
Therefore =7 '' > 1. which contradicts the choice of the number J. i

Corollary. The solution of the problem (4)~(6) satisfies the weak Maxinn Prin-
ciple: v{\ >0 in wy, If v(z > 0 in wy. then v{\ >0 in weye

Proof. Let us consider the system of equations

() = “;""":"A* =0 2GS0 = WG L UL Y € way. (Ih
!

with the boundary conditions (3), (6). where if(v) = (Jv))sgnv. It is not hard
to check that for this problem all the conditions of Lemma | are satisfied, so that
b > 0 in wy. However, for 2 = 0 cquulion (ll is the same as (4), so that
by uniqueness of solutions (see § 5, Ch. VI = > 0 in wy,. The second
assertion follows unmediately from the zmaly.sxs ol LchlllOn (10) with right-hand
side (11). O
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2 Sufficient conditions for criticality of the finite difference solution

Definition. A solution of the problem (4)~(6) will be called critical it for all
! € wy

Dy = Uy = 0, xe wy. (12

In the case of the problem (4)-(6), the theorem concerning criticality of the

solution is to all intents und purposes the same as its differential analogue of § 1.

Theorem 1. Criticality of solution of the problem (4)—(6) is enswed by the in-
equalities
((/)(“()h))u > ()- X € W] (l’%)

uy (1) = 0.5 = 0. 1 €0, T). (14)

Of course, (14) van be replaced by a condition of non-decreasing of the (unc-
tions w, (1) (i = 1,2).
Proof. Let us set 2 = (i — vy)/7,. Then Z; is a solution of the prablem

Sk

= OG5, Sy =
7
- . c 2 (15
= ;j“ll)h(w VAT u T A v T )
1
= oo ) () € e
K 0 0 0 . R R
o= oenUl U ) X E gl o= Ty = (0 (16)
I T T fia, — Uy,
lo = LN = , 1€ w,. (17
7 7y

To deline the inttial function in (16). we have introduced an additional fictitious
time level with index j = —1: 7. > 0,

Uk)l = ”(k) -7 l/’h("(k) 1 ”(k)- 1'(241)
in wy.

Let J = max[j|z} » 0,x € w,s 0 < < j} < N, Since "[ > () In wy,, we
deduce from (4) that (d)(v'[));\ = -{ > (O In wy. Let us consider (15) for j = J.
By assumption, &7, = i — vy —~ O as 1, — 0' in Clwy). Therefore there
exists 7, > 0, such that 7,3 = 0 for some x € w, and 7,504y = 0 (7, > 0 by
the condition (i ))t, > O in wy). Then from equations (15), (7) we arrive at
a contradiction, since its right-hand side #,(Z;, 1. 0. %4, 1) 18 non-negative by the
conditions ¢'(t) > O for u > 0, 5y = 0. O
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3 A comparison theorem
Let us consider in wyy, the two finite difference problemsy corresponding to boundary

value problems for two different (v = 1,2) nonlinear parabolic equations with
operators of the form (1):

(e = 75 = B (18)
v(k"’“ = uf,’,’" >0, x € wy (19)
":)'J = “1, > 0.0y, = (2 >0, ! € w,. (20)

The following assertion is quite similar to the comparison theorem of § 1. The
methods of proof are. however, significantly different.

Theorem 2. L¢t

(2)0 (Ho

v > L€ wyl 11:2'(1) > u“’(l). O<r<T.i=1,2, 2n

IA

and let the boundary conditions of the problem for v = 2 be critical:

2) (0 2}, A0
f‘l"}, )v: W= (! )(vk e > 0, x € wye

Assume that for all p > 0
(/)(1)’(17) - (/)'”l(p) >
(62 " (] =

v V
S T o5
[FER (S

~t2) At
Then 0,7 > 9, in we

Proof. Setting £ = v‘k : v:". we obtain for this grid function the problem

Sh— ) ~ PO . 2y~ (1 Aty
e == (5 WL Sy = 0T =D

T, )
and by (21) 3, = 0 on dew,y,: “‘,: > 0wy, Using the method of proof of Theorem
1. we have that 2, > 0 in e, 16 ¢,(5 1.0, Z6,0) = 0 where 3.4y = 0 (here we
have introduced the notation 2, = .f” J=max{jlz > 0inw,: 0 <0< j).
Since
On(Ze 1. 002000 = 0,0,0.0) = SPp oD

the theorem will be proved if
(23 ~12) WY A2 I "l -(’)) (24
£, il — P V= T—{(/)( - (/)“)( )+

+ (/)( ) .( ) (ZS(I)(»( ) 71(/)(")(47) _ (/)(l) '~( } “ > 0.
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From the criticality of the solution f)([))

it follows that in w,, we have the

inequality
) 1 ) n R
(j)}—)f):?-) — h ld( )(*( )1) _+_(/) )( (7) - 2(/)( }(U( })l _>_ 0.
Therefore
(D (2y, Al
) ) () + (
171“)5((/)(”)) ! (/ ’)‘/’ "nl)>‘ (25)

where (b)) ! is the function inverse to ¢
Since '~

'V does not decrease in R, (sce (22)), using (25) we obtain

/m(»( ) _(/)(1>(~( Y <

[(/)( l({)( 2t _+_d)( )("‘ 2 )] —

7 1 2 2 A, o~
-t <(¢u) 1 <§ ((/)(ﬂ(“;f}l) + Dy :1))>> ‘

Substituting this estimate into (24), we obtain

IV 3 2 9 [¢ (1}(6(A2 D)(i( "
(]’( ) A ( ) “j";’“f)({) - h: {(l)(n (((/)(_,) 1 (/) & s b k+1
(26)

1
— ;;{(/)”’(fr: ,’ + (/)(”(‘( ! ){}

91—

. . 2, A2
Let us introduce the notation ¢ (7,7 ) = wyq

Then the last inequality can
he written in the form

2 I
LIRS 7—_) {d)m <((/)(l))” <nu 1—:unx>> B
2

2) (2
L

o —

(27)
[(/)(I)((¢< N Y 1))+(/)m((d)(1)) I(U'HI))]}

However, inequality (23) ensures that the function ¢! ((¢h
since

(1)) is concave,

[d)(”((c/)”)) »I(p))]” = [(/)‘z’,(n)] ! [(/)(”,(

where n = (pt¥

m/g o] <0,

)y Yp). Since f((my + m2)/2) = [fm) + f(m)]/2 for any
concave function f(n) and any 5. n2 > 0, we have that the right-hand side of
(27) 1s non-negative, which completes the proofl’

O
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Remarks and comments on the literature

Results of § 1, as well as ol subgection 1 of § 2, are presented in detail in
{147, 148, 151}, Comparison theorems proved here, which are based on spe-
cial pointwise estimates of the highest order spatial derivative of the majorizing
solution, can be considered as generalizations of well-known assertions concern-
ing the relations among subsolutions and supersolutions of equations or systems
ol equations of parabolic type (see, for example, {101. 338, 361, 378)). Earlier
criticality theorems for solutions ol semilinear parabolic equations were used in
{356, 357. 378]. Criticality conditions for a generalized solution of a scalar quasi-
linear heat equation were obtained in [295]. Particular compurison theorems for
solutions of specilic quasilinear parabolic equations, proof ol which uses the sign
ol the second spatial derivative of one of the solutions. can be found in [252].
Slightly after [147. 148, 151], the same method was used in {45] to establish the
comparison theorem for operators (33) with A7 = 0 (see § 1): the comparison
condition then has the form of the first inequality (34).

The operator comparison theorem, particular cases of which are Theorems 3, 4
of § 2. stated for sufficiently arbitrary nonlinear parabolic equations, which uses
estimates following trom sh-criticality of the majorizing solution. was proved in
[117, 118] (in [118] the results are presented using an example of quasilinear
equations with a source).

Sufficient conditions of p-criticality of solutions (Theorem 1, § 3) of problems
in one space variable were obtained in 117, 118}, In [117] in the case ol the
Cauchy problem the dependence i = (1. 1,) was analyzed (the setting of the
Cauchy problem allows us to determine the sign of the function (0. x) = 1,(0. x) ~
(). ug(x))). Later concepts equivalent to -criticality were introduced in
{364, 365); these papers contain applications to unbounded solutions See other
applications to explicit solutions in | 139],

Most of the results of § 4, 5 are contained in {146, 154|. A diiferent approach
to the analysis of the localization phenomenon is used in Ch. VI Theorem 4
of § 4, concerning heat localization in the Cauchy problem, was proved in [146].
Conditions for immobility for a finite length of time of the {ront point of generalized
solutions of equations with k(u) not of power type, were studied in {252]. For
k() = u”, o > 0 such studies are 1o be found in |58, 232, 248|. For the
multidimensional equation some results in the same direction are contained in {59].
There (see also |328)) the authors also study the properties of the degeneracy
surface, which corresponds to an arbitrary generalized solution of the Cauchy
problem for the equation u, = An”''. Most of these results are analyzed from a
general standpoint in the monograph | 103].

The method of analyzing unbounded solutions of parabolic equations with a
source (subsection 1, § 6). based on y-criticality conditions of the problem, was
presented in |120, 125|. To establish upper bounds a similar approach was used
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independently by |108] and in a large number of consequent papers. In proving
assertions of § 2, we use a method (called in the terminology of 289} the method
of eigenfunctions), which was also applied for a similar analysis of boundary value
problems in bounded domains for semilinear (k(u) = 1) [243, 289). quasilinear
{120, 121, 125. 225] parabolic equations and systems thercof {161].

Proof of Theorems -3 in § 6, which uses a new idea, viz., criticality of the
initial function, 1s given n |120. 127|. Part of the results of subsection 3 of § 6
is to be found |150}. For other methods applicable to the study of unbounded
solutions see Ch. 1V, VII. For short surveys concerning unbounded solutions of
evolution problems see | 157, 289, 334].

The results of § 7 are a particular case of the statements proved in {126}, where
criticality of finite difference solutions has been established for parabolic equations
of general form «, = L(e, u,.1,,). |126] also contains comparison theorems (or
solutions ol implicit difference schemes for two different equations of the form
0 = L™ )y,



Chapter VI

Approximate self-similar solutions of nonlinear
heat equations and their applications
in the study of the localization effect

§ 1 Introduction. Main directions of inquiry

In this chapter we propose a general approach to the study of asymptotic behaviour
of solutions of quasilinear parabolic equations

= (kGon ) k@) > 0,10 > 0, (hH

where k € C7((0, 20))NC (0, 20)). For this equation we shall consider a boundary
value problem in wy = (0, 7) x R,, T" < oo, with the initial condition (0, x) =
up(x) > 0 in R, and with the fixed boundary behaviour (s, 0) = (1) > 0,
1 € (0, T), which shows blow-up behaviour:

() —oc,t—T . (2)

We shall be interested in the asymptotic properties of solutions of the problem
under consideration, which are expressed at times sufficiently close to the blow-up
time 7 = T, and in particular the restrictions on n(1.0) = «; (1) under which the
problem admits or does not admit localization of heat (understood in cither the
strict or the effective sense: see § 1, Ch. 1),

We want to undertake such a study for sufticiently arbitrary boundary regimes
w (1), and for a wide class of coefticients k(w) as well,

As we have mentioned already (see Ch. 1-111), an efticient method of studying
such problems consists of constructing and gmalyzing self-similar or some other
mvariant solutions of equation (1), which satisty some ordinary ditferential equa-
tions. These particular solutions have a simple spatio-temporal steucture, which
defines the form of the boundary condition «(r, Q) = (1) and supply us with
the necessary information concerning the asymptotic behaviour of the process.
Reasonably detailed information concerning invariant solutions of equation (1) is
contained m Ch. 1-I11.
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However, the group classitication of equation (1) performed in [321, 322} shows
that the number of solutions of this equation invariant with respect to a Lie group of
point transformations is not large. The more general Lie-Biicklund transformations
do not significantly enlarge the class of invariant solutions; new possibilities here
arise only for k(u) = (I +u) * (see [221. 51, 262]). For k(1) not of power
(kGry #£ a7, o = const) or not of exponential (k(n) # ") type. equation (1)
admits only two types of nontrivial invariant solutions: us(f. x) = fy(x/(14+0173))
and ng(r, x) = fg(x — 7). Of these only the second one, in the case when the
integral ff“ (k(m)/m) dm converges, 1s generated by the boundary blow-up reghne.
Equations (1) with a power law or exponential nonlinearity admit other invariant
solutions of interest for us (see § 3. Ch. 1D).

The fact that certain parabolic equations of the form (1) admit a wider class
ol invariant solutions provided one of the main stimuli to the development of the
special comparison theory for solutions ol vartous nonlinear parabolic equations
(see Ch. V). However, the upper or lower bounds of solutions of equation (1) of
general type, obtained in the framework of comparison are (requently not sharp
enough. and thus do not allow us to describe the asymptotic stage of evolution
of the process. Using the theorems proved in Ch. V. it is not always possible to
single out. using upper und lower bounds, a sufficiently narrow “corridor™ of the
solution’s evolution in time (narrow enough to enable us to speak about a correctly
determined asymptotic behaviour of the solution). This is mainly connected to the
paucity of invariant solutions of equation (1),

To determine asymptotic behaviour of solutions of equation (1), we use in
the present chapter approximate self-stmilar solutions (a.s.6.), which, though they
do not satisty equation (1), do deseribe the asymptotic properties of its solutions
correctly. In cach of the following sections we shall describe a different method of
congtruction of a.s.s. The main problem is that of determining the principal (or we
can say, detining) operator in the right-hand side of the equation, which dominates
the fully developed stage of evolution of a boundary regime with blow-up. Of
particular interest are the results of § 2, where we determine a class of coeflicients
{k(0). for which the defining operator is a first order operator, and finally the
asymptotics of a heat transfer process is described by invariant solutions of an
equation of Hamilton-Jacobi type.

It has w0 be noted in particular that every non-trivial self-similar solution of
the nonlinear heat equation (1) is, as a rule, asymptotically stable with respect to
small perturbations not only of boundary conditions, which is quite natural, but
also of the equation itself (that is, to perturbations in the coefficient k(1) with
respect to the corresponding invariant dependencies). It has to be said that in the
latter case the term “small™ does not have to be taken literally. since frequently
an a.s.s obtained from an invariant solution as a result of a small perturbation of
kQu), does not look anything like it
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As discovered in [184, 185, 186, 187], the set of sufficiently “regular” asymp-
totic behaviours of solutions of equation (1), which grow unboundedly, can be
subdivided into three classes, depending on the character of growth of k(u) for
large u: each of these classes consists of three subclasses, ordered by the form of
the boundary functions {«a;(7)}. The first class, k(«) of “weakly linear” form, is
considered in § 2: the second class, ol k() “close™ to power law dependence. is
studied in § 3. In § 4 we propose another method of constructing a.s.s., applicabil-
ity of which is perhaps more restricted: this study leads, nonetheless, to intriguing
general conclusions.

In this chapter we do not consider the third class, of nonlincarities k(i) close
to exponential, since in the analysis of asymptotic stability of the corresponding
a.s5.5., a boundary value problem in a bounded domain with moving boundaries
has to be considered [186[. so that this case cannot be applied in the study of heat
localization in half-space.

Questions related to construction of as.s.  connected with usual boundary
regimes without blow-up: (1) — 20 as 1 — oo, are not considered here, In
this regard. sce the papers [ 184, 185, 186, 187[; in the last of these a classification
of such as.s. in the “plane of boundury value problems™ is made. &

§ 2 Approximate self-similar solutions in the degenerate case
1 Statement of the problem
Let us consider the first boundary value problem:
o= (k(nuy),, .x)ewyr=,T)xRy; (1

Q. x) = my(x) = 0. x e Ry, uy e C(RL), supuy < oo (2)
Wt Oy =) > 0. 0=<r =T
)y = oc, =T 5 uyp e CH0.T)). (3)

We shall take the function u; in (3) to he monotone increasing,

In this section we construct a.s.s. for a large class of equations (1) with non-
power law nonlinearitics, These as.s. are shown to satisfy certain first order
(uasilinear equations,

The construction of a.s.s. is done under the following restrictions on the coef-
ficient k: A" () £ 0 for u > 0O,

(7 me——

[k(s)/K' ()| — o0, 5= 00, NS
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-
/ M 4m = oo, (5)
o M+l

Condition (5) places a restriction from below on the behaviour of k(u) for
large u, while condition (4) restricts its behaviour from both above and below. In
particular, it follows from (4) that for any « > 0 and all sufficiently large s > 0.
we have the estimates

s < k(s) < 5T 4)

In the following we shall need the function E defined by the equality
Fs) k
/ ﬁl dn =3 5> 0. ®)
0

The function E is positive and strictly increasing in R,, £ € C*((0,oc)) N
C0,00)), E(0) = 0, and E(o0) = oo (the latter is dssured by Londmo (5))
Terefore I is a one-to-one mapping R, — R, and there exists £ ' R, — ﬁ
a monotone function inverse to .

For all v > 0 let us define the function

pil) = m;}x)l\(L(n )
from (4) it follows that
Py /u— 0, u— oc (8)

(we shall need this result below).

Some typical coeflicients k(). which satisty conditions (4), (5), are shown in
Table 1. There we also give the leading terms of the asymptotic expansions of the
functions E(uir) of (6) for large u. These are needed in the determination of the
form of a.s.s.

Table 1

k(n) = o T TR =
exp{in®(l + )} 0 < a < | exp {Int T (1 + 2 “’;’ly‘,“”)}
In“(l -+ ). > 0 exp{|(1 + n)u|1/‘“")]
In| 1+ In(l + )] expin/Inu)
] e’
{14 1n[1 + (1 + )]} ! expfuIn n}
A+ I+0) 0w <] exp{l(1 — ayu]/h @)
TESTIENN exple”]
[V Ingl )] M+ )]+ In(1 407" | explexple])

We shall show that from the point of view of study of the localization phe-
nomenon, the most interesting boundary regimes with blow-up are of the form

w(t, ) = (1) = E[(T =", 0 <1 < T, (3)
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where n < 0 iy a fixed constant. As E(00) = oo, the function (3') describes a
regime with blow-up,

2 Formal determination of a.s.s.

Below we shall demonstrate that under the assumptions made above the solution
ol the problem (1)-(3") converges asymptotically in a special norm to the exact
invariant solution u, of the following first order equation (a Hamilton-Jacobi type
equation):
_ l\(u ) ’
i, = p —(1,)". (1. X) € wy. 9

The function u, is an a.s.s. of the original equation (1) and has the form
u (1. x) = E[(T = 0)"8,(&)). &= x/ (T — 't (10)

The non-negative tunction 6, is the solution of the boundary value problem for
the ordinary differential equation obtained by substituting the expression (10) into
(9):

CARES igo +nf =0, £ > 0.

3

(1n
8,(0) = 1. 6,(o0) = 0.

Existence and uniqueness of solutions of the problem (11) were established in
§ 4. Ch. 11 There we also studied its properties. and. in particular, obtained the
following estimates:

0/(&) = 0. € €[0.&y):
Ya mznnx (€)= (1 -~ n) /4 < o0,

0.4

(12
where &, = meas supp,; morecover. & = oo tor n € (—1,0) (that is. #, > 0 in
W éh=2forn=~—1and
o = 2=n)"2(~1 =y HimA
for n < —1. For n = —1 the solution of the problem (11) is the function
B,(0) = (1 — x/2)3 x>0 (13)

(in this case £ = x). By the condition #,(0) = I, the function (10) satisties (3').
Let us denote hy A1, £) the similarity representation of the solution of the
problem (1)—(3"). defined by the spatio-temporal structure of the as.s. (10):

0. &) = (T -1 "E Nuu. &T —=n""h) (10 x) € wy. (14)
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3 The convergence to a.s.5. theorem

Let us show that the similarity representation of the solution of the problem under
consideration converges as 1 — T to #,, which ensures that the solution n(r. x)
is close to the as.s. (10). Thus we establish asymptotic convergence ol non-
stationary solutions of equations of different orders: a parabolic one (1), and one
of the Hamilton-Jacobi type (9). The physical reason for this sort ol degeneration
of the original equation in the case of k(i) = | was discussed in § 4. Ch. IIL It
is not hard to present the samc kind of analysis for k() of general form.

Theorem 1. Ler conditions (4). (5) he satisfied. Then the similarvity representation
(14) of the solntion of the problem (1)-(3") for n € | =1.0) comverges us 1 — T~
1o the funcrion 8.(&). the solution of the problem (11). Moreoyer, we have the
estimaie

16 ) ~ 0. Ollew.) = sup Bt §) — 6,(6)] =

feR.
t o T = )"
:()((T—I)”' M(/T)—*().I—*T
Jo r—7
(15)
Proof. Let us introduce in wy new functions U, U, defined by U = E-Yu).

U, = £ '(u,). Substituting u = E(U) and n, = ). into, respectively. (1) and
(9). we obtain the equations

U, = k[EW)U,, + U7, (16)

(W), = Wk (17)

Letus set U@, x) U, (1. x) = z(1, x). As follows from (16), (17). the tunction
2 sutisfies the parabolic equation

o= kIEU) |z +KEW U+ U+ U)) (18)
and the conditions
200x) = E ag(o) = T, (T v e Ry 2(1,0) =0, 1€ (0.T). (19)

Below we shall analyse the solution of cequation (18) with the help of the
Maximum Principle. To justity its use, we make the following remark.

The generalized solution n(r, x) (and therefore Uz, x)) of the degenerate equa-
tion (1) does not necessarily have the smoothness required for the formal appli-
cation of the Maximum Principle (see § 1. Ch. I). However the function u(r, x)
(U, x)) can be represented as the limit as & — oc of a sequence of smootl,
positive in wy solutions 1y € C,I;z((ul-) (U, € C,'\’z(w-,-)).
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For n = —1 the function U, = (T — 1) '(l - ,\'/2)?’, also does not have the
requisite smoothness; U, ¢ C,l;z(wr) (but, which is very important, U, € C'(w7)).
Therefore we shall be using the fact that the non-negative generalized solution of
the first order equation (17) can be obtamed as the limit as € — 0* of a sequence
of classical positive solutions U¢ of parabolic equations

(US), = (U + €U, € > 0. (20)

satisfying the same boundary conditions as U, [257, 260]. Here, since we have
that U, € CY(wy). we have the uniform in € € (0. 1) estimate KU, < const
m@d. 7)) xR,: 0 <8 <71 < T are constants (this is important i the proof of
convergence (o a.8.5.).

The sequence ol functions &f = Uy ~ U € (7,'_;3(w7) converges uniformly as
k — 00. € — 0. to a function z on each bounded set w, C w, = (0.7) x Ry,
7 € (0. 7). From the argument above, we shall formally assume that the function
z(r. x) is sufficiently smooth, Here we are implicitly assuming that the necessary
estimates are first derived for the smooth functions (7, x), and the final result is
obtained by passing to the limit as kK — oo, € — 0'. Let us note that i equation
(20) is used instead of (17), the equation for 2§ includes an additional term, which
15 not essential for the tinal estimate (15) as € — O,

Thus, let 7 € C!*(wr) N C@r). Then from equation (18) by the comparison
theorem we conclude that

max z(rLx) < 2N, minz(n, ) > o (),
! !
where the smooth functions 2¥(7) satisfy the inequalities

dztjdr < sup k[EU, xn}sup(Uy),, (1. ). 2h
! !

dz fdr 2 0. 0<1 < T, (22)

and moreover z7(0) = max 2(0, x) < 00, 27(0) = min z(0. x) > o0,

I the derivation of (22) we take into aceount the first of the inequalities (12),
Using the notation (7) and the explicit form of the function U, = (" — 1) "6,(§),
we obtain

supk[EW)) = sup  k[EMS)) = p(T = 0",
\ se]0F =]

sup(Uy),, = (T — 1) ! 1}111()(()"'((5) =(T~0""g. 1 = T".
\ £=0
Substituting these equalities mnto (21), (22). we derive as 1+ — T the estumates

! T—-0"] dz
di 5(,,,1’11},__,).,' ds
1

>

T —1 ot T
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Hence by the inequality
16, ) = 8,()llc < (T —n""max{z" (). =70 <1 < T,

we deduce the validity of the estimate (15),

We need only to demonstrate convergencee of 6 to 8, as + — T, Resolving
the indeterminate in the right-hand side of (15), and taking (8) into account, we
obtain (T — 1)

. . gn Pk -
im0 ) = 6.Clle = lim T VI
[

Theorem 1 allows us to determine asymptotically exactly the dependence of
the depth of penetration of the thermal wave on time, From the convergence
estimate (15) it follows that x., (1) satisties as 1 — T~ the equality (1, x. /(1)) =
L/ QENT — n").

Hence, using the specific form of a.s.s, 1, (1, x) (see (10)), we obtain

(23)

E VBT = 112
Repl) = (T = 1)o7 ) [ EWT = 171/ '} T

(T — 1)”

Here 6, ! is the function inverse to ¢, (¢7' exists on the interval (0, 1) in view of
the monotonicity of §,),
Let us demand in addition that

i 2822 (24)

Then it is easily veritied that £ "(E(5)/2)/s — 1.y — . Since 67'(&) =
(1 = &/ (=m'? for small ¢ > O, we derive from (23) the following estimate for
the penetration depth of the thermal wave:

y (T~ pytms E'E|(T = 1)"}/2)
Xy (1) 2 e | ] .
1) (<mi (T =1y

. (25)

which holds for all ¢ sufticiently close to T,

Let us consider separately the case n < —1, For n < —1 the function (Uy), has
a jump discontinuity of the first kind at the “front” point (1) = &(T ="/ o
that U, € C(wy). Therefore additional ditficultics arise in the proof of convergence
1o a.8.8, lor n = ~1, Below we obtain an estimate of the rate of convergence (15)
for n < —1 for the case k() = 1, when E(s) = exps — |, so that the similarity
representation (14) has the form

01, &) = (T — 1)y ™" In[ 1 4 w(t, &T — 1) (14"
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Theorem 1. Let k(1) = 1, Then for any n < () the following estimate of the rate
of convergence 1o a.s.s. is valid:

oy = 6. llew., = OUT =) " IKT =D} + = T . (15"

Progf. The case n € [—1,0) was considered in Theorem 1. Let us note for k = |
(15) is the same as (157, since then g (1) = 1 (see (7).

Thus, let n < —1 and without loss of generality w,(x) = (). Then the solution
of the problem (1)—(3') has the formn

’ ' - \
.0 =3 | CXP{‘m}lexpu'r—r)"l— Hu=n *ar,

The main problem is to estimate (s, x) on the weak discontinuity surface of
as.s. (10), xp(1) = E(T — 1)1 +72 on which the a.s.8, 1, = ) and does not have
the requisite smoothness, Setting in the last equality & = £y(T — n)'"*"/2 and
introducing a new variable of integration by (T — 1)(f — 7)° ' = s, we have the
following estimate:

&

A
w(t, xg(1)) = ",) A2 / exp{=A"P ()]s 2 ds.
27T /2 o

where we have introduced the notation A = 7"~1 — 0' .1 — T, and P, (s) stands
for the function £3s/4 — (1 +)"s ".

It 1s casily checked that P, (s) is non-negative exactly for &, = 2(~n)"*(~1 -
wy D2 Therefore the above integral converges and goes o zero as A = T—1 —
0*. Hence u(r, xp(1)) = o((T — )2y and thus U, xo(1)) = O[|In(T — )]} as
1 — T, Since w, (1, x) <0 (sce § 2, Ch. V), this estimate holds everywhere in
{x = xp(n)]. In the domain {0 < x < xg(n)], where U, € C™, the method of proof
of Theorem | can be applied, which gives us as a result the estimate (157) of the
rate of convergence to a.s.s. 0O

4 Sufficient conditions for absence of localization

Theorem 2. Assume that conditions (4), (5) hold. Then therve is no localization
in the problem (1)-(3") for n < —1. The solution grows withow bound ast — T~
everywhere in Ry, Furthermore,

E Y, 1))

L, Ly —TF—IF— =1, xeR,. (26)
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If equation (1) admits finite speed of propaguation  of perturbations  and
meas suppup < 00, then for the size of the support of the solution we have the
estimate

£ (1) = meas suppu(t, x) = (T =" g —e(n). 0 <1 < T, (27)
where £g = meas supp, = 2(~n)"?(—1 — n) Y2 and the non-negative func-
tion (1) — 0, t — T, If k = 1. then by Theorem 1" we have equality in
(26).

Proof.  Let us denote by (1. x) the solution of problem (1)-(3) in (0,7) x
(0, xp(1)), xp(t) = (T — D' satistying fi(r, xo(1)) = 0, 80, x) < ue(y) in
(0, xp(0)).  Since (0, ro()) = 0 in (0, T), by the comparison theorem u > i
in (0, T) x (0, x5(1). But u, € C'2(0. Ty x (0. xp(1))), (1, x0(1)) = 0.
Therelore as in the proof of Theorem 1, we see that 6(1, &) — 6,(€) ast — T in
C (0, &)) with the rate of convergence given by (15) (here 6(1, £) is the similarity
representation (14) of the solution 7)., Then the claim of Theorem 2 follows from
the inequality w > i1 in (0, T) x (0. xp(1)); in the derivation of (27) we use the
expansion

0) = — eyt 0. £ — &5 (28)

]

Theorem 2 provides sufficient conditions for the absence of localization in the
problem (1)—~(3'). Unfortunately, Theorem I cannot be used to establish the parallel
result for presence of localization for # > —1. In the vase n = —1 we can prove
the following assertion:

Theorem 3. Agssime that conditions (4), (5) hold. Then the solution of the problem
(=3 fur n = =1 swisfies the relation

EYu(r, x)) o\’
{ e —— - ¢
(111'}_1 Tt - (l 7) R reR,. (29)

Remark. I n € (—1,0) in (3), then £ Y@, x)[ = o((T - "), t = T, mR,,

Relation (29), which follows from (15) and (13) for 6,(£) in the case n =
—1, means that (s, x) grows without bound for all ¥ € (0,2) and w(r, x) =
E(T —1n YW1 - ,\'/2)24 [as ¢+ — T . If, on the other hand, x > 2, then w(r, v) =
o(E[(T = 1) '). which, however, does not ensure uniform boundedness of the
solution, At the same time it is clear that a. s, s, (10) (which correctly describes
the asymptotic behaviour of the solution of the problem) is localized lor n > —1.
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In the case k(u) = 1, localization of the solution of (1)—~3') for n > ~1 is proved
in § 4, Ch, III, by analyzing the heat potential, All the arguments above, as well
as the results of numerical computations, indicate that for n > —1 the solution of
the problem (1)-(3") is localized.

5 Examples
Let us consider other examples,
Example 1 (compare with Example 2, § 5. Ch. V). Let k() = In*(1 + u), where
A > 0 is a constant. Conditions (4), (5) are satisfied. The transformation E in (6)

has the form (see Table 1) E(n) = exp{[(1 + Du[' """} — | and therefore, setting
my = n/(l 4+ A) in (3") we obtain

() =exp{(l + HYTAT Ly~ 0 <1 < T (30
To this boundary blow-up regime corresponds the as.s, N
u,(1x) = exp{(l 4+ )TV gttt N ey 3

where £ = x/(T — plt A2,
From Theorem 1 it follows that for n € [—1,0) the similarity representation
(14) converges as 1 — T 1o the function 6,, and that we have the estimate

6. ) =6, =0T -n"")y—= 0. 1= T".

From the structure of the as.s. (31) it can be seen that for ny < ~1/(1 4+ A)
there is no localization in the problem, and that n(s. x) ~ exp{(T — )"}, 1 —~ T,
for any v € R, Equation (1) describes processes with finite speed of propagation
of perturbations. Therefore for ny < —1/(1 + A) the size of the support of the
solution can be estimated using (27).

For ny = —1/(1 + A) ass. (31) are localized.  In particular, in the case
ny = —1/(14A) (S-regime) the following equality holds asymptotically as 1 — T~
(see Theorem 3):

w(t, 1) 2= expl(] + MR gy e '\A/z):*/n-w\;l L.
Penctration depth of the thermal wave depends on time thus:

AT EA) 7
o)D) = "(Mlim)\_)“—__ln;: Pl e
(=na(1 4 Ap'72
Hence it follows that in the case A = | for ny € [~ (A= 1)"".0) in (30) penetiation
depth decreases to zevo as + — T . This conclusion also holds true for the
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boundary HS-regime, which heats up to infinite temperature the whole half-space
R, (see § 4, Ch. 1I1). For A = | the behaviour of x.,(f) is practically independent
of the parameter u: X,/ (1) = O(T - nYhot— T,

The above conclusions confirm that, in general, shrinking of the half-width is
not sufficient for localization.

Example 2 (compare with Example 3, § 5, Ch. V). Let us consider equation
(1) with coefficient k(1) = In[1 -+ In(1 + 1) [. Since here E(u) = exp{u/ Inu} as
1 — oo, from Theorem 2 we deduce that the boundary blow-up regime

wg (1) 2 exp{(T = )" /In (T — nHf}, 1 = T 7, (32)
leads for n < ~1 to absence of localization. Here
meas supp(t, x) 2 Eg(T =" 0o 1> T

If on the other hand #n > —1, then the as.s. are localized. To the boundary

S-regime (n = —1) corresponds an a.s.s. of the following form:

(r—n"' (= x/2),F

[ In(T —1)] {l 4 7ln[(l - .\-/2)+|}
T =)

wll, x) = (1, x) 2 exp

1T 0<x <2,
From the relation (25) it follows that in this problem (n = —1) the half-width

decreases ags 1~ T

Xop () = (=) AT~ PP | InT -0 = 0, 1> T,

Example 3. Let
k() = [1+ In(l + )] *. (33)
In this case E(u) = exp{e” — 1} — 1, therefore it follows from Theorem 2 that the
boundary regime
(1) = explexp{(T' = "} ~ 1) — 1 (34)
ensures for n < —1 unbounded growth of the solution of problem (1). (2), (34)
everywhere in R,. On the other hand, it n > —1_ then we should expect heat
localization in the problem (at least the corresponding a.s.s. have this property).

Example 4. Let the thermal conductivity coefficient have the form

3’ (1 + In(1 + 1)
k() =
1+ In(l + )
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Conditions (4), (5) are then satisfied and the function £ defined by (6) has the
form
E(u) = explexp{u'/?) — 1}~ 1},

Therefore in this problem the boundary blow-up regime
w (1) = explexpl(T — "} — 1} — 1}

will produee no localization for n < —1/3. For n > —1/3 the a.s.s, are localized.

6 Localization conditions for arbitrary boundary blow-up regimes

In the construction of a.s.s. in the degenerate case we made subgtantial use of
condition (5). If the integral in (5) converges:

>~ k()
ay = — 7 < X, (35
‘ /() S n )

then the funetion E in (6) is defined on the finite interval (0, a;). and therefore
E~" is uniformly bounded in R,. Thus it makes no sense to consider the family
of boundary blow-up regimes (3'), and no a.s.s. of the form (10) exist here.

To clarify the meaning of the yestriction (5). let us consider

Example 5. Let the coelficient i equation (1) have the form

k(o) = [1 4+ In(1 + 0| [T+ In(1 +In(l +up[ ' x...

| (36)

x| T Inh oo+ In( 4wy [ > 0.

In cach successive bracket the number of logarithms is increased by one. Let the
last bracket contain M logarithms, that is, (36) has M factors (for M = 1 the
cocfficient (36) coincides with (33)),

The transformation £ is determined from (6):

EQo = explexpl...{¢" —~ 1}, )~ 1} =1},

where in the right-hand side M + | exponents are used. Therefore from Theorem
2 we conclude that the boundary regime

() = E(T - n"| =
(37)
=cxplexp .. fexpl(T ="} -1}, -1} =-1. 0<1 <T,

is not localized for n < —1. Comparison of (36) and (37) shows that increase in
the number of logarithms in the last square bracket of (36) leads to the following
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situation: to bring about the HS-regiime without localization. faster and faster (more
rapidly increaging as 1 — T 7) blow-up regimes are required. As M — oo the
intensity of these regimes does not have an upper bound (in a certain sense). At the
same time as M s increased, the “rate of divergence™ of the integral (5) becomes
lower, Therefore as condition (35) becomes satistied, the intensity of minimal
boundary regimes that lead to absence of localization and unbounded growth of
the solution in the whole space, becomes infinite.

If condition (5) holds, all the types of boundary blow-up regimes are possible;
HS-, S-, and LS- regimes (under the restriction (4) this was practically establighed
in Theorems 1. 2), On the other hand. if k() satisfies (35). then, apparently, there
are no non-localized HS-regimes, Let us state again the result which can be proved
by comparison with travelling wave solutions (see § 3. Ch. ).

If the condition
~ k()
e (7)< OO (38)
foSr

holds, any boundary blow-up regime in the problem (1)-(3") leads 10 localization,

Condition (38) is satistied, for example, by the following coelficients: k(n) =
e k= +1) o= 0, k() =[] +In(l + )| * and

ko = [ +Intl +0] "< {1+ [l +In(l +0[) 4 A > 1,

§ 3 Approximate self-similar solutions in the non-degenerate
case. Pointwise estimates of the rate of convergence

In this section we consider non-degenerate a.s.s. of the nonlinear heat equation.
which correspond to given blow-up regimes on the boundary v = (. Unlike
the degenerate as.s, of § 2, they satisfy (under other conditions on the thermal
conductivity coefticient) a second order parabolic equation.

Main ussumprions and formal definition of a.s.s. As before. we shall consider
in wy = (0. T) x Ry the first boundary value problem

1, = AQ) = (k1)) (h
(0.0 = 1p(x) = 0. v e Ry: g € C(R ). supuy < 00; (2)
w(1.0) = (1) > 0. 1€ (0.T). wy € C*[0,T)). (3)

where the function u; of (3), which blows up in finite time, is taken to be monotone
increasing,

Let us introduce the necessary restrictions on the coefficient k(u) €
CH(0.00)) N C0. 00)). We shall assume that k') > 0 for 1 > 0, k(0) = 0,



§ 3 Pointwise estimates of the rate of convergence 387

k(o0) == oo, The function & defines a bijective mapping R, — R, and therefore
we can define k' : R, — R, the inverse function to k,
Let us set
Dpley = (kG 7Ry op 1o - (4

The main condition on & is as follows: there exists a constant o € R, such
tbat*

D) — Lo n— oo, (5)

In Table 2 we list some coefficients &, which satisfy condition (5). In all the

cases the constant y > (O is chosen sulliciently large. In the right column of the
table we list the principal terms of the expansion of the function k ') as 1 — o,

Table 2

(_mk(“) — T

a W Inty +m W T I g

" In ey 4 ) QM ey

aexp{n®(y + ). 0 < @ < | W exp(—ormtat i pe gy

Iny + n) ” , Ina ¥
n’exp { e b v > 0 | 0V exp { T e
p { In“In(y + ) P In“Inn

It will be convenient for us to write the boundary condition (3) in the following
way:
w(r,0) = w(y =k '@y, 1€ . T). (A

where (1) is a smooth monotone increasing function. ¢(r) — oc as t — T7.
We shall seek a.s.s. of the problem (1)~(3") in the fonn

(1. x) =k (87| € = x/h(1). (6)

where the unknown functions 6,(£). ¢(r) are determined from conditions of con-
vergence of the solution u(r, x) to the as.s. w, (7, x). It is assumed that 6,(0) = [,
so that a.s.5. (6) satisfies the boundary condition (37).

Let us make some necessary preliminary computatious. Let us set

U, x) = k(u (1, x) = (087 (). (7)

The function U, satisfies the eguation

— a - s - (rfl)_, s 5
(U =a@” P Hne &) (l// (/)> (¢ dE (8)

"For o = 0 relation (5) is equivalent o the equality @ (%0) = oo, This cuse was
analysed in § 2.
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or, equivalently,
! ! ')U\
W), = (%«) i, — (-(Z‘S—> (1).\'%««. (8
v é :

Let us introduce another piece ol notation:
U, x) = k(u(, x)), 4, x) € wyr. 9)
For [/ we obtain the equation
Ur =Dy (U) + [De(U) = /o U7, (10)

where

I
D, (U)=UU,, +—U>. (11)
a

Let us observe that U1, 0) = U@, 0) = (1) for t € (0. T). Below we shall

analyse the equation satistied by the difference : = U — U, using the Maximum
Principle, and we ghall derive conditions such that

167, ) — 07 llew,y —~ 001 =T, (12)

where we have denoted by 8(r, ¢) the similarity representation of the solution of
the problem (1)~(3"):

01, &) = —J———l/“”(z, Epln)) = ~l~l<“"(u(1. g, 1e0.T), £20. (13)
1) i) ’

The convergence condition (12) ensures that as + — T the solution of the
problem under consideration and a.s.s. (6) have the same properties. Then the
function ¢(r) determines, modulo a constant factor, the dependence of the depth
of penetration of the thermal wave x. () on time.

Under the above assumptions, the construction of a.s.s, uses exact self-similar
solutions of the equation with power type nonlinearity:

i = (), (14

(here the constant or > () is the same as in condition (5)). We shall need two types
of sell-similar solutions of equation (14) (see § 3, Ch. 1l):
. us(t, x) = (T = 1)'6,(£).& = x /(T — )Ftmen/?,
1€ (0, Ty n=-const <0 (15)
11 ug(l, x) = ¢'6,(£). £=x/expler/2).r > 0. (16)
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Here the functions 6,(£) > 0 satisfy ordinary differential equations obtained by
substituting ug(r, x) into (14):

l+nU'

I, @6y - - B E4nb, =0, &> 0; (1

1. 076y —H =0, = 0. &> 0, (18)

as well as the boundary conditions
0,0y = 1.6,(c0) = 0. (19)

Under these assumptions on k(u) the method of constructing a.s.s. in each
specific case depends on the for of the boundary regime.

1 Approximate self-similar solutions of type 1

In this subsection we construct a.s.s. of the problem (1)—(3') with I'unuion Oy
satisfying equation (17). The problem (17), (19) ways studied in detail in § 2, Ch,
111, where it was shown that for any n < 0 its solution exists and is umque. For
n < —1 /o the function #, has compact support: &y = meas suppd, < oo, while
for n € (=1/er, 0) we have 6,(§) > 0 everywhere in R, . Moreover,

B(&) = CeIH 0 4o ol C=Cn, o) = const > (). (20)

In the case it = — 1 /o the solution can be written down explicitly:
} é_ 2/ . 2(”__+_2) /2
H‘(.;):{<l_m> ] =0 §():{~——~] . 2n
£o o

To prove covvergence Lo as.s. we shall need

Lemma 1. Ler 6, be the solution of the problem (17), (19). Then

20
gn = sup = (€) < —ner, £y = meas suppo,. (22)
iy dE
Remark. For n = — /o we have (see (21)) ¢, = h/f() =a/(o+2) < I

Proof  Letus set g,(¢£) = 67(£). The function g, satisties the equation

l+;

" l ;2
&g+ ;(A’.‘)" - &+ nog, = 0. (23)
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Let us assume that there exists a point £ = £ € R, such that g/ (£*) = ~no.
Let us show that this leads to a contradiction.

Let us consider first the case n < ~1/o. Then 6,(¢) 0 for ¢ &y =
meas supp g,, and (¢! ¢)) (&) = 0. It is not hard to show using the Banach
contraction mapping theorem that as £ — £; we have the expansion

i

v

| + ner

I — ner 5
aéoléy — )+ — (g~ ) ... (24

(&) = 07(¢) =
8.(g) (£) T

Hence ¢(€;) = (I —no)r/|2(o+1)| < —no. Therefore ¢ < &yoie. g (€7) > 0
Then, setting ip (23) € = ¢, we obtain

1 + ner
r

g = & (25)

Let us rewrite (23) in an equivalent form:

1 1
(/g0 — ———~+2' g/

Integrating both sides of the equation over the interval (£7, &) we obtain

¥ * ’ -4 l + *
~g(Eh {m& ) - o } +

l &n
+o ( +om‘ + ”> / 2" ydn = 0.
Y Je-

a4+ nog!” =0.¢ > 0. (26)

(27

Hence, takinpg (25) into account, we arrive at a contradiction, since

'(fl
/ ¢ (mydy > 0.
Jer

Now let n > —1/o. Then g, = 0 in Ry and g/(c0) = 0. We have to consider
two ecases. The lirst case is n € (—1/o. —1/(r + 2)), when gV € L'(R,) (see
the asymptotics (20)). A contradiction in this case is obtained by integrating (26)
over (£*,00). The sccond case is n > —1/(o + 2). Then, integrating (26) {rom
£ =010 £ = £, and using (25), we obtain the equality

oo +2) ( | > /‘: x/ ,
_— - | 2 (0).
5 ,”+(r+2 1 (mdm = g,(0)

which cannot possibly hold in view of the conditions 1 > —1/(r 4 2), ¢/(0) < 0
0

Theorem 1. Ler condition (5) hold, and let the function i in (3 satisfy the
conditon

1
iy @) — —0 =T 5 n=const € |—1/0.0). (28)
n
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Then the problem (1)~(3") has w.s.s. (6), where

b = |—n™ i) 2o e 0.7, (29)

the function 6,(€) is the solution of the problem (17), (19) and the limiting equality
(12) holds.

Let us make some preliminary computations and see what equation ts satisfied
by as.s, (6) under the conditions of Theorem 1. From (17) it follows that

(I._f

Substituting this equality into (8). we derive the following equation for the
function U,:

1 1*e” 1 167 : 1 167
g = - e (‘ > e g (30)

' no tdET ne? 2neor dé¢

U ) l(l/lf [ (1 (rrd?().’\) I (/:r l/ )1 IH”) +
O = o= e
' n 08, de o ) ( dg

l+;r . do? (,,d) (IH;’
o e - () oG

Setting now §7 = U, /", £ = x/¢h, we have

l r 42
(U), = —~ <l/l(<}[> (I)DII(U_\')+G(I)(U{)\\
n\

where G() = [InG/' /) (1), | = (1 4 nor)/(2n) and D, is the operator (11).

L[y ? .
However, by the choice of ¢ (see (29)) —~ (I/ii/)w) (1) I. Therefore the

i

n
equation for U, has the form

(U = Dy (U) + Gy, x. (31

Setting in accordance with (7) U, = k(u,), we deduce that under the conditions of
the theorem a.s.s. (0) satisties the equation

1 ,
(“\)l = A(“\) + ['— — (l)l\(l\'(“x))] k,(“\)(“.\): + (;(1)(“,\)\-\3 (32)
a

which differs from the original equation (1) by two additional terms in the right-
hand side,

Remark. [t is interesting to note that a different equation can be derived for an
equivalent a.s.s. For example, from (17) we have the equality (here n % —1/0)

(m:’fm 2 H,,(F_(f(4 I ((I(” L
de” Tl | dE? d¢ [T R
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Substituting it into (8), we derive for U, the equation

2 P’ 2nar if | + ner
U\ TR e ! D( U\ l - U-“ I: '
(Wak l+n(r<u">() L ')+l+n(r<nq§>() 2

If instead of (29) we define the function ¢(r) so that

’) r
- - (f./.).(l)_> (1)
1+ no \

then, setting in (33) U, = k(1) we have for a.s.s, (6) another equation,

(uy), = AQ,) +

+ ;l;*-‘l)k(/\'(u‘))]k'(u ya,)? + l’\‘((’l“) 124";” (lx’(’})) (1).

which differs from both (32) and the original equation (1), In the sequel we shall
only use equation (32),

Proof of Theorem 1. letus set o = U — U, in wy. 2 € C(wy). Then it follows
from (10). (31) that = satisfies in wy the parabolic equation

;= ,(./{[;’, 4 .(./‘32‘, + M. x) + N, xo). (34)

Here &, is the linear elliptic operator obtained by transforming the difference
D(r(U) - D(r(U\):

Fio=Uszs, + (~1)_(U\ +WoOzG Sz= WU (35)
M ig a function of the following form:
M x) = -Gy, 2 (36)
N is the nonlinear operator
N, vz = U, + 2 = oWy, + 07 (37)
Here 2(r. 0) = 0. My = sup (0. .0)| < oo,
Below we shall derive upper and lower bounds for z in w; by constructing

spatially homogeneous sub- and supersolutions for equation (34).
Thus. let condition (5) hold, Theu there exists a continuous function H (u):

~Ha) < D)~ /o < Hao. u > 0, (38)
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such that
H) > 0 and H () is nov-increasing for u > 0, (39)

Hu) — 0. u— 2o, (40)

Let us obtain an upper bound for z(7, -). A lower bound will have the same form. It
follows from the form of the operator N that the function ¢ satisfies the inequality

<Y+ M+ Notoxn oy, P =S+ S,

where N is
Nott. o o) = HWU, + 2)0U,). + 20"

Using the fact that by assumwptions (39), (40) H(U, + 2) < H(z) forall 2 = 0, it
is not bard to show that z is u subsolution of the equation

S =g b M HEOW, 42

in the domain {z* > 0}. Therefore - < o' (' = 0) t wy if this ivequality bolds
for 1 = 0 and on the boundary (0, T) x {x = 0}.

It is obvious that the function ' s, in its turp, a subsolution of the parabolic
cquation

wh =Lt 4wt sup W +sup, M+ HaH)ee! + 20wl +
+ HQue'ysup (U wt > 0in wr.

Appealivg to the usual comparison theorem (with respect to boundary data; see
§ 1. Ch. 1), solution of this equatiop cap be estimated ip terms of the spatially
bomogeneous solutiop w(r).

Summarizing all the above, we bave the following estirpate;

|21, x)| < w(1) ip wy, 41

where the fubction w satisties the following boundary value problemw for an ordinary
differential equation:
dw

— = wsupU,),, + sup [M] + H(w)sul)(U‘)z\,I e (0, F);
(II 1 v 1 (42)

w(()) = My = sup 20, x) < oc.

Takivg into account the specitic fornm of /7, (see (7)), as welt as (29). it is not
hard to see that for n e [—1/0.0)

(/I (12 Sllp“(}"r(f)]” — q_" ﬂgl‘

5 U, W E e B
Sl\lp( ) (1) — (1)
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sup M| = (Gl sup 1), xl = p GO (1),
1 A
Pao= sup &) < oo

P WY
— — = — i ().
—n h(1) -nl/ W

sup(U,)7 =

4

Y= sup [(H“’)'] < o,
Therefore equation (42) bas the fonm

I ! i ! ‘11 aa r
am = A ﬂur + G+ '—1//” l1// H(). 43)
di —n i ~-n

Sivee for all 7 € (0, F) we bave by (44) that

174 14 1 (1)
“H (1, ¢) ~ ()‘ (')”( = "“'(;*)‘ sup |:,(I. )| =< (44)

W =W
to prove the limit equality (12), it sulbees to cheek that w() /" (1) — 0 as
A

From (43) it 15 pot bard to obtaiv an estimate of 10(r). for example, on the
interval (¥/2, 7). To estimate the last (noolinear) term ip the right-band side of
(43). let us use the ipequality

dw g ()
_— I — —

.
dr 7 =)

from wbhich it follows that for all 1 € (F/2.7T)
w1y = My [ " My = (T 2Ty 70,
Therefore ip view of (39), (40) we bave the inequuality

I " ' - -Il T~ ’ -
A W T IGL + H M e,
di —nifr —n

Consequently, forall 1 € (F/2.T)

4

w(t) < MU Ny 4 paget M) / f7 Gyl dT +
Jroa

. !
+ ’_’;llllr[,,/( n)(,) / l//lr | SRRV “)(T)I/I’(T)[‘[(M[l/ll"‘/‘ﬁ”)(T))(IT =
- JT72

=h () + by + B,
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us consider the relation

-
3

O < 1omy/¢" () = L™+ @) + LBy " () =
=J1() + 420 + J3(0).

By Lemma | ¢, < —po and therefore
S = M9/ =0 g T

Let us consider the expression for J+(7). Consecutively resolving all the inde-
terminacies that arise as 7+ — 7T . and using the exact form ol G(1). as well as
conditions (28). (29). we obtain (bere € > 0 are some constants)

lim Ja) = C lin i/vI-IGI =
Iy 1T

/l
g LU L - 2 2
(o 1/’ T/ ten ) N/
=C lin )= ARV NP A
= =g {o+ [E) )= cl-5 (o)l o

Similarly. by (40)

lim J3(1) = C lim HM /') = C lim HQoy = 0.
LR 1T [ e ¥
Thus (1) /(1) — 0 as 1 — T, which, as shown by (44). ensures that (12)
holds. This concludes the proof, a

Remark. For n < ~1/u, by (24) the function (#7)¢ experiences a jump at the
point € = &y. that is U, does not have the smoothness required for the proof by the
above method. In this case convergencee to the a.s.s, is easily proved for #i(r. x), the
solution of the problem (1), (3') i the domain (0, T) X (0. xo(1)) (there U, € C,\”)
satisfying (7, xo(7)) = 0 on the moving right boundary xy(7) = &,¢(r). Then using
the estimate (22). which bolds for any n < 0, we obtain the same estimate of the
range of convergence 0. & — 17(&) as 1 — F7oin C((0. &)). From this
estimate we conclude that there is vo localization i the origival problem (1)—(3")
for n < —1/o and derive, iv particular, a lower bound on the size of the support
ol the non-localized solution (see proofl ol Theorem 2, § 2).

Table 3 shows functions ¢b(1) corresponding to various boundary regimes (3'),
iv which ¢ satisties condition (28). Properties of the resulting as.s. are largely
dependent on the relation between the quantities »n and or, Thus, for n < —1/0 the
half-width of the a.s.s. grows without bound as 1 — T, that is, the solution of the
problem (1)~(3") is not localized (HS-regime). On the other hand. it n > —1/o
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a.s.8, becomey infinite at the single point x = 0, which indicates localization of the

solution (LS-regime). For n = -1 /o both localized and non-localized solutions
can exist.
Let us consider the case 1 = —1/0 in more detail. It is easy to see here that

condition (28) is satisfied by the function
)y = (T —-n ', (45)

Then in (29) ¢p(f) = 1, so that the half-width is constant (S-regime).

Table 3
N...w_w,w.V,.,,A.....A....,M..,l/]([) - e
(T =" |2 + (T -1 Il (T - I)(I~¢»Ix¢l),/'l lnml/] [T ~nl
(T —~ " ]I)“|2 + (T -1 IJ (‘1' . ’)(|+//¢1)/31 (7T ~ ”lml/l
(T -1} n ‘Xp“l)“{([ - 1) I” (-1' “*I)“““r)/ztxp{%lln('l' —I)!"}

0<ca=l

Inf(7 - n—t) . 5 o T ~nl
T - LU St I S SN T R TPAVE e A L Gl Ll
(T'=nexp { w2 oYY P2 W T - b

a > ()

Thus, if condition (5) holds, to the S-regime in the original problem there corre-
sponds the boundary condition

wir. 0) T =07 e (0,1, (46)
Then a.s.s. can be written down explicitly:

(. ) = k”[l(T ~1n "1~ .\‘/,\‘0)3‘ [ Xy = |20 + 2)/(r|[’/2A

Example 1. Let cquatian (1) be

= L G (47
In’ (y + u) .

where § # 0, y > |, and let in problem (1)~(3)
w () = (F— 0" "1+ (F =0 1€ 0. Ty a=const # 0. (48)

Then it follows from (3') that to this boundary regime there corresponds the
function

P(t) = Y7 () = (=) SO — " et "s/"l(T —p ! [.+—T .
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which satisties condition (28). Therefore, by Theorem 1, to the regime (48) there
corresponds the a.s.s. with half-width satisfying

By = ﬁ/.,([ )tluun/zlln(T_,)lmu h‘)/]h {— T
In particular, for n = —1 /o this dependence has the form?
d)(l) ~ (”_)h‘/'ll In(T - 1)|(”'r"s)/2. | T

Henee for a = &/ we have that ¢p(f) — o0 as + — 77, which means that the
solution grows without bound on the whale space (HS-regime), If « < §/¢. then
¢y — Oasr — T, and the as.s. is localized (LS-regime); if « = §/o then the
S-regime obtains: as 1 — T the solution has a constant (non-zero) half-width,
Substituting into (48) n = —1/o, @ = &/, we see that in the case of equation
(47) the boundary hlow-up S-regime is

W) = (T =0y "I+ (F =" 1 e 7T).

2 Approximate self-similar solutions of type 11

Below we construct a.s.s. of problem (1), (3') considered in a domain (0. T) x
(0. xo(1)). xp(1) = Eupr) > 0, with an additional boundary condition on the
moving right boundary «(1. xo(7)) = 0. In this case in the a.s.8, (6) the function 6,
satisfies the problem (18), (19) and has compact support: meas supp 6, = £; < oc
(see § 3. Ch. 11).

Lemma 2. Lot 0, be the solution of problem (18), (19). Then

I }l,
Gy = sup -
copngn dE

(&) < 0.

The proofl of this lemma, which is similar to the proof of the previous one, uscs
the asymptotic expansion
(rzf,) o’

g’ = 80 __ . - _ N i
X (&4 E)+4( +l)(r‘:() f) -4 & &

In particular, we obtain (87)"(g,;) = a2 + D] <

21 et us note that only in the case § = O (when (47) becomes an equation with power
law nonlinearity) and « = 2/ can the expression ¢t = {In(T - )|, 1 - T, be obtained
from ap apalysis of the exact self-similar solution | 184, 3211,
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Theorem 2. Assume that condition (5) holds and that the function W in (3 sat-
isfies the condition

W'y = 00— T, (49)
Then there exists an a.s.s. (0), such that

D) = (W Y e 0T,

the function 0,(&) is the solution of the problem (18), (19) and 687 (1. £) — 87 (&)
ast— T in CWO, &)

The proof of this theorem is identical to the proof of the previous one.

It is easily checked that it condition (49) holds, (1) — oo as t — T7,
Therefore under the conditions of the theorem, boundary blow-up regimes in (3)
are HS-regimes,

Example 2. Assume that in the problem for equation (47)
() =exp{(T =)'} re 0. Ty, n <.
Then the function
() = kM ()] = (T = 1) "SI exp{(T — )"}
satisties condition (49). Therefore we have the estimate

Plt) = (—n) V2P o plh - nds ””zcxp {%('I' _ ,)11}1 [ — T,

for the half-width of the solution,

§ 4 Approximate self-similar solutions in the non-degenerate
case. Integral estimates of the rate of convergence

In this seetion we present a different method of constructing a.s.s. for the problem

“l:(k(“)“\)\‘ (t, x) € wy; (l)
w(0, x) = tp(x) = 0, x € Ry; 1y € C(RY ), supug < 008 (2)
w(t, ) =) (1) > 0.\ (1) > 0, 1€ (0, T). 3)

In all the cases considered below, the prools proceed by deriving some integral
estimates of the difference of w(r. x) and the corresponding a.s.s. This analysis
in fact establishes “transformation rules” for known invariant solutions of (1) for

o

k = u’, o = const > (), under the transformation of the thermal conductivity
coeflicient «” — k(u).
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1 Approximate self-similar solutions of nearly linear equations
In this subsection we shall construct a.s.s. of equation (1) with a coefficient k,
which satisfies
ke CP 0. 20N C0.20)): k) > 0.k ) > 0w > O (4)
(k/K"Y () — 20, — 00, (5)
Some functions & satisfying (4). (5), are shown in Table 4.

Table 4

k(uy =
In" I3 + ), « > 0
"3 +u), a=10
NGB+ @ +u). ¢ >0
exp{In®(l 4+ u), 0 < e < |

. V_ln(l + 1) a0 .
c¢xp In? lin(3 + u) ’ )

1t will be shown that for a particular choice of «; (1) a.s.s. of the problem (1)~(3)
can be constructed using the self-similar solutions of the linear heat equation

W =t (6)

This approach is different from that of § 2, where, under condition (5), a.s.s. were
determined using invariant solutions of th first order equation «, = k(w)? /(u+1).
Let us observe that in this section we are considering more general coefficients
k(w), since there is no need to impose the restriction (2.5), which was essential in
g 2.

We shall need two types of sell-similar solutions of equation (6):

l. us(r.x) = (T =" (). d=x/T =" 1€ . Ty n<0; (7)
1. ug(r, x)y = ¢ fa(x), 1 > 0, (8)

Itis assumed that f,(0) = 1, f,(00) = 0, i = 1, 2. Equations for the functions
/1 are obtained by substituting (7), (8) into (6). It is easy to verify that

_/'l(SC) - _(.72/ - / p {M‘%—{:} o '(l +_‘.)n~»|/"l (I-\"_/‘J(-\') -,

(=) Jo
In each cuse an a.s.s. w, of the problem (1)~(3) is sought in the form

W, (1, x) = (N0, & = x/Ph(n), (9



400 VI Approximate self-similar solutions

where the non-negative and sufficiently smooth functions #,(£), (1), have to be
determined. Setting 6,(0) = 1, we have that the as.s. (9) satisties the boundary
condition (3).

Let us denote by 8¢/, £) the similarity representation of the solution of the
problem:

0. &) = wl-wu(r.{s(b(r)). £eR,. (I
1y (1)

We shall show that for « particular choice of the functions «;. 6,. ¢. the function
61, &) converges to 8,(&) as + — T, which ensures asymptotic closeness of the
solution w(r. x) and the a.8.8. 1, (f. v).

In the proof in the sequel it is assumed that «(r. ) € L*(R,) for all 1 € ]0. T)
(the norm in L*(R,) is denoted by |l - l2). Moreover. without loss of generality.
we shall take the initial function «g(x) to be non-increasing in Ry. Then by
monotonicity of the boundary regime, this property will also apply to the Solution
u(r, x) (see § 2, Ch, V).

Lemma 1. Let the coefficient k satisfy conditions (4), (5). Then:
1) as « — o0, k(u) grows slower than any power: for anv « > O for all
sufficiently large « = 0 we have the inequalities

kG < . k@) < o (Ih

2) k"(u) < O for all sufficiently large u > 0;
3) forany £ € (0, 1)

k(g) k(o) = 1. u — 0. (11

Proof. The claim 1) follows immediately from (5),
Concavity of &k for 1 — oo (claim 2)) follows from the relation

(/Y () = 1 = k" (ko 1K )] — o¢. u— .

To prove 3), we shall use the finite increment formula: A(u) = k(fu) +
K (Ou(l — &), where ¢ € (&u, u). Hence

k(gw) fk(uy = |1+ K (Ol = ) /k(gn]

However, by 2) k(¢) < k' (£u) for large « > O and therelore

K (& éu ] — _g] T kw
<< <

k(£u) & k()
which completes the proof of (117). since
k' s ks
lim «L"E-Qg“u = lim " = lim KM(E)>} = (),
oo k(_f“) [ [\(5)/[\-'(5) [T l\"(,\')
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I Approximate self-similar solutions of type |

Theorem 1. Let conditions (4), (5) hold, and assume thar for «l t sufficiently
closeto T,

W) = (T — w ', (12)

where n < —1/4 is « constant, and ' 2 10.T) ~ [0, T) is the inverse of the
maonotone function

/ dr
(,):7‘_/ T T T (12')
H 1o KT =y
Then there exists an a.s.s. (9), where
d =T =it 5T, (13)

Hv(f) = f|(§).
arl
lil}l e, ) — 60, = 0. (14)
[

The exact form ol the rate of convergence of #(r, £) to 6,(£) will come out of
the proof of the theorem, Unboundedness and monotonicity of the funcetion (12),
(12 as t — T follow from Leama 1,

In a number of cases we can write down asymptotically exact expressions for
the boundary regime (12). (12'), For example, if

i ko
l [N
l\(s//\“(s))

(this condition is satishied by coeflicients of lines one to three of Table 4, and by
the coefficient of line four, if ¢ € (0, 1/2)). then it is not hard to show that

(1) = (T = 0"kK"[(T - 0",
S = (T =0T -0 - T
The restriction 11 < —1/4 in (12) can be related to the need for the inelusion
o, = [ e L*(R,). Since

I(l 2~ 1)
Jié) = - ,{1 157

L E 00,
it does not hold for i € |—1/4,0).

Proof of Theorem 1. Let us define @ smooth monotone function w7 0. Ty — 0. T)
so that

() =(r=-n"+~1T, (15)
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Then the function w«(u(r), x) satisfies the equation
t; = /.Ll(’)(l\'(“)u\) A
and by (12), the boundary condition

u(u). )y =T -n". 1t —->T",

(159

Since. as follows from (12), (13), (1) = |ay (1 ]"7"*", the equality (15) also means

that () = (T — OVt — T, and therefore as r — T
w (). ) = (T = 0)"0,(&). &= x/(T —n'"=,

()(/Jf(’).f) = (T —— ’)’“ll(/,[,([)' f(T - ’)|/1)’

Observe that w,(wu(1). x) is precisely the self-similar solution (7) of equation (6).
Letus set w(r. &) = u(u(), 1) —u, (u(n), x), Then under the above assumptions
w(r, 0) =0, w(r. x) — 0as x — oo and w(r. ) e L*(R,yast — T, Taking the

scalar product with w ol both sides of the equation
w, = ' k(o — (u) ],
and integrating by parts, we obtain

1 d

‘é;l‘;“lu(l. ')“3 = —(u (Ok(u, ~ (1), w,),

Let us denote by G(s: 1) the function
G 1) = / {[,u‘(r)l\-m)]'/2 ~1dn. s> 0. 1€ (0. T,
SO
Using the identity

(L (NGO, — () ) — (1)) =

= H,u'(l)k(u)l”zu\ - (1)) — () |Gae ],

we derive from (17) the estimate

1 d 2 Gae
5 7;Twlz = @ 1Gae nl.

(16)

(1

(18)

(19)

Since (1), < 0 and by assumption 1, < 0 in wy, the right-hand side does not

exceed
—sup [(ey) (). x| / G, x)s D], da =
v J0

= q(T -n"""GUT -~ .1 — T,



§ 4 Integral estimaies of the rate of convergence 403

where ¢, = max |6,(£)l < oo. Then forall 1 € ¢1,. T), where 1, < T 18 sufficiently
close to T, we obtain

mt
N 913 < et 13 + 24, / (T~ 7y V*GAT =) Tydr, 1. <1 < T,
M.
Hence, using the easily verifiable equality
et 5 = (T = 0> 2000(1). ) = 0,13 1, <t < T,

we obtain

N0 . ) — 6,13 < (T — 1) " Y, )3 +

oo [ 1 20
+ 29 (T — 1) ™" - / (T — )" '"=GyT — 7" nydr.

Let us show that the right-hand side of this inequality goes to zero as 1 — T 7.
The first term goes to zera by the assumption n < —1/4, Let us consider the second
term. Since p'(1) = 1/]k((T — 1)")] as 1 — T, and resolving indeterminacies in
(20). we have

2
im0~ 0,3 < ——— X
1T - 2” + 1/2

2D

r n” 5 s
X ’lilp (T -0y " / H,u'(;)k(-q){”“ — 1} dn.
- Jo

By the change of variable 7 = (T ~ ). the right-hand side of the last inequality
takes the form

24, o kg - ome :
- 1 e |~ 1 22
EN VR ./(» {[ k((r —n" ] “ e

Since k(o) is increasing. the integrand is bounded uniformly in ¢ € (0. 1) as
t -~ T ,and by (11") goes to zero as + — T for any ¢ € (0. 1), This proves
(14), while (20) provides an estimate of the rate of convergence to the as.s. O

Under the conditions of Theorem 1. we have that ¢() — 0 ast - T
Therefore the structure of the as.s. (9) indicates that the solution o(f. x) grows
without bound only at the one point v = (), This points to localization in this
problem. with (12) an L.S blow-up regime.

Example 1. Take in (1) k(o) = In"(2 + n). « > 0 (see Table 4). Then it follows
from (12). (13) that the boundary regime

i = (=T - 0" In(T ~ D" 1 T,
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leads to the appearance of’ a thermal wave, the half~-width of which decreases as
1 — T according to

Xop (1) = (—«n)"/zf'(T B t)”zl (T - nj*?.
The constant ¢* € R, is such that (%) = 1/2.

2 Approximate self-similar solotions of type Il

Theorem 2. Let conditions (%), (3) hold, and assume that, morcover,

™~ dn
< OO, (23)
[) k(em)

For oll t sufficiently close 1o T 7, let

uy () = cxp{,tf'(l)]. (24)

where ™' (0.F) — R, is the imverse of the monotone increasing function

w Ry — (0.1, defined for sufficiently large T by
~ dy

=T~ ——e | 25

u(T) / ) (25)

Then (1) =1, 8(x) = fa2(x) = ¢ ' ond the equality (14) holds.

Proof. The proof is essentially identical to that of Theorem 1. We establish the
following estimate:

16Ca(), ) = 8.3 < Nt ) = ugth, ) 3e ¥+
(26)
+h”ﬁyﬂﬂuyuMmW”~nmﬂdnu<:<ﬁ
Hence, by Lemma |,

. Atk | P2 2
1mnmmqmamﬁglm1/ {iﬂgﬂ} — 1% d¢ =0 (27)
1T R B ) kGa (1)

(To obtain (27) trom (26), it is sufficient to take (25), and, taking (24) mto account,
transform buck, w(1) — 1.) O

Under the conditions of’ Theorem 2, the as.s. (9) has the form

w, (1. x) = explu Y1) — x).
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and «, (1. x) > oo in Ry as + — T~ It follows from Theorem 2 that the solution
u(r. x) will have the same properties, i.e. in this problem there will be no heat
localization and the boundary blow-up regime (24) is an HS-regime.

On the other hand, the boundary condition (24) leads to the appearance of a
thermal wave with a constant (as 1 — T ) hall-width ¢(1) = 1. Condition (23)
ensures that such boundary regimes belong in the class of blow-up regimes. In
] 187] it is shown that divergence of the integral

> dn
Jo kiemy >

leads to solutions with constant halt-width being generated by boundary regimes
without blow-up, which are defined for all 1 > 0. In this case a.s.s. are defined
by the same formula (9). This will he the case for 1 (1) = explu (1)}, where we
have denoted by p ! the inverse of

1

dn
Jo kemy’

ult) = > 0.

Then. if ¢ = 1 and 8, = ¢~ in (9), we have 8. ) — 6,(-) in L*(R,) as { — oo,
where 6(1, £) is the similarity representation of (10).
Therefore the inequality (23). which is equivalent to

™ d
/ U o0, (28)
1 mkim)
is a necessary and sutticient condition for a thermal wave with constant penetration

depth to be gencrated by a boundary blow-up regime. The precise form of this
regime is determined by (24), (25).

Condition (23) (or, equivalently, (28)) is satistied by coeflicients & in the fourth
and fifth lines in Table 4. and. if @ > 1. also in the second and third lines.

To illustrate the possibilities of Theorem 2. let us consider

Example 2. Let A(u) = In(1 + ) m* In(3 4 «). Then condition (23) is satished
and it follows from (25) that

mry =T —~1/Int. 7 — o0
p i xexpl(T—n o1 —T
Therelore the boundary blow-up regime
wi (1) = explexpi(T ~ 1) |]]

generates a solution with constant (as 1 — T7) and non-zero hall-width.
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2 Approximate self-similar solutions of equations with nearly power law
coefficients

In this subsection we consider equations (1) with coefficients k. which satisfy the
condition
(kK () = 1 /o, w— 00; o = const > () (29)

(for o = 01 (29) coincides with (5)). We shall also assume that the following
conditions are satisfied:

k(&) | . . .

- I is non-increasing in € € (0. 1) for any u > (). (30)
k(& . '
E‘M“u’) — lasn — ooforany £ € (0. 1). (30")

All the above requirements are fulfilled. for example. by the coefficients k() =
0" In(1 4 u). = O k@ = w’exp{ln“(1 +10)}). 0 < a < 11 k(1) = ot Inind @

In this case the a.s.s. of the problem (1)-(3) are constructed using (wo types
of invariant solutions of the equation with & power law nonlinearity,

u, = (), (3h

(the constant ¢ > () here 1s the same as in condition (29)). which have the form
A. ug(t, ) =(T —n"g(). { = /(T - i,

te(.T)y n<() (32)

B. uslt, x) = ¢'ga(). § = xjexplat/2). + > 0. (33)

The functions gy. go. which satisfy the boundary conditions ¢, (0) = 1. g,(00) = 0,
i = 1,2, are determined from ordinary differential equations obtained by substi-
tuting the expressions lor wy into (31) (see § 3).

In each of the cases under consideration, we shall seek as.s. in the Torm (9),
and will denote by 6tr, £) the corresponding similarity representation (10) of the
solution u(r, x) of the original problem.

We shall estublish convergence of 6(1.+) to 6,(+) in the norm ol the space
it 1(R,). All the functions u in L'(R ), which satisfy the conditions

o~ , o Ta ¥
/ wividy € L-(R ), 1/ dx / u(yydy
g JO S

belong in the Hilbert space i '(R,).
The scalar product in 2 ' (R, ) has the form

, i
o o
(. )y yr,) = / u(x) (——~*-;> vl (x)dax,
J0 dx-

< 0.
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where we have denoted by V = (—9*/dx?)"'v the solution of the problem
PVt = —v, x>0,

which satisties

Vi) = 0. V() < x
(it is casily checked that under the ussumptions we have made on functions in
I Y(R.). « solution of this problem exists). We denote by |lull | the norm in
h "(R+ ):

n

— I/
Nt = o),

! ~
<«7ﬁ> uj| = / u(»dy
X 3 I

Below we shall assume that u € i7" (R,), u(t.) € " (R, forall 1 € (0. T).
Note that the second condition holds for a generalized solution with compact sup-
port u € C‘,';z(l’v,»lul),

It is not hard to see that

Neell.) =

2

Prul=1{e(0.T), x e Ryluit, x) = 0},

with a continuous derivative k(w)u,.
The following casily verified assertion will he used in the sequel.

Lemma 2. Let « function k € C*(((). 20)) sauisfy condition (29), ond let a €
(0. be an arbitrary constoni. Then for all sufficiently lorge u > O we have the
inequolities

W< k) = w Y sk ) < (34)

I Approximate self-similar solutions of type A

Theorem 3. Assume that conditions (29), (30), (30" hold. and thot for oll t suf-
ficiently close to T,

() = (= i, (35)
where n < —=3/(30 4+ 4) is a constont and p V0.7 — 10, T) s the function
nverse o

T . ir
T=D7dT (35')

puiny =T —
Then the problem (1)-(3) has the a.s.5. (9), where
Gy == " T (36)
the function 6,(€) is the same as g (&) in (32) and

l‘n_}] ey — 60 = 0. , -(37)
e
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Monotonicity and unboundedness as 1+ — 77 of the function (1) in (35)
follow from Lemma 2.

The restriction n < -3/Q3c 4+ 4) has to do with the condition #, = g, €
h™'(R,). Since (see § 2. Ch. 1II)

21(£) :Cg_-]n/(]-nur)’ g_-__) ot € = 0,
this inclusion does not hold for n € |-3/3o + 4), 0).
Proof of Theorem 3. Let us change the variable 1 to u(f), where the smooth.

monotone function w is defined by (15). Then the function u(u(f). x) satisfies
equation (1) and the boundary condition (15), By (15). (35). (36) we have

dla)) = (T = "2 s 1
and, as is casily seen, for all ¢ sufticiently close to T
u (). x) = (T = 0)"6,(8), & = x/(T -ttt

OCun), &) = (T — 0" "u(u(n), ET — ey,

By the equality 6, = gy, as { — T ., the a.s.s. « (u(1), ¥) becomes exactly (32),
the self-similar solution of equation (31).
The function w(f, x) = w(put), X) = w,(u(1), x) satisties the equation

wy = | (k@ — « (), ], (38)

and w(, ) =0, w(, x) —= 0as x — o0, wt.:) € h V'(R.},) ag t — T7. Taking
the scalar product of (38) with (—8?/dx%) 'w, we obtain

SN
1 d | -
=S 1 = | W ilF e =5 W) @Y
2dtllw( W=y (,u()[ (nl,, (r+l(”‘ ) ( (-,'\,2> n) (39)

where ”
Fu) = / k(n)dn. = 0.
Jo

We rewrite the right-hand side of (39) in the equivalent form

2 -
! . * ')h
Wi (]I'(u) - Funl,,. (“W‘“‘?> “’) +
dx-
| AN
i ,’ I ) ] .- *_(_,_ =
+ (#( I RAXCIIO1 PN (r+|(”‘ ) ( (-,v\.z> "’) (40)

=~ @ (OFQ) ~ F(u,) . e —u) +

9 |
+ ((u“)\l,u'(l)k(u‘) -] <~;‘—> m) .
RS



§ 4 Integral estimates of the rate of convergence 409

Using now the fact that (F(«)— F(«,), u—u,) = 0 and appealing to the Cauchy-
Schwarz inequality to estimate the last term in (40), we obtain from (39)

1 ¢
;Tllwll,, < oy e du' ke — o)l .

Hence ;
{ ' "
mllwl\n < ) p (k) = ] . (41

Let us estimate the right-hand side of this inequality:

) fe (k) — w1l =

~ 12 ~ (2
= {/ )T (k) — u"’lzzl.\'} = {/ W () Jd(u,: I)I\(I.\‘} .
Ju Jo

Here we have denoted by d(s: r) the function

s , k 2 .
his: 1 = / [,u (l)—(zz)v - l} 77dn. s> 0. 1€ (0, T).
Jo T)(!
Since the tunction «, is monotone in x, we have finally

Ny J ' (0kuy) — a2 <

~ b2
5{——5up\u§’(u‘).\ / ICHET I)I\(I.\'} =
N JO

=g AT = " WAQIET =) T

where ¢, = max |67 d0,/dé) < oo, Then we obtain from (41) the following
estimate, which is valid for all 1 € (¢,, 7) which are sufficiently close to T ;

““'(’*')” | = ”“)(’u )” Pt

+q,° /YT it R (T ~ 1y 7y d
Since
ot = (7 = 0" o) = 0.0 .
from that inequality we derive the estimate

M!Ll ,
N60Cel), ) = 6,11 =< e ol (T =1y I 5l +

2 n<i Yr l.. M-l 2 . "
+%HT—H‘*””’/YI~H'J BT - )" TydT
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Hence, since n < —3/(30 + 4), resolving the indeterminacy in the right-hand
side we obtain

) q. . dT -0

lm |0 — 6|7, < m
/~»l1' I = J + 3(1 4 nor)/4|2 i1 (T — gymtoeh
From (35') it follows that

/(’) B (7 . ’)mr ’ 7
128 = kI(T——I)”I'

and therefore

] . 1 2
) R . k(T —n'
lim |60 - 6,07, = q 5 lim / {——(—gl————)»)w — I} JUde.
=T Jn 430+ no)/41F -1 Jo LL9kWT — 1y

By (30), the integrand is bounded uniformly in ¢ € (0, 1) as + — T°. Then
(37) follows from (30)). O

Remark. In § 3 we used a different method to construct a.s,s. of equation (1) for
coeflicients & and boundary regimes covered by Theorem 3.

It is not hard to derive from (35), (36) sharp estimates for the spatio-temporal
structure of ws.s. Let k(u) = 1’ x(u), where the function x(u) > () grows slower
than any power s ¥ — oo. Then if the condition

K($)

lim ————— = 1|
v K (8/KT(S))

holds, the functions uy (1), ¢b(r) in (35), (36) admit the asymptotic estimates
w () = [T =0 "k ="

(/)(’) ~ {(7- - ’)(l m!)l\,l('l- _ ’)n”(H m!)/lq [ > T

Let us use the above theorem to study the heat localization phenomenon. The
spatio-temporal structire of the a,s.5. (9), detined by (35), (36), indicates that
the properties of the solution of the problem depend on the relation between the
quantities o and n,

It n < —1/0 in (35), then (1) — o<, + — T, and therefore the solution
grows without bound as 1 -» T everywhere in the half-space {x > 0} (HS-regime;
no localization).

ifn>~1/o. then ¢ty ~ O ast — T (LS-regime), which indicates that the
process is localized,

The value n = —1 /o corresponds to the limiting localized a.s.s, (S-regime);
in view of the fact that ¢ = 1, as ¢ — T it has constant half-width, which is
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different from zero. Substituting 1 = —1/¢, we obtain for the boundary S-regime
the expression

w0 (1) = [T~ kT =y Yoy v =1,
or, which is the same,
)y k(T =7 > T,

where we denote by &' the function inverse to k., Asymptotic equivalence of
these two expressions follows from condition (29). In this case the a.s.s. has the
relatively simple form

A\ 2er + 2707
w () =) [ 1~ — LA = | e .

Xg a
Example 3. Let k() = 1" In(2 + ). Then from (35) we obtain that the limiting
localized S-regime in this case is
(1) 2 (o (T =07 I =) W7o — T,
which generates a solution with half-width which becomes constant as + — T,

2 Approximate self-similar solutions of type B

Theorem 4. Assume that conditions (29), (30). (30" hold, and that, in addition,

B
— dn < o0, 42
I a

Swppose that for all ¢ sufficiently close to T
(1) = expip (1) (43)
where u 0, - Ry s the fuverse of the monotone increasing function

uir)y + Ry — (0.1, which for sufficiently large T > O is determined by the
SJormuda

~  un
w(r) =T — / /\-(”(&73 d. (44)
ST
Then
(/)(i)—-—cxp{g«#”l(l)}. 1 T, (45)

0.(&) = ga(E) and the equality (37 holds.
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In the course of the proof of this theorem, which is similar to the proof of the
previous one, we establish the following estimate:

Jo
1), ) = B < ||m<r,,-)u.lcxp{~r (l + T)} +

1 3o ! T o
+qg,mexpy—~t| 1+ T / expy s {1+ 5 x
Ji, -

/1

. 2
x {/ {,u'('r)»ﬁw - I] 7" (In} dr. t — .
Jo U

o

M= ——, 1 >
=T

and assumptions (30), (30") we have the desired result

Hence by the equality

Jlim 60 -60.)l7, =

. VT kG 2
< im / {-‘_(”'(JQ. - I} [T d¢ = 0.
(1 4+ 3a0/4) o1 Jo [ {7hGary)
Remark. If the condition contrary to (42) holds:

e irn
¢
/ dn = oo
Ju /\(("’
the solution obtained from a self-similar type B solution by the “transformation”
u'” — k(u), is defined for all 1 > 0, that 1s, it does not blow up m tinite time | 187,
From Theorem 4 it lollow.s immediately that under the assumptions we have
made, the boundary regime (43) leads to absence of localization, ie., it is an
HS-regime.

Example 4. Let us consider the coeflicient k(u) = u” In"(1 + 1), Condition (42)
is satisfied, and therefore we deduce from (44) that

wliy~aT -0 11T
Hence the boundary regime
wy (1) = exp{(T — 1) ot T

generates a thermal wave that moves according to

(SR

a
g (1) = £ ept1) = sf*cxr){-;(’l@t)"}‘ =15 ) =
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Remarks and comments on the literature

Our exposition of the results of § 2 follows mainly [ 119, 185]. First studies of
the heat equation u, = u,, using degenerate a.s.s. are reported in | 149, 347, 348
(see § 4. Ch. 1Il). Applications of this theory to the study of heat localization
(Theorem 2. Section 4) are contained m [154]. The theorems of § 3 are proved
in | 184}: partial results were obtained carlier in [119], Results of § 4 are given in
1187, 119].

It must be said that at present there are few examples of really non-trivial a.s.s.
of nonlincar heat equations. In this regard, let us mention | 234], where a.s.s. of the
Cauchy problem for u, = (k(u)u,),. 1 > 0, v € R, with coetticicat not of power
type, are constructed, A related result has been established in | 187] by a different
method: an estimate of the rate of convergence to a.s.8. was also derived there
(this estimate could not be obtained in the framework of the methods of ]234]).

Open problems

1. (§ 2) Prove that localization of degenerate a.s.s. (10) for n > —~1 implies loc-
alization of solutions of the original problem (1)~(3") (for the case k = | this is
proved in | 149, 347, 348]; sce § 4, Ch. 11I).

2. (§ 3) Prove that under the conditions of Theorem 1 for 1 > —1/¢ solutions of
the problem (1)-(3'y are localized (for n = —1/o as.s. are not localized, which
implies that there is no localization in the original problem).



Chapter VII

Some other methods of study of unbounded solutions

In this chapter we conduct a study of unbounded solutions of various nonlinear
parabolic problems. In § 1 we study the character of the agymptotics of unbounded
solutions of a quasilincar parabolic equation with a source close to the blow-up
time. We obtain a nearly optimal condition for the absence of localization,

In § 2 we investigate boundary value problems in bounded domuins.

In § 3, 4 we consider parabolic systems of quasilinear equations which admit
unbounded solutions,

Most results are obtained using the same approach. the method of stationary
states. 1U1s based on an analysis of a special family of stationary solutions, which
satisty the equation or system of equations almost everywhere (this is why it is
convenient to call them gtates, thus emphasizing the fact that they are not stationary
solutions in the usual sense).

We tind that the family of stationary states containg i a certain parametrized
form several important properties of the evolution of the non-stationary problem.
We stress that the method is applicable to problems with nonlincarities of a suffi-
ciently general form, when the problem admits no appropriate stable similarity or
mvariant solutions,

In § 5 we study for the most part a nonlinear implicit) difference scheme for
the equation 1, = (), + 1. The most interesting case here is 8 > o + 1,
when the diseretized problem adimits unbounded solutions,

§ 1 Method of stationary states for quasilinear
parabolic equations

Thig section is entirely devoted to the study of the phenomenon of localization of
unhounded solutions of the Cauchy prablem for a parabolic equation with a source
of general forny;
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= V- (kG)Viy + Quy, 1 > 0, x e RY, (1)
w(0. x) = np(x) > 0, v e RY, 2)

where. as usual, & > 0, 0 > 0 are known sufficiently smooth functions, V(-) =
grad (-). The main question we are considering here 15 to find conditions on the
coefficients k, Q. under which the solutions of the problem are not localized.

An unbounded solution of the problem (1), (2) is said to be localized, if it
grows 1o infinity as 1 — T; < ¢ on a bounded set in RY, that is the localization
domain

wy = {.\’ eRY | u(T) . x) = ’I“n}ml n{t. x) = :)c} (3)
T,
is bounded. The function (T}, x) is called the Inuiting distribution (1d.) of the
solution. 1f, on the other hand, w,; is unbounded (for example, w; = R"Y) we say
that there is no localization i the problem,
Earlier, in Ch. 1V, we studied the localization phenomenon in detail using ay
an example equations with power type nonlincarities,

=V -’V 4+ 1 >0 eRY: 0 =085 1. (4)

by analyzing n an appropriate way their self-similar solutions. 1t was shown that
for B < ¢ + 1 there 15 no localization, while for 8 > o + 1 all unbounded
solutions are localized. Equation (1) of general form does not admit such self-
similar solutions, and therefore the comparison methods developed in Ch, 1V are
not applicable here,

In this section we propose an approach to determining sufficient conditions
for the absence of localization in the case of equation (1) with arbitrary (not
power type) coefticients k, Q. We also study the structure of 1.d, of unbounded
solutions, This method encompasses also the case Ty = 0o, when sup, n{t, x) —
20 as + — o, Therefore we do not pay any special attention to the condition
™ dn/Q(n) < oo, which, as is well known, is a necessary condition for existence
of unbounded solutions (see § 2, Ch. ).

The method we employ is based on the construction of a one-parameter family
{U} of stationary solutions of equation (1):

V- (k(U)YVU) + Q) = 0. (5)

In essence, we shall show that the family {{/} contains information about several
properties of the evolution of solutions of the non-stationary equation (1), which
are parametrized i a special form. Actually this assertion is quite natural. since
the main part of equation (1) is exactly the stationary operator, which containg all
the nonlinear terms responsible tor the evolation of a solution.
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In § 3 (and partially in § 4) we use this method to analyse a parabolic system
of quasilinear equations, and, while studying localization of unbounded solutions
of the Cauchy problem, we at the same time determine conditions for global
solvability of the problem in a bounded domain. The concepts we present make
it possible to give a general formulation of the method of stationary states for the
study of nonlinear parabolic problems satistymg the Maximum Principle.

Below we shall take the function (i) to be monotone increasing and we shall
also assume that ¢(u) — oo as n — oc, where () = f) k(n)dn. We shall
denote by ¢ ! the function inverse o ¢. As far as the solution of problem (1),
(2) 15 concerned, we shall assume that it exists, is unique and for all 0 < ¢ <
To = Tolup) < oc belongs to C!;? wherever n > (). and that in addition k() Ve is
continuous in v in RY for all 1 € (0. Ty).

1 Construction of the family of stationary solutions

We shall be interested in the properties of bounded radially symmetric solutions U
of equation (5). Each of those, at points of positivity, satisfies the problem

| N
1 (7 ) + o) =0, e =19 > 0, (6)

U Uy) = Uy, U (01U =0 (7

while at all other points we assume for convenience U = U(|x]: Up) = 0. Here
Uy > 013 an arbitrary constant (the parameter in the family {{/(|x: U],

Local solvability of the problem (6), (7) for small r > 0 follows from the
ar;alysis of the equivalent integral equation

HUr Uy = hUg) — /

£
g“M/g/ "W U dn. > 0. (8)
{) JO

Hence we have that the solution can be extended in r > 0 and is strictly monotone
in r in the domain {r > 0} U(r) = 0}.

Let us first derive a lower bound for U. Clearly, (r¥" ' (p(U))) = = Q)N !
for r > 0. Integrating this inequality twice over (0. ) we obtain the following
estimate:

UGrilg) 2 U (rilly) = ¢ {d)(l/()) <I - %) } .
0/, ©)

e -z

I'y ==

/2
= [2N‘/)(U°)] o

To derive an upper bound for U, let us use the relation

' N

NNy = / 2 0w dn < —~l'—V—Q(U). r e 0.
JO
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Integrating it from O to r, we obtain the following estimate:

2 e
Ua:Uy) < G ! <§N -+ G(U(,)) < G ! <§I—V‘> > (). (10
where G~ is the function inverse to

GG ::/ l\'(n)(lnn 1
it Q(T))

In the particular case Q@) = u(u). p = const > (), the solution U/ can be
written down in explicit form:

\

Ur-ty) = ¢ lI('N(U(,)l‘ll ‘V)/ZJ(N 3)/3(/.L”21‘)| (11

for 0 < r < zy'p "2 where 24" > 0 is the first root of the Bessel function

Jiv- and en(Uy) = U TIN/2)(2 PN D72,
The main properties of stationary solutions of equation (4) with power nonlin-
carities,

1 (:-N ‘U"U’) FUP =01 >0 (12)

were discussed in § 3, Ch. IV. Let us emphasize that they crucially depend
on the relation among the parameters o, 8, N. In particular, for N > 3. 8 >
(o + (N + 2)/(N — 2) the problem (12). (7) has strictly positive solutions in RV
(in the other cases the solutions have compact support). For k. Q not of power
type it is also possible to have solutions of the problem (6), (7) that arve defined
and strictly positive on the whole of RY, This. for example, occurs if (see [332])

2 i
N wQ(Pp ) > / O " dny. u=>0 N =2 (12"
FA

2

(the proof of this fuct is the same as in the case of power type coefficients; see
§ 3. Ch. 1V).

We shall also need conditions on k. (J, under which the functions U(|x|: Uy)
have compact support in RY (that is, they are not stationary solutions in RY), Ag in
§ 3, Ch. 1V, it can be shown that for N = | or N = 2 the functions U(jx]; /) have
compact support, while in the case N > 3. under the assumption of non-negativity
of U we derive the estimate from below

N

Uillyy = ¢ l(('/I'N Yo > 1, ¢ = const > (). 9"

Comparing (9") with (10) for large r = 0 gives us the following sufficient
condition for an arbitrary function U(jx|: /o) to be of compact support:

NN 2.
N=1.2 m'lﬂé )

=0 for N> 3. (12"
0 Q)
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For equation (12) this criterion imposes the restriction 8 < (o + 1)N/(N =2}, and
is practically a condition for non-existence of solutions U > (} in a neighbourhood
of r = o0,

In the one-dimensional case equation (6) can be integrated in quadratures, and
the solation of the problem can be determined from the relation

/{/” k(n)dn (13)
7 )
G ) {_;;ﬁ“’ k(f)Q(é)d«f}

ol

It is strictly positive for O < r < xp(Uy), where

b kinyd
xo(Up) = \/w / L mmdam 5
[i k(1) dt}

Below we shall assume that the following conditions are imposed on the initial
function: o = np(|x]) is a function with compact support, ¢(i) is uniformly
Lipschitz continuous in RN, uy(r1) < up(ra) for all 0 < ry; < ry < oo, Then
the solution u(r, ) is radially symmetric and by the Maximum Principle does not
grow in |x| for alt 1 € (), Ty). Therefore sup u(s, x) = u(r, ().

2 Sufficient conditions for the absence of localization

Theorem 1. Let the solution of the problem (1), (2} be unbounded and
\K}EILJ‘)(.\')/Q(.V)I = o0, (14)
Then u(1, xy is not localized and u(i. x) — oo as t = T, everywhere in RV,
Thus, if' (14) holds, the Cauchy problem exhibits the HS blow-up regime.
Remark 1. Condition (14) will necessarily hold if
k(s1/Q'(5) — oo, 5 — 00, (15)

Remark 2. For the one-dimensional (N = 1) case a sufficient condition for the
absence of localization can be formulated as follows:

e k
i / (m) dn

5 =00, 5§ — 00, (16)

{Iy; K(EYOE) llf}”'
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Remark 3. Applied to equation (4). condition (14) (or (16)) takes the form
§7*F1-8 5 00 as s — oo, Therefore in the case 8 < o + | unbounded solutions
of the Cauchy problem are not localized (for N = 1 this result was obtained in
§ 4. Ch. IV).

To prove the theorem we shall need the following Lemma

Lemma 1. Let there exist U > O, such that under the conditions of Theorem |
we have the inequality

no(x) < U(v:U). x e RY. (17)
Then there exists ty = 1,(Ug5} € 10. Ty, such that for all t € (19. T)
n(i. x)y = U(x| UL n RV, (18)

Proof. We shall apply the comparison theorem of § 4, Ch. IV (on the * ‘non-
increase” of number of spatial intersections of solutions of a parabolic cqualxon)
First of all let us note that from (17) it follows. in particular, that {/ is a function
with compact support. In the opposite case. if U is a stationary solution in RV, by
the Maximum Principle # < U in Ry x R¥, that is. u(1, x) is necessarily bounded.

Thus. suppl/ € R"Y is a bounded domain. By (17) the number of spatial
intersections (in r) of wy(r) and U Uy in w(UgG) = supp U(r Uy is zevo. Let
N(1) be the number of intersections in r = x| in w(l/y) of two different solutions
u(t. vy and U(r:Up) of equation (1). By the comparison theorem (see § 4. Ch. IV)
N(1) does not exceed the number of changes of sign of the difference w =1 ~ U
on the parabolic boundary of the domain (0. 1} x w(l/§). By assumption. N(0) = 0
(< Oforr = (in@W{nN. > 0m O To)xRY thenw > 0 on (0. 1) x dw(UF)
and therefore N(7) = 1. If. on the other hand, (1) admits finite speed of propagation
of pcrlurhulions then by 4 known property of parabolic equations with a source
supp u(iy. ry S suppu(tz. vy for 1y < t> thatis, Ny = 1 forall 1 €10, To)

Ohvmusly there exists 1, e (0. Ty) such that a(t,, v} > ¢ on (/). In the
opposite case. it u = 0 on (0. Ty) xdw(U/). (17) would imply tniform boundedness
of win (0. Ty) x dw (U 0 = U,

Then n(r. x) > O on E)w(U()) tor all 1 € (1,.Tp). Let us choose now 1y €
17, To), such that u(rp. () = U (this is always possible. since by assumption
Iimu(l.O =020, 1> Ty

Let us show that N(1y) = 0. tndeed, w(tg. ry — U(r;U5) » O for x = 0 and
x € dw(Uy). Therefore in the interval w(l/§) there can only be a@n even number
of intersections of u(ry. r) and U@ Uj). However, we established carlier that
N(ty) < 1. Therefore N(1y) = O, so that u(ry. 1)y 2 U@ UG in RY. By the
Maximum Principle this inequality will hold for all 1 € (1p. Ty). ]
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Proof of Theorem 1. From (9) it follows that if’ (14) holds, U(|x];Uy) — 00 in
RY for a sequence Uf — oc. Therefore we can make (17) hold for any compactly
supported function ug(lx]). Then, passing in (18) to the limit U}, = U} — oo. we
conclude that for any x € RV

link u(r.x) > lim U(lx[:UL) = o,
th .

rely not

that is, the solution grows without bound as + — 7] at the same time cverywhere
in the whole space, 0

From the method of proof of Theorem 1 we imniediately derive the following
corollaries (they show how the spatial structure of the family of stationary solutions
{U) describes the features of the evolution of the solutions of the non-stationary
problem).

Corollary 1. Let (1) describe processes with a finite speed of propagation of per-
tarbations.  Then wder the conditions of Theorem 1| the diameter D(1) of the
support supp  u(1. x) of the solutions sarisfies the estimate

¢, 0y)

D1y = 2V2N { o
On(1.0))

12
] = o3, 1= Ty,

The half-width of the stnemre can be bonnded from below by

,( . 12
() 2 m{d)(n(l M {I gl ())/2)}} ‘
Q(n(1.0n) Plu(r,0))

In the case of equation (4}, B < o + I, this estimates have the form

2V2N
Dy = -
Vot

(. 0N+ B2 e T

V2N p .
ro () = e |, Q)1 F 1BV (] g oty 12

Vot

and agree well with self-similar behaviour (see § 1. Ch. 1V).

Corollary 2. Assume that under the conditions of Theorem | there exists Uy > 0,
stich that ug(xly < U(x1:Ugy in RY for all Uy > Uy Let u(r, 0y = UL Then
u,t,00 > 0 on (1,. Ty ‘

Proof. Let us tix an arbitrary Uy = U} and set 1 = mf{r € (0, T} u(r, x) > 0
on dw(l/y)) and 1y = inf{tr € (0. Ty) [u(1,0) > Ug). By the Maximum Principle
11 < 1y, Let us show that n(ry, x) = U(x]:Ug) in RY. Indeed, if that is not so.
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there exists ' > 1y such that n(1'. () > Uy, n(r', xy > 0 on dw(Uy), and a(s'. x) and
U(x:Uy) have at least two intersections in the interval w(Uyp). This contradicts
the condition N{'y < | (see proof of Lemma 1),

Thus a(rg. x) > U(lx]:Ug) in RY. Butthen u(r, x) = U(x: Up) in (1p. Ty)x RY
and therefore (1. 0) > O, Since Uqg = U was arbitrary, this proves the claim of
the lemma. 0O

3 Some properties of localized solutions

Thus, a necessary condition for localization of unbounded solutions of the problem
(1). (2) is the following:
I‘m{ P8/ 05y < ox. (19)
—

In this case the family {{/} of stationary states allows us to determine certain
properties of the limiting temperature distribution (T3 x).
All the results below rely on the following lemima, which is proved exactly like

the previous one.

Lemma 2. Let n(r. vy be an anbounded solution of problem (1), (2), with initial
Juietion ng such that for all sufficiendy large Uy > Uy the fimctions np(x)) and
U x| Ug) tutersect (in |x]) at most at one point. Then for all sufficiently sinall
r = |x| > O we have the estimate

w(Ty . x) = lim oo x) = sup U(lxlUy). (2

T, [y Uy,

Inequality (20) allows us to bound from below the size (diameter of wy) of
the localization domain (3) and to desceribe detailed behaviour of a(Ty, x) in a
neighbourhood of the singular point. In particular, from Lemma 2 and (11) we
have

Theorem 2. Let Q) = pdGry, where p = coust > 0. Then an mnbaunded
solution of the problem (1), (2) cannot be localized in a ball of diameter less than

3

D=2 V7 21

To prove the theorem. it sufhees to check that the functions (11) satisfy condi-
tions of Lemma 2. Theretore for the functions of (11) we obtain from (20)

n(Ty . x) = sup Ul Upy =00, 0 < x| < 2y'p

l ’Il ’1 ,lll

12

As an cxample we quote a stronger result, which holds in the one-dimensional
case,
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Theorem 2/, Assmne that N = | and that the folowing conditions hold:

e
/ Qimk(n) dn = o,
J

I, = 2xp(00) =2 m xols) < 00,
\ e
Then if u(r. xy is unbonnded. meas wy 2= meas{y € R1a(Ty . 1) = x) > [,

Proof. For N = 1 we obtain from (6). (7) that for any fixed U, € (0. Uy) at points
» = a, where Ul Uy) = U,. we have the equality

] lI“

I -
%(/)(U(I.\'.I:U()))} == 2/ Qmk(m dn — 2. Uy — x.
d Jie,

Therefore in view of uniform Lipschitz continuity of ¢h(uy). for all sufficiently
large Uy the functions up(x]) and U(x|;Upy) mtersect in ¢ = |x| in w(Uy) =
suppU(|xl: Uy) at most in one point. Then, as in the proof of Lemma 1. we have
that u(Ty . lx]) = U(xliUp) i w(Uy) for all sufficiently large Uy > 0. and, in
particular, mens w; = 2xp(Uy). =

Of course this theorem is also true when [, = oo in (21').
Let us now congider the case

sup U Upy < o, ) = (O (22)
Uy 0

This condition indicates that the localized solution becomey infinite as 1 — T only
at one point, that s, it exhibits the LS blow-up regime. Then Lemma 2 allows us
to bound from below the asymptotics of behaviour of (T, x) as [x] — O and to
determine the rate of change of the half-width of the localized structure as 1 — T

Let us note that by (9) localization of the solution in LS-regime is possible
when

o
i ——— | k(n)dn = 0. (23)
TS /] (midn

In the one-dimensional (N = 1) case the necessary condition for the occurrence
of LS-regime has the following forn:

lim xp(s) = O, (23)
If condition (23) (or (23")) holds, the family of curves {U = U(r Uy} allows us

to construct in the {r, U} plane. for all sufticiently large Uy, monotone envelopes,
tangent to the curves U = U@ Uy).
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*U(I;UD)

L Z.zra(ua(a)) o I

Fig. 78. Example of construction vf the family of fubcrions {U/] and envelopes in the
S-regime () ag(~c) < o). Thick line devotes the initial function wg(x): N = 1,

Let us choose a maximal continuous branch r = Fo(UU) (see Figure 78). Two
cases have to be considered.

1) The envelope r = Fo(U) = 0 is tangent to the curve U@r: ug(()) at some
point ' > 0 (see Figure 78). In this case let us set

G(x) = {I.'() . L = o,
Udlalsup(Oyy,  Jaf = Y,
where I-'(’,l is the inverse function of Fy (at points where I"()l is not defined, we
set £, = o).
2) The envelope r = Fp(U) = 0 hag no points in common with the curve
U(riug(0)), the curve U = F;'(r) is defined for all 0 < r < r* and is tangent at
the point r = r* to some curve U = U(r; U})). Then we set

I:—l ). X<,
Gy = ¢ o Dk
UdxlUp. x>t

From Lemma 2 we immediately obtain
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Theorem 3. Asswme that condition (23) (or (23')) is satisfied, and that the solution
u(1. x) is unbounded. Far all Uy = Uy = ug(0) let the functions ap(lx}) and
Ui Ug) intersect (in r == |x|) at most at one point. Then

w(Ty. x) = Gv), xeRY, (24)

The estimate (24) makes it possible to determine the degree of singularity of
the limiting distribution #(7';. v) in a neighbourhood of the point & = 0. where
the solution a(s. x) grows without bound as 1 — T . Here it is convenient to use
the estimate (9) for the stationary states U/ (r:Uyp). which we rewrite as

U Ugy) = U (riUg)) = U =2 /g, .

U172 (25)
r = 0 ry = [2N '(-/)—(-—9-)—:‘
Uy

First let us present a simpler claim, which follows directly from the estimate
(25) and Lemma 2. 1t has the following form: wunder the conditions of Lenuna 2
Sor all 1 < Ty sufficiently close 1o the blow-up time t = Ty we have the estimate

w(r, x) > U (xliee, 0)), x] > 0. (26)

1y

Proof of (26) proceeds as in Lemmas 1, 2; let us note that similar statements
were frequently used in § 4-6, Ch, 1V, From the last inequality we immediately
deduce

Theorem 4. Under the conditions of Theorem 3. we have the estimate

HepCaeCt. Nl myy =

427NN |t 01N 1—T .
= NN F2TN/2) Qe op e :

From this estimate we deduce, for example, the condition for [[{a(r. )Ml re,
1o grow to infinity as + — T

d)l"”z/N(.s-)/Q(s) — O, 8 e D,

Of course, using (20) we can obtain other integral estimates of unbounded solu-
tions. However, for general ¢, Q, they look too cumbersome, For some particular
cases such estimates will be obtained below,

Let us show how to derive from (26) pointwise estimates of «(T'; . x). Set
L(r) = $(G(r)), where G(r) is the envelope of the fumily of curves {U(r Uy))
(see Theorem 3);

Glal) = sup U(x[;Uy), {x] > 0,

ty -0
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Then if G, = G.(r} is the envelope of the family (U (rUy)) of (25), we have
clearly that L.(r) = (G, (r)) < L(r) for r > 0.
The function L,(r) is determined from the system of equalities

L.(r)y=pU_(r:Up)). L.r)y = U (riUg)],. (28)

where Uy > 0 is a parameter. This system is equivalent to the following one:

N

r- , r
L.(r)y= h(lUy) — Q(U())W' L.(r)= —Q(U“)N' ro<ry.

Then. by climinating the parameter Uy we obtain a differential equation for the
envelope L. = L,(r):

NL’ - .
=0 (MO o)

This makes sense for all sufticiently small r > O (here O ! is the function inverse
to Q).

We are interested in monotone decreasing solutions of equation (28') which
satisty the condition L.(0') = oo, Such a solution is especially casily computed
when the coeflicients ¢, O in (4) are of power type. Then (28") takes the form

NL/ . tor i 3/ .
Liry=(or+1)" <w~-~’1(—’~)> +’;L’,(r). ro> 0, (29)

Theorem 5. Leto + 1 < B < (0 + YN + 2)/(N = 2), and let Ty < o0 be the
hlove-ap time for a solution of the Cauchy problem (4). (2). Then for all sufficiently
small | x| = O, we have the estimate

a(Tq.x0) > G0 = o + I)L,(r}]"’l“"Il = C,|x| RAUAR L (29')

C. = N {ﬁ“((r—%l)]li/m*-ll Hip- o i
T B-(o+1) B ‘

If B = (o 4+ DN+ 2)/(N =2}, this estimate is valid for all critical functions
up(x) (that is. such that a(t., x) does not decrease in t in (0, Ty) x RY),

where

Progf. 1t is casy to check that in the case of equation (4) we have the equality
Ux] U = U P2 s 1), U > 0,

For B < (7 + 1)}(N + 2)/(N — 2), the tunction {/(Jaf; 1) has compact sup-
port, so that supplU(|x|;Uy) — {0} as Uy — oo, Therefore in this case the
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conditions of Lemma 2 arc satistied. Then, taking into account the fact that
SUPy,-~.u; U(lx[:Uy) > Go(1x]) in RM\{0}, and computing the precise form of the
function L,(|x]) in (29), we obtain (29') from (29).

Now let B8 = (0 + 1N+ 2)/(N ~2),. Then U/ > 0 in RY. Let us fix an
arbitrary Uy > U, = 2uy(0) and let ug consider the ball B = {|x| < ry), where
ra > O is such that U@y, Ug) == Uy /2 Then if N1y is the number of intersections
n - = | x| in the ball B of the functions u(r, x|} and U(|x|; Uy, then N(0) = 0 and
by monotonicity of u(z. rg) in 1 on 9B, we have that N(7) < 1 for all 1 € (). Ty).
Therefore (20} obtains (see proof of Lemma 1) and, defining L, by (29). we arrive
at (29, O

Remark 1. For 8 > (o5 + 1)(N + 2)/(N — 2), the criticality condition on « can
be replaced by requiring 1 o satisfy the condition of Lemma 2.

Remark 2. For equation (4) we can write down the exuct expression for the
envelope G = G(lx|} of the family of functions {UU}. In its dependence on |1 it is
the same as (29'): G(|x|) = Clx| YA +B where C = C(o, B. N) is i constant,
and, morcover, C = C,.

Juxtaposition of the nature of the singularity of «(T';. x) with the upper bound
derived in § 6, Ch. 1V by comparing with the self-similar solution, testifies to the
optimality of the estimate (29').

Inequality (29') allows us to derive a number of other estimates for unbounded
solutions of equation (4).

Theorem 6. Asswne thar the conditions of Thearemn 5 hold. Then for «ll p >
[B— (r+ 1)|N/2
/ Wt ydx — .1 — T, (29")
Ja,

where Be = {|x| < €} is « hall of arbitrary radits € = (),

It follows from results of § 6. Ch. 1V that the restriction p > | — (o + 1} |N/2
is a necessary and safticient condition for (29”) to hold for arbitrary w; = (| x|)
il we demand in addition that 8 < (o + LN +2)/(N - 2),.

Let us consider another siinple example. Let
Py = ™ Ou) = P,

where o = (L B > o (for B < o the solution cannot be localized, as can be seen
from Theorem 1), Here the equation of the envelope 1., () has the form

NL (r a/p .
b= (HEOY
I 2
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Hence we obtain

o/ pBrp o
["(’.) - [:B ; (r (gﬂ) 4 :| rmlir/(/i—wr)‘ - ()4
— (T

It is easy to check that in this case supp U (|xl: Up) — {0} as Uy — oo therefore
by Theorem 3 we have

1
w(Ty . x)y > G,y =~ In|L, ) =
o

_ 2 _ B B—uo [ 2N \"*
WW'EW:;;IH‘A\I—F(T(,B-—U)I"[ Jé] (,B-—»(r) }

for all sufficiently small [x| > 0. The corresponding integral property of unbounded
solutions has the form

/ CXP{‘)'M(I. \)] dx —» 00,1~ T() ‘

'

forany y = (B — o)N/2.

Using the above approach, which is based on the analysis of singular solutions
of the ordinary differential equation (28), it is not hard to obtain lower bounds for
the limiting profile «(T, . x} in the case of sufticiently general ¢ (u), Q(u).

4 Necessary and sufficient conditions for localization

In previous subsections we tformulated a criterion of localization of unbounded
solutions of the Cauchy problem, which determines conditions for the occurrence
of HS, S. and LS blow-up regimes in general nonlinear media.

For convenience. let us restate this criterion. Thus, everything depends on the
quantity

D, = sup {r[ sup UG Uy) = oo} .
U0
It D, = oc, then there is no localization (Theorem 1, HS-regime). If D, € R,
then only localization in the S-regime (in a domain with a non-zero diameter) is
possible. Finally, if D, = 0, then, apparently, the LS-regime is to be expected.
This localization criterion has an especially simple form in the case N = 1;
xXo(oe) = 00 leads to the HS-regime, vp(o0) € R, 1o the S-regime, and xp(oc) =
0 to the LS-regime (see Figure 79); xp(o0) is computed from (21"}, Here the
dependence xp(Uy) also determines certain properties of evolution of unbounded
solutions (see Corollary 1 of Theorem 1),
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Zy(U)

Z, (4, (0))

0 up(0) A

Fig. 79. Clussification of unbounded solutions according to
the criterion (} < xp(oc) < 00 (N = 1)

Numerous estimates, obtained by constructing approximate self-similar solu-
tions, as well as results of numerical computations show that the condition D, < oo
does indeed entail localization of unbounded solutions for arbitrary coefficients k.
Q. which do not belong to a certain class of weakly nonlinear functions (this class
is discussed below).

In the case of equation (4) the criterion leuds to a correct result: for 8 > o + 1
there is localization (if 8 = o + 1, D, € R,, and we have the S-regime; for
B > o + 1, the LS-regime), while if 8 < o + | solutions are not localized (see §
4, Ch. 1V). Let us consider more complicated examples. We restrict ourselves to
the analysis of the case N = 1.

Example 1. Let k(1) = u In*(2 4+ u), Q(u) = «” "' In"(2 4+ 1), where o > 0, w, »
are constants. Then it is not hard to see that for large Uy
w

W

Hence we deduce that for g > » there is no localization (HS-regime), while for
M < v itoceurs, and meas wy > 7/ o + 1 if u = v (S-regime) and meas w;, = ()
if w < p (LS-regime).

.\‘()(l/()) e (In(" N ")/j

Example 2. Lel k(«) = (1 + u)*e”, Qu) = (1 + u)'e™, o > 0.8 > 0, p. v are
constants. In this case as Uy ~» oo

Y — 1/2 l‘ + )
xoUo) = U(()“ i CXP{(T ) BU()} [’) - ] ° WB + o) .
Ac+ ) T2+ a/(B+o))
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Hence if o > Borif o = B. pu > v, HS-regime obtains, while it ¢ = 8, u = v,
we have the S-regime, and if & < B or o = B, u < v, the LS-regime,

Concerning the class of weakly nonlinear functions k, (. in which the local-
ization criterion D, < 00 (or xg(oo) < 20 if N = 1) is no longer valid, its typical
representatives are the family of functions

i+ 1 “k(m) }”
k= k), Q = Qultt) = —— ~—dn 30
(), Q = Q. (1) 0 {/“ m_— dn (30)

where « = const > 1 and the coefficient A(u) satishies the conditions

~ ok k !
Km, dny = oo, lim [-—(*“l] = 00. (31)
Jo o+ 1 o | AT(an)

A property of unbounded yolutions of equation (1) of this class! is the fact that
their structure is described by a.s.s.. which satisty the nonlinear first order equation
[150. 160. 347]

k
(+U)I [Vu)® + Ou.(m. t > 0.x e RY, (32)

v o=

‘_)
These as.s. are localized tor a > 2 (for @ = 2 the S-regime obtaing and diam w, =
27), while for a < 2 there is no localization, At the same time it is not hard to
check that the localization criterion 12, < oo is not applicable here. For example,
i k=1, Q)= 4w n(1 + ). tor B> 1 we have

I 4
lim —— / k(nydn = (.
0

. Q(S) .
which indicates the presence of the LS-regime (the criterion 0 < xy(o0) < o0,
N = 1. leads 1o the same conclusion), A correct analysis of such a case is given
below,

Example 3. Let kG = In“(1 + ), Qo) = (o + 1) (1 +w)In? (1 +u), 5 >
0.8 > 1.y = (B + o)/ + 1). Conditions (30), (31) are satisticd iff we set
o = (B+r)/Gr+ 1), Hence it follows that there is localization for 8 = o + 2
(that is. @ > 2). while for B < o + 2 there is no localization (for o = 0 the
validity of this result is demonstrated in § 7, Ch, 1V).

To conclude, let us observe that there exists a direct connection between the
localization property and global solvability of the boundary value problem for
equation (1) in a bounded domain.

"Let us observe that equation (1) with k() 2= 1, Q(u) = (1 + a) InP(1 + u) belongs 10
this class; it was considered in detail in § 7. Ch. 1V (that section also contains the method
of construction of a.s.5.).
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§ 2 Boundary value problems in bounded domains

In this section we consider, in more detail than in Ch., V, blow-up regimes that
occur in bounded domains, The need for such a study stems from physical con-
siderations (for example, taking into account heat loss from the boundary of the
domain where the process takes place). In the analysis of boundary value prob-
lems there arises a whole range of new phenomena not encountered in the Cauchy
problcm,

Let € be a bounded domain in RY with a smooth boundary 3€}. For the
quasilincar parabolic equation

u = Ap(u) + Q). 1> 0. v € (), (1
we consider the first boundury value problem

(O, x0) = uglay =0, v e Q: uy € CQ). Pluy) € H(l,((l). (2)

w(t. vy =0. 1= 0.x € L (3)

We impose the usual restrictions on the non-negative functions ¢, (0. In particular,
we require the necessary condition for finite time blow-up 10 hold:

~od
Aam (4)
Ji Q)

The boundary condition (3) models heat outflow from the domain €2, in which
diffusion and combustion processes take place. Of course, the magnitude of heat
loss depends on the intensity of combustion inside ().

The following questions arise. Under what conditions on the cocfticients &, Q.
initial perturbation uy %0 and the spatial structure of the domain (), will combus-
tion in the problem (1)~(3) lead to finite time blow-up? Conversely, when will the
problem have a global solution, defined for all 1 > 0? In other words, we want to
find out under what conditions the heat loss at the boundary is able to “extinguigh™
the vigorous combustion process, and when this will not happen.

For convenience in the exposition helow, let us introduce in the space of initial
functions Juy = Olug € c(y, Ppluy) € H(‘)(().)] two sets: the stable set W and
the unstable set V. These sets are detined as tollows: if wy € W, then there
exists a global solution with Initial data ng: if, on the other hand. uy € V. then the
problem (1)~(3) is globally insolvable. Below we present methods of constructive
description of the sets W, V. The structure of the unstable set 'V was analysed by
different means in § 6, Ch. V.
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1 Equation with power type nonlinearities

In this subsection we consider the problem for equation (1) of the particular form
=M s 0ve Qo> 0.8 1. (5)

(O, x) = ug(x) = 0. x €L u(r, ) =0t >0 x € 3 (6)

Itis assumed that uy € C((D). ug ' € HA(Q). In (5) the heat conductivity coetfi-

cient k() = u” /(o + 1) reduces to the familiar form k(i) = a” by the change of
spatial coordinate v — x/(r 4 11172

It will be shown that the properties of the solution of the problem (5). (6)
significantly depend on the relation hetween the quantities ¢ and 82 as B8 passes
through the value 8 = o + 1. the structure of the sets ¥, W changes drastically.
The value 8 = o + 1 is critical also for the Cauchy problem tor (5) (but for
a different reason having to do with the localization phenomenon). The relation
between localization in the Cauchy prohlem and the structure of the sets 17, W for
a boundary value problem for the same equation will be discussed in the following,

In the statements of results below. we shall use the fact that the solution of the
problem for a parabolic equation which adinits negative values of temperature,

= A"y 4+ g, ot > 0,0 € €1, (5")
() { 0. u < (O,
g} =
/ TN
((5) is the same as (5) if v > () satisties the weak Maximum Principle. Therefore

u(r, x) > O almost everywhere (a.e.) in () for all admissible 1 > 0 if up(x) = 0

ac. in 2. Analysis of the problem (5), (6) separates naturally into three cases.

1 Global solvability for B < o+ 1

Theorem 1. Let 8 < o + 1. Then the problem (5). (0) has o global solution and

1Y bl A) ; —pn
PR BTV B S RITIOR 7‘;14‘ e L0, T L), (7

Jaf

u' e 10T (8, (8)

Remark 1. From (7) it follows that the mapping u''“/* : |0, T| — L*({)) is
continuous (after. possibly. a moditication on a set of measure zero), so that the
initial condition (6) makes sense.

Remark 2. For 8 < o + | the unstable set ‘¥ is empty, i.e. loss of heat at the
boundary does not allow finite time blow-up,
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The theorein is proved by constructing a global solution by the Galerkin method,
using a basis {w,} in H§(§)), consisting of cigenfunctions of the problem
Aw,+)\jw]::() x el w, GH()(Q J=1,20000 . 9y

The eigenvalues A, can be ordered in an increasing order. Then the eigenvalue
Ar > 0 is simple and the corresponding eigenfunction w(x) > 0 in 1 The
magnitude of A; can be bounded from below by [282, 283|

Ay = {k(N)) " {meas )72 o

I 2N —~ 1)
I == 2y = 2. = ———— N> 3 1y
K( t . Kk(2) K(N) N2 > (107

In the particular case when € 1s a ball, €2 = {|x| < R).
A.:[‘“/R] . (an

. - - .
where z§’ is the smallest positive root of the Bessel function /v 3,,2.

Lemma 1 (282, 283|). Let the fimction v{(x) be such that [v|"v e HL(). Then

we have the estimate
) /12404 D]
. (12)
L

N
[oll ey < C {}:
e )

where B > 1 is arbitrary for N = 1.2 and B € (1. (o + 1N + 2)/(N —2)) for
N = 3, The constant C, is determined from the formula

d
’ _—(~( [v]"v)
ax,

Lo B taih) )y
C = {K(N. o, Bimeas )N 3*‘”'”“} .

where K(N.o, B) = «(N)Y for N =1 and N = 3, KQ2. o 8y = 3/2 for B €
(1L.2(r + 1Y) and KQ, 0. B) = (B+ o+ 1}/|25 + 1)) for B > 2(a 4 1), If
B = o+ 1, then we have the inequality
N V7120 + 1))
) (13
L7

N
17126+ 1|
||U||1 e Uh()y ‘; )\ Z
Proof of Theorem 1. For every integer m > 0 we shall seek an approximate

d
—-(in|"v
)

el
solution of the problem. u,,. in the form

dy,

Sarftert )y
"

”m(’.»\‘) = Zgun(,)”)j
ol

m

D gpdine,. (14)
)=\
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where the unknown functions g, € C'(10. T}y will be determined from the system
of equations (here and below, ' denotes ditferentiation in r)

(w0 )y + (V] ). Vi) = (glud, ) 1< <o, (15)
and the initial conditions
Un(0) = g (o] g, — “(;H in H(l>(Q)- " - 00, (16)

Local solvability in the problem (15), (16} follows from the theory of ordinary
differential equations (it is not hard to show that the system (15) can be always
resolved with respect to the derivatives g’ ). Below we shall obtam a priori
estimates. which ensure existence of the approximate solution u,, for any m on an
interval [0, 7'} of arbitrary length.

Let us multiply each equation (15) by g, sum the resulting equalities in j
from 1 to nt, and then integrate the resulting expression in 1. We have

4(()‘+ l)
+2)

N i
{2l
N 3
g + 1
= Z T (l“()ml “()ul)“ e / Ny (t1g (X} Ny
2 can]  Bro+l

=1
where @(u) = (max{0, u})#1 o4,

Using now the estimate (12) and Young's incquality, we derive the following
inequalities (below ¢ stands for various positive constants that do not depend on
nty.

/ “““m(‘ (rplhll(‘ ] ll{ (”)(I‘ +

(Lt (1)1 0y (1) “ T [ b xd
{n {tyy e t,, (. x)Ydx =
LA B+uo+1 g '

(17

4(1‘(;r++21) /n ”{l“miﬂp“ml H ds + ~ {ZH (] u,,,)“{ (m} =

. ot L__ I “/im il
= ,B+”' T Ul o orggyy

o+ 1 N
< +(‘/HHH
¢ B+o+! }:1

3l

A

IA

3 (B /[ 2Uaod |
(l“ml tim) H =
(RT3}

(iu,,.l u,,,)“ } .
t1¢h

(17
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Hence it follows that the functions (i, |"/%u,,) are bounded in L2(0, T L*(£))):
lt|™u,, ave bounded in L™, 75 L)) | uy in L0, T3 HL(Q)):
(|t |“ 1) in L0, T3 L) (). In particular, we have that |u,,|"u,, belong to a
bounded set, for example, in W10, T3 W} (€)).

In addition to (17) we shall need another identity, to obtain which we multiply
cach of the cquations (15) by g,,. sum all the equalitics in j from | to m. and
then intcgrate in r. As a result we have

a/2

-+ 2 Lty o4 2 ‘

! N a ,
+ / s = / / G, (s xn dxds.
Jo {,}:1 L-'m)} Jo o Ja

From the above estimates it follows that l((,,,|"/2{(,,, are bounded in H'(wy)
(wr = (0.T) x Q). However the embedding H'(w7) into L*(wq) is compact
{296, 302}, and therefore from the sequence 1, we can pick a subsequence i,
such that |u,"w, — 101"u in L*(wy) and a.e. Hence by other estimates we
conclude that ¢(w,) — q(u} weakly in L (wr). Let us set AGu) = —A(lw|"w).
Then it is not hard to see that A(u,,) are bounded in L0, T:H '(€)). From
that we can conclude that A(u,) — y weak-* in L™~(0, T, H- "(€1)). The proot of
the cquality x = A(n) proceeds as in [290], using (18). Passing now to the limit,
and using standard avguments, we have that « is a global generalized solution and
satigfies the inclusions (7). (8). To conclude, let us observe that the inclusion (8)
also allows us to establish the weak Maximum Principle (for the method of proof
consult 125, 371)). N

ol -
l“()ml ! “()m‘ Y

l“ml “/ll‘

(18)

a
T
. (l”mlr “Hl)
ax,

It is not hard to show that under the conditions of Theorem | the global solution
w0 stabilizes as 1 — 00 to the stationary solution ¢/ > 0in , AU + UP =0
in {1, U = 0 on ) (existence and uniqueness of the non-trivial function U are
established, for example. in |7, 21]). Stabilization of «”*'(r.) to U”*! in L*(Q)
as t — oo lollows from the existence ol the Lyapunov function

N

1
)y = 5 }:

T ind

J
:_L_ " il 0
dyx,

oot w Ly dy, (19)
L B+o+ 1.

which is non-increasing on trajectories {u(r, ). r > 0}, and. in particular, from the
inclusion (u' /%), € LY(R, % Q) (sce the estimate (17°), where ¢ is independent
of T). (This means that the norm [[(t" 772y [I7,, is “small”in a neighbourhood
of 1 = oc, and that {s in principle sufficient to prove stabilization to the unique
stationary solution {7 0, U/, = () Stabilization to the trivial solution, ' b0
in L2(€)) as 1 — oo, is impossible; this is proved using, for example. the arguments
used in the proot’ of Proposition &, § 4 of’ Ch, 11,



§ 2 Boundary value problems in bounded domains 435

2 The case B = o + |

Theorem 2. Let B = o+ 1. Then if the donwtin L (s such that Ay > 1, the problem
(5). (6) has a global solution. which satisfies (7). (8). Furthermore

et vy = O V) = 0, 1~ (20)

If- on the other hand. Ay < 1, then for any wy(x) # O the problent (5). (Q) has no
elobal solwtions” and there exists Ty € (0, T, | where

y
T. = {(1 — Apoflw g ta. N'l)"} < e, Q21
such thar (ueny, wy)) — ~x ast > 1.

Proof. Let us start hy establishing the first claim of the theorem. Applying estimate
(13) to the equality (17) we derived above, we obtain

Yo+ 1y 7 P &
S [t 1|, 05+
(o + 2y Jy 1°6h

N
!
+ = (! wAl‘){z

1|

(22)

i) { 2 -
i 'u,,,> n,m,,} <

Hence by the condition A} > 1 the functions (i, "2,y are bounded in
L0, T2 L7 (€1)), while [u,,|"t,, are bounded in L™(0. T H (1)),
In a similar manner we have from (18) that

bl

( -
"1",' ll“m(’)”,_m?(“, =

a4 2«
Av'
gm(l-w)\(‘){}:

[

(') (13
(1, ()" 0, (1))
ax,

) (23)
lmm}'

From that it follows, in particular. that the functions w«, are bounded in
L0, T L7 2 (€))). and that |1,,|"w,, are bounded in L*(0.7:H}({)). Appty-
ing to the right-hand side of the above mequality the estiniate (13) and the Holder
inequality. we obtain

MNUSRN

l (I B flar o2
""_"““m(’)]l'”- "()\l - l)(lﬂCZlSQ) vk "’H”m(l)H,_,..:(g,)-

o+ 2dt 2o~

and therefore

Ljer

Mt (O g gy < {Hm),,,n,f,’.,m, + (r(mcus(l)”"/“"2’()\1 l)l}

Local solvability of the problens in this case will be demonstrated laer,
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Passing ta the limit m = g — oo is performed as in the proof of Theorem I,
Estimate (20) fallows from the last inequality,

Let us mave on to prove the second part of the theorem. Integrating (15) for
j= 1. B =0+ | over the interval (0. 1), and passing to the limit m = g — o0.
we have as a result

(). wy) = (g, 1) + (1 — Ay) / (" sy ) ds. (23)
J0
Using the Holder inequality (x”'' 1wy > ey i g, G w)"t!. we arrive at the

following estimate:

!
E(y = (). uy) = (g wy) + (1 - )\l)nn.'l]],_‘.‘"m / E7 sy ds.
Jo

Hence it fallows that Eqr) > F(r) a.e.. where F(r) is the solution of the problem
F!(’) o (l — )\l)HH’IHL)‘:“)FW’ l(,)' >0 ,'(() = (“() e ).

and therefore
. N - e
Eny == {(r(l ~ A e i (T, = 1)} — 00

asr— T, o

Remark. It follows from (10) that the Elohal solvability condition A; > | will be
necessarily satistied if meas{) < [«(N)| ¥, ie. for sufficiently “small” domains
Q.

Let ws consider separately the case A = . 8 = o + 1. Then from (22). (23)
it follows that the functions ({tt,]”/ 2 1) and {u,,1°/*u,, are bounded in L*(wy).
These estimates are not sufficient ta pass to the Limit,

In this case it is nat hard to prove global solvability using the standard com-
parison thearem. Indeed. the function U, (x) = e/ *(x) is for any @ > 0
a stationary solution of the problem AU 4+ 4! = 0 in Q, U, = 0 an L.
Therefore if ny < U, n Q. thenuw < U, in Ry x (1,

It is ol interest that though the boundary value problem has a continunm of

statronary solutions (U, = ll/“”“ @ = 0}. only one of thase is asymptotically

stable. and "t — oVt lwl(.\ in L2(€)) as r — oo, where

PRIV RN
@, = (ity, ) (/ w (,’ Mo 1y I,\'>
J o)

This follows from the identity (n(r), w) = (g, 10)) (see (23') for A} == 1) |343].



§ 2 Boundary value problems in bounded domaing 437

1.3. The case B > o + 1. This is the most interesting case: both the stable
set W and the unstable set ¥ are then non-empty. Below we shall assume that
B>c+1for N=1.2and that Be (o + |, (7 + I}N+2)/(N-2)) for N >3,
First we shall prove a theorem concerning local solvability of the problem.

Theorem 3. Assinne that o+ 1 < B <o+ | 4+ 2(0 + 2)/N. Theu there exists a
coustant T, > O such thar on the interval [0, T, ] problent (5). (6) has a sohaion,
which satisfies the inclusions (7). (8).

The proot relies on the following lemma {282, 283].

Lemma 2. Ler a function v be such that |v]"v € H{(Q). Then for any B > 1 if
N=12 and forl < B = (o+ )N+2)/(N=2)if N = 3 we have the estitnate

.
: L derg 1)
el gy < (“7{}2”“([1' ") y n} ol g
{

Here v = N(B— D/{(B+ o+ D2 +2Y+ Naol), Ca = {1+ (o +2) /{25 + H
for N =1.2 aud C7 = [2(N = )/(N = 2}|* for N > 3.
Proof of Theorewr 3. Let us use Lemma 2:

2 "
—- Vi i l ty
/ D))y dy = (lv‘ " { E ”"'('”m' thy) } ll”lll”'l;nxl‘”)‘
. 12(¢h

N(B - - IWN+2
b = (B—-1 ‘vz:B(Z Ny + (o + 1) (N4 )((r+2)>0‘
2o+ 2y 4+ No 20+ 2)+ No
(24)

where by the restriction 8 < (o + 1) + 2(o + 2)/N we have thut »; < [. This

allows us to apply Young's inequality to the right-hand side of (24), as a result af
which we derive the estimate

N
Dt (0, XYyl x =
I P

Substituting this estimate into inequality (18). which is first differentiated, we
obtain

)
- 0w
} ¢ “”m“, o (g;,) , (25)

’ Ut " tt)
X, 14(h

]

d
=l 19 A, < a8

L3

Hence it follows that w,, are bounded in L™ (0. T, 172 (Q) il T, = 0 is suf-
ficiently small, Then l'mm (l7 and (25) it follows that the functions (Ju,, |7,
are bounded in L0, T L2, lww|w,, are bounded in L™>(0, T,: H(‘,(Q)L and
this concludes the Pl()()l, O
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This theorem is presented to illustrate prools of local solvability using a mintmal
mathematical apparatus, In the course of the proof” of Theorem 3 there appears
an inessential restriction from above on the size of 8. This restriction does not
arise in the construction of the local solution as a limit of a monotone sequence
of classical positive solutions, Uniform boundedness of the sequence of classical
solutions in a damain of the form (0, T',) x £ follows from comparing each of
these solutions with the spatially homogeneous solution (see § 1, 2, Ch, I).

Sequences of strictly positive classical solutions ., which converge monotoni-
cally to 1 as € — 0, cun be construeted in & number of different ways. For example,
as e we can take solutions of the original equation (5) with different conditions:
e = €y for t =0 in Q, 4, =€ on (L. Ty x . Then «, > € in (0. T) x (),
and therefore on cach solution ., equation (5) is uniformly purabolic. We could
also do this differently: leave boundary conditions as they were. and regularize the
equation by replacing in (5) the operator Au”*! by (o + V- (1 + €))7 Vu).
A priori estimates, that guarantee, in particular, convergence of . to « as € — 0
are derived in practically the same way.

Let us move on now to constriict the stable set W, First let us prove certain
auxiliary statements.

Lemma 3. Ler ()| v(x) € H(l)((l). Let us set

| o+ |
J(n) = () — e e b(vy,
2 B+u+1
where
ANy :
() = (1] ) Ch(v)y = / drxy)yd,
,}; dx, LA JA1
Then we luwe the inequality
d = inl  supJ(Av) > (. (26)
A lI",ﬁUv A0
1 £0
Proof. Tt is not hard to see that
1, o+ 1
Ay = AT () — e AP
( 2 al B+o+1 )

therefore, using the estimate (12). we obtain

AR (o b
sup J(Av) =1 |v (‘l(”)>
A0 h(n)

" 18 i ot )
B—t(r+1) 1:(({(11))/“ ’l] . B—-(or+1) . declipal:

it

T 2B+ + 1

e > (),
(h(v)yHrih “2B+o+ 1) ! -

0
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Let us introduce the set
W= {v: [v7veH{(Q): 02 JA) <d. Ae]0. 1]} 27

The distingnishing property of this set. which follows from the method of its
constructian. is reflected in

Lemma 4. Eguality W =W, U {0} holds. Hete
W, = (v v v e HyE)., avy = b(v) > 0. J(v) < d}.

Proof. Let v e W, 10, Then

fA J <mm>Mme| I
sup fAv) = T E— = .
A ?) b(n)

and therefore a(v)/b(v) > 1. whence v € ‘W, On the other hand. let v € W,,
Then

sup f(Avy = Ju) < d, s
A0, 1)

sa that v e W, O
Same other important properties of W are contained in
Lemma 5. The quantity d in (26) is finite; the set W is bounded and contained

in the ball
2B+ + 1) I}

p el v e Hyt . atn) <
lll 0 ) ) — B ”__+_ l)
Proof. Under these assumptions the boundary value problem
A, + {/L',/,j/“” Y= 0in ) v, = 0on .

has a positive solution in € for some v € Ry (see [332]). (Moreover. such a
solution exists for all p > 0. its positivity follows from the formulation of the
corresponding variational problem: see [339. 96, 297].)

Let us set v = /D Then v e 1)) and

ARt
dEJ{UF'('L)} }
bh(v)

Hence by the equality «(v) — rb(v) = 0. we have

d < JMIB Gl o B~ o+ 1) ()2 OB i

< 00,
2B+ -+ 1)
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Take v € W, v%0. Then by Lemma 4 a(v) — b(v) > 0 and therefore

1 - 1
i bv) = Mu(v),

1
| > Hu) = =~ (V) — =
¢ > Hv) 2({(1) ,B+(r+l) T 2AUAB+ o+ 1)

Let us now prove a theorem cancerning global solvability of the problem,

Theorem 4. let B> o+ 1 for N=1,2ando+1 < B < 5+ 1H(N+2)/(N=-2)
Jor N = 3. Asswme that the initial funetion wg in (6) s suelt that wy € W, Then
Jor any T = 0 there exists a generalized solwtion of the problem (5), (6), wlhich
satisfies the inclusions (7). (8) and belongs t0 W for all t > 0 (W s the closure
of W in the set {u}v]"v e HLU())),

Proof. As in proofs of previous theorems, the solution of the problem is constructed
by Galerkin’s method. Then the equivalent of (17) can he written in the form

4o + 1)

!
AR U, ()74, (8) 'l
(o +2)2 /() ll“ T (0]

s = St = S, (1), (28)
[RIT$3]

Hence it follows immediately thiat «,, € ‘W for all 1 == 0 and sufticiently large 1.
since uy € W. J(uo) < d and lugy "y, — ug ' in H(Y) as m — oc. Then by

Lemma 4 «(u,, (1)) > bluy,tr)), and therefore

Mo+ 1) [ .
s )/ Hetm (72 1, (8))
{

1y
(o +2)7 . ds &

2
) llllm)

,
< Jlupa) < c.
Lt

Therefore the functions {{u, " «,}" are bounded in L (w;) and ju,,|"u, are
bounded in L™(0, 70 H}(£2)). From that point on the theorem is proved as the
preceding ones. o

B-(r+1) [& H a4 v
Tagra Zl i, (1 ()

Thus for B8 € (o + 1, (o + )N + 2)/(N — 2),) the problen: has a global
solution, if the initial function is sufficiently small. Let us note that the asymptotic
behaviour of global solutions « € W here is completely different from the case
B e (1,o+ 1]. The point is that every stationary solution U > O in 1 of the
problem AU + U8 = in (). U/ = 0 on 84, is unstable (concerning existence
and stability of U/ see [331, 334, 96. 200, 296}, This is casy to demonstrate.
when. for example, €1 is star-shaped with respect to x = ().

Indeed. in that case the function /,, = alU(a“x), mt =B~ (o + 1}]/2 = O. for
any « > ( is a statienary solution in the domain 2, = {a"x € ), I a € (0. 1),
then clearly ) ¢ €),, and supg, U, < supg U. Therefore il in the original problem
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tty < U, in €], then by the Maximum Principle u < U, in R, x (). Therefore
« cannot stabilize to U as 1 — oo, even though the difference uy — U in C(€))
as o — | can be arbitrarily small, Similarly. choosing o > 1 we can prove
instability of a stationary solution from above,

It is not hard to show, using Lemma 4, that if' the condition «y € ‘W holds,
the function w(f. x) stabilizes as + — oo to the trivial solution U = ). Indeed, if
tyy € W, then by (28) for nt — oo we have J(u(t)) < J(uy) < d, However. if
U0, then J(U) = d, and stabilization of « to U as t — oc is impossible,

Let us show now that in problem (5), (6) for 8 > ¢ + | all sufticiently large
initial functions «, belong to the unstable set 17 (the analysis here employs methods
different from those of § 6, Ch, V),

Theorem 5. et o+ 1 = B<o+ 1420+ 2)/N and
Juy) < 0, gl o0y = 0. (29)

Then the problem (5), (6) does not have a global solution, and we can find Ty, €
(0, T,]. where

. IB+(’-+1 (3 hjteri2 1B
r.= B-D[B~-(o+ l)l(mmsu) po )n“”HiJ"fm)

such that

< 0Q,

Jim (il = 20,

0]

Proof. Recall that the restriction 8 < a -+ 1 + 2(a + 2) /N ensures local solvability
of the problem. Let us show that u cannot be defined for all 1 = (). By passing to
the limit in (28) we obtain J(u(1)) < J(up) ae.. and thercetore

2o +
Bt+o

Then or m = o< we derive [rom (18) the (ollowing inequality:

1) .
a(ur)) < e I:(u(t ) ae, mR, .

HeOTS 5, = Huoll]) 3, +
(30)

(o0 + 1) sy |
+ (o + ’)):B’B +__m mC’ds(l)“ B/t 2y / lers ”7”""'“" ds. t = 0,
Jo
In deriving this inequality, we used the estimate

l(l /i)/(rﬂ’)” o ”/i'!ril

P00 > (meas € T

pites gy =

Taking into account the fact that nu()||"',7m) > ( and using (29), we deduce the

required result from (30). ]

Let us note that condition (29) of unboundedness of a solution of the problem
is in a certain sense the opposite of the inclusion wy € W (see (27)),
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2 Equations of general form

In this subsection we consider the problem (1)-(3) with coefticients ¢ (u), Q) of
sufticiently geneval form; Q(u) is taken to satisty (4), The main task is to analyze
the set ‘W, which is studied by two different methods, In subsection 2.3 we study
the unstable set.

I Conditions for global solvability for arbitrary initial functions (V = ¥)
Derivation of global integral estimates for the solution.

Here, as in the previous subsection, we apply the Galerkin method. The main
restriction on the coethcients ¢(w). Q(u) consists ol the tollowing: there exist
positive constants My, M3, such that the inequality

Q) =M+ Mad(s), v =0, 3N

holds; moreover,
My < Ay, (319

For simplicity we shall also assume that
&G0 /11 + > ()] < My = const = 0 lorn = 0. (32)
For convenience, let ug introduce the function
By 5
ih(s) = / [ ()2 dn. s = 0.
Jo
Theorem 6. Let conditions (31), (32) be satisfied. Then for any T = O there exists

a generalized solution of problem (1)-Q), such that n(t. x) = O we, in ) for any
Jixed t = O and the following inclusions hold:

: 2 J bl e 32
Py € L0, T3 LA, :‘;; p) € L3O, T 12, (33)

PG € 1.0, T Hy(EY). (34)

Remark 1. Condition (31), which plays a crucial part, will be necessarily satisfied
i’
Qs)/ p(s) = 0, s — o<, (35)

Remark 2. 1l in (1) we set (s) = Q(s). then (31) holds for My =1 (M = (),
Thevefore (31°) holds it Ay > 1, Thus in this case existence of a global solution
depends only on the domain €1 (this situation occurs lor equation (5) for B = o+1).
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The above theorem is proved by Galerkin's method, practically in the same
way as Theorem 1. It is shown that the approximate solution a,, (1) satisfies for
all T > 0 the inclusions (33). (34), Condition (32) then allows ug to prove that
(¢(n,,)) are bounded in L0, 7: L'(€1)): this estimate is needed to pass lo the
limit (for examples of similar analysis of quasilinear equations of general form,
see [125, 294]).

In the course of proof of Theorem 6 (and Theorem 1), it is possible to derive
explicit and practically useful integral estimates of the global solution in various
norms. In particular, the lemmas we proved above permit us to do that at least for
equation (5). More illustrative estimates tn the norm of C({)) will be obtained,
together with the global gsolvability condition, by a different method. Let us note
that construction of the set W for equation (1) of general form by the method
of subsection 1,3, requires quite awkward computations and a certain effort. It is
much casier to do by comparigson methods.

2 Analysis nsing a family of stationary sohitions

Here we present an application of the method of stationary states, which is different
from the onc of § 1. The method is used here to determine conditions of global
solvability of the problem. Here we shall not be needing any preliminary results,
as all the necegsary material is contained in § 1,

Below we shall assume for simplicity that a local solution of the problem (1)-(3)
exists and belongs to ;> wherever it is positive and has for all 1 > 0 a continuous
derivative V. h(u(t, x)). Then the solution obeys the Maximum Principle and
depends in a continuous monotone lashion on the initial function; in particular,
the comparison theorem is valid for solutions of equation (). The proof of these
assertions proceeds by constructing the generalized solution as a limit of a sequence
of classical strictly positive solutions of equation (1), In the following we assume
that ¢(ng) € .

Let {U} be a family of radially symmetric stationary solutions of equation (1)
(see (1.6), (1.7)). We shall only need the estimate (1.9)¢

UtriUp) 2 U 0Ug) = ¢ " [po)(d = 72 /rf) ] ) {WM‘MU“’} " 36)
. > (o = . = =12 3
O 3] [} 0/ ¢ 3} Q(U())

Here {7y > 0 is the parameter of the family, » = |x]|. Let us note that in certain
particular cases, for example for N = 1 or Q(n) = w0, exact cqualities, which
were derived in § 1, can be used,

Theorem 7. Under the above assumptions the stable set of the problem (1)-(3)
containy the set

W= fuy 2 013U > 00 Csupp U Ug) . ng(x) < U@riUgy e (1. (37)
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Proof. The proof is based on the Maximum Principle. Indeed, if 1q € ‘W then by
construction of W we shall have for all 1 > 0 the inequality u(r, x) < U(r;Uyg).
x € ), since U(r:Uy) = 0 on 8, The latter follows from the condition () C
suppU(r; Ug). O

L.et us note that (37) allows us to describe the structure of initial functions in W',
In particular, the choice of the size of Uy in (37) determines the maximal amplitude
of the global solution, sup . u(t, x) = Uy, 1 > 0. The magnitude of Uy depends
to a large extent on the geometrical dimensions of the initial perturbation: the
“wider” it is, the larger must the value of the parameter Uy be. because otherwise
the function «y(x) will not be majorized from above in {} by the stationary solution
U(r;Ugp). Inequality (36) allows us to obtain a reasonably good estimate of this
dependence.

Corollary 1. Let
l_im_ [p(8)/ Q)] = o0, (38)

Then the problem (1)-(3) has global solutions for all initiad functions.

Indeed. if (38) holds. by (36) we have U(r; Uy) — oo along some subsequence
Up = U} — oo in R¥. Therefore for any domain () and functions uy(x) there
exists Uf, such that up(x) < U(r;Ub) in €, which by the Maximum Principle
ensures boundedness of the solution uniformly in /. For equation (5) this case
obtaing i 8 < o+ 1.

Corollary 2. Let L
lim [p(5)/Q(s)] = p = const > 0. (39)

Then if Q1 is eontained in a ball of radius (2N w)'/2, the problem (1)~(3) has a
global solution for all initial functions,

This claim follows inmediately {rom (36), Furthermore. from (36) we obtain

Corollary 3. Let
P($)/Q(s) — 0. 5 — 20, (40)

Then, f supp U(r:Uy) — 0] as Uy — oo, the set W', defined by (37) is bounded
in CQV), If, on the other hand, suppU(riUp) = RY for all sufficiently large
Up > 0% then W contains functions uy(x) of arbitrarily large norm in C(£2).

Let us note that it is precisely in the case (40) that we should expect the
appearance of unbounded solutions for sufficiently large initial functions wg(x).
which do not belong to the stable set (37),

Yhis possibility occurs. for exampie. it condition (1.12') holds,
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3 Analysis of unbounded solutions using the eigenfunciions method

This methad is similar to the one used in subsection 2, § 6. Ch. V. As well as
the method based on conditions of -criticality, it is useful in the analysis of
unbounded solutions of boundary value problems in bounded domains.

Let us impose some restrictions on the functions that enter equation (1), We
shall take the functions ¢, Q to be convex in R, . We ghall assume that the function
P(s) = O(¢~'(s)) is also convex, and that s/P(s) is non-increasing in R, These
conditions can be written down in the form

¢(s) = 0.07(s) = 0, (41)
Q"' (s) = Q)" (5) = 0. (42)
Q')Ps) — QNP (8) = 0. 8 » O (43)

All the inequalities are satishied, for example. by the coefficients of equation
(5) for B> o+ 1. As shown above, it is exactly for these values of the parameters
that unbounded soluiions can be expected.

As usual, we shall denote by wy(x) the positive in £ eigenfunction of problem
(9). which corresponds to ithe minimal cigenvalue Ay > 0. We shall choose the
function wy, such that gl g, = 1.

The main result is contained in the following theorem. where we have intro-
duced the notation

Iy = / Wl g () dx.
J

Theorem 8. et conditions (41)-(43) hold and let the function uy in (2) be such
that

Ad(Eg) < Q(Eg). (44)
Then problem (1)-(3) does not have a global solution and there exists Ty < T,

where .
QUEy) ™ dn

= < O
Oy — Ayl S, Q)

*

such that
lim supu(r. x) = oo, (45)

oy )

Proof. Let us set
5y = (u(t, X)), wi(x)) = / (. x)w(x)dy.
g}

Then E() = £, As in subsection 2, § 6, Ch, V, we obtain for (1) the equality

dEW)/dt = =X (. p(u)) + (wy, Q). 1 > 0, (46)
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which we shall analyze below.
By Jensen's inequality for convex functions, from (42) we have the estimate
oy, Q) = oy, P(dhu))) = Pl p(a))|. using which we ohtain (rom (46)

dE . Pt }
s p A e b )
- [Goy. () I{l P{(“’l h(u) I “n

However, the function s/P(s) 1s non-increasing in R, (see (43)). and therefore
in view of the convexity of ¢, and thus also Jensen's incquality Gy, dp(u)) =

Lo )| = G, we have (g () /Pl dtu))] < HEY/QUE). Then from
(47) we get

(TI“— > Plwy. ()] { é([‘)} . (48)

From (48), (43). (44) we conclude that () > O, that is. that £() = Ey.
Then from (48) and Jensen's inequality it follows that L'(1) = QUEUNH|I —
Ap(Eg)/Q(Eg)]. Hence we have that the function £(/) caanot be bounded for
all 1 € (0. 7,] and there exists T, < 7., such that L) — o< as t — T, . Since
E(t) < sup (1, x), (45) follows immediately, which concludes the prool. 0

Remark. The incquality

E
[’:I > /.L()Q([:‘).() << ’I Mo = 1 — /\1(25( 0) > (). (4‘))

Q)
obtianed in the course of the proof of Theorem &, allows us in a (airly general case
to derive an upper bound of «(t, -) in the norm ol L™(RV), Indeed, {rom Theorem
3in § I itis easy to obtain a condition on the functions ¢ and Q. under which
E(T)y = oo, il T is the blow-up time. Then integrating (49) over (1, T) we have

™ dn
el s (T 1) (50)
/,m O = H

Finally, if in the computation of (1) = (uts, x), wi(x)) in (50) we use the es-
timate (1.26) of the solution «(r. x) in terms of «(f,0) und the structure of the
function U given by (1.9), then (50) leads to an upper bound for the function
u(t.0) = sup, «(t, r). Inanumber of cases in terms of dependence on the nonlinear
coelficients (1) and Qur). this bound is quite sharp, which is casily verified.

This is a typical example of the situation. in whieh from an ordinary diflerential
inequality for some “energy-like™ functional of the solution, using an inequality of
the same sign for the “energy.” an L™ estimate of the solution is derived.

Let us make one observation. It ¢ = Q. then condition (44) assumes the form
Ar < 1, Therefore the solution becomes unbounded for all initial functions uy 2 0.
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Recall that it Ay = Aj(£)) > 1. then the boundary value problem is always globally
solvable (see Theorem 6).

To conclude, let us note that practically all the results of § 1 having to do
with S- and LS- blow-up regimes can be used to describe asymplotic behaviour
of unbounded solutions of the boundary value problem (1)-(3). In particular, for
the problem with power type nonlinearitics (5). (6), Theorems 5. 6 of § 1, as well
as the results of § 6. Ch. 1V, remain valid. All of these allow us to provide a
sufficiently exact description ol the singularity ol the limiting profile u(Tg . x).

§ 3 A parabolic system of quasilinear equations with a source

This section is concerned with the study of the propertics of solutions of a parabolic
system of two quasilinear equations of nonlinear heat conduction with sources:

= Al 4P, (nH
po= At {2)

Here u > 0. v > 0. p = 1, ¢ > | are constants. This system describes processes
of heat diffusion and combustion in two-component continua with nonlinear heat
conductance and volumetric heat release. The functions «, v can be interpreted as
temperatures of interacting components of some combustible mixture. We shall
be especially interested in the conditions for existence of unbounded solutions as
well as conditions for their localization m the Cauchy problem,

Let us observe that there are four parameters in (1), (2), and therelore, even
though the nonlinearities are of power type, for arbitrary u, v, p, ¢ the system does
not admit self-similar solutions, which, as we know, provide us with a detailed
desceription of asymptotic behaviour of unhounded solutions and, in particular, of
the localization property of finite trme blow-up regimes.

We shall consider inttially the first houndary value problem for (1), (2):

w(Q), x) = ng(x) = 0. v, 1) = vy(x) > 0, x e(l, 3)

u, x) = v x) =0, 1=>0,x € . (4)

where €1 is @ bounded domamn in RY with a smooth boundary 92 ug. vy are
bounded continuous functions, u}'™ € Hi(). vy"* € Hi(€)). First we shall de-
termine the conditions of its global insolvability. Then, nsing an approach based
on the analysis of a family of stationary solutions of the system, we shall derive
restrictions on the parameters of the problem for which it is always globally solv-
able for arbitrary nitial functions ug, vy, and establish a condition for the absence
of localization in finite ime blow-up in the Cauchy problem for (1), (2).
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It turns out that much depends on the sign of only one parameter m = pqg — (1 +
(1 + o). If m < O then the boundary value problem has only globally bounded
solutions (there is no blow-up) and unbounded solutions in the Cauchy problem
are not localized. This result appears to be optimal, that is, the inequality m < 0
is a necessary and sufficient condition for both these properties of solutions.

In this section we study only the most general properties of solutions of the
system (1), (2). A more detailed numerical investigation of systems of this kind
is undertaken in § 4, where we also consider self-similar solutions, which exist
under some restrictions on the parameters of the problem.

1 Conditions for absence of global solutions of the boundary value problem
for p>1+p,gx1+w

Below, under the indicated restrictions on the parameters, we single out an
unstable set V" in the space of initial functions, such that the inclusion {ug. vy} € ¥
implies global insolvability of the problem (1)~(4). This means that there exists a
blow-up time Ty < oo and

T (e sy + 10 0 gy, ) = 200 (5)

I W

Let us note that formally in (5) it can happen that only one of the functions u
or v grows without bound as 1 — 7';. However, because of the “entangled” nature
of the source terms in (1), (2) the functions w, v have 10 become unbounded at the
same time,

“ In the proof of the propositions formulated below. we shall assume that the
local solution of the boundary value problem satisfies the natural mclusions

(! HY ), e 120, TR,
(6)
Wt oeRt e L0, T HL (W), T < T,

Under the assumption of boundedness of u, v these can be ecasily derived by
Galerkin approximations. It is also not hard 0 establish a weak Maximum Prin-
ciple, so that il «, v are bounded in (0. 7) x £}, then v > 0, v = 0 ae. in (],
0<r1<T.

[ Derivatian of a systems af ardinary differential inequalities

Let us denote by wy(x) > 0 {2 und Ay > 0, respectively, the first eigenfunction
and the corresponding (smallest) eigenvalue of the problem

Auw 4+ Aw =0, x € ), wyy = 0. )]
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Let us choose the function w; so that
lwillpr = 1. (8)

Taking the scalar product in L*(£2) with 1w, of both parts of the equations (1),
(2) and integrating the resulting expressions in 7, we obtain the system of equalities

(u(ty, ) — (g, wy) = —Ay (u ( cwy) ds + / (v (). w) ds. (9)

JO

(v ) = (g wy) = —A A’(v““(,s-). wy)ds + /U’ (). un) ds. (10)
Let ug introduce the notation
ap = (g ) = 0. by = (vy, wy) = 0. (1
and let us set
Py = P oy Y DRy = ), w1 (12)

From the Holder inequality and (8) it follows that

(). ) < "y o)UY = Py,
(13)
vy wy) < Wy Y = R,

Furthermore, taking into account the fact that p = 1 + 4, ¢ = 1 + v, we have
WPy, wy) = Ry, 'y, wy) = P, (14)
Using the notation of (11), (12) and the estimates (13), (14), we conclude that

the solution of the problem (1)~(4) satisties for all admissible 1 > 0 the system of
inequalitics

1 1

Py —ay = —A) / P sy da + / RV(s) ds. (15)
JO )
1 1

R(1) — by = — Ay / R4 (s) dy + / PA(s) ds. (16)
J0 JG

In conjunction with (15), (16) let us consider the following system of ordinary
differential equations:

dPjdi = =\ P 4 RP, (7
AR dr = =M R*Y 4 P9, 1 > (), (18)
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Let the functions P, R satisfy the conditions
P0) = ay = 0. ROy = by = 0. (19)
A direct comparison of (135), (16) with the problem (17)~(19) shows that for all

admissible 7+ we have the inequalities
Py = Puy. Ry = Ru). (20)
Therefore the system of equations (17). (18) allows us, in view of (20). o
define the conditions under which the functions P(7), R() cannot both be bounded
for all 1 > 0, that is lim max{’(). R()} = oc. 1 — Ty < oo, In view of the
inequalitics

by 1y

e P/ ly
Pay < " e

AT
flpl/ger iy [FAYTRR D!
Ry = e A e R

this ensures that (5) holds.

2The case p=1+pu . q=1+v

Theorem 1. Ler p =1+ pu. g = 1 + v and uy + vo %0 in . Moreover, lei the
domain {} be such tha
Ay < L. 2h

Then the problem (1)-(4) has na glabal salutions. and conditiant (5) halds far
some Ty < o,
Proof. Let us set E(r) = P(r) + R(). Adding up equations (17) and (18) for
p=1+4u g=1+r wehave that £ satistics the equation

dEjdi= (1 = APV 4 RVH| 1> 0, (22

where we also have by ussumption that I2(0) = (g + vy, 1) > 0.
We have to consider two separate cases.
a) Let = v. Then, using the mequality
L+e" =20+ gz0, (23)

and (21), we get from (22) that
dEJdi > (1= A2 "B+ R = (1= A2 EY" 1> 0.

Hence it follows that there exists a time 1 = T, < T,, where

ol
T, = e [T "(0) <« 2.
A e
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such that E(/) — oc as 1+ — T,. Therefore the solution of the boundary value
problent is unbounded in the sense of (5).
b) Let u # v and for definiteness o > v. Then, using Young's inequality

Rl [ > ERIMr — gl I)/(/’“")A(),

where € > () is an arbitrary constant and

Ao = s—v ( | +U>u,¢l)/(“«m o
pt+ 1T \l4+pu

we obtain from (22)
dEjdr = (1 = AP 4 eRM | — (1 — A Age'r s Dt (24)

Let € < 1. Then, using (23), we derive from (24) the following cstimate:

dE/di = (1 — A)€2 "EVT = (1 — e gy (25)

=3

Let us set

€ =ep=min{l,|2 " 'EV0) A"

).

Then for all £ > £(0) the right-hand side of (25) is positive and therefore E(r) —
oo ust — Ty where Ty < T,

21 ~ (IT)
I = a1 — A / [ EN T, T e/ 1 < o0
€n( 1 JEo gl — 2" Age,

Therefore in the cuse under consideration the unstable set V' is ull the space
[ty vy | uo + vy # O} U

It is not hard to obtain the same result in a different way. In Figure 8() we have
drawn in a schematic way the integral curves ol the first order equation
(”5 R“"—/\II_’I“‘ ~

= B, R0, (26)
dR "~ Plr — ) RVin

which is equivalent to the system (17). (18). in the case Ay < |, u = v. The
”““”. the dashed and
dotted line shows the isocline of infinity, £, ; I:’ = {/\IR“"~|”“+N, The thick
curve denotes a special trajectory, the separatrix Py: P = Pg(R). For large R

dashed line shows the isocline of zero Py: P = {A7IR 4|

_ . I-A R
Po(RY == /\l/(ln'),‘,(lep)/(ln-) . i o 27
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g R

Fig. 80. The phase plane inthe case p= 1+ g, ¢ = 1 +r, A} < |

As time advances (the direction of evolution of the trajectories is indicated by
arrows), all the mlcgml curves bunch up mto an ever narrowing nelghbourhood
of the separatrix P, which by (27) cnsures that the functions P(r), R(/) grow to
infinity in finite time.

For comparison, we have drawn in Figure 81 the integral curves of the same
equation (26), but in the case A, > |. Here the functions P, R are bounded for

sall 1 > 0, and, morcover P(1), R(1) — 0 as 1 — oo, In some sense this indicates
global solvability of the problem (the proof of this fact is found in subsection 3).

JThecase p> 1L+ u g>1+v
Let as before E(1) = P(1) + R(r). From (17). (18) it follows that
dEjdr = =M\ {P"'" 4 RUYH| 4 RP 4 P4 1> 0. (28)
Let us estimate PY, R using Young's inequality:
POz (L4 AP = Ag R 2 (1 + AR — By,

where Ag and By are constants:

g—w+1) {(u + (1 + /\.)}”””"“'””
A(): +
v+ 1 q
oo Pt {(;ur (1 +A1)]”“”“"“””
0= ] > ,
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Fig. 81. The phase planc inthe case p =1+ p g =1+ v, A; > |

Then we obtain from (28) that
diEfdr = P'Y 4 RYE — Co, 1> 00 Cy = Ay + By (29)
If p= v, using (23), we derive from (29) the iequality
dE/d1 > 2" EPYY — ¢y, 1> 0. (30

If, on the other hand, p # v, then, setting for definiteness w4 > v, and using the

estimate
_ _— — v fp4 L\
Rl%/.lle(l "‘I)(),I)():# ﬁ( + ) .
mtl\p+1
we obtain from (29)

dEjdi = 27"E"'Y — (Cy + Dy). 1 > 0. (31)

It is easy to see that the right-hand side of this inequality adnits passing to the
limit g — ", thatis, for g = v it is the same as (30). Therefore we have proved

Theorem 2. Lei p > | + u, p > 1 + v and for defintieness p > v, Let the initial
funcrions wy, vy be such thar

EW) = (ug + v, wy) > 270, 4 Dy, (32)
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Fig. 82. 'The phase planc in the case p > | +p. ¢ > 1 + v

Then the problem (1)-(4) does not have a global soluiions, and for some Ty < T,

where .
T, = ok / (IT) < DO
) Jiwy 7t = 27(Ch + Dy) '

condirton (5) holds,

Of course, the functions g, 1y satisfying condition (32) do not exhaust all the
unstable set V', Even though Theorem 2 gives an upper bound for 7', it does not
use all the information contained in the system (17), (18), A more detailed and
explicit description of the set V' is provided by the analysis of the integral curves
of the equation

dP RPN P
dR ~ P4 — A\\RVin
which is equivalent to that system.

These are given schematically in Figure 82, where we have distinguished the
isoclines of zero Pyt P = |A; ‘I?"ll/(””, of infinity, P P = |/\,R““|”". The
thick curves show the separatrices A — B und C — D. The set 'V contains all the
points {P, R} = {(ty, ). (vy, )} lying ubove the separatrix A — B. Trajectories
through points in this region converge as P, R — oo to the separatrix C— P, which
ensures unbounded growth of the functions P(1), R(r) in finite time.

Let us note that the behaviour of the integral curves lying under the separatrix
A — B indicates the existence in the problem of a stable set ‘W, Here it is charac-

L P>0, R =0, (33)
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0 7 Vi

Fig. 83 The phase plane in the case pg < (1 -+ p)(d + )

terized by P, R ~ () as 1 — oc, A rigorous construction of the set W is done in
subsection 2.

Remark. In the derivation of the system (17), (18) we used the restrictions
p=zl4u g =14 v (see (14)). Nonetheless, the phase plane of the system
(17), (18) correctly refleets typical behaviour of solutions of the original problem
(1)—(4) for arbitrary values of the parameters, 1t is not hard 1o see that the phase
plane picture depends on the sign of the one parameter i = pg — (1 + u)(1 + v),
which agrees well with results obtained below,

a) I m = ), that i5, pg = (I + u)(l + »). then global insolvability and
global solvability of the problem for arbitrary wy, vy hold for Ay < 1 and Ay > 1,
respectively; phase portraits in these two cases are the sume as those in Figures
80), 81 (see subsection 3).

b) It m = O, that is, pg > (1 4+ w)(l + p), then it follows from the analysis of
the system (17). (18) that there ave non-empty stable and unstable sets (see Figure
82 and subsection 2).

¢) Inthe case m = pg—(1+w)(1+412) < O the phase plune has the appearance as
in Figure 83. Heve therc are no trajectories to which there cortespond unbounded
solutions, so that the stable set can be the whole space of mitial functions,

We should note that the Galerkin method, which was used in § 2 to study

b

parabolic equations, cannot provide us with all the above results, Roughly speak-
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ing, in the proeess of using this technique to derive « priori bounds for solutions,
the “control” parameter m = pg — (1 + u)(1 + ») does not arise. For example,
the global solvability condition (or the system for arbitrary w, vy is given by the
two inequalities p < | 4+ u, ¢ < | + v, Clearly, this domain in parameter space is
much smaller than the (optimal) set pg < (1 + w)(1 + »).

2 The stable set for pg > (1 4+ pu)(1 4 v)

Below we shall assume that the functions u, v are in C;* wherever they are positive
and have in () continuous derivatives Vu'*?, Vo' t# (these assumptions are quite
naturaly see § 3, Ch, I). Then the solution of the problem satisties the Maximum
Prineiple and depends monotonically on initial funetions,

The stable set can be defined in two ways. In the course of applying one of the
methods, some (later shown to be isignificant) restrictions on the parameters of
the problem have to be imposed; this analysis allows us to consider quite interesting
properties of the stationary solutions of the problem (1). (2). (4),

I The starionary soluiion

Let pg > (1 4+ w)(! + v). Let us consider the (unctions U, V. which solve the
stationary system of equations (1), (2), which we write for convenience in the
form

MUYy + VP Y =0, (34)

AVIEV) + U1 U =0, x e Q (35)

(obviously, for positive U/, V this system coincides with the original one.) The
functions U, V satisfy the conditions

Ulx)y = 0. V(x) =0, x e dl, (36)

Let us muke the change of variables |U]"U — U, |V|*V — V., Then for the new
functions U. V we obtain the problem

AU+ IVIF 'V =0, AV + 1010 =0, xe L (37)

U=V =0, veil, (38)

Here we have introduced the notation a = p/(u+ 1), B = ¢/ + 1) (let us
note that @B > 1), Solving the first equation for V, V = —|AU|"* 'AU and
substituting into the second one, we obtain the following problem for the function
U

— AAUY TAUy + U1 U =0, xe Q. ' (39)

U=AU =0, xe i), (40)
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Clearly, using the comparison theorem, the stable set can be detined in terms
of the solution of the stationary problem (39), (40). However, such a construction
would not be optimal. We start with a negative result,

Proposition 1. Ler the domain () be siar-shaped with respect 1o the point x = 0,
Assume that N > 2(1 4+ 1/a) and

B = |Nja+ 201+ 1/a)||N = 2(1 + l/w)| ', (41)
Then the problem (39), (40) has no non-irivial non-negarive soluiions,

Proof. Following [332, 333|. let us take the scalar product in L2(£)) of both sides
of equation (39) with the function w(x) = Y., 5/, . Then, taking into account
the boundary conditions, using Green’s formula, we obtain

= —(A(AUY YAUY 0y 4+ (UP w0) = — (AU YAUL Ay —
(42)

I/ -1 Bl
_'[“ w‘—’—(lAUI/ AU) ds — —B-——uuuul,,‘,m)‘

where d/0n stands for derivative in the direction of the outward normal to 91
It is not hard to see that

d ,
w(x) < 0. ;—1(1A(/1‘/"’* TAU) (x) = 0. x e AL,
ol

This follows from the fact that £ is star-shaped with respect to x == (), the boundary
conditions (40), as well as the assumptions U > 0. AU < () in ), Therefore

3
ﬁ/ w-‘)L«({AUl”" AU ds = (. (43)
J g

an

and then from (42), using the casily veritied identity

~(JAUY AU, Aw)y = ( - 2) AU, s

I+ 1/«
we obtain the inequality
__N Itl/a Al B
<l T l/—- - 7> ”Al/”“u,’n(“) - B n 1 Hl./””,,l‘“) = 0. (44)

On the other hand, by taking the scalar product with U/ and integrating by parts.
we have from (39) that

WU gy = NAUT

[RaRITH I JARRET N
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and therefore (44) means that we mugt have the inequality

N N Fil/a
-2 AU < (), 45
<l + 1/ B+ l> NAULL Foiy = ()
However, if (41) holds the left-hand side of (45) 18 non-negative, and therefore
the only admissible solution is the function U/ = 0, O

Let us note that the Strong Maximuni Principle in this case gives us a strict
mequality in (43), and therefore in (45), so that this proposition is valid if we have
equality in (41).

2 A fumily of siationary solutions

Let U be a positive in £ solution of the problem (39). (40)). Returning to the
original notation, we have that the functions

Uia) = UM vy = vIhem

are a solution of the problem (34)-(36).

Let the domain () be star-shaped with respect to the point x = () (that is. from
the condition x € it follows that v € ) for all a € (0. 1)). 1t is not hard to see
that the family of the functions

U (x) = G20 Ve 0 D DIy

(46)
vu(.\') o ”2114“-‘, D/ pg o it ”IV|((L\‘).

where ¢ € (0. 1) 1s an arbitrary constant (the parameter of the family), satisties
equations (34), (35) and is strictly posttive in domains €2, with boundaries €}, =
{x]ax € 80Y), and that U, = V, = 0 on d€),. Let us note that ) C Q, for uny
a € (0, ), sothat U, > 0, V, = 0 on ).

Using the fumily (46) we can now determine the stable set W ol the problem
(D~(h.

3 The stable set for pg = (1 + u)(l + )

Theorem 3. Lei p > 1, g > |, and asswne that there exisis a noni-rivial siationary
solwiion Uy Vy of (38)=(36).  Then there exisis a non-empiy siable set "W =
{tg. vo) T = Qowg = 00 Fe € (0. 1) 1wy < Usw < Vo in ), such thar if
(itg. i) € ‘W, the problem (1)-(4) has a global (hounded) sohiion,

Proof.  The theorem lollows Irom the Maximum Principle.  Under the above
assumptions concerning smoothness of the solution everywhere in Ry x Q. the
inequalities w = U, v < V, hold. Here the value of the parameter a € (0. 1) is
chosen so that wy < U,y vy <V, In £ 0
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Remark. The conditions pp > 1, ¢ > | are more or less related to the requirement
that the solution be unique. There are reasons to expect that uniqueness holds
even if just the one condition pg > 1 is satistied (at least if pg > | the spatially
homogeneous problem ' = vf. v' = w1 > O; w(()) = v(0) = 0 has only the
trivial solution: if. on the other hand, pg < . then non-trivial solutions exist).

4 A different method of constirucring the siable sei

Let us show now that a non-empty stable set W exists under the condition pg >
(I + w)(1 4 ») even if hy Proposition | there is no stationary solution.

Let us consider first an example that gives a partial explanation of the reason
why absence of a pasitive stationary solution of the problem is not that important.

Example. Lt N > 4, p= 1 4+ p. ¢ = (I + 1)(N + 4)/(N — 4). that is, condition
(41) is satistied. For these values of parameters « = 1, B = (N +4)/(N ~4) > 1,
and therefore the boundary value problem (39). (40) does not necessarily have a
salution. Hawever, in this case equatian (39),

AU A UV Y =, v e RV N > 4,
has a strictly positive solutian

U = Calay/ta® + )™ 97 5 0, x e R,
where Cy () = |a* N(N — 4)(N* ~ 4)|‘N4 P> 0ds an arbitrary constant.
It ig clear that the family of positive stationary solutions of the original system
(34, (35),
U‘,(.\') — ICN(“)II/(I H')/(“Z + l-ﬂz)(N 4)/(2HH')|‘

IZC‘N(“)(N . 4)II/(| &p)(Nal/:)_ + l'\.ll’)l/(l«q/“)
(“l + l'\-l'l)N/ll(l'J/,xH

Valx)y = |—AU Y = . (47
constructed using this positive solution, can be used to construct a set ‘W, since
U, >0, V, > 0in . It will have almast the same form; W = {(ug, vo) |y >
O.voz 0 3a >0 wy < Uy vy < Vyin ),

Let us note that the family (47) of positive in RY functions defines in a similar
way the stable set far the Cauchy problem for the system (1), (2),

It is not hard to show that for all values of B that satisfy condition (41) (@ =
Pl e B=q/tv+ 1)), the system (34), (35) has a family of solutions that
are strictly positive in R, For example, from Propasition | (subsection 2.1)
it follows that in this case there exists a radially symmetric solution which iy
everywhere positive (see subsection 4.1 of § 3, Ch, 1V), Using such a family ot
stationary sofutions in RY, the stable set is casity determined, However, we shall
proceed in a different manner,
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Indeed, to determine W, it is sufficient to establish local solvability of the
system (34), (35), for example, lor sufficiently small |x|, The following simple
assertion, which will be frequently used in the sequel, is true:

Lemma 1. For arbitrary p,q. ., v > O ihe system (34). (35) has in ihe ball
= {lx| < 2N} a swrictly positive, radially symmetric, monotone decreasing
solwtion Uy (r), Vi(r), r = |x|, which satisfies the conditions

Uy = V) =1, U'0) = V') = . (48)

ht wy we have the estimates

2z e 5 s 1y
Pl 2
U](I')z <l%§'ﬁ> . V|(I')Z <l—*?‘_7v—> . (40)

Local solvability and the indicated properties of the functions Uy, V4 follow
from applying the Banach contraction mapping theorein to the integral equation

r o ‘g Pt
Uty = [, /)(p gN ¢ {l - / ‘(n / ¢l §)(IE} '
JO

which is equivalent to the problem,

By (46) the functions U/ (r), V(r) define a one-parameter family of stationary
solutions of the system (1), (2). Let us sel w, == {x]|ax € w;}, Then for any
a > O U, V, are defined and strictly positive in @,. Now we can determine the
stable set without any additional restrictions on the parameters of the problem,

Theorem 4. Let pg > (14 p)(1 4 vy, Then the problem (1)-(4) has a non-empty
stable set

W ={(g.v0) Ly 2 0,052 00 Fa> 0 QT w0 up <U, vg <V, in 1),
(50)

Using the estimates (49), we can also distinguish another stable set, which is
smaller than (50), but illustrative:

W = {tttg. vo) Lo > 0,09 = 0: FJa > 02 Q C{lx} < V2N/ak:

l l I/tee by
) _ at|x
wp(x) < Hrrarhm <l SN ,

ql [’ i
9 [{RY )
vo(X) < qrlarre <l - -—~~~> in €);

me= pg = (1 4+ w4+ ) = 0},

(51)
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3 Conditions of global solvability of the boundary value problem for
pg <1+ w1 +v)

As before, the main tool is the analysis of the family of stationary solutions.

I The case pg < (1 + )l + v)

Theorem 5. Let pg < (I + )1 +v). p > 1, g > 1. Then the boundary value
problem (1Y-(4) hays a global (bounded uniformly in 1) solution for arbitrary initial
functions wy, vy,

Proof, We shall be needing only one property of the functions U, V,, of the family
(46) (Uy. Vi were defined in Lemma 1) U, — 20, V, — oo as a — 0% in
R"Y. This means that the stable set (50) (or (51)) covers the space of all initial
functions. In other words, in the case of any bounded domain €1 for arbitrary ug.
uy € C(Q) we can always find a > (), so that, first of all, Ocw,=|x|ax € w)
and, secondly, ug(x) < Uy(x), nplx) < Vu(x) in Q. Then, since U, > (), V, > 0
on 3£ (that is, we always have wg(x) < Uy(x), mp(x) < V,(x) on d1), using the
Maximum Principle we conclude that 0 < Uy, v <V, in Ry X Q. and therefore
the solution is bounded from above uniformly in 7. O

2 The case pg = (1 + w)(l + )
Here the situation is completely different; existence of the global solution of the
problem (1)-(4) depends on solvability of the system of stationary equations (34),
(35) with boundary conditions (36), Below we prove the following simple (but
not optimal with respeet to the admissible domains (1) result,

Theorem 6. Let pg = (1 + )1+ v), p = 1,q > 1, and let the diameter Dy of
the domain 1 satisfy the condition

[)“ < /2N, (52)
Then the problem (1)~(4) has a global solution for any initiaf functions g, vy,

Proof. For pg = (1 4+ p)(1 + ») the tunctions (46) are not defined. In this case
there is o lamily of stationary solutions

Uglx) = all, (1) > 0, Valx) = aV ™ V() > 0. x € w, (53)

where a > 0 is a parameter and Uy, Vi are defined in Lemma |, Hence we
immediately have that

U x) = oo, V(X)) — ooinw) as a - 0o, (53
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Condition (52) means that the domain {1 can be placed in a ball of radius +v/2N.
Without loss of generality, we shall assume that Q C w. But then by (53') for
any ug, vp € C({1) there exists a sulticiently large a > 0, such thatu < U, v < V,,
in € for 7 = 0, and, since @ C wy (that is, Uy, V,, > 0 on 30 these inequalitics
hold for all 1 > 0. 0

Remark. It appears thut a necessary and sufficient condition of solvability of the
problem (37), (38) for afB = | is the inequality Ay > 1. As shown by the proof
of Theorem 6, existence of a positive solution of the problem (37), (38) implies
global solvability of the boundary value problem (1)~(4) for pg = (1 + w)(1 +v)
for practically all wy, vg. Let us note that the same condition Ay = | was obtained
non-rigorously in subsection 1,

4 On loealization of unbounded solutions of the Cauchy problem

It turns out that the spatial structure of the family of stationary solutions contains
information about quite a subtle property of unbounded solutions of the Cauchy
problem for the system (1), (2). namely. localization.

An unbounded solution ol the Cauchy problem tor (1), (2) with initial functions
with compact support,

w(0, x) = wp(x) > 0. v(0, x) = vy(x) > 0. x € RY; (54)

wo. vo € C(RY), st e HYRY), o4 e HYRY).

will be called localized il for all 1 € |0, Ty), where Ty < oo is the time for
which the solution exists, the functions w(z. ¥). v(i. x) are non-zero inside some
ball {lx] < L < oo} (L. does not depend on 1), and are identically equal to zero
for {a| > L. If, on the other hand. perturbations penetrate arbitrarily far from the
point ¥ = () as 1 — Ty (that is. as the solution grows to infinity). then we say that
there ts no localizarion in the Cauchy problem,

Here we shall not be establishing the conditions for a solution of the Cauchy
problem to be unbounded, since our main aim is different, That could be done in
a relatively simple way, for example, by constructing unbounded subsolutions as
in § 3. Ch, 1V, Let us note that all the results of subsection 1 (Theorems 1. 2)
extend also to the case of the Cauchy problem, since every unbounded solution of
the boundary value problem in an arbitrary domain {1 € RY is a subsolution of the
Cauchy problem,

The localization phenomenon in the Cauchy problem for systems of equations
is conveniently studied by constructing sell-similar solutions (sce § 4). However,
such solutions exist only for some values of parameters, Thus, for the system (1),
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(2) self-similar solutions are possible for v(p + 1) = u(g + 1), Furthermore, the
questions of existence, and even more so, of stability of unbounded self-similar
solutions for systems of equations remain largely open,

I The main result (conditions for the appearance of the HS blow-up regime)

By analyzing a family of stationary solutions we can obtain a sufficient condition
for absence of localization in the Cauchy problem. 1t appears also to be neeessary,

Theorem 7. Let pg < (1 4+u)(14v), p > 1, ¢ = |, Then all unbounded solutions
of the Cauchy problem (1), (2). (54) are not localized.

Remark. By comparing with spatialty homogencous solutions of the system (1),
(2). which satisfy the equations

=l v =yl 1> 0. (55)

we see that a necessary condition for existence of unbounded solutions of the
Cauchy problem is the inequality pg = 1. ‘

Proof.  Without loss of generality, we shall assume that Tim max{u(s, 0),
W) = oc. 1 — T, < oo, Let us consider the family of stationary solutions
(46), where U;, Vy are defined in Lemma [, By the condition pg < (14 p)(1+»)
the functions U/,, V, — oo in RY as ¢ — 07, Therefore we can find ay € (0, 1),
sueh that for all a4 e (O ag| we have that supp (ug + 1) C wyoup = Uy 1o <V,
in w,.

Let us fix an arbitrary ¢ € (0. ag|. Then it follows from the Maximum Principle
that the solution w(1, x), v(r. x) cannot be larger than the function U, V, in w, as
long as u < Uy, v <V, on do, (and thus as long as supp (i + 1) C w,). Therefore
by unboundedness of the solution t, v, for any a € (0. ag| there exists 1, < Ty,
such that supp |u(t,. x) + vi1,. O] € w,. Hence, by passing to the limit ¢ — 0F,
we obtain the required result, O

In a similar fashion we can establish the following assertion:

Theorem 8. lLet pg < (14 )l +v), p = 1. g > L and let the initiad fimetiony
wy. vy be radially symmetric and non-increasing in r == x|, Then, if the sohuion
of the Cauchy problem (1), (2), (54) is unbounded, for any fived x ¢ RY

ﬁf;? max{u(s, v). vz, )} = o,
! -

it

i.e.. at least one of the functions w or v becomes infinite as 1 — T on the whole
space,
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Therefore for m = pg - (1 + w)(1 + ») < 0 unbounded solutions express
features of combustion in the HS blow-up regime.

We are able to provide specitic bounds for the amplitude and the size of the
support of the generalized solution of the problem for i < 0. Briefly, their
derivation is as follows,

Let us write down a simple homothermic solution, which satislies equations
(55), For pg > | it blows up in finite time:

(1) = C](T() - Apt N/ py l)‘ v, (1) = CZ(T() _— 4 tpy I).
(56)
<t =Ty <o,
where

) gy |
Ci=lg+ DO p+1/ipy — e

(.2 — I((I+ l)(l}+ l)q/(l}(l _ l)AHIII/(‘u) l)'

Let us use the fact that the system of equations (1), (2), which obeys the Max-
imum Principle, has to have an “intersection™ property at least for one component
of unbounded solutions having the same blow-up time (see § 3. 4. 5. Ch, 1V),
On that basis, let us compare the solution of the Cauchy problem and the strictly
positive unbounded solution (56),

Lemma 2. Lc'l To < o0 be the blow-up time for an unbounded solution of the
problent (1), (2), (54), Then for any 1 € |0, Ty) either

max u(1, x) = C(Ty — 1) WrH/ea b (57)
v
or
max v(r. x) = Ca(Ty = 1) “rbriea 1 (58)
v

Comparing now 1, v at each moment of time with the family (46) of stationary
solutions (U, Vy are taken from Lemma 1), as was done in the proof of Theorem 7,
we arrive at an estimate of the support of the unbounded solution,

Theorem 9. Let pg < (1 + w)(1 + v) and let Ty be the blow-up time of an
unbownded solution of the Cauchy problem (1), (2). (54). where the initial functions
have compact support and are radially svunmerric, wy = uolr), vy = vo(r), 1 = |xl,
Then for each 1 sufficiently close 10 Ty either

s mip+ 1)
Hptpur -
meas supp,u(r. 1) » VINC, Dy o) T g T (59)
or
T ":(1“])
H-# N
meas supp, v, r) > V2NC, 7" (T~ ) TarrsNpg T (60)

Obviously, for m = pg — (1 + ,u)(l + r) < 0, pg =~ L. estimates (59). (60)
guarantee, in accordance with Theorem 7, the appearance of the HS blow-up regime
as 1 — T{ 7 meas supp, (i + v) becomes inhinite as 1 — T,
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2 5- and LS-regimes

In the case m = 0 the condition U, V, — o in RY as a — 0 is not satisfied
and therefore Theorems 7. 8 are invalid, We can expect unbounded solutions to
be localized for m > (),

Here for m > 0, when solutions of the family (46) become inlinite as ¢ — oo
only at the one point x = () (which i characteristic of the LS-regime), the functions
U,. V, allow us to bound from below the singularity of the unbounded solution as
1> T (sce § 1),

On the other hand, it m = 0. then the family of stationary solutions (53)
becomes infinite as « — oo at least for all x € w, (S-regime). In this case
we have, for example, the following statemient, which estimates the fundamental
localization domain of the S-regime, It ts proved as Theorem 7,

Theorem 10. Let pg = (1 + )1 + 1) p > 1. q > 1. Let the inivial functions
g, vy be radially symmuetvie, non-increasing (in v = x|, and asswne furthermore
that supp (uy + ve) C wy. If the solwtion of the Cauchy problem (1), (2). (54) (s
unbounded, then

m max{u(r, x), (7, )} = o

.

[
evervwhere in wy.
In other words for pg = (1 4+ p)(1 + 1) an unbounded solution of the Cauchy
problem cannot be localized in a ball with a radius less than /2N,
3 Comparison with self-similar results

It is of interest to compare the results with qualitative derivations, obtained by
using unbounded sclf-similar solutions of the Cauchy problem for (1), (2).
Let
vip+ hy=ulg+1). pg>1, (61)
the latter condition being equivalent to the inequality ¢ > v/ i (61) is satis-
fied. Then, as can be easily seen, equations (1), (2) admit unbounded self-similar
solutions ol the form

w1, x) = (To— 1) PHVE Dgegy, (62)

vs(1.x) = (T — 1) WD gy (63)

(64)

3 . t—-mq’u““(#i.__)sé[l U(IH—I)},

- (T(,——I)”" - 2gu — ») a 7);[~ l

O<it=<Ty<oo. teRY,
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The functions 6 > 0, f > 0 satisfy the following elliptic system of equations
obtained by substituting the expressions (62), (63) into (1), (2) and taking (61)
into account:

A — e g~ g =,
qu—v
(65)
et v 9 - N
A fP —uVf = ———f + 69 =0, £ e R,
qu v
Let this system have a non-trivial solution in RV satisfying the conditions
A&y — 0, f(&) — Oas |€] — oo, Then it follows from the form of the similarity
coordinate £ in (64) that localization of the solution ug. vy, or its absence. depends
on the sign of the parameter I = gu — v(u + 1), The critical value / = 0 (that
15, ¢ = r(p + D/ps S-regime, £ = x and (62), (63) is the solution in separated
variables) divides the space of parameters of the problem into two regions, For
[ = 0 the self-similar solution is localized ([ > 0, that is, ¢ > v(u + D)/,
1.S-regime), while for / < () there is no localization, and ug(s, x), vy(1. x) — 20 in
RY as 1 — T (HS-regime).
Let us compare the self-similar critical value

g. = (u+ Hr/u (66)

with the critical value
(PP = (1 + w1 + ), (67)

derived by the method of stationary states. By (66) we have from (61) that
Pe = ulgy + 1)/p— 1= pw+ 1) v, and therefore pog, = (1 p)(1 4+ 1), which
is exactly the same as (67).

Therefore in the “self-similar region™ of parameter vulues, the condition of
Theorems 7, 8 concerning absence of localization for pg < (1 + w)(1 + ») is not
only sufticient, but also necessary. It appears that this conclusion is valid also
without the selt-similar condition (61).

Let us observe that the rule for growth of the amplitude of the unbounded self-
similar solution (62), (63) is the same as in the right-hand sides of the estimates
(57), (58) as far as the Torm of dependence on ¢ is concerned. Those estimates
were obtained by comparison with the homothermic solution (56),

It is important to note (and this fact again underlines a certain optimality of the
results that follow from the method of stationary states). that sharper estimates of
the size of the support of the solution (59). (60) in the HS-regime coincide with
those of the self-similar solution, It can be casily checked that if condition (61) is
satishied, then we have the equalities

n(p+ 1 _ nig + 1)

Ap+p+Dipg—1  2g+r+Dipg-1)




§ 4 The combustion localization phenomenon in multi-component media 467

where » is the exponent in the expression (64) for the similarity coordinate £,
which determines the law of motion of the (ronts of self-similar thermal waves
formed in cach component in the HS-regime,

§ 4 The combustion localization phenomenon in
multi-component media

This section can be considered as the continuation of the previous one, It deals
with a qualitative and numerical analysis of combustion with finite time blow-up
in multi-component media, Most properties of unbounded solutions of quasilinear
parabolic systems of cquations presented here have not as yet been rigorously
justified,

Below we congider two different systems of equations. We shall concentrate
on properties of solutions, for which there are no analogues in the theory of finite
time blow-up developed carlier for a single quasilinear parabolic cquation. We
shall also discuss questions related to the efficacy of similarity methods. '

It turns out that unbounded self-similar solutions that can be constructed for
systems with power law nonlinearities, are not always “responsible™ for the asymp-
totic stage of the blow-up process. It can happen that the asymptotic stage of the
combustion process is deseribed by self-similar solutions of completely different
equations, that i, a.s.s, appear here,

1 A system of equations with a source
Here we consider a parabolic system of quasilinear equations. which is a gen-

cralization of the system studied in § 3. It is conveniently written down in the
following form:

w, = k(') q;u’"v”‘,
(h
vo= k(o) + ([3r'/5311"‘. 1 ~0.veR,
Here o, > 0. B, » L.y, = | (f = 1,2) are fixed dimensionless parameters,

The number of dimensional positive constants k,. ¢, can be reduced by rescaling
I — tgt, X — X, 1> Upno v - Vo,

If 6 = a2l B —~ (y1 + | — 1| B2 — (y2 + 1| 5 0, then this method can be
used to get rid of all dimensional constants of the system. by setting

— b LTS VAFRTIIRN ‘ R
Lo = q l‘/() (v() LA = l\l L/(, lo.
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g2 /8 ks (yrel-f1)/8 ga o8 ks (yiti=go/é
Uy=|— — Vo= . .
i ky qi ky

If. on the other hand, & = () then any three constants can be taken to be equal to
one; only one dimensionless parameter remains in the system, for example,

I S\l Bo
k=2 (2) i+ =B #0.
ki \q

Therelore instead of (1) we shall be considering the equivalent system
— (7 By
w, = (M), Futet (2)

vo= k(v ), + P 1> 0, x e R, (3)

where & = 1 if § # (), and k > ) is arbitrary if & = 0. For (2), (3) we formulate
the Cauchy problem

w0, x) = uplx) = 0. w0, 1) = vp(x) =0, xe R, (4

where 1y, vy are bounded functions with compact support.

I Anadysis of spatiaddly homogeneous solutions

First of all we have to work out under what conditions unbounded solutions are
possible. This can be done by considering spatially homogeneous solutions ol the
problem, which do not depend on v and satisfy the cquations

1) = 1P (o 0. v = ¥¥How (0. > 0. (5)
t(0) = gy = O, 1(0) = vy > 0. (6)
Let @, = vy, -+ | — B, % 0 (i = 1.2). Then the system has the first integral

............. =y = Mo _ B(L > (), (N

(23] ¥y (€3] (2 4]

using which it reduces to the two (uncoupled) autonomous equations

¥n Y/
! B L] .
W () =u <-w—u ~cr2C()> . (8)
(241
Yo/
/ N AL P, .
V() = v <——-v" + (nQ,) (). (9)
o

From this we derive conditions for occurrence of {inite time blow-up in cach
component, If, for example, a; > 0, @2 > 0, then for u to blow up. it suffices to
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have 81 + ajy;/a; > 1. This inequality is equivalent to the condition —y,y2 +
(81— (B2 = 1) < 0, which iy satisfied in this case (since 8; < 1 +v,). Similarly,
it can be checked that if @y > 0, @2 > (), the sccond component v also blows up
in finite time. From the identity (7) it follows that the blow-up times of «(¢) and
v(t) are the same,

An interesting situation arises if «; and > have different signs, for example, if
ap > 0, @y < 0, Here. as can be seen tfrom (7). Cy > 0, and since B2 > 14+y) > 1,
v blows up in finite time: v(¢) — 20 as ¢ — Ty < o<, The function u(e) in this
case remains bounded; (1) — (a;Cy)"/™, ¢ — T . The nature of homothermic
combustion is still more varied if a; < 0, a1 < 0,

The constant Cy in (7) can be of either sign, For Cy = 0 equations (8), (9)
lead to finite time blow-up in both the components, If Cy < 0, then u(¢) blows
up. while v(¢) remains bounded: it Cy > 0 it is the other way around.

Therefore if @y < 0 (or as < (), evolution of the components 1, v can differ;
one can blow up in finite time, while the other remains bounded,

2 Self-similar solutions
Let us introduce the notation
my=a/pop=(Bi— D(B:r— 1) = vy
If the conditions
S=0y:+ 1= B oy +1—8)) =0, (1m

my < O < 0, (1)

hold, the system (2), (3) admits unbounded self-similar solutions of the following
form:
uge, x) = (Ty — 0" NE), us(e, x) = (Ty — O™ f(£),

E=x/(Ty— 0" n= 0o, +mor +2)/4.

(12)

where the functions 6 > (), f > 0 satisly the system of ordinary differential
cquations
(070 — nt'& + 0 + OF [ =0,
(13)
k(70 = nf'E+mf + [P0 =0. § R,

and the usual conditions: #(£), f(£) — 0 as |£] — oo,

As can be scen from (12), many properties of self-similar solutions, which are
expressed as ¢ — T, < oo, depend on the sign of the parameter »,

I 0 < O then both components evolve in the HS blow-up regime. which is not
localized, ng. vy — oo in R, ¢ — 7.
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Fig. 84. Similwity functions ol the S-regime 1 = h: oy = 1.5, 07 = 2, B) = 1.9,

On the other hand, in the case n = 0 unbounded solutions are localized: if
i > 0 (LS-regime), then wug, v grow without bound as 1 — T only at the point
x =),

For 1 = 0 the S blow-up regime develops; the functions wg. vg are a solution
in separated variables, and therefore grow without bound as 1 — T, on respective
fundamental lengths L, = meas supp €, L; = meas supp /. Localization domains
of each of the components are, in general, different. As an example, we show
in Figure 84 the spatial profiles of the functions 9(£). f(£€) in the case of the
S-regime. Here Ly < L.

Numerical studies show that for @, > 0, @2 > 0 the sell-similar solution of the
S-regime is unique and stable (in the notm of the special similarity transformation,
see § 2, 5. Ch. 1V). For sufticiently general initial conditions, the system evolves to
a stable dissipative structure on a bounded domain, with each component effectively
localized on its respective fundamental length Ly or L.

An example of such evolution to a self-similar S blow-up regime can be seen
in Figure 85. The initial perturbations 1(.x), ve(x) are not symmetric. Therefore
inttially two thermal waves in 1, v (1 = 1y, 1 = 1) appear, These collide at time
1 = 1y and generate a thermal structure (¢ = 14), which evolves in a self-similar
manner in the S-regime,

For «; < 0 (or ax < 0), when the nature of homothermic combustion of the
two components can be gignilicantly different, self-similar solutions do not appear.
As a rule, in numerical computations one of the components blows up in finite
time as 1 ~> T, while the other remains bounded as 1+ — 7T,. Therefore self-
similar solutions with coordinated combustion of the components comprise a sort of
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Fig. 85. Formation of the self-sinilar S-regime structure after interaction of concentration

Lo = o= 2 k= by = (1L278,
1= (0.672, 17 = 07812, 1, = 0.7823

unstable boundary, which separates sets ol solutions with different (uncoordinated)
patterns of evolution of 1 and v.

3 The general case

A natural question arises: what happens in the general ease when condition (10)
for the existence of self-similar solutions is not satistied” First, numerical compu-
tations show that for a; > 0, @2 > 0 (that is, when 81 < 1 4 v, B2 < | + y2)
both components always blow up in finite time.

Secondly. if the similarity condition (10) is not satislied, the evolution of the two
components proceeds, in general, in an uncoordinated fashion, and can be markedly
different. For example, it is possible for the first component to blow up in finite
time in the LS-regime (unbounded growth on a set of measure zero; localization),
while the second component evolves in the HS-regime, and its blow-up set covers
the whole space as ¢+ — T . A numerical computation of such behaviour can be
seen in Figure 86. Other situations are also possible, For example, u can evolve
in an S-regime, while v evolves in an HS-regime. Alternatively. both components
can evolve in the HS-regime, but with different speeds of propagation of thermal
waves.

To conelude, let us write down for the general case sufficient (and apparently
necessary) conditions for the absence of localization of unbounded solutions of the
problem. that is, for the occurrence of the HS-regime at least for one component.
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It is not bard to check that equations (2), (3) admit the following one-parameter
family of stationary solutions:
U, (x) = a* " (ax), Va(x) = a7V (ax). (14

Here a > 0 is an arbitrary constant, /1, V| is some stationary solution, for example,
one similar to that constructed in Letvma 1, § 3:

m=vyyy: ~ |81 — (o + DB — (o2 + DI

€, = 1 +7v'*"”-v“Bf- r=1.2.
It has to be expected that it (s precisely the signs of these parameters that
determine much of the asymptotic behaviour of unbounded solutions. In particular,

an elementary analysis (which uses the method of stationary states) of the family
(14) leads for small ¢ > () to the following result:

Proposition 1. Ler B, > 1. v, > | and €;/m < 0. €3/m < 0. Then every
unbounded solution of the problem (2), (3), (4) s not localized.

2 A system of equations with depletion
Below we consider the Cauchy problem for the system

= kot 1), + gov*ul,
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v o= —ppu'ut, 1> 0, x e R,

It describes the process of combustion in a nonlinear mediuni, with volumetric
energy production, which takes into account decrease in the density of the substance
due 1o its depletion as a result of burning (v = v(r. x) > 0 is the density of the
combustible substance). Here 8 > 1. v > 0, € > 0 ure dimensionless parameters:
ko. go. pu are positive dimensional constants. Diffusion of the second component
is not taken into account; in fact this has no bearing on the final results.

It 1s easy to get rid of the constants kg, go. pu by rescaling the dependent and
independent variables 1. x, u, v. Therefore tn the following we shall consider the
dimensionless system

w = (i), + 0P,

(15)
v, =—v"u 1 >0, xeR

Let the combustion process be initiated by giving an initial temperature profile
and some initial concentration of the combustible substance:

(0, vy = ug(x) = 0,00, v) = py(x) >0, ve R (16)

Observe that for » = 0 (v is the order of the chemical reaction of combustion)
the two equations of (15) are uncoupled und the temperature distribution n(r. x)
satisties an equation vonsidered in preceding chapters.

We have to find out how depletion influences the asymptotic stage of evolution
of finite time blow-up regimes in a nonhinear medium, and under which conditions
localization is possible. It is of interest to note that in this case, in general,
unbounded self-similar solutions do not describe correctly the asymptotic stage of
the blow-up process. We shall discuss reasons for that later.

I Unbounded self-similar solutions

A great advantage of the systemy (15) is that essentially for all values of the
parameters it admits self-similar solutions:

ugtr. x) = (Tg — 1) 11"0(8). (17)

vt ) = (T = DF e pay q=ev4+ (1 ~)(B~1) £0, (18)
where £ 1s the similarity coordinate,

£ = x/(Ty — ' mEn, (19

I diffusion of the sccond component is taken into account, then another dimen-

sional constant appears in the system, and self-similar solutions will exist under
an additional restriction on the parameters.
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Simtlarity representations of the temperature #(£) > 0 and of the density f(£) >
0 are determined from the system of ordinary differential equations

) - 1 .

(0°0) - S 0E ~ 0+ 97 =0, (20)
2a «

-0 ~-(e+1)

-2 (r./§+B € )./-./ 0° =0, £ €R, (21
2ev «
and the boundary conditions

fB(>0) = 0. f(20) < x. (22)

which have a simple physical interpretation,
From (17) we obtain the conditions for existence of finite time blow-up as
1= T, < oo
a=er+ (I —pr)(B-1) >0 23
In (18) the concentration vy cannot inerease with time, Therefore we need another
restriction on the parameters,
B>e+1. (24)

As usual, we classify self-similar solutions according to how the domain (half-
width) of intensive combustion depends on time. 1t follows (rom (19) that its size
depends on time according to

,\',v/”([) —~ (T() - I)((y l’)/(Z(Yl’ 0 < | < '[‘“’ (25)

Therefore three cases are possibler @) if @ < o, then x (1) — oc as 1 — Ty,
and by the blow-up time the combustion wave covers the whole space (HS blow-
up regime); b) if v = o, then x.(1) = const > 0, and the intensive combustion
domain is constant in time (S-regime). ¢) if @ > o, then x.(1) — 0,1 — T, the
intensive combustion domain shrinks, and unbounded growth of the temperature
is observed only at the one point x = () (LS-regime).

We shall not consider in any detail the analysis of the system ol ordinary
differential equations (20), (21); there is no need, Let us only note that in the
S-regime (@ = o) it simplifies drastically; for » < 1 (21) becomes the cquality

r — €

. (1 =p 1700~ .
[ = F———J} 61/, (26)
while the first equation of (20) takes the form

;o] 5 ,
(()rr()f) . ,.()_+_U~()“’H""/““‘ = (2()')
a

where
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and is easily integrated. The function #(¢) is found from the quadrature

o d: p i72
| 1T (f0~ )4 € >0, 27
A = ,,1:2/“.»,,,‘!/- {Z(UJF 2)} Eo— &) &> Q7

1 5 ol +2)(1 - )
Y = .
o+ (1 —~ )T+ 2)
Therefore 8(£), f(£) are functions with compact support: the size of the support
determines the fundamental length of the S-regime:

2o +2)}'/2 I'a/2-v/2) 1 - p) x

Ly =28y = { T =72

a
(28)

{ o —€ }""2 {(r+(l-u)(tr+2) (-2
x .
)

ol —v oo+ 2)(1 —v)

Naturally, for » = 0, € = 0 this equality defines the fundamental length in a
medium without depletion: Ly = 27 (o + I)I/Z/()' (see § 1, Ch, 1V). N

2 Asympiotic behaviowr of blow-p regimes

The above self-similar volutions are structurally unstable, that is, their (coordi-
nated in both components) spatio-temiporal structure is not observed in numerical
computations.

Figure 87 presents the results of numerical simulation of equations (15) for
values of parameters, which formally correspond to the S-regime (@ = o). The
initial functions are non-zero on an interval of length 2Lg, where (see (28))

_ rams .,
Ly = J7 rom 5.205,

Maxima of the initial distributions correspond to the self-similar solution (26),
(27). which blows up at 7§ = 1, However, the spatial profiles of tqu(x) and vy(x)
are not the self-similar ones. Ag a result, since vg(x) is too large (as compared
with the self-similar one), only a part of the energy of the initial distribution vy(x)
is needed to cause finite time blow-up in temperature 1. This can be clearly
seen in Figure 87,5, Therefore the process of substance depletion stabilizes at the
asymptotic stage of the finite time blow-up process in 1, and as 7 — T (the real
value of the blow-up time is Ty = (0.525 < 1), the density v(s, x) does not change
much in the intensive combustion domain,

Therefore as 1 — T, the equation for the concentration falls away, and asymp-
totics of temperature blow-up is described by the single equation

1, = (1e,), + Qonl, 29
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where Qg is a constant equal to ((1';, x))", the average value of the limiting
density in the intensive combustion domain. But for these parameter values 8 >
o + 1, which eusures development of the usual LS-regime, which can be clearly
seen in Figure 87, a. And in general, an S-regime perturbed in temperature and
density from above, degenerates as 1 — T; into a self-similar (with respect to
(29)) LS-regime, since from the inequality o > €, which always holds for the
S-regime (a = o), it follows that 8 > o + 1 in (29).

If, on the other hand, in the S-regime (a = o) the initial profiles are below
those of the self-similar solution, the result most often is complete depletion of the
combustible substance in the whole space and energy is no longer produced by the
mediun, The consequence is that the temperature does not blow up in finite thme.
but satisfies instead an equation without a source,

w, = (), (30

Thusg the self-similar solutions (17), (18) comprise an unstable boundary be-
tween two large classes of “degenerate™ equations (29) and (30).

In the LS-regime (with respect to (15), « > o) initial functions lying above
the self-similar ones lead to the development of the LS-regime, which corresponds
o B > o+ 11w (29). Figure 88 shows the result of numerical computation of the
LS-regime with initial data of the S-regime, as in Figure 87. As ¢ — T = 0.291
the density stabilizes, while the temperature grows in the LS-regime (8 = 6 >
o+ 1 =31 (29)).

For the HS-regiine (@ < o), these initial data are lower than the self-similar
ones. It can be seen from Figure 89 that the constant density profile vo(x) = 1t is
also too low. Therefore initially there is (ast depletion of combustible substance
in areas where the initial temperature is non-zero, and then two thermal waves
propagate into the surrounding space which has bigh density of combustible mate-
rial. Due to the higher rate of energy production at high temperatures, these waves
blow up in finite time (T = 1.72),

§ 5 Finite difference schemes for quasilinear parabolic
equations admitting finite time blow-up

An important place in this study of blow-up regimes is occupied by results of
numerical computations on the non-stationary problems being considered. In this
section we analyse properties ol difference schemes for a quasilinear parabolic
equation with power type nonlinearity in one space variable:

= WY, (h

Here, as usual, o > 0 and B > | ave constants,
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Fig. 88. Simulation of cquations (15) in the LS-regime with o =2, f=6.€ = |, v = 0
(v = or): a: the fivst compouent. b the second component
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Fig. 89, Simulation of equations (15) in the HS-regime with o = 2, =3, e =
(ce = oy a the st component, b: the second component
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We consider for (1) the boundary value problem in the domain {r > 0, v €
(0.}, I = const > 0, with the conditions

WO, ) =up(x) 0. 0 < v <[t u},’" € H",((). . (2)
u(t, 0) = w(t. )y = 0. 1 = 0. (3

The results we obtain here give an indication of difficulties that arise in nu-
merical computation of blow-up regimes. The main emphasis is on the study of
implicit (nonlinear) difference schemes, which, in view of their many advantages
]346] as compared with explicit difference schemes, were used in all the numer-
ical computations. Below we consider such classical questions of the theory of
difference schemes as conditions of solvability of the discretized problem on a
time level, conditions for global solvability of the discretized problem. and condi-
tions of convergence of the finite difference solution to the selution of the original
differential problem.

We treat in detail the question of conditions under which there is no global
solution, that is. to the appearance of finite difference blow-up regimes. Related
to that wre two comparatively unusual properties of the implicit scheme: if the
solution grows at a fast enough rate, it can happen that at a certain time level
either the solution is non-unique. or it does not exist at all, that is, the scheme is
no longer solvable.

All these properties (unboundedness, non-uniqueness, and non-cxistence of so-
lutions) are possible in the case 8 > o + 1. when the difference operator corre-
sponding to the right-hand side of (1) is not coercive. For 1 < 8 < o+ | and
sufficiently small steps in time, a globul solution always exists; moreover, it is
unique.

Many of the obtained results also hold for difference schemes for equations of
the type (1) with sufficiently general nonlinearities.

At the end of the section we briefly consider explicit (linear) schemes; the
weak Maximum Principle is analyzed, and conditions for unboundedness of the
difference solution are established.

Let us introduce a uniform grid in space w,, with step size h = [/(M + 1),
where M > 0 is an integer: a system of time intervals {7,}. 7,4y < 7, and the
corresponding grid in time, w,. Everywhere, apart {rom subsection 1.4, we shall
take the grid w, to be finite and uniform: 7, =7 =T/ (N+ 1), 0 < j<N. N >0
is an integer, T > () is a constant (in subsection 1.4 7, — 0 as j — oc. and w, is
a non-uniform grid). Let us denote by H,, the set of grid functions

= v = v =00, 20,i=02,.... M)
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1 Implicit (nonlinear) difference scheme

Following 1346], we write down the implicit difference scheme corresponding to
the problem (1)~(3):

(=), = @)+ 0P (1 x) € w; x wy, (4)

W=y = 0. €@y i€ Hyt € w,, (5)
where we have introduced the ugual notation 11 = uf ', 0= u[ is the desired grid
function defined on the discrete sel w-j, = wy X wy. vy, = (U1 — 20 + vy 1) /07
denotes the second difference operator, and gy is the projection of ug(x) onto wy,.

In the formulation of the problem (4), (5) and all the subsequent results, we
assume that the difference solution 71 is non-negative (otherwise the operation of
takmg an arbitrary power is not defined). This is one of the properties of implieit
schemes for parabolic equations. It is easily verified that the scheme

(h—wy/r, = 0170, + max{0, ahP, . x) € wry. (6)

which is identical to (4) for /i > 0, cannot admit for any 7,, h negutive values of 1
i u > 0in wy, (furthermore, #i > O in wy if 13 0). This follows from un analysis
of (6) at a point of negative minimum in v of the function i (see § 7. Ch. V). An
analogous weik Maximum Principle holds for the differential problem (see § 2).

Let us introduce the necessary finite difference functional spaces. The space of
grid functions Vy, = {v, |i = 0. ... .. M+ L vy = vy = 0} is equipped with
the scalar product and the norm

M
1,2
(v, )y = 11}: vt Jeplnz = (Ups tp)y " (7

fal

Norms in the grid analogues of the spaces L4(0. 1), ¢ = 1. und H(')((), ) have,

respectively, the form
A Hu
|Ull|h,q = <IIZ |Un|[’> .
-1

12
Vgt =~ U |7
h '

We denote by || - |}, the norm dual to [+ [|,.2 with respect Lo the scular product
(N

M
lvallaz = <Ilz

g ()

[(va, g )
lonllfs = sup  ——rr
1 Vi 40 |REA “h,:‘
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We have the equality
Nn)scllhz = lvnllna. ve € Vi (8)
In the grid analogue of the space C(0. /), the norm takes the form

lvnle = max |y |, v, € V.,
P M

Let us introduce the extension operators py,, g by assuming that puu, 1s a
continuous function, which is linear on each interval (i, (i + 1)h). such that
prup(ily = v, G = 0.1,....M + 1), quu, is a pieceswise constant extension
of the grid function v, € Vy, which is equal to v, for all jh < x < (i + D, It is
clear that pyu;, € H(',(O, D. quv, € L9, 1), and that

lgnvaliino.n = Walng. IPoenllo.n = Ivnllaz

In the same way for grid functions v, , defined on the nodes of the grid w; .

: " s : " : _ +1 _
we mlroduu the extension operutor ¢, defined by ¢, puvrs = put™ L grqnrey =
([,,v{‘” forull jr <t < (j+ Dr.j=0.1....,N (the grid w, is assumed here to
be uniform),

Let us denote 1346] by
I 4 ) h

)\‘ ZEESIH'ET, 9)
le h/21 X
D) = m'“(”;/( D in ?,o v <l (10)
1

respectively, the first (smallest) etgenvalue and the first eigenfunction of the dif-
ference problem
U)o+ Ay =0, v € wyl fy € V. (1h

The function i, i (10) 1s chosen so that i, = 1. We observe that g, (x) > 0
n wy,.

We start by considering the question of solvability of the scheme on a time
level, that 1s, the question of existence and properties of the transition operator
1346] from one time level to the next. Below we denote by Aj. Ay, ... various
constants idependent of 7, /.

I Sufficient conditions for solvability of the difference scheme at a fixed time leyel

1. We shall show first that for 8 < o + | and also 1n the case 8 = o + 1.
Al > 1 (this imposes an upper bound on the length of the interval 0.1z see (9))
the scheme (4) is solvable with respect to the grid function #i for any magnitude
of 7. For this purpose we shall need the following assertion, which is the finite
difference analogue of Lemma | of § 2 (sce |296, 346)).



§ 5 Finite difference schemes 483

Lemma 1. Any function vy, € Hy satisfies the estimates

2er+ 1) r4l
|v”ih.2((r,vl) = )\[, ”“h “h (12)
|vh|fi};r+l ' A”HU:VH||’/3+¢1H)/(:r|I) A I]u[“,,.“w[](u«”l)\ (13)
h B+l — 3 .

Let us consider the continuous operator , : RY — RM:
Pu(ity = (i — n) /7 — G H ~—uA k=1, .M. (14)

Existence of a root of the equation Py, (1) = 0 means that the scheme (4) 15 solvable,
Let imtially | < 8 < o + 1. Then

1, . el
(Pu(iy. 7Yy, = ;(u — . 87N, + IIu'”'Il,, Iulﬁ;'::”r (15

Using the inequality (13) as well as the easily checked estimate

(& - ) g_-(rrl > ;;_M_(§II+" - (rf" g; ne R (16)

we abtain from (15)

11
S ooy Ay o2 B ~ 2 1)
(Pal). Ya > _'"—_+_v’) w|”|h ol |”|h,/{+:r+l + Ayl llh.ﬁ«nr S8

A' = | (BrlreiBtrd
Let us estimate the second term uging Young's inequality. As a result we have

A~ Braid - A e+
il gy = |”|n provt T A2

o+ 1 __B I‘B"_ o+ 1 (Broi D/l i~f)
A= | ‘

Ao+ 1) Ao+ 1D
and then the final estimate has the form

I A e b D) I I rgl
(Pph), )/, - 3 |ll|,‘./{:_,”! - (A] + ;:3;“” b > . (17)

hoort??

From this, by the Brouwer fixed point theorem for continuous operators in a
tmite-dimensional space (see, for example |296]

), we conclude that the equation
Pp(f) = 0 has at least one solution in the ball

A e - _3 A + - WM_!_ l:r+-2 18)
|”|h,/HnH ~ A" 2 |” hoo+2 ) (
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Outside this ball there are no solutions, since there, as follows from (17),
(Py(iy, @ty = O

Let us move on now 10 analyse the case 8 = o + 1. Then from (15), (12) we
have that

Ui liuluﬁ

Ay oAt h ~
(P"(“)‘“ )" g (A] - l)lulh.:(lFH) - o+ 77 hoori2t

Therefore tor )\"‘ = | the equation Py (@) = O has at least one solution @, such that

2+ I w|”|(u2

)5S Y e
B 2t 1) ()\l]‘__ l)((l'+2)T hory?

(19)

Thus we have proved

Theorem 1. Let B < o+ 1 or B = o+ 1, Al > 1. Then for auny 7 > O there
exists at least one solution & € Hy, of the scheme (4), which belongs 1o one of the
sets (18) or (19). while there are no solutions owtside these sets.

As the estimates obtained in subsection 1.5 show, under the conditions ol The-
orem |, the difference scheme (4) has a unique solution for sufticiently smull
7> (.

2. For B> o+ 1or B=u+1, A} <1 the parabolic operator of the scheme
(4) is no longer cocrcive, so that the Brouwer theorem, which uses coercivity of
the operator, is not applicable and Theorem 1 is invalid. Therefore we shall seek
for sufticiently small 7 a solution it close to .

Let us set a—u = ? gnd let us introduce the continuous operator /7, : RY — RY:

Fr) = {rl G+ a0 o +7G+u)P k=1.2,... M)
Existence of a fixed point of the operator /4 implies solvability of the scheme
(4). We have the obvious cstimate
oA 2 B 2 2 ot i
[Fu(Dle < Uule - 12e)"T + ﬁ(|“|(' + &)™ T

Hence it follows that £/, maps the set X, = {Z[|£]¢ < Cy} into itself (here Cy > 0
is an arbitrary constant), if’

Cy
(lrele + C)P + 2/1"2(|1(|(' + ('n)'”] '

(20

T <

Therefore by the Schauder tixed point theorem |101] we have

Theorem 2. Ler conduion (20) hold. Then the scheme (&) hes « sohdion it € Hy,
such thet, moreover, |ic— ¢ < Cy.
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Remark. Setting Cy = |«|c 1n (20), we obtain the following estimate of the
practically maximal possible trme step 7,,;. for which the scheme is solvable at a
fixed time level:
T = QBle® 427 i 2h
Below we shall show that as far as the dependence of 7, on |«|¢ is concerned,
this estimate is optimal. It is rmportant for large Jid¢-. when the solution exhibits
finite time blow-up. In the class of uniformly bounded jif,- we obtain the uswal
for parabolic equations estimate 7., = O(Ih%) for I <« | (see 1346]).

2 Conditions for ioic-rniguercess of the difference soliaion

Let us show that for 8 > o+ | and sufficiently small 7 the implicit scheme (4) has
in addition to the small solution constructed 1n Theorem 2 another, large solution,
which is close to the root I = 77/ V' of the difference equation

U/t =UP. (22)

This equation is the same as the original one if we ngglcu the term (@”*'y,, and
set 1 = 0, The second solution has the property that || — 00 as 7 — ().
Let us set 2 = ft—7 '*# D and define the continuous operator G, : RY — RM:

(’h ———{T( I\+T g b [i_+__r]( LT |VAV: I D Irql]
—r VB s k=12, M)

Existence of a root of the equation G, (2) = O implies solvability of the scheme
h.
Let us congider the expression

(G(3) .5y = (G471 VBB BB D 2y g
FTAGHT Yy Gl = B = L A+ = 2R,

on the sphere

Sy = ap > 0. Obviously |2]¢ < «oh /2. and therefore, by setting
no = aph” PrVH D (23)
we obtain

- n ; 2a
IZ > ""|:|h.1i(f-+7' | §X¥4 “)'\,\Hih.lT > *TW (s B h )(l _+_ :ro]ll/'l'

Iy > 2l = —aolly 2.

To estimate the term /[, we use the inequality

+ l hi
nl(+mf 1] = 37 7, (24)
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which holds for all 8 > 1, |9| < C,, where C, = C,(8) > 0 is some constant.
Then, choosing 7 so small that

) o = aph 2D < C.(B). (25)
taking (24) mto consideration, we obtam

ﬁ+1 B+1 ,
I 2, = R

Thus we have the inequality
((Jh( f =

“l 2 riy2 -+ /2
z B 5 ~un{au— [ {hdh 5+ I,),Tli URSHUVC T pee C.(B)) 1llr-}}.

Hence (Gy(), > () Tor all

2 2 e}
ez = a0 = £ {|u|,. 2 7 VD +C,(B))””I‘/“}. (26)

It remains to check that for small 7 conditions (25). (26) are compatible. Sub-
stituting into (23) the value of gy from (26), we have

o = _L,’ 1/2|“|h VB 4 h 5/1” _+_C*(B)]cmlll/2_rl[£ DI 1
.2 Wﬁ -

B-1
(27
whenee ny — O as 7 — 0 B > o4 1, so that condition (25) does not contradict

(26) for small 7. Thus we have proved

Theorem 3. Ler 8 > o + 1. Then for sufficiently small 7 the difference scheme
(4) hays in addition o the solution constructed in Theorem 2, another solution. 1f
B = a + | then this conclusion is still yalid, provided thar (see (27))

4 )
= P4 Clo + D)7 < Coto + 1.
a

Fortunately the second (large) solution, which has no physical interpretation,
is unstable. and # correct solution algorithm for the implicit scheme [346] con-
verges only to the required solution. In this context, we might observe that in any
neighbourhood of the solution 0 = 7~ V%#-1 the operator

Figd) = {r 47 VP Iz VED =1 20 M)

is not contracting, and therefore the solution & cannot be obtained by the method
of successtve approximations. This testifies to its mgtability.
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3 Conditions of non-existence of the difference solution
A second manifestation of non-coercivity of the operator of the scheme (4) for
B 2 o+ 1 is the fact that it can actually be locally insolvable (on a given time-
level).

To establish the conditions for non-existence of the solution, let us use the
estimate

Aol 2 Acra
(u ) > - , U € Wy,
T II"
in view of which we deduce from (4) the inequality
Iz w4 TP <270, (28)
which the function & must satisfly everywhere in wy,.
It is clear that it is sufticient to verify this inequality at the point at which max u
is achieved, that is, to determine the conditions under which the equality

£z lule + &7 N -2/ (29)

has no solutions in R,
let us consider first the case 8 = o + 1. Then (29) assumes the form

= ule +7e7 (= 2/l7). £€Ry,

and. as is easily seen, has no solution if

) r 2 -1
h">271>71" = 7 2] - (l - —5> . (30)

= G T 1

-

Now let 8 = o+ 1. Using Young's iequality
2

vy h-
¢ = T te £eR,,

’

B~ (r+1) {4(0 + l)}("*”/”’ i bl
e DT T D)

B
we see that (29) has no solutions if everywhere in Ry

~

L ..._i +Z-_ B
£ < fule = yet 5e".

Hence we obtain conditions for insolvability of the scheme (or 8 > o + 1:

e — 1/ 2 \VB-0
(1] > ",_.T+Lm (—-—) . (31
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Theorem 4. Let 8 = o + | Then, if condition (30) holds, the scheme (4) 1s
insolvable. In the case B > o + | solutions do not exist if (31) is satisfied.

Inequalities (30), (31) provide us with quite sharp estimates of the size of the
time step, for which no iterative process of solving the implicit scheme (4) will
converge (for the simple reason that the difference solution does not exist). These
estimates can be utilized in real numerical computations. Therefore let us consider
(31) more carefully,

Let us set

B

gy =

AB~ (o + 1] [4r + 1) (B+H/IB- wr D) [ B-1 2)]/’1[J~H
N .
i s (

Then (31) hag the form
e > agr(h?) PIB @D e VB

and s satished, for example, in the case

e ] bo BIB-1
litle = Baody(h™)” RO dy = l:——‘—-—-—-—} . (32)
Baod, ( ap(B — 1)
T = Ty = do(h?)# DB Lo by (33)

At the same tinie condition (21) for the solvabrlity of the scheme with |u|¢ taken
from (32). has the form
Tyl = .’.U(hl)(ﬂ gt ‘)]A
R (33)
fo=125%(Bapdn)? ' + 27 (Bapd )] .

and has the same dependence on the size of the spatial grid as (33). Hence we
conclude that condition (21) for the solvability of the scheme for 8 > o + 1 is
optimal for large |u|c (for example, when the difference solution is unbounded).

4 Unbounded difference solutions

Let us move on now o determine the conditions for global insolvability of the
difference problem (4), (5) for 8 = o -+ ' Recall that the time grid here is not
uniform: 7; — O as j — oo and 3 70,7, = Ty < ov, where T’ is the time of
existence of the solution.

The proof of unboundedness of the solution will utilize the method used earlier
in§ 2 as well asin § 6, Ch. V.

i will be shown in subsection 1.5 that, just as in the differential case (§ 2). there are
no unbounded solutions i 8 < o -+ 1.
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1. Let us set
EVtY = E = (a, U, | € Wy, 34)
where ¢y, is the first ergenfunction (10) of the problem (11). Taking the scalar
product of the system of equations (4) with s, we obtain the sequence of equalities

E R
Rt )\“(“'H [‘ I///A)h + (“ﬁ. l//h)lu I € w,,
T (35)

~(0) N
E™ =Eg = (uop. )y
deriving which we have taken into account the fact that
((1 A,H ] \\ l[’h = (4" kl - (d’/u)"\\) A" AN l//h)h
By normalization of 4, > 0 we have the Holder inequality
(l‘llj. gy = ((”xml)lf/(:m 1y )n > (“UH W) H/(:H 1

’

in view of which we obtain from (35)

E—-FE > m:Hl I/I")’/'J/(:ml)]l )\h LA ) ('”1 l”/(”*”]'
Ty
Thence, again applying the Holder inequality (@', gry)n = (@, i)y "', we deduce
the inequality
— , Al
L_,_I_ > ¢ ‘\Il}] l/l /i/“ th) | — . | ) (36)
T, B uril)
Let Iy be such that
po =1 —AlEg 5, (37
Then from (36) we conclude that £ > E in w, for sufficiently small T, =
0.1,..., and therefore
E—k N )"1‘ B
- B A i m = ol 1 € ;. (38)
J P
Since
li)¢e = ]nzm}w i, = I 1€ wy, (39

in order to determine conditions for unboundedness of the solution of problem (4).
(5), we have 1o tind a system {7,) of time intervals , such that 3°7, = Ty < o0
and that from (38) it would follow that £ —» oo as j — oo, Then by (39) the
difference solution will blow up in finite time, that is 1! > 00 a8 | — 0,
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Tp=Ap ML =000, (40)

where A > O, @ > 0, p > | are constants. Then
To= Ap"/(p" — 1) < oc. (41)
Let us determine the conditions for A. «. p, for which
EY = Bypd o =001,
For that, it is enough that

Fop’ + T,,u(,lfﬁpl“ > kgt =001 (42)

Substituting into (42) 7, from (40) and simplilying, we obtain the condition | +
Al 1! 0D = = 0,1 This condition will hold if

1

a=-1l.p= I+A/.L()E(I,)' (43)

Therefore we have proved

Theorem 5. Let B = o+ | and let the initial function woy in (5) be such that (37)
holds. Let the fintte difference problem (4). (5) be solvable on a sequence of time
steps (40), where the constants A, «e, p satisfy (43). Thew the sohaion exists for
time (41), and

[t |¢ = Fop! — 00, j— 2.

Remark. In § 2 it is shown that in the differential (continuous) case the problem
for 8 = o+ | has an unbounded solution if A = (7 /1)* < 1. If, on the other hand,
Al > 1, then it is globally solvable. From condition (37), which for 8 = ¢ + |
takes the form A" < |, and the easily verified inequality A} < A{ (sce (9)), we
then easily conclude that it is possible for the finite difference problem to have an
unbounded solution, while the differential problem is globally solvable, This will
happen if the length of the interval 1 is such that A > | but A" < I,

Inequality (38), which was dertved tn the course of the proof of Theorem 5,
can be used to analyze the problem of insolvability of the scheme on a given
time-level, For example, from (38) it is easy o derive the (ollowing estimates for
insolvability of the scheme at the j-th tme step in the case 8 = o + 1. They are
sharper than the estimates of (30):

o’

(o 4+ D7l = Ay’

AV < LTz, =) 7
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The first one of these s optimal, since for )\’,‘ = | the solution always exists (see
Theoren 1).

Let us present an interesting corollary, which has a differential analogue (sce
§ 3. Ch. V).

Corollary. Let B € |a + 1,0 + 3y and let us be given a function ug(x) = 0,
x e R Let us fix e arbitrary > O, Then for sufficiently large M there is a
collection of time steps {1,). satisfying Ty = 3. 7, < 00, sach thar the svlution of
the finite difference problem (4), (5) for | = (M + Dl and wyy, # 0 is unbounded.
If {uontny = 2 for some M =1, then the same conelusion is valid also i the case
B=u+3

Proof. For large | po in (37) satisfies the estimate
po = 1= Uuonlyy /27 Py -8,

Thercfore under the above assumptions py > O for suffictently large /. which by
Theorem 5 ensures global insolvability of the problem (4), (5). 0O

2. To conclude, let us give an example of an unbounded solution of the tindte
difterence problem (4), (5), which can be written down explicitly. This example
shows, in particular, that the requirement (40) of Theorem 5 concerning solvability
on a sequence of time steps, s not especially burdensonie.

Let B = o+ 1. As in the continuous case (see § 1, Ch, IV), we shall seek the
difference solution of the problem in separated variables:

W, = §'6 (13 € wr x wy,. (44)

Substituting «! into (4) we obtain the following problems for the grid functions
YA

S—8§5 1.
= ~$"t e we (45)
T/ (¢
I
F e 07 = ;;u‘ YEwy 0 H, (46)

Let there be given a system of time intervals (40), where p > 1, @ = o. Then
a solution of the problem (45) is the (unction

Sl=p' j=0.1,..., A=up (-1, (47)

Let us construct # solution of the problem (46) in the particular case o = 2,
Let us fix an arbirary M > 0 and set it = 2sin{37/]2(M + 1)]). In this case the
length of the mterval 18

3wl AN
Iy = »—7;}1 (urcsm ;) 0« h <2, (48)
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Then it can be casily scen that the solution of the problem (46) has the form

172

4 NEAE
0, = {2 {3 (1 - = sin? f»’-’ilﬂ } sin(apklty, k=0.1..... M41, (49)
=

where a, = 7/l

By (44), the functions (47), (49) define an unbounded difference solution of
problem (4), (5) for o = 2, B = 3, | = I, which grows without bound at all
points of wy, conserving its spatial structure. As i — 0 the difference solution
(49) converges to a solution of the corresponding ordinary differential equation
(see § 1, Ch. V)

B(x) = (3/4)7 sin(x/3). 0 < x < Iy = 3. (50

The length of the support of this solution, /y, detfines the fundamental length of
the nonlinear medium, The difference lundamental length (48) is close to Iy = 37
for h « 1. For large It the difference can be significant; for example, /, = 9 for
h=1,1, =6tforh=2.

Let us note that the grid function (49) is not the projection onto w, of the
solution (50), the differential analogue of problem (46) for ¢ = 2, though it has
a similar structure, The dissimilarity is even more substantial in the case o = 1,
when equation (46) also has a simple solution;

B = Ay sin(bykh) + By, k=0.1,.... M+ 1,
where
by = :21!; zn‘csin!z-l, 0<h=<2 Ay = %]2(2;(,, - D'
B, = -L{1 — 12y = DI'P) Ky =1 = 3 [ (1 - '—'i>]/z
2k h? 4

which, however, does not satisty the boundary conditions and is strictly positive.
However, i1 the limit & — 0, when x, — 3/4. B, — 0, the (unction #; is the
solution of the differential problem for [ > 4.

Let us move on now o questions of global solvability of the difference problem
and of convergence of the difference solution as i — 0 to the generalized solution
ol the differential problem (1)-(3). Two separate cases have o be considered.

5 Global solvability and passage to the limit for B < o + 1

Recall that below the grid , is assumed to be uniform.
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Theorem 6. Lot B < o + . Then for sufficiently small T the difference problem
has a unique global solution. If B = o + 1, then the same assertion is brue wnder
the additional requirement

4 , Th

A= g~ > L (51

h? 21
Inboth cases B < o+ 1 and B = o+1, Ay = 1, the difference solution converges as
7. — 010 the generalized sohuioe of the differential problem (1)-(3) constructed
in Theorem 2 of § 2.

We shall need two lemmas, the first of which is verified directly. The second
is proved in [296. 346{.

Lemma 2. Forall £, € R, the following inequality holds:

(é';u-‘l ”}l)g“-—/ji(’-_l#l(flj“rkl-—nﬁ'"”)—% (S’))

+C[{max{§ T)”ﬁ 1( Flba/2 ]lhr/'l)_’_'
where C| = Cy(o, B) > (0 Is o constwit,

Lemma 3. For any grid function v, € H,,

ol

e < Al LT Ay = 1L (53)

||,,
Proof of Theorem 6. Let us fix an atbitrary 7 = 0.

1) Let ug first consider the case 8 < o + 1. By Theorem 1 the dilference
scheme (4) with B = o -+ | is solvable for any 7, that is, the tunction & is defined
everywhere in w, ;. We shall need estimates of the finite difference solutron.

Taking the scalar product of both sides of (4) by @ *' and using the obvious
inequality

|
atl . A
(£ =mg"' 2 s (T - 7", £.mEeR,.
we obtain
i 2 it 1 Attt
b =l ) R G, < LAl (54)

o -

We estimate the right-hand side of this incquality using (13) and Young’s in-
equality, taking into account the fact that 8 < o + 1. As a result we obtan the
inequality

tudl »l
|1 |{1 [3”#1!}] - ’)” ’H”h +Al (55)

o+ 1 “.B I: o+ 1 ]Zm-e-l)/w (er t 1))
4 - .

2AB+o+ D LAB+o+ 1)
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and then {rom (54) we have

| 1
nrr2 - IES o a4
;’_+2 |‘|h.:rﬂ+ “‘ ”h S— A4+ T(l'—+—2|“|h a2 (56)
Hence we obtain the estimatces
(57)

) Pl T 2
(max el S AT D) el < As
i

and, by (53), the mequulity

] H2er s 1)
( As + 7*_( +7/\5> . (58)

max [/t < Ay
O< g N
To derive other estimates, we take the scalar product of (4) with (@7 * Tt hy/r
and use the inequality (52) as well as the mequality
duy2,2
.',)] ta/ )

EH =T E - ) = G

for all . € R, where Cy = Cy(or) > 0 1s a constant. As a result, we have

ARCIEIRETIEN & ‘ ]
~ort oy 2
i — ¢ 5
1 - e (L
h.2
o+ 1 Broil Bioyl
B‘* P +l (l |h[3|ui-] | 1’1[3“!4] + (59)
Alia/2 “l ta/2 :
~ , 7 g -
+ Cyrimax{|d-. |t|e}] o
k.2

In the derivation of (59) we also used the inequality

((“UI]) l“llrll . “ll}])h < ‘___(”l}ll'}]”i‘z = ||“lr4‘]”i.2)/2

(since £(&€ — ) = (&5 = n?)/2 for any £, 1 € R,).
Let us choose N so large (that is, 7 = T/(N + 1) so small,
rimax{1dde. ule} P T < Ca/2 forall 0 < j < N. It follows from (58) tha

for this it s sufficient that

tha

B 1172+ 1) C
;) < AV (60

)
2A g A
T( 4+T(r+2
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For B < o + 1 that cun always be done. Then, summing the mequalities (59) in
j from O o N, and applying Young's inequality, we obtain

C N ~trer/2 | fer/f2 2 l
2 '“ o /\4]:!#]
S Sl
= /.:«,()! LN 2

o+ N4 Bt +1
:F+ o+ 1 e g ”““" lica

o+ 1 Bl

{A

l ri
T E v o 1 gy Z“(“m )7 M2 + A

(o derive the last inequality we used the estimate (13)). Hence we have the

estimates
N
=

max ||(u"l)"”H,37 < Ag. (62)
G-guN

\
l"H:r lﬂr" -

< Aq. (61)

h.2

o
#

Thus restriction (60) on the size of the ume step 7 ensures global boundedness
of the difference solution of problem (4). (5) for B < o 4+ 1. Let us note that by
(53), tfrom (62) follows the estimate

max |u”1|(- < Ag. (63)
O« gaN

Let us show now that in the case

(e
T < Ay P/B (64)
the solution 1s unique, Let iy, @ be two s()luli(ms of the problem. Then from (4)
we have that @y — ity = (u’l”l —- a5’ [ 'r(ul - lh) Taking the scalar product
of thix equality with u"'l -~ ’”' . we abtain
(l}l Al}__"&ufl l”’”)/, —
i 1 B ) 1 -
1 [ AR LA NN T L L T AR ARV
. - . 31, A iyl
< 7Bimax{li . ]tlgll-]{‘ (i ~ ug.u"’” a5t

Hence by (63), (64) we conclude that (7 — do, l?'l"” iyt Y, =0, that i$. &, = .
To prove the validity of passing to the limit. we shall need another estimate,
From (4) we have

HH

N =) /7l > = @ sl 2+ 18210 .

)1
"v!“‘\ \
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Therefore, taking into account (8), and using (62). we obtain

max [f(a’*! ~ ul)y/7ll; 2 < Ao (65)
Uz <N =

For convenience, let us introduce the notation

1
v T Vsp = (U“

—u) /T TSt (j+ Dr

From (57), (61). (62). (65), using the results of [339{, we obtain the
following estimates; the functions ¢, p,(u/)”*' are uniformly bounded in
L®. T Hy0. 1) and in L0, T2 LY 21400 1)) goquted)”! are uniformly
bounded in L0, T3 LY 24D Dy qrguu) 7 in L0, T3 L3O, 1)
VTqu[/,(u’)' 20 L0 T L O D) gyt in L0, T L 0.0y Vg, pu?
in L0, T H '0.h) [(,,,7,,(111)"*‘]T‘ in L>O.T:H 'O 0), qqutu’)® in
L®O. T L0, h): gua™t?y in L7420, 7). This information is sufficient to be
able to use a compactness lhem‘em [86] tu pass to the limit as 7. — 0 (details
can be found in {296, 339)),

As a result we have another proof of existence of a global generalized solution
of the problem (1)~(3) for 8 < o+ |. which satisfies all the inglusions of Theorem
I, § 2. Observe that we have in addition that «, € L*(0. T H (0., ).

2) Let us consider the case 8 = o+ 1. Applying the inequality (12) to estimate
the right-hand side of (54) for 8= o + 1, we have

I , [ L,
;;_—';"'“;‘)’”'llll;, :rjm + (l - ;\7;) H“ H“/],Z = ”__+_2u_;|“|/l.:r2}2‘ (66)

Hence (sec (51)) we have the estimate (58) with Ay = 0 and the mequalities

h
ail ” I l A ] " |:r b2 < ’f_‘Jl
1= r+ 2 Y T )\/, M Uoply e & .

Il
Let us take 7 so small that (see (60))

T(:H~2)/|J(:Ml)| < I (‘— /\ ”/\ u;l’(n;l)ll
2C,

Then it is not hard o see that the following inequality is satisfied:

T .
o L= e Y G, =
h.l 2( )\/‘> '

+1 i
= = (i 12 = a5 ) -

;lu,r/z . ”] /2

Gy
2 T

ps0)

ot —
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from which the estimates (61)~(63) follow, Subsequent analysis is carried out as
in the case B < o + 1. 0

Thus in the cases B < o+ 1 and B = ¢ + 1, A} > 1, no matter how fine
the grid in time (which, obviously, can be taken to be non-uniform), there is no
blow-up of finite difference solutions. which agrees with the conclusions of § 2
concerning the differential problem. This agreement is even more clearly seen for
B >0+l

6 Finite difference stable sets and pussing to the limit for B > o + |

Here we shall show that for 8 >  + | we can construct a difference stable set
Wy, which has a structure quite similar to the one for the differential problem
constructed in § 2. The latter will be denoted below by Wy, to emphasize that it
is Wy for h =04,

Let us define for all v, € Hy, the functional

o+ 1
B+ o+l

Broil
hoptirels

1
o) = :)“(1/1(“/1) - by (vp).

where a(vy) = (V17 5, batuy) = |l Using Lemma 1, it {s not hard

to prove (see Lemma 3 in § 2)

Lemma 4. Let B = o+ |, Then we have the inequality

dy = inl  supJu(Avy) > B “_(,{’_fr__l),,wwmm DB @Dl g
vaelun FEOA 0 B+ o+ 1)

Now we can deline the finite difference stable set W, (which is non-empty by
Lemma 4):

W=l luy € Hy, O < Jp(Avy) < dy, A €100 1) (67)
From the construction of ‘W', we obtain (see Lemma 4, § 2)
Lemma 5. We lave the equality W'y = W, U {0}, where
Wi = {oy vy € Hyoap(vy) — bytuy) > 0.0y (uy) < dy).
Let us staie the main result of this subsection,

Theorem 7. let B> o+ | and ussawe that wgy, € Wy Then for sufficiently small
7 the finite difference problem (4), (5) has « global solution whiclt belongs 10 "W,
for al t € w.. Moceover, the solution {s unique, If, furthermove uy € Wy, the
Jinite difference solution converges as v, — 0 to the generalized solution of the
original differential problem, which was constructed in Theoreun 4, § 2.
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Remark. In the conditions of Theorem 7, no refinement of the time step 7 (which
by itself has to be sufficiently smally can lead to the finite difference solution being
unbounded, Therefore, as tollows from Theorem 7, inequality (37) cannot hold if
Upy € Wy, that is,

o+l B

/ R
| - )\]‘(“()/1- U )y, <00 uy, € W

This inequality is an additonal characteristic of the difference stable set 1,

Proof of Theorem 7. This largely follows the lines of proof of the “differential”
Theorem 4, § 2. If wy, € Wy, then by Lemma 5 we have ay () — bylugy) > 0
and therefore

o+ 1 B—tor+1)

J =~y e LY > -
1 (ttgy) 2“/. loy) Bt witon) 2 NE Lot

uy ( Uap)-

Therefore it follows from (53) that

UB + o + l) 1/020r+ 11
luople < Aq ,3'B~"m, (1toy) = A

that 1s, W, is bounded m Clwy).
Let us show that the condition
min{l, C2/(2C)})

< = - (68
T= (1 4+ Ap) P+ 20721 4+ Ay +! )

ensures solvability of scheme (4) at cach time level.

Let us make the first step in time. From Theorem 2 (see condition (20) for
Cy = 1) it follows that under the restriction (68) the scheme is solvable. Since by
(68) 'l < e+ 1 < Ap 41,

-
rimax{u e, i1l = Cop20),
and, consequently, we obtain {rom (59) the inequality

Oy Lyl o2 gyt :
2 T

1
< -U/.(ll”)*J/.(u])]. (69)
T

2

Let us prove that 1! € ‘W, Indeed, lu W' @ Wy, Then since 1! — o as
T — 0 (sce proof of Theorem 2). and ' € W, llurc cxisls a7 =1, such that
a' € Wy, By (67) this means that J, 'y = d,. Hence we have a contradiction
with (69). since by assumption J, ") < dy,.
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Thus, «' € W,. Then from Lemma 5 we have that a,(«') > byu'). Using
this inequality to estimate the second term in the right-hand side of (69), we have

7
C, (u])l-wr/l_(“())l‘wr/ﬁ - | 'B_((,—_+_ ) ! 2 1 0
& e LUID MR PR Y (T
2 T i T2B+ o0+ 1) T
Hence |
- ((l’+ ) o
5B(B +'77TT>II<u‘> P = Jyta),

and therefore ju'|c < Ajpa. This justifies making the next step in time under
restriction (68) on the magnitude of 7 and so on,

Thus, if (68) holds. the difference scheme has a global solution & € W,
|l < Ayx lor all 0 < j < N, and furthermore

l'llurlm “lwr/li" ,B-"'((l'+ ) ”A’”
- || it
T a MBro+D

TR
72 = JnCun).

Uniqueness for 7 < '/\]]3'” of a uniformly hounded solution « ¢ W, is
proved as in Theorem 6. a

The finite difference solution constructed above satisfies estimates which allow
us to pass to the limit as 7. — (. Here it is only necessary to ohserve that in
the case ug € Wy the inclusion g, € W, holds for all sufficiently small h > 0.
As u result we have the existence of a global generalized solution of the prohlem

To conclude, let us note that by the estimate (21) for global solvahility of the
finite difterence problem in the set ‘W, it is sufficient that 7 = O(h?) for h < 1,
The restriction (68) on the size of the ime step 7 is essential, since too large steps
can sooner or later “throw™ the solution out of W, and it will hecome unbounded.
The necessary shortening of the time steps 7, will he automatically performed hy
the iterative algorithm we are using, when Theorem 4 (on the non-existence of
solution) comes to the fore.

2 Explicit (linear) difference scheme

Below we shall consider hriefly unhounded solutions of the explicit difference
scheme for the prohlem (1)-(3):

(@ —w)/t, = (u"”)x\ + 1P (1 x) € wy X wy, (70)

o = oy, =0, x € wyl ite Hyl € w,. (7
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The main difference between this scheme and the implicit one lies in the fact
that the “elliptic™ operator in the right-hand side of (70) is computed from the
values of the grid function « not on the next time level as in (4), hut on the current
time level, Therefore, obviously, the question of solvability of the scheme (70),
(71) does not arise. We shall not discuss in detail the comparative advantages and
disadvantages of the two schemes (this was already mentioned carlier). Such a
detailed analysis can be found in {346},

Let us consider one basic question: when is the s'olulion of the explicit scheme
(70), (71) non-negative for any mitial function ug(x) = 0, X € wy, that is. when
does the solution satisfy the weak Maximum Prmuplu? If it does not, (70) does
not neeessarily make sense (it will not be possihle in (70) to perform the operation
of raising to an arbitrary power). It turns out that in some cases (8 < o + 1) the
weak Maximum Principle is not satisfied at all, while for 8 > o + | it requires
very severe restrictions on 7, .

I The weak Maximam Principle
The time grid here is taken to be uniform, 7, = 7.
Theorem 8. I'or B = i + 1| the weak Maxinwm Principle does not hold.  If

B = o+ |, a necessary and sufficient condition for it to hold is the inequality
7 oy . ~ N
b= > 2. Inthe case B > o+ | such a condition (s the following;

" - o /lp oy 1
T < Pyl BB Dy 218 — g l+ hl (ﬁ’%r l > -2
(or 2

#Proof. We start from the fact that a necessary and sufficient condition of non-
negativity of @ for any « > 0 in wy, is the requirement that the function

Pug) =& +7&0 =20t A =1/l (73)

be non-negative everywhere in R,. This (ollows from the form of (70) resolved
with respect o @& &y = Pytug) + At + “Z’”) if we setuy.; = Migr = 0 for
some 0 < & < M (such a sttuation could obtain, for example, at the initial moment
of time). An elementary analysis of the function (73) leads to the conclusions of

the theoremn, 0

Let us note that in the dependence of 7 on &, inequality (72) resembles condition
(33" of solvahility of the implicit scheme ona time level for 8 > o+ 1, However,
there is a crucial difference between the two: while (337) is needed only at a fully
developed stage of hlow-up (|u| large), without (72). in general, the computation
simply eannot he started. Naturally, for certain initial functions ugy, condition (72)
may not be required,
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2 Unbownded difference solutions of the explicit scheme

Here we shall consider the appearance of finite difference finite time blow-up in the
problem (70). (7D) for 8 > « + 1. To that end we could apply the eigenfunction
method. which was used in suhsection 1.4; for the explicit scheme it is much
stmpler.

Below we employ a different method, In the following we take the grid w, to
he non-uniform. 7, — Q0 us j — oo, Ty = 37147, < oc.

Let the Maximum of an initial function g, # 0. the value jug, e be attained at
some point v € wy, Itis easily seen that at that point the value of the grid function
«* s estimated in terms of «f as follows:

_ 2
Wz e = Sady e o, (74)

h?

W = leegale > O,

Here we are assuming that « > 0 in @, x o, (sce Theorem §),
From (74) i ix not hard to derive conditions for the solution to he unbounded,
Let us write (74) in the following form:

2
Wt el P |l - I~;(u~’)"'H Bl 1t e w,. (75)
)2

Let the tnitial function gy, be such that

oil B

2
My = | — 71—2-|ll()/,|(- = (), (76)

Then it immediately follows from (75) that #/*' > «/ for all j = 0.1...., and
therefore we have from (75) that

Wt = ,u(,'r,(u’)ﬂ. I € w,. amn
It remains to choose suituble sizes for the time steps 7,. For example. let us set

T, = —i’—(u’)I Boj=0.1....  g=rconst > |. (78)

Mo

Then (77) assumes the form

TIARLIS qu'. j=0,1,...: a’ = Jugnle.
Hence we immediately have
al >z ougyleg's =001 (79

that is, ¢/ — s j — oo,
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Let ux show that this is indeed finite difference finite time blow-up. By (78),
(79) we have the following estimate {or the time of existence of the difference
solution:

o g ~
To=31,=—3 W) #=
;0 po 70
g e (80)
< i|mm|(l' ”4?,‘[”| L
Mo prt po gl -

Thus, if (76) holds. uy, belongs to the unstahle set 17,

Theorem 9. Let B > o + | and asswme that condition (76) holds. Then there
exists a sequence of time steps {1, ). defined hy (18). sucl that the solution of the
explicit seheme (70), (T1) is unbounded and the time of existence of the solution
satisfies the estimate (80)).

Let us note that to get finite time hlow-up in the explicit scheme, it 1s necessary
to choose small time steps. For example, in the framework of the above approuch,
we derive the following estimate for the magnitude of 74 (the first step): if (76)
holds, we have the inequality

|- = (27077,
and therefore from (78) we ohtain

q [4 .
¢ = le“”hl(l' B pd- BB wribl p2y08 VAR il
Mo M (81)

— ()I(hz)(lj 1113 (lf'Ol)lI‘h & I,

Nuturally, in view of (78), (79) subsequent steps will he even shorter. This
estimate has the same dependence of 74 on & as the optimal inequality (33"), which
cnsures solvability of the implicit scheme, Thus to have hlow-up in the explicit
scheme, its apparent simplicity notwithstanding, we still have to compute with very
small time steps. The reason for this is clear: from (70) it immediately follows
that marching in time with lurge time steps never leads to finite time blow-up, This
is true. for example, for a upiform grid w,. Let us also note that a restriction of
the form of (81) 1s needed to have the weak Maximun Principle (see Theorem §).

Remarks and comments on the literature

§ L. The presentation of results of § 1 largely follows | 123, 127, 131, 169, 170]
(| 131] contains a brief account of the results pertaining to the one-dimensional
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equation), Certain results of § | were obtained earlier in | 120]. Theorem 6 for
og=0,p=(B-1N/2, p =1, und more general initial functions was proved by
a different method in 1379] (see also theorems 3.2 and 3.3 in |26]). Let us note
that |379. 26| make significant use of the semilinearity of equation (4) for o = 0.
1.c. ol the ability to invert the linear operator 8/df — A and reduce the problem to
an equivalent integral equation, Therefore the method of |379] is pot applicable in
the quasilipear case when ¢ («) % const. In the case o = 0, N = | und arbitrary
tp(x) Theorem 6 was proved in |170]; an exact form of the envelope of the
family {U(r. Uy)) in Theorem 5 was also established there: «(T5.x) = Gir) =
Colx| 7281 where Cy > C. is a constant. Some classes of equations of the form
(30), (31) were studied in ]127, 150, 347] (see § 7. Ch, 1V). In the most general
form degenerate a.s.5. of similar quasilinear equations were considered in |160].
Many other examples of the use of the method of stationary states are contained in
] 164]; for other possibilities see |137. 174, 175, 180. 181. 189]. Another approach
to construction of lower bounds for unhounded solutions of quasilinear equations
of the form (1) has heen developed by |306] (see also |223], where houndary value
problems in a hounded domain are considered). In ity final results, this approach
is similar to the method of stationary states. For example, in 306} it is shows that
for 1| < B < o + | the solution grows without bound on the whole space, while
for B = + 1 a lower bound™ for the localization domain is ohtained.

The main results of this section are based on intersection comparison with
the given set ' of particular stationary solutions to the guasilinear heat equation
(1) with one space varable r = [x|. A similar comparison cun be performed with
respect to an arhitrary set 78 of other solutions if it is sufficiently large (“complete™
in the sense of existence and upiqueness of tangent solutions in spatial variahle). In
this cuse we arrive at the potion of generalized B-convexity/concavity propertics of
the solutions with respect to the given functional set J3. Under certain assumptions
these propertics are proved to be to he preserved in time or to appear eventually
in time, see general results in [194), Observe that the “criterion™ of complete
blow-up for a general one-dimensional quasilinear heat equation with source [193]
is a straightforward consequence fo such intersection comparison with the set of
travelling wave solutions depending on the variahle £ = x — Ar, and looks like the
property of eventual B-copvexity.

§ 2. Theoreims of subsection | are proved in | 121, 125]. A similar problem way
considered, using a different approach, prior to that in [372]: the results obtained
there are not quite optimal. The main claims of subsection 2.1 are contained in
{120, 125] (results of sunilar gencrality were established in 1294]). The greater
part of conclusions of subsection 2.2 cun be found in | 125]. A generalization of the
concavity method to study unhounded solutions of parabolic equations and systems
of equations with a given type of nonlinearity was undertaken in |124]. Later
conditions for appearance of unhounded solutions of quasilincar parabolic equations
were estahlished in {307, 294], 1307] employs the method of cigenfunctions. which



504 VI1 Some other methads of stndy of upbounded solutions

is not unlike that of 120, 125] (sec Theorem 8 of § 2): |294] uses the same
approach as {124]. A similar analysis of the boundary value problem for the
quasilinear equation ¢, = r(w)u,, + d(u) in the one-dimensional case appeared
earlier in [225]; o particular, a version of the method of eigenfunctions was used
there. A briel survey of the literature on unbounded solutions can he found in
| 157] and {290}

§ 3. The majority of results of § 3 is contained in | 161] (see also | 157)). Other
examples of the use of the method of statiopary states to derive lower bounds for
unbounded solutions cun be found in [159. 164, 174|. The problem of computing
upper bounds and thus proof of loculization for systems ol equations is almost
completely open. The single result of |105]. ohtaiped hy the method of |108].
deals with the semilinear system (1), (2) for g = ¢ = O and p = ¢. Let us
note the paper [93] (see also 1290]), which considers the Cauchy problem for a
semilinear system and shows that for (y + 1)/(pg — 1) = N/2, y = max{p. q].
every non-trivial hon-negative solution blows up in finite time. thus determining
the critical (in the sense of Fujita | 112]) exponent of the source.

§ 4. Numerical and gualitative results of subsection | are taken from |273, 279).
The analysis of subsection 2 comes from |142].

§ 5. All the main agsertions of § 5 are proved in {182, 183]. Studies of
unbounded solutions of explicit bnite difference schemes for the semilinear (o =
0) equation using different methods were conducted in 311, 312, Interesting
results concerning loculizition in the context of an explicit-implicit scheme for the
equation with o = 0, when the source term «” is taken not from the next, but from
the current time level, are obtained in {64]. b particular, it is shown there that for
B = 2 the dilference solution becomes inbinite at three central points, while for
£ > 2 it happens at a single point.

The results of § 3 and the proposition of § 4 are based on the derivations
of {161, 159]. Let us note that the practically optimal result concerning global
solvability of the boundary value problem for pg < (1 + p)(1 + #) (Theorem
5 of § 3), established by using the method of stationary states, is bard 0 obtain
by using the usual techoiques of a priori estimates, for example, those employed
ib Galerkin's method. This is indicated by the analysis of {157], as well as, for
example, the results of {299], where restrictions of the form p < 1+ p, g < 1 +v
are obtained. These restrictions are the natural ones for a single equation (see § 2).
They characterize the eusily explaibable relation between intensities of proeesses
of heat diffusion and combustion, which is pecessary for the occurrence of thermal
perturbations of tinite amplitude. As showp in § 3, these conditions are far {rom
being optimal for systems of equations. .
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Open problems

1. (§ 1) Deseribe the whole clags of coeflicients (k, (J) for which the absence of
localization condition (16) (for N = 1) is not ouly sufficient. but also pecessary
(for the case k(u) = . Q) = uf. B = o+ 1. o > 0. this bas heen done in
[129]).

2. (§ 1) Derive an upper bound for w(T,, . x) of the form (29°) in Theorem 5
for arbitrary initial functions «y(x) (for a particular class of g this bas been done
i 131, 172, 173)).

3. (§ 1) Prove localization of unbounded solutions of equation (1) with general
coefficients (30) for ¢ > 2 (in the case k) = 1, Qo = (1 + w)InP(l + ),
B > 2, this has been dove in | 189] (8 = 2) and | 177] (B > 2): see also | 192) and
§ 7. Ch. IV).

4, (§ 2) Determine conditions for which the bebaviour of unbounded solutions
of the boundary value problem (5). (6) as ¢t — T (ug) <« oo, B € (0 + 1 (o +
(N + 2)/(N —~2),) is described by the self-similar solutions constructed in § 1,
Ch. IV. Apalyze the asymptotic bebaviour of unbounded solutions of the problem
for B > (or+ 1)YN +2)/(N = 2), (let us note that in this case there is an upugual
clags of global solutions; see |314}).

5. (§ 3) Is it possible to construct a family of explicit solutiony of equation
(39) in RY for the critical value of the parameter 8 = [N/« + 2(1 + 1/a)}/|N —
201 + /)], @ # 1, similar to the one given in the example in subsection 2.4 for
the semi-linear case o = 1, B = (N + 4)/(N — 4)?

6. (§ 3) Determine conditions for localization of compactly supported un-
bounded solutions of the Cauchy problem for the system (1), (2). Is the condition
m=pqg— (1 + @)l +v) =0 sufficient for that?

7. (§ 3) What ass. deseribes asymptotic bebaviour of unbounded solutions
of the Cauchy problem for the system (1), (2) in the cases when it does not have
self-similar solutions?

8. (§ 3) Determine conditions for solvability of the elliptic system (65). What
is the structure of the set of its solutions for various values of parameters (some
pumerical results are contained in ]273, 279)).

9. (§ 4) Find conditions for localization of unbounded solutions of the problem
(15), (16).

10. (§ 5) Are the finite difterence solutions of the explicit seheme (70), (71)
localized for 8 > o + | in the case of up initial function iy, = 0 with “tompact
support”™ (that is, can it bappen that {x € wy | (T, . x) = 00} # wp)? The implicit
scheme does not have this asymptotic property.
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