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Preface to the English edition

In the relatively brief time that has passed since the appearance of this book in 
Russian, a range of new results have been obtained in the theory of strongly non- 
stationary evolution equations, the main problems o f  this area have been more 
clearly delineated, specialist monographs and a large number of research papers 
were published, and the sphere of applications has expanded. It turns out. that as far 
as nonlinear heat equations with a source term are concerned, the present authors 
have, on the whole, correctly indicated the main directions of  development o f  the 
theory o f  finite time blow-up processes in nonlinear media. We were gratified to 
see that the subject matter of the book had lost none of its topicality, in fact, its 
implications have widened. Therefore we thought it right to confine ourselyes to 
relatively insignificant additions and corrections in the body of the work.

In preparing the English edition we have included additional material, pro
vided an updated list o f  references and reworked the Comments sections wherever 
necessary.

It is well known that most phenomena were discovered by analyzing simple 
articular solutions o f  the equations and systems under consideration. This  also 
applies to the theory o f  finite time blow-up. We included in the introductory Ch. I 
and II, and in Ch. IV, new examples of unusual special solutions, which illustrate 
unexpected properties o f  unbounded solutions and pose open problems concerning 
asymptotic behaviour. Some of these solutions are not self-similar (or invariant 
with respect to a group of transformations). Starting from one such solution and 
using the theory o f  intersection comparison of unbounded solutions having the 
same existence time, we were able to obtain new optimal estimates o f  evolution 
o f  fairly arbitrary solutions. This required changing the manner of presentation of 
the main comparison results and some subsequent material in Ch. IV.

We hope that this book will be o f  interest not only to specialists in the area 
of  nonlinear equations o f  mathematical physics, but to everyone interested in the 
ideas and concepts of general rules o f  evolution o f  nonlinear systems. An im por
tant clement o f  evolution o f  such systems is finite time blow'-up behaviour, which 
represents a kind o f  stable intermediate asymptotics of the evolution. Without 
studying finite time blow-up, the picture o f  the nonlinear world would be incom 
plete. O f  course, the degree to which a reader manages to extract such a picture 
from this somewhat specialized book, is entirely a matter for the authors’ con-
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science; in writing this book they set themselves originally a much more limited 
goal: to present the mathematical basis o f  the theory of finite time blow-up in 
nonlinear heat equations.

The authors are grateful to the translator of the book, Dr. M. Grinfeld, who 
made a number of  suggestions that led to improvements in the presentation o f  the 
material.

The authors would like to express their thanks to Professor J.  L. Vazquez for 
numerous fruitful discussions in the course of preparation of  the English edition.

A lex a n d er  A. Sam arski i ,  Victor A. Galaktionov,  
S erg e i  I1. Kurdyumov, A lex a n d er  P. M ikhailov
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Introduction

Second order quasilinear parabolic equations and systems of parabolic quasilinear 
equations form the basis o f  mathematical models o f  diverse phenomena and pro
cesses in mechanics, physics, technology, biophysics, biology, ecology, and many 
other areas. For example, under certain conditions, the quasilinear heat equation 
describes processes of electron and ion heat conduction in plasma, adiabatic filtra
tion of gases and liquids in porous media, diffusion of neutrons and alpha-particles: 
it arises in mathematical modelling of processes o f  chemical kinetics, o f various 
biochemical reactions, o f  processes of growth and migration of populations, etc.

Such ubiquitous occurrence of  quasilinear parabolic equations is to be explained, 
lirst o f  all. by the fact that they are derived from fundamental conservation laws (of 
energy, mass, particle numbers, etc). Therefore it could happen that two physical 
processes having at lirst sight nothing in common (for example, heat conduction 
in semiconductors and propagation of  a magnetic field in a medium with finite 
conductivity), arc described by the same nonlinear diffusion equation, differing 
only by values of a parameter.

In the general case the differences among quasilinear parabolic equations that 
form the basis of mathematical models of various phenomena lie in the character 
of the dependence of coefficients of the equation (thermal conductivity, diffu.sivity, 
strength of body heating sources and sinks) on the quantities that deline the state 
of the medium, such as temperature, density, magnetic lield, etc.

ft is doubtful that one could list all the main results obtained in the theory 
o f  nonlinear parabolic equations. Let us remark only that for broad classes o f  
equations the fundamental questions o f  solvability and uniqueness o f  solutions 
of various boundary value problems have been solved, and that differentiability 
properties of the solutions have been studied in detail. General results o f  the 
theory make it possible to study from these viewpoints whole elasses o f  equations 
of a particular type.

There have also been notable successes in qualitative, or constructive, studies 
of  quasilinear parabolic- equations, concerned with the spatio-temporal structure o f  
solutions (which is particularly important in practical applications). Research of 
this kind was pioneered by Soviet mathematicians and mechanicists. They studied 
properties of a large number of self-similar (invariant) solutions of various nonlin
ear parabolic equations used to describe important physical processes in nonlinear



Introduction

dissipative continua. Asymptotic stability o f  many o f  these solutions means that 
these particular solutions can he used to describe properties o f  a wide variety of so
lutions to nonlinear boundary value problems. This demonstrates the possibility of 
a “classification" of properties o f  families o f  solutions using a collection o f  stable 
particular solutions; this classification can, to a degree, serve as a "superposition 
principle" for nonlinear problems. Studies o f  this sort engendered a whole direc
tion in the theory o f  nonlinear evolution equations, and this led to the creation of 
the qualitative (constructive) theory of  nonlinear parabolic problems'.  It turns out 
that, from the point of view of the constructive approach, each nonlinear parabolic 
problem has its own individuality and in general cannot he solved by a unified ap
proach, As a rule, for such an analysis of certain (even very particular) properties 
o f  solutions, a whole spectrum o f  methods of qualitative study is required. This 
fact underlies the importance of the information contained even in the simplest 
model parabolic problems, which allow us to single out the main directions in the 
development of the constructive theory.

The main problems arising in the study of complicated real physical processes 
are related, primarily, to the nonlinearity o f  the equations that form the base of 
the mathematical model. The first consequence of nonlinearity is the absence of a 
superposition principle, which applies to linear homogeneous problems. This leads 
to an inexhaustible set of possible directions of  evolution o f  a dissipative process, 
and also determines the appearance in a continuous medium of discrete spatio- 
temporal scales. These characterize the properties o f  the nonlinear medium, which 
are independent of external factors. Nonlinear dissipative media can exhibit a 
certain internal orderliness, characterized by spontaneous appearance in the medium 
o f  complex dissipative structures. In the course of evolution, the process o f  self
organization takes place.

These properties are shared by even the simplest nonlinear parabolic equations 
and systems thereof, so that a number of fundamental problems arise in the course 
o f  their constructive study. The principles of evolution and the spatio-temporal 
“architecture” of dissipative structures are best studied in detail using simple (and 
yet insightful) model equations obtained from complex mathematical models by 
singling out the mechanisms responsible for the phenomena being considered.

It is important to stress that the development o f  nonlinear differential equations 
o f  mathematical physics is inconceivable without the use o f  methods of mathe
matical modelling on computers and computational experimentation. It is always 
useful to verify numerically the conclusions and results of  constructive theoretical 
investigation. In fact, this is an intrinsic requirement of constructive theory, this 
applies in particular to results directly related to applications.

x i t

'Clearly, such a subdivision of the theory into general and constructive parts is arbitrary. 
The two directions of study are closely interlinked.
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A well designed computational experiment (there are many examples of this) 
allows us not only to check the validity and sharpness of theoretical estimates, 
hut also to uncover subtle effects and principles, which serve then to define new 
directions in the development of the theory. It is our opinion, that the level of 
understanding of  physical processes, phenomena, and even of the properties of 
solutions of an abstract evolutionary problem, achieved through numerical experi
ments cannot be matched by a purely theoretical analysis,

A special place in the theory of nonlinear equations is occupied by the study of 
unbounded solutions, a phenomenon known also as blow-up behaviour (physical 
terminology). Nonlinear evolution problems that admit unbounded solutions are 
not solvable globally (in time): solutions grow without bound in finite time inter
vals. For a long time they were considered in the theory as exotic examples of 
a sort, good possibly only for establishing the degree of optimality o f  conditions 
for global solvability, which was taken to be a natural “physical" requirement. 
Nonetheless, we remark that the lirst successful attempts to derive unboundedness 
conditions for solutions of nonlinear parabolic equations were undertaken more 
than 30 years ago. The fact that such “singular" (in time) solutions have a phys
ical meaning was known even earlier; these are problems o f  thermal runaway, 
processes o f  cumulation o f  shock waves, and so on,

A new impetus to the development o f  the theory of unbounded solutions was 
given by the ability to apply them in various contexts, for example, in self-focusing 
o f  light beams in nonlinear media, non-stationary structures in magnetohydrody
namics (the '/'-layer), shockless compression in problems o f  gas dynamics. The 
number of publications in which unbounded solutions are considered has risen 
sharply in the last decade.

It has to be said that in the mathematical study of unbounded solutions of 
nonlinear evolution problems, a substantial preference is given to questions of 
general theory: constructive studies in this area are not sufficiently well developed. 
This situation can be explained, on the one hand, by the fact that here traditional 
questions of general theory are very far from being answered completely, while, 
on the other hand, it is possible that a constructive description of unbounded 
solutions requires fundamentally new approaches, and an actual reappraisal of the 
theory. The important point here, in our understanding, is that so far there is 
no unified view o f  what constitutes the main questions in constructive study of 
blow-up phenomena, and the community of researchers in nonlinear differential 
equations does not know what to expect o f  unbounded solutions, in either theory or 
applications (that is, what properties of  non-stationary dissipative processes these 
solutions describe).

These properties are very interesting; in some sense, they are paradoxical, if 
considered from the point of view o f  the usual interpretation of non-stationary 
dissipative processes.

xiii



X IV Introduction

In this hook we present some mathematical aspects of the theory o f  blow
up phenomena in nonlinear eontinua. The principal models used to analyze the 
distinguishing properties of blow-up phenomena, are quasilinear heat equations and 
certain systems o f  quasilinear equations.

This book is based on the results of  investigations carried out in the M, V. 
Keldysh Institute o f  Applied Mathematics o f  the Russian Academy o f  Sciences 
during the last 15 or so years. In this period, a number of extraordinary properties 
o f  unbounded solutions of  many nonlinear boundary problems were discovered and 
studied. Using numerical experimentation, the spatio-temporal structure of blow-up 
phenomena was studied in detail; the common properties of  their manifestations 
in various dissipative media were revealed. This series of studies defined the 
main range of questions and the direction of development of the theory of blow
up phenomena, indicated the main requirements for theoretieal methods of study 
o f  unbounded solutions, and, finally, made it possible to determine the simplest 
nonlinear models o f  heat conduction and combustion, which exhibit the universal 
properties o f  blow-up phenomena.

The present book is devoted to the study of such model problems, but we em 
phasize again that most general properties are shared by unbounded solutions of 
nonlinear equations o f  different types. This holds, in particular, for the loealization 
effeet in blow-up phenomena in nonlinear eontinua: unbounded growth o f  temper
ature, for example, occurs only in a finite domain, and, despite heat conduction, the 
heat concentrated in the loealization domain does not diffuse into the surrounding 
cold region throughout the whole period of  the process.

The theory of blow-up phenomena in ptirabolie problems is by no means e x 
hausted by the range of  questions reflected in this book. It svill not be an exag
geration to say that studies of blow-up phenomena in dissipative media made it 
possible to formulate a number o f  fundamentally new questions and problems in 
the theory o f  nonlinear partial differential equations. Many interesting results and 
conclusions, which do not have as yet a sufficient mathematical justification, have 
been left out o f  the present book.

One o f  the main ideas in the theory o f  dissipative structures and the theory of 
nonlinear evolution equations is the interpretation of the so-called eigenfunctions 
(e.f.) of the nonlinear dissipative medium as universal characteristics o f  processes 
that can develop in the medium in a stable fashion. The study o f  the architecture 
o f  the whole collection o f  e.f. o f  a nonlinear medium and, at the same time, of 
conditions of their resonant excitation, makes it possible to “control" nonlinear 
dissipative processes by a minimal input o f  energy.

Development o f  blow-up regimes is accompanied by the appearance in the 
medium o f  complex, as a rule discrete, collections o f  e.f. with diverse spatio-tem
poral structure. An intrinsic reason for such increase in the complexity o f  organi
zation o f  a nonlinear medium is the loealization o f  dissipative processes.
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The problem o f  studying e.f. o f  a nonlinear dissipative medium, which is stated 
in a natural way in the framework of the differential equations o f  the corresponding 
mathematical model, is closely related to the fundamental problem of establishing 
the laws o f  thermodynamical evolution of non-equilibrium open systems.

Related questions are being intensively studied in the framework of synergetics. 
In open thermodynamical systems there are sources and sinks of energy, which, 
together svith the mechanisms of dissipation, determine its evolution, which, in 
general, takes the system to a complex stable state different from the uniform 
equilibrium one. The latter is characteristic o f  closed isolated systems (the second 
law of thermodynamics).

The range of questions related to the analysis o f  line structure o f  nonlinear 
dissipative media, represents the next, higher (and, it must be said, harder to 
investigate) level of the theory of blow-up phenomena.

The first two chapters of the book are introductory in nature. In Chapter 1 
we present the necessary elementary material from the theory of  second order 
quasilinear parabolic equations. Chapter 11, the main part of which consists of 
results of analyses o f  a large number of concrete problems, should also be regarded 
as an introduction to the methods and approaches, which are systematically utilized 
in the sequel. These chapters contain the concepts necessary for a discussion ol 
unbounded solutions and effects of  localization o f  heat and combustion processes.

Chapters 111, IV are devoted to the study o f  localization o f  blow-up in two 
specific problems for parabolic equations with power law nonlincarities. In subse
quent chapters we develop methods of attacking unbounded solutions o f  quasilinear 
parabolic equations of general form; relevant applications are presented. At the end 
o f  eaeh chapter we have placed comments containing bibliographical references 
and additional information on related results. There we also occasionally give lists 
of, in our opinion, the most interesting and important questions, svliieh are as yet 
unsolved, and for the solution of which, furthermore, no approach has as yet been 
developed.

Chapter 111 deals, in the main, with the study o f  the boundary value problem 
in (0, T)  x R + for the heat equation with a power lasv nonlinearity, u, =  (u'ru x )x, 
<t — const > 0 , with a fixed blow-up behaviour on the boundary .v =  0 : »(/, 0 ) =  
//i(0, u\U) o o  as t T  < oo.

For a  > 0 we mainly deal with the power law boundary condition, iii(r)  =  
(T -  /)", where n =  const <  0. In this class there exists the “ limiting" localized S 
blow-up regime, «,(/) =  (T  -  t) l/'r; heat localization in this case is graphically 
illustrated by the simple separable self-similar solution2:

n.sd. -v) -  (T  -  t) A(1 =
lU r  +  D V '

(Г
( 1)

2Here ( : ) ,  — max(:„ 0).
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By (1),  heat from the localization region (0 <  x <  До) never reaches the 
surrounding cold space, even though the temperature grows without bound in that 
region. In Ch, 111 we present a detailed study o f  localized (n > — 1/rr) and non- 
localiz.ed (n <  — 1/rr) power law boundary conditions; corresponding self-similar 
solutions are constructed; analysis o f  the asymptotic behaviour o f  non-self-similar 
solutions o f  the boundary value problem is performed, and physical reasons for 
heat localization are discussed.

The case a  ~  0  (the linear heat equation) has to be treated in a somewhat 
different manner. Here the localized S-regime is exponential. u\(i) =  exp ((T  -  
!) ')• In this case the heat coming from the boundary is effectively localized in 
the domain (0 <  x <  2 ) ;  u(t,  v) oo as t —> 7’" ,  0  <  ,v < 2. and u (T ~ ,  x) <  oc 
for all ,v > 2. The .study of the asymptotic phase of  the heating process uses 
approximate self-similar solutions, the general principles of construction of which 
are presented in Ch, VI,

Chapter IV contains the results of  the study o f  the localization phenomenon 
in the Cauchy problem for the equation with power law nonlinearity; it, =  V  • 
(it'rVu) +  itf l . i >  0. д- б R w. where i t  >  0. /3 > 1 are constants, A number of 
topics are investigated for <r > 0, We construct unbounded self-similar solutions, 
which describe the asymptotic phase of the development of the blow-up behaviour; 
conditions for global insolvability o f  the Cauchy problem are established, as well 
as conditions for global existence of  solutions in the case /3 > it  +  1 +  2//V; we 
prove theorems on occurrence (/3 > <r +  1) and non-occurrence (1 <  /3 <  it  +  1) 
o f  localization of unbounded solutions.

Localization o f  the combustion process in the framework of this model is illus
trated by the self-similar solution (S-regime) for /3 =  <r +  1. N =  1, in the domain
(0. 7’o) x  R ;

where /.s =  27г(<г+ l ) 1/2/<r is the fundamental length o f  the S-regim e. The main 
characteristic of this solution is that the combustion process takes place entirely in 
the bounded region (|,v| < /.s/2 ); outside this region its =  0 during all the time 
o f  existence of the solution which blows up (t <= (0, 7'())).

The study of the spatio-temporal structure o f  unbounded solutions is based 
on a particular “comparison'' o f  the solution of the Cauchy problem with the 
corresponding self-similar solution (for example, with (2 )) .  The main idea of 
this “comparison’' consists o f  analyzing the number o f  intersections N(t)  o f  the 
spatial profiles of the two solutions. u(t, x) and tts(i, x) .  having the same blow
up time. The fact that N(t)  does not exceed the number of intersections on the 
parabolic boundary of the domain under consideration (and in a number of cases is 
a non-decreasing function o f  /). is a natural consequence of the Strong Maximum

».s(/, л-) =  (To -  t) ) 1/,Г. |.v| < L s/2 .

U! > Ls/2,
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Principle for parabolic equations and goes back to the results by C. Sturm (1836) .  
It turns out that in the comparison of unbounded solutions with equal intervals 
of existence. N(t)  cannot be strongly decreasing: in any ease, if  N (0) > 0  then 
N(t)  > 0 for all i €  (0. 7\)). In Ch. IV we use comparison thcoiems o f  the form 
NU) <  1 and NU) =  2.

Let us stress that to study particular properties of unbounded solutions the 
usual comparison theorem for initial conditions is not applicable. The reason is 
that majorization of one solution by another, for example. i t ( i .x )  <  u $ ( i ,x )  in 
(0 . To) x R . usually means that the solutions и ^  ii.v have different blow-up times, 
so that from a certain moment o f  time onwards such a comparison makes no sense.

In Chapter IV we also consider the case of a semilinear equation (<x =  0). 
Unbounded solutions o f  the equations with “logarithmic” nonlinearities, и, — Д11 +  
( l +//) ln^( 1 + » ) ,  1 > 0. .v б R'v , have some very interesting properties for (3 >  1.

In Chapter V we prove comparison theorems for solutions of various nonlinear 
parabolic equations, based on special pointwise estimates of the highest order 
spatial derivative o f  one of the solutions: applications of this theory are given.

The idea of this comparison is the following. In the theory of  nonlinear seqpnd 
order parabolic equations

where 11 is a smooth domain in R w. A (it) is a nonlinear second order elliptic 
operator with smooth coefficients, there is a well-known comparison principle for 
sub- and supersolutions. Let it > 0  and n > 0  be, respectively, a super- and a 
subsolution of equation (.3), that is.

and 11 > v on i)G, where i)G is the parabolic boundary of G.  Then 11 > v everywhere 
in G.

Propositions o f  this sort are often called Nagumo lemmas. A systematic con
structive analysis o f  nonlinear parabolic equations started precisely from an under
standing that a solution o f  the problem under consideration can be quite sharply 
bounded from above and below by solutions of  the differential inequalities (4). 
Nagumo type lemmas are optimal in the sense that a further comparison o f  differ
ent functions 11 and 11 is impossible without using additional information concerning 
their properties.

The same operator A appears in both the inequalities of (4). Let us consider 
now the case when we have to determine conditions for the comparison o f  solutions 
/i11'1 > 0 o f  parabolic equations

11, ~  A (1 1). (1 , x) €  G  =  (0. T)  x 11. (3)

n, >  A(/i). и, 5  A(u) in G. (4)

(5)
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with different elliptic operators L111 ф L a \ where L Un( p . q , r )  are smooth func
tions of their arguments. Parabolicity of  the equations means that

—  L w)( p .  q . r )  > 0 ,  p. q  б R , ,  /• б R. (6 )
Dr

From the usual comparison theorem of classical solutions it follows that the in
equality ua)  >  a 1' 1 vvill hold in G i f //1’ 1 > a 111 on DG and for all e б C,',2( G ) n C ( G )

L ,2,( v. 1 V u|. Д i>) > U n (v. |V i j | ,  An) in G (7)

(this claim is equivalent to the Nagumo lemma). The latter condition is frequently 
too cumbersome and does not allow us to compare solutions o f  equations (5) for 
signilicantly differing operators U 1'1.

Let us assume now, that, in addition, a '21 is a critical solution, that is

a j2’ > 0 in G, (8 )

so that l . t2)(ita ) , |Vz/12l|, Д а '21) > 0  everywhere in G. Parabolieity o f  the equation 
for v ~ 2  allows us, in general, to solve the above inequality with respect to Д а '21, 
so that as a result we obtain the required pointwise estimate of  the highest order 
derivative:

Д а 12’ > /[“' ( a ' 21. |Val2l|) in G. (9)

Therefore for the comparison a 121 > a *11 it .suffices to verify that the inequality (7) 
holds not for all arbitrary u, but only for the functions that satisfy the estimate (9). 
This imposes the following conditions on the operators /.IM in (5):

-;7 - ( L a ) ( p ,  </, r) -  L a ) ( p , q ,  /')) > 0 , L "  V  q, ? 2i(,K </)) £  0. 
fir

For quasilinear equations /.lr| =  K u'Hp. q ) r  +  N u'](p .  q )  these conditions have a 
particularly simple form: K {1) > K iU, K iUN l21 > A' 121̂ 111 in R ,  x R .

The criticality requirement (8 ) on the majorizing solution is entirely dependent 
on boundary conditions and frequently is easy to verify.

Vast possibilities are presented if we compare not the solutions themselves, 
but some nonlinear functions of these solutions; for example, a (2' ^  /:(alU ) in 
G, where E  : [0, oo) ->  [0. oo) is a smooth monotone increasing function. The 
choice of this function is usually guided by the form of the elliptic operators L 11’1 

in (5), In Ch. V we consider yet another direction of development of comparison 
theory; this is the derivation o f  more general pointwise estimates, which arise as 
a consequence o f  i/'-criticality o f  a solution: nj ' 1 ^  i//(n121) in G, where ф is a 
smooth function.

As applications, we obtain in Ch. V conditions for localization o f  boundary 
blow-up regimes and its absence in boundary value problems for the nonlinear

x v i i i
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heat equation of general type (by comparison with self-similar solutions o f  the 
equation it, =  (iin u x)x. ct ^  0, which are studied in detail in Ch. III.) Using the 
concept of t/'-critieality. we derive conditions for non-existence of global solutions 
o f  quasilinear parabolic equations.

In Ch. VI we present a different approach to the study of asymptotic behaviour 
of solutions o f  quasilinear parabolic equations. There we also talk about comparing 
solutions of different equations.

As already mentioned above, an efficient method o f  analysis of non-station a 17 

processes of nonlinear heat conduction, described, for example, by the boundary 
value problem

it, =  A(n) =  (k(tt) itx) , .  1 €  (0. T). x  >  0:

»(/. 0) =  ii| (/) —> o c .  t —> 7’ : tt((). x) =  it()(x) >  0. .v > 0,
( 10)

is the construction and analysis of the corresponding self-similar or invariant so
lutions. However, the appropriate particular solutions exist only in relatively rare 
cases, only for some thermal conductivities k(tt)  ^  0  and boundary conditions 
»(/, 0) =  it\(t) >  0  in (10).  Using the generalized comparison theory developed 
in Ch. V. it is not always possible to determine the precise asymptotics of the 
solutions by upper and lower bounds. On the whole this is related to the same 
cause, the paucity o f  invariant solutions of the problem (10).  I11 Ch. VI we employ 
approximate .self-similar solutions (a.s.s),  the main feature of which is that they 
do not satisfy the equation, and yet nonetheless describe correctly the asymptotic 
behaviour of the problem under consideration.

I11 the general setting, a.s.s are constructed as follows. The elliptic operator 
A in equation (10). which by assumption, does not have an appropriate particular 
solution is decomposed into a sum of two operators.

A (//) =  B(/. tt) ■+ |A(n) — B(/. it) ( 1 1 )

so that the equation
it, — B(/. tt) ( 12)

admits an invariant solution it ~  tix( t .\ )  generated by the given boundary condi
tion: ;/,(/.()) =  tt\(t). But the most important thing is that on this solution the 
operator A — В in (11)  is to be “much smaller’' than the operator B . that is, we 
want, in a certain sense, that

1|A(»,(/. •)) -  B(/. ;/,(/. -))ll «  l|B(/. ;/,(/. - ) ) ||

as t —> T  . This can guarantee that the solution », o f  (12) and the solution o f  the 
original problem arc asymptotically close.

In Ch. VI. using several model problems, we solve two main questions: I)  a 
correct choice o f  the “defining"operator В  with the above indicated properties: 2)
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justification of the passage to equation ( ! 2 ), that is, the proof of convergence, in a 
special norm of u(t, •) —»• н,(/, •) as / 7’ . It turns out that the defining operator
В  can be of a form at first glance completely unrelated to the operator A of the 
original equation. For example, we found a wide class of problems (10),  the a.s.s. 
o f  which satisfy a Hamilton-Jacobi type equation:

OO, =  =  B ( n v). (13)

Thus at the asymptotic stage of the process we have “degeneration” of  the original 
parabolic equation (10) into the lirst order equation (13).

Using the constructed families o f  a.s.s. we solve in Ch. VI the question of 
localization of boundary blow-up regimes in arbitrary nonlinear media.

A considerable amount o f  space is devoted in Ch. VII to the method of  stationary 
states for nonlinear parabolic problems, which satisfy the Maximum Principle.

It is well known that if an evolution equation u, =  A (it) for t > 0, »(()) =  u0, 
has a stationary solution it ~  it, (A ( it ,)  =  0 ), there exists an attracting set .M in the 
space of all initial functions, associated with that stationary state: if  uq 6  .At, then 
it(i, •) —> it, as I —> oo. This ensures that a large set of non-stationary solutions 
is close to it, for large t.

For strongly non-stationary solutions, for example, those exhibiting finite time 
blow-up (||i/(/,-)ll —>• oo as t —>• T q < oo), stabilization to it, is, o f  course, 
impossible. Nevertheless, as we show in Ch. VII, there still is a certain “closeness” 
o f  such solutions, now to a whole family o f  stationary states ((Ул) (parametrized 
by A). Using a number of examples we line! that a family of stationary states (U A) 
(А((УЛ) =  0),  continuously depending on A, contains in a “parametrized” way (in 
the sense o f  dependence A =  A(r)) many important evolution properties of the 
solutions of the equation. Since to use the method we need only the most genera! 
information concerning the family ((Ул), this fact allows us to describe quite subtle 
effects' connected with the development of  unbounded solutions.

In addition, in Ch. VII we analyse blow-up behaviour and global solutions of 
boundary value problems for quasilinear parabolic equations with a source. In 
the last section we consider difference schemes for quasilinear equations admitting 
unbounded solutions.

In the lirst two introductory chapters we use a consecutive enumeration (in each 
chapter) o f  theorems, propositions and auxiliary statements. In the following, more 
specialized chapters, theorems and lemmas are numbered anew in each section. 
In each section formulas are numbered consecutively as well. The number of 
leferences to formulas from other sections is reduced to a minimum; on the rare 
occasions when this is necessary, a double numeration scheme is used, with the 
lirst number being the section number.

The authors arc grateful to their colleagues V. A. Dorodnitsyn, G. G. Eienin.
N. V. Zmitrenko, as well as to the researchers at the M. V. Keldysh Institute ol
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Applied Mathematics o f  the Russian Academy of Sciences, Applied Mathematics 
Department o f  the Moscow Physico-Technica! Institute, and the Numerical Anal
ysis Department of the Faculty of Computational Mathematics and Cybernetics of 
the Moscow State University, who actively participated in the many discussions 
concerning the results of the work reported here. We are also indebted to Professor
S. I. Pohozaev and all the participants of the Moscow Energy Institute nonlinear 
equations seminar he heads for fruitful discussions and criticism o f  many of these 
results.





Chapter I

Preliminary facts of the theory of second 
order quasilinear parabolic equations

In this introductory chapter we present well-known facts of the theory of second 
order quasilinear parabolic equations, which will be used below in our treatment 
of various more specialized topics.

The main goal of the present chapter is to show, using comparatively uncompli
cated examples, the wide variety of properties o f  solutions of  nonlinear equations 
of parabolic type and to give the reader an idea of methods of  analysis to be used 
in subsequent chapters. In particular, we want to emphasize the part played by par
ticular (self-similar or invariant) solutions of equations under consideration, which 
describe important characteristics of nonlinear dissipative processes and provide a 
“basis” for a description, in principle, o f a wide class o f  arbitrary solutions. This 
type o f  representation is dealt with in detail in Ch. VI.

In this chapter we illustrate by examples the simplest propositions of the theory 
of quasilinear parabolic equations. A more detailed presentation o f  some o f  the 
questions mentioned here can be found in Ch. II; subsequent chapters develop 
other themes.

§ 1 Statement of the main problems. Comparison theorems

1 F orm u lation  of boundary value and C au ch y  problem s

In the majority o f  cases we shall deal with quasilinear parabolic equations of the 
following type: n o n l in e a r  h ea l  equations.

и, =  А (и) =  V • (k (u )V  и), V (•) =  gradj (•). ,v б R w. ( ! )

or with n on lin ear  h ea t  e q u a t ion s  with s o u rc e  (sink),

u, ~  B (n) =  V • (k(u) V u) +  <2 (u). (2)
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Here the function k(u )  hits the meaning of nonlinear thermal conductivity, which 
depends on the temperature it =  u ( t , л ) > 0. We shall take the coefficient к to be 
a non-negative and .sufficiently smooth function: k(u )  6  C 2(((). oo)) П C([(). oo)). 

If  it > 0 is a .sufficiently smooth solution, then (1) can be rewritten in the form

n, =  A (it) з  k(it)Ait +  k'(u)\Vit\2. ( ! ' )

Hi t

where Д is the Ixtphtcc o p e ra to r .

N .о Л. \" (J ll i \" / 1)11

‘ • - E s j - ' w E U

Equation ( ! )  is equivalent to the equation

it, =  A (it) ~  Аф(и). ( ! " )

ф(и) — f к(т])с1т]. it > 0 . 
Jo

The function Q(it) in (2) describes the process of heat emission or combustion 
in a medium with nonlinear thermal conductivity if Q(u)  > () for it > 0. or of heat 
absorption if  Q(u)  < 0. Unless explicitly stated otherwise, we shall consider the 
function Q (u)  to be sufficiently smooth: Q(it) e  C 1 ([0. o o )). In most cases we 
assume that there is no heat emission (absorption) in a cold medium, Q(0) =  0.

In the following, we shall mainly deal with the lirst boundary value problem 
and with the Cauchy problem for the equations (1).  (2). In the f i r s t  bou n d ary  
value p r o b l e m  we have to find a function u(t. x),  which satisfies in (0, T)  x Я .  
where T  > 0  is a constant and l i  is a (possibly unbounded) domain in R w with 
a smooth boundary Ш .  the equation under consideration, together with the initial 
and boundary conditions

it (O .x) — iio(.v) > 0, .V 6 IT, no € С ( Я ) ,  sup »0 <  oo; (3)

u(t. x)  =  ii| (/. .v) > 0 .  t €  (0. T ) .  x e  ilil;

hi e C ( l O . T )  x ;)П), supii| < oo.
(4)

The function iio(.r) in (3) can be considered as the initial temperature perturba
tion. The condition (4) describes the exchange of heat with the surroundings on 
the boundary i) il  o f  the domain. The condition sup no < oo is o f  importance in the 
case of unbounded IT  The solution o f  problems ( I ), (3),  (4) or o f  ( 2 ) - (4 )  is then 
also sought in the class of functions bounded uniformly in x €  Я  for t 6  [0, T).

Apart from the lirst boundary value problem, wc shall also consider the C auchy  
p ro b l em  in ( 0 , '/') x R w with the initial condition

i/((), a ) =  iio(.v) > 0, x e  R'v ; n() e  C ( R'v ), supn(l <  oo. (5)
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We are looking for a solution in the class of functions bounded uniformly in л- 6  R w 
for t б [0. T ).

In the above statement of the problems we omitted some details, which need to 
be clarified. First of all, it is not made clear in what sense the solution »(/, .v) is to 
satisfy the equation, and the boundary and initial conditions. This question is easily 
solved if  we are looking for a c la s s ic a l  so lution  и €  C ;2 ((0. T)  х11)ПС([(), f ) x f t ) ,  
which has all the derivatives entering the equation, and which satisfies it in the usual 
sense. Naturally, for a classical solution to exist, we must have a compatibility 
condition between the initial and boundary conditions in the first boundary value 
problem:

l l { ) ( x )  — U \ (0. Л'). .V 6 (HI.

In this case conditions (3). (4) or (5) are satisfied in the usual sense.
Secondly, the coefficients к , Q were defined only for it >  0. Therefore the 

formulation of the problems assumes that the solution u(t. л) is everywhere non
negative. This is ensured by the Maximum Principle, which plays a fundamental 
part in practically all aspects o f  the theory of nonlinear parabolic equations.

2 T he M axim um  Principle and com parison  theorem s

The Maximum Principle characterizes a kind o f  “ monotonicity” property of solu
tions of parabolic equations with respect to initial and boundary conditions. We 
shall not present here the Maximum Principle for linear parabolic equations, which 
serves as the basis o f  proof of similar assertions for nonlinear problems. It is ex
tensively dealt with in many textbooks and monographs (see, for example, [282, 
101, 378, 338, 357, 320, 22. 361, 365 , 42|). There the reader can also find the 
necessary restrictions on the smoothness and the structure of  the boundary 911 (they 
are especially important when the domain 11 is unbounded). Therefore we move 
on directly to assertions pertaining to the nonlinear problems discussed above.

Assertions of this kind are known under the heading o f  M axim um  P rin c ip le , 
since they all share the same “physical” interpretation and are proved by broadly 
the same techniques, which are frequently used in the course o f  the book.

The comparison theorems we quote below are proved in detail, for example, in 
[ ! ( ) ! ,  338, 356. 40[.  We state the theorems in the case of boundary value problems, 
but they apply without changes also to the case o f  Cauchy problems.

Theorem  1. L et  » (l! an d  it{2) h e  lion -tie  n ative c la s s ic a l  so lu tion s  o f  eq u a tio n  (2) 
in (0 , T) x 11. su ch  that, m oreov er,

( 6 )ua , ((), x) > n,h (0 . x ) . x  б 11. 

iti2)(t, x) > itiU (t, x ) , t  6  [0 , T) ,  x  б fill. (7)
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Then
i P \ t .  .v) > ui l ) (t, Л )  in [0, T)  x Si; (8 )

The theorem can be easily explained in physical terms. Indeed, the bigger the 
initial temperature perturbation, and the more intensive the boundary heat supply, 
the higher will he the temperature in the medium. The proof of the theorem is based 
on the analysis of the “linear” parabolic equation for the difference r. =  nl2) — ttul 
and in essence uses the sign-definiteness o f  the derivative Д ;  at an extremum point 
of  the function

As a direct corollary of Theorem I we have the following

Proposition 1. Let Q(Q) =  0 a n d  let u (x .  t) h e  a  c la s s ic a l  solution  o f  the  p ro b lem
(2 ) - (4 ) .  Then и > 0  in [0, T)  x 11.

Indeed, a (1) =  0 is a solution o f  equation (2). Then by setting i p '  — u, we see 
that conditions (6 ), (7) hold, so that i P ] > n'l) =  0 everywhere in [0 , T)  x 11.

The comparison theorem makes it possible to compare different solutions of a 
parabolic equation and thus enables us, by using some fixed solution, to describe 
the properties of a wide class o f  other solutions. However, the fact that this theorem 
involves only exact solutions significantly restricts its applicability.

The following theorem has much wider applications in the analysis o f  nonlinear 
parabolic equations [ ! ( ) ! ,  377, 338, 3fi5|.

Theorem  2. Let h e  d e f in ed  on  [0, T)  x  11 a  r l a s s i e a l  so lution u (x ,  t) >  0 o f  the
p ro b lem  (2)~(4). as1 well a s  the fu n c t ion s  t i i ( t ,  x)  e C ,1;2 (((), T)  x 11) П С ([0 ,  T)  x
11). w hich satis fy  the inequalit ies

ih if . / ih  >  B(U| ), IIu. /\)t < B (»  ) in (0, T)  x 11, (9)

an d  fu r th e rm o re
u .  (0 , x) < U()(x) <  » ( (0 , .v), .v e 11; ( 10)

и (t, x) < u f t ,  x) < n t (t, x ) . t  б [0, 7"), л б i)ll. ( I ! )

Then
и.. < и < и ,. in [0, T)  x  11. (I 2)

Let tis emphasize that here we are talking about comparing a solution of the 
problem not with another solution o f  the same problem, as in Theorem I, but 
with solutions o f  the corresponding differentia! inequalities (9). This extends the 
possibilities for analysis of properties o f  solutions of nonlinear parabolic equations, 
since it is much simpler to find a useful solution of  a differentia! inequality than 
it is to lind an exact solution of a parabolic equation.

The functions //., and и . which satisfy the inequalities ( 9 ) - ( ! ! )  are called, 
respectively, a su p erso h u io n  and a stih soh ition  o f  the problem (2 )—(4).
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Statements similar to Theorems !,  2 hold also lor nonlinear parabolic equations 
of  general form, in particular, lor essentially nonlinear (not qtiasilinear) equations

//, =  F (u .  V//, Д//./. л ) .  (13)

where F ( p .  q .  r. i . x)  is a function whieh is continuously differentiable in R + x 
R w x R  x [0. T)  x 11. The parabolicity condition here has the form

i )F (p .  q .  г, I . x)/( )r  >  0 . (13 ')

If  we take for F  the operator in ( I )  or (2), then condition (13')  becomes the 
inequality k ( p )  >  0 for p >  0 ,

Under some additional restrictions on the domain 11 and its boundary, these 
assertions also hold for the secon d  b ou n d ary  v a lu e  p ro b lem ,  in which instead of
(4) we have on dll.  for example, the Neumann condition of the following type:

Du/tin =  ih ( t .  .v). t €  (0. T ),  .v б d ll ;  «2 £  C,  sup to < ос. ( 14)

where il/tln denotes the derivative in the direction o f  n. the outer norma! to dll .
Condition (14) makes sense if the partial derivatives are continuous in [0. T )  x 
11. Then a new compatibility condition arises:

()//(>(.V)/()/! =  1*2(0. л"). v б dll.

and then we can talk about a classical solution o f  the second boundary value 
problem.

In this case in Theorem I instead of  the inequality (7) we must have the 
inequality

d//,2)/9/i > d«m /d/i. ! б [0. T ) ,  x  б dll. (14 ')

Since the product k{u)l)n/'dn  equals the heat flux on the boundary, (14 ')  has a
simple physical meaning. Correspondingly, in Theorem 2 the inequalities (I I ) are 
replaced by the inequalities

d// /d/i <  ihl/ д п  s  dll t /(Зл, 1 £  [0, 7’ ), л £  d ll ( ! 5)

(in this case additional smoothness conditions have to be imposed on super- and 
subsohitions H i) .

With the required changes, the theorems still hold if we have more genera! 
nonlinear boundary conditions of the third kind on dll .  such as

( 1 6 )Ни/Un =  a(u , I. л), i €  [0 . T ) ,  x  £  (ill. 

where a ( u . i , x ) is a sufficiently smooth lunction [ ! ( ) ! ,  338[.
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§ 2 Existence, uniqueness, and boundedness of the 
classical solution

Questions o f  existence and uniqueness o f  classical solutions of boundary value 
problems for nonlinear heat equations are studied in detail in the well-known 
monographs [282, 101, 361], where a wide spectrum of methods is used. Below 
we consider some important restrictions on coefficients, that are necessary for 
existence and uniqueness of a classical solution.

We shall be especially interested in questions o f  conditions for g lo b a l  so lv ab ility  
o f  boundary value problems, when the solution u(t,  x)  is delined for all t >  0 , and, 
conversely, in conditions for g lo b a l  in so lv ab ility  or in solvab ility  in th e  la rg e . In 
other words, we want to know when a local solution //( t . x ) ,  defined on some 
interval (0, 7'), can be extended to arbitrary values t >  0, and when it cannot. 
Local solvability (solvability in the small) holds for a large class o f  quasilinear 
equations with sufficiently smooth coefficients without any essential restrictions on 
the nature o f  the nonlinearity of these coefficients. Such restrictions arise in the 
process o f  constructing a global solution.

For equations with a source.

the existence of  a global solution is equivalent to its boundedness in П on an 
arbitrary interval (0, T) .  Namely: a global solution is defined and bounded in l l  
for all t > 0 , while an unbounded solution is delined in i l  on a finite interval 
(0, T 0 ). such that moreover

which makes it impossible to continue the solution to values of  t > T 0.
Questions related to the loss of requisite smoothness of a bounded solution are 

discussed in § 3. 1

This question is now well understood [260, 282, 363, 1 0 1 ,2 1 3  [. Classical solutions 
of boundary value problems and o f  the Cauchy problem exist locally for smooth 
boundary data and under the necessary compatibility conditions for quite arbitrary 
quasilinear parabolic equations with smooth coefficients of  the form

it, =  V ■ ( k i n ) V») +  Q( a) , ( 1)

lint sup //(/, x)  =  oo,
' -C  mil

( 2 )

1 Conditions for local existence of a classical solution

N

(3)
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if  they are uniformly p a r a b o l i c .  This means that

N

Ир)1И12 < ач { р - 4,1 - X ) r , r ,  £ p.(p)Ц/'ll" (3')
'.7=1

lor arbitrary t 6  [О, T ),  v e  11, p  >  0, r/, r  6  R A', where the continuous functions 
v {p )  and p .{p )  are strictly positive. Condition (3') means, in particular, that the 
second order elliptic operator in (3) is non-degenerate and that the matrix \\ci,j\\ 
is positive definite. Local solvability has been established also for a wide class 
of more general equations o f  the form (1 .1 3 ) 1 (see [261, 6 9 ]) .  In this case the 
uniform parabolicity condition has the form

//(/;) < i )F (p ,  i/, Г. I. X)/ilr  < p .(p ) .

For equations of the form ( ! )  the uniform parabolicity condition has a particu
larly simple form.

Proposition 2. Lei the fu n c t io n s  k(ti). Q(u) b e  sufficiently sm o o th  f o r  и > 0, 
Q {0) =  0. I f  the cond it ion

k(it)  > e(l =  const > 0  f o r  и >  0 .  (4)

h o ld s , then there  ex ists  a  l o c a l  c la s s ic a l  so lution  o f  the b ou n d a ry  value p r o b l e m  
( ! . 2 ) - (  1.4); m oreov e r ,  i f  и0 ф ()  in 11 o r  i f  //|(0. ,v) # 0  on  911, then  n i t , x) > 0  in 
i l  f o r  a l l  ad m is s ib le  1 > 0 .

A non-negative solution of a uniformly parabolic equation ( l ) is strictly positive 
everywhere in its domain of  definition. In other words, in heat transfer processes 
described by such equations, perturbations propagate with infinite speed. If, for 
example, in the Cauchy problem, the initial function has compact support
and possibly is non-differentiablc, the local solution will still be a classical one 
for / > 0, Moreover, for all sufficiently small t >  0 the function //(/, л) will be 
Strictly positive in R w, Under appropriate restrictions on the coefficients o f  the 
equation in any admissible domain (0, 7 ) x 11 it will possess high order derivatives 
in / and ,v.

If  condition (4) does not hold, a solution of the Cauchy problem with an initial 
function //о of compact support, may also have compact support in a for all / > 0 , 
and as a result even its lirst derivatives in / and .v can be not defined at a point 
where it vanishes. We shall treat generalized solutions in more detail in § 3, where 
we state a necessary and sufficient condition for existence o f  a strictly positive 
(and therefore classical) solution.

'in this way we refer to formulae from previous sections; in this case it is from § 1.
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2 Condition for global boundedness of solutions

First of all let us observe that in the boundary value problem ( 1. 1), (1 .3) , (1.4) 
without source, 0  =  0 , the question o f  boundedness of solutions does not arise. 
This follows directly from Theorem 1 (tj 1), Setting in that theorem

//'’ '(/, x) =  M — const > max(sup//(), sup//[). (5)

i/l h (/. .v) =  а(/, .v),

we see that conditions (1.6) and (1.7) hold, so that u ( t . x )  < M ,  that is, n  is 
bounded in i l  for all / б (0, Г ) ,  where T  > 0  is arbitrary. It is easy to verify that 
the same is true for equation (1) with a sink, when Q(u) <  0 for all // > 0. For 
equations with a source the situation is different.

Proposition 3 . In equation  (1),  let Q(u) >  0 f o r  n >  0. Then the cond it ion

P  c h l  -
. /1 Q(V)

( 6 )

is a  n eces su ry  an d  sufficient condit ion  f o r  g lo b a l  b o u n d ed n ess  o f  any  so lution  oj 
the p ro b lem  (1 .2 )—(1.4).

P r o o f  Sufficiency. Let us use Theorem 1. As ttC )(t, x)  let us take the spatially 
homogeneous solution ui2](t) of ( 1):

d i f - 'U )

di
= Q ( iT 2' ( D ) ,  i > 0; //(2,(0) =  M  > 0, (7)

where the constant M  satisfies (5). The function //'-’ (/) is determined from the 
equation

и1 J rl  
J,\i Q i  v )

where, moreover, by (6 ) ui2}(t) is defined for all / б ( 0 ,o c ) .  Then from Theorem 1, 
by setting //<h s= и we obtain that

u U ,x )  < uu , (t), t б (0. T ).  x б П,

that is, и is 'globally bounded.
Necessity. This follows from the following simple example.

Exam ple 1. In the Cauchy problem for (1) let

Uo(x) > in =  const > 0, v б R v ,
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and let (6 ) be violated, that is.

( 8 )

where Q iu) >  0  for n > 0, The solution of the problem will then be spatially 
homogeneous: //(/, x ) =  »(/), where //(/) satisfies (7) and the condition //(()) =  in, 
that is.

From this it can be seen that //(/) is defined on a finite time interval (0. 7'n) where

Proposition 3 reflects one aspect of the problem of unboundedness o f  solu
tions, In a number of problems with specific boundary conditions, the existence 
of a global upper bound for the classical solution depends on the interplay o f  the 
coefficients k, Q , functions entering the statement o f  the boundary conditions, as 
well as the spatial structure o f  the domain 11, In the general setting the problem 
of unboundedness is quite a complicated one. For some classes o f  equations this 
problem will be analyzed in subsequent chapters (some examples are given below).

Let us observe that the necessary and sufficient condition (6 ) of global bound
edness o f  all classical solutions arises in an analysis o f  an ordinary differential 
equation. In Example 1 we constructed an unbounded solution which grows to 
infinity as / —*• T 0 on all o f the space R'' at the same time.

What happens if we consider a boundary value problem in a bounded domain 
11, such that, furthermore, on Ifll the solution is bounded from above uniformly in 
i 7 Can such spatially inhomogeneous solutions be unbounded in the sense o f  (2)7 
The following example gives a positive answer.

Exam p le 2. Let us consider a boundary value problem for a semilinear equation.

in a bounded domain 11 б R w with a smooth boundary Ifll. Let //((), ,v) =  //()( .v) > 0 
in 11, //о б C ( l l ) ,  //о ф 0 . and

furthermore
//(/) — > oo. i -> 7‘0 .

□

и, =  Д// +  Q(u), i > 0. Л' б 11. (9)

//(/, л) — 0 , / > 0 , .v б 911. ( 10)
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Let us denote by А| =  A|(ll) > 0 the lir.st (smallest) eigenvalue o f  the problem

Дф +  Лф =  0, .v б 11; i//(.v) =  0, .v б 911, (11)

and by i//[(.v) the lirst eigenfunction, which is known [283, 362) to be o f  constant 
sign in 1L Let ф\(х) >  0  and

l l ' A i l l / . ' i s i i  =  /  > A i ( - v )  d x  =  1 .  ( 1 2 )
.hi

Let Q(u) — A|ii >  0 lor all и > S{) — const > 0, and furthermore

<i V
J.% Qb 7 ) - A , i 7

(13)

(let us note that if Q(u) и as и - *  oc this condition is the same as (8 )), Let us 
also assume that Q e  C 2( ) is a convex function;

Q"(u) > 0, и > 0. (14)

Then for any initial functions nn(.v) > 0 such that

H0 =  /  i i o ( - v ) i A i ( - v )  dx > S0.
■hi

the solution o f  the prohlem is unbounded and exists till time

dr)
To < T ,  = .

Q( i 7 ) - A | i 7

To prove this, let us introduce the function

0 0 ,

-  =  /  Д и ( / ,  , v ) t / / |  ( . v )  dx  +  /  Q ( u d ,  Л ) ) i / /1(  A )  (] , v , 
r  h Jn Jn

E d )  =  / u d ,  л )i//1 (л ) d x .
. h i

Then /:(()) =  L'o and furthermore, as follows from (9), E d )  satislies the equality

(15

Integrating by parts and taking into account ( 10) and ( 11), wc obtain

/ Д/;(/, х)ф\(x) d x  =
.h i

=  / u d ,  л*)Д«А| (,v) d x  =  -A| / u d ,  х ) ф \(д ) d x  =  — A|/£■(/).
,/ti .In
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Furthermore, front Jensen ’s inequality for convex functions [211) we obtain

I  Q(u)i//\ d x  > Q y j  иф| d x j  =  Q (E)

(for this estimate to hold it is essential to have i//| > 0  in 11 and for ф to be 
normalized by (12)) , so that from (15) we have the inequality

d EU)  

~ dt
> - A \ E  +  Q (E ) .  i >  0; £(())  -  E 0 >  <50

Hence under our assumptions we have that E(t)  > En for all t >  0, and conse
quently

.h (?<’7) -  M v  ~

Therefore by (13) E(t)  —*■ oo as' i —> T\ < T , ,  and since E(t)  < sup,. u(t, x) ,  the 
solution n(i,  a ) satisfies (2 ) for some 7'0 < T x and is unbounded,

The interest of this example lies in the fact that for sufficiently “small” initial 
data ffo(.v) this houndary value problem has a global solution defined for all /*> 0 

(see Ch, V 11, § 2), For "large" ti0 it grows unboundedly as t -+  T q , T <  oo. 
One can then pose the question: in what portion o f  the domain f l  does it become 
unbounded as i —> T 0 ? This question, of localization of unbounded solutions, is 
considered in subsequent chapters,

We close the discussion o f  glohal boundedness' conditions by an elementary 
example of a second boundary value problem,

E xam p le  3. Let i l  be a smooth bounded domain, П  e  R w. Let Q(u)  be a function 
convex for и > 0, which satisfies (8 ), For (1), let us consider the second boundary 
value problem with no-flux Neumann boundary condition,

0n / ' d n  =  0, t  >  0, ,v e Oil, (16)

with initial perturbation n (0, ,v) =  n0(x) >  0 in 11. Let us show that any non-trivial 
(u ^ O )  solution of the problem is unhounded.

Assuming sufficient smoothness o f  the solution, let us integrate equation (1) 
over the domain 11, Then, if  we introduce the energy

H (t)  =  / u(i,  x) d x ,  i > 0 .
.hi

and integrate hy parts, taking (16) into consideration, we have

d H ( i )
u(t. x))  d x . t > 0 ;

H(()) =  H 0 =  [  !i,)(.v) d x  >  0, 
.In

(17)
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Using the Jens'en inequality

/  ()(п(и .v)) tlx =  (mcasfl) [  ---- —̂—Q(u(LX))dx
J n  .In meas SI

>  (mens, , n l Q { f u
ч,/u meas 11 

we obtain from (17) the inequality 

clH(i

1 \  n  (  H U
n( i , .v) clx s  (meas Si) Q

meas 11)

tli
> (meas 11) Q ( — ) , i > 0 .  

meas 11

Therefore hy (8 ) it follows that the energy H it)  (and therefore n(i.  .v)) is defined 
and bounded only on a bounded interval (0 . T i ), where

Vi < T. f
■hi.

dr,

I n n/measti Q^V) 

and therefore lint sup ( n(/,.v) =  oo, / —> 7'() < T [.

3 Uniqueness conditions for the classical solution

Under the assumption of sufficient smoothness o f  the coefficient Q in (1), the local 
classical solution is always unique. This follows directly from Theorem 1 of § 1. 
Indeed, if  we assume that there exist two different solutions n* and u, o f  equation
( 1) corresponding to the same initial and boundary conditions, then it follows from 
Theorem 1, hy first setting i/U) =  u\ n,2] =  it, and then exchanging и* and i/,, 
that we have at the same time и * < и, and u“ > that is, a* == it,.

It remains to check how essential is the smoothness requirement on the coeffi
cient Q , which is a non-negative function. In case of a heat sink (Q (u) < 0 , и >  0 ). 
it is not hard to verify that uniqueness o f  the solution holds without any restrictions 
on the smoothness of  Q(u).

Thus, let a continuous function Q (n),  (Q (0) =  0; Q(n)  > 0 ,  и >  0) be non- 
differentiable for и =  0, Q €  C ‘ (((), oo)). The following example shows what this 
can lead to.

E xam p le 4 . Let us consider the Cauchy problem for the equation

и, =  An +  п", x  e  R a . (18)

where a  £ (0. 1) is a constant. Here Q(u)  =  u", Q (0) =  0, ( ) ’ (()" ) =  oo. Let

i i( ( ) ,  .v) =  U()Lv) s  0 , ,v £  R ,v . (19 )
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It is clear that the problem (18),  (19) has the trivial solution »(/, ,v) =  0. However, 
in addition it has an infinite number o f  other spatially homogeneous solutions 
u ( i , x )  =  »(/), which satisfy the ordinary differential equation

u'(i ) =  u"(t) .  i > 0; n(0) = (). (20)

Solutions of this problem are the functions

0 .  0  <  !  <  t .

U(l) =  VrU) =
( 1 — tr ) l,(l " ’ (t — T ) l/(l"'<>). I >  r.

( 21 )

where r  ^  0 is an arbitrary constant.
Therefore, due to non-differentiability o f  the source for и =  0, there appear 

from the zero initial condition (19) non-trivial solutions that grow at the same rate 
on the whole space. Let us note that for a  €  (0, 1) all the functions vT(l)  are 
classical solutions, since vT €  C '([( ) ,  oo)).

It is not hard to see that similar non-trivial solutions o f  the Cauchy problem 
can be constructed in the case o f  arbitrary sources Q(u) >  0 , и >  0 , if

Hence we obtain the condition

i;

j:

J j L
Q (v )

<  O O .

J j L
Q( v)

=  D O ,

( 2 2 )

( 22 ' )

which is at least n e c e s s a r y  f o r  the u n iqu en ess  o f  the so lu t ions  o f  the  C a u c h y  
prob lem .

This example is entirely based on an analysis of spatially homogeneous so
lutions, which satisfy an ordinary differential equation. What if  we consider a 
problem with boundary conditions that do not allow the solution to grow at the 
boundary? It turns out that in this ease also lack of sufficient smoothness of the 
source for и — 0 may cause the solutions to be non-unique.

E xam ple 5. Let l i  be a bounded domain, 11 C R w, and let A| > 0, ф i(.v) > 0 
in 11, be, respectively, the first eigenvalue and the corresponding eigenfunction of 
the problem (11).  Let us consider in R  ( x 11 a boundary value problem for the 
equation

и, — Да +  Л|и +  ф\ " ( .v m " ,  t 0, л €  11, (23)

with the conditions

»(0, л) =  0, а  б  11; m i ,  a) = 0, I >  0, а  б  911. (24)
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Let a  €  (0, 1); then the source ф\~"(x)u" ,  which depends not only on the 
solution it, but also on the spatial coordinate x, is non-differentiable in it for 
it =  (F' everywhere in 11, It is not hard to see that the problem (23),  (24) has, in 
addition to the trivial Solution it =  0, the family o f  solutions

t t( l ,x )  =  ит(г)ф | (л). I >  0 , .v б 11.

where vT(i)  are the functions defined in (2 1 ).
To conclude, let us observe that non-uniqueness is related to the particular 

formulation o f  a problem. If, for example, we take in the Cauchy problem for (18) 
an initial condition u q ( x ) > 8 t) >  0  in R w, then its solution will be classical and 
unique, since by Theorem 2, the solution will satisfy the condition n i l , x) >  <5U in 
R a\ In the domain it >  <5() the coefficients of the equation are sufficiently smooth, 
which ensures uniqueness o f  the solution. Similarly, if in the problem (23),  (24) 
«о > 0 in 11, then its solution will also be unique.

§ 3 Generalized solutions of quasilinear degenerate 
parabolic equations

In this section we consider equations (1 .1) ,  (1 .2) which do not satisfy the uniform 
parabolieity condition. As above, we shall assume that the functions к and Q are 
sufficiently smooth: к e  С 2( ( 0 , о о ) )  П С ( [0 ,  oo)), Q e  C ' ( [ 0 ,  oo)) (as was shown 
in § 2 this last condition is necessary for the uniqueness o f  the solution), k(ti)  > 0 

for it >  0 , and furthermore

k ( 0 ) =  0 , ( 1)

that is, the equation is degenerate. Formally this condition means that the second 
order equation ( 1. 1') that is equivalent to ( 1. 1) degenerates for и =  0 into a first 
order equation ( if  k'(0) ф  0 and n(t, x) has two derivatives in л).

Before we move on to examples that elucidate certain properties o f  generalized 
(weak) solutions, we shall make a remark. When we dealt with classical solutions 
it б c};2, there was no need to require continuity o f  the heat flux W ( t , x ) — 
—k(tt(i,  x ) )V tt( i ,  x).  This condition, as well as continuity o f  the solution itself 
(temperature), is a natural physical requirement on the formulation o f  the problem. 
In the present case we shall constantly have to monitor this property o f  generalized 
solutions.
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1 Exam ples of generalized solutions (finite speed of propagation of 
p erturbations, localization of boundary blow -up regimes and in m edia

with sinks)

Exam p le 6. (finite speed o f  propagation o f  perturbations) Let us consider equation
( 1. 1) in the one-dimensional case:

и, =  (A-(h)h . ), (2 )

and let us construct its particular self-similar solution of travelling wave type:

».s(L x )  =  f s ( £ ) ,  f = x  — At, (3)

where Л > 0 is the speed o f  motion o f  the thermal wave. Substituting the expres
sion (3) into (2), we obtain for f  s (£ )  > 0  the equation

7iikih)W ) +A^I = {)-

or. which is the same.

А ( / л - ) ^ + А / л =  С. 
Of

O')

Setting C =  0  (what this corresponds to will be made clear in the following), we 
obtain the equality

*</.s) U f s

Let us assume that

f s

hi V

=  - A .

tlr; < 0 0 ,

(4)

(5)

so that the function

Ф (H) =  f  tlv  u > (); ф(()) =  (), 
./о V

makes sense. Then it follows from (4) that

Ф(./'.«(£)) =  - A ( £  — £»), £  < =  const.

(5')

Let =  0. then

f s ' h  ф '(  A f).  f  < 0 .

where Ф 1 is the function inverse to Ф (it exists by monotonicity o f  Ф; see (5 ') ) .  
Let us extend f  s into the domain (£ > 0) identically by zero; it follows from (3')
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that continuity of the heat (lux —k ( / s ) f ' s will still hold at the point £ =  0 for 
C =  0. As a result we obtain the following self-similar solution:

i t s ( t .x )  =  Ф''|А(Аг -  .v),.|. I > 0, -v £  R .  (6 )

where we have introduced the notation (к)  + =  [к, if к  >  0 and (), if к  < 0 ). 
Let us set T 0 =  Ф(со)/А: 5  ос.  Then (6 ) can he considered as the solution 
in (0, To) x R t o f  the first boundary value problem for equation (2) with the 
conditions

u((). x) =  0 , .v > 0; n il .  0 ) =  Ф ' (Л2/). 0 < t < 7-„ . (7)

Thus if  condition (5) holds, the problem (2), (7) has a solution with everywhere 
continuous heat flux, which has c o m p a c t  support  in .v for each t e  (0, To):

us (t, x) =  0. л > At, t €  (0. To).

Therefore equation (2) describes p r o c e s s e s  with f in ite  s p e e d  o f  p ro p ag a t io n  o f  
p ertu rba t ion s .  At the point where ay > 0, the solution of  the problem is a classical 
one and it is not necessarily sufficiently smooth at the front (the interface) of the 
thermal wave, x / ( t )  =  At, where it vanishes.

For a more detailed s‘tudy of the behaviour of the solution at the points of 
degeneracy, let us consider the ease

k (u )  =  u'r , <r =  const > 0 .

Then Ф(н) =  u'r /(r,  Ф '(» )  =  (cru ) ,/,r , T« =  oo and the travelling w'ave solution 
has an especially simple form

tty(f, x) =  |frA(A/ — .v) t |l/,r. f > 0 , .v > (). (8 )

Let us cheek again that the heat flux is continuous at the points .v/(f) =  At. 
Indeed.

W ( t .x )  =  iiy ( и.у) i =  txl/'rAi'r * ll/,r[(Af -  л ) 4 |l/,r.

that is. W (t. x j  (t)) =  W(t. x j ( t ) )  =  W(t. x f (t)) =  0  for all t >  0. At the same 
time, if  cr > 1, at the degeneracy points x =  x / ( l )  the derivatives u,. it,. are 
not defined. In the case <r s  [ 1 /2 . 1) the derivatives и,, и v exist, but the derivative 
и v, ( f , x f ( t ) )  is not defined. If. on the other hand. <r e  (0 , 1/2 ). u,. u ,.  are 
delined everywhere (that is, the compactly supported solution (8 ) is a classical 
one), however, higher order derivatives do not exist at the front points.

These are the main differentiability properties of the generalized solution we 
have constructed. The function (8 ) is schematically depicted, for different times, 
in Figure 1. This solution represents a thermal wave moving over the unperturbed 
(zero) temperature background with speed A =  d x f ( t ) / d t .
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0

F ig .  1. T r a v e l l i n g  w a v e  in the case  o f  f in i te  s p e e d  o f  p r o p a g a t io n  o f  p e r tu r b a t io n s

F ig .  2. T r a v e l l in g  w a v e  in the  case  o f  in finite s p e e d  o f  p ro p a g a t io n  o f  p e r tu r b a t io n s

Condition (5) is necessary and sufficient for the existence of a compactly sup
ported travelling wave solution. If it is violated, that is if

then, as follows from (4), the function / $ ( £ )  is strictly positive for all admissible 
f  6 R ,  and therefore (3) represents a positive classical solution o f  the equation (2) 
(see Figure 2).

It is obvious that in the ease k ( 0) > 0. that i.s, for uniform parabolieity o f  the 
equation (see Proposition 2. § 2). condition (9) holds. However, among coefficients 
k(u ) ,  k (0 )  =  0. there are some for which (9) holds. This i.s true, lor example, 
for the function k(it)  =  | In »| ii £  (0, 1/2), k(u )  >  0 for ii >  1/2. Then the 
travelling wave solution i.s strictly positive and therefore classical. Moreover, if 
k(ii)  €  C’^ ( R H ), then ii can be differentiated in t and .v in the domain (0 .  To)  x R  t 
any number o f  times.

(0 )
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It is interesting that the condition (5),  which was obtained without any diffi
culty, is not only sufficient, but also necessary for finite speed o f  propagation of 
perturbations in processes described by equation ( 1. 1).

A travelling wave type solution has another exceptional quality: it demonstrates 
in a .simple example localization in boundary heating regimes with blow-up. The 
study o f  this interesting phenomenon in various problems occupies a substantial 
part of the present book.

Exam p le 7 . (localization in a boundary blow-up regime) Let

k(u )  =  irexpj —it). и >  0 .

Then it is not hard to see that the solution (6 ) has the following form:

f — lnl 1 -  A(Ai -  a )], 0  < x < Al.
Ш ( / л ) =  „ “  ( 10)

l  0, .V > Al,

which is defined for a bounded time interval [0. To), where T о =  l /Л2. The 
boundary condition at x =  0 corresponding to ( 10) has the form

t<a(1, 0) =  «i (l) =  — ln( 1 -  A2!), 0  < I < Г», (11)

and therefore u\(r) —> oo as / —> T (',.  However, though the temperature at 
the boundary blows up, heat penetrates only to a finite depth L  =  1 /Л, that is. 
H a d . д‘) =  0  for all a > L  for all the times of  existence of the solution, I б (0, To) 
(see Figure 3).

Here we have that everywhere apart from the boundary point x =  0. the solution 
is bounded from above uniformly in i:

us (l.  -v i<x(T„ ,  л )  =

-  ln(A.v)

0 .

0 < .v < 1/Л. 

•v > 1/Л.

and it grows without bound due to the boundary blow-up regime at the single point 
x  =  0. The limiting curve и — ».y(T() , x)  is shown in Figure 3 by a thicker line. 
Let us note the striking difference between this halted thermal wave and the usual 
temperature waves shown in Figures 1, 2.

It is easy to see that in this ease every boundary blow-up regime leads to 
localization. Indeed, for any boundary function u\(t) oo as t To (for 
simplicity we set Uo(x) =  0) ,  we can compare the solution u d , X) with the 
“shifted” self-similar solution » s-(t. x — l /Л), which is defined for x  >  j 0 ( 0  =  Al. 
We have that и < us =  oo for л =  л'о(0  for all l б (0, To). Therefore by the 
comparison theorem и <  us- in (0, To) x ( a > .v()( 0 l  and finally u (T o. a ) <  
UsU\). a — 1 / A) <  oo for л- > 1 /Л.
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us (t.x)

0
I

L4/A

F ig .  3.  T rav e l l in g  w a v e  se l f - s im i la r  s o lu t io n  (10)  l o c a l iz e d  in  the  d o m a i n  (0.  1/A)

It is clear that the same comparison argument and thus the same result on local
ization o f  arbitrary boundary blow-up regimes, also holds in the case o f  coefficients 
к that satisfy

This follows immediately from the representation (6 ) o f  the corresponding travel
ling wave solution generated by the blow-tip regime.

Let tts consider an example o f  a generalized solution o f  the heat equation in 
the multidimensional ease.

Exam p le 8 . Let us find a solution o f  the Cauchy problem for an equation with a 
power law nonlinearity

и, =  V .  (,i'rVu). i >  ()..v б R N. ( 1 2 )

having constant energy

it(t, x) clx =  Eo  =  const > 0 (13)

(this is a solution o f  the instantaneous point source type). 
We shall look for it in the self-similar ansatz

u (l,  x) =  % =  x / l p 6  R w, ( 1 4 )
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where « ,  /3 are constants, and where в (£ )  > 0  is a continuous function. Substituting 
(14) into (12 ) ,  we obtain the following equation:

ata~'0 -  /ЗР"1 Y  • ( r v f fl).
<4i

(15)

From here we have the necessity o f  the equality a  — I =  «(«• +  1) — 2/3; then the 
terms involving time can be cancelled. Furthermore, using the identity

u(t..v)r/.v= [  t n e ( ± ) d x  [  0 ( 0  </f
,/r ' ./if \ Г /  ./if '

(it is assumed that 0 €  L ] (R'v )), by (13) we have that a  +  /V/3 — 0, Hence we 
obtain a unique pair of parameters a  =  - N / ( N a  +  2),  /3 =  \/(Ncr +  2),  that is, 
the desired solution has the form

iHt,x) = f N/lN,r+2i0 (t).  i  = x / t ' l,N,ri2'. (16)

Then it follows from (15) that the function 0 >  0  satisfies the following qutun- 
linear elliptic equation:

Vf ■ ( 0 " V f 0) +

as well as the condition

№ N

Ncr +  l ^ i ^ i  Ntr +  2

m ) d t  =  Ло.

0 =  0. t; s  R ,n ,

,/u

(17)

(IK)

Let the function 0 be rtttlutlly sym m etr ic ,  that is, let it depend only on one coor
dinate; 0 6 (17), t] — |£| > 0, Then equation (17) takes the form

V 1'
-(77lV Ч Г ()')' +

N tr +  2
O'r] +

N

N t r +  2
0 =  0 . V > (14)

moreover, by symmetry we have to require that the condition

0 ,r0 ‘ ( 0 ) =  0

holds. Equation (14) is equivalent to the equation

(TjN  ' 1 0 ' r 0 ' ) '  +
Ntr +  2

(Or]'' )' =  (), rj > 0 .

Integrating it, and setting the integration constant equal to zero (this, as is easily 
verified, is necessary for the existence of a solution with the required properties), 
we arrive at the first order equation

г] N > 0,r0' +
Ntr  +  2

e-qN =  0 , rj > 0 ; 0,r0 '(O) =  ().
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Its solutions have the form 

H(rj) =
(T

;(VI) -  v~) <
l/<r

, 17 > 0 .
2 (N ir  +  2 )

Here i7n is a constant, whiclt is determined from the condition (18):

Г/(Л'<Г + 2)

17o(£(>) =  { 7Г"Л/‘ —------- !----1 ~J—;7Г7Г~,---- ~ 7J ----

( 20 )

<r П  I /гг +  I )

Titus the required self-similar solution with constant energy has the form

u.v(L a" ) ,V/| Nir-i-2)

2(N<r +  2) Vi
| a |2

/2/ iNi r-) 2)

]/, r

( 2 ! )

For any i > 0 it has compact support in a , while as t —> O4 , it goes to a (5-function: 
i t s ( t .x )  —» t ’o(5( a ), i -*■ 0 ! . Everywhere except on the degeneracy surface 
R + x ||x| =  r]{)t'/IN'r < 2>) it is classical (and infinitely differentiable), while on the 
surface of  the front (on the interface) it has eontinuous heat llux. Differentiability 
properties o f  the solution (2 ! )  are the same as those of the particular solution of 
travelling wave type considered in Example 6 . Since equation (12) is invariant 
under the change o f  M o  T +  t, where T — const > 0, us(t +  T, x)  will also be a 
solution with constant energy.

In the following example wc use the solution constructed above to illustrate an 
intriguing property of a quasilincar degenerate parabolic equation with a sink.

E xam ple 9. (localisation o f  heat in media with absorption) Let us consider the 
equation

//, =  V ■ (//' V h) -  y u .  i > 0, a e  R w. (22)

where у  >  0  is a constant. Compared with (12 ) ,  this equation has a linear sink of 
hear. Let us see how this is reflected in the properties o f  the generalized solution. 

In equation (2 2 ) let us set

n(t, x)  =  ex p { y i ) v ( t . A),

where v is a new unknown function. Then the equation for v takes the form 

exp(yrr/}n, — V • (i>,rVi>). t > 0. x  G R w.

Introducing the new independent (time) variable

т =  t (M =  — [ 1 — expj — y tr l]  [ . r e  [0 . 1 / ( y t r ) ) .  
y<r
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we obtain for n =  v(r.  x)  the equation

vT =  V  • (v'r Vu),

whieit we considered above; its particular solution we already know. Choosing as 
u. for example, the function ».s(!  +  r.  .v) (see (2 ! ) ) .  and inverting all the changes 
o f  variable, we obtain the following Solution of equation (22 ):

u U .  x )  =

c-*P ( - r M U ' ( o r W/!W" ,:)
2 ( N c r  +  2 )

T7o
l-v-l-

where g(t)  =  I +  r ( t ) ,  This solution has the degeneracy surface

\ X f ( l )  \ =  гц, I +
I — expj — yrrr)

у  or

l / ( N<r I 2}

/ > 0 . (23)

on which the llux is continuous. But this is not its main distinguishing feature.
As in Example 8 . the support o f  the generalized solution grows monotonically. 

however here we have

L =  lim \xj(l)\ =  170
I ►'V

l/(,Vfr4 2)
< OC.

that is. heat perturbations are localized due to the action of the sinks o f  energy in 
a bounded domain in the space, a ball with radius L.

2 Definition and m ain properties of generalized solutions

The examples we considered in subsection I allow us to demonstrate many of the 
properties of generalized solutions of  quasilinear degenerate parabolic equations. 
Let us note again that a generalized solution does not necessarily have everywhere 
defined derivatives, but at points of degeneracy it possesses a certain regularity; the 
heat flux is continuous. At all other points where the equation is 11011-degenerate 
(and is, therefore, uniformly parabolie in a neighbourhood of these points), the 
solution is, as is to be expected, classical. Let us give a definition of a generalized 
solution, which ttikes into account all the indicated properties.

Let us consider in (0, T ) x П the lirst boundary value problem ( ! . 2 ) - ( L 4 )  for 
an equation with coefficients k(ti) ,  Q ( i i) .sufficiently smooth for 11 > 0, such that, 
furthermore, к does not satisfy the uniform parabolieity condition, that is k ( 0 ) =  0 .

Definition. A 11011-negative continuous bounded function u(r, x) ,  which satisfies 
the boundary conditions (1 .3 ) .  (1 .4) will be called a g e n e r a l iz e d  (w eak )  so lution
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o f  tire p ro b l em  ( i .2)—(1.4) if  the generalized derivative Уф(и) — k (u )V u  exists, 
is square integrable in any bounded domain ш' С (0, T) x  i l ,  and if for every 
continuously differentiable in (0, T) x  П  function f ( l . x )  with compact support, 
which is zero for ( I .  x) €  [0. T ) x  9 l i  and for 1 =  7\ we have the equality

^  ^  ~  ' v /  +  f ' j  d-x ‘lt +  I  ‘k ) ( x ) f ( 0 .  .v) r/.v -  0, (24)

Let us note that formally the equality (24) is obtained by multiplying equation
( 1,2 ) by / and integrating over the domain (0 , 7 1  x П. Integration by parts (in 
the variable ,r) is then justified if the function k(n )V u  is continuous in i f .  This re
quirement is not contained in the definition, where weaker restrictions are imposed 
on the derivative Уф(и)  (existence in the sense o f  distributions and the condition 
Уф(и)  g Ц м ( ( 0 . Т )  x П), for which the integrals in (24) make sense). However 
for a wide range of degenerate equations the above restrictions are sufficient in 
order to prove continuity of k(u )V u  (we deal with this in more detail below).

Naturally, it is necessary to define a solution in the generalized sense in the « s e  
when the solution u(r, x) has degeneracy points in (0, T )  x f i ,  where u(r, x )  =  0. In 
the opposite case, if, for example, и ф х )  > 0  in f i  and Q{u)  > 0, then u(r , x)  > 0 
in (0, T ) x  i l  and the solution is a classical one, since the equation does not 
degenerate in the domain under consideration.

Generalized solutions o f  quasilinear degenerate parabolic equations were stud
ied in detail in a large number of works (see, for example, [3! 9, 3 4 ! ,  86 , 377, 296|). 
Without entering into details, let us note one important point. As a rule, the gen
eralized solution u(r. x) o f  an equation with smooth coefficients is unique and can 
be obtained as the limit as n oc of a monotone sequence of  smooth bounded 
positive solutions «„((, x) o f  the same equation. As a result, in a neighbourhood of 
all the points (Г. x)  6  (0 ,  T ) x  i l ,  where и > (), the solution is classical, and it loses 
smoothness only on the degeneracy surface, which separates the domain (» > 0 } 
from the domain {« =  0).  To prove continuity o f  the heat llux ~ k (ii)Vn, additional 
techniques must be mobilized (see, for example, |!(i|). Some additional informa
tion concerning differentiability and other properties of generalized solutions can 
be found in the Comments section of this chapter.

Below we shall treat in a more detailed manner the restrictions, under which it 
is necessary to consider solutions of a parabolic equation in the generalized sense. 
This will be done using the example of the nonlinear heat equation

ii, = V- (k(u)Vu).  I > О.л 6 R \  (25)

for which wc consider the Cauchy problem with an initial function of compact 
support

u(0, л-) =  »o(a) > 0, x € Rw; Ф ( щ ) )  € C '(R W), ( 2 6 j
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So that
Mo(.v) s  0. |.v| > / =  const > 0 . (27)

We return now to the condition we obtained in Example 6 concerning compact 
support of a travelling wave solution. It is quite general.

Proposition 4. Convergence' o f  the in tegral

и

k(  17)-----< oc
V

(28)

is a  neves;miy an d  suffic ient cond it ion  f o r  the so lution  o f  the C auchy  in v h lem
(2 5 )—(27) to have  c o m p a c t  support  in x.

In other words, if  the integral in (28) diverges, then u(t,.\)  > 0  in R A for 
all t > 0. The proof o f  this assertion is based on the eomparison theorems for 
generalized solutions, which are essentially similar to the ones quoted in § 1. The 
seeond of these theorems is slightly different in the generalized setting.

3 C om parison  theorem s for generalized solutions

Theorem 1 extends to the generalized ease word for word. In the genera! case its 
proof is based on the analysis o f  integral identities o f  the form (24) for solutions 
i(" \ u{2) or by comparing a sequence o f  positive classical solutions u\] \ irj,2\ which 
converge, respectively, to the generalized solutions иП|, ui2>.

The statement o f  Theorem 2 has to be changed. In specific applications we 
shall use the following version.

Theorem  3. Let there  h e  d e f in ed  in [0, T)  x П  a non -n egative  g en e ra l iz e d  so lut ion  
o f  the boundary  value p r o b l e m  (1 ,2 )—( 1.4) a s  w ell  a s  the functions u± 6 C([(). T )  x 
П), iii e C 12 ev ery w h er e  in (0, 7') x П ap a r t  from  a  f in ite  n um ber  o f  sm ooth  non-  
intersecting s u i f a e c s  (0, T)  x S,( l)  on  w hich  the function  Vr/>(n) =  A'(»)Vn is 
continuous. Let the in equ a lit ie s  (1 .9) h o ld  ev e ry w h er e  in (0, T)  x (0\{.v б .S',(Ml). 
w hile on the p a r a b o l i c  boundury  o f  the dom ain  (0, T)  x П u c have  the con d it ion s  
(1 .!()),  (1.11). Then

“ 1  и  5  l C  i n  ( 0 ,  T)  x  П .  ( 2 9 )

The new element in eomparison with Theorem 2 is just the fact that the gen
eralized supersolution /ц and subsolution и can have compact support, while 
on the degeneracy surfaces (0, 7') x ,S',(M the corresponding heat lluxes must be 
continuous. Thus, roughly speaking, we are imposing the same requirements on 
the functions iii as on the generalized solution o f  the problem. If in (1.9) we 
replace the inequality signs by equality signs (in (0, T)  x ( II\ (x  б .S’,(M l)),  then 
the functions in will be simply different generalized solutions o f  equation ( 1.2 ).
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4 Proof of Proposition 4  (concern ing finite speed of propagation of 
p erturbations) and som e of its corollaries

Sufficiency of the condition (28) follows directly from the analysis of  self-similar 
solutions o f  travelling wave type, which was undertaken in Example 6 . Let us place
a bounded domain to =  supp«o in a parallepiped P  =  (|.v,| < /0, ( = 1 . 2 .........  N\
with sides parallel to the axes A', so that to С P. Let us show that the speed of 
propagation of perturbations along the i-th direction is finite. As in Example 6 , let 
us construct a particular solution of travelling wave type, having the form

u\(t. x) =  в (х ,  -  /о -  A/). us ((), a ) =  0(x ,  -  /о) — 0

for .г, =  /о. It is strictly positive in the left half-neighbourhood {/(> — e  < a , < /(>} 
of the plane a , =  /(). However sUpp »o С P.  so that there exists e  > 0, such that 
»o(.v) =  0  for л, =  /о — e.  By continuity of u(t, x) for a, =  /0 — e  for some time 
t 6  (0 . t ). we shall have the inequality u(t. a ) £  u's {t. a ), and by the comparison 
theorem. Theorem 1, u ( t .x )  £  u\-(t,x) in the domain (/ б (0, т), a, >  /о -  б). 
Therefore к(/. a ) has compaet support in a along an arbitrary direction a,. A s 
supp i/(/. a ) grows, the parallepiped I1 becomes larger, and the same argument 
applies.

To prove necessity we use a different self-similar solution o f  equation (25):

us (L a ) =  / ( f ) .  f  =  |a |//I/2, t > 0, а б R'v , (30)

where the function / £  0  satisfies the ordinary differential equation

( f ,v- 1 * ( / ) / ' ) '  +  =  0 , f  > o. (31)

L em m a. Condition  (28) is a  n e c e s s a r y  e n d  suffic ient cond it ion  f o r  ex is tence  <>J 
a  n on -n egat ive  g en era l iz ed  so lu t ion  o f  eq u a tion  (31),  w hich  van ishes  at a  point  
f  =  fo  > 0, w here  the h ea t  J inx  - f ' v 1 k( J  ) /" is continuous.

P roo f .  The existence o f  a solution /  =  / ( f ) .  such that / (fo) =  0, ( k ( f ) f ' ) ( fo) =  
0 , /’( f )  > 0 for all f  б (0 , f (>) is established by reducing (31) in a neighbourhood 
o f  the point f  =  fo  to the equivalent integral equation with respect to the monotone 
decreasing function f  — f (/ ) :

f  (/) =  • « .(/)(/)  =  f „  -
f 1 2 f w~ ' ( y ) k ( V ) d v  

(> " j;;' t N( o d f
г  ><>. (32)

Local solvability follows from the Banach contraction mapping theorem. If the 
integral in (28) diverges, there is no solution with a finite front point f  =  fo. 
Indeed, on the one hand

lim f (  /) =  fo  <■ oo.
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while on the other hand we obtain from (32) that

lim £(/')= l'nri jM.(£)(/") = £(>-2£0 1 lim f drj = -oc.
/ >0 ' ’ /-O' /-()• J о 17

In this ease (31) has a monotone solution / =  / ( f ) .  Strictly decreasing in R + , 
such that / ( ( )  -> 0  as f  —>■ oo (see e.g. (337. 24, 3 2 7 1),

Necessity o f  condition (28) is also proved using Theorem 1, Let the integral 
in (28) diverge. Let us show that »(/, .v) > 0  in R w for all i > 0. Let us take the 
solution / ( f )  o f the lemma and set

</'"(/, .r) =  f (\ x \ /t ' / l ) > ( ) . / >  0. а б R a'\(01. (33)

The function / ( f ) can he undclined for f  =  0. but that is not essential. For us 
it is important that by (33) и0 ) (!, x)  —> 0  as / —* 0*  uniformly in any domain
(|a | > 5 ) ,  S  =  const >  0 .

Without loss of generality let 0  б suppn(). Let us pick 8 >  0  small enough, 
so that (|. v| < (3) C  supp о». Then, obviously, there exists r  > 0, such that 
i(l h (/,A) <  it(i, x)  for |a | =  <5, t б (O .r ) .

Let us use now the fact that the solution of the problem (25), (26) can be 
obtained in the form

к (/, ,v) =  lim »f U. a ), 1 >  0. x  €  R |V,
f -O'

where u( are classical solutions o f  equation (25),  which correspond to the initial 
conditions nE(0. л ) =  e +  h()(a ), x  б R N. But, as is easily seen, for every e  > 0 
we can always find tf б (0 , r )  ( 1 ( 0 as e —> ()+ ), such that //"’ (/, x)  < » f (0 , x)
in (|.v| > (3) for t б (0 , /t |, while by construction of the family (oe) we have 
« (|)(/ +  i t , x)  < tif (I, x)  for |.r| =  5, / 6 (0 , т -  i ( ).

Therefore from Comparison Theorem 1 we obtain the inequality H(ll(/ +  /f , a ) < 
i i f ( i . x )  for ,v б R w\(|a | < й), / б ( 0 , r  — i f ) .  Passing in this inequality to the 
limit e  —*■ O ' , we obtain that » " '(/ ,  a ) < u(t, x)  for а  б R ,v \(|a | < 5},  / б (0, r ) ,  
which by (33) implies strict positivity in R w of the solution of the problem (25),
(26) for all arbitrarily small t > 0. This concludes the proof o f  Proposition 4, □

Therefore if the condition

к(Ю

V
d v 00 (34)

holds, there is no need to define the solution o f  the problem (25),  (26) in gen
eralized (weak) sense: any non-trivial solution is strictly positive and therefore a 
classical one. Naturally, this will also be correct for any equation (1.2) with a 
source.
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Proposition 5. Let Q (n ) >  0. Q б C 1 ([0, o c ) ) an d  le i  the coe f f ic ien t  k(u )  satis fy  
cond it ion  (34). Then i f  itn(x) =£0, the so lut ion  o f  the C au ch y  p r o b l e m  (1 .2) ,  (1.5) 
is strictly pos it iv e  in R 4 f o r  al l  a d m is s ib le  1 > 0 .

P r o o f  By  comparison Theorem 3 the generalized solution of the problem under 
consideration (denoted by i f 2)(t. x))  is everywhere not smaller than the solution 
a  =  a " ’ o f the Cauchy problem (25) .  (26) for the equation without a source: 
i / ' > a l h . However, from Proposition 4  it follows that a " ’ > 0  in R w for t >  0; 
therefore this also holds for a 1*1. □

For an equation with a sink the situation is more complicated. Here even 
if k(Q) >  0, the solution n(t, x)  can have compact support. However, for that 
to happen the sink must be very powerful for low temperatures к > 0 and the 
function Q(u)  must be non-differentiable jit zero. Otherwise, as shown in the 
example below, the solution will still be positive and a classical one.

E xam p le 10. Let us consider the Cauchy problem for a semilinear equation with 
a sink:

и, =  Да — (7(a), t >  0, x 6  R n . (35)

with an initial function i i o ( . i ) ^ 0  with compact support, 0  <  а,) < M .  suppa,, C 
(|.v| < /о). Let Q (a) > 0  for a > 0. Q (0) =  0  and Q 6  C ( [ 0 ,  oo)) .  Let us show 
that u(r. x)  > 0  in R w for t >  0.

First o f  all we immediately obtain from Theorem 1 that

0  < u ( t .x )  < M. t >  0. л' 6  R w.

Next, taking into account the restrictions on the coefficient Q we deduce that 

(7(a) £  Си. и б [0, Д7|; С =  const > 0.

Then, using Theorem 3 to compare the solutions o f  equation (35) and of the 
equation

n, =  An -  C v ,  t > О.л- б R \

which satisfy the same initial condition, we convince ourselves that

a(r, .v) > v(t. x) in R + x R ,v. (36)

However, v > 0  for t > 0. Indeed, setting

v =  ехр (-С / }ш  (37)

we obtain for n> the heat equation to, — Aw, w(0, x)  =  ao(.r) > 0  in R w. a 0 ^ 0 ,  
and therefore w > 0 in R w for t >  0. The required result follows from (37),  (36).
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The next example shows that in a medium with a strong sink the thermal wave 
can he not only compactly supported, but also localized.

E xam p le  11. Let us consider the first boundary value problem for a heat equation 
with a sink in the one-dimensional setting:

11, =  11 „  ■-  it", i > 0 , Л- > 0 , (38)

1/(0 . A) = iio(x) > 0 . x  > 0 , (39)

11( 1, 0 ) = IV
 

p V о (40)

where a  e  (0 , 1) is a constant, so that the function —it" is non-differentiable for 
и =  0  (strong absorption). Let the initial perturbation »,> have compact support: 
иo(.t') =  0 for all л- > /о > 0 , while the external heat supply is bounded: u\(t) < 
M  < 00 for all i >  0. Let us show that under these conditions the solution always 
has compact support (even though k(u)  == 1 > 0 ) and is, moreover, localized in a 
bounded domain.

Both these assertions are proved by comparing the solution o f  the problem
( 3 8 )—(40) with the stationary solution и =  v(x)  o f  the same equation

nM- i/ * = ( ) .  (41)

which is determined in the following fashion.
Let us lix / > 0  and consider for (41) the Cauchy problem in the domain 

(0  <  ,v < /) with the conditions

v(l) ^ 0, [/(/) = (). (42)

One solution of the problem (41),  (42) is the trivial one. However, it is easily 
verified that there is another solution, which is positive on ((),/).

Any solution of (41) satisfies the identity

where the constant C'i must be zero, which follows from (42). Then

U, =  - V 2 7 f ^ T T ) ^ " + , ’/2

and therefore

-и(I :<)/?- (Л) 2--------- ,v T  C->.
(t -f 1
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Here the constant C i ,  which is determined from the first o f  conditions (42), has 
the form CL =  l - / 2 ] ( a  +  1) and therefore

i 'U )
1

•n/2 ( «  +  1)
(/

2/d
. 0  < .v <  /.

By construction the function

II’/(.V)
v/2 ( a  +  Г)

(/ -  л) , . -V > 0 , (43)

is a classical stationary solution o f  equation (38) and has for .v > 0 continuous 
derivatives » v, n vv (let us note that at a front point .v — / higher derivatives do not 
necessarily exist). Let us choose now 1 =  1, > 0  large enough, so that it о < uii.(x)  
for v > 0 and furthermore

/<)/,( 0 )
1 -  a

. v/ 2 ( a  + 7 7
L

2/(1 - ID
> M.

Then »i(/) < >/'/.(()) for all / > 0. Therefore by the comparison Theorem 1 we 
have the estimate

!/(/, ,v) <  w K ( Л-), i > 0, ,v б R.,..

Thus, first, the function к has compact support in v for all / > 0  and, second, 
heat is localized in the domain (,v б (0 , /*)} at all times / б (0 , oo).

Let us stress that these properties are possible only in the ease а  б (0, 1); for 
a  >  1, as shown in Example 10, the solution is strictly positive for / > 0. Absence 
o f  non-trivial solutions o f  the stationary problem (41),  (42) with finite / > 0  in the 
ease a  >  1 also testifies to that.

5 Conditions of local and global existence of the generalized solution

On the whole, all the assertions stated in subsection 2 o f  tj 2 concerning classical 
solutions, are valid here. Local existence of the generalized solution follows from 
the ability to construct it as a limit o f  a sequence o f  classical solutions defined on 
a finite interval (0, 7‘). Naturally, Proposition 3 is also valid, since the condition 
entering it has been obtained in an analysis o f  elassieal solutions. Analysis of un
bounded classical solutions in Examples 2, 3 applies also to generalized solutions. 
Let us consider the following example (in a more general setting such problems 
are considered in ij 2, Ch. VII),

E xam p le  12. Let i l  be a bounded domain in R w with a smooth boundary iili ; 
cr >  0  is a fixed constant. For a degenerate equation

u, =  V - ( » ,rVi() + н " и . / > 0, л- б IL (44)
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let us consider the boundary value problem with the conditions

l t ( 0, A') ”  L1„ (X) > 0, A' G 11, U() ГЕ C ( l l ) ,

u u ,  x ) =  o . ! >  o, a- s  <m.
( 4 5 )

Let us denote by i//|(.v) > 0  in 11, ||*Аi I I ( i n — I- the fifst eigenfunction of 
the problem At// +  At// =  0  in 11, i// =  0  on 911, and by A| > 0  the corresponding 
eigenvalue.

We shall show that for Л| < <r +  1 every non-trivial solution of the problem 
exists only for a finite time. We shall proceed as in Example 2. Let us form the 
scalar product in /L2(11) of the equation (44) with i/q. Introducing the notation 
E (i )  — (it(t , л), t//|(.v)), we obtain

~ U )  =  f i//|U) V ■ (itirVit) d x  +  f i//|(A-)ulr< 1 clx. (46)
cIt J u  ./si

Here, as in the case of a classical solution, we can integrate by parts the lirst term 
in the right-hand side of (46).

Let us show that

/ i//| (,v) V ■ (» |ГV») clx = ---- f urrf 1At//| d x .  (47)
J u  cr +  1 ,/u

If  no > 0  in 11 then tt(i, x)  is a classical solution. Let supp m() C 11. Let us 
denote by i)co(f) the degeneracy surface of equation (44) in this problem, that is, 
the boundary o f  the support o f  the solution o>(/) ~  suppitU, a ). Then u(t, x) ~  0 
in 11 \io(i),  and by Green's formula

/ i/r, V . (i,'rVi,)Llx =  --------- / 1//|Д»,г+| clx =
Ju V  + 1 ./will

(48)
where we denoted by 9/9n, the derivative in the direction o f  the outer normal to
i)w(r). However, urr hl =  0  on ‘J w ( t )  and by continuity o f  the heat flux ihc,r+l/tin, =  
V a ir+I ■ и, =  l) for л- s  9 Theref ore the last two integrals in (48) are zero, 
which leads to the equality (47).

It must be said that in the analysis above we did not consider the question 
o f  regularity of the surface (in particular, the existence o f  the derivative
9urr+l/9n, on ihu(r)); for certain classes o f  equations this problem is quite well 
understood (see the Comments section). In this particular ease this is not necessary: 
the definition of a generalized solution implies that integration by parts is justified 
and allows us to prove the equality (47).
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Using (47) and taking into account the fact that At//f =  — Atij/\ in 11, we obtain 
from (46)

^ < 0  =  ( l -------(urr+l, t//i). i >  0. (49)
(It V & +  1 /

If A j < a  + 1 ,  then using Jensen 's inequality (urr+l is a convex function for и >  0 ) ,  
we arrive at the estimate

d E
—  >
dt  ~

1 -
A,

c r + \
(«, Ф( )rM'‘ s

A,
(T +  1

F r M . t >  0 .

Hence it follows that /:(/) (and thus u(t.  л-)) remains bounded for time not greater 
than

=  « Ч -  I 1

(T +  1 -  At a L
Щ](х)ф((х) (lx

that is, there exists 7'o e  (0, 7\|, such that lim sup( u(t. x)  =  oc,  / —> 7’y.
Let us note that for Ai > cr + 1  it follows from (49) that E (t)  is bounded for all 

t >  0. This can be considered as evidence of global boundedness of the solution 
(see § 2, Ch. VII).  *

To conclude, let us give some simple examples of unbounded generalized so
lutions which illustrate the property o f  heat localization in nonlinear media with 
volumetric energy sources.

Exam ple 13. The equation

It, =  (и'Г11л ) х +  !!rrM, (T =  const > 0 .

has in the domain ( —oc, 7'(l) x R  the following self-similar separable solution: 

u (i.  x)  =  (7 '0 -  t) l/" 0 s (x)  s=

(7’n ~  t f
rLLtii c o y  E l )
rr ( , r i 2 ) L a s  t., )

0 . |-V| > L s /2 .

l/fr
|.v| < L s /2 ,

0 < t < To,

(50)

where Ly =  2тг((т +  1 ) l j2 / t r  and To  > 0 is an arbitrary constant.
Let us indicate the main features o f  this solution. First of all, it has compact 

support in .V and is a generalized solution; at the points of degeneracy ,v =  ± L s /2  
the heat flux is continuous.

Secondly, it exhibits finite time blow-up: u(t, x)  —> oo as t - *  7"(y for any
IЛ'I < L s / 2 .

Thirdly, its support, suppo(/,A) =  (|.v| < L s /2 } .  is constant during the whole 
time of existence of the solution. It is localized; the heat from the localization 
domain (|a | < L s / 2 ) does not penetrate into the surrounding cold space (see 
Figure 4 ) ,  even though at all points o f  the localization domain the temperature
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Fig. 4. Localization of a Imiie lime blow-up combustion process in the S-regime (self- 
similar solution (50))

grows without hound as t —> 7’()“. The half-width x, , j (t) > 0 of this fast growing 
heat .structure, that is, the coordinates of the point at which u(i .  x,.[(t)) =  uU,  0)/2 
are also constant in time.

Example 14. The equation it, — (u'Ti,), i t  > 0. also has quite an unusual
exact non-sclf-similnr solution of the following form:

u,U.  -v) = {ф(0 [rI 'U) +  co* ( 2 i r x / Ls )\. } '/,r > 0

for .v € ( — L s /2 ,  L s /2 )  and u , U , x )  = 0 for .v e R\( —/..s-/2. Ls/2) .  where the 
function r//(/) e ( - ! .  I) satisfies for / > 0 the equation

r// =  (T(<r + l)~ ‘C()[! — r//21 ,r/~, ! >  0; r//(())= - I ,

and фи) = Col I — t//~(/)| ’ ”. If the constant C(> is chosen in the form

C0 =  Ca(T0) =  ( ( r + \ ) t r -  ' T {)4 i (  \ + tr/2, 1/2),

then it is not hard to see by integrating the equation for ф(1 ) that the solution 
n,(r, x) will blow up at time T q, ut (i , 0) —> oo as / —► 70 . It is easy to see that 
the fronts of the generalized solution n, are at the points

/;?,(/) =  ± ( Т х/27Г)[7г/2 + uresin r//(/)| —> ± L s / 2

as 1 —> T 0 and the solution grows without bound only in the localization domain
{|л'| < Lgj2). It is interesting to note that since r//(0) =  — I. we have the equality
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h*± (0)  =  0 and the exact solution satisfies in the generalized sense the singular 
initial condition

u t (0, x ) =  E ()5(x)  in R .

where S ix )  stands for the Dirac delta function, and the constant E$ depends only 
on T о and (T. More precisely, for small t > 0  we have the representation

u .( i .  x) a nt - I Hit Г 2 )
Al b  Г  I

V - . i/om
l /rr

t

where a n and bo  are constants,

do — 2 1" |(<r +  I )(T 111'' (er +  2 ) l - l,r

bo  =  (rr +  I )ct ~((T +  2 ) :/uri l l T v 

Therefore it is easy to see that

'T0 2;,r," ' 2,\B(\ + c r / 2 , 1/2 ) |2/<r(,r 1 

7l'r ,2 l|B(\ +  (t / 2 ,  !/2 )|2/um2'.

u . i t .  x ) £ ( x ) d x  ->  /:'о£(0 ) as t 0

for any smooth compactly supported test function £(.v), From these asymptotics it 
follows immediately that /ip =  и ф ^ В Ц  +  l/rr, 1/2 ),

As far as the behaviour o f  the solution t i . i t . x )  close to the blow-up time is 
concerned, it is not hard to check, by computing the asymptotics o f  the functions 
il/(t)  and ф и )  as t —> T (). that this exact solution converges asymptotically to the 
simpler self-similar solution (50 ) ,  which we considered in Example 13, Below 
(see § 5, Ch, IV) we shall show that precisely this self-similar solution describes 
the asymptotics of a wide variety o f  unbounded solutions close to the blow-up 
time.

Finally, we observe that the above solution ut , which is not self-similar, can be 
treated as follows. Setting u'r =  t1 yields an equation with quadratic nonlinearities.

1 у “l
i>, =  A(u) =  H—  ( u , r  +  f-nr.

LT

The n on lin ear  operator A admits the following two-dimensional l in ea r  in varian t  
s n b s p a c e

W 2 =  ;/ ( ! .  cos(A.v)) =

=  \w(x) ; 3 Со, Г| б R , such that w (x )  =  Co + C |  cos(Aa')},

where A =  2tt/ L s (.'/'(•) denotes the linear span o f  given functions). This means 
that A (W i)  C ИА. Therefore substituting v(i.  x)  =  C\)(t) +  C|(/)cos(A,r) б Wi 
into the equation gives us a dynamical system on the coefficients (G>(/). Ci(/)(, 
which is precisely the parabolic equation on ИА.
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6 Exam ples of non-uniqueness of the generalized solution

Obviously, the requirement of smoothness o f  the source Q > 0  in equation (1,2), 
which is necessary for unique solvability o f  the Cauchy problem (see subsection 3 
o f  $ 2 ) in the class of smooth functions, is still in force in the generalized setting. 
Example 4  applies in this case without changes. In addition, it is easy to give an 
example o f  a degenerate equation, constructed as in Example 5, which has in a 
bounded domain a non-unique spatially nonhomogeneous solution.

For example, the problem

n,  =  A n " 4 1  +  A , i i ,r"  +  ,//11~ ' , l / U r F l l i i " .

и =  0  in i\ for t =  0 and in R ,  x (Щ; a  <= (0 , 1), <r >  () are constants; the rest 
o f  the notation is the same as in Example 5 of i; 2. has the family of  non-trivia! 
solutions

u(i,  x)  — 1<т( 1 )ф\/ о п и (х ) .  i > 0 . .v s  1L

Let us consider an example which demonstrates explicitly that if  uniqueness 
conditions do not hold, the comparison theorems for generalized solutions are no 
longer valid.

E xam p le 15. Let us fix an arbitrary <r <= (0, 1) and let us consider for t >  0, 
A' > 0, the equation

n, =  (n'rn , ) ,  +  n 1 rr. ( 5 ! )

Here Q(u) — ii1" rr, so that Q (0)  =  0, but (? '( ( )1 ) =  oo. Let us find a travelling 
wave solution.

Setting n(i,  ,v) =  /.s-(f), £ =  -v — Ai. A > 0, we obtain for f s >  0  the equation

-A/.S- =  ( / ? /.s')’ +  f s ' r -

which has for A > 2 two different solutions

f U t )  =  c t [ ( - £ M 1 / , r .

„  , А ± У а^ 4 У ЛГ „
(- t =  I (T--------- »---------  I > 0 .

Therefore the required self-similar solutions have the form

i i1 (i.  a ) -  C i  [(A; -  .v), |l/rr, i > 0, л > 0,

Let us compare these generalized solutions with the spatially homogeneous 
solution (Figure 5)

iC(i.A') =  (<r;) l/'r, i > 0 , л > 0 ,
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Fig. 5. Three differeni soluiions of equation (51). wliicli do not satisfy the Maximum 
Principle

First, a!! these solutions, as solutions to a boundary value problem in R + x R + , 
satisfy the same initial condition

ni (0 . .v) =  «*((). л) =  0 . x  > 0 ,

Secondly, for Л > 2 the boundary values satisfy the inequalities

« ’ ( / . О )  <  i f  ( / . ( ) )  <  n + ( / , 0 ) .  i > 0 ,

Nonetheless, as seen from the position o f  these solutions relative to one another in 
Figure 5. they do not satisfy the comparison theorem. Let us note that already the 
existence of two solutions ii1 o f  travelling wave type with same .speeds o f  motion 
and coinciding fronts, which correspond however to boundary regimes o f  different 
magnitudes, contradicts physical intuition.

Remarks and comments on the literature

The necessary bibliographical references for most of the contents of ij 1 , 2  are 
contained in the text. Concerning Propositions 2, 3 in § 2, see [282, 320, 101, 3 3 8 1; 
the restriction (6 ) in § 2 coincides with the Osgood criterion for global continuation 
of solutions o f  an ordinary differentia! equation [354]. The result stated in Example 
2 was first obtained in [ 2 4 3 1. Concerning Example 5, see [243. 116 1. Non- 
uniqueness of solutions of boundary value problems in a bounded domain for 
a semilinear equation with source concave in и was proved in [ ! ! 6 [ (see also 
[114 1). The generalized seif-similar solution of Example 8 was constructed in 
13 8 5 1 (N ~  ! )  and [28, 386| (N  > I arbitrary). Asymptotic stability of the
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.self-similar solution ( 2 ! )  of ij 3 was established for N =  1 in [234| and by a 
different method in 11 8 7 1. The proof o f  stability in the multi-dimensional case 
was done in [ 10 7 1 (qualitative forma! results were obtained earlier, for example, 
in [5, 384, 3 8 6 1); see also Ch, 11.

The localized solution of Example 9 is taken from [3 0 2 1. The definition of a 
generalized solution in subsection 2 of § 3 for a degenerate equation o f  general 
type without a source was formulated in [319, 341, 3 4 2 1, These authors also prove 
existenee and uniqueness theorems for generalized solutions for boundary value 
and Cauchy problems. For quasilinear parabolic equations with lower order terms 
such theorems are proved, for example, in [377, 231, 2 1 , 4 3 .  203, 294, 344, 3 4 5 1, 
where in a number of cases weaker generalized solutions are considered).

Differentiability properties of generalized solutions of the equation u, =  
(ff'r+ l) M, i t  >  0, were studied in [16, 17, 1 8 1; in particular, continuity o f  the 
heat flux — (n'r'M), was established, certain results concerning degeneracy curves 
were obtained, and Holder continuity in x with exponent и — m in j l ,  I /о-) was 
proved. This implies Holder continuity in / with exponent v j l  (see [202, 258|),

Under certain additional assumptions, it is shown in [ 7 5 1 that the Holder con
tinuity exponent in / is also equal to и (from the form of the solution in Example 
8 it follows that this is an optima! result). Later sonic of these results were e x 
tended to the case o f  more genera! degenerate equations 1230, 248, 203 ,  252 , 2 5 3 1, 
Properties of the degeneracy surface o f  the equation и, =  Да" 4 1 were studied in 
[18, 58, 59, 252|; there it is shown that stalling from some moment o f  time it is 
differentiable (many o f  these results are summarized in [ 10 3 1; see also [ 3 2 8 1).

We shall discuss in more detail the properties of generalized solutions o f  de
generate equations in Ch. 11, 111, and in Comments to these Chapters.

Sufficiency of condition (28) in § 3 in Proposition 4  (finite speed o f  propagation 
o f  perturbations) was established in [ 3 19 1 for the one-dimensional case; see also 
[33[, Necessity under some additional assumptions was proved in [229|. In the 
proof of  Proposition 4  we use a method that was employed in [3 2 7 1 for N =  1. 
Concerning Theorem 3, see [2.31, 232, 2 4 8 1. In the presentation o f  the result of 
Example 11, we used the approach o f  [23 !  | (comparison with the stationary solu
tion); in that paper conditions for localization in arbitrary media with volumetric- 
absorption were obtained. For more details on localization in media with sinks 
see Ch, !! and the surveys in [233, !62|. In the analysis o f  the parabolic equation 
in Example 12 we used a generalization o f  the method o f  [2 4 3 1 to the case of 
quasilinear problems [ 120, 121, 12 4 1 (see also [ 2 2 5 1, where the same method is 
used to study a quasilinear equation o f  a different type). The localized unbounded 
solution o f  Example 13 was first constructed in [391, 3 5 3 1 (see Ch. IV ).

The localized solution of Example 14 was constructed and s’tudied in [ 134, !76|. 
There one can also find a method o f  constructing similar exact solutions for a large 
class of evolution equations and systems with quadratic nonlinearities. Let us note 
that this solution is not invariant with respect to Lie groups or Lie-Backlund groups;



Remarks and comments 37

see [ 2 2 ! ,  3 2 2 1. An example of  this unusual kind of  exact solution lor a quasilinear 
equation with a sink was constructed in [4 9 1 (see also a similar solution in [3 I3 [ .  
Some genera! ideas on construction of finite-dimensional linear subspaces that 
are invariant under a given nonlinear operator and o f  the corresponding explicit 
solutions via dynamical systems are presented in [!36| and [ 13 9 1. Example 15 
is taken from [!22|. In that paper were established conditions on the coefficients 
k ( a).  Q(u),  under which a parabolic equation of genera! type admits at least two 
travelling wave type solutions. Existence of different travelling waves for an 
equation with power type nonlinearities, и, — Дu'" +  n 1', p  < I < m, m +  p  ^
2 . was established in [ 3 2 3 1; see also the genera! results o f  [ 3 2 4 1 on "alm ost” 
uniqueness (for m +  p  < 2)  and nonuniqueness, and [6 | for the case in =  I .



Chapter I I

Some quasilinear parabolic equations. Self-similar 
solutions and their asymptotic stability

In the present chapter, which, like the previous one, is of an introductory character, 
we briefly present results of  analysis o f  specific quasilinear parabolic equations. As 
can be seen from the title, one o f  the principal methods o f  investigation consists of 
constructing and analyzing self-similar (or, in the general case, invariant) solutions 
o f  the problem being considered.

Using various examples, we shall try to show, whnt role these particular solu
tions play in the description of general properties of solutions of parabolic equa
tions of most diverse types. Here we also introduce the concept of approxi
mate self-similar solutions (a.s.s.) o f  nonlinear parabolic equations. Use of the 
construction o f  a.s.s as a tool in its own right will be considered in other chap
ters'.

The examples presented below cover a sufficiently wide spectrum o f  nonlinear 
equations. Comparatively simple and frequently well known examples illustrate 
many ideas and methods of  analysis, which will be developed in subsequent chap
ters in a more explicit and detailed fashion.

Many of the problems and questions considered below have been exhaustively 
researched; the corresponding references are given at the end o f  the chapter, From 
all the available results we choose only those that are, first, constructive, that is, 
ones that make it possible to show explicitly certain properties o f  the solutions of 
a problem, and second, which is particularly important for an introductory chapter, 
those that can be proved in a relatively simple and brief manner at least on the 
formal level. Wherever this cannot be done, we restrict ourselves to short remarks 
on the proof, or discuss only the “physical meaning” of the result, which contains 
the ideas o f  a rigorous proof. For that reason, we do not aim at a great generality 
in our presentation; frequently other proofs of well known facts are given; these, in 
our view, either make explicit the “physical basis” of a phenomenon, or illustrate 
mathematical methods to be used in the sequel. Let us note that this approach 
(frequently using similarity methods) makes it possible to obtain more optimal, 
and even new results.
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We want to emphasize in particular the concept o f  asymptotic stability of self
similar solutions o f  nonlinear parabolic equations with respect to perturbations 
of the boundary data of the problem, as well as with respect to perturbations 
o f  the equation itself. Self-similar (invariant) solutions are not simply particular 
solutions appearing serendipitously. In many cases they serve as a sort of “centres 
of gravity" of a wide variety o f  solutions of the equation under consideration, as 
well as o f  solutions o f  other parabolic equations obtained as a result of  a “nonlinear 
perturbation” of  the original equation. The sense in which the expression “centre 
of gravity" ts to be understood, will become clear below.

The specific form o f  self-similar solutions is to be determined from the condi
tions of invariance of an equation with respect to certain transformations. In the 
general case families of self-similar solutions are determined by a group classifica
tion of the equation. This allows us to find all classes o f  equations invariant with 
respect to a certain group of transformations (such as Lie groups of point transfor
mations. or Lic-Backlund groups of contact transformations; see [221, 322]).

We start with an analysis of a simple linear problem; however, as we show 
below, this analysis will allow us to determine properties of a whole family of 
nonlinear problems. *

§ 1 A boundary value problem in a half-space for 
the heat equation. The concept of asymptotic stability of 

self-similar solutions

For the linear equation
t > 0 , x > О, ( 1)

let us consider the boundary value problem with boundary data

»((), л ) =  ii(j(л ) > 0 , ,v > 0 ; supiio < oo, (2 )

ii(t. 0 ) =  H|U) > 0 . t > 0 . (3)

It is assumed that the function и(IU )  ts Ltpschitz continuous in R t . Here we 
analyse the “dimensionless” equation with thermal conductivity coefficient Л() =  1, 
This does not restrict the generality of the results, since by scaling time t - *  k {)t 
(or the spatial coordinate л -> k t] /_.r) the linear equation u, =  k a u v, reduces to 
the original one. Thus in equation (1) the variables /, x  are also dimensionless 
quantities.

As we already mentioned, the problem (1)—(3) models the process o f  heat 
action on a medium with a constant thermal conductivity. Our goal is to describe 
explicitly the evolution of the heating process, establish the law governing the
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motion o f  the wave o f  heating, find how its depth of penetration (half-width) 
л',,/(/) depends on tim e1, and to determine the spatial profile of the wave.

Solution o f  the stated problem can be written down explicitly in terms o f  heat 
potentials [282|:

(4)
However it does not seem possible to glean directly from (4) the features of the 
process we are interested in. Therefore we proceed in a different way.

1 A self-sim ilar solution

Let us consider a special form (power law) boundary regime;

i'i U) =  (1 +  /)"'. i > 0 . (5)

where in > 0  is a constant. For such a boundary function equation (1) has a 
suitable self-similar solution:

t i s U, г) — ( I L  0  .̂v(  ̂1, £ — ,v/(l -f t )^” , (6)

Substituting the solution (6 ) into equation ( 1), we obtain for fl.v(f) the ordinary 
differential equation

<>s +  »‘( h  =  0, {  > 0. (7)

Let

».v(0) =  L (8 )

Then the solution u.y satisfies the boundary condition (3), (5). Talcing into consid
eration the condition o f  boundedness of n.y as x —> oo (sec (2 )), we shall require 
the inequality fly(co) < oo to hold. From equation (7) tt is easy to deduce that 
such a solution has to satisfy the condition

tf.y(oc) =  (), (9)

‘The quantity ,v(,/ (/) is tleiemiined for each time t > 0 by the equality //(/, x,.jU)) =
n(l, ())/2, that is, this is the point where the temperature is equal to half the temperature on
the boundary.
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Thus the problem of constructing a self-similar solution (6 ) of a partial differential 
equation has been redueed to the boundary value problem (7)—(9) for a considerably 
simpler ordinary differential equation.

The solution of the problem ( 7 ) - (9 )  exists, is unique, monotone, and strictly 
positive;

«*(£ )  =
-*2 m f I Г  (1 +  m)

exp £
4

H (2/ii I I) ( 10)

where H,.(z)  is the Hermite function;

H " dt

(a special function of mathematical physics 135, 317]) .  The function 0 v( f )  decays 
rapidly as £  ~+ oo:

0s (i)  ~ e x p | - ^ / 4 }, oo. (12)

The self-similar solution (6 ) constructed above has a simple spatio-temporal 
structure. From the form of the solution it is easy to determine the dependence of 
the depth of penetration (half-width) o f  the thermal wave on time:

x f f U ) =  £./■(! +  O l/2, (13)

where the constant f , . /  =  f,./(m) is such that 0,v(f,./) =  fl,s(0)/2 =  1/2. The 
function 0 v(^) characterizes, for each t > 0, the spatial shape of the thermal wave.

2 C om parison with o th er (non-sim ilarity) solutions

By the comparison theorem, its majorizes a large set o f  solutions of the problem
( 1 Ы З ) .

Proposition 1. Let

i t\(t) <  (1 +  t . t >  0; oo( .v)  <  t f y U ) ,  л ■> 0 ,  ( 1 4 )

Then the so lution o f  p r o b l e m  (1 )—(3) satis fies  the  in equality

tt( t ,x )  < (1 +/)'"«.у(л7(1  - F /), /2 ), t >  0, ,v > 0 . (15)

Therefore if the inequalities (14) hold, we have an upper bound for the solution 
of the problem; this bound allows us to understand the form of the distribution in 
space of the heat coming in from the boundary. For example, let the boundary 
regime be of the self-similar form.

» , ( / )  =  ( 1  + / ) ' " ,  /  >  0 , ( 1 6 )
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while the initial perturbation satislies ttn(x)  £  flyU) in R , . Then by (15)  x\.f(t) £  
л';!/(/), that i.s,

XrjU) £  £',■/(” 0(1  +  0 I/2. i >  0 .

Inequality (15) also gives us some information about the spatial profile of the 
non-self-similar thermal wave.

3 A sym ptotic stability of the self-sim ilar solution with respect to 
perturbation  of the boundary d ata

Let us consider a different aspect of  the problem. What would happen if the 
restrictions on the initial function »o(.v) in (14) were not satislied, for example, 
if »o(.v) =  1 in R ,  (then by the condition flyU) - *  0 as .v —> oc the inequality 
нц(д') £  0 $(.r) does not hold for all sufficiently large x > 0 ), In this case the self- 
Stmilar solution allows us to obtain sharp bounds on the spatio-temporal structure 
of the heating wave, but, naturally, only for sufficiently large i. Below we shall 
deal with asymptotic stability of  the solution (6 ) with respect to perturbations of 
the initial function.

Let equality (16) hold. Let us introduce the sim ilarity  representa tion  (.similarity 
"transfortn")  o f  the solution o f  problem (1)—(3), defined at each moment of time 
in accordance with the form o f  the self-similar solution (6 ):

=  (1 + 0  ' “ ни, f ( l  + 0 I/2), / > ( ) , £ >  0, (17)

This expression is arranged in such a way that the similarity transform o f  its (r, x) 
gives us exactly the function fl.y(f),

Proposition 2. Let it\(t) =  (1 +  /)”', t > 0, The self-,similar so lution  (6) is 
asy m p to t ica l ly  s t a b le  with respect  to  a r b i tra ry  (bo u n d ed )  p er tu rba t ion s  o f  the initial  
function ; f o r  an y  itu(x)

ll»U. ■) -  e,v(■)IIc i k ,) s  sup< |0 U. f ) -  e s {()\

=  6>((1 +  /)"'") -> (),/->  OG,

(18)

P r o o f  It follows from the Maximum Principle. Let us set z =  it — its- Then :  
satisfies the equation

Zi =  r.w, t > 0 , ,v > 0 ,

and furthermore z(t,  0) =  0, t >  0, and su p ,, , ,  |:((), .v)| < oo, From the compari
son theorem we obtain

\:.(t, ,v)| < M =  sup |e((), .v)|, / > 0 ,
V .()
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Hence it follows immediately that

1«(/ ,£)  -  fl.v(£)| < M(\ + / ) * ' "  ->  0 , / -*■ oo,

for all £ > 0 , □

Thus for any initial function, the solution of the problem with a power law 
boundary regime after a certain time becomes quite close to the self-similar so
lution, From (18) it is not hard to derive, for example, the asymptotically exact 
expression for the depth o f  penetration of the thermal wave:

Xef(t )  =  £../■(»>) t ' /2 +  o(/l/2), / - > 0 0 .  (19)

which, for large /, is close to the self-similar one:

x , j ( t ) / x ^ ( r )  ->  1, / ->  oo,

Here by (18) the similarity function correctly characterizes the protile o f  the heating 
wave at an advanced stage of the process,

This does not exhaust the properties o f  the constructed self-similar solution, It 
turns out that it is also stable with respect to small perturbations o f  the boundary 
regime, A general assertion concerning asymptotic stability of the self-similar 
solution (6 ) with respect to perturbations o f  the boundary data looks as follows (it 
is proved in exactly the same way as the previous one),

Proposition 3. Let
ItI ( / ) / ( 1 +  /)"' ->  1, / oo, (20)

Then

l|0 U, ■) -  fM O lInR .i =  0 |max(/ 11 -  u\U)//"'|l] -> 0 , / -> oo, (2 1 )

If (20) holds, we have the same exact estimate (19) lor the depth o f  penetration 
of the wave. This result gives us an explicit form of the evolution of the heating 
process for arbitrary initial perturbations and for boundary regimes asymptotically 
close in the sense of (2 0 ) to a power law dependence,

4  A sym ptotic stability of the self-sim ilar solution with respect to small 
perturbations of the equation

Let us show now that spatio-temporal structure of the self-similar solution is pre
served for large / > 0  in the case o f  a “small nonlinear perturbation” o f  the original 
parabolic heat equation,
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Suppose a sufficiently smooth thermal conductivity coefficient is not constant: 
к =  k{u)  > 0  for it ^  0, However it is close to a constant for large temperatures:

k i n) —> 1, n —* oo. (22)

Let us consider the same process of heating, but now in a nonlinear heat conducting 
medium:

it, =  i k ( t t ) i t , ),, i > 0, ,v > 0, (23)

where u ( t ,x )  satisfies the boundary conditions (2), (3), For convenience, let us 
introduce the function

Cnin) -  k ' !2 ir ] ) \ 2 d p . it > 0 .

Proposition 4. Lei to =  (1 +  O'", t > 0, uf) б L 2i R .t ),' it,, is n on -in crea s in g in x 
a n d  condition  (22) holds.  Then the s e l f - s im ila r  so lution  (6 ) is s tab le  with respect  
to the in d ica ted  p er tu rba t ion s  o f  the th erm a l  conductiv ity  coefficient, a n d  we hav e  
the estimate

w t , ■) -  0.s'(')ll/2(K ) =  Г \ 0 И .  f ) -  )]2 d £  =
./о

О +  , Г 2 ' " ' / 2 т,ax 1 1, + t )"' i/2G a|(1 +  t )'"|</t }

(24)

a s  t —> оо,

If  condition (22) holds, the right-hand side o f  the estimate (24) does indeed go 
to zero as t —y oo, which is not hard to see by evaluating the indeterminntes

l + T ) 1"  l/2G*[( 1 4- t )"'| d r

hm ~ -------------- -— — — - г -------------( 1 4. /)2ж+ 1/2

1 G a(.v)
lint

2 in +  1 /2  ' -  ~  л 2 in +  1/2
lim (1 -  к /_(,v))' =  0 .

Let us note that convergence of  0 ( t , - )  to fl.y(-) as t —> 00 in the L 2 (R ,. )  norm 
implies, in particular, pointwise convergence almost everywhere.

P roof.  The function w  =  tt — us satisfies in R ,  x R , the equation

w, =  \k(u)u l -  (tts ) , (25)

with wit,  0) =  0, u>it,x) 0 as ,v —> 0 0  (this follows immediately from the
Maximum Principle) and in((), ■) £ /.: (R ,) .  The latter assertion is ensured by
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the requirement that н(| б L 2 (R + ); by (12) the self-similar solution ««,-(/, -) is in 
l J (R + ) lor all in >  0. We restrict ourselves to a forma! analysis of equation (25),  

Let us take the scalar product of equation (25) with w in L 2 ( R + ), and, having 
convinced ourselves that this product makes sense, let us integrate the right-hand 
side by parts; this i,s allowed in view of uniform boundedness of the derivatives i tx 
and ( h.v),  in R ,  x R + and the condition w —» 0  as x —* ос .  As a result we obtain

=  ~ U i\ . .k {u ) t tx -  (u.y),)-

It is not hard to verify the identity

~ ( h , ~  (ау),)(А-(н)н, -  (».yh) =

=  ~ -(k{/2 ( u ) u x -  (i/.y).,)2 +  (1 -  k ' / 2 ( u ) ) ) 2 itx(iis ) l s

=  — (k*'~(tt)ttx — (h.v).,) ' +  — G*(i/)(i/\) л.
d.V

using which the preceding equality takes the form

^ l | H ' l l i : ( R t l  =  — | | * , / 2 ( H ) « r  -  ( " sO a I I ^ i r , ,  +  ( j ^ G k {u).  ( « * ) , )  .

Under our assumptions on иц(д), n ,( i . .v )  < 0 in R ,  for all t >  0  (this follows 
from the Maximum Principle; see § 1 of  Ch. V ).  Taking into account in the last 
equality the fact that (а.у)л < 0  in R , x R +. we arrive at the estimate

Ы ,  , (  l) \
2  (»s) .  <

(26)

<  -  SUp | (H y(/. -V)) 11 / 7—  GkiuU. Л-) ) tlx.
 ̂ ./() d.V

It is easily checked that

|(Oy(l. -V)) I I S  (1 +  /)"' l/:|(/v(f)|.

while sup|fl'v(£)| =  r/y < oo. Then from (26) we obtain

“ I M b , , , . ,  < 4 x 0  + 0 " '  l/2C A|(l +/)"'|- (27)

Since, as follows from (17) ,

II iff». -MlLm, ,s(l +0:'"",2||fl(/.-) -flyHlIj.qK.,.
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from (27) we immediately obtain the estimate

l|0 (/.-) - t f v H l f
2m 1/2

»<>(-)

which is the same as (24).
(28)
□

R em ark . The estimate (24) holds Гог sufficiently arbitrary (non-monotone in .v) 
initial functions «о б L 2(R ,.). such that 0  5  n(] < «о £  u,j in R + . where are 
monotone functions. (0) =  ii\(0). Then the same method can be used to derive 
estimates of the form (24) for the similarity representations 0 ± (t. f )  o f  the solutions 
/<*•(/, .v), which satisfy the initial conditions «^|/=о =  ujj in R t . Therefore the 
stabilization H(t, £) —> fly(£) as / —> oo will follow from the inequalities u" £  
и £  (or. equivalently, в < в  £  (i+ ) in R . x R , .

Thus, the self-similar solution (6 ) correctly describes for large t properties of 
solutions o f  a large set o f  quasilinear parabolic equations. The estimate (19) of the 
depth of penetration o f  the thermal wave also holds here, while the function 0 y ( f ) 
determines its spatial form as t —> oo. The function us  will be an approximate 
self-similar solution for the equation (23):  и.у does not satisfy that equation, but 
correctly describes asymptotic properties o f  solutions of this equation.

Therefore, using just the self-similar solutions (6 ) we can describe asymp
totic behaviour o f  solutions o f  boundary value problems corresponding to different 
boundary data uu(x),  iii(r) and different equations (in this ease, equations with 
different heat conductivity coefficients k ( it ) ) .  However, (1) admits also other self- 
similar solutions, such as, for example, a travelling wave type solution.

for which fi|(r) =  exp|/j. It is not hard to show that this solution is stable with 
respect to perturbations' of initial and boundary functions, as well as to perturbations 
o f  the equation, which allows us to find asymptotically exact solutions for the class 
o f  boundary value problems with boundary regimes o f  exponential form.

Finally, let us observe that the properties o f  self-similar solutions o f  equation
(1) (for example, o f  form (6 ) or (29))  are preserved also under perturbations ol 
boundary regimes and the equation more drastic than those o f  (2 0 ) and (2 2 ) (see 
§ 4, Ch, VI).

us {t. a ) =  exp]/ -  a ]. i >  0 , x >  0 . (29)
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§ 2 Asymptotic stability of the fundamental solution of the 
Cauchy problem

In this section we consider the Cauchy problem for the heat equation,

n, =  a , , .  ! >  0 . .v б R .  ( 1)

n(0, .v) =  fi()(.v) > 0. л б R ;  «о б C (R ) ,  (2 )

where the initial function has finite energy:

£(i =  Ilf'olli.'iRi < oo. £o > 0. (3)

Then the solution of the problem (1). (2) will have the same property: its energy 
is constant in time:

[  u(t, x)d.x  =  £'o, t >  0. (4)
./ -v ^

For simplicity we shall assume in the following that iio(.r) =  «(exp( — |a'|2 }) as
|.v| -> oo.

We set ourselves the same questions: how does the initial temperature profile 
spread, how do its amplitude and width change in time as / —> oo?

We stress that this problem in the above setting is very different from that con
sidered in § 1. Unlike the boundary value problem, here there is no “forgetting” of 
the properties of the initial condition, since the amount o f  energy E 0 in (4) (which 
is a characteristic of the function h(i ) plays an important role at the asymptotic 
stage o f  the process. This fact imposes additional restrictions on the methods of 
studying asymptotic properties of solutions o f  the problem ( 1), ( 2 ).

Equation (1) has a well-known self-similar (fundamental) solution in R + x R ;

f,v(/,.v) =  (1 +/)■ [/2 f s ( 0 -  £ =  A-/( 1 + / ) l/2, (5)

where

=  * 6 R ’ (6) 

It satisfies the conservation law (4).
Solution (3) will solve the problem (1).  (2) only if the initial function »o(.v) is 

also of a self-similar form, that is, if

'-о
2 i r i / 2

exp»o(.v) =  n v(0 . ,v) = , A 6 R . (7)
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1 Stability with respect to p erturbation s of the initial function

The analysis o f  this problem is not very complicated, since there is a representation 
o f  the solution o f  the problem ( 1), (2 ) in terms of a heat potential 12 8 2 1:

l f (.v ~  v)2 1 ,

— * - ) * •  181

For convenience, let us introduce the similarity representation o f  the solution 
o f  the problem ( 1), (2 ) which corresponds to the spatio-temporal structure of  the 
solution (5):

J U .  £)  =  (1 +  t ) l/~u(t, £(  1 +  /)l/2). t > 0, £ б R (9)

(substitution o f  the solution (5) into (9) gives u.s the function /'.s( f ) ) .

Proposition 5. The se l f - s im ila r  so lu t ion  (5) is s t a b le  with respect  to  a rb i tra ry  
p er tu rba t ion s  o f  the se l f -s im ila r  initial fu n c t ion  (7), which p r e s e r v e  its en erg y :  ij
(3) holds, we h a v e  po in tw ise  c o n v e r g en c e :

f d . g )  -+ ./>(£). / - и з о ;  ^ 6 R. ( 10)

Proof.  Let u.s fix an arbitrary £ =  ,v/(l +  t ) l/2. Then, using (8 ). after elementary 
transformations, we obtain

1 / 

irt
t
4

X

X

•x

« o (y )cx p
X

f  +  y 2 - 2 £ y ( \  +  /)l/2
4/

d y .

Since itf) €  l . ' ( R )  satisfies condition (3 ),  the integral in the right-hand side con
verges to L'o as t oo. This means that (10) holds. □

What are the consequences o f  this result? First o f  all, it means that the amplitude 
o f  the thermal profile evolves for large times as

, , Lo . . i / i
sup u(t, ,x) ~ — 175-/ t oc.
u:R Зтг'/-

so that the width o f  the temperature inhomogeneity is

oo.XcfU) ~  2 (In 2 ) ,/2/l/:, ,
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2 Stability with respect to  nonlinear perturbation s of the equation

Here we use the self-similar solution (,*>) to .study the nonlinear heat equation

u, = (k(it)it,),, i > 0. .v б R. (11)

Since in the Cauchy problem (11).  (2) the amplitude of the .solution, it„,(t) =  
sup^dr, ,v), goes to /его as t —» oo. the asymptotic properties of the solution 
u(t, v) depend on the character of behaviour of the coefficient k(u)  for small 
values o f  the temperature it >  0 .

Below we shall demonstrate stability o f  the self-similar solution (5) o f  the heat 
equation with respect to the following perturbations of the constant coeffic ient; 
к €  C 2(((), oo)) П C([(). oo)) .  k(it) > 0. k'(it) > 0  for it >  0,

\k(u)/k'(u)\' -> oo, it —> 0 , ( 12)

and furthermore.

lint \ k(£u )/k(u )  | = 1, £ > 0 ,
ч  -  о

These conditions are satisfied, for example by the coefficient

<:(») =  | In »| " .  at =  const > 0 , it 6 (0 , 1/2 ).

(13)

(14)

which differs significantly as it —► 0 from the coefficient к =  1. Nonetheless, 
asymptotic properties o f  solutions of  equation ( 11) can be described using the fun
damental solution (5) by transforming it in a convenient manner. Therefore the 
problem of stability o f  the self-similar solution with respect to nonlinear perturba
tions of  equation (1) is considered here in a new setting (compared to § 1). At 
the same time we shall prove stability of its with respect to small perturbations of 
the thermal conductivity coefficient in the case k(u )  —> 1 as it 0 *.

In addition to (14 ) .  all the conditions are satisfied by the coefficients k(it)  — 
[ln|lnn|]", a  > 0 ; k(it)  =  exp( — | lnn|'r). о  б (0 . 1). and so forth.

Equation (11) with an arbitrary nonlinearity has no self-similar solution de
scribing the “spread" o f  the initial profile in the Cauchy problem. Therefore we 
shall look for an a p p r o x im a te  se l f -s im ila r  so lu t ion  it, which docs not satisfy equa
tion ( 11);

l i f t  - x)
Ф и

,/.s( (Г) •
A

(15)

where ф(!) is a monotone increasing positive function. </>(/) —> oo as t —> oo, while 
f s ( f )  is the function (6 ) (it is precisely this function that connects the a.s.s. with 
the fundamental solution (5 )) .  The function it, satisfies the energy conservation 
law (4).
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The main problem is to determine the function ф ( 1 ) in (15),  which depends on 
the behaviour of k(u)  for low temperatures. It provides both the rate of amplitude 
decay:

"mU)
£(>

ф ( 1 ) 2 тг1 / 2

and the law governing the rate of change o f  the width of  the temperature profile

x,.f U) ~  2 ( l n 2 ) l/2(/>(/), t -> oo.

Let us introduee, as usual, the similarity representation of the solution o f  the 
problem ( 11), (2 ).

O(t , 0  = Ф ( П и ( 1 . ( ф ( 1 )).

It is convenient to carry out the proof o f  convergence of 0 (t, 0  to f s ( 0  (which 
establishes similarity o f  asymptotic properties of the solution of the problem and 
a.s.s. (15))  by considering u(t, ■) as an element o f  the Hilbert space /( ‘ (R ) .  To 
this space belong functions v> €  / J (R ) ,  which satisfy the conditions

Г OU rCXj
/ w ( x ) d x  =  (), / w ( y ) d y  б l ? ( R ) ,  (16)

Л ) Г '

/
. / ( )

1 m(y )  d y <  O O ,

L
/  И  у )  d y
i ~K

In the usual way we can introduee in this space the scalar product

(b, w). ! =  (v. ( — ll2/ll.X2) ' l l ) ) ,

where the function W =  ( — </2/</.r I”-1 w  is the solution o f  the problem d 2 W / d x 2 =  
— u j , x  s  R ;  |W(±oc)| < oo. It is not hard to verify that by (16) and (17) a solution 
o f  this problem exists. We shall denote by || • ||f, i t h e  norm in h 1 (R)r

' II h 1(10 =  (w. m)
' d x 2

1/2

(.v) d x

(  d  \ 1

— \m )
/.-' |R)

1  H>(.v) d y
l.J(R)

Proposition 6. Ia ’I c on d it ion s  (12),  (13) hold, a n d  let uf) sa tis fy  (3),  su ch  that, 

m oreov er ,  u{)(-) — f x(-) €  h ~ 1 (R ). Then ф ( 1 ) — [1 +  fx 1 (/)|l/_ f o r  a l l  suffic iently  
l a r g e  t, w h ere  jj. " 1 d en o t e s  the Junct ion  in v erse  t o  the  m o n o to n e  in crea s in g  Junction

M-(t)
d r 1 +  /

Jo  *|(1 +  t Y '/2| /;[(! +  /)
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The solution o f the problem (11), (2) converges to the a.s.s. (15);

l|0('. •) -  /.*(•) II/, PR) -» 0, ' oo-

Proof. Let us make the ehange of variable t —> p.(t) in the problem (11). (2), 
Then2

ф(р.(0) =  (1 + / ) |/2, 

and u(fj.(t), x) satisfies the equtitioii

u, =  p. '(t)(k(u)u{) {.

Then the a.s.s, (15) becomes the function (5). that is,

its(fJ-U), x) =  zz.v(C .v) as t —» oo.

Let us set w(t, x) =  u(p.(t), л) -  zz,v(/i.(z), .v). Then

I  w(t. x) dx — 0, t > 0 ®

(since by assumption и and zzs have the same energy) and u> e  It 1 (R ) for all 
t > 0. The funetion w satisfies the equation

w, =  | fj.'(t)(k(it)itl ) -  (zz.vL I,.

Taking the scalar product of this equation with (—d 2/ t l x2) ' 1 w and integrating by 
parts in the right-hand side, we obtain

“ II"'ll?, hr, =  ^p. '(t)(k(u)u[) -  (zz.vL, • 08 )

It is easily verified that

(fi (t)(k(u)u,) -  (z/.y),, (d/dx)  '(zz -  us ) ) =

=  - fj.'(t)(F(u) -  F(us ). tt -  us) + ((fi'(t)k(ns) ~  D(zz.s),, ( d / d x ) ' 1 w),

where P(u) — f(“ k(r])ilr). Since the fust term in the right-hand side is non
positive, estimating the second one using the Cauehy-Schwarz inequality, we obtain 
from (18) that

7 - 1М 1/, I(R, s  |||/z'(/)A-(zz.s ) -  1 Kzz.s-), II/..'(!{)•

2For the proof it is sufficient for this equality to hold for large z > 0.
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Hence it follows (see the proof of  Proposition 4) that 

I I й ' II a ' ( R )  5  I|m ’ ( 0 ,  •) ||/,- i ( R)  +

+  (2</s) l/2 f  ( 1 + r )  l / 2 H ]/2 ( f s(())(\ + t ) i / 2 ; t ) d r .  
./n

(19)

4s  =  -4U P  l / ' s - ( f  ) l  <  O O .

where the function H  has the form

H ( s \ i ) — I  {/j.'(t)k(r})  -  1):  (/17. 
•/о

Since

1 М / ,  -) II/| 1 (R ) =  ( 1 +  0 1/4| | ( Л д ( / ) .  •) -  ./ ,s'( •) II /, ' ( R i -  

we derive from (19) the estimate

II 0 ( f l ( t ) .  ■)—,/.y(') II/, '(R) 5 ( 1 +  O '^ 'lPod). -)ll/, '(R) +

+  (2r/sV /:( 1 +  / Г 1/4 / ( 1 + r )  l/2Wl/2( /л(())( 1 +  r )  l/2: r )  d r .

( 20)

Resolving consecutively all the indeterminacies that arise in the right-hand using 
the equality

fj-'(i) =  \/k\( 1 +  /)' l/2|. ! oc.

we obtain

\\m ||(HfJ-(t).  •) -  fs ( - ) \\ l  i (1{1 5

Г  f !(())( I HI 1 •’
< 32(/s lim (1 +  r) l/2 / \fj.'(t)k(r]) -  112 dr)  =

' ' ./о

- = 3 2 , H n , / .......
' \ k\( 1 +  /) “ 1/21

Convergence to a.s.s. now follows from condition (13).

R e m a rk .  If in addition to (12 ) ,  (13) we also impose the condition
k ( u ) / k ( u k {12(»))  1 as it —>• 0 , then asymptotically we have

<f,(t) ~  (1 + / ) I/2A-i/2[(1 + / )  i/2|, 1 — oc.

This relation will hold, in particular, for the coefficient (14).
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Exam p le 1. Let k (u )  =  | ln«|“ "  for small и > ( ) , «  =  const > 0. As we already 
mentioned, conditions (12), (13) are satislied. From Proposition 6 we obtain in 
this case that

ф ( 1 ) — 2 "/ 2 i i / 2  In 1 , 1 2 1 , / —> o o ,  (2 1 )

and therefore a.s.s. (15),  to which the solution o f  the problem ( 11), (2) converges 
(//о satisfies (3 )) ,  has the form

//,(/, x) — I T ^ - tt
In" /

1/2
£'o exp

л~ 2

2 ft+2/ln""/

where £'o =  II/.11Rt < зс-  From here we obtain an estimate of the amplitude,

sup«(/, a ) ~  0)  =  ( 2 ‘u l ir)~ i / 2 £'o (1ii"  t / t ) l/2 , t  — > o o .

An estimate of the effective width o f  the inhomogeneous temperature profile for 
large times is given by (2 1 ).

In the next section we move on to analyze self-similar solutions o f  nonlinear 
heat equations.

§ 3 Asymptotic stability of self-similar solutions of nonlinear
heat equations

Let us consider first the example of a self-similar solution already encountered in 
Ch. 1, which exists for arbitrary coefficients k ( u )  > 0.

1 A self-sim ilar solution with constant tem p eratu re  at the b ou n d ary

This example helps us to emphasize a fundamental property of self-similar solutions 
o f  nonlinear heat equations: their asymptotic stability with respect to perturbations 
of the initial function.

As in Й 1, let us consider the boundary value problem in R , x R ,  for the 
equation

ii, — ( k ( n ) i i , ) !  ( 1)

(k(ti)  >  0 for и > 0  is a sufficiently smooth function) with the initial and boundary 
conditions

u((), x)  =  ffo(.v) > 0 ,  .v > 0 ;  //о б C(R .,  ), 

u ( i , 0 ) = ! , / > ( ) .

( 2 )

(3)
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For arbitrary k (u )  equation (1) admits a self-similar solution which satisfies 
condition (3):

H.v(t, x ) = g s (£),  (  =  x / 0  + t ) l/2. , (4)

where g s (£ )  solves the problem

( к (я х )я'.чУ +  =  0, i  > ()- .q.s(O) =  1, ,t;.v(cx) =  0: (5)

this solution will or will not have comptict support depending on whether equation
( 1) admits finite speed o f  propagation o f  perturbations, or does not.

Below we restrict ourselves to the analysis o f  the case when the eoeflieient к 
satisfies the condition for tinite speed o f  propagation o f  perturbations:

[ l к(т})
/ -------ar j  < oo,

•A) V

and we take for g s (£ )  a solution o f  the problem (5) with compact support. We 
shall assume that «о in (2 ) also has compact support.

Existence o f  a self-similar solution o f  the form (4) is related to invariance of 
equation ( 1) for arbitrary k(u )  under the transformations t —>• l / a ,  ,r —>• x / a l/:; 
a  >  0. Therefore, if  u(t. x)  is a solution, so will be i t ( t / a ,  x / a l/1), Let us try 
to find a solution which is invariant under these transformations, that is, such that 
u ( i , x ) =  u ( i / a ,  x / a l /1 ) for all a  >  0. Setting in that equality a  =  r, we obtain 
u(i,  x)  =  m(1, x / i i /2 ). Denoting « (1 ,  { )  by g s ( { )  and using the change o f  variable 
i —>• 1 + 1 , which docs not affect the form o f  the equation, we obtain (4).

Clearly, (4) is a solution of  the original problem (1 )—(3) only if  u0  =  .v) =
g.s(.v). Below we shall show that for any perturbations o f  initial function with 
compact support iio(.v) the asymptotic behaviour of solutions u(i,  x)  for large t 
is described by the self-similar solution (is- Therefore the law o f  motion o f  the 
half-width o f  the self-similar thermal wave, determined from (4):

=  Crf(  1 + ' ) l/2. i >  0 =  1/2 ), (6 )

remains valid as t oo for other solutions o f  equation (1). Therefore the depen
dence o f  the wave speed on time is the same for equations ( 1) with a wide class 
o f  coefficients k (n ) .  Formulae (6 ) for different coefficients k(n)  differ only by the 
magnitude o f  the constant , which, o f  course, depends on the form of A(h ). 

Let us introduce the similarity representation o f  the problem.

g U . iГ) =  u (t .C (  \ + / ) l/3)

and show that g(i,  g) —> g.s(g) as t —>• oo. This ensures that the main properties
of the solutions u(t,  x) and ti.sU. x)  are similar for large /, so that, in particular.
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the estimate (6 ) holds for »(/, x)  as t —>• oo. In this case it is convenient to prove 
asymptotic stability o f  the self-similar solution in the norm o f  the space /i~‘ (R+)- 

The Hilbert space A " ‘ (R .t ) is the space of functions v(x)  e  L ' ( R + ) ,  which 
satisfy the conditions

e (y )  d y  б L~( R . , ). v(y) (l\ (7)

The scalar product in I f  ‘ (R  t ) has the form

(V.  It’) I =  [  ll(.v)
.In t l x 3

( x ) d x . ( 8 )

where we have denoted by W =  i — d z/ d x 2) ! ш the solution o f  the problem

d 2 W / d x 2 =  - ш ,  .v > 0 ; W(0 ) =  0 . 1 W(oo)[ < oo.

It is not hard to check that i f  (7) holds, a solution o f  this problem exists and ts 
unique:

W (x )  =  f  d v  
./и

The norm in h ' ( R 4 ) is delined using (8 ):

II'"II/, MR,) =

.
w(z) d z ,  x  >  0 .

that is,

— / ie(y )  dv
l.U K. 1 J  Л

In the norm o f  h  1 ( R 4 ) convergence of g(/, •) to y x (-) is especially easy to 
prove (naturally, it also holds in stronger norms; see the bibliographic comments). 
Convergence in h  ' ( R + ) implies, in particular, pointwise convergence almost ev
erywhere.

Proposition 7. Lei  //«(л) b e  a  funei ion  with c o m p a e i  support. Then

№</. ■) - .Ы dll/, >,R., =  О (d  + 0 '- V4) -*•<>./-* OO.

P roof.  The function z. =  и — us  satislies the equation

z, =  |k( t i )n ,  -  k(iis)(u.s)\ li ,  t >  0 , л- >  0; (9)
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moreover, z(t ,  0 ) =  0 , z(t,  x) has compact support in .r and zU, •) б A_ l (R + )  lor 
all i >  0. Taking the Л ~1 (R+ ) scalar product o f  equation (9) with z and integrating 
by parts, we obtain the equality

1 d
2  ^ll-ll/i >(R, > =  - U ' ( u )  -  H u s ), и  -  ».s)- ( 10)

where

/ ' ' ( h ) =  [  k ( r j ) d r ]
./о

is a monotone increasing function. Therefore (/•'(») -  l-'(iis). i< — ».s) > 0  and then 
we have from ( 10) that

IL(L ')||/, i(r . ) 5  ll<.(0 , - ) Ц/, >i r .) =  |l»o(-) — ,?.<(•)II/, >,r .)

for all t > 0. Since in view of (4) and the way we delined the similarity represen
tation g (t ,  ( ) ,  we have the identity

\\Z ( t, O i l/ ,  > (R  . ) =  (  1 +  0 , / 4 | | # U .  •) —  ,4 л  ( • ) 11 /, > , R  . ) ,

we obtain the required estimate o f  the rate o f  convergence:

HtfU. •) ~  £<;(■) II/, 11к , ) 5 Hw(0, -) Ц/, i(Ril(l + 0  3/4.

□

Obviously, there is no need to discuss here asymptotic stability o f  the self
similar solution (4) with respect to perturbations o f  the coefficient k,  as to each к 
corresponds a different solution of the form (4).

2 T h e nonlinear heat equation with a power type nonlinearity

In this subsection we consider certain self-similar solutions o f  the boundary value 
problem for the quasilincar parabolic equation

и, — (г/"и,)л, t V о V 0 ; ir =  const > 0 , ( 11)

u ( 0 , ,v) =  ///)(.v) > 0 , ,v > 0; <  + l £  C ' ( R ,  ), ( 12)

u(t,  0 ) =  H|U) > 0 , i >  0 , (13)

where the boundary regime is strongly non-stationary: u\(t) grows without bound 
with i. Some examples of generalized self-similar solutions o f  this problem were 
considered in the previous chapter.

Let us make the prefatory remark that an equation with heat conductivity coef
ficient k(u )  =  k t)Uir, where k t) >  0 is a constant of, in general, physical dimensions 
(in ( 11) it is assumed that k t) =  1), can be non-dimensionalized by a change ol 
variable of the form / —> k t)t.



§ 3 Asymptotic stability of self-similar solutions of nonlinear heat equations 57

/ A p o w e r  law b ou n d a ry  reg im e

As in § 1, let
it| (/) =  ( ! +  i > 0 ; m  =  const > 0 .

Then equation (11)  has a self-similar solution o f  the following form:

u s d .  л) =  < 1 +  O"'0 .v<£), £ =  -v/( 1 +  O "  ,H"n/:. (14)

which can be related to its invariance with respect to the transformations

l ->• I / a .  .v —> . x /a, ' ui " n / 2 . , i  — r r 'V «  > 0 (15)

(if и is invariant, that is, if u d . x )  =  a " ‘u (t /a t ,  x / a l1  then, setting a  =  t
and then by the change o f  variable t —>• 1 +  /, we obtain (14 )) .

The function 0 V(£)  in (14)  satisfies the following ordinary differential equation, 
obtained by substituting (14)  into ( 11):

( < В Д '  +  -  mti.s =  0 , f  > 0 , (16)

where, as follows from the formulation o f  the problem and the spatio-temporal 
structure o f  the .solution (14) ,  the appropriate boundary conditions are

»*■(())= l.tf.v(oo) = 0 .  (17)

A generalized solution of the problem ( 16) ,  (17)  exists, is unique and has 
compact support. This is not hard to see by transforming (16)  into a lirst or
der equation (see Ch. 11!) or by lirst proving local solvability close to the point 
o f  degeneracy and then extending the obtained solution up to the point £  =  0 

(“shooting” to the lirst boundary condition in ( 17)  is done by using the similarity 
transformation, which leaves equation (16)  invariant). For m  =  1 /гг the problem

(16) ,  (17)  has the obvious generalized solution fls- (£ ) =  |( 1 — crl/2£ ) , [l/,,_ In this 
ease its =  П - W ) l/'r fl.v(£), £  =  .v/(l +/) ,  and therefore the self-similar solution is 
just the travelling wave considered in Example 6 o f  Ch. 1.

The depth of  penetration of  the thermal wave described by the self-similar 
solution (14)  has the following dependence on time:

4 j d )  =  t , „ 0  > 0 ; ( M f , , )  =  1/2 . (18)

The wave moves at a higher speed than in a medium with constant heat conductivity 
and the same boundary regime (§ 1), since in ( 11) the thermal conductivity is itn 
increasing function o f  temperature. This is also the speed o f  motion o f  the front 
o f  the thermal wave (the point at which its vanishes) .v'(/) =  £ ,(1  + /)domn/2_ 
where =  mcas supp (>s < oo. The evolution of this self-similar heating process
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Fig. 6 . Evolution of the selt-similar solution (14) (»t > 0, ir > 1)

is shown schematically in Figure 6 . The trajectory o f  the half-width o f  the thermal 
wave is shown by the dashed line.

As in § 1, this self-similar solution is asymptotically stable with respect to 
small perturbations o f  the functions «o(.v), « i (0 , k(u )  entering the formulation 
of the problem (for the method o f  proof of  such assertions’ see Ch. V I,  Sj 3, 4).  
Therefore the expression (18)  for the half-width is asymptotically true for a large 
class o f  quasilinear equations ( 1) with coefficients k(ti)  not o f  power type, which 
are close to u'r as и —» oo.

2 E xpon en tia l  b o u n d a ry  reg im e

A different asymptotically stable self-similar solution o f  equation (11)  exists in the 
ease u\U) =  e ’ for t >  0. Here its has the form

«.vU. -r) =  e ' J s (ri),  r) =  x /  exp(rr//2). (19)

The function f s  > 0  satisfies the boundary value problem

( Я /.s)' +  ^ J ' s V  -  f s  =  0, v  > 0, /.s-(0) =  1, f s ( o o )  =  0 ,  (19')

solvability o f  which is proved as in the analogous problem for power law regimes. 
The nature o f  the motion of the thermal wave in this case is more or less the same 
as in Figure 6 , the difference being that due to the more vigorous exponential 
boundary heating, the half-width o f  the wave grows with time faster than any 
power:

x'rf(t) =  rir r e\p{cTt/ 2 } , t  >  0  ( f A V r j )  =  1 / 2 ) .

Due to asymptotic stability o f  the self-similar solution (19)  this estimate holds 
for large t for a large class o f  non-self-.similar solutions. The same is true about 
the law o f  motion o f  the front point o f  the thermal wave:

x'Sf ( t )  =  r) f  exp(tr//2 ), t >  0 ; p  f  — metis supp/ < со
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( if  the perturbed equation admits Unite speed of propagation o f  perturbations and 
ho( a ) is a function with compact support).

Analysis of self-similar solutions discloses the physically reasonable principle: 
the more vigorous the boundary regime, the higher will be the speed o f  the resulting 
thermal wave. If the regime is o f  power type, then so is the depth of penetration; 
if the regime is exponential (as t —» oc the heating is more intense than for any 
power type regime), then the motion of the half-width is given by an exponential 
function, The following question arises; do there exist boundary regimes to which 
correspond "slower” moving thermal waves'? Such regimes exist, and to one o f  
them corresponds a simple self-similar solution,

3 A p o w e r  type bou n d a ry  b low -up  regime. H ea t  loca l iza tion

Let the dependence of the temperature on the boundary x  ~  0  exhibit Unite time 
blow-up:

«!</) =  ( Г „ - / Г ,/,г. ( ) < /  < Г,,, (20)

where 0  < T 0  < oc is a constant (blow-up time). The boundary function in (50) 
becomes infinite in finite time: u\(t) —» oc as t 7'0” . To this regime corresponds 
a self-similar solution o f  ( 11) o f  an unusual form, a standing  th e rm a l  wave:

us (t. x)  =  (7 '0 - t )  l/,r[(l -  .v/.v„)+ |2/" ,  (21)

where ,v(l =  [2(<r -f- 2 ) /rrJ1/2. The position o f  the front point in ( 21) ,  x / ( t )  =  Ay, 
is constant during all the time o f  existence of the solution t e  (0, T (1) and heat 
from the localization domain л б (0 , x (>) does not penetrate into the surrounding 
cold space, even though everywhere in the domain (0 , до) the temperature grows 
without bound as t —> 7'0 .

A schematic drawing of such a heating process (heat localization in the S- 
reg im e)  is to be seen in Figure 7, which shows the essential difference between 
the influence on a nonlinear medium o f  a boundary blow-up regime (20 ) and of  
ordinary regimes (sec Figure 6 ). The depth of penetration of  the localized wave is. 
just like the position o f  the front point, independent o f  time; from (21 ) it follows 
that 4 ,U )  ,  л о (1 -  2 " l 1- ) .  0 < t < Г,,.

The self-similar solution (21)  is asymptotically stable. In Ch. V we shall show 
that the heat localization o f  boundary heating regimes which exhibit finite time 
blow-up occurs also in arbitrary nonlinear media described by general heat equa
tions o f  parabolic type.

It is important to note that not every boundary blow-up regime guarantees heat 
localization. For example, i f  we take a different power type regime:

it\(t) = (T0 -  i f .  0 < i < T {). (22)
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us! t,x)

(,

Fig. 7. Evolution as t --> T(| о Г the localized self-similar solution (21) (S blow-up regime)

where n <  -  1 /cr (in (20) n =  — 1 /c r) .  then there is no localization. To the regime 
(2 2 ) corresponds the self-similar solution

where 0% ^  0 satisfies an ordinary differential equation. For n <  — 1 /cr  the 
function 0,s(£) has compact support, £ /  =  mens supply < со (see Ch. 111). Then 
it follows from (23) that the front point o f  the thermal wave moves according to

and x-j(t) —> oo  as t —> T 0  .
Evolution o f  the thermal wave in this eas'e is not substantially different from 

that o f  Figure 6 : however, the heating of the whole space (.v >  0} to infinitely 
high temperature takes only a finite amount of time (11,4 (1 . x) —» 00  as —► for 
all л' > 0 ) .  For ti < — 1/гг the boundary regime (2 2 ) is culled the HS blow -up  
l'ephne.

On the other hand, if n 6  ( — 1 /cr. 0 ) .  then it is the L S  b low -u p  ivpinie, which 
leads to heating localization. Furthermore, from the spatio-temporal structure of 
the self-similar solution (23), unbounded growth o f  temperature as t —» occurs
only at the point x =  0 ; everywhere in the space (a > 0 ) it is bounded from above 
uniformly in t 6  (0. To). This is indicated, in particular, by the law o f  motion of 
the half-width of the thermal wave:

usd. x) =  (7'„ -  n " 0 .y ( f ) ,  £ =  x / ( T 0 -  1 ) (23)
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where the constant £ rf  б R j  is such that t>AL>j) =  1/2. For n б (— l/er, 0)  we 
have that x * f (t) —> 0 as t Г (>. so that the half-width (in a certain sense the 
depth of penetration) of the thermal wave decreases during the heating process 
down to zero. A detailed analysis o f  the localization phenomenon in boundary 
valqp problems for heat equations is presented in Ch. Ill (for equation (11)  for 
(t > 0) and in Ch. V (for arbitrary nonlinear heat equations).

Equation (11)  has a number of other interesting self-similar solutions (see Com 
ments).

Let us present, for example, an interesting invariant solution, which especially 
clearly demonstrates localization o f  a thermal wave front under the action of the 
S boundary blow-up regime. It is not hard to check that equation (11)  has the 
following exact generalized solution:

uf (t. x)  =  (To — t) ,л' [ ( 1  -  x / x ^ ) 2 ^ (  \ (24)

where ,vo =  |2 (rr +  2 )/(r\'‘1. It corresponds to the initial function h, (0 . .v) == 0 

and a boundary regime which is close to a power type one;

и,U A ))  =  (7'o — M~l/,r [l -  (1 -  t / T n)2/(,n2)] U'\  (25)

and obviously

u A i ,  0)  =  (7'o -  i)  ' ' '" (1  +  o(  1)) as i ->• 7‘0 .

so that this is indeed a boundary blow-up S-regim e and the solution (24 )  grows 
without bound in the localization domain x  б |0, ,vu), However, the front of the 
thermal wave, which corresponds to (24),  is not (unlike (21) )  immobile. It moves 
according to

л'/(/) =  -Vol 1 -  (1 -  r/7-o)l/," l2 ’ |, t б 10. 7‘o). 

the wave is localized and x^U) —» .vo as t —> T (). By comparing (21)  and (24) it 
is easy to sec that close to the blow-up time t =  Го. the solution »,(/. x) is close 
to the self-similar solution (21).  In Ch. IV we shall show that this self-similar 
solution is asymptotically stable not only with respect to small perturbations’ o f  the 
boundary function, as in (25) ,  but also to perturbations of the nonlinear operator 
o f  the equation, that is, o f  the thermal conductivity coefficient.

§ 4 Quasilinear heat equation in a bounded domain

In this section we consider other problems for the nonlinear heat equation in the 
multi-dimensional ease:

ir I iu, =  Ah' , <r =  const > 0 .



62 [[ Some quasilinear parabolic equations

Let 11 be a bounded domain in R N with a sufficiently smooth boundary 911. Assume 
that in 11 an initial heat perturbation is given,

1/(0, Л-) = / /o(x) > 0, А- б  11; б  С (11) П  W'(ll). (2)

1 T h e boundary value problem  with D irichlet eonditions

Let zero temperature be maintained on the boundary 911 of the domain 11:

//(/, л) =0,  ! > О, у  6  911, (3)

which corresponds to outflow of heat from the boundary (processes with the adi
abatic “ isolation” condition on the boundary are considered in subsection 2 .)

Clearly nit, x )  —» 0  as t —» do everywhere in 11, as heat is taken away through 
the boundary. How docs the evolution o f  the initial perturbation proceed'? At what 
rate does the extinction process occur?

These questions can be answered by analyzing the self-similar solution admitted 
by equation ( 1);

it s ( i . x )  — (T  + 0  ij,r j s i x ) ,  i > 0, a 6 11, (4)

Here T >  0  is an arbitrary constant.
Substituting this expression into (1) and taking into consideration the boundary 

condition, we obtain for /.y > 0 the following elliptic problem:

A f s  * 1 +  -  f s  =  0 , x  б  11; f i x )  = 0 , а  б  9 11, ( 5 )
ir

For any it > 0  it has a unique solution, strictly positive in 11 (existence of the 
solution can be established, for example, by constructing sub- and supersolutions 
o f  the problem; see |7, 2 1 1)

It turns out that (4) is stable with respect to arbitrary bounded perturbations of 
the initial function иц(х).  that is, for r —> oo the expression (4) correctly describes 
the evolution o f  any heat perturbation. Without considering the details o f  this, let 
us re.s'trict ourselves to proving a simple assertion.

To describe the asymptotics of the solution, let us introduce, as usual, a simi
larity representation o f  the solution o f  the problem ( 1)—(3) by the expression

f i t ,  a) =  (1 +  t ) ]/,ritit.  A), t > 0, л €  11. (6 )

Stability of  the self-similar solution (4) will mean that f i t . x )  f s i x )  in 11 as



§ 4 Quasilinear heai equation in a bounded domain 63

Proposition 8 . Lei the initial function  nq ( x )  in (2) b e  such  that

T ; l " ' f s i x )  S  H o ( . v )  £  T [  1 / , r / . s ' ( A ' ) .  . v  б  П ,  ( 7 )

w h ere  0 < T i < 7": < oo a r e  constants. Then

II f a .  •) -  f  s ( * ) lit (Ut =  O il  ' )  —  0. t - *  DC. (8 )

P roo f .  Validity of (8 ) follows from the comparison theorem. Indeed, by (7)

( T 2 1 ) ^  f s i x )  £  u (t . .v) < (7 i 4 - 1 ) /,s( *t ) in R  f x f l .  (9)

Hence (8 ) follows immediately. □

Therefore if conditions (7) hold, the amplitude of the heat perturbation decreases 
at the rate

sup»(r..v) =  I sup f s ( .x )  ) t "'/,r +  o ( t~ ''" ) ,  t ->  oc,
. i c i l  V u = ! i  /

and furthermore the maximal value of the temperature is attained at an extremum 
point of f  si r). Thus in the framework o f  Proposition 8 , the evolution o f  the heat 
conduction process for large times is entirely determined (in terms o f  the function 
/ . s i x ) )  by the spatial structure o f  the domain i l  and by the exponent cr in the 
thermal conductivity coefficient k (u )  =  (w +  1 )u".

The proof of  convergence in the case of arbitrary tt{) ф  0  follows in essence along 
the same lines. We have to show that after a finite time > 0  the temperature 
distribution ttito. x)  will satisfy (7), whence the estimate ( 8 ) will follow. Let us 
clarify this assertion (the arguments below illustrate an application of criticality 
conditions for solutions o f  parabolic equations, which will be used systematically 
in Ch. V). _

Let the initial function no б С ( Я ) ,  и о ф  i f  be sufficiently small and have com 
pact support in П: suppoo С  П. Then the lower bound of (7) does not hold 
for any 7'л > 0. since /.y(.v) > 0 in 12. Let us show that we still have stability 
o f  the self-similar solution in the sense o f  (8 ). The equation for the similarity 
representation (6 ) has the form

~  = A f M 1 + - f.r > 0. л e 12; f = 0, r ■> 0. д б 9П. (10)
<)т (Г'

where we have introduced the new “time" r  =  In(1 -+-/):  R . —► R + .
Since f s i x )  satisfies the problem (5). the equality (8 ) has the interpretation that 

as r  —» oo, the solution o f  ( 10) stabilizes to its stationary solution, which, as we 
have mentioned already, is unique. For simplicity, let () б i l  and 0  б supp»i>. Let 
us consider the family of stationary solutions v =  v ir ) .  r  ~  |.v|, o f  equation ( 10):

L  ( ,.N- V ' ( i) ') '  +  ! „  =  o.f.!\ ■ l (r ( 1 1 )
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which satisfy for г =  0  the condition i/(0 ) =  0 (condition of symmetry with 
respect to the point г =  0 ) and u(0 ) =  no =  const > 0 .

The solution of this Cauchy problem for the ordinary differential equation (11) 
exists and is strictly positive in some ball B,„ =  (r < Го), where r (l =  ro(t’o) < oo. 
such that uO'o) =  0. Here ro(uo) —► 0 us t'o —* 0 (see § 3. Ch. IV). Let us choose 
Do so small that /?,,, C 11. Then we claim that the solution of equation (10)  with 
the initial function

This is a direct consequence of the Maximum Principle (sec Ch. V).
Therefore the function / ( r .  a ) does not decrease in r  everywhere in 11 and, if 

no is small, is bounded from above by the stationary solution /\(.v). Therefore at 
each point .v 6 11 there exists the limit / (r ,  .v) —* / , ( а ), т —» ос. Then, by the 
usual Lyapunov arguments (see § 5, Ch. IV), we can prove that the limit function 
/ * (x)  has to coincide with the unique solution o f  the stationary problem (5).

As far as arbitrary, sufficiently small initial perturbations o f  /((). a ) are con
cerned, note that under each of these we can “place” the indicated critical solution, 
which, by the comparison theorem, by stabilizing to the stationary solution, will 
force stabilization to it of any other solution lying between itself and the stationary 
solution.

Thus the self-similar solution provides us with information concerning the be
haviour for large times of a wide variety o f  solutions of the problem for more or 
less arbitrary initial perturbations. Let us emphasize that the asymptotic spatio- 
temporal structure of  solutions of  the problem ( 1)—(3) depends in an essential way 
on the geometry of the domain 11. A slightly different situation arises in another 
boundary value problem for equation ( 1).

2 T he boundary value problem  with the N eum ann condition

Let now the no heat flux condition

be imposed on the boundary. Here 0 /ih i  denotes the derivative in the direction 
of the outer normal to Oil. It is not hard to foretell the asymptotic properties 
o f  the solution, based on physical intuition concerning the behaviour of diffusion 
processes. By the adiabatic condition (13) ,  the total heat energy in 11 is conserved:

/ ( ( ) ,  .v) =  i ’o ( | .v| ). a e  B r u ; / ( 0 .  a ) =  0 ,  a 6 11 \ / L „ . ( 12)

is critical:
O f/От >  0  in R . x  11 П ( a £  1 1 1 / ( r .  a ) >  0) .

<VM l / 0 ,i =  ()./ > 0. a e 911. (13)

( 1 4 )
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Due to diffusion all inhomogeneities o f  the initial perturbation will be smoothed 
out with time, and as a result as t —» oo the temperature held must stabilize to a 
spatially homogeneous state. Its magnitude is uniquely determined from (14) ,  and 
therefore we ean expeet that

n(i.  a- ) - »  -------- — / щ ,(х) (lx  =  //,„.. / ~ > o o .  (15)
measSi ,1 ц

Without giving the detailed proof o f  (15) ,  let us make some clarifications, using 
only two standard identities satisfied by the solution o f  the problem ( 1), (2 ), (13) .  
The first of  these is obtained by taking the scalar product in L 2 ( { 1) o f  equation (1) 
with a,r+l and integrating by parts:

(rr +  2 ) ill
!»(/) ‘(.''•■hili | W rtl (nil 7: (ill- (16)

The second one is derived by multiplying the equation hy ( к " " '1), and then inte
grating the resulting equality in / (see § 2. Ch. VII).  As a result we have

4(<r +  1) 

Ur +  2 )2
<»' wr/2),(.v) ||7, (Ill c l s +  -||Vifr , , (/)||j;(U)

=  }  W l l 7 3 . i t ,

(17)

Passing in (17)  to the limit as / —> oo, we see that the first integral converges, 
so that the limit

l | V u , r , l < / ) | | 7_ . ( 1 1 1  -  «„ > 0 . / oo, ( 1 8 )

exists. Comparing (18)  with the equality (16) ,  we obtain «о =  0: otherwise the 
function ||н|Г(г,?'.2-(11) • 0 is negative for large /.

The condition «о =  0  in (18)  means that a 'r { 1 (/. ,v) converges to a spatially ho
mogeneous state almost everywhere (in fact, by sufficient regularity o f  the general
ized solution, everywhere in 11). Then the energy conservation law (14)  guarantees 
stabilization (15) .

It is not hard to derive an estimate of the rate of stabilization to the average- 
value of the temperature.

Proposition 9. We h a v e  the est im ate

||и(/. ■) — »„,,||?>(!1) =  [  (tt(t. x)  — »„|,): i lx  < K e  " ' —>(),  / —> oc .  (19)
■In

w here  К  > 0, a > 0  ar e  constants, anti a  d ep en d s  only  on  rr. 77,,,. a n d  the  
d om a in  11.
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P roof.  Let us take the scalar product in L ? ( i l )  o f  the equation ( ! )  with u. Then, 
after integrating by parts, we obtain

=  - U r  +  !)  / M"(/..v)|Vi<(/..v)|2 rf.v. (20)
A to J 11

In view of stabilization o f  и to 77,,,, >  0  as t oo, there exists t ,  ^  0, such that 
for a!! i > t ,  we have the inequality u(t. .v) > 77,,,./2 in Q. Then, estimating from 
above the right-hand side o f  (2 0 ), we obtain

j (I /  — \ ( Г  p

-  ~ i,r  +  ! ) ( “o1 )  / |Vi/(/..v)|2 ,/a , / > 6 . ( 2 ! )

Setting и — u„v =  ш, we substitute in ( 2 ! )  и — Tim. +  w. By (14)

f w ( i . x)  (Ix =  0 . (2 2 )
./ii

Then, since Vtt =  Vm and

l|t/(r) II / .'(in =  ^  j  Uv2  +77;„, +  277,„un) d x  =

= J i {.L U'1<Lx + .L +
we derive from (2 !)  the estimate

cl ( Ti \ <T
^l|ii'(/)||^lUl 5  - 2 (<r +  I ) y - у  J  ||Vu.(/)||-’ .-„lt. (23)

Using the well-known inequality [ 3 6 2 1

i i v » ’ l i 7 . - d b  2  А | | | ш Ц ? . - , П ) -

which holds for all functions ш б W' f f i ) ,  dut/ihi  =  0  on Ш ,  which satisfy 
the condition ( 2 2 ) (here Л| =  Лi (i 2) > 0 is the first eigenvalue o f  the problem 
Аф +  At// =  0. .г б П. i)i///i)ii =  0  on 9П). we obtain from (23)  that

~~l|ii'(/)||y,(!1| <  ~ 2 (<r +  I ) А|||ш(/)||у.(П|. / > 6 .

Hence

i h ' ’ ( n i l y . q n i  £  l i 1' | ( L ) l i /  , - , n i  e x p ( - 2 (rr +  I )At (//„,,/2)'г/}. t >

which coincides with the estimate (19), if we set К  =  ||w '(/»)||j;(11) < oo and
i/ = 2«r + I )A|(fi)(77„„/2),r > 0. □
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§ 5 The fast diffusion equation. Boundary value problems in a
bounded domain

In this section we shall consider properties of solutions o f  quasilinear parabolic 
equations of nonlinear heat transfer with coefficient k(n )  >  () which grows un
boundedly as it 0. These are the so-called f a s t  d iffusion equations .  These 
include the equation with the power type nonlinearity

и, =  Д ( Л  ( ! )

where 0  < in < I is a constant (if. as usual we set in — <r +  I, then in this case 
a = m  — I б ( —! . ( ) ) ) .  The heat conductivity k(u )  — nut'"'' grows without bound 
as и - *  0 .

The name "fast diffusion" is related to the fact that since the heat conductivity 
is unbounded in the unperturbed (zero temperature) background, heat propagates 
from wann regions into cold ones much faster than, say in the case o f  constant 
(m =  I in ( I )) heat conductivity, and even more so than for in >  I. where we have 
finite speed of propagation of perturbations. This super-high speed o f  “dissolution" 
o f  heat implies a number o f  interesting properties of the process. We shall describe 
these in some detail, using mainly the technique of constructing various self-similar 
solutions of equation ( I ) .

As we have not encountered such equations before, let us make the preliminary 
observations that for in б (О, I) solutions of boundary value problems and o f  the 
Cauchy problem exist, are unique and satisfy the Maximum Principle: in particular, 
comparison theorems hold. Here, wherever this does not contradict the boundary 
conditions, the solution can be taken locally to be strictly positive and therefore 
classical (see the Comments).

Let us consider for ( I ) the boundary value problem in a bounded domain О 
(iUl  is its smooth boundary) with the conditions

«(О, л ) ~  tt[){x) > 0 ,.v g IL  ttj) a  C ( f l ) ,  (2 )

it(t. .v) =  0. t > 0,  .v б Ш .  (3)

In this problem we have total  extinction in fin ite time.  This is relatively simple to 
prove by constructing the self-similar solution

t t s d - x )  ~  l (7 о -  t ) [ l/,b i>s (x).  Го =  const > 0 . (4)

The function (4) is such that its =  0 for all t > T (]. Let us note that for
in б (0 .  I ) the derivative ih<s/i)t has no jumps at t — T 0, so that us is a classical 
solution. Substituting the expression (4) into the equation ( ! )  and taking into 
account the boundary conditions’, we obtain for the function p,y > 0  the elliptic 
problem:

Д u'f +  --------- ps  — 0, x  6 (1; i>s — 0 .  a б OIL (.6 )
I -  in
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Setting p'̂ ‘ =  toy, we arrive at the equation

Au's +  — *— iv l  =  0 , у =  — > I , (5')
1 — in hi

with tiie same boundary condition u’.y =  0  on 'Ml.
The function u>s does not exist for а!! у  =  ! /nr.  if N >  3 and у  f  (N + 2 ) / ( N  —

2), then tiie equation (5') has solutions that are strictly positive in R'v , while for 
i l  a ball o f arbitrary radius, there is no solution with the condition ii'slnu =  0 (see 
§ 3, Ch. IV),  On the other hand, if I < у  < (N +  2 ) / ( N  -- 2) + . the required 
similarity function can always be found,

However, for our ends it is not essentia! for the problem (5) to be solvable. 
We shall use the self-similar solution (4) only to find majorizing upper bounds for 
the solution of the problem ( ! ) —(3),

Proposition 10. Let  0  < in < !. Then  f o r  ruiv initial fu n c t io n  u(1 in the p ro b lem  
( ! ) - ( 3 )  there  i.s c o m p le te  extinction  in f in ite  t ime: there  exist.s To >  0  such  that 
u(t,  ,r) =  0 in i l j o r  a l l  t > To.

P roo f .  If  in б ((N  -  2 ) / (N  +  2) ,  I ), N >  3, or in б (0 .  I ), N < 3, let us take 
an arbitrary bounded domain i l ' .  such that i l  C i l'  and let us denote by p s ( x )  the 
solution of the equation (5),  which is positive in il'  and satisfies /i.y =  0  on MV. 
Then, since i l  c  i l' .  we have /is > 0  on M l  and therefore we can always find 
T n >  0, such that Mo(.v) £  7’,1/11' '"]p s ( x ) .  ,v б i l .  By the comparison theorem we 
have

0 1  k U. л) < [ ( 7 0 - /), |l/(l~"', /i.s-(.v), л- б i l .  

and therefore и == 0  in i l  if t > 7 ’ц.
If  on the other hand in б (0, (N — 2 ) / (N  +  2)|, N >  3 (y  — I /ш > (N +  

2 )/(/V — 2) and the boundary value problem (5') can be insoivabie), we take as 
P s ix )  the solution of equation (5) which is strictly positive in . Then /iy > 0 
on M l  and the same argument applies. □

§ 6 The Cauchy problem for the fast diffusion equation

Let us see, whether it is possible to have total extinction in f in ite  time  in the Cauchy 
problem for the fasl diffusion equation

и, =  An'", t > 0, ,v б R w; in б (0. ! ) .  ( I )

u((), ,v) =  ii|)(.v) > 0, ,v б R w; supiio < oc. (2)

The situation here is more complex than for a boundary value problem in a
bounded domain; however, it can also be analyzed using self-similar solutions,
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It is assumed that it»(л') —► 0 as |.v| —> oo, Naturally, if  this condition is not 
met, and for example ггп(x) > <5 > () everywhere in R A , then by the comparison 
theorem iiU. x)  >  /5 in R ,v for a!! t >  0, that is, in principle there can be no total 
extinction.

1 Conditions for total extinction in finite time

Lei us eonsider the seif-similar solution, which describes the total extinction process 
in the Cauchy problem. We can derive a whole family of such solutions:

u s ( t . x )  -  I (У,, -  t u  rv.s<£). $  =  -v/l(•/•„- о ,  Г ' " " '  1,1/:. (3)

where T о > 0 and n > I are constants. Substitution of (3) into ( ! )  gives the 
following elliptic equation for =  p'f  > 0 :

Ams -  ^ -------— Vie!/"' • £ +  nw\,m =  0, £ €  R ^ .  (4)

For our ends, it suffices to consider radially symmetric solutions, which depend 
on one variable, 17 =  |£|. All these satisfy a boundary value problem for an 
ordinary differentia! equation.

(V ‘
I +  11(111 -  I ) / l /M\t I , 1/Ж I\ /\(u\ ) 17 + 01US- = 0. 17 > 0.

ie'<j(()) =  0 , ie.s-(oo) =  0 .

This problem (in fact, just as (4))  is solvable not for all 111 <= (0, I ), 11 >

L em m a  1. Lei N >  3, 0  < m < (N  -  2 )/N . Then f o r  any''

( 5 )

( 0)

1 1 >  I (N  - -  2 ) / N  -  in |  1

the p r o b l e m  (5),  (6 ) /юл an infinite n u m b e r  o f  .strietly pos it iv e  so lutions.

(7)

Proof.  Let us consider the Cauchy problem lor (5) in R ,  with the conditions

iii(O) =  fx. io '(0) =  0. (8)

where p. > 0  is an arbitrary constant. Let us prove that every solution o f  this 
problem defines, under the above assumptions, a required function in.s. Local 
solvability of the problem (5). (8 ) for small r; -> () is established by considering 
the equivalent integral equation.

'Obviously, in this case n > 1, so that for 1 — T n (//<,■)< is continuous and (3) is a 
classical solution m R t x R'v .
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Let us show that this local solution can be extended to the whole positive semi
axis 17 б R (. and satisfies- the second of conditions (6). First let us note that the 
solution is monotone decreasing in 17, since assuming that at some point rj,„ >  0 
the function w has a minimum (10(17,,,) > 0, u/(17,,,) =  0) leads to a contradiction; 
this follows from the form of the equation.

Assume the contrary, that is, that the function u> vanishes at some point 17 = 
17* > 0 , so that 10(17) > 0  on (0.17,) and u>( 17*) =  0 . Clearly. u>'(r]r ) < 0 . 
Integrating equation (5 ) with the weight function i7lV' 1 over the interval (0 . 17»), 
we obtain the equality

v't l i,,,(i7*) + C(N, m, 11) I u,l/"'(i7)i7W" 1 1/17 — 0 . (9 )
./0

where we have introduced the notation

N
L (N ,  id , n) =  ~  —

C(N, nt.n) < 0 if strict inequality in (7 ) holds. Therefore the equality in (9 ) is 
impossible, since its left-hand side is strictly negative.

Thus, 10(17) cannot vanish. From equation (5 ) it follows then that 10(17) ^
as 17 —> 00. that is. m satisfies the boundary conditions (6).

the problem (5 ), (6) has solutions of the form

u’s(v) _2 in [(N  -  2 )  -  D t/ V [  

where щ  >  () is an arbitrary constant.

(17Г) +  V)

1n1II , then

•• w/( 1 -in)
. 17 e R +, (10)

□

The family of self-similar solutions (3 ) makes it possible to obtain, using the 
comparison theorem, a condition on iiu(.v), which is sufficient for total extinction 
in finite time. For example, if uo(.v) < u,v(0, .v) in R w, then u(t, ,x) < u,s(/. ,v) 
in R , x R N, and therefore uU, ,v) = 0 for all 1 >  T 0. Self-similar solutions (3 ) 
provide us with the following law of motion of the half-width of the heat extinction 
wave:

|AV/(Ol =  7,,.y[(7*„ -  O i l " ........ ,|/Am}/"'(T7,/) =  y n [/"'(О).

where, moreover. I + п(ш — I) < 0  for all n satisfying (7 ). Therefore |.v,,̂ (/)| —* 
00 as 1 —> 7’,,. which agrees well with the property of fast diffusion processes 
mentioned above: with ever increasing speed heat flows out of the region into 
infinitely distant regions, where the thermal conductivity coefficient is infinitely 
large.
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It is convenient to formulate an optima! condition on the initial perturbation 
Ko(.v). which ensures total extinction, employing a solution of  equation (4) of 
speeia! form. It is not hard to check that for 0 <  in <  (N — 2 ) + //V there exists the 
solution

Р Щ )  -  h’''"'(T7) =
2 niN i 1/11-ml

1£ Г 2/|1 n ), ( ф о .

Here р\(£)  —*■ ос as f  —> 0, which, as will be seen below, is not essentia!. This 
function corresponds to a solution, which becomes extinguished everywhere (apart 
from the point v =  0 ),

: :}(! .  .v) =

2 inN 1 l/( I - Ш)
| , v | . v s R ^ X l O ) ,

( I ! )
Using (I I ) as the majorizing solution in the comparison theorem, we obtain

Proposition 11. Let N > 3, 0 < in < (N - 2  )/N , a n d  let the  initial function  k0( x ) 
b e  su ch  that

п о (.V) <  -v б R w\[0|; К  =  con st  > 0. (12)

Then thei'e exists To >  0 such  that u(t,  x) =  0 in R v f o e  a l l  t > To-

C orollary .  F o r  0  <  in <  (N — 2 ) + //V, in g en era l ,  there  is no c o n s e r ra t io n  o f  
en e rg y : i f  б l f ( R N) a n d  cond it ion  ( 12) holds, then

IIu U.-)||,i ,k ' ,  T o .  (13)

that is ||it(t, -)ll/.чк') Ф II»()(■)II/ i(irt-

P r o o f  o f  Proposition 11. By condition (12)  there exists T {) >  0, such that moU )  < 
?tj(0 , л ),  x €  R^XIO). Therefore from the comparison theorem we obtain that 
u ( t .x )  < iTs ( t , x ) ,  t >  0, ,v б R w\[0) and therefore n ( t ,x )  =  0 in R w\(0) for 
t — To- It remains to show that total extinction also occurs at the point ,v =  0 . For 
that it suffices to notice that the function u*s (t, x — xo)  where ,v(1 ф  0 is an arbitrary 
point o f  R w, is also a solution o f  equation ( I ) in R., x [ R w\[.v =  лц)). and then 
compare u(t, x)  with this solution using similar arguments. □

E x a m p le  2. Let us set

фь(и) — min(Lu, n >  0 ; к =  1. 2
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It is clear that the functions фк(и) are continuous for n >  0  and фк(и)  —► as
к —> o c  for any и > 0. Then the solution of the Cauchy problem for

On), = ДФкОп)- i > 0, .v e R \
with the initial condition (2) exists and is unique for any k.  Since ф'к (и) is not 
singular at и =  0 , generalized solutions conserve energy:

/ i n d . x ) c l x =  / uo(.v) tlx, t > 0 : к -  ! .  2 . . . .
./к'1 ./К'1

(the fact that ф'к(и) has a jump discontinuity at и — к ' |/п " "  is not important, 
since, for example, we could smooth фк in a neighbourhood of the point of discon
tinuity o f  the derivative). Therefore under the conditions o f  Proposition 11 (sec 
the Corollary) the sequence гц.(/,л) cannot converge in the norm of L ' ( R ,V) to 
u (i.  a ), tire solution of the original problem ( I ), (2 ), which corresponds to к =  oc.

2 Conditions for existence of a strictly positive solution

Let us show first that for m  (N — 2 ) /N , N > 3, not every initial perturbation 
u(1(.v). sueh that a(1(.v) 0 as |.v| - *  oo. ensures total extinction in finite time.
This is established by constructing other self-similar solutions o f  equation (1) in 
R + x R w, which do not have that property:

u sd *  x)  =  e x p ( - « ( 7 "  +  /)|ял-(£), (14)

$ ~  |-v|/ exp (cv( 1 -- m ) (T  +  0 / 2 ) .  T  — const > 0.

* where a  > 0. Then и s 0  in R v as ! o c  and in  >  0  everywhere. The 
function g.v > 0 satisfies the ordinary differential equation

т ^ ( ^  ,̂е;'4 ')' + ^ ^ -^ (« .у )^  + о.е, - ( ) ,  f  >o, (1 5)

g's(0) =  0, K.v(oo) =  0. (16)

Exactly as in Lemma 1 in subsection 1, we show that this problem has non
trivial solutions if m < (N — 2 ) ,  //V, that is. also in cases when total extinction in 
finite time is possible. However, (14) are strictly positive in R w lor all t >  0. In 
particular, if w  =  (N  — 2 ) /N  (the “critical” case), the problem (15),  (16)  can be 
integrated explicitly and the self-similar solutions have a simple form:

u s d .  x) =

a (  1

4 l l !

И
cxp{cv( 1 — m)/| + f t

1 j{ ! m )

> ( ) , ! >  0 . A- 6 R N,

(17)
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ff) > 0  is an arbitrary constant.
Therefore for 0  <  ni < (N — 2 ) + /N  there exists a solution o f  the Cauchy 

problem that becomes totally extinguished (Proposition 11) and a .solution that 
does not. It is o f interest to eompare for whieh initial perturbations h() one or the 
other mode of evolution will occur. Determining the asymptotic behaviour of the 
problem (15) ,  (16) as f  —>■ c c ,  we obtain the following

Proposition 12. Let N >  3, 0  <  m < (N -  2 ) /N  a n d  let the in it ial  fu n c t io n  Uo(x) 
he  such that [on a l l  suffic iently la rg e  |.v|

»()(*) > A'l-vi :/"  ‘ In |л| [l,(l К  =  const > 0 . (18)

Then u(t, x) >  0 in R A f o r  a l l  t >  0.

Proof.  If  (18)  holds, we can always pick a  > 0 and T >  0  in (14) ,  such that 
<k)(x) >  Ks(0. x)  in R v. and then u(t. x) > Us(t. x) in R ,  x R 'v , which ensures strict 
positivity o f  the solution (so that there is no total extinction). This same inequality 
allows us to estimate the rate of decay of the amplitude of the temperature profile; 
it can be at most exponential. □

Let us note that the “boundaries’' o f  the sets (12) and (18)  in the space o f  initial 
functions (in the first set we have total extinction, which is absent in the second 
one) are very close and differ only by a slowly increasing logarithmic factor.

Let us show now that the restriction m  £  (0, (N — 2),//V) i.s essential for 
total extinction in Unite time to occur. Below we provide examples of positive 
self-similar solutions, which exist for m  > ( N -  2 ) ( /N  and conserve energy. Let 
us seek these solutions in the form

t ts ( t .x )  =  (T  +  t) ‘ n s (V ) -V  =  |.v|/(7' +  /)|мл'" l,|/2. (19)

where / < 0, T >  0  are constants. Here us > 0  in R w for all t > 0.
Substituting (19)  into equation (1).  we obtain for the function t/>.s =  p™(i7) > 0 

the equation

-(i7'v V s.)' +
1 +  l(m

—  <Ш1,Я,) У
i I
I ’1 ’s'

/», 0,17 > 0, ( 20 )

t/''s (0 ) =  0 , u's(oo) =  0 . (2 1 )

It i.s not hard to show that i f  the condition (/V -  2) + //V < ш <  1 is satislied 
for any / < [(/V — 2 ) / N  — w[ 1 < 0 ,  there exists an infinite number o f  functions 
uis(V) > L, which satisfy (20),  (21)  (see the proof of Lemma 1). In the particular 
case / =  -[к/  — (N — 2)//V[ 1 there exists a self-similar solution (19) ,  which can
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be written down explicitly:

UsU.  x )  = ( T  +  t)
N/\2-{ N(iii ■ III

{2 in \inN — (N  — 2) [

(1 -  m)

i/d • mi ( 2 2 )

. / > ( ) .  л б R s

( щ  =  const > 0). It exists for all (N  — 2),//V < m < 1 and has finite energy, 
which is conserved:

The self-similar solution (22)  is the analogue of  a solution of instantaneous 
point energy source type, which was considered in Example 8 o f  Ch. 1 for the 
case m > 1 (that is, a  — m — 1 > 0 ).

Thus, for m > (N  -  2 )+ /N  there are solutions with conserved linite energy. In 
other words, in this ease there is no absorption of heat in infinitely distant regions, 
which happens when 0  < m  < (N  — 2) t /N  (Proposition 11). Furthermore, using 
the self-similar solutions (19) and the method of  proof o f  Proposition 4  of Ch. I, 
it is not hard to show that in this ease there is no linite time extinction and energy 
is conserved (see Comments).

§ 7 Conditions of equivalence of different quasilinear 
heat equations

Above, using a range o f  examples, we demonstrated asymptotic equivalence of 
solutions o f  nonlinear parabolic equations corresponding to different boundary data, 
as well as equivalence as t —> oo of solutions o f  different parabolic equations 
obtained by perturbing nonlinear operators. The idea of  this asymptotic equivalence 
(asymptotic stability o f  approximate self-similar solutions) will be widely used in 
the sequel.

Here we consider the question of equivalence o f  equations, understood in a 
strict sense. Are there different quasilinear equations that can be reduced to each 
other by a certain transformation? In other words, is it possible to transform a 
nonlinear heat equation with a source or a sink into a simpler equation, one with 
better understood properties? In the general setting this problem is studied in the 
framework o f  the theory o f  transformation groups and is known as the Backlund 
problem (its precise formulation and constructive methods of solution are to be 
found in [221 [).
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The examples of really non-trivial and “non-obvious" strict equivalence are 
relatively few. For that reason their role in the systematic study of  properties of 
solutions o f  quasilinear parabolic equations is, in general, not an important one. 
Nonetheless, this approach sometimes affords a considerable simplification o f  the 
problem.

We consider below certain simple transformations that establish equivalence of 
different equations. We will not analyse in detail the structure o f  such transforma
tions or discuss their constructive aspect: how simple is it to reconstruct a solution 
o f  one equation using a solution o f  the other? From the practical point of view 
this last question is very important: frequently it is easier to solve numerically the 
equation itself  than to implement numerically the equivalence transformation.

In most cases we shall deal with an equation, without posing a specific boundary 
value problem lor it, and for that reason we will pay no attention to the behaviour 
o f  its coefficients. These have to be taken into account in the formulation of 
boundary value problems.

We have already encountered an equation which can be reduced by an equivalence 
transformation into a simpler one. This is a quasilinear equation with a linear sink: 
it, =  Д » " +| — it, which can be transformed by a change o f  variables it — e~'v, 
t'~~‘r'cli =  d r  into an equation without a sink: vT — Да"’ 1' 1. Using these elementary 
transformations we can establish localization of heat perturbations in nonlinear 
media with volumetric absorption. Let us consider another simple example.

E xam p le 3. The semilinear parabolic equation

where E  : R., —» R  + . /;' 6 C 2, is an arbitrary monotone function, can be reduced 
by the change of variable v =  E {u )  to the linear heat equation

Let us consider more complicated transformations.

E xam p le 4. Let и =  u(t.  г),  г =  |л|. be a solution of a nonlinear heat equation 
with a source:

where <x ф  — 1. Examples quoted earlier show that solutions o f  equations with 
a .source have properties that are significantly different from those o f  solutions of

1 Sim plest exam ples

( 1)

( 2 )

(3)
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nonlinear heat equations. Let us try to get rid o f  the source in the right-hand side 
o f  (3), so that only a diffusion operator remains there. To that end let us use the 
transformation

у  — ф (г) .  //''"(/. r )  =  t/l(l')vU. y).

Then it is easily verified that the function о > 0 satisfies the equation

( r r - f  1 )i//l/('r + l)(i)l/('r+l1), =  i//<//"i4i +

+  +  (,.-V ' , / „ / / ) ' [ ,  .q +

To get rid of lower order terms in (4), we set

( r N~ У  )' +  («■+ l)i//

^ Г7 Г(гл' " У > '  +  L r +  l)i// =  0 , (5)

r N 'ф'ф' +  ( ^ л фф!У = 0 .  (6 )

If the function ф Satisfying (5) is known, then

ф(г)
1

d r

r N 'фЦ г)
(7)

The system (5), (6 ) Can be solved explicitly, for example, in the ease N =  1 
(concerning this see below), as well as for N =  3, when by the change o f  variable 
i/ / ( p )  =  k ( i ' ) / i ' equation (5) reduces to

к" +  (cr +  1 )k  =  0 .

In particular, if  rr +  1 < 0, then for N — 3

//Hr) =  -- exp(±|rr +  1 | l/2r | ,  
r

i//( r )
^ 2 \ v  +  l|l/2

ехр(т2| /г +  11 |/Эг }.

If  conditions (5), (6 ) hold, then the equation for the new function r has the
form

j,!/!" i о
Ф  О "  М ) / ( | /  M )  j

r 2(W' n (rr +  1) 1
у =  ф (г) .

Setting if/i'/ti) _  у ' we obtain the one-dimensional equation without a source.

11, = '/'
("to-*

" 2̂ лГТ) ( U " U , ( 8 )

It has a particularly simple form in the case N  =  1, rr =  —4/3 . Then the
system (5), (6) is easily solved. As a result we obtain the following



§ 7 Conditions of equivalence of different quasilineurheat equations 77

Proposition 13. hi tlw equation

it, =  (u~A/,u>), +  n 1/:!

the transform ation

V Г “р {±7 5 }' “''■•'| = “р {±7 з} v(t.  v)

(9)

( 10)

r em ov es  the source  in the r igh t-hand  side, w hile  the fu nc t ion  и sa t is f ies  the equation

r, — (V ' " ’ a, )y . ( 11)

For equations of general form

и, =  \ф (и) + Q ( t t )  ( 12)

there also exist transformations that remove the source term Q(tt)\ however, here 
the resulting equivalent equation is no longer autonomous.

E x a m p le  5. Let us set in (12) н =  E {t ,  v). Then for a =  v(r. x)  we obtain the 
new equation

I f  +  E'vv, =  Дф ( Е и .  v)) +  Q (E (t .  i.-)).

Let us choose the function E  by requiring that HE/(It =  Q ( E ), that is.

/
i.(lr) dr}

( J o 7)
=  / +  c (v ) .

where c (v )  is an arbitrary function. After this change of variables we obtain for v 
a parabolic equation, whose coefficients depend on the variable t:

v, =  —----- -Д f i ( E d . v ) ) .  (13)
E\\t. a)

For example, in the case o f  an equation with power law coefficients

и, =  Дн,м 1 +  ttf\ tr > 0, (3 >  1, (14)

which will be studied from different points of  view in subsequent chapters, the 
transformation E  has the form

£ ( M - )  =  l ( / J -  l ) ( r ( u ) - / ) Г 1/("  " .

It is convenient to choose the function r(a)  so that for t =  0 the transformation 
is the identity, E((). a) =  a. 'Phis gives us c(u)  =  a 1 ^/(/3 -  1), so that finally we 
have

E ( t , v )  =  [ a 1 " - ( 0 -  1 ) t \ ' n , l ' U .
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Equation (13),  which is equivalent to (12), then has the form

V, =  u V "  -  08 -  \ ) t f np Пд  { [ u 1-^  -  os  -  i ), [ - ' " r4ll/(^ - " j  .

Transformations of this kind turn out to he quite useful in the study o f  semi- 
linear parabolic equations and will be employed in & 7, Ch, IV.

2 T he “ lin ear” equation u, =  (u 1u I )x

We move on now to more complicated equivalence transformations. Let us show 
that the nonlinear heat equation with coefficient k(u )  — it"2 is equivalent to the 
linear equation.

Let l t d , .v) be a solution o f  the equation

и, — О Г 2» , ) , .  (15)

such that it(i, .v) is a sufficiently smooth function which is not zero in the domain 
under consideration. Let us fix a point (/0 , л-о). Integrating (15) in х we obtain 
the equality

i) [ '
— / u(i,  v)f/v =  и "(/, x ) u x (t, x) -  и "(I, XoL M L  a'u),
*  J m, ' '

or, equivalently,

u ( t , y ) d y +  I '  и  2 (t , x q ) u A t , Л‘о )г/ т |  =  i t ~ 2 i t x .

Denoting the expression in braces by

ф ( 1 . х ) =  / i t ( t , y ) d y +  / it 2« ( |( r l ,,)t/T
J  4i J  h )

(from which it follows that фх =  u), we obtain a new parabolic equation for the 
function ф:

W  i f ,  \ - i 
at

Let us introduce the new independent variables

X =  ф ( 1 , x ) ,  1 =  1 .

Solving the first equality with respect to v. we obtain

л =  i//(/, X).

(16)

(17) 18

(18)
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Let us derive from (16) an equation for the function ф . It is easy to check that

э ф  _  а ф  г д ф у '  з ф  _  / э ф у '  з 2ф  __ э 2ф г э ф у '

dr dt \  9.v /  ' Э х  \  i).v /  ' iLv2 Э х 2 \  У л )

and therefore

( £ ) ' { S - £ } = “•
Since (i/r.,)-1 ф 0  (which is equivalent to the condition и ф  0 ) .  ф(1, x)  satisfies 

the linear heat equation

Ф, =  ф\х • (19)

It is not hard to effect the inverse transformation and to show that a solution of 
equation (19)  transforms into a solution o f  the original equation (15).

E x a m p le  6 . Let us consider the fundamental solution o f  the heat equation (19):

ФФ, A ) =
.V

4 f
te o )

Equalities (17),  (18) define the required function

ф(1. ,v) =  [ -4 /  ln(.v/i/2)] l/~.

However, и =  ф х is the solution o f  equation (15),  that is, the fundamental solution 
(20) transforms into the following solution of  the “ linear" equation (15):

It makes sense for x i i/2 б (0, I).
The equation with the coefficient k(u )  =  и 2 has other interesting properties. 

E x a m p le  7. Let us consider the “multi-dimensional” equation

=  ~vTT(, 'W • (2 1 )

It is easy to check that the same transformations

(/(/, r) =  r 1 N фг(1. r ) ,  T =  1, r =  Ф(1, Г): r =  Ф(1, r) .  

reduce (2 1 ) to the form

ф ,  =  x/rlN +  ~~ | ) i ( 22 )
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For N — I we obtain a linear equation; for N =  2 we have the equation

i///' =  ф21/'н- +  Ф‘К  =  Ф(ФФг)г-

By a change of variable u{i ,  r) =  In i// this equation reduces to a one-dimensional 
equation with exponential nonlinearity:

it, =  ■

If, on the other hand, N >  3, then, setting /7 =  ф2 "л' we obtain from (22)  the 
equation

it, -- (it'1"' iir )r ,

where y N =  2 (N — I )/(2 -  N)  < 0.

3 Equivalence conditions for equations of general form

Below, using the same transformations, we show that to each heat equation eorre- 
sponds an equivalent heat equation with a different heat conductivity coefficient.

Proposition 14. Tlw transform ation

i ~ t . x ~  f  n ( t , y ) i l y + f  к(и(т. х„))п ,(т .  л'п)(/т, (23)

it(t, x) =  I /о(/, .v), (24)

t a k e s  the solution  n(t, x)  ф  0 o f  the equation

it, =  (k(u )ttx),  (23)

into a  so lution  nil.  x)  o f  the  equation

u, = i p 4 ;  Г ' (26)

P roof.  Let us eompute the derivatives that enter equation (26). From (24) it 
follows that

(»(/. A')),
I t ,  +  U KX ,

> « ( U ) ,

From the second equality in (23) it follows that

(27)

0 =  их, +
•/ 3(1

U/U, v)г/у 4- k(u)u,\ (28)
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However, from equation (25) we have that

r• ' \u II,(t, v) r/v =  k(tt)u,  -  k(u )u ,

and therefore (28) means that

.V, =  - k ( u ) u , / u .

Then from (27) we obtain

it, k(u )  i
u, =  -  —  +  — — tt\ . 

u- it-

Furthermore, sinee .v, =  I/», the other derivatives are easily computed:

II,

Ч XX

Finally, we obtain from (2 9 )—( 3 1)

-v, =
и / , \ u , 

к , , a  -

u ,

ti

и ,  -  l - ^ k  J  it A  =  -  ( A ' ( « )« , ) J  =  0 .

which completes the proof,

Therefore equation s  with coe f f ic ien ts

(29)

(2 0 )

( 21)

□

k (u ) .  К (и) — — k ^ - J  , (2 2 )

a r e  equ iva len t .  For a power coefficient k(ti)  =  tt" , the equivalent equation has the 
coeffteient K {u )  ~  u~Ur'h2\ which means that equations with coefficients k\(n) =  
ti'r[, k : ( u )  =  ti"'- are equivalent if

<T| +  cr, =  —2 . (22 ')

I f  a i =  0, then according to (22 ')  =  —2 and we obtain the known result on
the equivalence o f  the equation with k(ti) — it 2 and the linear heat equation. 

Proposition 14 opens new possibilities for constructing particular solutions of 
certain equations,

E xam p le  8. The equation
u, =  (e"u,), ( 2 2 )
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has a wide variety o f  symmetries. For example, it is invariant with respect to the 
transformations

t —> t / a ,  -V —> .v, и —*■ — In a  +  it.

that is, — In a  +  u ( i / a ,  a ) is a solution of the equation if it is also satisfied by 
u ( t , x ) .  Setting here a  =  — t < 0, and then making the change of  variables 
i —> i — T о, T о =  const > 0, we see that (33) has the self-similar solution

u s d ,  x) =  -  In (Га -  t) +  0 s (x ) ,  0  < i < Т» ■ (34)

Substituting (34) into (33) provides us with the following equation for the function 

fl.s-U):

d ,n'0's)' — I.

that is,
fl.v(.v) =  ln(.v: /2 +  hx  +  c ) .  (35)

where h, c  are arbitrary constants.
The above equivalence o f  (33) to the equation (see (32))

u, =  (36)

allows us to construct a particular solution of the latter equation. For example, let 
h =  e  =  0 in (35). Then, as follows from (23). (24),  a solution o f  equation (36) 
will be a function ft(i, x), which is implicitly delincd front the equalities

«(/, v) =  I  In 

where the function ф{1 , x) is such that

1' 
1 V- i//: ( 7 '(i ~ t y r

In ( A) -  D у cl у  =  ф In
2e~

To conclude, let us state equivalence conditions for more general quasilinear 
parabolic equations.

Proposit ion  15. The eq u a t ion s

u, = (k(u, « , )«, ) ,  , и, =  I -^k  f г . - г г  ) «, 
V/r \n и 1

are equivalent. Transformation (23), (24) lakes it solution it ф  0 of the first
equation into о  solution o f  the second one.
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Let us note that the same method can be used to construct an unusual exact 
solution o f  the super-slow diffusion equation

=  (e- 1/,,),л- (37)

Its name rellects the fact that the corresponding thermal conductivity coefficient 
k(n)  =  » 2e  1/11 changes for low temperatures и >  0 more slowly than any power. 
Therefore equation (37) can be formally considered as the limit as i t  — *  o c  of the 
nonlinear heat equation u, =  (»'J o , ) , ,  some properties of whose solutions were 
described in § 4.

If  we consider for (37) the Cauchy problem with a continuous non-negative 
compactly supported initial function u (0, ,v) =  »о(л‘) in R , then the generalized 
solution u(t.  ,v) will satisfy the conservation law

I  u(t, x) tlx  =  £() =  j  iio(x) i lx  for all ! >  0

(see § 3 in Ch. I). The exact solution given below satisfies the conservation Jaw. 
Formally it is implicitly given by u , U . x )  — — I / ln(i\(r. ,v; c)) ,

I ■,
v ,U . x : r )  =  —  (c~ -  ш-)+ ,

21

where v  > 0 is an arbitrary constant and the function w =  w (i,  x : c )  is determined 
from the equation

|A'| =  (2 +  ln(2/))m +  ( r  — w) ln (c  — w) -  ( c  +  w) ln(r  +  w).  (38)

It is not hard to check that for ! > c 2/ 2 equation (38) is uniquely solvable with 
respect to the function w(t. x\c) €  |(), c )  in terms of ,v e  [0 , x , ( t ; c ) ) .  where

x ,(t\ c)  =  r • In r +  c  In

Setting r , ( r .  x\c) =  0 for |.v| > л»(/ ;г) .  we obtain a generalized solution with 
compact support o f  equation (37),  u t (i, x) ,  which has continuous thermal flux at 
the front points of the solution .v =  ± x , ( i w ) .  It is easy to see that the conservation 
law

u , ( i ■ x) tlx  =  /:'o =  2 c  for all t > c 2/2

is satisfied. It is interesting that at time r(l =  c 2/2  the solution u ,( x ,  to) behaves 
close to the point x =  0 as the unhounded singular function |.v| "/-\ which is 
integrable, but not a delta function.
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§ 8 A heat equation with a gradient nonlinearity

In this section we consider the properties of generalized solutions of  quasilinear 
parabolic equations, which describe diffusion of heat in a medium, heat conduc
tivity of  which depends not on the temperature, but rather on its spatial derivative 
(gradient). Typical examples of such equations are:

ti, =  (| M . f ' l / , ) , .  ( I )

in the one space dimension, while in the multi-dimensional ease we have the 
equation

//, =  V .  (|VH|'rV «),  (2)

where a  > () is a constant. These equations are parabolic and degenerate; the 
thermal conductivity coefficient к — A(|V«|) =  |V f ( | 'r > 0 vanishes wherever 
V u  ~  (), in particular, at points o f  positive extremum of the function a  =  u(i,  л ) > 
0 , or, for example, at the points of the front of a thermal wave which propagates 
with a finite speed. Therefore, in general, solutions of the equations ( I )  and (2) 
are generalized ones.

E xam p le 9. The Cauchy problem for (2) in R 4 x R s has the solution

iisU, x) ~ A u-.n O  +  0
• ,ху(<г(Л’-Н| i ;q X

where

(ir I ?)/Ur Hi ) ______l£l_____
(■/• 4 . /)1/ИЛч D+21

Uт \ 1) On i !) ur+h/o

(3)

л /_ _ l_ _ V
V (T T  2 / I, tx(N  -t- I ) T  2 J

T  > 0, a  > 0 are arbitrary constants. This is a self-similar solution of an instanta
neous point energy source type. It is determined exactly as the analogous solution 
for the equation with k (u )  =  nir which has constant energy:

/ ».v(r, x )(Ix  =  /  u.s(0, x ) ‘lx .  t > 0.
./r v ./кл

The solution (3) has compact support at each moment of time: i i sU . .v) =  0 for 
all |.r| 5= |л*/(/) | =  a ( T - (-/)|/1"'(Л/11,t2l. its degeneracy points are x =  0  (a positive 
maximum point) and the front surface (|.v| =  |.v/ {/) |}. From (3) it follows that at 
,v =  0  the second derivative Д («<,-) does not exist, but that the product |Vav|irA».s- 
is finite, so that for ,v =  0 the derivative u, is defined, since (2 ) is equivalent to 
the equation

iii — |V « | ,r [A »  +  <t V | V h | • ( V » / | V u | ) | .
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At points of the front of the solution, |Vh.v| =  0, Днл-(/, x) ~  (|л/| — |,v|)i t ~"')/"  
as |.v| —> |.v/1 . Therefore i f  ст < I, then Дну(Т л7 ) =  0  ( (3)  is a classical solution 
for .v ф  0 ); if tr =  I, then Дus (t, x / )  ф  0 , while if tr > I then Ди< =  00 for 
|.v| =  I a /• I—, In the two last cases До.у has on the front surface a discontinuity of 
the first or second kind, respectively. Let us note in particular that at all points of 
degeneracy the heat flux

is continuous. This is an important property of the generalized solution, which is 
taken into account when one introduces the integral identity which is equivalent 
to (2), The generalized solutions satisfy the Maximum Principle; comparison 
theorems with respect to boundary data hold for these solutions.

Equation (2) describes processes with a finite speed of propagation of heat 
perturbations over any constant temperature background. For example, the function

is a .solution with a finite front on a (temperature unity) background.
Equation ( I )  has a power nonlinearity. Therefore it is not difficult to construct 

self-similar solutions for it in the half-space |.v > 0 ) with a regime prescribed on 
the boundary л =  0  (see ij 3).  For example, if 11(1 . ()) =  ( ! +  м  > 0 . then the 
corresponding solution has the form

These self-similar solutions are asymptotically stable in the sense indicated 
above (see § 1, 2 ).

We shall consider more closely solutions evolving in a blow-up regime, which 
demonstrate the hco t  lo ca l iza t ion  phenomenon.

E xam p le  10. In a boundary value problem for equation ( I ) in the domain (0 , T 0) x 
R ,  . let

W (t, x)  =  —А-V» =  —|Vm|"'Vh

ttU. x) =  I +  usU, x ) , i  >  0 , ,v 6 ,

usU.x) =  ( I  +i)"\fs(£),£  =  v / (  I ‘ 2>

If on the other hand tiU, 0)  =  e' . then

//(/, 0)  ~  I -f (_ Г  о — r)n, () -e t < 7 (}; 11 < 0. (4)

The corresponding self-similar solution has the form

Usd. x)  =  I +  ( 7 U -  i f e . s-(£), f  =  .v/(7'i, -  t) ( I  f » r r | / ( iH  2 (5)
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u % { t , X )

0< t,< t2<ti <tI<T

0 X q J

Fig. 8. Evolution us t 7'<~ of the localized S blow-up regime (5')

where the function в a > 0 is a generalized solution o f  the boundary value problem

In the particular ease n =  — I / г г  (the S blow-up regime), equation (6 ) is easily 
integrated. The eorresponding self-similar solution

represents a thermal wave with a fixed front point, localized in the domain 0 < 
,v < to during all the period of action o f  the boundary blow-up regime. Heat does 
not leave the localization domain, and for ,v > ,v() the homogeneous temperature 
background remains the same (Figure 8 ).

The spatio-temporal structure o f  the self-similar solution (5) indicates that if 
n < — l/rr, the influence o f  the blow-up regime will not be localized and x / ( r )  ~  
( 7 ' o ~ 0 (l 1 "IT)/Ur 12| —>• oo as / —> 7’,, (HS-rcgime), while in the case n €  ( - !/ < r ,0 )  
we do have localization, such that, moreover, temperature grows without bound 
only at the point ,v =  0  (LS-regim e). This classification coincides with the one 
given in i; 3 for the thermal conductivity coefficient к =  и" .

( I « v l " e i ) ’ -  +  n « . v  =  ( U >  0 .

f f s - ( O )  =  I ,  Os(co)  =  0 .

( 6 )

U s l t . x ) =  I + ( 7 - , , - / )  ' " ' [ ( I  -  л/л-(, ) , Г +:,/"

СГ+ 2 Г2 i r ( a +  D I ' / o m :) (5F)
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§ 9 The Kolmogorov-Petrovskii-Piskunov problem

From this section we begin to analyse specific self-similar solutions o f  quasilinear 
parabolic equations with an additional term Q(u)  (either a source or a sink) in the 
right-hand side. Some examples of such equations were given in Ch. I.

First we consider self-similar solutions o f  travelling wave type in active media 
with a source. This problem was studied first, and in an exhaustive manner, in the 
well-known paper [2 5 5 1. It generated a whole range o f  papers (see Comments), 
which is the reason this problem is named after the authors o f  [255|.

1 S ta tem ent o f  the problem

We consider the diffusion process

tt, =  Hu +  (7( h), i >  О, л €  R ,  ( I )

in a medium with a source of a particular form: *

( 7 ( 0 )  =  ( 7 ( 1 )  =  0 ;  ( 7 ( h ) >  0 ,  it e  ( 0 .  I ) ;

, , ( 2 )
(2 (0 ) =  a  >  0 ; (7 (н) <  а ,  и б (0 , 11.

The behaviour o f  the function Q(u)  is shown in Figure 9. From the stated restric
tions on ( 7 ( h ) it follows that

QUO < at it, it б [0, 11 (3)

(this is essentia! in the following). All the above conditions are satisfied, for 
example, by the source

( 7 ( h )  =■ a id  I -  it), 0 5  it <  I. ( 4 )

Fig. 9.
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Kig. 10 .  Forniaiion of a thermal wave in the problem (1), (6). The initial function is 
indicated by a thicker line

For equation ( ! )  we consider the Cauchy problem with the initial condition

h(0, .v) =  Mo(.v) > 0, Ho(.v) <  ! ,  л €  R . (5)

This problem is well-posed. Though we did not detine the function Q(u)  for » < 0 
and и > I , this is not important, since from (5) and from the comparison theorem it 
follows that 0  < u(t, x)  <  ! .  Indeed, u+ =  I and =  0  are solutions o f  equation 
( I ) ,  and by (5),  u. < H(,(.v) < u + ; therefore и ... < »(/, x) < u { in R + x R.

Let us consider now an initial perturbation o f  a simple form (see Figure 10):

H(,(.v) == I , .v < 0, h„(.v) =  0. л > 0. (6)

Then it is clear that the thermal wave will start to move to the right as shown in 
Figure 10. What is the law governing its motion? What is its spatial profile for 
large times?

In 12 5 5 1 it was shown that the asymptotic behaviour o f  the solution o f  the 
problem ( I ) ,  (5 )  is determined by a self-similar solution o f  ( ! )  o f  the travelling 
wave type:

h.s-(/,.v) =  0,s-(£). £  =  л- -  At. (7)

where Л > 0 is a constant (the speed o f  motion of the wave). Substitution o f  (7) 
into ( ! )  gives us the ordinary differentia! equation

0's +  A0's +  ( M s )  =  0. £  б R ;  0S( ~ oo) =  1, 0.v(oc)  =  0. (8 )

The boundary conditions here were chosen based on the form (6 ) o f the initial 
function.

The similarity equation (8 ) reduces to a lirst order equation. It is not hard to 
check 12 5 5 1 that this problem has a solution for any

Л ir —: 2.4/0 . (9)
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The solution Os >  0 corresponding to a given Л ^  A(l is unique up to a shift. This 
fact is important: if 0$ is a solution, so will be 0s ( f  +  £ * ) ,  £'  =  const.

The natural question that arises is: what speed is selected for an initial per
turbation o f  the “mesa”-!ike form (6 )? In |255| the authors prove the following 
fundamentally important result: in the problem ( I ) ,  ( 6 ), for large t the wave 
moves at the speed Л =  A(), that is, the minimal possible speed. For other non- 
eompactly supported u0( x )  the wave may move as / -+  oc  with a speed A > Ao. 
If  we denote, as usual, by x e f U) the depth o f  penetration o f  the thermal wave 
(u(t,  x e t (t))  — I /2 ), then

dx ,.j  j d t  — 2 s f a  +  o(  I ), t do . (ID)

In addition, at the asymptotic stage of the evolution the profile of the thermal wave 
coincides with the function (AJ(f), the solution of the problem (8 ) for A =  A(). This 
means that the similarity representation o f  the solution o f  the original non-self
similar problem, O i t . f )  =  u(t.  f  +  x,,[ (t)) ,  converges as t —>■ oc to a shift o f  the 
function 0“(£),  that is.

l|0 (/, •) — f l'v H llr iR i —*■ O' / — oo. ( I ! )

Below we treat in detail several simple questions related to this problem, which 
at the same time illustrate methods o f  analysis to be used later.

2 Upper bound for  the penetration depth o f  the wave

Proposit ion  16, In the p r o b l e m  ( 1), (5).  (6 ) urJ h a v e  the fo l l o w in g  e s t im ate  f o r  
the p en e tr a t ion  dep th  o f  the  w av e :

л,./(/) ~  2 f a  t -------- =  In / 4- ( ) ( I ), t —>• oo. ( 12 )
2 f a

P roo f .  By condition (3),  the function v(t, л), which satislies the equation

i'i =  11, ,  +  a v .  t >  0, ,v б R ,  (13 )

and the same initial condition (5),  (6 ), is a supersolution o f  equation ( ! )  (by the 
comparison theorem. Theorem 2 of Ch. !). Therefore u(t. x )  < v(t, x)  in R  ( x R . 
The function v can he easily computed (the change o f  variable v — e'"u> reduces 
equation (13 )  to the heat equation for w):

nit.  a ) < vlt .  a ) =  ~  exp I J d p .
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By tin's inequality tiie required half-width will not exceed s(t) .  “half-width”
o f  the wave that corresponds to the function a, i.e., the solution o f  the equation

Hence we obtain the estimate (12).

(14)

□

It is of interest to note that the exact value o f  x,.j(t)  does not differ significantly 
from the expression in the right-hand side o f  (12) (see |!95|):

x r t U) =  2 - J a t
ly/ci

I n / +  0 ( 1), t -> oc. ( 12')

3  Asym ptotic stability  of the travelling wave

Let us show that the self-similar solution (7) is asymptotically stable; stability is 
not necessarily with respect to small perturbations o f  the initial function uo(x).

Proposition 17. Let there  exist a  constan t  8 <= (О, I ) such that

Q (8u)  > 8Q (u) ,  и e  (О, I ) (15)

(this co n d it ion  is sa t is f ied  by  the x o i a r c  (4)). Then the so lution  o f  the C auchy  
p ro b lem  f o r  ( ! )  with initial fu n c t ion

« ( ( ) , , v )  =  i i o ( . v )  =  < 5 ( A J ( . v ) ,  . v  б  R ,  ( 1 6 )

c o n v erg es  asym ptot ica l ly  to the s im ilar ity  fu nc t ion  in the f o l lo w in g  s en s e :
there  ex ists  a  constan t  such  that

u(t, £ +  Л0/) -  +  — 0 , / -> oo, (17)

f o r  a l l  £  e  R.

P roof.  The proof is based on the lemma stated below (similar assertions in a more 
genera! setting are used in Ch. V). As a preliminary step, we pass from equation 
( I ) to the equation satisfied by the function fl(r. £ )  =  u(t. £  +  A0t):

I), =  в ( (  +  A t f f  +  QUD, t >  0 , £ б R . (18)

Under this transfonnation the initial function 0()(£ )  =  0(0 .  £ )  does not change. 
Comparison o f  (18 )  with the ordinary differentia! equation (8 ) shows that the 
problem o f  asymptotic stability o f  the travelling wave self-similar .solution is re
duced by the transformation to the analysis o f  stability o f  stationary solutions of 
the new equation (18).
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L em m a 2. U nder th e s e  assum ptions ,  the so lu t ion  o f  equation  (18)  is cr i t ica l :

l> ,U ,0  > ( ) . / >  0 , £  б R .

P r o o f  The function ~ =  в, satisfies the linear parabolic equation

Zt — z.(£ +  Ajir.f +  Q ( 0 ) z , t > 0, f  £  R .

which is derived from ( I 8 ) by differentiation in t. In view of sufficient smoothness 
o f  в  and Q, this manipulation is justified; however, one can weaken the requirement 
в €  C (see Ch. V). Therefore by the Maximum Principle z(r, 0  > 0  in R+ x R 
if this inequality holds at the initial moment of  time, that is, if

:.(0, 0  =  0 ,(0 ,  0  > 0 .  f  6  R .  (19)

Taking into consideration (18) and the form o f  the initial function 0 ^ ( 0  =  
uo ( 0  =  8 ^ ( 0 ,  we obtain that it is necessary to verify the inequality

0 ,(0 ,  0  =  W e )u  +  Ai,(0»)f +  Q (0  o) =  S ( f f f  +  <50< )  +  Qi80°s ) > 0 , f €  R . (iO)

The function 0 ^ ( 0  satisfies equation (8 ) for Л =  Ац. Therefore (20)  is equivalent 
to the inequality

S U ( 0 2 ( f ) )  +  Q l 8 $ ( 0 )  > 0, f  б R,

which holds by assumption (15).  □

To conclude the proof o f  Proposition 17, it suffices to observe that the function 
0(1, 0  is non-decreasing in t for all £  б R ,  and is. moreover, bounded from above:

0 ( t , 0  5  0°s ( 0 ‘ i  e  R ,  (2 !)

since this inequality holds for t =  0  (see (16 ) ,  where S €  (0 , I ) ,  and 0^ is the 
solution o f  equation (18 )) .

Therefore for any j e R  there exists a limit 0 ( t , 0  —> 0 4 0 ,  1 Passing
to the limit as t —>• oo in the integral equation equivalent to (18),  we see that 0 * ( 0  
is a stationary solution o f  the equation (18 ) ,  that is, a solution of the problem ( 8 ) 
for Л =  Лц. As was mentioned earlier, it is unique up to a shift. □

R em a rk .  It is not hard to estimate just how different are the solution u(t,.x)  and 
the corresponding limit function which depends on the magnitude o f  f о in (17) 
(that is, on the amount o f  shift). First of all, by ( 2 ! )  0  >  0. Second, let us 
compare the asymptotics of the function 0°s ( 0 ‘.

tf's( 0  =  C ’ o e x p l - v / a ^ l  +  - . . ,  £  - > ■  o o .
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and o f  the initial function

0 id O  =  Щ ( ! ; )  s  5 С ()е х р ( - У « ^ |  + ----- £ -»• oo

(liere C () > 0  is a constant). Taking into account the fact that by Lemma 2 
9U, £)  > Doit;) in R .t x R , we obtain from the inequality 0 (s!(£ +  £ 0 ) > rio(£), or. 
which is the same, from the condition

С,, exp{~v/rr(^ +  £u)| > S C o e x p l - v / a ^ l  as £ - »  oc.

an upper bound on the magnitude o f  £o- C oexp {--v / afo )  > 5C«, that is, < 
—a ~ 1/2 In <5. If  S > 0  in (16) is small and therefore 0 » ( f )  is very different from 
(Ps(£).  then the difference between this function and the limit function, to which 
9U, £)  converges as t —> oo. can also be large.

Let us emphasize that the initial function tt(,(.v) in (16),  with which u ( i . x )  
stabilizes to the self-similar solution, is substantially different from (6 ): it does 
not have a finite front, and (the main difference) iio(.v) —*■ S < I as .v -- - o c .  
However, the law o f  motion o f  the half-width o f  the wave is in this case closer to 
that o f  the self-similar solution. It is not hard to deduce from (I I)  that x,./(r) =  
2 ^ /a t  +  (7(1), t —>• oo (compare with ( 12') ,  where there is another term, which 
grows logarithmically as t —> oo).

To conclude, let us note that using the proof of Proposition 17 under the assump
tion o f  criticality of «о, we can demonstrate stabilization of (17) to the minima! 
function without the restriction on the source term Q'(u) < а .  и 6  (0 ,  ! ) .  In this 
context, let us quote some examples of stable travelling waves :i\(i. x)  =  ()”(£), 
£  — x  — Лц/, which can be written down explicitly.

If

Q(u) — n( I -  « ' ' ) ( I +  (и +  I )к'') . и e  (0 , ! ) ;  v — const > 0 , 

then for A =  An =  2 s f a  ~  2 a solution o f  the problem (8 ) is

0 ^ ( 0  =  ( l  (  e  R .

For it source o f  “trigonometric” type,

Q(u)  =  тг~ 1 s in(7rt<)(2 • -co s (7ты)), и б (0, I) ,

such a solution is

в " (£ )  =  гг 1 arccos | (c 2i -- ! ) / ( ! +  r f ) }  , f e R .  

In both cases 9^(£)  ~  c as £  — > oo.
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§ 10 Self-similar solutions of the semilinear parabolic equation
Ut =  Д м  +  и  In и

In this section we consider the Cauchy problem lor a semilinear equation o f  the 
particular form

n, — An +  и In и. t > (I, л e  R *  , ( ! )

n(0, x)  =  t<o(,v) > 0, .v e  R'4 : sup n„ < oc. (2 )

Here the function Q(u) =  u ln a  is a source (Q >  0) for и > I and a sink 
(Q  < 0)  for low temperatures и €  (0 . !) .

Equation ( I ) is interesting in that it admits a large two-parameter family o f  seif- 
similar solutions, which allow us to give a detailed description o f  solutions o f  the 
Cauchy problem and, in particular, to determine conditions of asymptotic stability 
o f  the principal self-similar solution (it will be the first to be defined below).

The source Q(u)  =  н1пк > 0  for и >  1 satisfies the condition

r  J x .  =  Г  !‘Л  =  « ,
.h Q(u) .1 in: v

Therefore all solutions o f  the Cauchy problem are globally defined, that is, 
they exist for all t > 0. Since the function Q(u)  is differentiable everywhere apart 
from the point и =  0 , in a neighbourhood of which it is a sink, the solution of 
the problem exists, is unique, and satisfies the Maximum Principle. Moreover, 
using the self-similar solutions constructed below, tt is not hard to show (as in the 
proof of Proposition 4  of Ch. 1) that every solution o f  the Cauchy problem with 
»o(.v) =£() is strictly positive in R ,t x R w and is a classical one.

1 A o n e-p aram eter family of self-sim ilar solutions

We shall seek the principal'1 separable self-similar solution in the form

n's ( t . x )  =  ф А 1 ) в , ( х ) . в Л х )  =  exp(-|.v|?/4). (3)

Then from (1) we obtain for ФА1) > 0  the equation

, N
Ф, U) =  ——<//»(/) +  ФА')  in ФА1). i -> 0.

from which <//,(/) =  exp(#(>e' +  /V/2) and

u*s U. x )  =  exp{B()c' +  /V/2} exp( — |.v|“/4|. (4)

4The sense in which “principal” is to be understood will become clear from the following.
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Here fin is an arbitrary constant.
This solution corresponds to the initial perturbation

in) (л ) s  »y(0. л) =  exp (До + N /2  -  |л|2/4}, л б R * .  (5)

It follows from (4) that if  Bp > 0, tt*sU , x)  grows without bound in R N as t —>• oo; 
if В,, < 0  then tty(/. л) 0  in R N as t oc. The value B0 =  0  corresponds to
the stationary solution of equation ( 1), which is independent of time:

ny.y(.v) =  ехр(Л,/2 -  |.v|"/4), .v б R A. (6 )

Thus, there are three types o f  essentially different self-similar solutions (4):
1) a growing solution (Bp > 0 );
2)  a decaying solution (Bp < 0 ) ;
3)  a stationary solution (B (l — 0).
All these solutions can occur if  we use quite a restricted set of initial functions

(5). What is the domain of attraction o f  each o f  the three types of  the principal 
self-similar solution; for what »о(л) will each type o f  evolution occur?

2 A tw o-p aram eter fam ily of self-sim ilar solutions

We can give partial answers- to the questions posed above by constructing a larger 
family than (4) o f  self-similar solutions of equation (1). We shall look for these 
solutions in the self-similar form (now the variables do not separate as in (3)) :

a.y(r, a) =  i//(r)0,(£). f  =  \х\/фи). ) =  exp (—£-/ 4).  (7)

Substituting the above expression into (1) leads to the following system o f  ordinary 
differential equations with respect to the functions ф О ) ,  ф 0 ) ‘.

/ /V II/O)
Ф  (I) = - - Г  -7Т7-Г +  Ф 0 ) \ п  ф и ) .  (8)

2 ф -U)

2c// 0 )  _  _ 1 _____

ф(1) ~  ф20 )

The second equation can be easily integrated:

t >  0 .

Ф 0)  =  (1 -  гак’ ' ) l/:. i >  0,

(9)

( 10)

where n0 is a constant; here for ( 10) to make sense for all t >  0  we must have the 
inequality a {) < 1. Then (8 ) gives us the following expression for the amplitude 
o f  the self-similar solution1.

фО) =  exp l Ф
.V

2 «о
In (1 «(]C ') ( 1 1 )
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where Bo is a constant (the same as in (4)).
The constructed family of solutions (7) has the properties 1)—3), however, it 

is a larger family than (4),  as it depends on two parameters a 0 and Bu. The 
corresponding initial functions have the form

»o(.v) =  » s(0. л) =  exp < B 0 -  In (1 -  <io) -  — ------ 1 . A S  R s . (12)
[ 2«0 4( 1 — «о) J

For a fixed Bo the one-parameter family o f  these initial functions (no < 1 is a 
parameter) characterizes the domain o f  attraction o f  each of the three types o f  the 
principal self-simtlar solution (4).

3 Condition of stabilization to the station ary  solution

Let us consider the case Bo =  0  in (12). Then it easily follows from (7) that 
the corresponding self-simtlar solution converges as t oo to the principal j e l f -  
similar solution (4),  that is, in this case, to the stationary solution (6 ). From (10),
( 11) it is not hard to derive an estimate of the rate o f  stabilization to uss(x) .

For each lixed a €  R'v (for Bo =  0)

ф{1) =  +  o l e  ' ) .  ф2(!) — 1 -  «оe 1 - *  oo.
4

Therefore for large 1

[  N  | -v |2
n.v(/, .v) =  exp — ~ - J -

Henee it follows that on any compact set K t . =  | | a | < L\ in R w

||».v(/, •) -  u.v.v(-)liftага) =  0 ( e  ’ ) - » • ( ) ./ - >  oo.

The process of stabilization to the stationary solution is schematically depicted 
in Figure 1 1.

Thus the stationary solution (6 ) is stable with repect to perturbations o f  the 
initial function, not to ones of arbitrary form, but to ones which make up the self- 
similar initial functions (12) for Bo =  0. Here the perturbations can be arbitrarily 
large in amplitude; see Figure 11, where iis (t i . 0)  is several times larger than 
».v.v(0 ).

This result is interesting, since with respect to arbitrary perturbations, no matter
how small, the stationary solution »y,y is unstable. This is demonstrated by the
following simple claim.

+  ‘- j l N  
4

U - l -
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Fig. 11. Stabilization as i -* oo ol' a self-similar solution uy(f. л), Вц — 0 to the unstable 
stationary solution ayyU)

Proposition 18. Let
щ>(Л') =  5»yy(.v), ,v б R ’\  ( IS )

w here  S > 1 is a  constant (d ev ia t ion  f r o m  the stat ionary  so lu t ion  ||»о( ) —
!'.v.v(')llr4Rv) =  (5 — l )e w/2 can  h e  a r b i tra r i ly  sm all  i f  S is c l o s e  to  1). Then

liin v) =  oo, ,v б R ,v, (14)I • rx

that is, th ere  is n o  stabilization  to  « л-л.

P r o o f  Let us take in (5) an arbitrary Bo =  B<) б (0. In 5). It is not hard to check 
that in that case

tfn(.v) ss 5нуу(л) > »y((). .v), ,v б R'v , 

and therefore by the comparison theorem

nit, x) > ti's U, x)  =  exp(B() e' +  N /2 }  exp{-|.v|'/4) —> oo. t —> oo in R ,v.

This concludes the proof of instability o f  the stationary solution (6 ) from above.
In a similar manner we can prove that it is also unstable in C ( R |V) from below; 

to any initial function (1.4) with 5 б (0, 1) corresponds a decaying solution: 
u ( t ,x )  —» 0  as t —> oo in R w. that is, again there is no stabilization to u.v.y. It is 
proved exaetly in the same way by comparing u ( t , x ) with a self-similar solution
(4), in which Bo =  B(, 6 (In 5 ,0 ) .  Then u(t, x)  < n‘s-(r, x)  —► ( ) . / —> oo, in R ,v 
since Вц < 0 . □
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Therefore the family of  functions in (12)  with # () =  0  is the attracting set of  
the unstable stationary solution in the space o f  initial functions. We note that it is 
unbounded in C (R 'V).

4 Decaying solutions

These exist if Bu < 0  in (12);  then «у(/, л) —> 0  as i —* oc for all .v б R'v . 
Then it can be seen from (10), (11)  that for large t u s (L  x)  has practically the 
same structure as the principal self-similar solution (4). To be more precise, 
introducing the similarity representation of  the solution (7) (the similarity leans form 
corresponding to the principal solution (4 )) .

и s it .  x)

i/'U)
=  в .

l-v|
(1 -  a {)c 1/2 (15)

we see that
IIHit. ■) -  (M-)lloR-',  ^  0 - i -> oo. (16)

Here ()t (x)  s  «£(/. х ) / ф , 0 )  has the meaning o f  the similarity representation o f  
the principal self-similar solution (4).

This estimate implies asymptotic stability of the principal solution with respect 
to perturbations of  the form ( 12) o f the initial function (5). S

S G row ing solutions

If fl(i > 0  in (12).  it follows from (11)  that n sU, x)  —> oc in R N as i —► oo. Using 
the same formula ( IS )  to introduce the similarity representation o f  the solutions 
tty(/.,v), it is not hard to check that all these solutions (for any Й(| > 0 , «о < 1) 
converge in the sense o f  (16) to the principal self-similar solution (4).

It is important to emphasize the following point. Let us determine the rate of 
change of the effective half-width of the growing heat structure /,./(/) =  |.vt. (̂/)| 
defined by »y(/. .v,./(/)) =  <//(/)/2. Using the explicit form o f  the function tty we 
obtain for the half-width the expression

1*1 U) =  4  In 2 ■ (1 -  «no ')  —*4 1 1 1 2 .  / —* oo.

that is, lor large t it becomes practically constant. Nonetheless, the solution 
tty(/,.v) grows without bound on the whole space (compare with example 13 
of $ 3, Ch. 1, where the half-width being constant went together with localization 
of the thermal structure in space).

To conclude, let us observe that it is very rarely that one is able to construct 
a large family o f  exact self-similar solutions which coincide asymptotically with
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the principal (“generating") solution. Frequently one can determine generating 
solutions in the framework of the theory o f  approximate self-similar solutions (see 
Ch. V!).

R e m a rk .  It is easy to construct a family o f  self-similar solutions o f  the form (7) 
for the equation

», =  Д» — ii In ii, ! >  0. x €  R v . (17)

Then, taking into account the fact that the function Q(n) =  —ii ln i i  > 0 for 
ti 6 (0. 1) is a source and (7(0) =  (7(1) =  0. we obtain a problem similar to the 
one considered in § 9. However here Q'(()*') =  oo; therefore the speed of the 
motion of the thermal wave will not be asymptotically constant.

Self-similar solutions of equation (17)  have the form

n.y(L .v) =  exp < v
N

f it ! -  -----  ln ( l l( ) l ' '  -  1 )
2«(i

u f
4( £I()C'' -  1 )

,/>(), X e  R  , 

(18)
where # (l, £i0 > 1 are constants. Let

N
fin -  - —  In(ct()

2(H)
0 .

Then, obviously. 0 < n.y(0. л) < 1 in R w. and therefore, by the comparison theorem 
iiy(/. x) €  (0. 1) in R ( x R N (this can be seen immediately from (1 8 )) .  In this 
case (18)  represents a thermal wave with nearly constant (as t —>• oc) amplitude 
that propagates in all direetions (Figure 12). Its effective width has the form

|.v,./(/)| ~ 2(«(] In 2)l/2e'/2, i  —> oo.

that is, the speed of motion grows exponentially as i —>• oo.

Fig, 12. A travelling wave in the Cauchy problem Ibr equation (17)
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As far as asymptotic stability of the family (18)  is concerned, we have for all 
Bo the estimate

.sup
ieR'

iis'U, £ > " " )  -  exp . l i l :
4 й(|

O ite~')  - > ( ) ,/ - » •  oo.

Therefore for large /

i is i i .  .v) ~  exp l-vr
4й(,с'

so that the principal self-similar solution here is a different one.

§ 11 A nonlinear heat equation with a source and a sink

Let us consider the qtiasilinear parabolic equation

it, =  +  » "  *1 -  it. i > 0. ,v €  R ;  ir >  0. (1)

It differs from the one encountered before (Example 13. Ch. 1) by the presence 
o f  the sink - i t .  This can significantly change the character of evolution of the 
combustion process.

We shall look for self-similar solutions of equation (1)  in the separable form 

u s (L .v) =  фи)О(.х). i >  0 .  x б R.

Substitution into (1) leads to the problem

t//'(/) +  ф и )  

ф " и и )

W,r0')' +  f l " H _ =  — Л =  const. ( 2 )

For convenience let us set Л =  -1/rr.  Then we obtain for the function в (х )  
exactly the same equation as for ffy(x)  in § 3, Ch. !. Therefore we can take в  =  ву. 
The amplitude of the solution ф(1 ) is easily computed from (2), and as a result we 
obtain the family of self-similar solutions

иsU . x) - c  ,r' + C a 
ir

- i /"
в  s ix ) (3)

where Co is a constant. To each of those solutions corresponds an initial function 

lf(,(A) =  llsi 0. Л) -  (1/rr + |/,гйу(л). Л- 6 R. (4)

Hence we have that tt is necessary to impose the restriction Co > -1/rr.
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Fig. 13. Evolution of self-similar solutions (3) for C \t < 0. C0 = 0. C'u > 0

For different Co in (3) there exist three types of self-similar solutions having 
different spatio-temporal evolution. If  Co =  0. then (3) is a stationary solution 
(Figure 13):

»v,v(.v) =  rr l/,rflv(A). ,v 6 R . (5)

If  Co > 0  then the .solution и ,у decays (quenches):

n.sU.x) =  C (l l / , r e ' ( l s (.v) +o(e ' ) .  t - >  oc, (6 )

These solutions arc below the stationary one on Figure 13. and their existence has 
to do with the presence in ( 1) of a heat sink, which for small it > 0  is more 
powerful than the source.

On the other hand, if Со б ( — 1/rr. 0 ). that is. if the initial function lies above 
the stationary solution, then linite time blow-up occurs;

« v (r , ,v) —> o c .  i —* 7 ‘(l =  —  ln ( —trC 'o ) >  0
<r
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everywhere in the localization domain |.v| < ( meas supp 0 iV)/2. The perturba
tions do not leave this domain, even though the temperature grows without bound 
(see Figure 13). From (3) it follows that the solution u$ grows according to the 
power law

n s ( i . x )  ~  (7\, -  (7)

Therefore the stationary solution (5) is u n s t a b l e : small negative perturbations 
lead to stabilization to a different stable stationary solution »,v.v =  O'- positive 
perturbations lead to growing solutions which blow up in finite time.

Let us observe that the spatial dependence of heat transfer processes in this 
nonlinear medium (combustion or quenching) are determined by the same function 
fls(.v)1, it is only the equations governing the change of the amplitude o f  the heat 
structure that depend on the type of the process. In this medium there is also a 
characteristic spatial scale, which is common to all the processes, the fu n d a m en ta l  
length L s =  meas supp 0s =  27r(<r +  l ) l/2/ir.

§ 12 Localization and total extinction phenomena in media
with a sink

In this section we consider in more detail certain properties o f  solutions o f  the 
nonlinear parabolic equation with a sink

», =  (u,ri i , ) ,  — n'\ t >  0, .v б R .  (1)

where ir > 0 , v > 0 .

1 Localization of heat p erturbations

We are already familiar with one o f  the important properties o f  solutions o f  this 
equation, the localization property (§ 3. Ch. 1): if  the initial function iio(.v) in the 
Cauchy problem is o f  compact support, then as //, —>• ° o  heat perturbations do not 
propagate beyond a certain finite length. As in example 11 o f  § 3. Ch. 1. we can 
prove a more general assertion concerning localization conditions of solutions of 
the Cauchy problem for (1).

Proposition 19. Let  n(>(л ) b e  a  function  with co m p u ct  support  a n d  v < ir +  1. 
Then there  exists a  constan t  L  > 0  such that u (L  x) s  0  f o r  a l l  |л‘| > L f o r  an y  
t >  0 .

This result can be extended to an arbitrary number of space variables. It is not 
hard to carry through the same kind o f  analysis for equations of the type ( 1) with 
arbitrary coefficients k(u )  >  0 . Q(u) < 0 .
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The localization condition v < a  +  1 for heat perturbations is obtained by a 
simple comparison o f  the solution o f  the Cauchy problem with a suitable station
ary solution; moreover, this condition is both necessary and sufficient. This is 
indicated, in particular, by the fact that for v > rr +  1 there are no non-trivial 
stationary solutions that vanish together with the heat flux in some finite point. We 
shall return to consider the character o f  the motion o f  heat fronts a bit later, while 
now we consider another curious property o f  solutions o f  equation ( 1).

In this case this phenomenon is related to the presence o f  heat sinks in the medium.

Proposition 20. Let v < 1. su p »0 =  M <  oc. Then there  is T () < 7', =  
M 1 ' '/ (1 — /'), Such that n ( t . л) =  0  in R  /or a l l  t > 7'o.

Proof .  Let u.s compare n ( t .x )  with the spatially homogeneous solution v(t)  of 
equation ( 1):

v'(r) =; —1,'"(/). r > 0 ; u(0 ) =  M.

By the comparison theorem. »(/. x) < v(t) in R 4 x R. However, it is not hard to 
see that v(t) — 0  for t =  7\. which completes the proof. □

From these arguments it follows that if  we replace the term - a "  in the equation 
by an arbitrary sink - Q ( t t )  (Q (a)  >  0  for n > 0 ) .  total extinction occurs if

By the comparison theorem, the same result holds in the multidimensional case.
Formally, we may asume that the asymptotic stage o f  the total extinction process 

(t —> 7'p) is described by self-similar solutions

where 7'o > 0  is a constant (the total extinction time) and f s ( { )  >  0  satisfies the 
equation

However, this fact depends strongly on the existence or nonexistence o f  non-trivial 
solutions o f  this ordinary differential equation which satisfy the condition f x  —> 0 . 
I f  | —> oo (.similar problems are treated in i} 1. 3. Ch. !V), Then the expression
(2) shows us the evolution o f  the extinction process. Asymptotic stability o f  these

2 A condition for total extinction in finite time
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.self-similar solutions can be studied by the methods used in ij 4 - 6 ,  Clt. !V  in 
the analysis o f  self-similar solutions with blow-up (the difficulties that arise in the 
process are on the whole of the same nature, and have to do with ' ‘singularity" in 
time of the solutions under consideration). See also the Comments.

Both those properties, localization and total extinction, are illustrated by the 
following example, which demonstrates specificities o f  motion o f  heat fronts in 
media with volume (body) sinks.

E xam p le  11. Let <x e (0. 1). Let us consider in R ,  x R s the Cauchy problem for 
the equation

=  V -  (» ,rV „) -  //' ,r. (3)

Let us assume that at the initial moment of time t =  0  all the heat energy is 
concentrated at the point x  =  0 , that is //((). ,v) =  0 in R A \{()} and that » (0 . 0 ) =  oc. 
This is a typical “self-similar" statement, containing minimal information about 
initial data.

We shall look for a solution o f  the problem in the form

«.v(L-v) =  <A(O0(f). f  =  I-x‘I/ф и ). *(4)

where i//(t) >  0  and ф ( 1 ) >  0  are. respectively, the amplitude and the width of the 
heat structure, while the compactly supported function ()(£) > 0 has the form

0 <£) =  [<1

Its regularity properties are satisfactory from our point o f  view: at the front points 
£  — ±1  the heat flux is continuous.

Substituting the expression (4) into the original equation, we obtain for the 
functions' t//, ф a system o f  ordinary differential equations:

2 (2  +  Ntr) 2 фф' ф~ф'

(Г- (гф'г ф'н  1

4 2 фф'

(Г2 (гф'г
Ф 0. I >  0; г//(0) =  оо. ф(0) =  0.

(5)

Setting here ф: =  К(/). ф 'г =  Z (t) ,  we obtain the system

{ Y Z ) '
2(2  +  Ntr)

(T
, ~ Y ' Z  + Y Z 2

(T rl  ’

which can be easily integrated.
Let us write down the expressions for the amplitude and the width of the thermal 

structure:
(/Л/) =  cli)! N'r/<2+N'r) ( л  -  

ф 2и ) = с ы 1,а+ ы 'п ( A - ~ / V 2 il^ ' rl/i™ ) ) •
(4')
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Fig- 14. T 'he dependence of the amplitude Ф(1 ) and half-width </>(/) of the localized solution
(4). (4') on lime-, i -  T{) is die total extinction time

Here
'2(2  +  N i r ) ' • Nir /(2-f Nir) [2 (2  +  Nir)  1

0(1 =
(T

. П) =
( Г

hi)
tr~

4(1 +  N<r)

2(2  +  N<r)' 2(1 r i \ ( r ) /  ( 2 t N i t  )

A >  0  is a constant. Graphs o f  the functions //>(/), </>(i) are sketched on Figure 14, 
It is interesting to note that the size o f  the support o f  the generalized solution 

does not change inonotonieally with time. On the interval ((),/»). where

A 1 ( Nm/\2t  I t  , \ ' <r > |

(2 +  N(T)h{ ,
the width o f  the structure ф{1 ) grows: subsequently the surface o f  the heat front 
starts moving back towards the origin л =  0 , and finally, at time

, =  7„  =  (Л/Ьи)(:,Лп/|:(|,л''п|

the functions ///(/) and t/>(i) vanish simultaneously, that is, we have total extinction.
The self-similar solution (4) is localized: at every moment o f  time the diameter 

o f  the support does not exceed 2r/>(/,), Observe that (4),  (4')  imply that as / —» 7'u 
the solution has the following asymptotic extinction behaviour:

« .? ( ',  v) =  f r r ( 7 'o  -  / ) ( 1 -  g~ ) , 1 ( l + o ( l ) )

with £ =  |,v|/r/o(7'o — / ) l/2 and = 2(2 + N tr)T {). Thus it is not self-similar (ef
(2) with v =  1 — rr) and is governed by the equation without diffusion, it, =  — //1 "
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3 T he motion of the therm al w ave in the absence of localization

For v > c r+  1 in (1) a compactly supported initial perturbation will not be localized. 
This is because at low temperatures the strength of heat absorption is not sufficient 
to halt the thermal wave. The nature o f  the motion o f  a front point in these cases 
is determined from the analysis of exact or approximate self-similar solutions of 
equation ( 1),

If v =  it -F 1. then ( 1) admits a self-similar solution of a relatively unusual 
form:

«.<('• л) =  (T  +  i) ' " / ( 17). 17 =  .v — A lnCT +  /). (6 )

where T >  1 and A > 0  arc constants. The function / ( 17) >  0 satisfies the equation

+  Л / '+  - / -  = 0 .  r? € R .  (7)rr

To formulate correctly the boundary conditions for this equation, let us consider 
the following analogy with the results o f  $ 9, The quasilinear parabolic equation

I’- =  +  --I. -  n, r H . r  > 0..V б R .
( Г

contains in its right-hand side the function Q (v)  =  v/<r -  v'r 11 > 0  for u б 
(0, r r ”1' " )  and (7(0) =  Q(<r l/,r) =  0. Therefore we could formally consider 
a Kolmogorov-Petrovskii-Piskunov problem for that equation and try to find a 
travelling wave self-similar solution, v(r .  x)  =  /(17), 17 =  .v — At , Then the 
function /  > 0  is a solution o f  equation (7),  and therefore it is necessary to 
impose the boundary conditions

ос) =  (г 1 . / (oo) =  0 . { !' )

We restrict ourselves to deriving estimates o f  the size o f  the support o f  the 
generalized solution o f  the Cauchy problem for v =  <r -p 1, when uo(.v) =  «((). ,v) 
is a function with compact support.

First o f  all, it is easy to prove the following claim: there  exist co n stan ts  Л >  0 
a n d  T  > 1, such  that

metis siipp a(t .  x) < Л +  <r 1 In(7' +  /), / > 0 , (8 )

To prove this, it suffices to cheek that the function

a, = (T  +  1)' l,v( \/2 ) l/'r ( — T])\'"r, 17 =  170 + x — <r 1 In(V + /).

is a .supersohuion o f  eiiuation (1),  and to choose the constants T  > 1 and 170 б R 
so that иo(.v) 5  и , (0, л) in R .
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Secondly, we have a  lower bound: there  a r e  constan ts  В >  0, Л б (0 ,  1), such  
that

mens supp/tU. x) > В +  Л ln( 1 +  /). / > 0 , (8 ')

The proof proceeds via construction o f  a subsoluiion of a different form:

a  =  ( ! + / )  l/,r H( 1 — r f / a 2) '/'r , 17 =  170 +  x — A In (1 +  /).

where H  > 0, a  > 0, Л б (0, 1) satisfy certain inequalities; i f  they do, they can 
be chosen to be arbitrarily small. Therefore there exists an 170 б R ,  such that 
ati(.v) > 11. (0, ,v) in R.

In view o f  the last estimate (8 ’ ), eompaetly supported solutions o f  the Cauchy 
problem are not localized for <' =  «■+ 1,

A sharp estimate o f  the support o f  any eompaetly supported solution ean be 
derived by using a different particular solution. Namely, using the equation v, =  
A(e) =  ни,, +  (1/rr) (u , ) 2 -  i n r ,  where i> =  u 'r , we observe that the quadratic 
operator A admits a linear invariant subspace W ; =  ,T{ 1 , eosh(A.v)), A =  <г/{<т +
l ) l/2. Therefore substiting v(t,.x )  =  C'o(t) +  C'i U) cosh(Ax) б ИА, yields the 
dynamical system (ef, [49})

Cn -<T(Co +
<r +  1

C l ) ,  C\
ir ( ir  +  2 ) 

it +  1
C 0C 1. / > 0 ,

which can be easily studied. By using weak solutions of the form (u) + in compar
ison with u{t. л) from above and from below, we derive the following estimate:

1

meas supp ti(t. x)  =  — — у-x In t
(Г{(Г - f  1 ) 1/“

1 +  О
In/

as / —► oc.

For v > 1 asymptotic behaviour o f  the process is described by a self-similar
solution of the usual form,

Us =  ('/■ +  t) l,u' u Us(£). (  =  \х\/( T  +  t ) l‘‘ ‘" ' ' " / I 2" ' - " 1, (9!

where the function g.y £  0 satisfies the problem

,, , , V -  (rr + 1 ) ,

Л ' л - ( О )  =  0 ,  g , y ( o o )  =  () ,

■ a s  -  Xs  =  0 ,  c >  0 .

( 10)

A non-trivial compactly supported generalized solution of this problem exists 
for rr +  1 < t> < it -f 3 (similar problems are considered in Ch. IV), In this case 
using the comparison theorem, we obtain from (9) an estimate o f  the support ol 
the generalized solution:

к/ (ol ы  I i>|/i:<.'- Ill OO, t —V OO,
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that is, unlike the case v — tr +  1, for v > tr +  1 the thermal wave moves 
according to a power type law (faster than in (8 )), In this case (9) determines 
also, for example, the relation governing the change in time of the amplitude:

sup«(/,.v) ~  ^v(O) /_ 1 /l'“ h , t ~-> oc.
ieR

The situation for v > tr +  3 is simpler. The problem (10) has no compactly 
supported solution. For v  > t r +  3 the heat absorption on the wave front is so small 
that it exerts practically no influence on the speed of its movement for large t. As 
a final result we have that as / —> oc the character of the motion o f  the front does 
not depend on absorption and is determined solely by the diffusion operator, that is 
н( / ,  a ) is in some sense close to the solution of  the equation v, =  (i/r til ) l . But for 
this equation we know a self-similar solution, which des’eribes the asymptotic stage 
of spread of  the heal perturbation (see Example 8 , Ch. I). Therefore |.v,./(/)| ~  

-> oc, and furthermore supieR u(i.  ,v) ~  C4 7 '" '*21 as t qo.
Heat perturbations penetrate arbitrarily far, there is no localization.

§ 13 The structure of attractor of the setnilinear parabolic 
equation with absorption in

In this linal section wc study in more detail the asymptotic behaviour o f  solutions 
of the Cauchy problem for heat equation with absorption in the multi-dimensional 
case:

и, Aii -  « 0 .  i > 0. л б R w; /3 =  const > 1. (1)

u(0. л) =  in)(л ) > 0  ( ^ 0 ) .  а  б R w; sup«o < oo. (2 )

The initial function u0 is uniformly Lip.schitz continuous in R w. This is asem ilinear 
equation (tr =  ()); however, the same analysis can be carried out for the more 
general qua.silinear equation considered in fj 12.

Equation (1) is one o f  the few nonlinear parabolic equations in R N, whose 
asymptotic behaviour as / —> oo has been studied in .sufficient detail. At present 
there exists a relatively complete, and for some parameter ranges, exhaustive,
description o f  the attractor of the Cauchy problem for (1) as the manifold of
asymptotically stable states (eigenfunctions o f  the nonlinear medium, e.f.), to each 
of which corresponds its attracting set IT  in the space o f  initial functions. A more 
detailed discussion of e.f. o f  a nonlinear medium can be found in Ch. IV (see 
|162. 268. 269]).

Below we present a .simplified description o f  the structure o f  the attractor of 
equation (1), which determines the asymptotic behaviour o f  solutions of the Cauchy 
problem as t —» oc.
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We pursue two aims in concluding this introductory chapter with a detailed 
analysis o f  a particular problem. First, this is a result of a complex study o f  a rather 
complicated nonlinear problem. It turns out that the process o f  heat conduction 
with absorption in this case can evolve as / —> oc in many different ways. In 
particular, a measure of this variety is the fact that the attractor o f  the equation is 
infinite-dimensional.5

Secondly, we want to emphasize the essential difference in the structure o f  the 
attractor o f  the nonlinear equation with absorption ( 1) and of an equation with a 
source, which admits unbounded solutions. Analysis o f  the latter takes up a major 
part o f  this book. Without entering into details, let us indicate the main difference. 
If, roughly speaking, the equation with absorption has, for nearly all values of 
parameters, a “continuous” attractor, then in the case of an equation with a source 
term the attractor is “quantized” in a special way, and consists, apparently, of 
several collections o f  discrete states, combustion eigenfunctions of the nonlinear 
dissipative medium. Principles o f  constructing a discrete attractor are discussed in 
Ch. IV.

Let us return to the problem (1),  (2). The first "candidates” to be elements of 
the attractor o f  the equation are. o f  course, its self-similar solutions.

1 Self-sim ilar solutions and conditions for their asym ptotic stability

Below we consider, for simplicity, radially symmetric self-similar solutions of 
equation ( 1) of the form

oyU. л) =  (T  +  t) ]/(l) =  W / ( T + n ]/\  (3)

where T  > 0 is a constant, while the function fly > 0 satisfies the ordinary 
differential equation

A w(tfy) =  N( { N " У * ] '  +  - 0 . s  -  =  < ) . £ >  0. (4)

It has the obvious homogeneous .solution

(ЫО  ss в„ =  (/3 -  1 r l/('J ",  £ > 0. (5)

We shall be interested in its lion-trivial solutions, satisfying the boundary conditions

«;.(()) =r (), tfy(oo) =  0. (6)

A formal asymptotic analysis of equation (4) as £  —> oc (that is, fly —> 0) yields 
the possible asymptotics o f  the problem (4), (6 ): a power law one,

2/,l> "  +  . . . . £  - *  ос;  C  > 0.

•’For N  > 1; for /V =H  it is at least two-dimensional.

(7)
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or an “exponential'’ one:

0y(£) =  "  л' e x p j—£ : /4| +  ос; /7 > 0. (8 )

Actually (8 ) is the limiting case o f  (7) for C ~  0.
/./. The set o f  s im ilar ity  functions  (fly) >" dtc c o s e s  /3 > 1 +  2 /N  a n d  (i < 

1 +  2 /N .  The sets o f  the functions (fly) in these ranges o f  the parameter /3 
are significantly different, which eventually leads to differences in the asymptotic 
behaviour o f  solutions o f  the Cauchy problem (1), (2) for /3 > 1 +  2 / N  and 
/3 < 1 +  2 /N .

Proposition 21. Let /3 > 1 +  2 /N . Then th ere  exists an  infinite n u m b er  o f  so lu t ions  
o f  the p ro b l em  (4 ) .  (6 ) with p o w e r  law  a sy m p to t ics  (7) a n d  there  a r e  no so lu t ions  
with the ex p on en tia l  asxm ptot ics  (8 ),

In the c a s e  /5 €  (1. 1 +  2 /N )  there  is an  infinite co l lec t ion  o f  fu n c t io n s  f ly t f ) 
o f  the f o r m  (7) a n d  at least  o n e  so lut ion  My o f  exponen tia l  fo rm  (8 ).

Proof.  It is based on constructing super- and subsolutions, в , and в  , o f  the 
problem (4), (6 ), We shall first seek them in the form

( Т ( £ )  =  Л ± «Гу + £ 3 ) >/4i u , £ > ( ) .

It is not hard to check that 

А „ (^ )  =  W ,  + f - ’ j "  x

(Гу — 2Л/ 4/3

+  ( / 3 - D -

2 N

Р
ay  +

and therefore A Ki ( f  ) < 0 in R ,  (that is, 0 , is a supersolution), if

Ahi
a 2 - 2 N : 4/3

' / 3 - 1  +

Similarly, A KU> > ) > 0 in R  , ( 0  is a subsolution) in the case

(9)

, ,, , a 2 -  2N
i f  >  2N. Л '1 1 < — -------- . (10)

"  0 - 1

Varying the constants u t , Л± > 0 which satisfy (9), (10),  we can find an infinite 
number o f  distinct pairs o f  functions 0 ,  > 0 . in R t . Then, using u well-known 
principle in the theory of semilinear elliptic equations (see e.g. [35b, 357 ,  378[) ,  to 
each pair { i f  . 0  .) corresponds at least one positive solution i f i f )  o f  the problem
(4), (b), such that, moreover, 0.  < Wv(£) < i f  in R , .
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Let u.s try now to find 0 + o f  exponential type:

« * ( £ )  =  Л+ с х р | > 0 . ( 1 1 )

Then

i ) =  A±. e x p l - o ^ 2) x 

x 0 4 .(4 0 ,* -  1 ) f 2 +
P

2 N a x -  e x p ( ~ o +^2(/3 -  1 )|

which gives us the following restrictions on the values o f  the constants A x > 0 :

o ,  < 1/4.

Л ?  ' > — *--------2 Л / а  Л  exp J  ■— -------— (  — *-------- I N  a  f
/3 -1  V  F \ 1 — 4o+ \ /3 — 1

a = 1/4, A t  1 < l/(/3 -  1) -  N/2.

( 1 2 )

(13)

From the last inequality it follows that the subsolution of the form (11)  exists 
only if /3 < 1 + 2 / N .  In this case we can always pick, without violating (12),
(13),  the constants о*.,  A i  so that О ( > 0 in R t , which proves the existence of 
a function fl,v(£) with exponential asymptotics for /3 < 1 + 2 / N .  □

Non-existence o f  such a solution for /3 >  1 + 2 /N  is established by the following 
lemma, which will play an important part below. In preparation, let us formulate 
a family o f  Cauehy problems for equation (4):

\,<(V) =  ( ) , £ >  0: «'(()) =  0 ,  0 (0 )  =  /x, (14)

where р. €  ( 0 , 0 //)  is an arbitrary parameter (clearly, 0  =  0 ( f \ p )  —> oe as 
f  —> ос in the case p  > Оц), Naturally, if 0  =  0 ( f ' , p )  > 0  in R + for some p  
and 0 (o o \ p )  =  0 , then the solution 0 ( f \ p )  delines the required similarity function 
O s( f) .  We have the following

L em m a  3. Let /3 > 1 +  2 /N .  Then 0 ( f \ p )  > 0 in R *  f o r  till p  e  (0. в ц ) ,  a n d  0 
ca n n o t  h a v e  ex p on en tia l  asymptotics.

P roo f.  Let us multiply equation (14) by £'v 1 and integrate it over the interval

(0 , £):

' ( / ( £ ) +  % ( f ) £ ' V =  [ \ N '0 (r,) \ ~  -  — Ц -  +(>fl 1 (17) 
2. . / 0  L -  p  — \

d v . (15)

For /3 > 1 +  2 /N  ( N /2  -  l/(/3 — 1) > 0) the right-hand side o f  this equality is 
strictly positive. If  on the other hand 0 ( f t ) =  0 ( 0  >  0 on (0 , f , ), < с о ) ,  then.
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Fig. 15. The case (3 1 + 2 /N

obviously. ()'(£*) 5  0 and the left-hand side is non-positive for f  so that
(15) cannot hold.

The second assertion o f  the lemma also follows from (15).  If  в  has exponential 
asymptotics (it is easily shown that in that case the derivative в  will have the same 
property), then, setting f  =  oc in (15).  we arrive at a contradiction in a similar 
way. □

Figure 15 shows schematically the functions в  =  в(^\ p )  in the case /3 >  1 +  
2 /N  for different values o f  p  e  (0. 0 /,). From (15) it follows that for /3 >  1 +2//V 
the function b ( f ' . p )  is monotone inereasing in p  for £  e  R , ,  so that different 
curves in Figure 15 cannot intersect.

In the case /3 < 1 +  2 /N  the functions d ( f ' . p )  have a more varied behaviour.

L e m m a  4. Let /3 6 ( 1 , 1 +  2 /N ) .  Then there  exists- a  va lue  /x | <= ( 0 such  
that f o r  a l l  /х 6  (0, /x|) the  so lu t ion  o f  the p ro b lem  (14)  van ishes  at s o m e  po int  
f  <  do. F o r  pi €  [ /x |. t in ) there  exists at least  o n e  p os i t iv e  so lut ion  0 with
ex p o n en t ia l  asym ptot ics  a n d  an  infinite n um ber  o f  so lu t ions  satis fy ing  (7),

Proof.  The second assertion has already been proved. The first one is established 
by ‘'linearizing" equation (14)  around the trivial solution 0  =  0. Setting f M(£)  =  
0 ( f ' . p ) / p ,  we obtain for the new function f  ̂  the equation

V td / f i )  =  ' O '  +  ^ f ' J + j Z T i f v  =  ^  ' . I t  О б)

(it is clear that / (i(0 ) =  1, f  (0 ) =  0 ) with a small parameter p ^ ~ ] multiplying 
the nonlinear term. The corresponding linear problem for p  =  0  has the form

F * (/ n )  = ( U >  0 : / , , ( ( ) )=  l . / ; , ( 0 ) =  0 .



112 11 Some quasilineur parabolic equations

Fig. 16. The case (i 6(1,  1 + 2 / N ) .  The thick line denotes the function d.y(<f) = в ( £ ; / x t ) 
with ''exponential'' asymptotics

Using the change of variable £  =  К - г ] ) ' 12. rj < 0. it reduces to the boundary 
value problem for the degenerate hypergeometrie equation:

V /!> +  ( y  ~  ./и ~  ^ -y -j-/n  =  (>- V <  (): ,Л.(0) =  1,

all solutions of which for /3 < 1 +  2 /N  vanish at some point (see. for example 
[35]) .  By continuous dependence o f  solutions of equation (16) on /x11 1 this is 
also true for all sufficiently small /х б (0 , /x\), □

Figure 16 shows schematically the behaviour o f  solutions of (14) for different 
/x 6 (0,0//) in the ease /3 б (1. 1 +  2 /N ) ,

To conclude, let us write down the solution of problem (4),  (6 ). for the case 
/3 =  2, which has the explicit form

»v<f)
A,

туу  +
B k

(<fv + 4 ') "  “ n +  £~
> ( ) . £ >  0 .

A n -  48(-(Л/ +  14) -  10(1 -1 N / 2 ) ' !2 ) .H n =  2 4 (2  +  (1 +  N /2)  

a N =  2 (N  + 1 4 +  10(1 +  /V/2 ) l/:).

It has power law asymptotics (7) its (  —> oo.

(17)

2 Stability  o f  s e l f -s im ila r  so lu t ions

The main problem consists in determining in the space o f  initial functions the 
domains o f  attraction, corresponding to each eigenfunction o f  the nonlinear problem 
under consideration. In subsection 1.1 the similarity functions 0 s-(£) > 0 were 
ordered by introducing the parameter fx =  0 S(O) б (0.0//). We shall denote the 
attracting set corresponding to a self-similar solution (3) by “M+, and the solution
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us itself, by их и ,х \ Т ) .  By asymptotic stability we mean, as usual, convergence 
o f  the similarity representation o f  the solution o f  the original Cauchy problem (1), 
( 2 ),

0T(i.£) = (T + П ]/113- " и ( 1 , £ ( Т  + / >( ) . £  6R*', (18)

to the corresponding function 0 S — д ) .  The quantity T  > 0  is conveniently
determined from the form of the initial function h(> e  1T M. It is clear that rep
resentation (18) of the self-similar solution (3) gives us precisely the function 

^ s ( f  )•
The question of  asymptotic stability o f  self-similar solutions is very easily 

solved in the case /3 > 1 +  2 / N .

Proposition 22. F o r  /3 > 1 + 2 / N  the a ttrac ting  set  TLM co rre sp o n d in g  to a  given  
self-s intih ir  so lution  (3) h a s  the f o r m

=  („„ > о | 3 7* > 0 :  и „ ( л - ) - 7 " 1Л^ - " в л(|л-|/Г|/:!) =  о(|л'Г:/|̂ ' " ) ,  |.v| -> oo
(19)

From Proposition 21 it follows that this attracting set is defined in an optimal 
fashion.

Proof.  Let и о €  Let us set w,j(.v) =  max(iiu(.v), u,y((). ,v; T)\, inn (.v) =
min{/i(,(.v), i/,s(0 . ,v;T )} .  and let us denote by u d i t . x )  solutions o f  equation ( 1), 

.v) =  (.v) in R s . Clearly, w '  > us, m S  u.v- m 5  « 5  ,(, t m R f x R w.
The function =  in1 -  tis > 0  is such that

=  Д ,-4 -  ( inf f  +  u‘{  < b :  *, t >  0, л б R'v . (20)

and therefore

z ' i l .  xl
(47r t ) N/2 .In'

exp Lvf
4r

(,v +  y) d y . ( 2 1 )

By condition (19),  г.(! (л') < ф(\х\) in R 4 , where </>(|.v|) =  <>(|.v| 1»> as | v|
oo. Then we obtain from (21)

sup {t, x) =  О I t 
>cR,v

, =  f у  exp
Y~

(/){}’) l ly
/о i 4/

Deriving a similar estimate lor - — us — in , we have

ll«r -  »A-Ilf-,R-V, =  о  Л ' /^-i»  j T  17W' 1 exp (f)(t'/2 v ) d y )  . (2 2 )

tind it is not hard to see that the right-hand side goes to zero as t —> oo. □
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A simpler estimate o f  the rate o f  convergence can be obtained under different 
restrictions on «о. For example, from inequalities o f  the form (21) it follows that 
in the ease

«u(.v) -  T " o s (\x\/T>/2) б L 1 ( R ,v)

we have the estimate

||0 /-(/.-) - в л ( |  ' D llnu 'i  =  O il  ^ " / ' ' ‘ • " l - O .  ! - >  oo. (23)

It is interesting to note that from (19) we can deduce uniqueness o f  the similarity 
function 0 S with a fixed principal term in power type asymptotics (7).

As can be seen from the estimate (22),  this method o f  proof does not work 
for /3 < 1 +  2 //V. In this case (as, in fact, for any /3 > 1) the question of 
asymptotic stability can be partially resolved by using information about super- 
and «absolutions, I f  and 0  , o f  equation (4),

Let us write down the equation for the similarity representation i f  =  O j{r .  f ) 
in a new time variable r  =  ln( 1 +  i / Т ) :

—  =  A (« r ), т > 0. {  б R ,v. (24)
9t

Ol  d) ,  О  =  % , ( 7 ' l/;£ ) .  {  б R'v . (23)

Here A is the stationary operator

1 Л  Ж  1 „
Л ( » ) = М + - ----- г » - » 11. (26)

2 f - f  d£, /3 -  1

All the functions I f  =  W.s-(|£|) satisfy the equation A ( 9 S) =  0 in R s . Therefore it 
is necessary to study asymptotic stability o f  stationary solutions o f  equation (24).  
An important part is played by

L e m m a  5. Let I f  (!) ) b e  s o m e  superso lut ion  (subso lu t iou )  o f  equation  (4), that  
is  A hU>i ) S  0  fA«(W. ) > 0) in R v. Then the so lution  o f  equation  (24) with 
in itial function  0 /(0 . £)  — M,(|£|) (9/(0, f )  =  0  (|£|) J is non-increasing  (nou-  
t lecreas in p)  in r :

h l f / i h  <  0  ( h l f / i h  > 0) .  г > ( Ц е  R v .

P r o o f  'Pile proof is based on the Maximum Principle, Indeed, the function :  =  
( 0 j ) r satisfies a linear parabolic equation, - < 0  in R A for т =  0 and so on, □

Let us note that the subsolution в  in Lemma 5 does not have to be smooth; 
it is sufficient, for example to have в 6  C 2 wherever it is positive. Therefore, il 
the radially symmetric function

tfr ( ( ) , £ )  =  u u 0 ( T ' / 2 £ ) , £  б  R w,
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is a super- or subsolution of  equation (24),  then O j ( r . f )  is monotone in r  and 
bounded: therefore by a standard monotone argument for semilinear parabolie 
equations (see [22, 357, 378))  there exists a solution 0$ =  0,s-(|£|) o f  the problem 
(4 ).  (6 ), such that ( ) 1 (r,  £) —> f3.s-(|£|) in R s as т —> oo.

In the general ease the problem o f  determining attraeting sets is related to the 
problem of uniqueness classes o f  similarity functions Bs — 0s(|£|). Namely, we 
have

Proposition 23. L ett i^ ,  в .  6  C': (R 'V) be, respectively, rad ia l ly  sym m etr ic  sttper-  
a n d  sitbsolittions o f  equation  (14 ) ,  to w hich  co rr e sp o n d s  the s a m e  similarity fu n c 
tion 0 S =  0(|£|:/x). 9 _ <  Oj <  in R v. Then the set

K , ,  =  {//„ > 0 1 3 Г  > 0 : 0 _(|f|) £  Г и ф  "ttu(T'n f )  < 0,(|f|) in R ,v|

is c o n ta in ed  in Tf'M.

in the case /3 < 1 + 2 /N  it is important to note the following asymptotic 
property o f  solutions.

L e m m a  6 . Let  /3 e (1. 1 +2//V). I f t t u ^  (), then f o r  s o m e  T  > 0

J im  в / (г. £)  ф  0, (27)
7 ~ • fv

P roof.  Without loss o f  generality we shall assume that /+(0) > 0. Then it follows 
from Lemma 4 that there exist sufficiently small T > 0, ц  > 0. such that

i/„(.v) £  T 'n l i ~u iH\x\/T]/1: p ) .  |.v| < T ' r- metis *ирр0(|£|:д). (28)

where 0(|£|:д) is a solution of (14).  Therefore by the Maximum Prineiple (the 
function в  in (28) is a subsolution o f  equation (24 ))

a U .x )  > ( T  +  /) ]A)i "в(\х\ЦТ  + / ) I/:; M).

i > 0. |.v| < ( 7 ' +  /)l/:meas suppW(|£|:/x):

and consequently

( h i r . f )  > 0 (|£|:д) > 0 , |£| < meas supp0 (|£|;p ) .  

whieh ensures that (27) holds. О

This is an important result. Practically, (27) shows that (or (3 6 ( 1 .  1 + 2 /N )  the 
asymptotic behaviour o f  all small solutions is described precisely by self-similar 
solutions of the form (3). We shall show below that the situation for /3 > 1 +  2 /N  
is different. Let us indicate another interesting property which follows from the 
method o f  proof o f  Lemma 6 .
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Proposition 24. F o r  (5 6 ( 1 ,  1 + 2 /N )  am on g  so lut ions  fl,y(l£|) o f  the p ro b l em  (4 ) ,
(6 ) there  is a  solution  fly having  the exponentia l  asy m p to t ics  (8 ), w hich is minimal  
a m o n g  a l l  (including rad ia l ly  ntm-symm eiric)  so lu t ions  o f  the ell iptic  equation  
A(fl) =  0  in R'v. The attracting set  11ТМ., p t =  fly(0 ), con ta in s  a l l  sufficiently  
sm a l l  initial functions  u{), and, in particu lar ,  the set

=  l"o > 0. ii„ #  0  | 3 7' > 0  : //„(.v) < T Utfl u irs (\x\/TU2) in R'v |.

P roo f .  From Lemma 5 it follows that the solution o f  the Cauchy problem (24),  
(25 )  with the initial function fly(0 , £ )  =  в(\£\:р.). where 0 (\£\:р)  is given in 
the proof of  Lemma 6 , is critical, that is (fl/(r. t f ) )T >  0  in R + x R w. Since 
fly(r, £)  is bounded from above (for example, by a function fl.s( f )  with power 
law asymptotics), the limit lim fly (r. £) =  f l f ( £)  exists, and. obviously, fl? has

T '\_ ” '
the exponential asymptotics ( 8 ). Monotone stabilization fly —> f l j ( f ) as т -> oc 
ensures that 6 *s is minimal among all solutions of the equation A(fl) =  0  in R \  as 
well as the inclusion 'Жи, C  ¥ (1 This follows from the fact that we can provide 
the estimate (28) for any <(<)(.v) ^ 0 . □

2 Non-self-similar eigenfunctions (app roxim ate self-sim ilar solutions)

Self-similar solutions with spatio-temporal behaviour (3) do not exhaust the set of 
elements of the attractor o f  equation (1).  The remaining elements of the attractor 
are a.s.s., which do not satisfy equation (1). unlike the exact solutions (3).

I Conditions o f  a sy m p to t ic  d e g e n e r a c y  o f  the a b so rp t io n  p m c e s s  f o r  
f3 >  1 +  2 /N

Let us return to Proposition 22. Setting in (19) fly =~ 0, we obtain the attracting 
set

'Wo =  I «о >  0 | //o( v) =</(|.v| h ), И  -> ос). (29)

if  //о 6 'W(>, then ( f i t ,  £)  —> 0 uniformly in £  6 R 4 as / oo. It is interesting to 
note that this simultaneously proves the known assertion (see Lemma 3) that for 
/3 > 1 -I- 2 /N  there are no functions fly with exponential asymptotics.

Therefore in the set "IT() the solution uU, x)  does not evolves according to self- 
similar rules. The asymptotic behaviour o f  »(/, .v) for /(<> 6 Wo is determined by 
self-similar solutions o f  the heat equation without a sink:

и, =  Л//, / > 0. .v 6 R ,v, (30)

If »o б  TFo, then the sink —it13 becomes negligible as / -•» oc in comparison with
the diffusion term.
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We f

ЧЛ/. .v; T) =  (T  +  t) y f  dr ] ) .  v  =  |л'|/(7' +  i ) ' /2 . 

Here у  >  0  is a parameter; the function / , > 0  solves the problem

V W(i7'V ' / , ) ' +  ~ J\ v  +  y.t\ = 0 .  V > 0. 

/',«)) =  0 . ,/' ( 0 0 ) = 0 .

(31)

(32)

It is well known [35. 317[ that for у  £  (0. N /2)  this problem has a solution with 
power law asymptotics'.

J\(rj) -- Mrj 2y +  . . . .  rj ос;  M — const > 0. (33)

If у  =  N /2 .  then the only appropriate solution is

/ 1(17) =  / [ ( 17) =  M  e x p ( - i 7‘ /4 ), 17 > 0: M > 0. (34)

For у  > N /2  (32) has no positive solutions.
Let /(„ e 1L(|. It turns out that self-similar solutions of  the form (33).  (34) 

determine the asymptotic behaviour of almost all solutions //(/..v) in the eases 
«0 </ L ] ( R N) and »o £  L I ( R ,V). respectively.

Let us consider first the case //0 </ / . '(R w), to which correspond the values 
у  < N / 2 . Let tts introduce the similarity representation of  the solution of  the 
original problem ( 1), ( 2 ):

/ 1 (/ .17) — (7’ 4- i ) yu(i.  r j (T  4- /)l/"). 1 > 0. г] £  R 4 (35)

Proposition 25. Lei /3 > 1 + 2 /N  a n d

( i (N  -  2 ) < N. (36)

iluu is. [i  £  (1 +  2 /N . 0 0 )  f o r  N  =  1 o r  N  =  2 anti f i  £  (1 +  2 /N .  N / ( N  — 2))  f o r  
N > 3. L e i  there  exist у  £  (1 /((5  — 1), N /2 )  a n d  pos it iv e  con stan ts  T. M . A, such  
that

»„(■) -  /n((). ■: 7‘) £  /-'(R w>, (37)

//о( v) < Л » , (0 .  л; 7 ), л £  R *  . (37')

Then  ||/ ,(/ .  ■) -  () a s  1 -■  C4i'

Proof.  Let us set =  a ,  -  //. Then

=  Д г  +  i f .  1 > 0. л  £ R ,v'. :((). .v) £ /.' (R A'). ( 3 8 )
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Let г + =  maxjO, r) >  0, z~ =  -  min((), z.} >  0 in R + x R N. Clearly

I U ( ' ) | | =  I U 4 ( 7 ) I I < K v i +  I U  C H I / . m u m -

and, furthermore, by (37 )  ; * ( ( ) , - )  б L ] (R w). From (38)  it follows immediately 
that

~ I L  ‘ O i l ,  мил, 5  f ullU<.x)clx.  — < 0 , (39)
o i  ,/u' (I i

Since by (37')  n S  An, in R ,  x R'v, from the first estimate (39) we deduce that

4 IIr.'</)«,.. ,k ' ,  < I  /if(/, .v;7")</д- =  
o i  J  к'

=  ( 7 4 - / )  y(Ut''/ 2 Al l\\j\\\fllais r  i > 0.

It is easy to check that for у  > \/{(i  — 1) and tinder condition (36).  we have 
the inclusion f\ б l f i { R N) (see (33 )) ,  and therefore

~ ;llr .4 (/)||/..,ил) < const ■ (T  +  i ) N / 2  ~yfl, / > ( ) .

The second estimate in (39) means that ||<"(/)||/.i|Kv) 5  const for / > 0. Taking 
now into account the fact that

ILU)lli.i(K'V) =  (/' +  /) 7 kN/~\\Jr(i■ ■) — ,/,v(•)II(j(Uv>• 

we obtain now an estimate o f  the rate o f  convergence:

( O d '  УЧ1- " ) ,  у  < (N  +  2 ) / ( 2 0 ) .

II./r(/. ■) -  ./\(-)ll,..(UV> =  | O d y N / 2  hi/). y = { N  +  2 ) / a p ) .

[ o ( i y N>2). у  > (N +  2 ) /(2 f3 ) .

Therefore if у б (1 / { ( i  — l ) . N / 2 ) ,  f ,  —* j\ as / - *  oo in 1 (R A/), □

The restriction (36)  in fact is not significant, and we can get rid of it by 
analyzing the stabilization /,■ —> j\  as / —*■ oo in the norm o f  U ’+ ] ( R N). where 
// > 0 is a constant (above we considered the case // =  0 ).

Next we shall touch on the case z/o б 'Wo D L 1 ( R w) if  у  =  N /2 .  It is not hard 
to derive the equation for the similarity representation (33) for у  =  N /2  in the 
new time r  =  ln( 1 + i /T)\

Ф -  =  В (/',-) -  ( 7VT)1 r  > 0. г, б R N.
dr  '

В (/,■)

(40)
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We shall assume that

f i (0. 7?) =  7’,v/2//0(|i7|7’ l/2) < C e\p| —|i7|2/4 ). r, £  R w. 

where C > 0  is a constant.
From (40).  invoking the Maximum Principle, we obtain

f i i r . r , )  < C e x P M77|2/ 4 | in R + x R * ,

so that / ,  is unifonnly bounded. The differential operator in (40) is easily reduced 
to divergence form by multiplying both sides of the equation by exp(|i7l2/4 ):

c ,4l?'4 ^  = V , ( . ( e l4"’/4V , , / , )  +

+  ~ / , e " '|!/4 -  (7Vr ) ' ' (/j |,л' 2/'/)!е ;’)|‘’ ,\

from which, after taking the scalar product in /£(R w) with ( f y ) T. we easily obtain 
the important estimate

c lr < oc.
l.’flO)

It allows us to prove that every partial limit f i i r . r ; )  —> / , ( 17) as r  —> oc 
in L ? iR N) is a solution o f  the stationary equation В ( / . )  =  0  in R ,v. As /V £  
C  exp{ — I i7l2 /4} in R ( x R N, we have that /» =  /., =  M  expj — IT712 /4} (see (34 )) .

The fact that the limit / , (r. 17) —* / , ( 17) for r  =  r, —> 00 does not depend 
on the choice o f  the sequence (t ,) follows from a kind o f  monotonicity o f  the 
solution:

~ r \ \ fr i r - ‘ ) I I £  0 . T > 0
clr

(here we have used the fact that the functions / ,  =  M  expj — 11712/4} are monotone 
in M  in R N).

It remains to show that f . ^ i )  (that is, M >  0 ). This is easily done by 
constructing a special subsolution o f  equation ( 1):

// . ( / .  л ) =  r//(/ ) ( 7 '  +  i ) ~ N/2 e x p ( —  I л |2 / ] 4 ( T "  +  / ) ] } .

It is not hard to check that (// ), i  A// — ufi in R ( x R ,v. if 1

(//(/) £  -|/Л/)ГГ +  /) - ^ ” l,/2. / > 0 . (j A

For f3 > 1 +  2 /N  we ean take as <//(/) the function Ч у ч  Г

1 //(/) =  i//(| 4  A(7" 4- /) f . 1 ~> 0; 1 // 0  > 0. A  >  0,

where e  =  N i f i  — 1) /2  -  1 and eA  > (i//() 4- A T  e f f  Therefore, under the 
appropriate restrictions on Unix), we have и ^ a., in R ,  x R N, that is. f  r i r ,  17) > 
<//u expj -  i 171~/4} for any т > 0, 17 6 R N ■

(fr
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2 Conditions f o r  a sy m p to t ic  d eg en era t io n  o f  the diffusion p ro c e s s  

Let tts summarize briefly the above results. Let

Unix) ~  |.v| " .  |.v| - »  oo; a  =  const > 0. (41)

Then above we considered the ease a  >  2/(/3 — 1): a  =  2/(/3 — 1) is the 
“resonance" ease, while for a  >  2/(/3 — 1). /3 > 1 +  2 / N . the absorption process 
degenerates. Thus it remains to consider the case a  < 2 /(/3 -  1) in (41).

It turns out that in this ease as / —> oo diffusion degenerates, and as a result the 
asymptotic behaviour o f  n(t. x )  is expected to be described by self-similar solutions 
o f  the first order equation

it, =  i > 0 . x  e  R a'. (42)

which can be conveniently written in the form

« ,( / . .0  = { T  +

(  =  х / (T +  t ) ' n "{fi 1)1 £  R v ; T  =  const >  0.
(43)

Substitution of (43) into (42)  gives us the following equation for J\ >  0:

___ i____ Д а / > „

a ( ( i  -  1) +  f i
f\ -  / f  =  0. f  6 r a

/ , ( £ )  s  0 ,  | £ |  - >  с о .

(44)

It is easily integrated, and the general solution of the problem (44) has the following 
form:

/,(£) -  K/8 -  1) + G |-*(£/|f|)|£|“(P - " r w ' l\ f £ R w. (43)

where G(u>) >  0  is a sufficiently smooth function defined on the unit sphere 
S — \a> £  R w | |w| =  1). Let us note that in the general case the functions (45) are 
not radially symmetric.

Let tts move on now to determine attracting sets corresponding to each o f  the 
a.s.s. (43). Below we denote by

./'/(/. f )  =  (T  +  1 ) 4 ф  l> lt(t, £;(T +  l ) ] d'C/t- 11|) (46)

the similarity representation o f  //(/, x) defined using (43).

Proposition 26. Let

(2 - y V ) ,
a  < min

/ 3 -  1
(47)
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and, m oreov e r ,  as sum e iha i  in (45)

G(w)  > 0. ш £  S'. G ( uj) £  C 2 (S),

Then ih e r e  ex ists  p  >  0 such that f a r  an y  initial fu n c t ion  щ\, w hich  sa t is f ies  f o r  s o m e  
T >  0 the  condit ion  !»«(•) — iis(0. u > 2 £  H ] (R 'v ), s tah il i : ,a i ion  f  ,(•) —> /,(•)
in L 1’* 1 ( R '4 ) occu r s  a s  t —> oo.

P r o o f  We proceed with a formal analysis. The function г =  и — u s satisfies in 
R + x R A the equation

z, — Ac -  z.i’ it, x) +  h(t.  x), (48)

.Ч(/. -V) = /3 / (rjtt(l .  x) + (1 -  1 7)(£(/, x ))11 1 t l r ] > 0.

/г(/, ,v) =  Au s(t, x).

By assumption :(().•) £  U ’ t l ( R N), V|:(0. • )|(' H" /: £  T - (R 'V). Let us take the 
scalar products in L 2 ( R N) o f  both sides o f  (48)  with L:|;’ 'r .  Then using natural 
assumptions concerning the regularity o f  the generalized solution o f  the linear 
equation (48),  we obtain

1 d
— Г Т Т 1|: p  +  1 d l

+  (\zf

,n i
, l,Ks — — — ^||V|:|,,,( 11/3

( p  +  1 )2 I / <KSi +

' r . A / O - d . - r ' . t ; )  5  (|r.|,’_ 1 A n , ).

(49)

Let the condition

N  — (o  4- 2)( p *L 1) < (), N  4- | o(/iL— 1) — 2|( p 4~ 1) > 0  (50)

be satisfied. Then it is easy to check that А £ /.,M 1 ( R w). Using the Holder 
inequality

( l . - r ' r . A / q )  < llr li ; ’.... ....................... .

as well as the identity

II А/1л ( / )|| , I I(|JS ) =  ( / 4~ I )1' |l fiW IS ■ 1(ЦЛ ) •

<i - A' - (o + 2)(/; 4-_lj ^ 
n((3  -  1)(// +  1) ’ <

which follows from (43). we obtain from (49) the following estimate
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i n =  ......................... < °° -

Taking now into account the fact that

I I I I "  I(U.V| =  ( / +  I ) 1 \\J  1 ( I , ■)  — J  i ( ' )  II 1,1" |(КЛ r

where
' ___ N ___

jH l>  +  1)

we obtain the filial estimate of the rate o f  convergence:

( ( ) ( , * > '  f ). <5 > -  1.
!!//(/.•) — ./'('Mb.-.пн'i -= < 0( t  f In/). 5 =  -1 . (51)

1 0(1 f ). 8 < -1 ,

as / —i• oo. One can see that 8  +  1 — e  < 0 if 8  > - 1 .  Lx't its require in addition 
to (50) that e  > 0 . that is.

/V — <r(/> +  1) > 0 . (52)

Then it is not hard to see that (5 1) guarantees stabilization o f  /V to J\ as / —> oo. 
and that the system o f  inequalities (50),  (52)  is compatible tinder the condition (47).

□

3 A.s.s. j t n ' iIn’ e r it iea l  veilin' o f  p a m n ie i e r  / 3 = 1 +  2 /N . uq h a s  exponentia l
t leeay  a t  infinity

In this ease there arises probably the most unusual a.s.s.:

»,(/, .v) =  | ( / +  / ) ln( / +  / ) | f i t  ^   ̂j -  i ) i /1 ^ . 7 > 1. (53)

where the function ,i+(£) > 0 will be defined below. This a.s.S. corresponds to 
the similarity representation

y,  (I. g) =  \ (T +  i) ln( T +  i )\n;2u(i . £ ( T  +  t ) ]/2). (54)

The fact that for .small //()(л) > 0, u(t, x ) evolves as / —* oo according to the spatio- 
temporal structure (53), follows from the existence of a super- and .subsolution of 
equation ( 1) o f  the following form:

и  (/, x) = A\(T + ,) \n(T +  / ) Г Л7:ехр { -  ---- 1 .  (55)
M l  +  / )

A =  const £ (0. (ЛУ2)л72),



§ 13 The structure of attractor I'or ihe semilinear equation 123

» + (/, л) =  H\(T +  i )\ n(T  +  /)|"л/;,ехр | ---------------------- — ------ ---------------Л  . (56)
[ 4 (T  +  /)] 1 +  a  In '  (7' +  /) Г J

a  =  const > 0, H  =  H ( a )  >  0  can be arbitrarily large. This is easily verified by 
substituting these functions into ( 1).

It can be shown that for all sufficiently small (for example, for un —
exp{-|.v|-), |a-| —* oo). after a finite time ц  > 0 , the condition » < и < n+ will 
hold for / — / |, д- £  R \  and therefore и < n < it, for any / > / |. л £  R ,v. Then 
from (54)  we obtain the estimate

A exp I f f
< g, (/. £)  < W cxp

Igl2 _____

4| 1 + a In ' 1 (7‘ + / ) p
(57)

Therefore this is also true for any possible limiting function g . ( £ ) and the estimates 
have the form

A exp {  — 1 12 / 4 }  < * , (£ >  < W e x p { 4 f | 2/4} , | £ R w. (57')

The precise form o f  becomes clear by using the equation satisfied by the 
similarity representation g; =  (r.  £),  with т =  ln( 1 +  i / T ) :

<Кчт
Hr

^ i f l i
+  2 ^  W , * '  +  2 * 7 + т +  In Г

N  I ( 2 / N
~ H r  -  fir (58)

By uniform houndedness o f  gr(T, £) (sec (5 7 )) ,  from the last equation (which 
can be put in divergence form by multiplying by exp(|£|2/4)), it is not hard to 
deduce boundedness o f  exp(|£|3/8 )(,t,’r )r  ill / . ' ( ( 1. oo) x R w). This estimate allows 
us to pass to the limit as т —> oo in (58).  As a result we obtain for #«(£) the 
stationary equation

1 /V
B ( x J  == A ( X .  +  -  ^ 2  r r r  ( i  +  — fit

-  ,-i
= 0 , £  6 r a

Therefore
fit(^) =  M  exp( -|^|3/4), M -  const, (59)

and by (57 ')  M € \A, II\.
Below we only prove uniqueness of the limiting function ; . ( £ ) .

Proposition 27. L ei  f i  =  1 + 2 /N , n() =  »o(|a-|) ~  exp{ — IA’l2} I л‘| —> oo. Lei  
g; (r, £)  —► x , ( £ )  “ ■v т - *  oo nnijm'inly mi e v e n  cam /ia c i  sin in R'v. Then

g A ( )  =  ( N / 2 ) n/2(\ +  2 / N ) N:/4 e x p \ - \ t f / M .  f  £  R * . (60)
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Proof*  By (59) we only have to show that

M =  ( N / 2 ) n/1( 1 +  2 / N ) n''/ a . (61)

Integrating (58)  over R w, which can be done by (57 ) ,  we obtain

cl_

d t
' lll/PdiV,

i

т +  In 7'
: G* (t)у ) (т )

r  +  111 T
N
7 II 4/ ( t . -) II, ■, «л, -)||

11 2/Л' , T >

( 62 )

From (57) we have that ll,t,’(r .  OH, i(Ks, is bounded from above uniformly in r. 
Therefore it follows from (62) that the integral

P  G *(,t4  H r)  ^  
i r  + In T

mtis’t converge.
Since tinder the conditions of the theorem G '( ,t ;r)(T) G"(,if*) as т —> oo,

we obtain the condition ||,t,\||( , > 0 (see (57 ') )  mid

ОЧ,4,)
N

IM RM 11,4,11
I i г  i n  

' •■(R-N =  0 ,

from which follow (61) and (60). □

R em a rk .  An elementary analysis of  the behaviour o f  trajectories of the "ordinary 
differential equation" (62) as r  —*■ oo also allows tts to prove the stabilization 
g/ (r, f )  4 , ( 4-) in R^ as r  —> oo, where g ,  is the function (60).

Under the stated conditions a.s.s. (53) satislies the linear equation

Ho, . N ni—  — д |( ----------------------------------
III 2 (7' +  I) ln(/' + i)

l >  0 . л 6 R'v (63)

which differs considerably from the original one.
To conclude, let us again remark on the curious transformations the semilinear 

parabolic equation (1) can undergo at the asymptotic stage. Depending on the 
magnitude o f  /3 and the initial function uo(,r), it is equivalent (in the sense of 
a.s.s.) to one of three types of equation; linear equation without sink (30).  lirst 
order equation without diffusion (42).  or, finally. equation (63) with a linear sink.

Remarks and comments on the literature

§ 1. Basie material needed to derive the elementary results of subsections 1-3 is
contained in the well-known monographs ]282. 101, 3381 (see also ]378, 357, 361,
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3 6 5 1). Proposition 4  is proved in 11 19|; see also the more general statements of 
1187| and § 4. Ch. VI.

§ 2. Concerning Proposition 5, see 1386, 3 8 4 1. The presentation of subsection 2 
follows 11 8 7 1. Another method of  proof of a statement similar to Proposition 6 is 
contained in ]2 3 4 1 (let us note that the method o f  12 3 4 1 cannot he used to derive 
an estimate of the convergence rate of в  - *  f s  as l —* oc ,  which is of importance 
in applications).

§ 3. Existence of solutions o f  the problem (5) tinder quite weak restrictions on the 
coefficient k(u)  lias been proved by different methods in ]23, 24, 6 8 ]. The proof of 
Proposition 7 '1 uses the method of 11871; justification o f  the transformations used 
there can be found in 1330].

The self-similar solutions (14) o f  subsection 2.1 were considered first in 
]32, 29. 30], where existence and uniqueness o f  solution o f  the problem (16),  
(17) were established (subsequently, they were established by a different method 
in ] 2 0 5 1). Asymptotic stability o f  the solutions (14)  with respect to perturba
tions o f  the initial function, boundary regime and the equation (the coefficient 
u" —> k(u ))  is proved in 1119, 184|: in this context, see Ch. VI, where similar so
lutions are used to construct families of a.s.s. o f  nonlinear heat equations with 
non-power type coefficients. Solvability of the problem (19')  and uniqueness o f  
f s  are established in |28, 29. 30. 32, 205]. Questions related to asymptotic stability 
o f  the solution (19) and construction of  the corresponding family of a.s.s. o f  a 
large class o f  boundary value problems are considered in ] 18 4 1 (these questions 
are also brie fly discussed in tj 3, Ch. VI).  The localized self-similar solution (21) 
is studied in 1351, 393, 352].  Its asymptotic stability is proved in 1119, 153] (see 
vj 4 . Ch. Ill) ;  the corresponding family of a.s.s. is constructed in |119. 184, 1 8 7 1 
(see § 3, 4, Ch. VI). Analysis o f  self-similar solutions (23) is the subject matter 
o f  much o f  Ch. Ill,  where additional information and the relevant references can 
be found. The exact solution (24), which is invariant with respect to a Lie group 
o f  transformations (see ] 3 2 2 1), is constructed from general considerations by the 
methods o f  113 4 1, 1176]. though, of course, it is well known; see 14 4 1.

§ 4. Existence and uniqueness of the self-similar function f s  ' n (-5) has been e s 
tablished by different methods in ]7, 2 1 1. The estimate o f  the convergence rate (8 ) 
for arbitrary initial functions Щ) ф  0 lias been obtained in ] 2 1 1. in subsection 1 we 
present a different (and, in our opinion, simpler) method o f  proof of convergence. 
The boundary value problem with the condition (1 3) lias been thoroughly consid
ered in 110|, where solutions of variable sign were also studied, it is o f  interest, 
that in that case, in distinction to Proposition 9. it i,s possible for a solution n (l,  ,v) 
to stabilize, in a special norm, as I —> oo to a spatially inhomogeneous function.

'Ollier estimates of lire convergence rale are obtained ill (360. 326|.
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§ 5. First existence and uniqueness theorems for fast diffusion equations of  general 
form are proved in ]343] (N =  1), where the total extinction effect was discovered. 
Similar studies o f  the multi-dimensional case for m e  (0, 1) include, for example,
119, 43, 53, 328|. In ] 4 3 1 a method o f  proof of  total extinction in the boundary 
problem ( 1)~(3) is presented.

The proof o f  Proposition 10 uses a different approach. Asymptotic stability of 
the self-similar solution (4) under some restrictions on i l  C R N was established 
in ]47 ]. Let us note that in the course of  the argument of ]4 7 1. conditions of 
stabilization to an unstable stationary solution of a qtiasilinear parabolic equation 
are found (such problems arise in §§ 5, 7, Ch. IV).

§ 6 . Here we mainly follow ] 1681. The first result concerning the total extinction 
phenomenon in the Cauchy problem (1), (2) was obtained in [43| in the case 
0  < m <  (N -  2 ) /N .  N > 3, u t ) € L ' ( R n )  П  U ’ ( R N ) , p  > (1 -  m ) / ( 2 N ) .  
Conditions imposed on »() in Proposition 11 are weaker. In case 0 < m < (N  -  2) 
equation (1) is shown |251| to admit a unique sell-similar solution (3) with finite 
mass (this determines the exponent n >  0 ) which is asymptotically stable 1166].

Example 2 is taken from ]43]. Proposition 12 is proved in 1168] by constructing 
a strictly positive in R ( x R w .subsolution o f  the problem. Propositions 11, 12 
provide a fairly precise description of the boundary between the sets o f  j«o) for 
which there is, or is no, total extinction in Unite time. Non-occurrence of total 
extinction for all m > (N  — 2 ) ,  /N  is proved in 119| (see also ] 3 2 8 1>.

§ 7. The elementary transformations и —> E (u )  (Example 3) will be used in § 
2, Ch. V, to present the special comparison theory for solutions o f  two different 
nonlinear parabolic equations. The substantial simplification o f  equation (3) in 
Example 4  (the right-hand side o f  (8 ) is independent o f  r) obtains in the case 
i t  — - 4 / 3 ,  N — 1. when equation (9) is invariant with respect to a five-parameter 
Lie group of  point transformations ]SO, 81]. Concerning the transformation (10) 
and other properties o f  solutions o f  equation (9),  see 1278]. For an application of  
the transformation o f  Example 5 see Jj 7, Ch. IV, as well as 1112, 114, 15()|. The 
fact that it is possible to linearize equation (15) has been known for some time 
(for related results, see the references in | 12|).

Group-theoretic aspects o f  the ability to linearize this equation were analyzed 
in ] 5 1 1 (note that (15) is the only nonlinear heat equation it, — ( k ( u ) u x), invariant 
with respect to a non-trivial Lie-Backltind group; .see ]221, 51, 262]) .  Example 
6 is taken from |51|. Example 7 demonstrates new properties o f  the "m ulti
dimensional" equation with the coefficient k ( u ) =  u 2. Proposition 14 is proved 
in ]57]; we remark that that paper uses the same transformations as in 1262 , 2 2 1 1. 
Equivalence o f  equations with k, =  u"‘ , ct\ +  cm +  2 =  0. was established first 
in |31()|; using group-theoretic methods the same result was proved in 1221 ]. In 
Example 8 we present a new particular solution o f  equation (36).  which cannot be 
obtained by known group-theoretic methods. Proposition 15 is a natural general
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ization of the result of |57|. An exact solution o f  the super-slow diffusion equation
(37) is constructed in 12 5 0 1. using the approach of ]57]. In 11911 it is shown that 
precisely this solution describes the asymptotic behaviour o f  an arbitrary solution 
with the same initial mass. Estimates o f  solutions o f  the super-slow diffusion 
equation of general form are obtained in |99|. Asymptotics of solutions o f  the 
boundary value problem for equation (37) with the Dirichlet boundary conditions 
is contained in 1145|.

§ 8 . Existence and uniqueness theorems for solutions of degenerate equations of 
the form (1), (2) with lower-order terms are proved in [375, 296 , 224, 3 7 1 17. 
Continuity of the modulus o f  the gradient o f  the solution (that is. o f  the heat flux) 
o f  an equation o f  the form (2) has been established in |9|. The self-similar solution
(3) in Example 9 is a particular instance o f  solutions o f  quasilinear equations o f  a 
more complex form, which were first constructed in [ 2 8 1. By the change of  variable 
in =  v equation ( 1) reduces to the previously considered equation v, ~  ( М " Т ) ЛЛ; 
therefore all results concerning asymptotic stability and a.s.s. extend with minor 
modifications to the case of gradient nonlinearities (this refers also to the localized 
solution of  Example 10). ,*

§ 9, For some generalizations and extensions of the results o f  |255] see [241. 242, 
95 , 195. 357. 358, 361 [. The proof of Proposition 17 illustrates the teehnique of 
derivation ofpointwi.se estimates o f  solutions o f  parabolic equations, as well as one 
of the simplest methods o f  comparison o f  different equations; more eomplicated 
examples arc given in Ch. V.

§ 10, The families of self-similar solutions (.3), (7) were constructed in 180, 8 1 1; 
presentation of the inain conclusions uses the results o f  |82|. The result formulated 
here, concerning instability of  the .stationary solution (6 ) and the existence o f  the 
non-trivial attracting set corresponding to it, illustrates the analysis o f  tjtj 5, 7, Ch. 
IV (where in principle we present a method of constructing a large attracting set 
o f  an unstable stationary solution o f  a quasilinear parabolic equation). The idea of 
using a two-parameter family of invariant solutions (18)  to study the properties' o f  
travelling waves in the Cauchy problem for (17) is due to V. A. Dorodnitsyn,

§ 1 1 ,  The one-parameter family o f  solutions (3). feasibility of  construction o f  
which was discussed on group-theoretic grounds in [80, 81]. is considered in 182].

§ 12, The lirst example o f  a localized solution in a medium with a Sink (v =  1 
in (1)) is constructed in 1302] ;  for details on that see the survey in 11 6 2 1. A more 
general statement than Proposition 19. is proved in [231 [. The lirst mention of 
total extinction in a medium with a absorption is contained in |34.3|: an analysis o f  
this phenomenon for equations of  general form was undertaken in 1231 ]. To study 
asymptotic stability of self-similar solutions (2 ) and solvability of the problem (2 ')

7Scc also the references contained therein.
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we can apply the methods o f  §§ 1, 5, Cli. IV. See also ] 192]. A particular 
solution o f  equation (3) (Example 1 1) in the case N — 1 is contained in ] 2 4 8 1; 
its multi-dimensional analogue is to be found in |301|. This explicit solution 
admits a natural /V-dimensioiuil generalization. Setting in (3) u,r — v yields the 
equation v, =  vAv +  (1/w) IVup - a s  A(u>. where the quadratic operator A 
has an (N +  1 (-dimensional invariant linear subspaee given by the linear span 
W N+\ =  .Tj 1. .V].. . . .  at,.), that is, A(W,V41) c  W w+|. For more general examples 
o f  invariant linear xtibxpaees for nonlinear operators see |136|, Substituting into 
the equation v — C u d ) +  C| ( I )л] +  - • ■+  C,v (l).x2N e  IV лч i ■ we arrive at a nonlinear 
dynamical System for the eoeelicients, By analyzing its properties we derive, in 
particular, compactly supported solutions exhibiting non -sym m clr ic  extinction in 
finite time 1167|, Asymptotic extinction behaviour o f  solutions of (3) is studied in 
[188]. Some o f  the results o f  subsection 3. which deal with estimating the size of 
the support o f  a generalized solution, are proved in |48|, where references to earlier 
work can be found. More details concerning properties of solutions of nonlinear 
heat equations with a sink term can be found in 1230, 231 , 237 , 248, 11, 50, 89. 
208, 253)  (see the survey of [ 1 6 2 1 and ]233]).

§ 1 3 .  Presentation of all the results o f  subsections 1 and 2.1 follows 1162|. Solution 
(17) was found in ]34].

Let us note that in the case T  =  () every non-trivial self-similar solution (3) 
is generated by a singular initial function i+bv) of the following form: if 1 < 
/3 <  1 +  2 /N  and ff.s(t) is a solution of the form (8 ), then m()(.v) ~  D'S'(.x), 
where / — 2//V(/3— 1) > 1 (by a different method existence of such c m 1 .vmgo/or 
self-similar solutions is proved in |55|; uniqueness is proved in ]24()|); if fl.s(£) 
has the power law asymptotics (7).  then no(.v) =  C|.v| 2/,/i' 11 in R w\|0). where 
C  > 0  is the constant of (7). For 1 < j i  < 1 +  2 /N  all these functions are not 
in / J ( R W), Therefore the self-similar solutions we construct seem to indicate the 
optimal degree o f  singularity necessary for the existence o f  a non-trivial solution 
o f  the Cauchy problem.

The above conclusions agree well with the results o f  ] 54]. where it is shown 
that for /3 > 1 +  2 /N  and u» ( a ) =  8(.x), a non-trivial solution does not exist, i.e,. 
it s  0  in R  f x R w (let us note that for /3 > 1 + 2 /N  there is no self-similar solution
(3) with ф  0 of  the form (8 )),

An assertion, which is stronger than Proposition 22. is proved in 12 3 5 1. where 
for /3 > 1 + 2 / N  the authors prove existence and asymptotic stability o f  an inlinite- 
dimensional set of asymmetric self-similar solutions (3), £ =  a/(7’ +  l ) ]/2 б R w,

A generalization of Proposition 25 to the case of more general initial functions 
»(i (/3 > 1 + 2 / N )  is contained in 1208, 235|. In ]235] the reader can find conditions 
of stabilisation of u(l. .x)  to stationary solutions of the form (31).  where 17 =  
.v(7' + M " l/2 б R w and j\ 4  /.' ( R w)'(ud й  L ' ( R ,V)); the case «„ б l J ( R N). is 
considered in |208|.
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Results o f  subsection 2.2 are contained in ] 163]. The stabilization /У —> / , .  
I —> o c .  of Proposition 26 means, in particular, that 1 ’«(t.  .v) —> (/3 — 
I j- i/ i f i -n ,  i oo for any .v б R'"1'. This result was proved lirst in ]208]  (ob
viously. it does not give any information on the spatial structure of the thermal 
perturbation). Let us note that since the function G (w )  in (45) is sufficiently ar
bitrary smooth, the set of asymptotically stable a.s.s, (43) is infinite-dimensional. 
A more complicated situation of extinction in finite time for the porous medium 
equation with absorption, when the limit profile satislies the lirst order Hamilton- 
Jacobt equation is studied in 1188|. Proposition 27 and all the auxiliary sdateinents 
required in its proof are established in |162|. A lower bound for the amplitude 
was discussed previously in 12 0 8 1. The same phenomenon of the appearance of 
unusual logarithmic perturbations o f  the asymptotics arises in the Cauchy problem 
for the quasilinear equation u, =  An" ' 1 -  iA  (<r > (» .  no <= L 1 ( R w) lias compact 
support, for the critical value of the parameter /3 — f3, =  <г +  1 4 - 2 /N .  See the re
sults of [178. 1791 for the one-dimensional equation (N =  1) and 1190|. where this 
equation is studied by a different method for arbitrary N >  1. In this connection, 
let us also mention the paper [239|, where the occurrence o f  logarithmic perturba
tions o f  the asymptotics for /3 > /3. is related to the behaviour o f  iio(.v) ~  |.\'|~л’ 
as |.v| —> 0 0 . A general classification of asymptotics of solutions depending on 
the parameters <r > 0 and /3 > <r +  1 is more or less contained in the papers 
[236. 237 . 238, 239 . 240. 178, 179. 188. 190, 74|. See also the references in the 
last papers and in the survey |233|. Tor the equation with absorption with gradient 
diffusivity it, =  V-(|Du\‘rDu) — itfS, <r > 0. the critical ease /3 =  r r +  1 +  (ir  +  2 ) /N  
is considered in 1190| (a uniqueness theorem for the asymptotics was proved earlier 
in 1178, 179|), Therefore existence o f  a critical value o f  the parameter, for which 
the nonlinear interaction of various diffusion operators of  diffusion equations with 
absorption generates an unusual non-self-similar asymptotics, is o f  a fairly general 
nature.
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Heat localization (inertia)

This entire chapter is devoted to the study of unbounded solutions o f  parabolic 
equations. Here we consider the character of heat transfer in a medium, the tem
perature on the boundary o f  which follows a blow-up regime. We deal with the 
cases of power law dependence of the thermal conductivity coefficient on tempera
ture. and of a constant coefficient. The study is based on an analysis of unbounded 
self-similar solutions and does not require any special mathematical methods.

The main effort is directed towards the study o f  physical properties o f  boundary 
blow-up regimes. We consider in detail different types of propagation o f  thermal 
waves, establish conditions for the appearance, and the physical meaning o f  the 
heat localization phenomenon, which reflects a kind o f  inertia of strongly non- 
stationary diffusion processes. Analysis of the heat transfer processes is conducted 
in dimensional form, which immediately allows us to use the obtained results to 
derive realistic physical estimates. These results are used tn Ch. V, VI in the study 
o f  heat inertia in media with arbitrary thermophysical properties.

§ 1 The concept of heat localization

1 A boundary blow -up regim e

We consider a one-dimensional process of heat propagation in a medium that 
occupies a half-space |.v > 0 ) with thermal conductivity coefficient which depends 
on the temperature: к ~  k ( t t ) > 0 for и > (). k ((>> > ().

On the boundary л =  0 the temperature follows a b low -up  reg im e,  that is it 
becomes infinite at a certain finite moment o f  time t — T  > 0 (T  ts the b low -u p  
l im e).

The process ts described by the first boundary value problem for the qtiasiltnear 
parabolic equation

it, — (</>(»)) w =  ( k ( n ) i i i ) i ,  к e  C : (((). 0 0 )) П C(|(). oo)) . ( 1)
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with the initial condition

н(0 . a ) =  i/()(л ) > 0 . .v > 0 ; sup (to < oo, sup ||(/h»o) |.J < oo. (2 ) 

and the boundary condition

n(i.  0) =  »|(f) > (). () < i < T\ it| б C'(|(). 7'));  i i i ( i )  -> oc. i —> T  . (3)

The compatibility condition »|(0) =  iiO(0) is taken to hold.
The main goal is m study the behaviour of the solution o f  the problem as 

t —* T '. We shall be particularly interested in the conditions for heat localization, 
a paradoxical property o f  the heat conduction process, which shows' itself at the 
asymptotic stage of a blow-up regime.

2 Exam ples of localization in boundary value problem s

E xam p le  1. A standing thermal wave (see § 3. Ch. 1), Let us consider the problem 
(1 ) - ( 3 ) .  where

k(u )  =  кци 'г. tr =  const > 0 . A'o — const > (). 

iti (t) — AS(T  — t) l/" .  t < T. A.< =  const > ().
(4)

f A\T '/ "( l  -  л/лч):/" ,  0 < .v < лл.
tt()(.V) =  <

{ 0 . .V > .Y.v.

This problem has a separable solution:

к,tU. x)
A S ( T  -  t )  1л'(1 -  .Y/.vs)-/,r. 0 < л < A'.v.

0. v > A'.v.
(5)

where

a'.v =  12A'oA'  ̂U r  +  2 ) / i t \ ' 12 . (6)

Let us indicate the main properties o f  the solution (5). (6 ):
a) for 0 < a < a ,v the temperature ux (t..x)  goes to infinity as t T'\
b) ttsU. a ) s  () for all t e (0. T )  for any a > ,v\ (Figure 17): the point a =  .v,v. 

in which both the temperature and the heat lltix are zero, is a fixed boundary, 
which separates heated matter from cold.

The process of heat transfer is localized in the finite domain 0 < a < .Vv, even 
though in that domain the temperature grows without bound as t —> T .
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u ( t .x )

0 а,г ал x ,  о,б x

Fig, 17, A standing thermal wave. The parameters are: <r 2.  n - 0 .5 .  кц -  0.5. 
As ~  0.354. As -  0.5. V — 1; 1: Г  -  r = 1.25 - 10 2. 2:  Г  - t  ~  5.3 ■ 10 \ 3:
7' -  t ^  2.9 ■ l( )* \ 4: Г -  f = 9 • 10 4

E x a m p le  2. Effective heat localization in a medium with constant thermal con
ductivity. The problem (1)~(3).  where

k(ii)  =  k {i > 0 :  hi (О — Д.у cxp Iflo lT  -  О 1}- /?о =  const > (): ho(.v) =  ().

lias the solution

u ( t . . v ) - — у= =  / exp --------> ( i - T )  v : Ay е х р { Л о ( 7 ' - т )  '|г/т. (7)
l - J k ^ n  Ja { 4 k {)U  — т) j

satisfying the following properties:

the temperature goes to infinity as t - *  T  ;
b) for л > .\'v the temperature is non-zero and is bounded for all 0 < t < T  by 

the function

a) for
0 < -v <  -v.v =  2 (A()tf(1) l/: (8 >

ч (Т  . \) =  lim u (i.  л )

(9)

e) for any ,V| > .v.v the energy

£(r..V|) =  f  u ( t .£ ) i l ( ;  < const, i £  (0 . V).
V
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contained in the domain j.V| < x  < o c) ,  is hounded.
As in Example 1. practically all the energy is localized in the Unite domain 

|.v < .v.s =  a'.s (ко. /?<))}. The difference is that the temperature to the right o f  the 
point a.s is nonzero (Figure 18), but is uniformly bounded during the entire course 
of the process.

3 Definition of localization and its physical m eaning

Definition 1. The problem ( l ) - ( 3 )  exhibits .mart Iwat lo ca l iza t ion  if there exists 
a constant / > 0  such that n(t, x) =  () everywhere in ((), T)  x (/, o c ) .

We shall call the smallest such number / the lo ca l iza t ion  d ep th  Г , and the set 
(() < x < Г\  will be called the lo ca l iza t ion  dom ain .

This definition has content if  the following two conditions are satisfied;

"  ' ¥ } ‘
■Л) f./()

which is a necessary and sufficient condition for finite speed propagation of distur
bances in processes described by equation (1) (see § 3. Ch. 1). Therefore Definition 
1 makes sense, for example, for k(it) — ko t i" , a  > 0 (but is not applicable to a 
medium with constant thermal conductivity к =  k {) > ()).

b) Mo(.v) =  0 for .v > /о, /„ < oc, that is, the function »o(.v) must be of compact 
support (there must exist a region o f  "cold background" initial temperature in the 
medium).

Fig. 18. The concept of effective heal loeuli/.alion
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Example 1 demonstrates strict heat localization, and in this case the depth o f  
localization is Г  =  x.y (see (6 )).

Definition 2. Problem (1 ) - (3 )  exhibits e f fec t iv e  lo ca l iza t ion  if the set

is bounded.
We shall call the quantity L*  =  meas oq the e f fe c t iv e  lo ca l iza t ion  depth,  while 

the set (0 < .v < //( will be called the e ffec t iv e  Idea liza tion  dom ain .
In Example 2 we have heat localization in the sense of Definition 2 with e ffec

tive depth L*  =  x s (see (8 )).
For most physical problems the function u(t, x)  (temperature) is never zero; 

therefore Definition 2 is the more natural one.
Heat localization (inertia o f  heat) makes it possible to attain any temperature 

and concentrate any amount o f  energy in a bounded portion of space, and to contain 
them for a finite time practically without loss from the localization domain. This 
unusual property o f  the heat transfer process can be used in many applications.

The concept of localization for media without heat absorption makes sense only 
for boundary blow-up regimes. If, on the other hand, instead of (3), we have in the 
problem (1 ), (2 ), a boundary regime without blqw-tip, that is u(t. 0) =  tt\(t) —* oo 
as t —> oo. then, as is easily shown, u(t. x)  —> oo for all 0 < .v < oo, that is. 
there is no localization. The proof o f  this fact proceeds by comparing u ( t , x ) with 
self-similar solutions o f  equation ( 1) o f the form ну(г .л)  =  0 ( x 2 / t )  > (). which 
exist for arbitrary functions k(u )  (see § 3, Ch. 1).

There are two possible regimes (modes) o f  heat propagation with localization. 
We shall say that an S - reg im e  obtains if Id  > 0. Then the temperature and the 
energy grow unboundedly in the localization domain as t T . If Id  — 0. then 
we have the L S -гецопе: t t ( t .x )  —> oo as t —> T  only on the boundary .v =  0. 
The amount o f  heat that enters the domain (0. л),

for any ,v > 0. then there  is n o  lo ca l iza t ion  and we say that the HS-rcghnc obtains.
In the present chapter we consider the case lc(u) =  k^tt". tr > (), k(l =  const > 0 . 

We study the heat localization effect both in the strict sense (§§ 2. 3) and in the 
effective sense (§ 4). There is a close relation between the two definitions; it is 
established in § 4.

E ( t . x )  =  [ i f ( t ,£ )  -  ii(](t)|(/£, 0 <  x  < oo, t e (().'/').

can in this case be either bounded or unbounded as t —* T  . 
If. on the other hand, we have

lim u(t, x)  =  o o  
I ■ r
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§ 2 Blowing-up self-similar solutions

1 Form u lation  of the problem

In this section we construct self-similar solutions of the problem ( 1.1 >—( 1.3) in the 
ease k (u )  =  k^u". <r > 0. Together with comparison theorems, they provide an 
efficient apparatus for studying the localization property.

For k(u )  =  k{\u". equation (1 .1) has power law self-similar solutions corre
sponding to boundary regimes with blow-up:

u(t.())  =  u t(i)  —  Л0(7' -  I ) " , Л» =  const > 0. n < 0.

The required self-similar solution u s satisfies the following problem:

u, =  { k {)u‘ru t ) t . 8 Л A V ( 1)

u ( ~ o o ,  X.I =  0 .  A  > 0 . ( 2 )

i id ,  0 )  =  Ao(7' --  i )" . — oc < t < T. (3)

Its solution has the i'orm

U S ( I .  A) =  An(T  -  П " ]'(£). (4)

where

i 0
k ^ A ' ^ d T  -  / ) " * " " ’+ 

is the similarity variable. The heat flux W =  -~ k(u)u t has the representation

W d ,  x)  =  A\ln l ) / 2 k lJ 2(T  -  , )l - 4 "«'r+2il/aW( ^ )_

(5)

( 6 )

Here / ( £ )  and « ( / )  =  - / ,r( £ )/ ' (£ )  (/' =  <///</£) are dimensionless functions of 
temperature and ilux, respectively.

The function / (/ )  > 0  is determined from the equation

( ] " . [ ' ) '  ~ l ( H -  П ( Т ) / 2|/"/ +  n f  =  0, 0  <  / <  oo. 

with the boundary conditions

(7)

/((>) =  1. /(oo)  =  0 . (8 )

We remind the reader that in order for the solution to make physical sense, we
are seeking a non-negative, continuous solution of the problem (7), (8). while the
function w( / )  has to be continuous and bounded.
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2 C on stru ction  of self-sim ilar solutions

f  =  « f .  I d )  = (9)

and, using the change of  variables

17 =  In £, /'(/) =  £ 2 / "ф(т]) > 0 . ф — ■—  =  -  —r/> +  £ " 2/" ' 1 ( 10)
'  ‘ d r j  ( Г

reduces to the first order equation

с 1 ф  1
<1 ф ф‘гф -  ( -  +  l ^ U

(T i I + —  +  3 ^  ф " ф  +  ( Г ф а  }ф 2 ~  -  
( Г  )  I T

1 +  П(Т '
— Т - ^  

( И )

We shall say that a point £/ £  (O .cc )  is a front point if' J ( £ )  — 0 . £ > £ / ,  
/’(£)  > 0  for £  < i; i . In the (ф. г//) plane a front corresponds to г/г =  0 . the value 

o f  ф is not known a priori. The behaviour of  integral curves of die equation ( 11)  
is' different in the cases 1 +  n<r < 0 and 1 +  iht > 0 ,

In a neighbourhood o f  the line ф =  () the integral curves o f  equation ( 11) have 
the form

(// —. Аф ,r I --- --— (/>' ” +  0 ( ф 2 ,r). A — eonsi, (12)

2
Ф -  -  - - - - -  Ф +  0 (  Ф' )• ( 1 3 )

1 ~F IHT

Only the curve (12) with A =  () satisfies the second o f  conditions (8 ) for 1 -finr < () 
(the heat flux be continuous at a front point only for this choice of  the constant 
A).  For 1 +  m r >  0  the condition on the I'ront is satisfied by the curve (13). 

Therefore if  the solution exists, it is unique.
From (10),  (12),  (1.3) we obtain the asymptoties o f  the solution in a neighbour

hood of  the front: lor 1 4- ntr < ()

. Г Ф  =

1 +  H I T

■ ..~(r£ i

I hr
d j  - s ) 4,r +

+ (£/
,14 t

4( (r 4~ 1)

Гог 1 -f iur > 0

1 ,nr' ^  £ 'j -t/ii . . . .  £ —► э о ,

(14)

(15)

where £ f  ~  t; f ( n , (г) < oo is the similarity coordinate o f  the I'ront, C  =  C (n ,  <r) > 
0 , C| =  — C" 1 ' [ 2» (2 « +  iht -  1 )|/( 1 +  in r ) 1 < 0 , In general ease the values ol 

and C  are to he determined numerically.



§ 2 Blowing-up self-similar solutions 137

On the straight line ф =  —2ф/<т we have the inequality

that is, as ф is inereased the integral etirves intersect the straight line ф — — 2ф/tr  
with a slope larger than that ol’ the straight line itself. Sinee lor ф > 0. ф < —2 ф/сг  
there are no isoclines o f  infinity, the integral curves do not leave that region. The 
desired trajectory (see (12))  for ,4 =  0  lies below the straight line ф =  - 2 ф/<т, 
and therefore we may restrict ourselves to the analysis of  the equation ( 11) in the 
region ф > 0 , ф < -~2 ф /(г .

Then it follows from (10)  that f' t <  0. £ ^ £ j .  that is. the required solution 
is a monotone decreasing function (inonotonieity of the solution can be easily 
established directly from equation (7)) .

In the \ф, i//)-plane, to the boundary point £  =  0  correspond ф — о с ,  ф =  - о с .  
In the domain ф > 0 . ф < —2 ф/<г there is a unique direction, ф — - 2ф/<г, along 
which there is a bundle of integral curves

where R < () parametrizes the bundle, which enter the point ф — ос,  ф =  —ос. 
The required solution corresponds to some value /?' =  Co(n, <r) < 0.

In the plane (£, / } ,  to any curve in the plane of ф. (//, there corresponds a 
family of similar curves, obtained by the transformation (9 ) ;  the solution /'(£) is 
chosen using the first o f  conditions (8 ),

Integrating ( 10). taking into account ( 10) and (8 ). we obtain the first terms o f  
the asymptotic expansion o f  the solution in a neighbourhood o f  £ =  ():

where Сц(». <r) =  ./'(()) <  0  is computed numerically.
The expression in square brackets in ( 11)  is a quadratic polynomial in ф with 

a non-negative discriminant. Therefore ( 11)  can he rewritten in the form

where ф =  i/z’ lr/O are isoclines o f  zero of the equation. The continuous curve 
ф =  ф (ф)  is wholly contained in the domain ф > О, ф < —2 ф/<г. The isocline 
ф =  »//4 ((/>) lies above the line ф — —2 ф/<т.

Once the critical points1 corresponding to the front and the boundary, are ana
lyzed (the other critical points are o f  no interest), it is not hard to construct the 
whole held o f  integral curves, using which we can prove existence o f  the solution, 
a trajectory that connects the front point with the boundary point.

ф =  + В Ф  'Г/2"  +<Кф' , r / 1 (16)

/ (£)  =  1 +  C'n(n. (г)£ +  .
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Fig, 19, The phase ponniii of (11) in the case 1 +  iur > 0

Fig, 20. Numerical solution of the problem (7), (K) for tr =  2, n — -0 .2 5

Figure 19 shows the “phase portrait" o f  equation (11 )  in the ease 1 +  n<r > 0. 
The thick line denotes the required solution, while the dotted one shows the null- 
isoeline (// =  i// (</>). In Figures 20, 21 we present results o f  numerieal solution of 
the. problem (7),  (8 ) for 1 +  iur  > 0  and 1 +  iur <  0, respectively.

Thus, the solution o f  the problem (7). (8 ) exists, is unique and monotone. For 
I +  iur  < 0  the front o f  the solution is at a linite point. If  1 +  n<r > 0. then 
/(£ ) >  0 for all 0 <  £ <  oo.

R em ark . In the ease n =  —I/(гг +  2), equation (7) has a first integral E =
f n/ '  — ./£ /((r  -(- 2). E ~  const. It is easy to establish existence, uniqueness and
monotonicity of the solution for some E =  E(<r) € ( —oc,0) .
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Fig, 21, Numerical solution of the problem (7). (8) for rr =  2, n  — -1

3 Physical p roperties of solutions

Solutions o f  equation (1) and of similar equations describing diffusion o f  heat from 
the boundary x =  0 in a half-space are usually called therm al w aves .  *

Let us review some concepts related to thermal waves (see Ch. 1, 11). The fr o n t  
o f  a wave is the point with the coordinate X j(t) .  such that

it(t. x) =  0. .v > ,V/(r); u(t. x)  >  0 ,  ,v < X f(t) .

The quantity v/(r) determines the depth of penetration of heat into the medium.
The point with the coordinate .v,./(') , -such that u(t. x , .[ (t ))  =  a ( t ,  0)/2, is called 

the Iwlf-wiclth point of the thermal wave.
For the self-similar solutions, from (5) we have

X f ( t )  =  f к ц 2A'u 2( T i)
I -\-llir )/2 (17)

Х 1. , ( п  =  ^ . 1 к1]/ 2 Л';) , 2 ( Г I) l+ H ir l/ I (18)

where the constant £,./ > 0 is such that /(£ ,■ /)  =  1/2 , 
The amount of  heat contained in wave at time / is

f a d l td .  x) d x .

For the self-similar solution we obtain

2m « )M ((r 2,/- \ ' /2 , ,  ,
E d )  = —r 1 - 3 ------ - f - ( 7 '  -  z) 1

1 +  n(rr -f 2 )
1 * 2)|/2 I/ n Ф

rr +  21 ’ ( 1 9 )

where w(0 ) =  —/“(()) > 0 (the heat lltix at the boundary is positive).
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Below we shall make use o f  the following fact. For a fixed coordinate 0  < 
да < oo the similarity coordinate £  =  £(r, л-ц) changes in time according to (see

(5))

that is. £(/.. in) —» o c , r —> T  if n >  — 1/гг and £(г ,лц) —> 0 as t —* T  if 
ft < — 1 /гг.

Let tis now analyze the physical properties o f  the self-similar solutions.
In the ease n =  — 1 /гг, the solution of the problem (1 )—(3) (the S-regime) is 

given in Example 1. The front of the thermal wave and the half-width are constant, 
E ( i ) < oo, i e (—oo, T )  and /•,'(/) —> oo as t —> T  .

For tt < — 1 /гг the solution has the following characteristics:
1) The front is at a finite point £/ < oo and in a neighbourhood of the front 

we have the asymptotics

2) The width x t (t) and the effective depth o f  heat penetration x r l (i)  grow 
without bound as time approaches the blow-up time, In the limit the thermal wave 
covers all the space.

3) E(t)  <  o o , i  g ( —  oo, T)  and E (t )  —* og as t T .

4) u.vb, .v(l)/ns-(r. 0 ) —>■ 1 as t —» 7 "  . that is. in time, at every point o f  the
s’pace the temperature behaves essentially as on the boundary л =  0 .

Thus there is no localization for n < - l/ z r .  and the HS-regime obtains.
In some sense the HS-regime is similar to regimes without blow-up: with 

time, the influence o f  the boundary condition is felt in more and more distant 
regions of the medium (compare this, for example, with the self-similar solutions 
o f  subsection 2, ij 3, Ch, II and o f  ij 3, Ch. 1, which correspond to boundary
regimes without blow-tip: n(/,<)) =  A(l/", A о > (), n > 0, t > 0 ) .  However,
infinite values of temperature are reached not for t — oo, but at the linite blow-up 
time. The HS-regime (H S comes from “higher" than S) is a "superfast" way of 
heating the medium', the boundary heating for r —*• T  is “faster" than in the 
S-regime: see Figure 22.

Let us enumerate the physical properties o f  self-similar solutions for n >  — 1 /гг.
1) It follows from (15)  that the front o f  the wave is at an infinitely far point1; 

X[( t )  =  oo, i e  ( — 0 0 . 7') , This result is a priori obvious from physical consid
erations. Indeed, from (17)  it can be seen that under the assumption £ t < oo. 
-vt (t) would go to zero as r —> T  . This would mean shrinking of  the domain 
encompassed by the thermal wave, which would be impossible,

1 This resull does not contradict the linite spectl of propagation of heat in a medium
wilh kin) -- k()it", ir > 0: infinite lime elapses from the start of the process till time
i  € ( - o o ,  T ) .

( 20)
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Н Щ -

/

т

Fig. 22. The held of boundary blow-up regimes

2) The half-width decreases as t —» T  at the rate given by (18).  Energy 
which enters the medium is concentrated in a part o f  the space, which becomes 
smaller with time, We shall call solutions o f  this kind th erm a l  verier',v o f  d ecr eas in g  
e f f e c t iv e  dimension.

3) Taking into account (20) and the asymptotics (15),  for all ,v > () we obtain

that is, the self-similar solution converges from below to a limiting curve, The 
presence of this limiting curve, the “trace" o f  the boundary regime for t =  T~.  
which restricts the growth o f  heat-related quantities at each point of the material, 
is equivalent to the definition o f  the LS-regime, and is an important property of 
that regime (from that we also have shrinking of the half-width in the case of 
LS-regime).

4) From (19) we obtain the following. For — 1/гг < n < — l/(rr +  2) — n„, 
the amount of energy is finite: E (t )  < oo, t 6  (—oo, T ).  and E (t )  —> oo, t —► 7 " ,  
that is, the medium is imparted inlinite energy, which is being concentrated in a 
neighbourhood of the boundary. For n > n ‘ we have E (t )  =  oo. t e  ( — oo, T ) :  
neighbourhoods of the front contain an inlinite amount o f  energy. However. 
E ( T  ') — E d )  < oo for all t €  (-o o . V|. which means that only a Unite amount 
o f  energy enters the medium as the blow-up time approaches. Finally.

"sU .  -v),...,

( 2 1 )

W (t.  л), . ,  = - ~ C lr ‘ '
1 + nir

Ч 1 Г  1 1 ( | I  - - ' ! ) / (  1 Wil l )  A2ll tlnr 11/(1 Ulir) , 
/1(| А.,, Л  i -

/:(i) =  oo, E ( T  ) -  E u )  =  OO, t €  ( — o o .  T ),

when n ~  o ' .
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Thus, Гог о > — l/rr self-similar solutions belong to the class of LS-regimes 
(L S  comes from “ lower,” the boundary regime as t T  ~ is “slower" than the 
S-regim e; see Figure 22) and we have effective heat localization.

R em ark . Suppose it is not the temperature, but the heat flux on the boundary, that 
blows up in finite time:

The problem (1), (2) with condition (22) also has a self-similar solution:

The function /•'(,/) • 0  satisfies an equation which reduces to (7) by the change 
o f  variable о =  (2m +  1 )/(<x+2), and the conditions F ( o o )  =  0, — F ‘r (())F'(0) =  1. 

Taking into account (9), we have for F ( J )

Therefore self-similar solutions of the second boundary value problem (1), (2), 
(2 2 ) can be expressed in terms o f  already analyzed solutions and have the same 
properties. For m < — (<x +  1 )/<x, m =  — (<x +  1 )/<r and m > — Ur +  1 )/<x, HS-, 
S- ,  and LS-regimes obtain, respectively.

Analysis of self-similar solutions that blow up in finite time is the first important 
step in the study o f  the localization phenomenon. The ideas o f  three types of 
thermal waves, of “ fast” and "s low ” solutions, will be frequently used in the 
sequel. Comparison theorems, which express continuous dependence of the heat 
conduction process on boundary data, together with self-similar solutions, allow 
us to map out the classes o f  blow-up regimes with differing physical properties.

§ 3 Heat “inertia” in media with nonlinear thermal conductivity

In this section, using the self-similar solutions of § 2 and comparison theorems, we 
study the influence of boundary blow-up regimes on a medium with a power law 
dependence of the heat conductivity coefficient on the temperature: k ( n ) =  к^п,г. 
cr > 0. Physical grounds for heat “inertia" are discussed in the framework of 
studying the evolution of an initial temperature distribution in the Cauchy problem. 
Localization o f  heat in multi-dimensional problems o f  nonlinear heat conduction 
is also considered.

FU)  =  С (; 2/<'гь27 ( £ ) ,  J = C
~ (r/{(r t-2) 

' (1 L  Сц(п, <r) =  - / ' ( 0 ).
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1 A class of boundary regim es leading to heat localization

T heorem  1. Let the bou n d ary  cond it ions  in the p r o b l e m  ( 1 . 1 >•—(1.3) satis fy  the 
in equa lit ies

f А .уГ  ,;' r (l -  aV a\v)2/".  A- <  Ay.
«of Л ) < < „ . ( 1)

I  0. .V > .v.v =  (2k i ) A f ( c r  +  2 ) / r r ) l/“,

itt(O 5  AS(T  -  i)  ,/Vr.() < t <  T. (2)

w here  As > 0 is a  constant. Then  ire h a v e  h ea t  loca l iza tion ,  lit par ticu lar ,  the 
fo l low ing  e s t im ates  h o ld :

Г  5  vs. n(t. x)  5  us (t. x)  =
A s ( T - t )  \ - x / x s y " r . x  4  .vv, 

0. .v > .Vy =  ( I k n A ' f U r  4- 2 ) / r r ) l / : .
(3)

By comparison theorems, validity of the estimates (3 )  follows immediately from 
the properties o f  the self-similar solution tty.

The self-similar S-regime defines a class of “slow” boundary regimes, which 
ensure heat localization. It is interesting to note that the estimate (3) o f  localization 
depth is independent of the period of action of the boundary regime.

Figure 23 shows the dynamics of the thermal wave in the case no(.v) =  0. 
i i i ( 0  =  An(T  — t) The half-width o f  the wave (crosses) increases initially, 
and then stabilizes. The front of the wave does not penetrate beyond the localization 
depth /* =  .v.v =  0.5, The dashed line in that Figure shows solution (1.5).

Another assertion concerning localization is established using the self-similar 
solutions o f  the LS-regime constructed in § 2. Let us consider first the ease 
do ( .v) =  () for x  > 0 .

T h e o re m  2. I f  in the p ro b l em  (1 .1 )—(1.3)

t a d )  < A0(T - ! ) " . ( ) <  i < /'; n =  const б ( - 1  f t r .  0 ) ,  (4)

then  n o h a v e  h ea t  loca l iza t ion  in the LS-reg im e, a n d  the f o l lo w in g  e s t im ates  h o ld :  

Г  < .v.v -  ( 2 М ; ;< « -  +  2 )/ст)'12Т 0 + ",г'12, (5)

lira, a ( t . x )  < С (п .< г ) (А ц к -" ) 'п ' , "1Т1х 2"п " " ,п . (6 )

Proof.  Since  n > —l/(T,  (2) follows from (4) for some constant Ay. that is. 
the boundary function is majorized by the self-similar S-regime, To determine the 
smallest constant Ay in (2 ). we insist that at t =  0  the temperature on the boundary 
does not exceed the boundary value (Figure 22) o f  the solution (1.5):

,„(0) < AnT "  =  A.yT', /". (7)
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Fig. 23. Heat localization in the case >>l .1 boundary S-regime. The parameters are: cr =  2. 
n =  - 0 .5 .  =  0.5. Л„ =  0.354, 7' ^  0.1125: 1. T - i  =  1 .10510 2: T - i  =  4 .04-К Г : .
3: T - i  -  3.05 • I 0 " 2. 4,- Г  l «  1.05 10 5; T  -  1 -= 6.5 ■ 10 \ 6: T - 1  =  2.5 ■ 10 \
I ' . T - t  -  5 ■ 10'

Taking into account the fact that n(l(.v) =  (), we obtain localization from T heo 
rem 1, while from (7) follows the estimate (5) of the localization depth.

For .v > (), () < ! < T  the solution п ( ! , л )  is majorized by the self-similar 
solution ff.shr, v) for the LS-regime, whieh eorresponds to the same values of 
the parameters tr, n, Л(|, кц (this follows from (4) and the condition n,v((),.v) > 
» (0 ,  .v) == ()), Then from the inequality и 5  ns in ( ( ) , '/') x R t we obtain the 
estimate «(/, .v) <  n.v(7' . ,v), whieh is the same as (6 ); see subsection 3, § 2. □

The theorem is true for any initial function пц(Л) with compact support, since 
we can always find a constant Л.у > 0, such that ii(>(.v) < nv((). л ) in R | . Then 
the estimates (5), (6 ) would depend not only on the parameters o f  the boundary 
regime, but on the initial data as well.

Thus, if condition (4) holds, we have localization in the LS-regime, there exists 
a limiting curve, and the half-width of the thermal wave decreases. Since the 
boundary regime acts for a finite time, unlike the ease of self-similar LS-regim e 
(see subsection 3. § 2) the thermal wave has a finite front. The estimate o f  the 
magnitude o f  Г  in terms o f  the localization depth of the majorizing S-regime 
depends on the length of time of the heating process.
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Figure 24 shows the results of numerical computation o f  solution ol'the problem 
(1 .1 )—(1,3) ,  Here hoU )  =  0  and the boundary regime <(,(/) =  A^(T — t)" cor
responds to the self-similar LS-regime, The half-width of the thermal wave lirst 
increases and then begins to shrink. The solution is bounded by the limiting curve
(6 ) (dashed line): the front o f  the wave does not penetrate beyond Г  <  ,v\ =  0.87.

2 Conditions for the absence of localization

T h e o r e m  3. I f  in the p ro b l em  (1 .1 )—(1.3) the b ou n d a ry  r eg im e  .satisfies the in
equa lity

ti\(t) > A (| (T -  t)".  () < /* < t < T\ it < -  (8 )

then th ere  is n o  loca l iza tion  (H S -reg im e)  a n d  a s  t —*■ T~  tee h a v e  the estim ates

lint u(t.  .v) =  oo everyw here  in R ( .

' ' '  (9)
x ,U )  > £ , к ! / 2 ( А Ь ) ' " 2 ( Г  -  t ) l , ! '"r,r- -  oo. t -> T  .

w here  A^ > () is s o m e  constant.

A u!t,x)

Fig. 24. H eat  loca l iza t ion  in the  L S - re g im e .  The p a r a m e te r s  a rc :  cr ~ 2. n =  -0 .2 5 ,  
*o -  0.5. An -  1.06. T -  0.1125; I: T l =--- 1.02 • К Г 1. 2: T  -  t = 3.1 • 10 : . 3:
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Fig. 25. Heat propagation in HS-regime. The parameters are: rr -  2, n =  - 1 .  ktl =  0.5. 
A„ =  0.12, T = 0.1 125, h()U) =  0. л > 0 : 1: T - i  =  1.023- 10' ' . 2 :  7’ - (  =  4.11 • 10 : . 
3: Г  -  i =  3.06 ■ 10 2. 4: Г  -  r =  2,07 • K)“2. 5: T -  i =  1.05 • 1 0 '2

Here ^  =  i / ( n , i r } > () is the dimensionless eoordinate of the front of the 
corresponding self-similar HS-regime,

Proof,  Let u,s show that under the assumptions made it > its in (/*, T)  x R + , 
where tts =  m,v(/, a : A^) is some non-loealized self-similar solution of the HS- 
regime (2 ,4) .  (2 ,5)  for Л<) =  A*y

Without loss of generality let n ( P , x)  > 0  on an interval (0, х*) .  .г* > 0, Let us 
choose the value o f  Л(| =  A*} > 0  in the self-similar solution (2,4) for n < — 1 /сг 
so small that

f f . v ( / \  .v; /V*,) <  u(P , a ) , л' >  0 .  ( 1 0 )

Existence o f  such a constant A*{) > 0  follows from the obvious conditions (see 
(2 ,4),  (2 .5 ) ) ;  us ( t ' , ,v; Л*,) -+  0. suppu.v(H, .v; A,'j) —> (0) as A*> ->  ()+ .

Then by ( 8 ). (10) and the comparison theorem we have that t t u .x )  > 
us(P  л”, A*,) in (/*. T)  x , which proves (9), □

Numerical solution o f  the problem (1 .1 )—(1.3) in the ease ii\(i) =  A o(T  -  
/)", n < -  1 / ct (HS-regime). is shown in Figure 25.

Theorems 1-3 allow us to classify boundary conditions that lead to blow-up. 
and establish important properties o f  regimes o f  heat propagation. The “boundary” 
between different regimes is the boundary condition corresponding to the self
similar S-regime,

Let us note that if on the boundary we are given not the temperature, but time- 
dependent heat flux that blows up in finite time: W(t,  ()) —► oo, / -+  T  then il
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the inequalities
W ( t ,0 )  < W Q(T  -  0 (fr*f1 )/«r .

W(t,  0)  £  W o(T  -  — (fjr +  l)/rr < », < - 1 / 2 ;

W ( 1 . 0 )  >  Wt , ( T  -  I l l  <  - ( r r  +  1 ) / ( T ,

are satisfied, respective analogues of Theorems 1-3 hold. These results follow from 
properties of self-similar .solutions of the second boundary value problem, which 
blow up in finite time.

3 Physical basis for heat localization. A class of tem perature  
profiles with inertia

Results of subsections 1. 2 show that localization is conditioned not only by the 
speed of  the process, but also by ‘‘internal'’ properties of the heat conducting 
medium.

Let us consider the evolution of a thermal perturbation in a medium, whiqji is 
not acted upon by any boundary regime, or the Cauchy problem for equation (1 ,1) 
with the initial condition

The function ii0(.v) has compact support mid supp»o =  ( —.r(l, .v()), .v() > 0  is a 
constant.

Definition. There is h e a t  loca l iza t ion  ( inertia)  in the problem (1 ,1),  (1 1). if  there 
exists I/. such that su ppihi,  x)  =  suppi/» for all 0 < t < if ,

In other words, heat contained initially in the domain |.r| < л'о does not propa
gate out of the domain during the finite localization time 1/ =  tfUr, ко', no). In the 
following theorem we characterize a class o f  “ inertial” temperature profiles.

T heorem  4. I f  the in it ial h ea t  p ro f i le  sa tis fies  the condit ion

then there  is h e a l  lo ca l iza t ion  in the C au ch y  p r o b l e m  (1 ,1) ,  (11) a n d  the l o c a l i z a 
tion time satis fies  the est im ate

i/((), x)  =  a t)(x)  > (), —oc < .r < oo. ( 1 1 )

() < a o (x )  < «/„hi -  |л1/л'оГЛг, и  < Л'о, ( 1 2 )

It > 1 *  =  x l o ■ /  [2k»( (T +  2) 1/ ; ' ]  . (13)

Proof.  By the Maximum Principle.

n(i,  0 ) < n ,„, t > 0 . (14)
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The function in the right-hand side o f  (12) has for a > 0  the same initial data 
as (1.5). the self-similar solution n s ( t . x )  o f  the S-regime. if we set there T =  
x l a / [ 2 k n((r +  D u l l  As =  {x l< jl\2kn(<T +  2 ) | }1 /,r (here a\s =  a (>, u.s(0. 0) =

Let ns compare the solutions ti(t, x) and iis (i. x )  in (0, T )  x R + , From (12),
(14), we have that «((), x) =  iin(x) 5  «<;((). a ) for л > 0  and u(/. 0) < 11,„ < u.v(/.()) 
for all 0  < 1 < T.  Therefore by the comparison theorem

t l ( t ,  A) <  ff,s(L A),  a >  (), () <  1  <  T .

Hence, using the properties of the solution и s (see (1 .5)),  we obtain

l l U ,  X )  =  0, A  >  A ( ) , () < 1  < T  =  /”. (15)

Similarly, it is proved that

( / ( / ,  A )  =  0 ,  A  <  —  ,V(). ( )  <  / < _ / * ,  ( 1 6 )

Combining (15) and (16).  we have that u(t. a ) — () for |a | > a(I, 0 < / < C. 
which concludes the proof, □

Thus, there always exists a class of initial temperature proliles which have 
the localization property. The estimate (15) of localization time depends on the 
parameters of the medium (k u, ir)  and the initial temperature prolile (parameters 
■4n u,„).

The heat inertia phenomenon has a simple physical interpretation. The rate of 
temperature growth at any point o f  the medium is determined by its spatial prolile 
*n a neighbourhood of that point. If the temperature profile is sufficiently “convex’- 
(in the ease a  =  2 convexity has the usual meaning), the temperature does not 
change, or changes only slightly in a neighbourhood of the front points л =  ± ац.

Therefore immobility of  the thermal front depends on the behaviour o f  nnU) 
iir a small neighbourhood of the front, though, of course, the length o f  localization 
tinre is determined by the global spatial structure of the initial perturbation (in 
other words, by the “degree of convexity" of its prolile everywhere iir suppnm this 
is reflected in the estimate ( 12)),

It is clear that in a medium without absorption a convex temperature prolile am  
exist only for a finite time2. Thermal energy enters colder regions from the hotter 
ones, a “concave" temperature prolile is formed, and the wave starts to move.

This is easily seen by comparing щАх)  with the function

«((). a ) =  h(|(a ) =  «,„(())( 1 -  x 1/ x 2l (()))V'r, (17)

2Localizalioii of thermal perturbations coming from the presence in the medium of heal
sinks, which was briclly considered in Ch. 1. 11, is of a different ‘'physical" nature. In
particular, in the presence of absorption, localization for any length of lime is possible.
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that is. the self-similar solution

u ( t , x )  =  u,„(0(1  -  л-2/л'~ ( />) 1/'r (18)

o f  equation (2. 1) at time t ~  0 ; here

and C|. C 2 are some positive constants. This solution of  “instantaneous point 
source" type describes the evolution of a thermal perturbation of  energy Qi, > 0 

concentrated at the point л =  0 at time t — - t о < 0  (see § 3, Ch. 1).
Choosing the magnitudes of /(l and (9(l so that «o(.v) > Ti{l(x)  in R ,  by the 

comparison theorem we have that u U . x ) > Ti(t.x)  in R t x R .  and therefore 
meas suppn(o.v) > meas suppii(/. л) ~  / 1 / t ,r*21 —*• oc as / —> oo. Localization 
in the Cauchy problem is possible only for a finite period o f  time.

The initial function (17) is an example of a “concave" temperature prolile, 
which does not have the inertia property. Here the thermal wave is in motion for 
all i > 0. By the comparison theorem the same is true for all initial perturbations 
!<(>(-V). which majorize (1 7 ) .  when the fronts of the perturbations пц(л') and «ц(л') 
are the same.

Figure 26a shows the results of  a numerical computation, which illustrates 
Theorem 4 in the ease n(l(.c) =  n,„(l -  |.v|/.vo> ■ Till time t =  t* heat is localized 
in the domain ( - л ц .  лц). In the course o f  time, the temperature prolile rearranges 
itself into a concave shape, and the wave starts to move. Evolution of an initially 
concave profile is shown in Figure 26b. where the initial function luis the form 
(17) (the size of both perturbations and the amount of energy they contain is the 
same in both cases).

Figure 26c shows the dynamics of a “com bined" prolile: for л > () we have 
taken «(i(.v) =  n,„(1 — л/л(|)“/'г. while for x < 0  we have taken the function (17).  
As a result the right side is localized, while on the left the wave starts to move 
immediately, that is, for a Unite time we have directional heat conductance.

The above properties of temperature proliles allow us to explain the physical 
nature o f  the localization phenomenon under the action of slow blow-up regimes 
on the medium (subsection 1). Boundary S -  and LS-regimes expose the inertia 
of the heat conductance process by creating and supporting localized temperature 
proliles. In the S-regime the rate of energy supply into the material is so adjusted 
to the properties of the medium that the heat is distributed over the whole prolile 
(see (1.5) and Figure 17). With a slower energy "provision.” heat is mainly 
concentrated near the boundary, the prolile is more “convex-' (compare Figure 24 
with Figures 23. 17). and the LS-regime is brought about.

Formation of inertial proliles takes place at the localization depth, which is 
determined by the parameters of the problem.



1 5 0 111 Heat localization (inertia)

u (  t,  x )

1

й

~2 0 2 -2  0 2 Ia b

Fig. 26. Heal localization in the Cauchy problem. The parameters arc: a) i r  — х \ ,  ~  2.
k , j = iim  -  Г  -  1; 1: < -  0.25, 2: < -  1. .1: < -  2.5. b) rr  -  X f ( { ) )  = 2. — 1, «,„(()) =
0.62; I: t =  0,5. 2: < =  2, 3: ( = 5, e) <r -  ,v(l =  ,v^(0) = 2. u,„ -  «,„(()) =  кц =  1; 1:
i =  0.5. 2: i -  1. 3; i = 2

As the thermal wave approaches the boundary o f  the localization domain, the 
concave propagating protile rearranges itself into a convex form, which is easily 
seen in Figures 23. 24. From that moment the localization effect becomes manifest: 
the size of the heated domain does not change significantly, the half-width is either 
constant or decreases, heat does not penetrate beyond the localization depth. If. 
after the formation of the inertial protile, energy is no longer supplied (the heat flux
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at the boundary л =  0 vanishes), then during the period leading to blow-up o f  the 
original boundary regime, the thermal wave hardly propagates (see Figure 26, a).

During heating which is faster than that o f  the S-regime, a concave temperature 
profile is formed (compare Figure 25 with Figures 24. 23 ) ;  the domain occupied 
by the thermal wave expands, there is no localization, and we have the HS-regime.

Let us note that the action of boundary regimes that do not blow up always 
creates concave profiles and there is no localization (see the Remark in subsection 3, 

§  1) .

Therefore the heat localization phenomenon is related not only to the speed 
of the process. Interaction between the rate of heating o f  the medium and its 
properties determines the nature of the temperature profiles being formed, inertial 
or otherwise. This conclusion is also true in the ease o f  arbitrary media (see 
Ch. V ),  including media with volumetric energy sources (see Ch. IV).

4 H eat localization in m ulti dim ensional problem s. T h e “ therm al crystal”

The main properties of blow-up regimes in heat conducting media established1,in 
subsections 1-3 for one-dimensional media, also characterize the ease o f  many 
spatial variables. The method o f  analysis of multi-dimensional equations is also 
based on the construction o f  certain particular solutions and the use of comparison 
theorems.

The new element, in comparison with one-dimensional geometry, is the shape 
of the heat localization domain, which can be quite contrary to intuition about 
diffusional dissipative processes.

Let us illustrate this remark using easy examples. First o f  all let us find a 
particular solution of  the equation

which is the multi-dimensional analogue of the self-similar S-regime. In equation
(19)  x  =  (,V|. . . . , .V jv )  б R w are the spatial coordinates, и =  u ( tyx)  > 0  is the 
temperature; k(u)  =  к оu'r, <r =  const > (), is the thermal conductivity coefficient. 

As in (1.5), we shall seek a separable solution of (19):

Substituting (20) into (19 ) ,  we obtain the following equation for the functions V(t).  
в(ху.

us (t. Л) =  V(t)(H.x). ( 20 )

(21)
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Hence
V(t)  =  AS(T -  1) l/,r. A s  =  (Ccr)  () < / < T  < oo. (22)

that is, the required solutions will blow up as i —* T  at the same rate as in the 
one-dimensional ease.

The elliptic equation (21) satisfied by the function в  has a solution o f  the 
following kind:

0  ~  0 ( r ) ) .  rj =  ^  о , =  const > 0 ; ^  a i ~  1 •

T h e n  в(г))  >  0  s a t i s l i e s  th e  o n e - d i m e n s i o n a l  e q u a t i o n

L ± ( k a r M \  =  * T '
6 (IT) \  dq ) a

a n d ,  f o r  e x a m p l e .

(Hr]) = V
■v.s-

2/(Г
■ -r.s =

t
2*nA;s-— —

T h e r e f o r e  t h e  d e s i r e d  s o l u t i o n  h a s  t h e  f o r m

‘•sit. X) =  As(T -  n
■ r  ~ x 7

(23)

( 2 4 )

T h e  s p a t i o - t e m p o r a l  s t r u c t u r e  o f  t h i s  s o l u t i o n  is  t h e  s a m e  a s  t h a t  o f  t h e  o n e -  

t l i i n e n s t o n a l  o n e .  It c a n  b e  c o n s i d e r e d  a s  t h e  s o l u t i o n  o f  t h e  b o u n d a r y  v a l u e

p r o b l e m s  in  ((), 7 ')  x  | . i  e  R * 1 | a , >  (), i — 1...........N\ w i t h  t h e  c o r r e s p o n d i n g  in i t i a l

a n d  b o u n d a r y  c o n d i t i o n s .

L e t  u s  i n d i c a t e  t h e  m a i n  p r o p e r t i e s  o f  t h e  s o l u t i o n ,  f i r s t  o f  a l l  in  t w o - d i m e n s i o n a l  

(N = 1) g e o m e t r y .  T h e  b o u n d a r y  t e m p e r a t u r e  i s  p r e s c r i b e d  o n  t h e  A ] ,  a  2  a x e s ,  

is  e q u a l  t o  z e r o  f o r  a' i >  Ау/<Г |,  .v; >  . v y / n r  a n d  b l o w s  u p  in f i n i t e  t i m e  f o r  

0  5  да <  а  у / г о ,  () <  a 2  <  A y / o i .  N o n e t h e l e s s ,  u n b o u n d e d  g r o w t h  o f  th e  

t e m p e r a t u r e  a s  i - >  T t a k e s  p l a c e  o n l y  in  a l i n i t c  l o c a l i z a t i o n  d o m a i n ,  t h e  triangle 
w i t h  v e r t i c e s  a t  ( ( ) , ( ) ) ,  ( А у / с п , () ),  (О, . г у / о т ) .  In t h e  r e s t  o f  t h e  m e d i u m  ( f o r  

■q >  Ay) t h e  t e m p e r a t u r e  is z e r o  f o r  a l l  0 < 1 < T. T h e  l o c a l i z a t i o n  d o m a i n  is 

s e p a r a t e d  b y  tb e  s t a t i o n a r y  f r o n t ,  w h i c h  is  t h e  p i e c e  o f  t h e  s t r a i g h t  l i n e  c o n n e c t i n g  

t h e  p o i n t s  ( A y / r r ], ()),  ((), A y / r n ) .

In  t h e  t h r e e - d i m e n s i o n a l  e a s e  t h e  l o c a l i z a t i o n  d o m a i n  is  t h e  pyramid w i t h  

t h e  a p e x  a t  ( 0 ,  ( ) , ( ) ) ,  d i a g o n a l  b a s e  a n d  v e r t i c e s  a t  ( а л /<Г| . (), 0 ) ,  ((), A-y/f f i ,  ()), 

( 0 .  0 ,  л'у / r r i ) .  O n  t h e  l a t e r a l  b o u n d a r i e s  o f  t h e  p y r a m i d  t h e  t e m p e r a t u r e  b l o w s  u p  

in  f i n i t e  t i m e  in  a c c o r d a n c e  w i t h  ( 2 4 ) .  w h i l e  O u t s id e  t h e  b o u n d a r i e s  it is  e q u a l  t o  

z e r o .  I n s i d e  t h e  p y r a m i d  us(t, x) —> t o  a s  t —> T ".  T h e  t e m p e r a t u r e  is  m a x i m a l  a t
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the apex of the pyramid and decreases to zero as we approach its base (77 —» лу). 
which is the stationary boundary of the localization domain.

By analogy with (1,5), the solution (24)  can be called a m iih ia l im en s io n id  
standing th erm a l wave.

Let us clarify the relation between the solution constructed above with the 
one-dimensional one (Figure 27):

j  ЛхС Г - 1 ) ' " r (l - M / x s )2/,r. A l i a s ,  
us ( t , x l ) =  < (25)

i  0 . a , >  л \ .

which does not depend on other spatial coordinates in the planes лу =  const. In 
Figure 27 the coordinate axes are oriented so that the лу axis is perpendicular to 
its plane.

Let us rotate the лу.лу axes by an angle /3 e (0. тг/2) with respect to the 
лу axis and let us consider solution (25) in a triangle with vertices at the points 
( 0 ,0 ) ,  (лу/оу. 0) ,  (0. лу/оу): «у =  eos/3. о 2 =  sin [3. Inside it the temperature 
depends on u . x  у .л у ) .  therefore it\b. a ) can be considered as a solution of the 
two-dimensional equation (19). The boundary conditions and the solution itself 
are easily computed from (25).  with rotation o f  the лу. до axes taken into account, 
and coincide with (24), The three-dimensional solution is obtained in a similar way 
after an additional rotation of the ry axis. This  metluyl can be used to construct 
multi-dimensional standing thermal waves in more complicated domains (dashed 
line in Figure 27). Boundary conditions are determined from (25) if  the boundary 
o f  the domain is prescribed.

If the boundary regime in the multi-dimensional problem is slow (majorized 
by the S-regime boundary dependence), then we have heat localization, and upper 
bounds both for the solution and the localization domain can be obtained using 
the function (24).  Figure 28 shows the results o f  numerical solution o f  equation 
(19) for /V =  2 in the domain (ду 0, лу > 0) with zero initial conditions and 
boundary conditions

tt(l. лу. 0) =  Лц( 1 — r )11 (1 -  пулу/луГ/".

u(l.  0. лу) =  Лп( 1 -  t )"(1 ~  оулу/лу,) j ' " .

which are majorized bv boundary values o f  the solution (24) for Ay =  0 .5 .  oy =  
oy =  l/\/2. T  =  1. The localization domtiin is the triangle with vertices at 
( 0 .0 ) ,  (>/2.0).  (0. >/2). The results illustrate heat localization in the LS-regim e. 
when n > -“ 1/(7. The thermal wave for all 0  < t < 1 is inside the domain of 
localization of the majorizing S-regime. From some moment o f  time onwards, 
a concave temperature profile is formed, and the effective dimensions o f  the hot 
domain shrink.

As in one-dimensional geometry, under the action o? fast blow-up regimes there 
is no localization. Figure 29 shows the evolution o f  the multi-dimensional HS



154 111 Heal localization (inerliu)

Fig. 27. Geometric interpretation ol'the solution (24)

blow-up regime under the same .initial and boundary conditions as in the previous 
computation, but for n < — 1 /гг. Here a convex temperature prolile is formed and 
heat propagates into infinitely far regions during the finite time of existence of the 
solution.

Therefore the main results and intuition concerning the influence o f  boundary 
blow-up regimes in a heat-conducting medium extend to the inulti-diinensional 
case. Let us note that the rate of temperature growth in the S-reghne. which 
.separates slow and fast blow-up regimes, does not depend on the dimension o f  the 
space and is determined only by the properties o f  the medium,

A new feature o f  multi-dimensional geometry is the shape of the heat localiza
tion domain, which can vary considerably. Let us give some appropriate examples.

Let us consider a solution «((,  ло. ло) of  the problem for equation (19). N =  2. 
in the domain (0, T)  x (лр >  0 .  л2 > 0} with the initial function (24) for t =  0. 
Let us prescribe zero heat lluxes on the axes лп.ло: A’oii'hi,, =  0  for до =  0. 
A'oii'hi,, =  0  for Л| =  (1, ( 6 (0. У), so that no energy enters the medium.

Since heat lluxes on the boundary, corresponding to die self-similar solution 
u s(l 'X ) .  are positive, by the comparison theorem we have i tU .x )  £  tis U .x )  in
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Fig. 28. LS-regime in two-dimensional geometry. The parameters are: rr =  2, n =  -0 .2 5 .  
*n =  1. Al} =  0.5. T =  I. гм =  « :  =  l/s/2. лл ^  I; a) T - t  =  0.22. b) Г  ~ t = 9.1 ■ 10“ 5. 
c) 7' i =  4 ■ 10 7
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(0, T)  x {a' i > 0. л2 > 0),  and therefore

u(i,  x ) = 0 , t e  (0 , T ), or| a-| +  a i  a2 > a.v. (26)

Moreover, by construction u(t, x) > 0  for t e  (0, T)  and rr|.V| +  я 2а2 < x s ,
A-1 >  0, A 2  >  0.

Solutions o f  equation (19) in the spatial domains |ai > 0, a2 < 0 ), {A| < 0 , 
До > 0 ) and ( a | < 0 , a2 < 0 ) with the same boundary conditions have the same 
properties. Therefore n(t,  a ) =  0  for t e  (0 ,7 ' )  for all «||.V|| +  я 2|а2| >  a.v. 
However, by symmetry all these solutions coincide, in their respective quadrants, 
with the solution o f  the Cauchy problem for equation (19) in R ,  x R 2 with initial 
function

11(0. A ,,  a 2 ) =  ii,„| 1 -  ( « I  | A11 +  а 2 |А :| )/А (|[‘+л \  (2 7 )

where it,,, =  AST  l " r, a(> =  x s — (Ik^ A '^ tr  +  2 )/rr)l/:,
Thus, the initial temperature distribution (27) is localized in the rh o m b u s  (dia

mond) «i|A|| +  ы2|а 2| < A(l for time not less than r, >  i* =  ( rx l / (2 k t )U r  -+ 2 ) » " ) .  
The estimate o f  localization time is identical to formula (13) for one-dimensional 
geometry.

Performing the same construction for the three-dimensional case, we see that 
the initial perturbation

«о(A-1 . a 2. a , )  =  <
• L , , "-i.v.i -  л».

(28)

. 5 Z ,  i > л«-

is localized for a finite time (i/ is estimated using a similar formula) in the o c t a 
hedron  52;1. | «,|a ,| < a0.

For a finite time a th erm a l  crystal,  an octahedron that preserves its shape, 
exists in the medium. Inside it, the temperature is different from zero, while on 
its boundaries rind outside, it is zero for all t e  (0 , i/).

Л numerical simulation of a two-dimensional analogue o f  the thermal crystal 
is shown in Figure 30. Initial data is the function (27). For a finite length of time 
thermal energy is localized inside the square. With time, the temperature profile 
inside the localization domain rearranges itself into a convex shape, and heat starts 
to spread (compare with Figure 26, a) .

By the comparison theorem, the functions (27),  (28) define a class of inertial 
temperature profiles in multi-dimensional geometries. The temperature distribution 
is localized if  for each of its front points we can find a function o f  the form (27) 
or (28),  which majorizes this distribution and has the same fronts. By  this method 
it is not hard to construct localization domains of various shapes (ball, ellipsoid, 
etc.) and to determine the corresponding initial temperature profiles.
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Fig. 30. Thermal crystal hi two-dimensional geometry. The parameters are: rr =  2. ktl — 1. 
n,„ =  0.5. Vo 1. rf i =  «2 — l/>/2. i* -• I ; a) r -- 0. maxtt((). ,i|. a2) =  0.5, b) r = 0,8. 
tnaxtur, л |. At) =  0.24, e) r = 4, max ti(i. A|. a2) — 0.18

§ 4 Effective heat localization

I Independence of effective loealization on the initial state

In the study of the thermal inertia phenomenon in § 2 , 3, we approximated the 
“zero background," by taking the initial function to have compact support.

Let us consider the original problem ( 1 .1 ) - ( 1 .3 ) ,  in which the bounded contin
uous function f/0(.v) is arbitrary. In this case heat localization is to be understood 
in the sense of effective loealization.

bi
t
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First of all let us establish the connection between two solutions it'" 1 (v =
1. 2 ) o f  problem ( 1. 1)—( 1.3) corresponding to different constant initial functions, 
u ^ 'fx )  =  C 1''1 =  const > 0 and the same boundary regimes as t —» T  , i f ’f t .  0) =  

u\n (t) > 0 . / e  (0, T).

L e m m a  1. Let C 11’ <  C l2\ a n d  a s su m e  that the fu n c t io n s  П|Г| d o  not d e c r e a s e  in 
t 6  (0. T). a n d  that there  exists r  6  (0. T) such that

u\l](n  =  u\~\n =  u\(t). t e  [т. Ту. 

n ,"  < u \ 2>. i e  (0 . t ).

Then
A E (t)  =  А Е а>(П ~  A E tU(t) < ДE ( r ) .  t e  \r. T ).  (2)

w here

A £ lrl(/) =  f \uu,' { t .x )  -  C ," l |r/.v G [0. oo), t б (0. T ):  t> ~  1 .2 ,  »
./о

The functions A E Un(t) have the meaning of energy supplied to the medium up 
to the moment t e  (0. T).

P r o o f  First of all let us note that by the Maximum Principle uu,) >  C lr> in 
(0, T)  x R , , so that A E un(t) 2: 0. Under the assumptions of the lemma, equation 
(1.1) can be integrated over (r. t) x R 4 , t e  (т, T).  This follows from an integral 
identity satisfied by the generalized solution for a particular choice o f  a sequence 
o f  test functions with compact support /  =  f ( x / a )  —> 1 as a  —* o o  everywhere 
in <  1. and known regularity o f  the generalized solution (see § 3,
Ch. 1). The result of formal integration o f  equation (1.1) over ( t . i ) x R + is:

Г1 г 1 f)/; О' I
AE'"'(t) -  A E m (t ) =  -  / к [ « " ’Vv. 0)j ~r — (s.  0 ) d s  > 0 .  * / = 1.2

(modulo sign, the integrands are heat fluxes at the boundary). By  (1),  we have for 
all t €  [r. T)

A E (t)  -  ДE ( t ) J>k\a{ (s)\
9 i f 11 

ifv
(.V. 0)

<hia '

i).v
■(.v.O) d s . (3)

By the comparison theorem nlh £  ul2> in (0, T)  x R + . Since nn i (*.()) =  ut2i(t, 0) 
for t e  [т, T ),  wc obtain
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Therefore the integrand in (3) is non-positive, which is equivalent to (2). □

Therefore, for the same heating regime, the amount of heat entering a colder 
medium is not less than that supplied to a warmer one (if  ДE ( t )  <  0 ).

O f course this lemma cun be extended to cover a wider class o f  initial pertur
bations. If (tj)11 are non-constant, but. for example.

£  i!,',2’ . л > 0; и',1'’ € L ' ( R + ). ['/X''o">] ( — 0, .v -»• oc. (4) 

then if conditions ( 1) hold, instead of ( 2 ) we derive the estimate

0 < / \ui2] -  u[U\(t. x)  d x  < [  [a 1"1 — u111 [(г. л ) d x .  (5)
Л) ,/o

or, in other words, ||nt2l(r, •) -  n{i]( i.  ■)||; ilR , is non-increasing in t e  [т, T).
The lemma we proved above expresses a kind o f  stability in / . ' (R ,  ) o f  the 

heat diffusion process to perturbations o f  the initial function. Using it, we can 
establish the following assertion concerning independence of effective localization 
depth from the initial function.

T h e orem  1. Let  a *1'1 (v  -  1 ,2 )  h e  so lu t ions  o j  p r o b l e m  (1 .1 )—(1,3) with bou ndary  
cond it ions  respectively, such  that cond it ions  (1) hold. Furtherm ore ,  let

it\(t) —* oo, t —* T  ,
r v  (6)
[ « Г ’ (0 | > 0 . i e  [0 . ТУ,

t F ' f x )  a r e  non-increas iny  in x  > 0 ;  и =  1 ,2 .  Let a *11 he  e ffec t iv e ly  lo c a l iz ed  and  
* le t  the dep th  o f  loca l iza t ion  b e  L (l1*. Then u l2] is a l s o  loca l ized ,  a n d  I J 2]* =  L lh*.

Proof.  Let us consider ui i] , d 2i, solutions o f  problem (1 .1 )—(1.3) satisfying the 
conditions » ( l l(0 , ,v) =  0 .

Tta>(() .x )  ~ C  =  max (sup и},1’ , sup/i},21} =  max (rij,1 * (0).  rr,,2' (0 )} ,

77( 11 (r, 0 ) =  Tti2)(t, 0 ) s  tti(t) for t e  [r. '/')•

Let us extend the functions П1|,|(М ))  in [0, t ) so that Lemma 1 could be applied 
to the solutions П(г| and n{U(t, 0 ) <  u\h (t). ti\2\ t ) s  ul2l( t .0 ) .

From the comparison theorem it follows that

a 11’ £= n ' l) . «'-* < T i i2' in (О//1) x R , .  (7)

Applying the lemma to the functions Ti{,’\ we rewrite inequality (2) for C IU =  0, 
C i2) =  C in the form

{г/1"’ (r, ,v) (r,,Y))(/.V < const, t £  [t , T ).
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Decomposing this integral into the sunt of integrals over (0, .v()) and (,v0, oo), where 
л'о > L ( l” is an arbitrary constant, we obtain

f “{T,a ' ( i . x )  - u l " ( i . x ) \ d x -  f C r/.v + / (i7,2l(t, x) — C) dx —
./(> ./<) ./l(l

-  [  Tit U(i,  ,v) dx  = / |  — I  ̂ +  h  — /j £  const, i 6 [т, Г).

Let us prove uniform boundedness in t e  [t . 7’) of the integral /ч. Since by the 
Maximum Principle if121 > 11 in (О, Г) x R t , we have that I\ >0 . Furthermore.
1 2  =  C.v(> and therefore 1 2  <  const +  / . , for all 1 e  [t , 7‘),

Let us consider the integral /4. Since the solution u " ] is localized and ,v(l > 
L 1"*, there exists a constant M  > 0, such that » (l1 5  M  in (0, T )  x [,v0, oc). By
(7) this means that I7in < M  in (0, T )  x [.v(>. oo).

Then by the comparison theorem 77‘1' < Us in (0. T )  x (,v0, 0 0 ). where n*(r, .v) =  
в( (х  — Ло)//1/2> is the self-similar solution of equation ( 1 . 1 ), which satisfies the 
conditions h,v(0. .v) = 0. .v > .vm » s(/,.v0) = M, t e (0.7'). Concerning the 
existence and uniqueness of the solution n,s > 0 see subsection 4, 5 3, Ch. I, as 
well as the Comments to Ch. 1. Here в  e /J (R f ).

Thus

/ 4  he  [  iiiU(t , .V)  d x  < I  i i . sU -X )dx =

./ 1U ,/ l(|

=  / " W( ;7 T 7 ? )  J x  55,1/2 ~  7'I/3 II»II«.4R.. < « 1

for all 1 £ [т. T ) .  Therefore

h  = -  C) dx <  const ( 8 )

for any t e [т, T ) .  From this we immediately deduce uniform boundedness o f » 121 

in [т, T )  x (,v0. 0 0 ). Indeed, by monotonicity in / e (0, T )  of the boundary function 
T i \ 2 > ( t ) ,  first, T i ' 2 ' >  C (that is. / 4  >  0), and, second, T i a > ( t ,  X )  is non-increasing in 
л for any 1 £ (0, T )  (see 1,2, Ch. V). Therefore for any .vi > до

l\ >  (vi -  Л(,)[»|2,(/, ,V|) -  C|,

and therefore the assumption

lim, . 7  i t i2](t, .V|) =  0 0

leads to a contradiction with (8 ).
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By the second of inequalities (7) we have that for any a (i > L(l|i there exists 
a constant M  > 0, such that ul2> < M  in ((), T)  x ( a'(>, og). Therefore the solution 
ui2) is localized and L a ) * < /.iU*.

Exchanging nm and n l2\ and using the same argument, we obtain the opposite 
estimate L,l]t  < ld 2)* . so that L ii]t  =  L i21*, which concludes the proof. □

Let us now consider a case o f  absence of localization.

T heorem  2. U nder  the cond it ions  o f  T heorem  1 let the so lution  id11 h e  not l o c a l 
iz ed  (HS-reyime). Then u i2] is not lo c a l i z e d  cither.

Proof.  If we assume the contrary, viz... that id2' is localized, then by Theorem 1 
id "  is also localized, which contradicts the assumption. □

R e m a rk .  The requirements (6 ) on the boundary data can be substantially weak
ened. Actually, for Theorems 1, 2 to hold, it is sufficient to satisfy the first of 
conditions (6 ), and to have the continuous initial functions hJ,1'1 uniformly bounded.

Thus, the properties of regimes that blow up as t T~ do not depend on 
the initial temperature profile. If a boundary dependence ensures heat localization 
(in either strict or effective sense) for any initial condition, then localization will 
occur for any other bounded initial perturbation. Depth o f  localization and class 
o f  regime (S- or LS-) tire also preserved.

In particular, many asymptotic properties of  heat diffusion processes in the 
problem (1 .1 )—(1.3) remain the same. These were studied in §§ 2, 3 for k(n )  =■ 
kou'r and ti function щЛ.х) with compact support. For example, we have

T h e o rem  3. A ssum e that in the p r o b l e m  ( 1 .1 ) - (1 .3 )

k(n )  =  к ф ' г , гг > 0, a n d  ti\(l) =  AS(T  — t ) |/<л, t £  (0, 7').

Then the so lut ion  is  e f fec t iv e ly  lo c a l i z e d  and

IT =  (2*„Л ?(гг +  2 )/гг)1/Л.

Figure 31 shows the results of a numerical computation, which illustrates T h e
orem 3.

Asymptotic stability of self-similar solutions o f  the HS-, S-. and LS-regimes is 
proved in Ch. VI. where we also derive convergence rate estimates. For example. 
Figure 32 shows the “arrival" o f  a non-self-similar solution at the spatio-temporal 
structure of the self-similar HS-reghne (thick line).

Without introducing a precise notion o f  closeness, let us observe that the influ
ence of initial data in a domain covered by a thermal wave becomes negligible if 
the medium is supplied with an amount o f  energy, which is at least an order of
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Fig. 31. Effective heal localization in a medium with nonlinear heal conductivity. The 
parameters are: cr = 2, к ц  =  1. ti0(.v) =  I. A у — T  =  1, L *  — 2; I: =  1.7 • 10” 1, 2:
T  — i — 5.48 ■ 10 3: V  -  i -  2.37 • 10 4: T  ~  i — S. 14 10 \  5: Г  ~ t  -  3.9- I 0 ~ \
6: T  — i — 1.58 • К)--’. 7: Г  ~ I =  6.37 • 10 4 *

Fig. 32. "Arrival" of a solution at a self-similar HS-rcgime. The parameters arc: a  =  2,
и -  — 1. A:o 

3: T  — i -

= 0.5. A(, = ().I2, T  — 1.12-10 ' t l :

1.05 ■ 10 /( /,  i )
« и  AAo,-i;;(i ~ d ' 

ЛоП'-О»

r - f  = 9 .2 -1 0
'"■'I1 ■!

\  2: T  i =  6 .15 ■ 10" \

mugnitude larger than the initial amount, h'or example, for the S-regime, when the 
characteristic size of the resulting thermal wave is constant, convergence to self- 
similar structures occurs when the temperature at the houndary is approximately 
10 times larger than the characteristic initial temperature. This fact is reflected in 
Figure 31.
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Therefore the self-similar solutions that blow up in finite time, which were 
constructed in jj 2 , are stable asymptotic .states of thermal processes.

Heat localization in a medium, or the lack thereof, is determined only by the 
form of the boundary regime, unlike some other phenomena of nonlinear heat 
conductance (for example, finite speed of  propagation o f  perturbations), for the 
existence o f  which special initial data are required.

These residts extend the sphere o f  applicability o f  the phenomena we are con
sidering in various physical situations. However, the following question arises: 
is heat localization a property o f  a medium with precisely the nonlinear thermal 
conductivity k(u )  =  kuti'r .<r -> 0 . or is the localization phenomenon present in 
arbitrary media? In particular, is it possible to obtain the different heat diffusion 
regimes in a medium described by the classical heat equation'.’

2 Influence of boundary blow -up regimes on a medium  with constant 
therm o-physical properties

Let us consider the problem of  heating a medium with constant thermal conductivity 
in a boundary blow-up regime,

which is a particular case of the problem (1 .1 )—(1.3). For simplicity, we have 
taken the initial temperature of the material equal to zero, which is not essential, 
due to the .superposition principle (see also subsection 1),

In processes described by equation (9). perturbations propagate with infinite- 
speed, so that localization must be understood in the effective sense.

Solution of the problem ( 9 ) - ( 1 1 )  is expressed in terms of the double layer 
potential

To determine conditions for localization in the problem ( 9 ) - ( l  1). let us pass in
( 12) to the limit as t —v T  :

(9)

«(О. л ) =  0 . ,v > 0 . 

u(t,  0 )  =  f f | ( / )  >  0 .  i  e  [ 0 .  T ) ;  

»i e  C(|(), '/’)):  i q  —> oo. t —> T  .

( 1 0 )

( 1 1 )

lim »(/, a ) =  n ( T  , v) =
i — 7

A
exp

(13)
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From (13)  it can be seen that the most interesting class is o f  “exponential" blow-up 
regimes. Indeed, if

«I 0 )  =  AS(T  - /)''ехр(Ло('/’ - /) ')• /ft). As > 0. (14)

then n il.  x) —► oc as t —* T ~ . where л g ((). v,s ). where

.v.v =  2 v / M m  (15)

For any л > vs the temperature at t =  T  is bounded;

(16)
For I =  T  the heat flux and the amount o f  contained energy in the domain a > a у 
are bounded. The parameter v determines the nature of the change in temperature 
and heat flux at the point л =  .ys; for n > 1/2 (i> > 3/2) the temperature (heat 
flux) is bounded at t =  T  . while for i> <  1/2 (п < 3/2) it is not.

Solution (12) .  (14) is an example o f  the S blow-up regime. It is the analogue 
o f  the standing thermal wave (1.5) for the ease o f  constant thermal conductivity.

From the comparison theorem we obtain, that for boundary regimes majorized 
by (14),

« i ( 0  < AS(T  -  /)' ехр|Я„(Т -  i )•■’ ], / g (0. T).  (17)

localization o f  depth // < л\ occurs, and for л > .v.s the solution is hounded for 
all 0 < ! < T  by the limiting curve (16) .  Condition (17)  distinguishes the elass of 
slow boundary blow-up regimes in this problem. If

» i(n  5  A ) 0 '  -  n ‘‘ c \ p { K o ( T  -  /)"). ( ) < / < ' / ■ ;

(for it =  l) we assume v  < 0 ) ,  the integral (13)  converges for all a > 0 and the 
function »(/. a ) is infinite only at the point л =  0 . In the rest o f  the space it is 
bounded;

i i ( T  . A)
At,A-r

i-’/l -U.,7 I
exp -n +

R p-v-'1 ; 
(4A:„)',!

1/2 (lii. (19)

Therefore if  condition (18)  holds, we have the LS blow-up regime.
Finally, in the ease o f  fast regimes

ii\(D > A(i( ’/' -  /)''ехр(Л()(7' -  /)"], 0 < t < T. и < - 1 .  (20)

the integral (13)  diverges for all a > (), u(t. X) —> ex; as l - *  '/' everywhere in 
R + , and the HS-rcgime obtains.
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Thus, in a medium with constant thermo-physical properties, exactly as in the 
case k(n) =  kutt'r (cr > 0) ,  there arc three regimes o f  heat diffusion. Heat inertia, 
and the appearance of a finite thermal process localization domain also occurs in 
a homogeneous medium with infinite speed of propagation o f  perturbations.

Let us consider the question o f  localization in the multi-dimensional ease. Here 
a great variety of localization domain shapes can be constructed, in particular, 
domains with a non-smooth boundary.

Solution o f  the heat equation (кц — 1)

iIn <)~n i k i t

ill (Lvy 9.V]
0  < t < 7’. .v| >  0 , — oc <  aa <  oc,

with the conditions

n ( 0 ,  ,vi , .vt) =  0;  u ( i . 0 ,  a a ) =  Ф ( / ,  aa) > 0 ,  i  e  ( 0 .  T ) .  aa e  R .

where Ф ( 1. да) —> ос us I - *  T  for all aa e  £'o c  R . ф  И, has a representation 
in terms o f  the two-dimensional heat potential:

l td ,  -V| . ,v
, a-i [ '  I  л ? +л- 5

(l -  т)- ./ •>. |  M l  ~  t ) j

Taking 1 to T  . we obtain the limiting temperature distribution:

n ( 7 " ,  At, aa) =  p ~  exp 
47Г ,/()

> i '-VT +  AS

4 (7 ’ -  r)

clr

( T  -  T ) 2 J  ^  "■*' 1 4(7- -  r )

For example, let the boundary regime have the form

2 .V2V , ,— /■ Ф(т,  у)  cl у.

( 2 1 )

Ф ( 1 . , х 2) =  cxp^ } ц ( 1 . Х 2 ) .

where

/u.(i. a:)
exp

2 b \ i

. 4 ( 7  -  1)
0 . a a > c l .  aa < 0.

, 0 £  aa < cl =  const > 0 .
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Fig. 33. Heal localiznlion domain (dashed) sviih a non-smoolh boundary (P is a corner 
poini)

where b  > 0  is a constant The inner integral in (21)  converges for all .v: e  R and 
equals »

/(A2- Г)

2(7' -  r )

,V 2 +  b
exp

(,\'2 +  b ) d  

Y ( T  -  r)
. .vj ф —b.

d .  X2 - b .

Then we have from (21)  that the localization domain is the set

.vy -L (л*т — d)~ < d~ T  2d b ,  .V] > 0 .

the boundary o f  which is composed of a segment of a straight line and a half-circle. 
Inside the domain the temperature goes to inlinity a s i - *  T  ”, while outside it is 
bounded uniformly in time.

Using (21)  it is not hard to devise localization domains with boundaries given 
by any second order curve (parabola, ellipse, hyperbola). The principle o f  superpo
sition allows us to combine domains corresponding to different boundary regimes 
and to obtain as a result localization domains with non-smooth boundaries. In 
Figure 33 the boundary consists o f  segments o f  a circle and an ellipse.

3 A sym ptotic stage of developm ent of blow-up regimes in a m edium  with 
con stan t therm al conductivity

Using the integral representation (12)  of the solution of problem ( 9 ) —(1 1). it is 
hard to characterize in detail the asymptotic stage of the process. To do that, we 
shall construct self-similar and approximate self-similar solutions o f  the problem. 
Let us consider two important examples.
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1. Boundary regimes o f  power type.

t t \ ( t )  = Л(,('/' -  0", о < I <  т .  П  <  0, (22)

lead to the oceurrenee o f  LS-regime. We shall analyse die problem (9)— (11)  using 
the self-similar solutions

unit, x) =  A{)(T  -  ). £ =  -v|Aru( 7' -  r)| 1/:. - o o  <  t < T. x >  0 .

For the function /y(£) we then obtain the problem

f's  ~ r  f's (  +  n./'.y =  0 , 0 «  £ < o c :  / , (( ))  =  1. /,s-(oc) =  0 ,

whieh has a unique positive monotone solution

,/v(f) УттТ(-
•to r  I/ e x p / -
- n )  .A) {

m / 2 - » )  p . J  n , , .  , ( l  +  s l . t/.v. o  < a  < oo .

From the Maximum Prineiple it follows that ihe difference between a self- 
similar and a non-self-similar solution satisfies the estimate

0 < и V(M x) -  h( i , x)  £  ».v((), 0 ) =  A[)T". 

Introducing the ‘'similarity representation" of the solution,

/((./•) = Ao' (T  -  I) " n V ' f t k ^ T  -  Ml1' 2).

(23)

we obtain from (23) for all 0  < t < T  the estimate

11/(0 0  -  /.?(■)Unit,,  < T " (T  -  1 Г " -+  0. I - »  T  ,

that is, asymptotic stability o f  the self-similar solution (lor results of a numerical 
computation see Figure 34.) Stability ensures that all the main properties o f  the 
solutions u(i,  x)  and n.y(0  x) are the same at the asymptotic stage of evolution. 
For example, the half-width o f  the thermal wave .v(/(M. determined from the 
equation

» ( 0  AY, (M) =  ~n( 0  0) =  - A u ( T  -  M\ l — T  . 

satisfies by (23) the inequalities

1/2 £  /(0.v ,./(M/|*o(7‘ - M | l/:) < 1 /2  +  T " (T  -  м ". (24)

Let / v ' ( l /2 )  =  £,.i < oo, where f s 1 is the function inverse to /.y(£) (it 
exists by monotonicity of //(/)). Then sve obtain from (24) an expression for the 
half-width,

л-,,/(0 =  f , , ( ' / ‘ -  Ml/: +  0 \ ( T  -  M " , l /2 |. I — 7' .
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Fig. 34. Convergence »Г a solution m ihe power law self-similar l.S-i'egnne in a medium 
sviih constant thermal conductivity. The parameters are: k y  — 1.0. n  ~  -0.5. Л(| = T  =  I; 
1: T -- / =  0.77. 2: Г  -  i = 0.70. 3: T -  i =. 0.55. 4: T -  i 0.41

A similar expression is true for tile quantity ,v,.„((). delinetl by the equation

W(i ,  x r„(I)) =  - W ( t ,  0 ) .  0  < i < T.

where W ( l , x)  is the heat llux, so that x,.„U) is the coordinate of the point on each 
side o f  which the amounts o f  energy entering the medium are equal.

Figure 35 shosvs the results o f  a numerical solution of problem (9), (10) .  (22) 
for n =  —1. Dashed and dash-dotted lines show, respectively, the trajectories 
o f  .v =  x t. f U)  and .г =  ,v,.„p). Self-similar behaviour is established once the 
temperature on the boundary becomes 5- 10 times larger than the initial one (which 
is close to the criterion obtained for media with k(n)  =  k t)tt'r, cr > 0 ).

Nonetheless, there are certain differences between the solutions n ( i . x )  and 
n.sU. a ). The asymptotic behaviour o f  the limiting distribution o f  ii(l  x)  as .v —*• oo.

iT  ..v) =  £ ~ = к 0 » Г  e '.v " 1/2 c/.v (25)
7. s/ tt ./,.'/(-u„n

is exponential, unlike the power lasv asymptotics o f  the self-similar solution,

a s i'1' ■ Л") n +
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Fig. 35. Dynamics of the power lasv l.S-regime in a medium svith consiani ihcmwl 
conduciiviiy. The parameters are: к ц  — 1,0. Л(| —. 7' — 1; 1: T  -  « =  ().! 13. 2: T  -  t — 

5.8 ■ 10 2. 3: Г  - i ~  3.5 . 10 2. 4: Т  i =  2.3 ■ 10' 2. 5: Т -  i =  1.8 ■ 10 2, 6: 
Г  -  I ■ - 1.2- 10 2, 7: 7 '-  I --- 7 ■ 10' 2

This, mitnnilly, has to do with the faet that the self-similar prolile h.v( 7 " . . v) 
takes the infinite amount o f  time t €  ( — oo, T)  to form.

2. Let us consider now the asymptotic stage o f  exponential boundary blosv-up 
regimes:

u , ( 0  ^  Ло|ехр|Я„(Г -  I ) " | -  1|. 0  < I < T :  n < 0. (26)

For v =  0, (26) differs from (14) by a constant. which is not essential.
The problem (9). (10),  (26) contains at least two parameters with the dimen

sion of length, |A()(7' — O l^ '  and l',n| and, therefore, has no self-similar 
.solutions. We shall show that the asymptotics of the solution o f  the problem as 
I - »  T  is described by self-similar solutions o f  a "degenerate'' equation.

It is constructed as follows. The change of variable

V(t,  .v) =  Л , ,  ln| 1 +  n(i, ,v)/ri„] (27)
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takes the original problem into the form

W  , ;j-V  k0 ( l )V \
™   ̂ 4 -  —  f —  1 . 0  <  t <  Г,  .v >  0 ,

ih ()-V- Лц \ 9.v
(28)

V(t.O ) =  Л„/?0( Г  -  i f .  0  < l < T.  (29)

1/(0, л ) =  0, л > 0. (30)

If  we neglect the highest order derivative term in (28).  we arrive at the degenerate 
problem

_  k a / W , '  ' 

di Ao V 9.v

v , ( ( , 0 )  =  AuRniT -  i f .  0 <  I < T,

which has tile self-similar solution

,v

0 < t <  '/', x  > 0,

V A L x ) = A 0R o ( T - t ) ne ^ ) .  £
( M o ) 1''2

The function в , ( £ )  > 0  satislies tile equation 

1 +  n
(H\r в \ £ + п в ,  =  0. £ > 0; 0 , (0 )  =  1,

and wherever it is positive, is defined implicitly from the equality

( I  t n 1/2

1 +  11
n ( f £  :

1 +  II

1 +  II
n<U' 2 +

(I -in/2
( - . i ) 1' 2

£

(31)

(32)

(33)

At all the other points we set в , ( £ ) =  0.
The properties o f  the monotone function 0 S depend on the parameter n.
1) If  —1 < n < 0  (LS-regime), then 0 S(£)  -> 0  for all £ >  0  and

(K(£) =  C ( n ) £ 2" /(l +  . . . .  £ oo;

I l l  i

2) For ?; =  — 1 (S-rcgime) the solution has the form

0  <  £  <  2,
« ,(£ )

£ / 2 ) ~
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3) In the ease я < — 1 (HS-regime) 0, is a function with compact support:

I9.v(£) > 0  for 0 < i  < $ r =  2 ( —н)"/2( — 1 -  м Г (|' " ,/2. « , (£ )  =  0 for all f
such that moreover

0 5 (f) =  - I d  +  н )/ 2 | £ ,(£ ,  -  f)  +  o((f, -  f)) as f  —*• f^ .

In all the cases fl'(O) =  - ( —n ) l/?, 0 ' ' ( f )  > 0  wherever 0. > 0 and 0 ' ' ( f )  <
0"(O) =  (1 -  m)/4 for (  б (0, f ; ).

From the properties of the self-similar solutions and the Maximum Principle, 
we obtain the estimates (see § 2, Ch. VI)

— A()R()7" < V{t , л )  Vs( t , ,v) <  Л о | |0 ,  ( f )  HciD.f 1 1 1ч —— ■, ( £  ( 0 ,  / ) .  .t >  0.

Then for the solution of the original problem we obtain from (27)

we obtain from the preceding inequalities the following estimate of  the rate of 
convergence to the approximate self-similar solution:

||0(h •) -  0,(-)||пк,) — О (<7‘ -  M "Iln(7™ — n\) -+  0, t - + T  . (33)

In the ease of the S-regime, convergence (35) is illustrated by the results of nu
merical solution of the problem (2 8 )—(30),  shown in Figure 36. Significant growth 
of the temperature in the main part o f  the localization domain, as compared with 
the temperature for ,v > x s =  2(Ar()/?o)1/2. occurs when the temperature on the 
boundary grows by a factor of 10-20.

The estimate (34) makes it possible to analyze in detail the fully developed 
stage o f  the process. For example, in the S-regime sve obtain, as i —» T  , from 
(34) for all () < ,v < .v* =  2 ( Лг()/?п>1/2 die estimates

whence it follows that inside the localization domain the temperature changes ac
cording to

(34)

For the similarity representation of the solution V.

(Hi. £)  =  (A0R0) - ' ( 7  -  I) " V u . £ ( k 0Ru)'/2 (T  -  Oi " " l/’ ).

Л0| е х р | Л „ (Г -п -  ‘ (1 -  л / л ,)1 - Я 0Г  ' 1 - 1 1 5  »(h-v) 1

< A o T ^ ' - i T -  I) 1/2exp|/?0 (T  -  l) '(1 -  -v/.v,v>: |,

nil. .x) ~  exp(/(o(7' -  0 ^ ( 1  -  л / л v)21, 0 < .v < л.у; l -* T .
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Fig. 36. The parameters are: и =  - I ,  Ап =  /\ц = /<(> — T — 1, .v.v ~ 2; 1: T -  i =  0.95, 
2: T -  l -  0.47, 3: T - i  =  0.2, 4: T - t  =0.1. 5: T - - I  5-10 2, 6: T  -■-/ -. 2.5 ■ К Г 2. 
7: V -  / =  1.2 ■ 10"-

In the case of the HS-regime, we have for all .v > 0

u d .  x)  ~  exp|R{)(T  ~  !)" -  v( — /?о?г/Ato) 1 /2( 7‘ -  r)1" '  11/21. I ->

which means that at each point in space the temperature grows to infinity, but more 
slowly than the temperature at the boundary.

Using (34),  it is also not hard to determine the dynamics o f  the evolution of 
the process at the asymptotic stage:

лГ/(г) =  In 2
^0

Я о(~п)

i/1
(T  -  r)11 '",2 + О [ ( Г  -  i ) °  " l/2] •

x ,■„(!)
Л ц (-н )

~ — ( T  -  r ) 1 1 "l/: +  О  [ ( Г  -  i ) °  "l/2] .

(36)

Unlike a medium with a power law nonlinearity, in all the cases here x,.t —> 0.
л,.„ —»■ 0 as i —* T  , including the HS-regime. when the temperature grows without
bound in all of R , . This shows, in particular, that shrinking of  the half-width is
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not a .sign o f  localization in a blow-up regime. Let us note that the frequently used 
dimensional estimate of  the half-width, лг/(Г) ~  \ko(T  — r)|l/:, in this case does 
not describe the process correetly at the fully developed stage.

Thus, under the influence o f  exponential boundary blow-up regimes there is a 
kind of degeneration o f  the parabolic equation (9) into the iirst order equation

du (Hn/i).\)2
—  =  k u ~ ---------- .
()/ An +  n

self-similar solutions o f  wliieh provide us with the principal term o f  the asymptotics 
as t -> T .

The function (31) is an approximate self-similar solution of the problem (2 8 ) -  
(30).  The general theory of a.s.s. o f  parabolic equations and its applications arc 
presented in Ch. VI.

Results o f  this chapter testify to the generality of the heat inertia phenomenon 
and show that conditions for its occurrence are not hard to satisfy. These results 
will be used in Ch. V, VI in the study of boundary blow-up regimes in media with 
quite general thermo-physical properties.

Remarks and comments on the literature

§ 1. The self-similar solution o f  the S-regime (5) was constructed in [3 5 1 1 (ex is
tence o f  separable solutions for equation (1) was known before; see, for example 
13 3 1. where for the first time the standing thermal wave was studied; that paper 
also verified numerically its asymptotic stability. The paper 13 5 1 1 led to detailed 
studies o f  the heat localization phenomenon in media with nonlinear thermal con
ductivity 1390, 264, 265, 2 6 6 1, where all the main concepts and delinitions are 
developed. A detailed analysis o f  the localized solution of Example 2 is presented 
in 1347, 348, 1 4 9 1.

§ 2. The three types of self-similar blow-up regimes (S-, LS-, and HS-regimes) 
were studied in 1352, 39.3, 267, 165|. In the presentation o f  subsection 2 we follow 
1165|. By a different method the existence and uniqueness o f  self-similar solutions 
are proved in 1205 , 2 0 6 1.

§ 3. Theorems on presence or absence o f  localization (subsections 1 and 2) are 
proved in ] 3 0 4 1 (an interesting criterion of localization depending on the form ol 
the boundary function which blows up in finite time has been obtained by |204|). 
A more detailed discussion of the physical basis o f  localization can be found in 
1393, 267, 2 6 8 1; these papers also discuss the possibilities of its experimental 
study. Localization in the Cauchy problem has been studied in 1352 . 393, 2 6 7 1.
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An interesting example of a localized initial function was constructed earlier in 
[17], where the exact value o f  the localization time was calculated; it agrees with 
the calculations o f  subsection 3. Results o f  subsection 4  are contained in the main 
in |277, 331 , 2 6 7 1.

A list o f  papers dealing with the analysis o f  local properties of the degener
acy surface in problems for qua.silinear parabolic equations can be found in the 
Comments sections o f  Ch. 1 and 11.

§ 4. Results of subsection 1 appear partially in 1133]. The study o f  subsections 2, 
3 was published in 1348. 347, 149],

An elementary presentation o f  some o f  the questions relating to the localization 
phenomenon can be found in |394|.

Possible applications o f  the discussed phenomena were considered in [392. 350].  
Blow-up regimes in compressible media with various physical processes are studied 
in 115. 70, 7 1 ,7 2 .  73, 382. 387. 388. 389 , 366, 31 8|. A more complete bibliography 
can he found in 1267. 268 , 2 6 9 1.



Chapter IV

Nonlinear equation with a source. Blow-up regimes. 
Localization. Asymptotic behaviour of solutions.

The present chapter deals with the study o f  spatio-temporal structure and conditions 
for the appearance o f  unbounded solutions o f  the Cauchy problem for quasilinear 
equations with power law noiilinearities:

и, =  V -  ( iC V i i ) +• ( Л  I > 0. л б R'v . (0.1 )

i/(0. л) =  no(.v) > 0. .г б R'v . a'’ +] б C ' ( R 'V). ( ( U )

where <r > (), f i  1 are constants.
Equation (0.1) describes processes with a finite speed o f  propagation o f  per

turbations (see § 3, Ch. 1). Therefore, if a (l is a function with compact support, 
u(t. x)  will also have compact support in x  for till () < i < Tu. where T о £  тс  is 
the time of existence o f  the .solution. The main question, considered in §§ 1, 2. 4 
is to define conditions of localization of unbounded solutions.

Definition 1. An unbounded solution of the problem ( 0 .1 ), (0.2) is called (strictly)  
lo c a l iz ed  if  the set

i l l  =  j.v  б R A I u ( T 0 . x)  =  lim,. ./n u(t. л) > ()} (0 .3)

is bounded.
The set is called the lo ca l iza t ion  d om ain .  Boundedness of i l j  means, in 

particular, that l td .  x)  ss 0  in R ,v\ il ,  for all 0  < t < 7’n. This follows from general 
properties of solutions o f  parabolic equations with a source. A strictly localized 
solution grows unboundedly as t —> 7'(l in a domain

O), =  {.v £ R v | n( /’и , .v) = тс }

o f  linite size, which, in general, is different from 12/.. As in the case o f  boundary 
value problems (Ch. Ill), localized solutions can be conveniently divided into 
two classes: S-iry inw  solutions, for which 0  < nicasoi/ < oo. and LS-rcyinw
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solutions, for which mea.so»/ =  0. In the latter case the solution u(t.  a-) grows to 
infinity, for example, in one point, while at all the other points it is bounded from 
above uniformly in t 6 ( 0 ,  7'o). In the most general case the classification o f  blow
up regimes .should be based on the measure o f  the blow-up set having the form fi,. =  
(,v 6  R w | 3 sequences t„ - *  T о and ,v„ —> .v, such that a(t„ .  x„) —>• со  as и —> oo). 
Obviously, by definition of  an unbounded solution 73, ф. 0  for bell-shaped data.

Definition 2. There is n o  lo ca l iza t ion  in the problem (0.1), (0 .2 )  if the domain 
fl; . in (0 .3 )  is unbounded.

We put non-loealized unbounded solutions in the elass of HS (b low -u p)  reg im es.  
A combustion process is not localized if  as r - *  7'0 heat propagates into arbitrarily 
distant regions. In a number of  cases the condition o f  Definition 2  is equivalent to 
the requirement

lim u(i.  x)  =  oo. ,v б R ,v.
' 'Oi

that is, the non-localized solution grows to infinity as t —> T {] in the whole space.
In § § 1, 2. 4  it is shown that for /3 > <t +  1 the problem exhibits localization; 

the case /3 =  r r +  1 corresponds to the S-regime of combustion, while the ease /3 > 
<т+ 1 corresponds to the LS-regim e; for 1 < /3 < c r+  1 there is no localization (HS- 
regime). The study is conducted by constructing unbounded similarity solutions 
(§ 1), as well as by the qualitative method o f  averaging (§ 2), which establishes 
their asymptotic stability in certain parameter ranges.

In § 3 we prove various assertions concerning conditions o f  existence of un
bounded solutions o f  the problem (0 .1 ) ,  (0 .2) , and we show that for /3 > i r + 1+ 2 / N  
it can be globally solvable (for “small" data /<,,), which confirms the qualitative 
conclusion of i? 2.

Rigorous results on the existence (/3 > <r +  1) rind non-existence (1 < /3 < 
(r +  1) o f  localization o f  unbounded solutions for N  — 1 are given in 4.

The next section, S 3, is wholly devoted to the study of asymptotic stability of 
similarity solutions.

In § 6  we show that for some un(x )  in the case r r +  1 < /3 < (<т+ 1 )N /(N  — 2 ) + 
the problem (0,1). (0 .2)  evolves in LS-rcgiinc o f  blow-up, in which mensou =  0. 
There we also obtain bounds from above and below for a (7 '0 , v) in a neighbour
hood o f  the singular point where u ( T {) . л) —  o o .

In S 7 we use the above approach to study the seniilinear equation (0.1) for <r =  
0  with a reasonably general form o f  source. There we obtain, in particular e ffec t iv e  
lo ca l iza t ion  conditions for blow-up regimes, that is, conditions for boundedness 
of the set а л . We consider in detail the phenomenon o f  degeneration of the 
equation u, =  An +  (1 -f n) ln^( 1 -f «),  /3 > 1. at the asymptotic stage of blow-up. 
Asymptotics of the combustion process is described by invariant solutions o f  a 
Hamilton-Jaeobi first order equation. This degeneration phenomenon lias already 
been considered in the context o f  boundary value problems (see § 4, Cli. 111).



I7S IV Nonlinear equation wilh a source

§ 1 Three types of self-similar blow-up regimes in combustion

It i.s convenient to start tile study o f  the relatively complicated problem (0.1). (0.2) 
by an analysis of particular self-similar solutions o f  the equation (0.1). Here we 
construct unbounded self-similar solutions, the spatio-temporal structure o f  which 
is substantially different in three cases; 1 < /3 < cr -f  1 (HS blow-up regime). 
/3 =  ir +  1 (S-regime; a solution o f  this type in the one-dimensional case was 
considered in Ch. 1, Example 13 o f  § 3), /3 > cr +  1 (LS-regime). Though these 
particular solutions arise only for a special choice o f  the initial function uo( .v). the 
analysis of their spatio-temporal structure allows us to make assertions concerning 
the character of evolution of combustion processes with linite time blow-up in 
the general case (see § 3). Moreover, they can be used to establish conditions 
for existence of blow-up. that i.s. conditions for global insolvability o f  the Cauchy 
problem (see §ij 3, 4) .  They are also used to prove localization of unbounded 
solutions in the case ( i  >  i r  +  1.

The spatio-temporal structure o f  unbounded self-similar solutions contains im
portant and nearly exhaustive information about general properties of evolution of 
unbounded solutions of the equation (0 .1).  Therefore it is not an exaggeration to 
call the particular solutions we construct ei,i>eufnm'ti(m.s (c.f.)  of combustion of 
the nonlinear dissipative medium corresponding to the equation (0.1).

1 F orm ulation  o f  se lf-s im ilar problem s

For any1 it > 0  and /3 > 1, equation ((). 1) has unbounded self-similar solutions of 
the following form:

».v(', x) -  ('Л, - /) l/l/s u 0 s-(£), £ =  .v/f/'o - /)"'. (1)

where
»i =  | 0 -  ( r r +  1 )|/|2(/3 — 1)|.

Here the constant T о > 0  is the time o f  existence o f  the solution u_v, for / > T ц 
the solution (1) is, in general, not delined and the amplitude o f  the solution grows 
without bound as / —> 7',',. The function 0 S(£)  > 0  satislies in R w an elliptic 
equation obtained by substituting the expression (1) into (0.1);

V< ■ (e ['V c e s ) -  mVtOs  • £ -  ~ ^ 0 S +  0 ?  =  0. f e R " .  (2)

This equation ha.s the trivial solution 0 s ( £ )  =  0. as well as the spatially homoge
neous solution

0 S(£)  s  в „  =  (/3 -  i r W j  " .  (3)

'The ease <r — 0 is considered in к 7.
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According to (1). this solution corresponds to the process o f  spatially homogeneous 
(homothermic) combustion with blow-up.

Below we restrict ourselves to an analysis of radially symmetric self-similar 
solutions:

I  =  f/(7'« -/>"'• r =  |.v|. (4)

Then (2) becomes the ordinary differential equation

| л Г Т < £ *  ' e's « i >' -  m&sf ~~ JZ 7 ]  =  0. $ >  0. (5)

The lirst operator cun he written in the form

„ , , N  -  1 „ ,
(0 S0 S ) H------ -— tfs e s .

and therefore, if we want the solution Os to he defined in R w, we have to impose 
the symmetry condition

0.s-((» =  0  (tf.v(0) > 0 ) .  1 б )

Moreover, we shall require the following condition to he satisfied;

t f . v ( 0 0 ) = ( ) .  ( 7 )

In this section we mainly deal with a study o f  the problem ( 5 ) - ( 7 ) ,  and with an 
analysis o f  the properties of the corresponding radially symmetric solutions o f  (1).

The equation (7) is degenerate for Os =  0; therefore in general ( 5 ) 4 7 )  admits 
a generalized solution, not having the requisite smoothness at the points o f  de
generacy. However, in all cases the self-similar heat llux. —£ N~ ] must  be 
continuous (similarly, in the case o f  equation (2) the derivative V0JJ+l must be 
continuous in R'v ). This means, in particular, that =  0  wherever 0S =  0.

Any solution o f  the equation (5) can he considered in its domain of non
monotonicity as some kind of oscillation around the homothermic solution в  =  в ц .  
This analogy has to do with the fact that the maximum of the function 0$ can be 
attained only at a point where —0 s /( /3  -  1) +  0% >  0. that is, for 0s > в и , and 
the minimum at a point where 0  < 0s < 0 U.

2 Localization of com bustion in the self-sim ilar S-regim e, /3 =  tr +  1

In this case equation (2) assumes the simpler form

— — M ' . ' "  -  +  O's "  =  0. £  6 R v.
rr +  1 ' (T (8)
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while the corresponding radially .symmetric problem (55)—(7) can be written as

■(iN O'sO's)'----<>s + = 0 - $ > 0 (9)

0'S(Q) =  0 (%(())  > 0 ) ,  Hs (o c)  =  0. ( 10)

I Tluj c a s e  N — 1

In one-dimensional geometry the equation (9) becomes an autonomous one. and 
can be integrated. In particular, it is not hard to obtain the following solution of 
the equation (9):

■ (  2(w + 1) 7r £ \  ,<r
£' > 0 .  (11)O sik)  — ( — - cos" -T—

\cr{cr -1- 2) L s )

where

l-s =
2 tt
---- ((Г + l ) 1'2. (12)
cr

As follows from (1). for /3 =  cr -+ 1. £  =  .v: therefore ( 1) is a separable solution:

!!s(r. .V) =  (To -  l)~ l/ir(>s(x) , ( ) < / < Тц.  л 6  R  (13)

(the function (>s is here evenly extended into the domain o f  negative values o f  л).
The solution (13) looks unusual from the point o f  view of traditional ideas 

about propagation o f  heat in diffusional media. The point is that in (11)  fls( v) 
is a periodic function: it vanishes at the points лч =  ( 1/2 ±  A-)Ty (k  = 0 .  1 . . . . ) :  
furthermore the heat (lux — =  0  is continuous: 0' ê's —> 0 as x  —*■ .v*.

^Therefore a generalized solution o f  the problem (9 ),  (10 )  will be obtained if  take 
a function fl.v consisting from only one “wave" of the general solution (11 ) .  while 
at all other points we can set 0s =  0.

Hence it follows that, in particular, the following function is also a self-similar 
solution:

«.?(/. .v)
(T,, -  t)

0.

11IT ( - {,r 'f
\ »'(»г I 2)

9
COS' , r - И  <  L s / 2 .

|.v| > U / 2 :  0 <
(14)

< T a.

This is the elementary temperature profile o f  the self-similar S blow-up regime, 
which is lo c a l iz ed  in the domain { j,vj < Ls/2\  during all the course of its existence. 
Despite unbounded growth of the solution as i —>• T 0 at all points of localization 
(|.v| < L s / 2). heat docs not penetrate the surrounding cold space.

The quantity Ls  is called the fu n d a m en ta l  lei igih  o f  the S-regime of  combustion 
in the nonlinear medium. It is shown by numerical computations that lor practi
cally arbitrary non-monotone initial perturbations, for (i  =  cr +  1. the unbounded
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Fig. 37, Numerical manifestation of the S-regime. The parameters are: ir =. 2. (3 =  3. 
N =  I. /..у =  Ъ tUt +  I) ''2/cr ~  5.44: I: /, =  0. 2: ; 2 =  7.92 • 10 2. 3: =  19.6. 4:
t4 =  73,0. 5: /5 ^  74,9. 6: i(, =  74.951. 7: ; 7 =■ 74.9548. 8: ; K =  74.9551

solution goes to infinity on ;t .set o f  length /,.s. If. on the other hand, we have that 
ffo(.v) > 0  on a small interval, meas supptio <■ /,\. then we have striet localization 
on an interval of length L s . Furthermore. l . s charaeteri/-e.s the tnaximtil length 
o f  propagation of heat perturbations with compact support during the course of 
existence o f  the unbounded solution (see § 4).

We present here the results o f  two numerical computations. In Figure 37 we 
.show the evolution of an initial perturbation «u(.v) o f  .small energy, distributed 
over a .small region (.smaller than L s ). It can be clearly seen that lirst the heat 
profile spreads to a certain r e so n a n c e  (cr it ica l)  length :  only after that, starting with 
time /4, does the combustion process become intensive, and a.s 1 —* 7'0 it evolves 
according to the .self-similar solution (14).

In Figure 38 the initial energy is large and occupies an extensive domain, 
inside which iio(.v) is close to a spatially homogeneous protile k() =  1. Actually 
Figure 38 shows instability o f  the spatially homogeneous (homothermie) solution 
in the S-regime.

In both eases an unbounded heat profile is formed, which follows, as t —> V'„' 
(To  is the interval o f  time for which the profile exists: it i.s different for different 
profiles), the course of evolution of the self-similar solution (14).  In the lirst ease, 
a.s can he seen from Figure 37, the solution i.s strictly localized in an interval 
o f  length Ls-  In the second ease (see Figure 38) there i.s 110 strict localization.
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Fig. 38. Numerical manifestation of the S-regimc. The parameters are: ir  =  2. (3 =  3. 
N  = 1. L s  ~  3.44-. 1: /, = 0. 2: i 2 = 0.43. 3: /., = 0.4464.4; ц  = 0.4484. 5: =  0.4401.
6; l b = 0.4406. 7; ;7 = 0.44063. 8: ;x = 0.440609. 0; /,, =  0.440738. 10: / , (i =  0.440747

howevet' unbounded growth takes place with the fundamental length scale L $ .  

Similarity transformation of any non-stationary solution of the problem shows that 
its solution for all initial data is in a certain sense close to the corresponding 
self-similar solution (14), the spatio-temporal structure of which is a fundamental 
property of the S-regime. The proof of  this fact is given in § 5.

For N  =  1 there exists a countable set of different self-similar solutions, com
posed of an arbitrary number of the elementary solutions (14), whieh by the thermal 
isolation condition, burn independently of each other. Any elementary structure 
can be removed, without any consequenees for the evolution of the neighbouring 
ones. It turns out that a finite spectrum of similarity structures is also possible for 
(3 > i r +  1. However, in this case the principle of superposition, of combining 
elementary structures to give more complex ones, i.s not as simple (see Remarks).

2 T h e  m u l t i - d i m e n s i o n a l  c a s e  N  >  I

A self-similar solution of the S-regime exists in spaces of arbitrary dimension.
However, unlike the one-dtmen.sional ease here there are no non-monotone solu
tions.
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T h e o rem  1. F o r  any  N > 1 th ere  exists a  so lution  0$(£)  o f  p ro b lem  (9),  (10) with  
co m p ac t  support. The fu n c t io n  Os !V m o n o to n e  d e c r ea s in g  w h erev er  it is positive.  
The p ro b l em  has  no n on -m o n o to n e  so lutions.

First of  all let u.s note that the fact that any possible .solution Os has compact 
support follows from an analysis o f  the equation for small Os >  0  using lixed point 
theorems for continuous mappings (first (9) is reduced to the equivalent integral 
equation). This simple analysis provides tis with the only possible asymptotics of 
the function 0S: it has compact support and if mens supply  =  £o > 0, then

f \ I , ir
o.s(£) =  — r- ( f t !  -  £ Г  \ (1 +  e ( f ) ) .  £ < £o (15)

i .2 ( o - +  2) J

(fl.v(£) =  0  for all £ >  £ (l), where e (£ )  —»■ 0  as £  -+ £(l.
For the proof o f  existence, it is convenient to consider, side by side with (9).

(10).  the family o f  Cauchy problems for equation (0):

\e\l ,o'Y ------ 0 +  \0\"0 — 0. £ > 0. (16)
cr

0 (0 )  =-- p .  O'(ti) =  0. (17)

where p  > 0  is a constant. At the points where 0 > 0. equation (16) coincides 
with (9). We must find a value p  — 0u >  0. such that the solution o f  the Cauchy 
problem (16).  (17).  0 =  0 ( £ : p ) ,  is non-negative for all £  > 0  and satisfies the 
second condition o f  (10).  that is, O (oo'.p )  =  0. Local existence and uniqueness of 
solutions o f  the problem (16),  (17) for all .sufficiently small £  > 0 is established by 
analyzing the equivalent integral equation using the Banach contraction mapping 
theorem.

The main interest lies in the global analysis of properties of solutions 0 ( £ \ p ) .  
which is presented below. First o f  all let us note that every local solution 0 (£ \ p )  
can be extended to the whole semi-axis £  б R . ;  0 (£ \ p )  can go only to the values 
0  or ±cr  ,/ir as £ —> oc.

Proof o f  Theorem 1 is based oil the following lemmas.

L em m a  1. Let

0  < p  < p .
2{ст -I- 1 ) '  

er(er +  2 ) .

i/"
(18)

Then 0 (£ \ p )  > 0  f o r  a l l  £ > 0. Furtherm ore ,  f o r  any p  > 0ц =  cr the  
Solution is b o u n d e d  in R , :

10(£;p)\ < p. £  >  0 . ( 1 9 )
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Fig. 39. The function <I>(/u) (see (21)) for /3 =• a  +  1

Proof.  The proof fclie.s on an identity, to derive which we multiply (16)  by \в\,г0' 
and integrate the resulting equality over the interval (0. £).  taking into account 
conditions (17). As a result we have

-(|«Г«')-1(^) +  (N  -  1) [  m ,r0'r(v) —  +  Ф (| 0 (£ )П
./о V

Ф ( р ) . ( 20)

where

Ф ( М )
,2ir+2

, i r  i  2

2 Ur +  1 ) <r((T +  2)
• P  >  0 ( 2 1 )

(the graph of this function is sketched in Figure 39).
From (20) it follows that Ф(|0(£)|) 5 Ф ( р )  for all £  > 0  (the equality is 

attained only in the ease 0 =  в п . /х =  в и ). Therefore if p  < p , .  the solution o f  
the problem satisfies the estimate

P i  < 0 ( $ \  P )  <  p .  f  >  0 . P  Ф  М ц -

where /x, >  0  is the second (different from p )  root o f  the equation Ф(/и,) =  Ф(/к.). 
The estimate (19) follows immediately from the inequality Ф(|0(£)|) < Ф ( р )  for 
p  >  (?//. D

R em ark .  By (20) the possible oscillations of  0 around the homotherniic solution 
в =  Oj] arc damped, that is. if  £ ,  < £3 are maxima (minima) of the function в >  0, 
then

(Hii,:p) >  в(£2: p) (()(£,: p) < (Hfp.p)). ( 2 2 )
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Let u.s show now that for sonic .sufficiently large p  the solution в  is not strictly 
positive.

L em m a  2. There exists p  -- ft'  > 0ц . f o r  w hich  the  so lution  o f  the  C au c h y  
p ro b l em  (16),  (17) b e c o m e s  z e ro  at a  point £  >  0.

P r o o f  Let us assume the contrary. Let в{£\ p )  >  0  in R ,  for all p  > 0 U. The 
problem (16),  (17) is equivalent to the integral equation

Ф'(£) = (rr + 1 )£l v f i7,v '
,/<)

\ Ф \ 1ф(т]) ~  Ф(Г]) d p .  £  >  0, (23)

where we have introduced the notation ф (£)  =  \в\"0(£-, p ), ф(0) =  p 'r 1'. Let us 
.set i//,,(£) =  ф (£ ) /ф (0 )  =  f ( £ ) / p ' r ' t . Then the equation for i//,, takes the form

Ф'и(£) = (<r+ D£
and by (19)

f  " f
.1 о

N - I
-/* "K '„ l 'Г/(,М' 1̂  -  Ф»

l'/ y f)|  <  1. £ >  0; p  >  0 ц .

d p ,  £  >  0, (24) 

(25)

Moreover, from (24) we derive the estimate

Ш $ ) \

(T +  1

/ 'Г  ' ./о

_ fj" -f- 1

(Г

1

. £

d p  =

0.

(26)

From (25)  and (26) it follows that for any p  > 0ц  the functions t//M and t// are 
uniformly bounded on any compact interval [0. £,„\. Then from the Arzela-Aseoli 
compactness theorem it follows that there exists a sequence pi, —> oo, к —*  oo, 
such that the corresponding .sequence Ф^ф£)  converges uniformly on [0, £,„] to 
some function w (£).  The equation for u> is obtained from (24) by passing to the 
limit p  ~  pi, —* oo (convergence of to w' is established hy passing from 
(24)  to the corresponding integral equation). It has the form

i/■'(£) =  -(«■ +  l ) f '  ,v f p N ]w ( p ) d p .  £  > 0; tr(0) -  1. (27)
.It)

and if  б C(|(). oo)) П f 1 (R-t ).
Taking now into account the assumption that (//,, > 0  in R| for ;my p  > ()u . 

we obtain that w (£)  > 0  in R , .  However, by (27)  w (£ )  is a monotone strictly de
creasing function, so that if  > 0  in R ( . This immediately leads to a contradiction, 
because (27) is equivalent to the boundary value problem

/V -  1 ,
if" 4------------if +  (rr +  1)if  =  0. £  > O', if (0) — 0. и1 (()) -- 1.

£
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Fig. 40. A .sketch of the curves II - t h f .  f x ) .  solutions of the problem (16). (17) for 
different / х  ■> 0 ц .  f i  — i r  -t- I (S-reginre)

whose solution ш =  C’ i £ |2 N),2J o t  2)/2<(«Ч-1 ) l/2£ )  (C’ i > 0  is a constant. J llV 2)/? 

is a Bessel function) vanishes at the point £ — £| =  r.Jv ,/(f r +  1 ) l/:!- where r^!1 > 0 
is the first root of the function ,/()v >)/:■ □

Propeilies o f  solutions of the problem (16), (17) are shown in Figure 40, To 
values fx\ > ()u . /xj > Mi tliere correspond solutions ()(£'./x) that are Strictly 
positive in R ,  (f.eninta 1). while to a value /х$ > /xj there corresponds a solution 
()(£',/xs),  which vanishes at a point (Lemma 2) .  Therefore there can exist a value 
/x =  €  (/x2,/xi\. for which the function 0 " ' is ‘'tangent'' to the £ axis
at some point £  =  £n. and this “tangeney” allows us to extend в ( £ : в ц )  into the 
domain £ >  fu identically hy /его. As a result we have a generalized solution 
o f  the original problem (9), (10) with a continuous heat flux ~~ g N 1 |Ws-|,r0's.; it is 
marked hy a thick line in Figure 40.

But to he able to use the above properties o f  the solutions в(£\/х).  we shall need 
a condition o f  continuous dependence o f  W(£: /x) on the parameter /x. Observe that 
in general there is no continuous dependence. This is clearly seen in Figure 40,

L em m a  3. Let  the1 solution  I) =  ()(£\/x\), /х\ >  0  b e  such, that on  the co m p ac t  
set К  =  |(). £ „, | there  a r c  no po in ts  f o r  which Щ ” в  =  (\в\"0)' =  (), Then 0(^\/x) 
a n d  ( \H\"O’ ) (£ ;  /x) d ep en d  continuously  on the p a r a m e t e r  /x in a  n c i ith b on rh oo d  o j  
/х — /x\ on  K.
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Proof.  Let us consider equation (23). which is equivalent to the problem (16),  
(17),  for p  — /xi. The integrand contain the function \ф\~'гп 'г+ {)ф, which is 
not differentiable at ф =  0. Obviously, if  0(£\ p\) >  0  on К ,  then we have 
continuous dependence on /л. Let £ =  £\ be the lirst point where 0(£',p\) — 0. 
By assumption. {\0\"0)'{£\~.p\) Ф 0, Then we have continuous dependence on /л 
on any interval |(). £ x — e|, where e >  0 is a small number. In a neighbourhood 
of ф =  0  the operator in the right-hand side of (23) is not a contraction, but the 
term \ф\ is small on (£\ — e.£\ +  e).  Therefore, as we extend 0 (£ \ p ) .
with l/x — /xi | small, into this neighbourhood, we shall preserve continuity o f  the 
derivative ф'(£) in £  and /л. and, o f  course, of the solution ф(£)  s  ( \0\'гв ) (£ :  /л), 
which has a unique extension. In a similar way, we can extend 0(£ ; p )  to the 
whole compact set К . preserving in the process continuous dependence of ф and 
ф ’ on p  in a neighbourhood o f  /л — / л □

P r o o f  o f  T heorem  l. It is based entirely on Lemmas- 1-3. Let us introduce the 
set ,/M =  {/x° > ( ) \ 0 ( £ :p )  >  0  in R + for all 0  < /л < /u°}, From Lemma 
1 it follows that ,'W Ф {/x° < 0 ц).  By Lemma 2 M  is bounded from above. 
Therefore there exists =  sup M < oc. From Lemma 3 it follows then that the 
solution o f  problem (16).  (17) is the required function fls, satisfying (10), with the 
asymptotic behaviour given by (13), Monotonieity o f  any non-negative solution 
o f  the problem (9). (10)  follows immediately from the Remark to Lemma 1. □  3

3 Non-Iocalized self-sim ilar solutions of the H S-regim e, /3 <  <r +  1

Here we use the same method to prove the theorem concerning solvability o f  the 
self-similar problem (5 )—(7) for 0  €  (1. rr +  1). Direct inspection o f  the equation 
shows that a solution ds (£)  can only be a function with compact support, having in 
a neighbourhood o f  the degeneracy point £ u =  mens supply  asymptotic behaviour 
different from that o f  (15):

0s-<£)
Ur +  1 -  fj)<r 

2 ( 0 - 1 )
£ n ( £ u £)

11"
(1 +  ы (£ ) ) . (28)

where ш(£)  —>• 0 as £  —> £ fl .

T heorem  2. F o r  any  1 < 0  < i t  +  1 there  exists a  c o m p ac t ly  su p p o r t ed  so lution  
fl.v o f  the p ro b l em  (5),  (7), w hich is strictly d e c r ea s in g  w h e r e v e r  (>s > 0- The  
p r o b l e m  h a s  n o  n o n -m o n o to n e  so lu t ions . F o r  N =  1 the co m p a c t ly  su p p or ted  
so lut ion  0S is unique.
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Let us briefly describe the main steps of the proof. The counterpart o f  identity
(20)  has here the form

^(10\"0')2( ( ) + { N  -  1) l \ m " e ' ) 2( r i ) ‘lv
2 ./о

w I clr] + Ф(|0(£)|) = Ф (/х).
./<>

(24)

where the function

Ф < М )
f i  +  it f- 1

f i 4, tr f
{ f i  ~  1 )(<r +  2)

> 0.

has the same form as in Figure 3l). Therefore, taking into account that m — 
|fi — (rr +  1)|/|2( f i  ~  1)| < 0. we have that Ф(|0(£)|) < Ф (д ) :  in partictilar, 
&(£;) >  0  in R  for all

(.) < fJL < f l t =
P  +  (T +  l 

( f i  -  l)(rr  +  2)

!/</*'- 1 )

Hence it also follows that for any /л > Оц =  ( f i  — 1)~ 1/(/г-п [he solution 
is uniformly bounded: |0(£)| < /л in R +. Thus we have proved for the case 
(3 < tr +  1 the counterpart of Lemma 1.

To prove the counterpart of Lemma 2, problem (.8). (7) (lirst equation (5) is 
extended into the domain o f  negative values of в)  is reduced, after the change of 
variable ф =  \()\"(). to the integral equation

Ф ' ( 0  = т « т +  \)£\Ф\'  , r / i , r " V >  +

V  ' (
о LV/S

+  U r + \ ) £ ] N [  VN
./()

w N  \ф\ ITj(ir \ 1)
VtAUi

U r 4-1 )|/(rr f 1 )

which after the transformation

Ф , Л 0  ~  м  i , r " V > ,|/f l - r t  1)1/2

фс1г].

(30)

assumes the form

Ф'цШ  =  iiiitr +  \)/л1 '^\ф,А ,r/l,rtl,i///1 +  (rr 4- 1 )£ ‘ ,v x

x  [* VN ' ( fj ‘ , ~  / x 1 ' V m I , r / i , r M ’ -  l-A n l1"  .......

(3()')
As in the proof of Lemma 2, we have from here that the assumption i//M > 0

in R., for any / л  > 0 U leads, by the compactness theorem, to the existence of a

Фи dr].
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sequence {/x }̂. .such that г//м —* w > 0 for /х — д *  -> oc. where m(£) satisfies 
the problem

w 1 — —(rr +  1 ) £ 1 л [  rjN ] rt<lin" ' u (rj) rfrj. £ >  0 ;  i/)(0) = 1 .
./о

It is equivalent to the problem

N -  1
it" + --------- 1r  +  (rr +  l)i/'w ,,r ' (). £  >  (); m'(0) =  0. m(0) =  1. ( 31)

£

whose solution has a zero. This is proved in subsection 4.1 o f  § 3, where the case 
o f  arbitrary f i  > 1. rr > 0. is considered. Proof of Theorem 2 is concluded as in 
subsection 2.  using an assertion analogous to Lemma 3,

Uniqueness o f  the compactly supported self-similar function N =  \, will be 
proved in § 5. by analyzing a quasilinear partial differential equation. Dependence 
o f  0 (£ :  f i )  on f i  for /3 < rr +  1 is in principle the same as in Figure 40,

Having convinced ourselves of the existence of  a suitable function 0 V, let us 
now indicate the main properties of the self-similar .solution (1) for 1 < f i  < <г+  1. 
This is the HS blow-up regime, and the unbounded solution is not localized. This 
las't property follows directly from the change with time of  the radius o f  the .support 
of the unbounded solution iis in (4), Indeed, from (4) we obtain the following 
expression for |лу(/)|, the radius of the spherical front o f  the propagating thermal 
wave:

| . r , ( / ) |  =  £ o ( 7 ’() —  t )^1 ( ' M l , | / | 2 i ^  " I .

In view' o f  the condition f i < t r b 1. we have that |.i /(/)| —* oo as t —> 7'0 , 
that is, the thermal wave engulfs the whole space in linite time. Furthermore, it is 
not hard to deduce from (1) that in the HS-regime

n.vU. x) —* oc in R ,v. I —I• 7’(|. (3 2 )

From (4) we can also derive the analogous expression for the half-width o f  the 
spatial profile of  the wave:

|.v,./(/)| =  £ , ( 7 o  - ' ) l/f " I .  . /„.

where > 0  is a root o f  the equation <>s(£) ~  0.v(O)/2, By monotonicity of fly, 
£ ,  is unique.

It turns out that sufficiently general initial perturbations uu(.v) in the problem 
(0,1), (0.2) behave according to self-similar rules. For f i  < tr +  1 all unbounded 
solutions n(t. x)  satisfy (32 )  anti are not localized. The theorem concerning absence 
of localization for f i  < <r +  1 is proved in § 4. As an illustration, we show in 
Figure 41 the results o f  a numerical computation o f  the Cauchy problem (0 .1 ) ,  
(0 ,2)  for N =  1. It is clearly seen that here, in distinction to the S-regim e (see 
Figure 37),  as t 7', ,,  the thermal wave accelerates, engulfing and heating to 
infinite temperature all the space ( —oo < .v < o c ) .
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Fig. 41, Numerical manifestation of the HS~regime. The parameters arc: <r =  2. /3 =  5/3, 
N  -  1; 1; t, ^  (), 2; i 2 -  1.63, 3: t , = 2.030. 4: ц  -  2.320. 5: /, =  2.410. 6: i (, =  2.505

4 Localization in the self-sim ilar L S  blow -up regim e, /3 >  tr +  1

In this Subsection we consider sell-similar solutions for /3 > r r +  1, which illustrate 
even more clearly than in the S-regime the property of localization o f  processes of 
heat diffusion and combustion.

Let us consider the boundary value problem ( 5 ) - ( 7 )  for /3 > <r +  1. It is not 
hard to show that unlike the cases /3 =  <т +  1 (subsection 2) and /3 < rr +  1 
(subsection 3), for /3 > <r +  1 there are no generalized solutions with compact 
support, and fl.v has the following asymptotics:

<>f£)  -  C s £ 2/yl ('r,1,|(l +«/(£)). n(£)  0. £  - *  oo. (33)

where C's — C s (<r. /3. N)  > 0  is a constant (see Remarks). The fact that there does 
not exist a point £ =  £ц > 0  such that <>s(£u) =  0, (0i;W's-)(£o) =  0  and 0,v(f) > 0  
for () < £  < £ 0 follows directly from a local analysis of equation (5) in a left 
half-neighbourhood o f  £  — £ n.

Below we shall prove existence o f  the simplest monotone solution o f  the 
problem (5 )—(7). More complicated non-monotone solutions (.so-called c o m 

b u s t i o n  e i g e n f u n c t i o n s  o f  t h e  n o n l i n e a r  m e d i u m )  were studied in detail in 
[349, 391, 267 , 268, 274 , 90. 1. 2[.

As usual, side by side with the boundary value problem (5 )~ (7 ) ,  we consider 
the family of  Cauchy problems for the same equation:

'\в\'гв'У -  т в '£  -  +  | B f -  '«  -= 0. £  >  0. (34)

в(()\ц)  =  -  (); m -  _  ^ -  > 0. (35)

where fx > 0 is a constant. Let us show that for s'ome /i  the solution в  —
в (£ \ / х )  > 0 satisfies condition (7) at inlinity, and thus delines the required function
fl.v Observe the following property of solutions of the problem (.74), (35). Earlier,
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in the cases f i  ■= <r +  1 and f i  < <т +  1 it was shown that in the class o f  all 
solutions в(£\ /л) o f  the Cauchy problem for different /л > 0, there was always a 
family o f  strictly positive functions 0, oscillating around the spatially homogeneous 
(homothermic) solution в  =  On (see Figure 40). The oscillations there were 
damped, and their amplitude deereased with f ,  which ensured strict positivity of 
the solutions. For f i  > cr +  1, when m  > 0, this, in general, is not the case.

For example, for N  =  1 the identity (29) ensures exactly the opposite, i.e,, if
for some /л >  0  there exists a solution 0 =  f l ( f ;  /л) >  0, which oscillates about
в  =  0 ц .  and f i . f i  ( f i  < f : )  are any two maximum (minimum) points, then

0(£\'./л) < f l ( f : ' ./х) (0(^\‘.fj.) > (HZi './j .))- (36)

We shall take into account the following easily established fact: if в(£\/л)  —> ,v
as f  ос (,v > 0), then ,v =  0  (to prove this, it suffices to analyse the equation
locally in a neighbourhood o f f  =  oo (see [1. 2 1)).

I L iu ec irka t ion  timmicl в  =  Оц

A fairly precise picture of undamped oscillations for /л sufficiently close to 0ц  
is provided by solutions w(f) o f  the problem obtained by linearizing the original 
problem around the homogeneous solution в  =  0 U.

Let us set

« ( £ / * )  =  в „  + е ь ф .  f  > 0; tt„ =  ( f i  -  l ) " l/,/,_" .  (37)

where e  > () is a constant, which plays the role of a small parameter in the sequel. 
Then, after substitution of (37) into (34),  (33) we obtain the following problem 
for i ' ( f ) :

On ~  m i f f  +  i> =  е Ф е (ь) .  f  > 0, (38)

v(Q) =  o, o'(0) = 0, (39)

Here il>f (u) : C 2 —> C  is a bounded quasilinear second order operator. Boundary 
values v in (39) and /л in (35) arc related by

f i  — в  к  -1- е р .  (37')

From (38) it follows that by continuous dependence of the solution o f  the 
equation on a parameter, for sufficiently small e  > 0  the solution u(f)  o f  the 
problem (38), (39) is close to the solution o f  the corresponding linear problem:

» н  ( f W ' У ') ’ -  m.v'f + v = 0. f  > 0. (40)
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y(()) — у ф  0, y'(0) = 0. (41)

Because o f  that, let us consider the problem (40), (41) in more detail. The 
change of  the independent variable

luir \ 1 /2
“ "// 1 „1/ M p  -  l ) 1- ' ^ ' "

• !/-
p - Ur + 1 )

reduces (40) to the degenerate hypergeometric equation

vy'w  +  .v7,<f -  V) ~  “ У =  0 . 77 > 0 ; v(0 ) -  i'.

(42

(43)

where c  =  N /2. a  —- — 1/(2»/) =  —(/3 — \)/\P -  (<r +  1)|. Then the second 
boundary condition assumes the form

v ' !2s',t( v )\4--() =  o.

Therefore a suitable solution o f  (43) is one with a bounded derivative y'; (0). It 
can be written down in a convergent Kummer series [33, 317):

у  (7 7 ) = v
а г/ ti(ti +  \) r/- ct(it +  1 ) (a  4- 2 ) 773

с  1> +  ( ' ( с  +  1)  21 c(('  - f -  1 )(<■ +  2 )  3!
(44)

which defines the degenerate hypergeometric function

v(tj) =  vMUi, i\ rj) — ve4 r*— — -vr— f r' " 'О -  л)" 1 г/д,
I (<■ -  r / ) l  (а)  . / о

In general, the function (44),  and thus the solution y(£) o f  the problem (40),  (41), 
is non-monotone. In the cases when

-  a =  ( P -  \)/\P -  (< r+  1)| =  K.  (43)

where К  > 1 is an integer, the function y(rj)  is a polynomial o f  degree K.  since 
the series (44) terminates at the (K  +  l)-st term. Furthermore, it is known [ 3 3 1 
that it has for 77 > 0  exactly К  “zeros” . Equality (4,3) holds if

P  =  P k =  -  tA t  +  т А - у  Ur +  1). К  -  2 , 3, . , ,  (46)

(for convenience we set P\ — 0 0 ). For example, if p  =  P :  =- 2<r 4- 1, then

v(7?) =  „  ^ +  _ ± _ ^ )  . v > { ) .

and therefore the equation у (77) — 0 has two positive roots:

777! =- [л' +  2 ± ( 2 (Л' +  2 ) ) 1/- ] / 2 ,



5 I Three types of sell-similar blow-up regimes in combustion 193

lo which there correspond the following zeros o f  the solution y(£) of the original 
problem (40), (41):

fo  = 2 v / 2 (2 rr )  ( ^ ) ' /: > 0.

The equality (45) determines the number o f  zeros (and thus the nature o f  non- 
monotonieity. or, we might say, the degree o f  complexity) of the function у for 
all values f i  > tr +  1, Namely, for any ft к , i 5  f i  < ( i s  (K  — 1 , 2 , . . , )  the 
function y ( f )  has exactly AVfeeros in £ > 0 (see [35|, where approximate formulae 
for computation o f  zeros and positions of extremum points of the function y (£ )  
can be found).

Combining all the eases considered above, we obtain a general formula for the 
number o f  zeros of the solution o f  the problem (40),  (41):

К  = —[«|. a =  - ( /3 -  l)/|/3 -  (rr + 1)| < 0, (47)

which is valid for any /3 > <x +  1. By (47) К  > 2 for all /3 > <r 4- 1, that is. 
the solution y(£) will always be non-monotone2. Let us note that the oscillations 
around zero are undamped (this follows direetly from the form of equation (4 0 )) .

Returning to the original linearized problem (38).  (39), we see that by c o n 
tinuous dependence on the parameter e  > 0 in a neighbourhood of  e  =  0 o f  the 
solution t> on any compact set, there exists an e  > 0  small enough, such that for all 
|r| £  1 the function v(£) has for £  > 0 at least A" (A" >  2) zeros. For the original 
problem (34), (35) it means that for any 0 < 0ц  -  e  < p  < в п +  e  the solution 
f l( f ;  /x) has for £  > 0  at least К  extrema. In particular, if Оц < p  < +  e ,  then
there exist at least |A"/2| minima and К  -  |A"/2| maxima, for which (36)  holds.

2 G lo b a l  p ro p er t ie s  o f  the so lu t ions  O (f' .p )

Thus, we have determined the behaviour of IH^'.p)  for all p  close to в ц .  Let us 
show now that for large enough p  the function l ) ( f ' ,p )  vanishes at some point. 
For that we could use the same method as in the ease [i < ir +  1 (though due 
to (36) some additional difficulties appear). However, for N  =  1 this result can 
be obtained in a much simpler way. In the following we coniine ourselves to a 
fairly brief analysis o f  the ease N  =  1. and at the same will present some results 
pertaining to the multi-dimensional ease.

L em m a 4. Let N =  1, /3 > i r  +  1, Then f o r  al l

M 2  P
(3 +  ir -F I

_ ( Т Г ^ Т б г Т 2 ) _

1/1/3 I >
(48)

2Lci us note ihai in the ease of a semilinc-ar equation (rr — 0), A' ~  I for all /3. This 
conclusion plays an important pan in S 7.
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th e  so lut ion  в  =  0 (£ \ p )  o f  the p ro b lem  (34),  (35) v an ishes  at s o m e  p o in t  an d  h as  
n o  extrem a in \£ > ( )| 0 (£ {д )  > ( ) , ( ) < £ <  £\ (that is, it is Strictly decreas ing) .

P roo f,  Lei us consider the identity (29),  which for N  =  1 has the form

1 Г*
-(|0|'гв ' Г ( £ ) - т  / ri(\e\ir( e ' )2) (r ) )d r i  +  Ф(|0(£)|) =  Ф (д ) .  (49)
l  Jl)

Here the function

Ф (м ) =
JU  l

has the same form as in the ease j i  < tr +  1 (see Figure 39),
Let us assume the opposite. For example, assuming that (48) is satisfied, let 

the solution в ( £ \ р )  have a point of minimum at £ =  £ .  < s c ,  where, naturally, 
в  <  в ц ,  Then, setting in (49) £ =  £ , ,  in view o f  the condition in > 0, we obtain 
the inequality Ф ( в ( £ ^ )  > Ф ( p i ) ,  and therefore we must have that в ( £ , \ р )  > 
p  > в ы , which is impossible. In the same way it is proved that for p  > p '  the 
function в (£ ;  p )  cannot be a positive solution in R + (i.e. the case £ ,  — -v is also 
impossible). □

In a similar fashion, we derive from (49)

C oro llary .  Any so lution  o f  the p r o b l e m  (5)—(7) sa t is f ie s  f o r  /3 > cr +  \ , N 
the est im ate

fl.s(f) <  p ’ =
/З +  r r + l  V nli 

((3 -  l ) ( r r +  2).

11
(50)

P roof.  Let £  — £ , be a point o f  absolute extremum o f  the function d s(£ )-  Setting 
in (49) first £ =  o o ,  and then £ =  £,., and subtracting the second equality from 
the first, we obtain Ф ((^ (£ * ))  < 0, which guarantees (50).  □

Let us move on now to prove solvability of the problem (5)—(7) for (3 >  <r~i- 1, 
N  =  1. Let us set X  =  { p  > в и \ there exists a compact set К  =  |(), £ -̂\, such that 
()(£', p )  >  () on К  and has at least one minimum point on A"). Then X  ф  0  (by 
the analysis o f  the linearized equation) and X  is bounded from above (Lemma 4). 
Therefore there exists

sup.N' =  0(1 б ( вц ,  oo). (51)

It is not hard to see that by the choice of вц the function в(£\вц),  first, has 
no minima for £ > () (this follows from continuous dependence o f  в (£ ' ,р )  on p  
on any compact set, where в  >  0), and, second, cannot vanish (see Lemma 3). 
Therefore в(£',вц)  is a positive, strictly monotone solution fl.s(£) o f  the problem
( 5 ) - (7 )  for 13 > ,r  +  1, N  =  1.
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Fig. 42. The function в  -  0(£; p )  for different p .  > <r + 1

In Figure 42  we .sketch the behaviour of the functions в(£\ p )  for different 
values o f  jj, =  в((): p)\ the thick line .shows the solution 0.s(£), which corresponds 
to /л =  в {) =  sup .A.

Thus, we have proved the following

T h e orem  3. Let (i >  rr +  1, N ~  1. Then the p r o b l e m  (3 )~(7)  h a s  a  strictly  
m o n o to n e  pos it iv e  solution.

Some additional properties of  the function fl.s(f) will be mentioned in subsection
4.3, as well as in § 6.

R e m a rk .  As we already mentioned above, in Theorem 3 we determine the simplest 
self-similar solution; in fact the problem (.5)--(7) has at least К' =  К  — 1 different
solutions fl!;, в\ ..........0^ ‘ . Each one o f  these has one more extremum point than
the preceding one. Among these there arc at least \K'/2\ solutions for which 
0S(0) < 0 If (£ =  0  is a point of minimum) and at least К' — [Л"/2| solutions 
.such that 0.s(O) > в и ( f  =  0  is a point of maximum). Proof of existence of these 
solutions follows the same lines-, the set M ф  0  now including values of p  for 
whieh the corresponding function p )  has a more complicated spatial profile 
than the desired function Os(ij) (see |1, 2|).
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3 The m iilii-t limensiomil ca se ,  N >  1

The method o f  proof of Lemma 2 can be used to show quite easily that whether or 
not a statement analogous to Lemma 4 holds for N >  1 depends on the properties 
o f  the solution of  the stationary equation

1 , 1Л " / л '  +  !/.|̂  . / =  (K f  > ( ) .

£ v ' (52)

/(О) =  1, / '(0 )  =  0.

Indeed, let its rewrite (30')  in the form

Ф 'М ) =  - U r  +  1 > f1 - v f  ' \Ф,Аи< Uri" Uurt" > h ‘h 1 +  M1 ^ G p / v .  (53) 
.In

where t//M(0) =  1, i//',((>) =  () and G(i// )̂ is the following integral operator, which 
is bounded in C:

G(i/Jtl) -  m(<r+ l) f| i/ /M| l,!ur"\litt +

+  (<r +  l ) f '
P

m N \ Ф , Л
(T/(<r 4 I )

Фм illh

which is not a contraction in a neighbourhood of r//,, =  0.
Unlike the case /3 £  гг +  1, for (3 > rr 3 - 1, a priori nothing can be said about 

boundedness of t/q, and ф' on compact sets, since possible oscillations o f  f l( f ;  /л) 
around в  =  в и arc undamped (see (36 )) .  Therefore we shall use a method based 
on continuous dependence of i/q, on /л in a neighbourhood of /л =  oo.

For /л =  oo, (53) becomes formally the equation

i///( f)  = - (r r+ l ) f '  л ' /  Т7Л ' > 0;
./о

i//^(0) =  1. i/Z-JO) =  0.

and its solution coincides with the function |/|"/'(f), where / ( f )  is the solution o f  
the problem (52). In § ,3 we shall show that for any (3 < (rr +  1 ){N  +  2 ) / { N  — 2 ), 
the function /’( f )  o f (52) vanishes at some point f  =  f ,  > 0 ,  and, moreover, 
/ ' ^ ( f , )  < 0 ,  Therefore on every compact set K t =  |(), f ,  — e|, e  > 0, on which 
'Atc > 0 there is continuous dependence o f  / , , (£ )  on /л in a neighbourhood of 
(л =  oo, that is, i//^(f) is close to i//^(f) on K f for all .sufficiently large /л >  0. 
Let us fix a sufficiently small e  > 0, Then

Ф,ЛР, ~  e )  ' ( f 4 -  e) ,  i//^(f4 -  e) -> (/ "  " ( £ /  -  e)) ' < 0  as д  ->• oc.

But С ( ф ц )  =  G (||i///I ||^ 1"4 " )  -> 0 as ||(/v ile  —» 0. Therefore in order to extend
from a point f  =  f 4 -  e into a neighbourhood of f  =  f t we can use the
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Schauder fixed point theorem. Then by "smallness" oi' G i f ^ )  the derivative i 
does not change significantly and as a result !//,,(£) will be zero if  p. is sufficiently 
large ip }~  & is a small number). This fact allows us to prove the following result.

T h e orem  4. Let <r +  1 < /3 < o o  f o r  N  — 1 o r  N =  2 a n d  <r +  1 <  /3 < 
(tr +  1 )( jV +  2 ) / ( N  — 2) f o r  N >  2. Then the p r o b l e m  (5)—(7) h a s  a strictly  
pos it iv e  m o n o to n e  solution.

R em ark . In the ease /3 > (<г +  1 >(/V +  2 ) / ( N  — 2) ( the solution /'(f) of (52) 
is strictly positive in R + (see Lemma 1 in § 3) and the question o f  existence o f  
f ly (f ) remains open.

In the sequel we shall need the following surprising property of  the self-similar 
function fly.

T heorem  5. Let  cr ~b 1 < /3 < (гг +  1 ) N / ( N  — 2) t a n d  let  fly (f) h e  an a r b i tra ry  
so lution  o f  the p ro b lem  (5 )—(7). Then

/3 — (гг +  1) , 1
F i t :I s  P — — ± # s ( t ) £  +  yfl.<(£) '• (), f  > o. (54)

Inequality (54) displays some important properties o f  the unbounded self-similar 
solution (1),  (4). For example, from it immediately follows

C orollary  1. F o r  try-  1 < /3 < (<r-f 1 ) N / ( N  — 2) t the solution  ttsU. .v) is c r i t i c a l , 
that is.

— ttsU, -V) s  (7'o — /) l/l f̂ 
hr

> 0, (55)

t 6 (0, 7'u), .v £  R  , 

a n d  th ere fo r e  f o r  any  t £  ((), 7'o)

ns a ,  X )  < u,v(7'n , л) =  C y | A | - W  i,M л s  R a'\|0|. (56)

w h ere  C s =  C s (rr, f i .  N)  > 0  is the constan t  o f  the  asym ptot ic  expunsiott  (33).

Integrating the inequality (54), we obtain the following estimate, which again 
demonstrates strict positivity o f  fl.y(f) (it correctly reflects the asymptotic behaviour 
of the function f l . s as f  oc).

C orollary  2. Let tr +  1 <- /3 < (<r +  1 ) N / ( N  — 2 ) , .  Then f o r  a l l  f  > f o > 0 

f l . s ( f )  >  < > s ( b ) ( £ l h ) ~ llUi { ,rU)'[-
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P r o o f  o f  T heorem  5. Let its rewrite equation (5) in the form

0"s +  rr^fl. 'y) +  «?  =  /*'(£)■

Let /•'(£ i) £  0, 0y(£|) > 0, > 0, Then fl'v(£|) < 0  and therefore

(57)

/■’'(£  i) = fl.?(£i) +
/3 -  (г +  1 fl's(g O ' 

/3 -  (гг +  1)
<

f l? (f  i ) +  T~
f i

N  -
2(r

/3 -  (rr + 7 ) ^ ( f i )  ■

as (/3 — rr +  1 )/[/3 -  (<r +  1)] > /V -  1 — 2rr/[/3 -  (rr +  1)] for rr +  1 < /3 £  
(< г+  1 ) N / ( N  -  2) |.

Then from (57) we have

?* (£ ■ )
»>£i

< H f i )  < 0.

si nee
fl's ^ 1 1

f l y -  ш(/3-1)£, '
From here it follows- that /*"(£i) <  (), so that the funetion /-’ ( f )  is decreasing on an 
interval (£\. +  8),  8 >  0, where

el ± i l
m i

T”(£) < F '( i)  < <>.

Therefore /■'(£) < 0 for any £ > i\ .  But by (57) it also means that

' ^ ' v ) ; +  (>s  < £  > fi-. < <>■

The hist inequality, under the assumptions we have made, ensures that the 
funetion A,y(£) vanishes at some point and, consequently, is not a solution of the 
problem (5 )—(7). This is espeeially simple to prove when N — 1, 2,  /3 > rr +  1. 
Analysis of the ease N  >  3 uses the same method as in the proof o f  Lemma 1 in 
subsection 4,1 in § 3. □

4 P rop e r t i e s  o f  the s e l f - s im i la r  LS-ret>ime

Let us again write down the expression for the time dependence o f  the half-width 
o f  the self-similar thermal structure:

!л-,у(/)! =  i A T o - t ) ni, о < , < 7-(1,
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Hence we have that in the LS-regime (/3 > <r +  1) the half-width decreases 
with time and !-Ь./-(7'0 )| =  0. Thus intensive combustion bakes place in an ever 
shrinking central region of the structure. As a result blow-up occurs only at one 
point; in the гсьч of the space the temperature is bounded from above uniformly in 
t by the limiting prolile u.y(7^ . .v) (see (56 )) .

Thus the self-similar solution is effectively localized. Strict localization, how
ever, cannot obtain here, since a s(/. л) is strictly positive in (0, 7'o) x R w. Numer
ical computations show that self-similar estimates hold, and, moreover, testify to 
the occurrence o f  strict localization in the LS-regime (for a proof see § 4),

An example of such a computation is presented in Figure 43, Here Щ)(л) is 
a compactly supported (not self-similar) initial function. Up to the time t =  /| 
the initial perturbation spreads out. then reaches its r e so n a n c e  length  (t =  ь ) .  
after which fast growth o f  the solution starts. It is clearly seen that as t - *  
combustion occurs in an ever narrowing central region of the structure. During 
the process the front points of  the solution «(/. .v) hardly move at all and heat is 
localized in the fundamental length Li.s o f  LS-regim e. We emphasize that here, 
unlike the situation in the S-regimc. L i s  depends on the initial perturbation f(()(#). 

Figure 44  shows the LS-regime, which is close to the self-similar one as t —> 
T 0 , which develops from a spatially homogeneous initial perturbation ito(x) =  1, 
due to instability of homothennic combustion with finite time blow-up.

Fig. 43. Numerical manifcsiauun of ihc LS-regime, The parameters arc: it  =  2, /3 =  5, 
N =  L l: t, =  1.14. 2: ь  =  2,34, 3: / ,  =  ,3.559, 4: =  3,5712, 5: A =  3.5714
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Fig. 44. Numerical mamfcsr.uiim nl' ilic I.S-rcgime. The parameters arc; <r =■ 2. (3 — 4. 
N  =  I; 1: 1{ 0.2824. 2: ь  = 0.28.358, 3: /, -  0.28365. 4: Л, -  0.283674, 5:
/5 =  0.283674. 6: /„ = 0,28368 Г

§ 2 Asymptotic behaviour of unbounded solutions. Qualitative 
theory of non-stationary averaging

In this section we consider questions connected with asymptotic stability o f  self- 
similtn' solutions of  the problem

A( f f ) =  и, ~  V ■ (n,rVu) -  =  0. t > 0, г 6  R n . ( 1)

i/((), A) =  //„(A) > 0. а б R '  . //„ б C '(RW). б W ‘ ( R a'). (2)

We shall be interested in the following question', under what conditions does
the unbounded solution o f  the problem, id/. v), aequire in the domain o f  intense
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heating the spatio-temporal structure characteristic o f  the .self-similar solution

i,s U. x)  =  (To -  П lli,i 4 s - ( f ), f  =  .v/( T о -  

in =  |/3 — ( rr +  1) I/12(/3 — 1)].
(3)

Difficulties of the analysis o f  asymptotic behaviour o f  unbounded solutions are 
related to the speed of evolution o f  the blow-up regime, which is not Stable with 
respeet to arbitrary, even infinitesimally small, perturbations o f  the initial function
U()(.V).

Mere we present the results of a qualitative analysis. Qualitative theory allows 
us to obtain a number of  quite subtle results: for example, for (3 •> <r +  1 +  2 /N  
we ean find a family o f  global solutions of the problem (1).  (2), which correspond 
to sufficiently small initial functions //«(.v). At the same time we show that for 
/3 < 1 +  w +  2 /N  there are no global solutions n ф  0. These results are justified in 

S 3.
The idea of the averaging method consists o f  reducing the problem (1) ,  (2) for a 

partial differential equation to a system o f  two ordinary differential equations with 
respeet to certain parameters that characterize the evolution in time o f  the spatial 
profile of the thermal structure. As such parameters we ean choose, for example, 
the amplitude and the half-width of the structure, or the amplitude and the position 
of the front o f  a radially .symmetric structure which has compact support in л‘. The 
latter averaging, "amplitude-front position" allows us, in particular, to describe 
the localization o f  unbounded solutions in the S- and LS-rcgim es. and absence of 
localization in the HS-regime.

1 T he non-stationary  averaging “ am plitude-half-w idth”

Let the initial function » (1 <= /,' ( R ’v ) in (2) have compact support and be elementary 
in the sense that u0(.v) has a unique maximum at л =  0. We shall take nо( .v) to 
be close to a radially symmetric function. Then we should expect that the solution 
u(t,  x)  will also be almost radially symmetric and that the half-width o f  the evolving 
thermal structure will be approximately the same in all directions. Taking this as 
our departure point, let us seek an approximate solution o f  the problem (1) ,  (2)  in 
the form

ч(1. .v) =  i//(r)0(£). £ =  ( ! .vj\/ф( 1 ) ......... \хн\/ф(1 )). (4)

where ф(!)  and ф(!)  are. respectively, the amplitude and the half-width o f  the 
structure, which depend on time, and 0(tj)  is some fixed function of compact 
support, which is monotone decreasing in all it.s arguments and such that 0 (0 )  =  1, 
0 " + l e f / l (R Aj .  " .—  -
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In its form (4) is the same as the self-similar solution (3),  which was studied in 
§ 1, where the specific form of the functions i//(г). ф ( 1 ) is determined by substituting
(4) into the original equation (1 ),  Therefore the self-similar solution (3) satisfies 
the problem ( 1), (2 ) for some specially chosen initial functions uo(.v).

In our case u0 is, in general, an arbitrary function; therefore we do not require 
that the approximate solution satisfy equation (1) in strict sense. Instead, we shall 
demand that (4) satisfy the two following equalities (conservation laws)'1:

/ A (u(r. л')) </.v =  0, / A (u(t,  .x))n(t, x) d.x =  0, t >  0, (5)
./to ./«■'

After integration by parts, these equalities have the form

=  -  [ i f 'IV»!2 </.v +  I|!<(OII^/!.IiiK.%). (7)

In the first equality, which is the energy equation, there is no contribution from the 
diffusion operator, while in the second there are contributions of both the source 
term and the diffusion operator.

Substitution o f  (4) into (6 ), (7) gives us the following system o f  ordinary 
differential equations for the functions if/(t), ф { 1 )\

■— |l //(/)r/tW(/)] =  Р\фР (1)ф" (t). 
tit

~ | i !r(t)il>N(t)\ -  -1>2ф ' г+2( П ф "  2(n +  i q i / / 1 *' ( / )</>( / )  
ilt

where iq , iq ,  rq are positive constants'.

( 8)

( У )

J K*

j K„

.fR* в 2 ‘ i t

( 10)

Here wc arc assuming that the function в  in (4) is such that all these expressions 
make sense.

Mnsiead of ihc.se iwo laws we could lake nihers; for example, insiead of ihe second one
wc could lake die idcmiiy (A(u(t. .»•)),.v) = () and reiain the lirsi one as ii is ihe simplcsi
possible. This does noi alfcci ihe rcsulis of ihe analysis below.
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It is not hard to resolve the system (8 ), (9) with respect to derivatives:

Ф' =  [(*>ч -  v\ )<A^('M >]ф2 -  t-o] ,

Ф' r _
N<t>

^(2^1 -  i>T,)\ji, i~Ur+uф1 +  to j . t >  0 ,

while from ( 11), ( 12) we easily pass to the single equation 

ihji ф иф<} - {"*''>ф1 -  1

(1ф
- N

ф ЬфР~*'г+ 1)ф2 — 1
, ф > 0 , ф > о.

where
U  =  (Чт,  -  ( ' I  ) / ( 0 ,  Ь  =  ( V t, —  2V\ ) / V 2 ‘

We shall take the condition t-o >  2v\ to hold, so that

a  > 0 . h >  0 .

( 1 1 )

( 1 2 )

(13)

(14)

(15)

The inequalities (15) are, generally speaking, necessary for (11 ) ,  (12) to admit 
blow-up regimes.

Let us move on now to analyse the equation (13), which describes the depen
dence o f  the amplitude o f  the thermal structure on its half-width,

I S -regim i’, (5 ~  <т +  1

In this case equation (13) has an especially simple form:

с]ф

tUj)
- N

ф и ф 2

ф Ьф2
ф >  0 , ф >  о.

It is easily integrated, and its general solution has the form

C 0 =  ф - ' < Г "
V2 -  ZV\ -Л//-(/|2<м~2/-(>|

Ф\

(16)

(17)

where Co >  0  is a constant determined by the initial conditions: i f  (//(О) =  фо >  0 
and ф (0 ) =  фо > 0 , then

Со =  Фо V o "  11 -  ------- ~ ф \
Л/|-(/|2Им-2/'()|

where ф \  ф  г '2/ ( г м  -  2г- 1 ). For (17) to correspond to a blow-up regime, we have
to demand that die inequality i>y > 2p \ holds, that is, that both conditions (15) are
satisfied,
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We are in a position to cheek how exact the averaging is. using the self-similar 
solution o f  S 1 lor the case /3 =  it +  1, N  =  1‘,

1Л' ( 2{(T + J )  7ГЛCOS"
щ и . х )  =  i  (7 '° 0  V (ГКГ  -  2 1

l  0, |.v| >  L<;/2\ 0  <  / <  '/"о.

I/'Г
l-v| <  /-,s72.

where LlS =  Ът(<т +  l ) l/2/<x is the fundamental length.
Taking the precise structure of (18) into account, let us set

m  =
eos2/" (7г £/2 ), I < 1,

0, lfl>l.
to which corresponds the amplitude

2 ( ( r +  1)
ф(1) =

as well as the half-width

ct( ct +  2 )

l/V
(7’0 -  !) -1/. t

Ф(1) =  Ц / 2 .

For the function (19) the coefficients rq, in ,  in  have the following 1‘onn:

9(r +  2
in  = ------------------- , in

2 { it +  1) ’

r r  rr 3- 4

rr(rr -)- 2) ’ ’ 1 rr +  2

(18)

(19)

( 20 )

( 20- )

( 21 ;

(let us stress ihat here in  > 2 i'i ,  so that the inequalities (15) hold). Subsiitution 
of  the functions (20), (20')  into (16) leads to an identity. Therefore, the averaging 
method gives us an absolutely exact description of the self-similar solution (18).

A clear understanding of the evolution of the thermal structure (the dependence 
of  the amplitude on the half-width for differem initial data) can be obtained from 
considering the behaviour of phase trajectories of equation (16), which are depicted 
schematically in Figure 45. The thick line denotes the trajectory

Ф =  Ф.Ч
m 1/2

IA - !'l ,

which corresponds to the self-similar solution of the S-regime (it is also the isocline 
of infinity of equation ( 16)) ‘, the dashed line denotes the nullcline ф =  a  1/2 < </>v.

That ligurc .shows, in particular, that for /3 =  rr +  1 all solutions become in 
fact infinite in tinitc time, and as the amplitude ф и )  grows, all the trajectories 
converge to the self-similar one: ф(!)  —>• r/>s-, t —>■ T 0 . Using this conclusion, we 
immediately obtain from ( 11) for /3 =  rr +  1

ф'(П ~ i/ / '“ ( O n ,  i -  Г (1.
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that is,
| / г ' ( / ) ~ « г (' | ) ” 1/,,( Г ()- / ) - 1/",  t - *  T 0 ,

which is the same as the dependence on time o f  the amplitude o f  the self-similar 
structure (see § 1). If for N  =  1 we take the value of rq from (21),  then we obtain 
precisely the expression (20 ) lor the self-similar solution.

In conclusion, let us remark that the results of numerical computations agree 
well with the phase plane picture of Figure 45.

2 HS-n'ginw. f i  < <t  + 1

Let us first determine the general solution of equation (13) for f i  ф <r +  1. Let us 
set ф1* ' {" ' и фг =  z(r/>). Then from (13) we obtain a separable equation:

2 -  N { f 3 ~ a ~

the general solution of  which lor f i  ф <т +  1 +  2 /N  has the form

( 22)

_____f i  -  ( <r +  1)____
(ффы ) Л/|/3-( r r +  1 + 2 / / V )| L 0 -u r H )^ :  - d f  =  Co. (23)

where

i ’ 2 f i  — (fr -1- 1 +  4 / N )

i'i . !'i f i  — (fr 4- 1 +  2 /N )_

f 3 - ( t r +  1) _____

N \ P -  (< r+  1 +  2 //V) P

г'з f i  — (гг 4~ 1 +  4 /N )  

~  ^ M ^ T l  + 2 / N )

i
(23')
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Fig, 46 , Involution of trajectories of equation (13) in the HS-regime ( f i  < rr +  1)

Thus, let /3 < it +  1. Using (23),  it is not hard to draw the phase plane of 
equation (13). For eonvenienee, we have shown in Figure 46  the nulleline

ф =  фп(ф) =  a  -'/IP-K'+itl^-a/i/s-ur+iM (24)

and the isocline o f  infinity

ф =  ф ^ {ф ) =  b ~ 'nii un  "I .  (25)

The thick line is used to show the separatrix

ф =  фя (ф) =  r/'/ld-OM n i ^ i / i/ j - t ^  ni_ (26)

which is an exact solution o f  the equation. In (23) to this trajectory there 
corresponds the value Co =  0. For /3 < <r +  1 we have the inequalities 
Фоо(Ф) < Фя(Ф) < Фо(ф)< which define the nature o f  the evolution of trajectories 
in Figure 46.

Thus, as can be seen from that figure, in the HS-regime all the trajectories 
converge as ф —>• oo to the separatrix ф — фя (Ф), that is,

ф и )  -  (/|/Ft-i'rH)i(./()- 2/|/i -(,r+ i)iu ) _ t (27)

Substituting this estimate into equations (11),  (12).  we deduce that at a fully 
developed stage of evolution

ф(1) ~  ( 7’n — r) l/(/i ф и )  ~  (To ~  (2 8 )

that is, as t —>• 7',j unbounded solutions develop a spatio-temporal structure which 
is closed to the self-similar one.
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Fig. 47. Evolution of trajectories for j )  e  ( a  f  I . t r -f I + 2 / N )  (LS-rcgime)

J  LS-reg im e,  /3 > tr +  1

As can be seen from (23),  for /3 > ir +  1 the phase planes are different in the 
cases tv d~ 1 < f3 <  tr 3- 1 ~t~ 2 / N . f3 ~  tr -t- 1 ~t~ 2/Л/, and f3 > tr 3- i -t- 2 /Л/.

The c a s e  <r +  1 < /3 < <r +  1 +  2//V: u n bou n d ed  so lu t ions . Figure 47 shows 
the phase portrait for /3 e (<r +  1, rr +  1 +  2 /N ) .  Here the separatrix ф =  t/̂ fc/») 
(sec (26))  lies above the isoclines (24),  (25).  With time, all trajectories converge 
to the separatrix, that is the asymptotic equality (27) holds, so that as t —»■ T the 
estimates (28) are satisfied. Thus for /3 < t r +  1 +  2 /N  all solutions o f  the problem 
are unbounded and as t 7'(j  their evolution follows that of the self-similar 
solution.

The c a s e  j3 ~  tr +  1 +  2 /N :  u n bou n d ed  solutions.  For /3 =  ir +  ! +  2 /N  
equation (2 2 ) assumes the form

^  =  2 ( / , - c , ) ~ T

Its general solution is determined from the algebraic relation

ф * { 2 о )r//“ exp | —- — ф' 2ф' * j  =  C 0 > 0. (29)

For /3 =  tr +  1 +  2 /N  the phase plane of equation (13) has no separatrix; this
follows from (29). As a > b , ф о ( ф )  <  and the trajectories behave more
or less as in Figure 47, except that in this case there is no special trajectory ф $ .
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Thus, for /3 =  <r +  1 +  2 /N ,  as before, all the trajectories correspond to unbounded 
solutions of the problem. Moreover, as the amplitude ij/(t) grows, the half-width 
ф(!)  decreases.

Let us find out what is the asymptotic behaviour of ф. ф as t —»■ T 0 . From (29) 
or directly from equation (13) it is easy to deduce that as the solution grows without 
bound, the relation between ф and ф can be determined from the approximate 
equality

cL t  ~  _ N t cl
d<l> ф b

(30)

that is,
ф(ф) ~  В иф (). (.30')

where Bo > 0  is a constant that depends on the initial conditions. The dependence 
(30')  is not a self-similar one, which corresponds to the asymptotic equality (27). 
since here

(t 2
N -  > --------------- —  =  N

b /3 — (<r + 1)
(.31)

(we remind the reader that a  > b by (14)) .
The estimate (3()') gives us the following asymptotic expressions for the am

plitude and the half-width of the thermal structure as t — > 7’();

i/ /(0  ~  (7o -  О W  " .  ф(!)  ~ ( 7 „  - / ) " .  (32)

where
\ N u

' 1
a  t

a  = [Т (/з- 1) -  1 HE T 0Vrr+2 ) - 1

Let us compare (.32) with the self-similar expressions (28). The amplitude ф(1) 
is the self-similar one (there is a rigorous justification for that), while the half
width ф ( 1 ) behaves as / - *  У’0 in a non-self-similar way, since in general a  is 
different from the exponent |/3 — (tr +  1) |/|2(/3 — 1 )| =  1 /(N<r + 2 ) ,  which appears 
in (28).  Thus there arises the question: what invariant or approximate self-similar 
solution describes the asymptotic (/ —» 7‘„ ) stage of the process?

Therefore for /3 =- <r+  1 + 2 / N  we can in principle expeet unbounded solutions 
which evolve not according to self-similar laws at the asymptotic stage. Let us 
note that in (30')  and (32), apart from the non-sclf-similar exponent, we also have 
significant dependence on the initial conditions (through the constant Bo in (3()'). 
which differs from one trajectory to another); we recall that for /3 < <r+  1 + 2 / N  all 
the trajectories converged to the self-similar separatrix (26) with a lixed constant 
(/ determined from (2.3').

At this point it has to be stressed that the averaging theory considers solutions 
with compact .support, n(r, ■) e B I (R 'V) for any t < To. It is well known (see § 1) 
that for /3 > <r+  1 self-similar solutions its do not have compact support; however.
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%
t
! k

0 9

Fig. 48. LS-regime. (3 > <r +  I 4- 2/N

if <r +  1 < (3 < (t ~t~ 1 +2//V, the inclusion tts e L { (R A’ ) still obtains, that is, n,s have 
linite energy. This, apparently, can guarantee self-similar asymptotics o f  eompactly 
supported solutions. For (i =  ir +  1 +  2 /N  (and a  f o r t i o r i  for (3 > ir +  1 +  2 /N )  
the energy o f  its is inlinite4 and therefore ns does not necessarily describe the 
asymptotics o f  a solution with compact support and linite energy.

The c a s e  [3 > <r +  1 +  2 /N :  nnlnm ndod solutions.  In this case there exists a 
separatrix (26 ) .  and in the phase plane it is placed so that ф%{ф) <  i//o(</>) < ф-^(ф), 
This determines the behaviour of trajectories in Figure 48, The asymptotics of  
unbounded solutions as / —* V‘(j  here is the same as in the case /3 — ir +  1 +  2 / N , 
that is. it is noii-self-similar (sec (30') .  (32)) .

The e a s e  /3 > t r +  1 + 2 / N :  g lo b a l  so lutions.  From Figure 48 it can be seen that 
for (3 > ir +  1 +  2 /N  there arc initial conditions to which there correspond global 
solutions (that do not blow up in linite time). The corresponding global trajectories 
lie below the separatrix ф =  фг(ф).  As / —> ос, the amplitude o f  the global 
solutions goes to zero, while the half-width grows without hound (extinction). A 
rigorous construction of the family o f  global solutions is presented in § 3.

Let us determine the dynamics o f  this extinction process. First o f  all let us 
note that to the separatrix ф =  фs(Ф) there corresponds a thermal perturbation for 
which

■'This follows from the nature of asymptotics of %(£) as (; oc (see § 1): t>s(£) —

(33)

C s .r -’ /l o o m  hi
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In § 3 we shall construct a family of global self-similar solutions of  equation (1) 
with the spatio-temporal structure of  (33),  so that the separatrix i// =  фа(ф)  is the 
image of some self-similar solution.

What is the behaviour as / —> oc  o f  the remaining global trajectories? From 
(23) it is not hard to deduce that for them

ф{ф) ~  Д)Г/ГЛ , ф - »  o o .  (34)

where the constant Д , .  which depends on initial conditions, has the form

,У[/)~цг + 1-|-2/,У)1
D(l =  \ С\)сГ "| i , (35)

Substitution o f  (34) into the original system (11).  (12) gives us the following 
asymptotics o f  global solutions;

I//(/) ~  y-/V/'/Vrr., ф {!) _  , 1/(Л/.г + 2)1 , ^  (36)

It is clear that the dependence in (34) corresponds to the energy conservation 
law (<7/<7/)(i//(/)r/>w(/)) ~  0 (see (8 )), i.e.. as / —>• oo the self-similar solutions are 
close in a certain sense to the self-similar solutions of the nonlinear heat equation 
without a source term.

и, =  V -  (» "V u ) ,  / > 0. ,v б R ,v (37)

(for a proof o f  this fact see § 3). Another indication of this is given by the 
asymptotics (36) (a self-similar solution o f  equation (37),  which satisfies (36).  is 
given in § 3, Ch. 1),

Therefore for fi > it +  1 +  2//V, the separatrix, to which there correspond self
similar solutions, is unstable in the class o f  both unbounded and of global solutions, 
Therefore it has to be expected that at the asymptotic stage the combustion process 
evolves according to different, non-self-similar rules, and. as shown by averaging, 
the form of the limiting thermal structure depends on initial data.

These arc the qualitative properties of the evolution of thermal structures ini
tiated by an elementary perturbation with finite energy, As shown by numerieal 
experiments, this method of “amplitude-half-width" averaging affords us quite a 
precise description o f  the behaviour o f  unbounded solutions on a large time interval, 
The question of the nature of the front motion, and thus the question o f  combustion 
localisation, remain unanswered, To that end, we present below another method 
of averaging.

2 N on-stationary averaging “ am plitude-w ave front position”

Let an elementary initial perturbation »o e L l (R w) be radially symmetric and have
compact support, Then и  =  u(i. r), r =  |.v|, for all / б  (0. To). We shall look for
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an approximate solution o f  the same form:

11(1 . ,v) =  ф(1 ) в (€ ) .  £  =  W/g(/), (38)

where фф) > () is the amplitude of the solution, and now g ( i)  > 0 is not the 
half-width, but the position of the front o f  the solution (in the symmetric case the 
front is the surface |,v] =  #(/)). The function в (£ )  >  0  is such that 0 ( f )  >  0  for 
f  б |0 . 1), 0 ( f )  =  0 for all f  > 1, 0 (0 ) =  1. 0 '(0 ) =  0 . 0" +l б W '( ( 0 . 1)),

As the first equation for the functions ф. ,i>. we choose the energy equation

4 '  [i//(/).чл (/)] =  е р / Л / ) ^ (/), / > 0, (39)
di

The second equation is obtained from the well-known expression for the motion 
o f  the front of a thermal wave (see Remarks):

d g ( i )
lim

()»(/. !')/()/
(40)

ch г -л- (i) 9u(/. r ) / i ) r  

Hence, using the original equation (1). we obtain

d g i n  =

~di

and. finally, resolving the indeterminacy in the right-hand side, using the known 
differentiability properties o f  the solution u ( i . x ) .  we arrive at the equality

—  =  ~  lim tt" ~'u' (41)
d i  h—a

In the derivation of this equality we assumed that the singularity o f  the solution 
elose to the front has the algebraic form n ( i . x )  ~  (g ( i )  — |.v|)!/'\ Therefore the 
presence o f  the souree term i f i  has no bearing on the linal form o f  (41).

Substituting the approximate equality (38) into (41).  we obtain the second 
equation:

dii(')  _  p */'"(') 
d i  , 't ,1,4/)

/ > 0 , (42)

where i',t =  — (0'r )'(1 ) / i r  > 0 ,
The required system of equations for ф. g has been obtained, Solving (39) for 

(//(/), we rewrite it in the form

i\i — 1>\ф̂  — N v 4i//ri 1 g ' .  (43)

g' ~  у*Ф "£ '• (44)

and then pass to the single equation

dф

7 *
Я ' 0 , (45)
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which describes the evolution of the amplitude of the thermal structure as a function 
its front position. Here ц  =  i'|/(/Vu,t ) is a constant.

Equation (45) is much simpler than the one obtained using the "amplitude- 
half-width” averaging. Let us write down its general solution and discuss its main 
properties. Let us note that (45) is not applicable for the S-regime, when f i  =  ( r +  1, 
From the analysis o f  self-similar solutions (see § 1) it is known that the asymptotics 
close to the front in this ease must have the form a ~  (,i>(/) — |а-|)+",  that is, in 
this ease we should put (fl'r) ' ( l )  =  (), v.\ =  0. As a result, we obtain from (42) 
g =  const, while for f i  — a  +  1 (43) becomes the equation

ijt'U) — +l (/). / > 0 .

From that we derive the self-similar dependence o f  the amplitude of the localized 
unbounded solution on time:

(/'(/) ~  (7'o -  /) l/,r. / T ( l. (46)

For the HS- (fi  < t r +  1) and L S -  ( f i  >  t r +  1) regimes equation (45) makes sense. 
In the case f i  ф a  4 14- 2 /N  its general solution has the form

I<// (,м V  -  /<,|l/urt |- ' ,W V =  C„. (47)

where
, =  i f i  -  Ur +  1 +  2 /N )

° /u. f i  -  (ir +  1)

Co ^  0  is a constant determined by the initial values ,iqb i//(). 
(r 4- 1 +  2 /N  we have, instead, the expression

■ i /r /N =  |g2(Co — 2/x in ) | \ С  о —■ cons‘t > 0 .

(48)

in the case f i  =

(49)

Schematic behaviour of trajectories o f  equation (45) in the cases f i  < <r -\- 1, 
rr +  1 < f i  < ir +  1 4  2 / N , (i > rr 4- 1 4- 2 /N  is shown in Figures 49-51. 
respectively. The dashed lines in all these figures denote the lion-trivial nulleline:

ф1ЛФ) =  ц - ' ,и ' ..........

For f i  < (t 4  1. f i  > cr +  1 4- 2 /N  equation (45) has a special trajectory, the 
separatrix

Ф  =  ifs(‘l>) =  (ДО)

which corresponds to Co 0  in (47).  For ir  4 -1  < (i < <r 4- 1 4- 2 /N  we have 
from (48) /,, < (), and therefore there is no separatrix,

Let us indicate the main properties of  the solutions. For f i  < tr 4- I (sec 
Figure 49)  all the trajectories evolve to the separatrix (50), which determines the 
asymptotic self-similar regime

!/ / (/) ~  ( 7 0 -  i ) ~ ' n p  " .  ( T o  — i ) 1̂  ~Urt  l l | / | :<ff " I ,  , y o ,
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Fig. 49. Evolution of trajectories of cqualioil (45) in the HS-reginie (fi < ir +  1)

and here ,t>(/) —* тс  as / —»• 7‘„ , that is, there is no heat localization in if  /3 < c r +  1.
For (r +  1 < f i  < (т +  1 +  2 /N  (see Figure 50) each trajectory has its own 

vertical asymptote with coordinate

i. V |irt 11 
r  ' Ц -  Or t I Ц/Л/Т 

S '  ~  m i

that is, g ( o  —> fi, as / —* 7'( ) . This implies heat localization in the domain 
!-v| < f ; t . In this case the amplitude grows according to the self-similar rule

Ф(П ~  ( 7'0 — ! ) [/,ti u . i ~> 7'( l . (51)

The same conclusions are true also for f i  =  r r +  1 + 2 / N  and (i > a  +  1 +  2 /N .  
except that in the first case the expression for the wave penetration depth has the 
form g, =  exp (C (,/(2/u)l, which follows from (49).

In the ease /3 > <r +  1 +  2 /N  (see Figure 51) there exists the separatrix (50) 
in the phase plane. It separates unbounded trajectories from the family of global 
solutions. It follows from (47) that the latter evolve according to

Ф(Ф) ~  /•»,ч v . /•'(, =  c '(,/0 ' " M ' /;i > 0. Я ->  oo.

From (4.3). (44) we then obtain the following asymptotic bounds for the global 
solutions'.

ф(П  ~  i Ж П  ~  /|' ,л' " |2\ , oo.

which are typical of  self-similar solutions of equation (37) without a source term, 
which have finite energy: ||н(/. •)!!/i(r ' i s  const.
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Fig, 50, LS-regiine. (i e (<r + 1. rr + 1 + 2/N)

§ 3 Conditions for finite time blow-up. Globally existing 
solutions for p  >  a- +  1 +  2 /N

In this section we justify some of the qiuilitutive derivations, obtained in § 2 and 
deal with conditions of'global solvability and insolvability o f  the Cauchy problem 
for equations with power type nonlinearities,

\ ( u )  =  и, -  V -  ( fC V a )  -  itli =  0 , t >  0 . л s  R w. ( 1)

u (0.Л-) =  u„(x) >  0. л б R w, it,, б C ( R W). i t f "  б H ' ( R n ). (2)

The main approach is to construct and analyze suitable sub- and supersolutions ol
equation (1).
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1 C onstruction  of unbounded subsolutions

Let us consider the function-’

B.(/ .A ) =  ( r - 0 ' l / , H l f l . ( f ) .  f = U I / f ( o .  (3)

в A i )  =  A( \ -  f - / « 2' A r . o < t <  T. (  >  0. (4)

where ( ( t )  =  (T  — /)l0 ~,,r+i,l/U(0 - ii|_ д_ a  у  are positive constants. The function 

и _ blows up as / —>• T " in a self-similar fashion.
Let us find under what conditions this function will be an unbounded subsolution 

o f  equation (1). From Theorem 3. Ch. 1, it follows that for this it is’ sufficient 
for и_ to satisfy everywhere in (0. T)  x R , , apart from on the degeneraey surface 
(0. T)  x { |„v| =  «£(/)}, the inequality

A(w..) =  ( i f . ), -  (»■* ' ( « .  ),r( ( f _ ) , ^  -  (u. f  < 0 .

which reduces after simplifications to

N o a m ' s '  $  - : ,r  -  1 V  ^
2 ЦЗ I)

^ 6 ( 0 , 0 ) ,  (5)

where (■)' =  (t//r/f)(-). The left-hand side of the resulting inequality contains the 
operator of the self-similar equation (1 .5 ) ,  which is not surprising, sinee jo. and 
u,s have the same spatio-temporal structure. Substituting here the function 0 _ (£ )  
o f  (4),  we obtain after relatively simple computations the inequality

Ф,Г/3(Д) =  m -  мД +  Alt |Д ' Р - " /" +| > 0, (6)

which is equivalent to (5). Here

Д =  (1 - £ V ) + .

I l l
4A‘r /3 -  (a  +  1)
ir2a 2 (/3— 1 )<r

1 +2 N +
2

Inequality (6) must be satisfied for all Д e  (0, 11. Let us determine the restrictions 
on A. a.

First o f  all, we must have the inequality

Ф„/з(0) > 0.

from which we obtain the restriction m > 0, that is

4 / Г  cr + 1 -  /3 
ir (Г

'’Here, as usual, ( f )  + — irwxjO, / ) .

/ 3- 1
(7)
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Secondly, it is easy to see that for m  > 0  inequality (6 ) holds for all Д e  (О, Д*), 
where Д+ =  m/n 6 (0. 1). Hence it follows that (6 ) will be satisfied for all 
Д s  (0, 11 if

m -  нД +  А ^ ' Д ^ г - и / ' г  > o ,  Д б ( Д М ) ,  

which is equivalent to the condition

A ^ 1 >  ( и - i n )  Д ; ( / ; й " ~ и / ' \

Therefore the second inequality, which, together with (7), guarantees that (5) holds, 
has the form

Ap
1 2 N A"

J Z T \  +  7^

/ 7 \ Air 4 {(i * - t >/<r

1+ 2 r ^ 7  |
Ё. ~ (fr +  1 > 1 [

/3 — 1 (Г cr  J
( 8 )

The system o f  inequalities (7),  (8 ) has a solution (n. A) for all rr > 0. /3 > 1. 
Indeed, for /3 < i r +  1 condition (7) imposes a restriction on the ratio A " / c r .  Then, 
by increasing A and a  in such a way that the ratio A'r / c f  does not decrease, we can 
always cause (8 ) to be satisfied. I f /3 > t r +  1. everything is much easier, since then
(7) is not taken into account. Therefore we have established the following assertion.

T h eorem  1. Let

U f l ( X )  >  II. (0 ,  A ) =  T
Lid - u-i

y | / i (ir| ll| / | -(/ 3  l l
л 6 R A (9)

w here  в  (£ )  — A(1 — $ ~ /с г )^ "  a n d  T , a , A  a r e  pos it iv e  constan ts ,  the two last  
o n es  be in p  re la ted  by  (7 ) ,  (8 ). Then  the solution  o f  the C aitehv p ro b l em  (1).  (2) 
is u nbou nded  an d  exists a t  m ost f o r  time T.

An elementary analysis of the subsolution (3) for /3 < a  +  1 leads to the 
following result.

C orollary . Let  1 < /3 < <r +  1, и() (х )ф () .  Then the so lut ion  o f  the p ro b l em  is 
unbounded.

Proof,  Since iio^O , there exists a ball (a e R w||a — Ao| < p), p > 0. in which 
ii,i( a ) > e  > 0. Then, choosing in (3).  (4), T  so large that the inequalities 
AT~ < e, гт и\!\1ф- in < f) h0|d_ wc hilve that ll()(A) >  „ ((), л- - л-0).

Therefore by Theorem 1 the solution is unbounded and blows up at T о 1  /„. 
where

7\ =  max ^ ( A / e ) 1* [ c i / p y ^ " u/un  1 /л} .

□

A stronger result will be obtained below.
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2 N on-existence of global solutions for 1 <  /3 <  tr +  1 +  2 / N

T h eorem  2. Let  /3 б (1. <r +  1 -f 2 /N ) .  tto(x) Ф 0. Then the solution  o f  the C au c h y  
p r o b l e m  ( 1), (2 ) is unbounded .

Proof,  it proceeds by comparing the solution u ( t .x )  with a known self-similar 
solution o f  the Cauchy problem for the equation without a source,

v, -  V - ( C V a ) ,  1 >  0. ,v б R'v. (10)

In the /V-dimensional case this solution has the form (see § 3, Ch. i)

-Л'/(Л'<г(-2) , l-Vl
t>s(t- -V) =  ( T i +  t) f i t 7). V (7‘ , + ( I D

where

f ( - q )  =  B ( Щ  -  r j 2 ) \ , , r . В  =
2 (No-  +  2 )

( 12)

Here T i, 77d are arbitrary positive constants. Let us show that in the case /3 < 
(т +  1 + 2 / N  for any it,t ф  0, after a finite time the solution u(t. x) o f  problem ( 1),
(2) would have to satisfy condition (9) of Theorem 1, and thus is unbounded. The 
stage at which the initial perturbation spreads, when the amplitude of the spatial 
profile decreases, will be described using the solution ( 11) of equation ( 10), in 
which production o f  energy due to combustion is not taken into account (for most 
of the spreading stage it is negligible).

Without loss o f  generality, let u0(0) > 0 and »„(.v) > e > () in a ball j.v s  
Rw| |.v| < 5). Let us ehoo.se the number 770 = rjo(7’i). such that i<o(.v) > vs(O .x )  
in R,v. For this it is .sufficient that

BVn I < e . VoT
1 uNtr 1 :i

13)

(here T\ can be arbitrary).
Then by the comparison theorem (see Ch. 1)

t((t. x) > i>s(t, x ) ,  1 > 0, .v б R w. (14)

Let us show that for 1 < 7З < <r +  1 +  2 /N  there exists /|. such that for some 7'i 
the function vs(t\. x)  satisfies condition (9).  Then by (14) this condition will also 
hold for the solution a(/|.,v). The inequality u,y(/|..v) > и (0. .v) in R w will hold 
if

(7' 1 +  /,) NI'N,ri2)Hrill"  > T {/,li■ " Л .

770( 7 " | +  , , ) |/<w' r ' - )  >  I I I

(here A. a  is an arbitrary solution of the inequalities (7), (8 )).

( IS )

( lb )
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Let us show that the system (15), (16) is always solvable with respeet to /|, T  
i f  /3 < rr +  1 +  2 /N ,

Suppose that equality is attained in (15),  that is

7' ,  + / ,  =  { B r ^ l "  /  A ) ^ ' m ' > I N T ( N „ , 2 ) l \N i l 3 - \ ) \ '  ( 17)

Here T\ is fixed and T  is suflieicntly large. It remains to check, whether for 
sufficiently large T  inequality (16) is satisfied. It then has the form

г,0 (Вг,1/,г/ А ) 1/уГ [/' ^  "I > а Т Ш- ^ ^ \ 2 ф  n|_ 

or, which amounts to the same.

T-jrrnl/^on h :/m i  < £  
— и

В

A

! /.V
2/ ,V ,r+  I

Vi, (18)

It is elear that in the ease /3 6 ( 1 ,  rr +  1 +  2 /N )  it holds for large T ,  which concludes 
the proof, □

R e m a rk .  In the course o f  the proof we have in fact showed that for 1 < /3 < 
rr +  I +  2 /N  the blow-up time is composed o f  two parts; To < t\ +  T.  where t\ 
is the time of spreading out o f  the initial perturbation practically with almost no 
energy production, T  is the time of rapid growth o f  the resonant solution towards 
linite time blow-up, which was determined in Theorem 1.

For /3 > rr +  1 +  2 /N  the spreading out stage can take infinitely long time, so 
that non-trivial global solutions are possible. Justification of  this conclusion is the 
subject matter o f  subsection 3,

Let us use inequalities (13),  (18) to analyze the ease of  the "critical” value 
/3 =  <r +  1 +  2 /N ,

Corollary . Let p  =  rr +  1 + 2 / N  an d  le i  the initial Junct ion  b e  s uch that  i<o(,v) > e  
in { |Л'| < <5). e  > 0 , (5 > 0 . w h en >

6<5Л > A a N, (19)

w h ere  a ,  A sa t is fy  the inequality  (8 ), Then the so lu t ion  o f  p r o b l e m  (1),  (2) is 
unbounded.

Since the product e S N characterizes the amount o f  energy o f  the initial pertur
bation, condition (19) means that for /3 =  rr +  1 +  2 /N  unbounded solutions are 
all solutions with sufficiently large energy. Let us recall that the qualitative results 
o f  § 2 indicate that in this case all non-trivial solutions are unbounded. This can 
be proved; see Remarks, This is also attested to by the analogy with the results of 
§ 7 concerning semilinear (rr =  ()) equations.

To conclude this subsection, let us note that in the ease /3 > r r+  1 + 2 / N ,  analysis 
o f  inequalities (15),  (16) allows us to enlarge substantially the unstab le  set V' of
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Theorem 1 (if  нп <= V,  then u ( t .x )  is unbounded). The set У  contains not only 
resonant initial perturbations, solutions through which start growing immediately 
and blow up in finite time (these are displayed in Theorem 1). but also un(,v), to 
which there correspond unbounded solutions with initially decreasing amplitude.

3 Conditions of global solvability of the C auchy problem  for 
P  >  or +  1 +  2 / N

This will be obtained by constructing bounded supersolutions u+ . which, as in 
subsection 2 . are sought in the self-similar form

к + (/, ,v) =  ('/' +  t) [/(fl " ( U t ) .  i  =■ |.v|/(7'-f-/)W 4 'r ‘ ll|/|:,/,~1’1, (20)

where в л (£) =  A(1 — £ 2/u 2)[/ i r A, 7\ и > 0 are constants.
The choice o f  the function (20) is suggested by the form o f  the global self- 

similar solution o f  equation (1). which is considered in subsection 4. Taking into 
consideration the fact that (t, x)  has a continuous derivative we conclude
that (20) will be a supersolution if A ( « + ) > 0  in R 4 x  R w\ (f  =  a ) ,  which gives 
us the inequality

-(£'v f>‘l K )' +
P ~ ( i r +  1) ,

+ +  (^  < 0 , £ ф и (2 1 )
i 4 ' "  " +” + ' ' 2(/3 -  1) , ъ р

(compare with (3)) .  which is equivalent to the inequality

Г , ф {Д) =  nn  +  н.Д + А ^ ' Д ^ +,r-"/ ,r < 0, Д б (0. 1|. ( 2 2 )

where

in.
4A1

Д =  (1 ~ Ч 2Л'2Н

P  -  (СГ+ 1) 1 ‘
—-----------------, f?„ — — I

rr(P  -  1 ) (T

2A"

t r
N  +

Since the function F irfj is convex (/-'"^ > 0),  to satisfy (22)  it is sufficient to 
have 0) 5  0  and /•'„/(( 1) 5  0. From that we obtain the required restrictions 
on the numbers A, a: m ,  < 0, m , +  n, +  A/i" i S  0. or

4  A" p  -  (гг +  1) 

tr2 t r  ~  ir (P  — 1 )

A(l~
2 N A‘r 

~  <r cr p  -  1
(24)

Let us show that the system of inequalities (23), (24) has a solution only
in the case p  > rr +  1 +  2/N  (for p  < г г  +  1 +  2 /N  by Theorem 2 there
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cannot be any solutions). From (24) it follows the necessity of the restriction 
2 N A lr/ ( c r c r )  >  l/(/3 — 1), which, combined with (23),  gives us

. J............. ...‘ " . . ‘ . 'Л  (25)
N i r ( f i — 1) (r 2 c r  cr(fj  — 1)

The quantity A'r/ c r ,  which satisfies (25).  exists if 2 /1/Vrr(/3 — 1 )| < |/3 — (rr -f
1) |/[cr(/3 — 1)|, which is equivalent to the inequality [/3 — (rr +  1 +  2 /N )  \/\cr(f3 — 
1) | > 0, Hence arises the restriction /3 > tr +  1 +  2 /N ,  Then, varying the numbers 
A and a  so that the ratio A'r/ c r  remains constant and within the bounds of (25). 
we can ensure that (24) always holds by decreasing A, Thus we have proved

T heorem  3 . Let f3 > cr -(- 1 -f 2 /N , a n d  let the fu n c t ion  иц(.х) sa t is fy  f o r  so m e  
T  >  0 the inequality

»o(.v) <  n+ (0, .v) =  T 0 ,
l-v|

J \ f t  <«■+! )|/|2(/3- I ll Л- б R a (26)

w here  e + ( f )  =  A(1 — £/~/u~)\'r a n d  the constants  A, a  >  0  satis fy  inequalit ies  
(23),  (24). Then the C auchy  p ro b l em  (1),  (2) h a s  a  g lobed  solution  an d

u ( t ,x )  < (T  +  t) l/,/f u ( f
l.vl

( T  +  , ) \ C  (<^111/12(^-1)1
in R f x R (27)

R em ark  1. From this follows, in particular, the estimate

sup u{t, x)  < A (T  +  t )~ i/(l1 " .  t >  0.
\

Furthermore, using (27) we can estimate the diameter d( t )  of the support o f  a 
generalized solution: d (t)  <  2 a ( T  +  i f d - u m  0 |/|2(/f- И1. Naturally, these estimates 
coineide with the self-similar ones.

Combining the results o f  Theorems 1. .7. we arrive at the following statement: 
f o r  /3 > cr 4- 1 +  2 /N  f o r  all la rg e  initial functions the p m b l e m  ( 1), (2) is g loba l ly  
in so lvab le ,  w hile  f o r  Sufficiently sm a ll  uq there  exists a  g lo b a l  so lution.

R em ark  2. For /3 > <r +  1 +  2 /N ,  we distinguished in Theorem 3 the stable 
set ‘W of the Cauchy problem (1), (2).  such that the inclusion и о б Ж entails 
global solvability o f  the problem. The set ‘Ж =  (;<0 > 0 | 3 T  > 0  : f<o(.v) < 
n+ (0, .v) in R w) contains only functions with compact support, and its “boundary” 
consists of a one-parameter family (with parameter T  > 0) o f  also compactly 
supported functions. This does not mean that only compactly supported solutions 
can be global. In subsection 4  we construct a non-eompaetly supported stable set 
in the case /3 > cr 4- 1 +  2 /N ,  the boundary o f  which consists o f  non-eoinpaetly 
supported global self-similar solutions o f  equation ( 1).
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4 Global self-sim ilar solutions for /3 >  tr +  1 +  2//V . A lem m a con cern in g
stationary solutions

This subsection is wholly devoted to the study o f  one particular case o f  global 
solutions of equation ( 1) o f  the form

II.S- =  IfsU..v; T)  =  c r  +  t ) - ' il l l- " f s ( { ) .  (28)

f  =  x / ( T  +  i) '" .m  =  1/3 -  Ur +  1)|/12(/3 -  1)|. 

where T >  0 is an arbitrary constant.
After substitution o f  (28) into (1).  we obtain for f s  > () the following elliptic 

equation:

V( ■ i V ,/ .y , +  ,i,Vf / . v • £ +  j Z T x f s  +  /л  =  0 . f  e  R v . (29)

/s<£> -  0 . M  -  c * .

which differs from the equation which corresponds to self-similar blow-up regimes 
only in the signs o f  the second and the third terms. This, however, significantly 
alters the properties o f  the solution /.v as compared with Os o f  § 1.

At this stage we coniine ourselves to the study o f  radially symmetric solutions

I s  =  /.v (f )  > 0. f  • М /с Г  +  !)'" €  R , . (30)

which, us follows from (29).  satisfy the equation

+  »»./>£ +  +  I s  =  0. i  > 0. (31)

and the boundary conditions

/;.(()) =  (>./.y(OO) =  0 ( f s ( 0 ) > 0 ). (32)

The generalized solution f s  must have continuous heat flux, that is, if J\- is a 

function with compact support, then (/'/' ' )  (£u) — 0 at the point o f  degeneracy 

=  meas supp /.s.
Let us consider a family o f  Cauchy problems for the same equation:

_ L  ^  у  +  „ ,/ м  +  +  f  =  0. f  > o. (33)

/'(()) = 0 . /(()) = / * > ( ) .  (34)

and choose /л so that / =  / ( £ ; /л) satisfies (32 ) .  Before stating the main theorem, 
let us note two properties o f  the solution f s  which follow directly from the form 
of equation (31).
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Firs't ol' nil, f x (tj) is monotone, since (31) does not admit points o f  minimum 
f  =  £,«. such that f . f i f m )  > 0. f ' s ( fm )  =  0. f s ( f , „ )  > 0- Therefore for all p  > 0 
any monotone classical solution o f  the problem (33).  (34). defined for small £  > 0, 
can be extended either onto the whole axis £  б R + (then it is the required solution 
/,v>, or till it becomes /.его. Local solvability o f  (33).  (34) is demonstrated by 
analyzing the equivalent integral equation using the Banach contraction mapping 
theorem.

Secondly, analysis o f  (31) for small f s  reveals the possible forms o f  asymptotic 
behaviour of  the solution as /3, —► 0, First is the asymptotics o f  a non-compactly 
supported solution:

/.v(f) =  C £  ^ - ' " - " " ( l  +<?(£)>: e (£ )  -> 0. £ —> сю. (35)

where C  > 
support

0 is a constant. Second is the asymptotics of a solution with compact

/.v(f> =
(3 -  Ur +  1) 1 l/'r

f u l f i l  -  £>
. 2 ( / 3 -  1)
(. -y  f (l =  metis supp/.v < oo.

(1 +  w (£)) . (36)

where o>(£) —> 0 as f  —> £ ( l . The asymptotics (35).  (36)  make sense for /3 > < r + 1. 
Let us note that a .solution with compact support (36)  formally corresponds to the 
value C =  0  in (35),  that is, (35) becomes (36) for C  =  0.

Properties o f  various solutions o f  the problem (31),  (32) depend on the relation 
among the parameters [3. it and the dimension o f  the space N.

T h e o re m  4. U>t f3 >  1. <r >  0. Then :
(a) i f  (3 < <r +  1 4 - 2//V, then the pnohleni (3 1), (32) h a s  n o  pos it iv e  so lu t ions  

(i.e ., J o n  any p  >  0  the fu n c t ion  f ( f ' . p )  b e c o m e s  :en o  at s o m e  po int  f  an d  
( Г и )’с ( { р р )  Ф 0):

(b) J o n  al l  /3 > <r +  1 4- 2//V, ij N =  1 ,2 ,  on Jo n  i t  +  1 +  2 /N  < J3 < 
(<т +  1 )(/V +  2 ) /( /V — 2), i f  N >  3, the pnohleni  (31 ) .  (32) h a s  at lea s t  on e  so lution  
f s  with co m p a c t  suppont an d  an infinite nunihen o f  strictly  pos it iv e  so lu t ions :

(e) ij (3 > (it +  1 ) (N  +  2 ) / ( N  —  2), N >  3, then the pnohleni (31).  (32) h a s  
n o  so lu t ions  with c o m p a c t  suppont. h'on any  p  > 0  the so lution  o f  the C auchy  
pnohleni  (33), (34) is strictly  p os i t iv e  a n d  sa tis fies  condit ion  (32) at  infinity.

By antilogy with results obtained for tbe case <r — 0 (see § 7). we can expect 
tbat for (3 =  it -l- 1 q- 2 /N  all non-trivial solutions o f  the problem (1). (2) are 
unbounded, and therefore a function f s >  0  does not exist in this case. Tbis is 
true for it > 0, see Remarks,

Pmofi  Assertion (a) follows immediately from Theorem 2 concerning non-
existence of non-trivial global solutions of the problem (1). (2) for 1 < /3 <
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tr +  1 +  2 / N. Indeed, there were the function / л > 0  to exist. (28)  would have 
been the global solution ф  0 . which, as we showed above, does not exist.

Let us note a peculiarity o f  this argument. Here, in order to study an ordinary 
differential equation, we use results from an analysis o f  much more complex partial 
differential equations. Advantages o f  this approach in this’ case are not significant, 
.since (a) admits another, simple proof. However, in the sequel (in the proof of 
( c ) ) this approach leads to a noticeable simplification.

The .same result can be obtained by a different method. By (35) for /3 < 
r r +  1 +  2 /N  equation (31) can be integrated over (0 . oo) with the weight function 

‘ . As a result, after integration by parts we obtain the equality

l  f^V)V S'-' dv =  ( rr +  1 + Jj ~ p )  J  dr,. (37)

which for /3 < rr - f  1 +  2 /N  cannot be satisfied, as in the right hand-side we have a 
negative quantity (to derive (37) we need an estimate o f  /’(,(£) as £  —* oo, which 
is easily obtained from the equation).

(b). (e). Proofs of the.se assertions arc based on the properties of a family of 
stationary solutions o f  the original equation ( 1), which are established below .*

I A lem m a  concerning stationary Solutions 

Let us consider the stationary equation

v -  a r v u )  + U11 =  o (38)

for arbitrary values of parameters и  > 0. /3 > 0. For our purposes it suffices 
to analyze the family {U > 0 ) o f  radially symmetric solutions, which satisfy the 
equation

+  и р = 0 .  r =  |.v| > 0. (38')

Let us set U" 11 =  V and make the change o f  variable r r(<r +  1 )1/:. Let us 
denote by V A the solution o f  the following problem:

^ ( r ' v " X ) '  +  n ' = 0 . r =  \x\ > 0 .

У л(0) =  A. \/A(()) =  0.

where A > 0  is a constant (which parametrizes the family (Тл1). «
> 0 .

L e m m a  1. Let a  > 0. T hen :
1) F o r  any a  > 0, if N — 1 ,2 ,  o r  0  < и  < (N +  2)/( N — 2), if N >  3, the 

problem (39). (40) has no solutions V \ >  0  in R + (that is, fo r  any A > 0  the 
function Vs becomes zero at Some finite point, when1 V"A ф ()),‘

(39)

(40) 

/3/(гг+ 1)
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2) i f  at > (N +  2 ) / ( N  — 2) f o r  N > 3, then f o r  чпу  A > 0  f/ге so lution  o f  the  
p r o b l e m  is d e f in ed  an d  strictly p os i t iv e  in R , ,  V\(r)  —> 0 a s  r  —> o o .

P roof.  Local solvability of the problem i.s proved by reducing (39).  (40) to an 
equivalent integral equation.

1) Let us first consider the case N <  2. From (39) we have

r N -'V\(r) =  -  / t]*~ 1 F “ (17) drj.  (41)
./(I

and therefore (if we assume that V A > 0 everywhere), for each r > 1

Hence

that is.

V\(i ') £  — f i r 1 ,v. tq =  / t/s> 'V“ (r]) d p  > 0. 
■In

V s( r )  < VA( 1) -  t i / 1 7 ' л t l r j .  r >  1 .

V s(r )  <  V/j( 1) -  t i ( r  -  1) (N  =  1).

Va( i') <  К л( 1) “  r i  In г  (N =  2 ) ' . r > \ .

This means' that for N < 2 Vx becomes zero at a point; furthermore, by (41) at 
that point V\{r) f O  (that is. the heat flux cannot be continuous).

Now let N >  3. Then by ntonotonieity of V ц we have from (41)

Integrating this inequality we derive the following estimate; for a  < 1

-> -1 1/ (1 a)

VMr)
2N

(1 -  ot)

and therefore V\(r)  i.s defined on an interval of length not cxeeeding г л =  |2/V/( 1 —
a,)|i/2Ao -«)/:_

Let us note that for a  < 1 the function V\ depends in a monotone way on the 
boundary value Л =  V \{0) (Figure 52),

For a  =  1 the function V л is positive on the interval (0, гД!1). where гД1 > 0
i.s the first root o f  the Bessel function )/:■

If, on the other hitnd, a  > 1. then from (42) follows the “non-compact" estimate

т -] - !/(«■■ 1 i

A '“ ' + & ( " - . »
V л(г)  < . r  > 0 . (4.3)
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Fig. 52. Solutions of lUe problem (ЗУ). (40) for different A > 0 in the ease a  < 1.

from which we cannot draw a conclusion concerning extension o f  V\ ( f )  > 0 into 
the domain of large r. From here it follows that

V a( i-)
2 N 1/Wr- 1)

r -2/{a-U r  >  0 . (43 ')

Let us assume that 1) does not hold, and that V A > 0 in R ,  lor some a  < 
(N +  2 ) / ( N  — 2) .  N >  3. Then, using the identities we derive below, we shall 
arrive at a contradiction. To derive the first o f  these, we multiply (39) by r N~ xV\ 
and integrate the resulting equality over the interval (0, r) .  As a result we have

-|-'V V ^ n V .O - )  +  [  y N l V\2( y ) d y  =  [  y N 1 V'l1 1 ( 1 7 ) d y ,  r >  0.
./() ./()

Since V'A(r)  < 0  and (by assumption) V A >  0, we have from here

f y^‘ 1 V\2 ( y ) d y  < f y N ' V " n (y)<:ly <  o o ,  
.10 ./()

(44)

where convergence o f  the integral in the right-hand side is ensured by the estimate 
(43).

Now let us multiply (39)  by rNV\(r)  and integrate over (0. r).  This results in 
a different equality:

+ 1  [  VN ' V 2(V ) d y ,  '•>(>•

(45)

It is not hard to see that /?(»■) == i'NV \ 2( r ) / 2 + rNV " 11 ( r ) / (a  + 1) —> 0 as r —> oo.
Indeed, from (45). since the integrals converge, it follows that p (r)  —> /ip as

r —> oo, while from convergence of the integral \ p i y ) / y \ d y ,  which follows
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from (44).  we deduce that /;(> =  0. Passing in (45) to the limit as r —> oo, we 
have

^  Г v N 1 V’\ dr] = - —  Г  VN~' V‘- i l d V,
2  ./о a  +  1 ,/o

which, combined with (44).  gives us the inequality (N -  2 ) / 2  > N / ( a  +  1). i.e.. 
a  > (N +  2 ) / ( N  — 2 ) ,t . which leads to a contradiction.

2) Assume the opposite, that is, that there exists a  >  (/V +  2 ) / ( N  — 2).f (the 
case of the equality will be considered separately), such that for some A > 0 
the solution V л vanishes at some point r,j > 0. Then V A ф  0  is a solution o f  
the boundary value problem (39) on the interval (0. Гл). satisfying the boundary 
conditions

1/^(0) =  0 . 1/л(гл) =  0. (46)

However, as we shall show, the problem (39) .  (46) has no solutions. For that, 
as in the proof o f  1). we lirst take the scalar product of  (39)  with Л/к^г^ -1 V\(f)  
and then with N KNr NV\(r),  where k n is the volume of the unit sphere in R'v . As 
a result, after integrating by parts and taking into aecount the conditions (46). we 
obtain

\VA II /•’ IV, (L

N k n
г?  T л V a ) +

N
: i w

^((|.v| < 1-л})). 

N
A H l.! a  +  1

| "A 1 -  Г)I,,,., -  u.

(47)

(48)

Substituting into (48) the expression for |Ц/'А||т., from (47).  we obtain the equality

N a< 'a)
N - 2

2 u T + T )

(N + 2 )  

( N - 2 )
IITa (49)

which, o f  course, cannot be satisfied for a  > (N +  2 ) / ( N  — 2)
Finally, for the critical value a  =  (N +  2 ) / ( N  — 2) the problem (39).  (40) has 

for all A > 0 the positive solution

V A(r)  =
N (N  -  2)A~/tw' 21 

N {N  -  2) +  A-W^^V1

ov-:  i/:

. r >  0: VA(0) =  A. (50)

Insolvability o f  the boundary value problem in this case also follows from (49). 
Since here V'л( r A) ^ 0  by (41).  □

R e m a rk .  Returning to equation (38')  we obtain that for all (3 >  0. N — 1 .2  or 
for 0  < f3 < (ir +  1 )(N +  2 ) / ( N  -  2).  N >  3. there are no stationary solutions 
in R^ . On the other hand, for /3 > (<r +  1 )(N +  2 ) / (N  — 2 ) ,  all its solutions are 
strictly positive.
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Fig. 53. Functions V \ ( r )  lor 1 < a  < ( N  -t- 2 ) / ( N  -  2) +

Fig. 54. Functions V л ( г )  lor a  > (Л' +  2 ) / ( N  -- 2),

In Figures 53. 54 we sketch the behaviour of the functions V\{r)  for different 
A > 0  in the compactly supported (Figure 53) and non-compactly supported (Fig
ure 54) cases. For a  >  1 (unlike a  < 1) there is no monotone dependence of 
V x(r)  on A if a  < 1 4- 4/(Л/ -  4  -  2 y/N  -  Г). N >  11 |227, 378].

In conclusion, let us note that a statement similar to the one proved above, is 
valid in the case o f  equation (39) with a fairly general nonlinear term q (V )  in the 
place of V" (sec § 1, Ch. VII).

2 P m o J  o f  assert ion  (b) o f  T h eor em  4

Let us lirst establish ti simple claim, which is relevant to assertions (b). (c).

L e m m a  2. L ei  (3 > cr +  1 +  2 /N .  Then fo r  oil

N
0 < /л

K d " + i + D .

y/t/s- 1)
-  Д 1 (51)

Id

M
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the so lut ion  o f  p ro b lem  (33), (34) is strictly  pos it iv e  in R ,  (and, consequently ,  h a s  
the asym ptot ic  b eh a v io u r  (33)).

Proof.  Let us rewrite the equality obtained by integrating equation (33) multiplied 
by over the interval (О./). as follows;

=  Jo V N^ f ( V ) { ^ i T) [ /3 -  ( r r +  1 + £ ) ]  - f - ' i v ) }  с/т;.

By (51) and monotonicity o f  /  the right-hand side is strictly positive for £ >  (), Let 
us assume that / ( 17) vanishes at g =  gt <= R (. Then f " f { g . )  5  0, / (/ ,)  = 0, 
so that the left-hand side of (32) is non-positive for / =  g., which leads to a 
contradiction, □

Thus we have established the second part of  assertion (b). Its proof is completed 
by appealing to the following lemma.

L em m a  3. Let (3 > cr +  1 +  2 /N  i f  N  =  1,2 ,  o r  <r +  1 +  2 /N  < /3 < U r +
1 ) (N  +  2 ) / ( N  — 2) i f  N > 3. Then th ere  exists p  >  0. su ch  that the Solution oj  

the p ro b l em  (33), (34) b e c o m e s  :.ero,

Proof of the lemma follows the lines o f  the proof o f  Theorem 4 in § 1 (see 
also the analysis of the case /3 < a  +  1 in subsection 3, § 1). In the final count, 
the assumption contrary to Lemma 3, that is, that for all p  >  0  the solution of 
problem (33), (34) is strictly positive in R + , leads, after passing to the limit, to a 
conclusion that for Л =  1 there exists a strictly positive solution of the stationary 
problem (39).  (40), which is impossible by Lemma 1,

Next, denoting by M. the set of all p °  >  0. such that f ( g L, p ) > 0 in R t for 
all 0 < p  < p a. we have that M ф. И (see Lemma 2) and that M is bounded 
from above (see Lemma 3). Therefore there exists p ,  =  sup.44 <  0 0 . and, using 
standard methods, we can show that the function /д =  f ( g :  p t ), which corresponds 
to p  — p ,  is a solution o f  the problem (31),  (32) and has the asymptotics (36),

In Figure 35 we show curves / (/ ;  p )  for different values of p  > 0. The thick 
line shows the compactly supported solution,

.? P r o o f  o f  a s s e r t ion  (c)  0 / T heorem  4

Let us lirs't note that strict positivity of all radially symmetric solutions of the sta
tionary equation (38) for (3 > ( t r +  \ )(N  +  2 ) / ( N  — 2).  N > 3 (Lem m a 4), indicates, 
in principle, that assertion (c) is true. A proof which proceeds by analyzing the 
ordinary differential equation (31) encounters various difficulties. Therefore our
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Fig. 55. Soluiions ol'iltc problem (33). (34) lor different fi  = /(()). die ease rr + 1 +  2/N < 
/3 < ( , r +  1)(/V + 2)/(N  -  2 )4

proof will be based on a curious property of  solutions of the corresponding partial 
differential equation ( 1).

Thus, let u.s assume the opposite: that in the conditions o f  (c) there exists 
/x >  0 ,  such that f (£ ' . /x )  vanishes at some point. Observe that by Lemma 2

N
rr +  ! +  -

I nfi-  11

Then, as in the proof o f  (b). we conclude that there exists a non-trivial so
lution /.<(£) > 0  of  the problem (31).  (32 ) .  with compact support and having 
the asymptotic behaviour (36).  As we show below, this conclusion leads to a 
contradiction.

We established that for /3 > (rr +  1 )(N  +  2 ) / ( N  — 2 ) + the Cauchy problem for 
equation ( 1) has the self-similar solution

i t s ( t .x )  =  ( r  +  t) {/,ti 4 v
l.vl

( У  4 .  , ) I P - I < r - 1  I ) | / | 2 ( / i - 1 1 1
(53)

which has finite energy

EU )
I

'з Г г Т Т П
IIV//"*

rr +  1

/3 ~t~ rr ~t~ 1 II «II
ft t ir I 1

"  IK'V (54)

Indeed, f  s has compact support, and /'s: /'s- e  C (R + ) ;  it is not hard to cheek 
that Vi/'r l , ( n  б L - ( R w), n(t) €  l / " n [ (R w), so that \E(n\ < oc  for all / > 0 , 
Energy functionals of the form (54) are an important attribute of solutions of the 
problem, and we shall frequently use them in the following (see § 2, Ch. V ll).
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It is easy to .see that E ( i )  is non-increasing. Indeed, using equation ( ! )  we 
obtain

E ‘(t) = |V/r"H |-r/A'
rr +

/^+'r+l clx
2(cr  +  1) ./к' /3 +  rr +  1 ,/цл

Д»'м 1 +  //^ (н "+|), clx =  ~  j \  /0 («'r+1), clx =  (55)
.h i ' V IT +  i

4(rr +  1) 11 „ л  t
 ̂/a ( r s i

For convenience, let us introduce the functional

GU) .1+чг/2и:
1 и/.•(«'i ll,,+2 clx.

Then

G'U) =  Ur +  2)  / ic‘r > clx =  (rr +  2) / </r f l  ---------Д а " ' 1 +  t/.v
,/k,v ./к-' V cr +  1 /

/3 -1- rr 4- 1
— (rr +  2 ) - ■ IIV//'f  11 ii- rr +

rr 4- 1 . /3 ~t~ cr -t- 1

Since /3 > cr +  1. we have hence the estimate

N Ji + ir Г 1
,'2|K'V| /З +  rr +  1

(56)

G'U) >
(cr +  2)(/3 +  CT+ 1)--------------й — ------------£ ( , ) , ,  > (),

rr +  1
(57)

All the above transformations are justified for the function (53).
Let us see now what energy corresponds to a global solution (5.3), It is easily 

computed that for it

E (t )  = ( Т  +  1)ЖЪ\Р  a r i D i ^ l

2 (rr -f 1) W t f T ' M W b  -
(T 4- 1 

(3 (T 1

f i  i f /  ь  l
(58)

Let us show that for /3 > (rr +  1 )(N +  2 ) / ( N  — 2 ), N >  3. a global solution cannot 
have such energy. For the critical case /3 =  ( c r +  1 ) (N  +2)/(/V — 2) this is obvious. 
From (58) it follows that E (i)  =  const, that is. E '( i)  =  (), which contradicts (55). 
as И/ ^  0 ,

Assume now that /3 > (rr +  I ) (N  +  2 ) / ( N  — 2 ) + . Then from (58) we have that 
for the energy E  to be strictly decreasing (see (5 5 )) .  we must have £(())  < 0. Then 
E (t )  <  0  for all t > () ( if  £(())  > 0. then by (58) E'(i) >  0. which contradicts 
(55 )) ,
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It turns out that the resulting condition

E ( n  < 0 ,  t > 0, (59)

is incompatible with global existence of a solution.

L e m m a  4. Let u ( t .x )  ф  0  b e  a so lution o f  the  C au ch y  p r o b l e m  (1 ) .  (2) having  
c o m p a c t  support, w hich  sa t is f ie s  condit ion  (59).  Then u ( t , x ) exists f o r  a  fin ite  
time.

Proof.  Under the above assumptions we can take G (t)  >  0. \\n'r ’ 1 (/)\\L: ф  0, and 
||Vn'M 1 (/)||,: ф  0  for all / > (). Then by (55 ) ,  (56) we have G'(t)  >  0. E'(t)  < 0, 
and. furthermore, the inequality (57) is strict:

G'(t) >
(<r +  2)(/3 -(- <T +  1)
------------ SL— --------- - L ( t ) .  i > 0,

t r +  1
(60)

Using the Cauchy-Schwarz inequality, we derive from (55), (56 ) ,  (60) the 
following estimate;

- G ( t ) E ' ( i )  =
4(<r +  1)
k T + 1 7

>

^ 4 (rr +  1)

2  U r  +  2)2
(u 1+,r/: . ( u l f 'r/2)(

4(rr_+ \ ) G 'U )G ’(i)  

(tr + 2 ) :  4

(3 +  tr +  1 

<r +  2
G '( t )E ( t ).

that is,

G E ’ -
f i  t г  1

~ a  +  T ~
G ’E  < ( ) . / >  0.

or. which is the same.

( G { f lu r ' U l u n b / E l ' d )  > 0, t > 0.

Hence, taking into account the fact that E (t )  <- 0, we obtain for all / > P  > 0 the 
estimate

< (.t E ( I ) ' (61) 

where c ,  =  G ifU,T* ll/l,rf2)( i t ) / E ( t t ) < 0 .  From (60).  (61)  it follows the inequality

2, (/) s  — c f d ) ,  , >
(T 2 p  -f- (г -f- 1

Froin the inequality

G 'u)  > (L ± l ^ ± ! L ± l c ^ ....... / ' " « ! ( , ) .
<r +  1 I f ,  |
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it follows that the function ( I d )  =  ||rrh ' " /:!(M|^. cannot be bounded for all t >  0 , 
and that there exists

7 о £  <t +
______ (T +  1

( / ? -  U</3 : <r 1)
I E d , G ( i «) < oc.

such that G (i)  o c  as i - *  7'() , i.e., the solution tt(i. .v) is unbounded. □

Therefore for /3 > Ur +  1 )(N +  2 ) / (N  -  2)*. the compactly supported solution 
its in (.3.3) cannot be a global one, so that in this case all solutions (33),  (34) are 
strictly positive, which concludes the proof of assertion (c) of Theorem 4. □

This analysis establishes a certain similarity of solutions of equation (.31) and 
o f  the stationary equation (38 ') ,  which is quite obvious for sufficiently large values 
of /x =  /'(()). There are also significant differences between them: for small р, > 0 
lower order (linear) terms in equation (31)  are o f  importance. A consequence of 
this is existence for a range of /3 of the solution f s ( f )  with compact support. In 
the ease o f  the stationary equation (38')  (see subsection 4 .1 )  a solution with the 
required asymptotic behaviour exists only for the one value /3 =  Ur +  I ) ( /V +  
2 ) / ( N  — 2) i .

5 A non-eom pactly supported stable set

Using the results o f  subsection 4, it is not hard to determine the stable set IV’ o f  the 
problem ( 1), (2 ) f o r /3 > <r+ 1 + 2//V, which consists o f  non-compactly supported 
functions. The boundary o f  W  consists o f  non-compactly supported global self- 
similar solutions (28).  Here we shall assume that the solution u d . x )  obeys the 
Maximum Principle and depends monotoiiically on the initial function (see ij 3, 
Ch. 1).

Let us denote by '.f the set o f  non-compactly supported solutions ./.s(£) of the 
problem (31) ,  (32):  to f  belong, for example all f ( f \ p )  o f  Lemma 2 (.'/' ф  0  for 
/3 > tr +  1 +  2 //V). The set TV" is determined in the following statement.

T heorem  5. L a  /3 .> tr +  1 +  2 /N .  Then there e x f.v/.v a  n tm -eom poc t ly  su p p orted  
si a b l e  x'a VV o f  the p ro b l em  ( 1), (2 );

IT =  (/r(i(.v) > 0 | 3 l\  e  T  > 0 =  const :
(62)

rr(>(.v) < T  tl{J1 h / s(|.v|/7’^  " ri i||/|2/l/1 ‘ ’ I)).

P roo f ,  By the Maximum Principle the restriction (62) on the initial function 
provides us with the bound for the solution:

u d . x )  < (T  +  i) 1/1/1 и /л(|л|/(7’ +  /)'"), i > 0. л £  R w.
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Therefore the solution u ( t . x )  is globally bounded:

sup ii(t, ,v) 5  /.s(0 ) (T  +  i)  l/(,i 0 —> 0 , t — > d o .

6 A sym ptotic behaviour of global solutions for /3 >  cr +  1 +  2 / N

Let us find out the relation o f  the self-similar solutions Constructed in subsection 
4 to the asymptotic behaviour o f  arbitrary global solutions o f  the Cauchy problem. 
Is it true that the particular solutions (28 )  describe for large i the amplitude and 
spatial profile of decaying thermal structures, which exist for /3 > <r +  1 +  2//V?

Below we present an analysis o f  asymptotic stability o f  symmetric in .v self- 
similar solutions (28).

First we shall show that the question posed above can be answered in the 
affirmative if / iS-(|£|) has the power law asymptotics (3.3). In particular, if  we 
denote by f / ( ! . £ )  the similarity representation o f  the solution of the Cauchy 
problem ( 1), ( 2 ),

/ , ( ' . £ )  =  (T  +  h n ( t . £ ( T  +  /)"'). t > ( ) ,£  €  R v, 

the following statement is true:

T heorem  6. Let /3 > <r -f  1 +  2 /N , a n d  let the se l f - s im ila r  fu n c t io n  J f  in (30)  be  
such  that

-  8 =  ( fr +  1 +  ~  ~  p )  +  ( M f s H D f  1 < 0 . (63)

Then the se l f - s im ila r  so lution  (28)  is asym ptotic al ly  s t a b le  in l . { (R w) in the f o l 
lowing s en s e :  i f  f o r  s o m e  T  > 0

Uu(.x) < rr.s(0- .v; T ) ,  л б R A . (64)

rr.sdO. •: T) -  ttu(-) e  /.' (R w). (64 ')

then
||//(/. •) — / .s 'd llm u ')  =  0 ( t  л) (). t —* со. (63)

R em ark . The inequality (6 8 ) provides the following restriction on the size of 
V.s-(O) =  sup/.s-(|f|):

N

2 (/3 -  \ )f3 L
i i (T +  1 +

Nf s ((» £
1 / 1 / 3  I )
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From Lemma 2 (.see subsection 4 .2) it follows that then ./’.v(|£|) > 0  in R w, and 
therefore the theorem deals with asymptotic stability o f  a non-compactly supported 
self-similar solution us . Let us note that by (35) //.y(r. •; T ) g  i f  ( R w) for any t > 0.

Proof.  Formally, the argument is the same as in § 1.3, Ch. 11. Let :  =  //y — it e  
L ‘ (R w) for each t >  0. By (64) и < its. i.e., ;  > 0 in R ,  x R A'. From the 
parabolic equation for the function r. it follows that

cl
”  II’.(r) |lг о к '  i £  ( ;(/). ed i t ,  iij, )). i > 0.

where

edit. /r.s-) =  (i f  (rj'is +  (1 -  clr; £  [i( / s (0))  ̂ 1 (T +  r ) " 1.
./o

Therefore

IU(Olk',ir, = ( ) [ t fiU'm>" ')./-* oo. (66)

However

l | r ( / ) H, . s  { T  +  t ) ^ fi ....... 3'1||/, -  f s l l r U R ^ -  (67)

and the estimate (65) follows from (6 6 ), (67);  by (63)  it implies the stabilization 
f r  -> ,/ ,s as t -> oo in the norm of i f  (R w). □

Theorem 6 demonstrates asymptotic stability o f  non-compactly supported self
similar solutions in the class o f  initial functions (see (64 ') )

//o(.v) ~  С|л| 2/[ti |.v| - »  oo, (6 8 )

Thus if  //()(,v) satisfies (6 8 ) (then /to ^ l f ( R w)), and to a given initial function 
there corresponds a global solution o f  the Cauchy problem, then the amplitude and 
the half-width are estimated asymptotically exactly as t —* oo by

sup l td .  x)  ~  " ,  |.v,.y(/)| ~  1 >!/l4</i 1 )1_ (6 9 )
U-Kv

What will happen if  (6 8 ) is not satisfied, for example, in the case of an initial 
perturbation with compact support б i f  {R w)7 It follows from Theorem 4 that 
for c r +  1 + 2 / N  < f i  <  ( r r +  1 )(N + 2 ) / ( N  — 2 )4 there exists a compactly supported 
self-similar solution its o f  the form (28),  which, it would seem, should describe 
the asymptotic behaviour o f  such solutions. However, this is not the case. Unlike 
the non-compactly supported solutions in Theorem 6 , this self-similar solution is
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unstable as / —> oo. In this case the asymptotic stage of combu.x'tion with extinction 
is described by self-similar solutions o f  the equation without source:

u, =  V ■ ( v ' r V v ) ,  i >  0. л б R w, (70)

i.e.. for large times combustion is negligible compared with diffusion.
A similar situation was already encountered in § 13, Ch. II. Therefore we 

shall not attempt an exhaustive analysis, and will study only the most interesting 
(and hardest where proofs are concerned) case o f  a compactly supported initial 
function i/i) e  L ' ( R W)- It will be shown that in this case the global solution o f  
the Cauchy problem evolves as t —* oo according to the rules determined by the 
spatio-temporal structure of the self-similar solution o f  equation (70) (see § 3. Ch. 
I ) :

v s d . x -  T . a )  =  (T  ■+ ! r x / lN,rl 2)g s ( v :  a ) .  

v  =  х / ( Г  +  t ) ' / lN,r[-2\
(71

where T  >  0  is an arbitrary constant, ,t?.s(171 n) > 0 satisfies in R w the equation

B-vU'.s) =  V,, ■ (g's'V^g.s) +
Nit + 2

-V.-A’.s • V +
Nun 

Ntr  +  2
(72)

and has the form

.«(17; a) ~  Л()(а2 -  |i7|2)l/ 'r . A«
1 !/"■

2(Ncr +  2)
(73)

Here a  > 0  is a constant.
To prove the above-mentioned fact, let us introduce, corresponding to (71), the 

similarity representation of the solution //(/..v) o f  the problem ( 1). (2 ):

g(/. 17) = ( T  +  /)iV/lw,r't ->n(/, r j ( T  +  /)1/|Л,,г+-->)1 (74)

and write down the equation it satisfies with the new time т =  ln(T  +  t):

<]#
ihr

=  в г (я) =  v „  ■ (я '% л > )  +

+
N ^ T 2 ^ - V +

Nx

N it +  2
+ c  т > T) In T, v  e  R a

(75)

Я(т„. 77) =  =  77„(77). v  6 (76)

In (75) we denoted by v the constant v =  N\f3 — ( it + 1 +  2/N)\/(N<r + 2). For
/3 > / г  + 1 +  2/N  it is positive, which is important.
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Let us prove first that in the case o f  a function »o(.v) with compact support the 
behaviour of global solutions o f  the problem (1), (2) as / —»• oo “obeys” (71). 
First o f  all, it is clear that the function (73) is a subsolution of equation (75). since

dr = 0 < BAns) s f ,T* s -

Thus if (h)(0) > 0, there exist constants 7' > 0, > 0. such that

иo U ) > T - N / I N i r - \ 2 ) 1 / (Л’(ГЧ 2 к in R a (77)

Therefore f>(r. r/) > frs- (r j 'c i .)  in R w for all admissible т  >  т(|.
It remains to construct a similar supersolution of equation (75). Naturally, the 

functions ял cannot be used to that end. However, they can be easily modified to 
give a supersolution.

L e m m a  5. Lei j i  > it  +  1 +  2 /N  a n d

1 -  ~ЛЦ'  V ) " J l)/,r7 " ” ' > 0, (78)
V

Then the function

X+ (r. V) =  |1 -  b e  ‘'T\ilir.4 s (v /\\ -  b e  "T\i n : a ) .  (79)

w h ere  b  =  c rA f f  1 /? ,  is a  superso l i i i ion  o f  equ a tion  (75),

P r o o f  We shall seek a supersolution in the form f>+ =  Ф(т)£фт1 /Ф (г)' ,а ) .  Then 
we have / i )r  >  В т(я + ) in R f x R w\(|i7l =  cicp(r)},  if

Ф'
Ф

2
(T

1
ct“

~d (Л/гг +  2 )
tL
Ф2

Ф'
+  (/Vrr +  2 )-L

Ф +

N

Л/гГ+ 2

Г

Ф2
+ е - ,,тфр

(80)

where cl ■— ( a 1 — £ - ) ,  б (0 . rr|.
Let ф' >  0, i//r =  cpl (this holds in (7 9 )) ,  Then validity of (80) follows from 

the following inequality:

~ - > ^ ^ - ‘ ( r ) <  V ) 1"  l)/,\ T > r 0. 
ф(т)

Setting here ф ' г ( т )  =  1 — be VT (by (78) ф  > 0 in R t ). we see that Я г  is a
Supersolution if /> > c r A ^ 1 (a2)</i [)I'T/ и .
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Thus, if »o(.v) is a function with compact support and there exist cons'tants 
T  > 0, a  + > 0, such that

« 1.(77) < (1 -  Ы  " ) l / , r « s ( 7 7 / ( l  “  b T - " ) ' /2: a + ) , v  б R w, (81)

where b  =  i r A ^ ^ a l  /n ,  then we have in (t 0 . o c ) x R w the estimate

r ( t , r j )  <  .4 , ( r .  1 7 ) (8 2 )

(and, actually, problem (73),  (76) will have a global solution). □

Combining the above results, we arrive at the following conclusion.

T heorem  7, Let /3 > i r + \  +  2 /N , a n d  l a  the  fu n c t io n  »o(.v) sa tis fy  the  cond it ions  
(7 7 ) ,  ( 8 1 ) ,  Then, i f  ,1>(эс. 1 7 ) exists.

X s ( V ' cl- )  5  « ( 0 0 , 1 7 ) <  £.s(T7 ’. « + ) .  1 7  б R a . ( 8 3 )

This result shows that for /3 >  rr +  1 +  2//V the evolution o f  global solutions 
o f  the Cauchy problem (1), (2) is described by the self-similar solutions (71) of 
equation (70 ) .  The estimates (83) mean, in particular, that

sup If(/,.v) -  r  V/"v,rt21
и'К 4

|AY/(Ml t 0 0 .

Recall that the same conclusions were obtained earlier using the qualitative non- 
stationary averaging theory (see § 2) .

As far as asymptotic stability o f  the self-similar solutions (71 )  is concerned, 
we shall coniine ourselves here to proving one simple assertion.

T h e o rem  8 . Let N — 1, /3 > ir +  1 +  2 /N  ~  cr +  3 a n d  let tto(x) h a v e  c o m p a c t  
sitp/iort. Then tinder the cond it ions  o f  T h eor em  7 uv can  f in d  a  €  |r/„. a t.|, su ch  
that

«(/. V )  K s ( v ’. a ) ,  I - *  0 0 ,

alm ost  ev ery w h er e  in R.

P r o o f  First of all, by (83) the Cauchy problem (75),  (76)  is equivalent to a 
boundary value problem in some bounded domain П О |a . , g =  0  on R + x 
i li l .  In addition, we can derive the estimates

(,41" r/:)r 6 L: ((T|.oc) X П ) , « ,г"  6 / Л ( ( Т | , о о ) :  W'(fi)), r, = T „ +  1, (84) 

by talcing scalar products in 0 0 ) x l i )  o f  both sides of equation (75) with

9

i h < r +  1
Л’'г "  + i r +  2

Я(т. £ ) £ d {
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These estimates show that the m-limit set, a>(go) =  (#*(17) | 3 r „  —> 00 : 
8 IT+i( r „ . - )  ->  |k * ( - ) P  1 in L2(0 )), consists of  “stationary” solutions o f  equa
tion (75) for т — o g ,  that is, (.tr*) =  0. Indeed, using the estimate (83) and 
(84) in passing to the limit in equation (75), we have that, given a monotone 
sequence t „ —> 00 , g (r„  +  ■) —> /?(,v, ■) in L~„((t  1, 0 0 ) x £ 1), where ItU. •) is
a weak solution of the limit equation Its =  В ^ ( l t )  for ,v > 0, /?(()) e  to(g(l). It 
follows from (84) that uniformly in s б |(). 11 ( a  =  1 +  it / 2)

"(t„ +  s )  -  , Ч п ( т „ ) | | у , ( П |  < i r — Я^т)
(fr

d r
T

r. : i m

<  г - V ( T )

T

d r  —> 0

J  r „ 9r / - • ( i l l

as t „ - »  00 , that is, It does not depend on s and is a weak stationary solution. 
B ctj(/?) =  0 ,  By (83) 8* are functions with compact support, and therefore io(g0 ) C 

lgs(v'- a '>- a  6  lя . « i  II- Finally, independence of the limit function " ( 17) o f  the 
choice o f  the sequence r„ —> 00 follows from “ monotonieity” o f  the solution of 
the problem (75), (76):

~“ ll<<(T)|li.'(i!) = tr“Th(T)\\fi,(n) > 0. T  > 0

M l£ ( T ) l l ; .  i(J1| is a Liapunov function), rind also strict monotonieity in a  >  0  ol 
the expression IU\v(-; rr)ll/,'(m- D

R e m a rk .  It is not hard to show by the Bernstein technique that the derivative 
(g ’r ' ' ) , ,  is uniformly bounded in (т (, +  1 . 0 0 ) x R, so that stabilization g " ^ ( T .  •) —> 
g'sf+ l (-; a )  as т —> 00  is uniform in R.

§ 4 Proof of localization of unbounded solutions for P  > tr  +  1; 
absence of localization in the case 1 < /? < tr +  1

Results o f  preceding sections give us quite a good overall picture o f  the main 
properties o f  unbounded solutions o f  the Cauchy problem we are considering. 
The aim o f  the present section is to prove localization o f  unbounded compactly 
supported solutions o f  the S- (/3 =  it +  1) and LS- (/3 > it +  1) regimes, as 
well as absence o f  localization in the HS-regiine (1 < /3 < it 4 - 1). At the same 
time we shall obtain a number o f  important estimates o f  the size o f  the support 
o f  unbounded solutions. The method o f  proof presented here will be used in § 5,
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where, applying this method, we shall solve the question of  describing asymptotic 
spatio-temporal structure o f  unbounded solutions for times close to the blow-up 
time.

We shall consider the Cauchy problem in the one-dimensional case,

и, =  (u'ru x) x +  uJi . t >  0. x б R ;  (r >  0. (3 >  1. (1)

u ( 0 . .x ) =  it[)(x) >  0. .v б R : и"'и  6 C 1 (R ) .  (2)

where the initial perturbation и о ( х )ф О  is a compactly supported function with a 
connected support:

w(0) =  supp s  (,v б R  | »o(.v) > 0) =  (It . (0).  /u(0)>, (3)

- o o  < /?..(()> < /?.+. (0 ) < oc.

Then, for all / > 0 for which the .solution exists, the support of the generalized 
solution it(t. x ) will also be bounded and connected, "*

a>(!) -  supp u(t. x) =  ( h ..(/), /г4 (/)), (4)

— oo < It A t )  < /г+(0 < oo.

The functions I t - ( t )  and /;f (/), which determine at each moment o f  time the 
position o f  the (left and right, respectively) front points o f  the generalized solution, 
are, respeetively. non-inereasing and non-deereasing, so that the length of  the 
support measai(r) =  /г, (!) — lt .. (t)  is non-decreasing with time. It is not hard to 
show by comparison with travelling wave solutions that h ±  e  C(|0, T»)).

Let ! — To(un) < o c  be the blow-up time o f  the problem (1),  (2). First of 
all we shall be interested in the behaviour o f  the functions h ± ( t )  as t —* T 0\ 
It turns out that for (3 > it +  1 the functions h ± ( t )  are bounded on (0. To) and 
|/M77))| < oc, which, as can be easily seen, is equivalent to localization o f  the 
unbounded solution. Conversely, it will be shown that in the case /3 e  ( l . c r  +  1) 
the functions /r+(r) are unbounded, and h l (r) —> ± o o  as t —> T ,7 (there is no 
localization).

In § 1 we studied in detail self-similar unbounded solutions, which explicitly 
illustrated various interesting properties o f  blow-up regimes. To prove that these 
properties are shared by a wide class of solutions o f  equation ( 1), we shall use the 
method o f  intersection comparison o f  the solutions being considered with exact 
self-similar solutions having the same blow-up time. We start by presenting the 
main ideas o f  this comparison theory, which is especially suited to analyze the 
spatial structure of unbounded solution close to the finite blow-up time.
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1 T he num ber of intersections of different unbounded solutions having the 
sam e blow-up tim e (m ain com parison theorem s)

Let us observe at the outset that Proposition 1 below, concerning the non-increase 
o f  the number o f  spatial intersections of two different solutions it(t. x) and v(t.  л ), 
is an immediate corollary of the Maximum Principle for linear parabolic equations. 
Certain technical difficulties, which crop up also in the definition o f  the intersection 
used here, have to do with the fact that ( 1) is a degenerate equation, which admits 
generalized solutions. Therefore we shall not present this result in its maximal 
generality, or in all the possible detail. We shall mainly emphasize the parts o f  
comparison theorems that make essential use of unboundedness o f  solutions under 
consideration.

Thus, let v(t, x) be a generalized solution o f  equation (1) with a bounded non
negative initial function

r(0 . x) =  u„(.v) > 0. л б R ; t^ "  б C ' ( R ) .  (5)

We shall assume that the function v(t. x)  is defined for |(), To) x R.

Definition. For a fixed p, 6 |0. To) the interval |«|. rol C R  is called an in te rsec 
tion interval  (or an intersection  i>oiut if  a\ ~  ro) of  functions u(ta, x) and v(t{), x) 
i f  the difference ш(/0, ,v) =  u(t(l. x) — t'(h). x) is such that te(/(). x) =  0 for all 
x б | « 1, rn|; for any sufficiently small 8 > () the function w (to. x) does not have 
the same sign in \сц — 8. a  i +  й| and w(to. x) ф  () for all x б ( a  i — 8,it\) and 
x б Ut2 ,c t 2 +  8). If, on the other hand, w (to .x )  =  () on ]rri, ггз|. wUo- x)  has 
constant sign on |ot -  8 , a 2 +  <5| for any sufficiently small 8 >  () and ш(/(), x ) # ( )  
for all x б («I — 8 , a i) and x б ( a 2, a 2 +  8),  then we call |«|,«:| a tangency  
in terval  (or point  if  rrt =  a 2) o f  the functions tr(h>, л) and i'(/0. x).

We shall denote the number o f  spatial intersections in R  (of  intervals or points 
o f  intersection) of the solutions u ( t .v) and u(/(). x) by N ( t ()), and we shall always 
assume that N (0) < oo. It is clear that /Vfio) is precisely the number of sign 
changes in R  o f  the difference w (to, x).

Proposition 1. The function  N (t)  is non-increas ing  with time, anil in p a r t ic u la r  

N (t)  < /V(()) f o r  a l l  t б (0, To).  (6)

P roof.  As we already mentioned above, technical difficulties arise in the analysis 
of generalized solutions u(t, x )  and v(t, x)  having compact support. In this case, 
in accordance with the method of construction o f  generalized solutions (see i; 3. 
Ch. I) we shall first consider the functions ttf ( t , x )  and vf ( t . x ) ,  classical strictly 
positive solutions o f  equation ( 1) with initial functions

M O , x) =  n()(x)  +  e .  vt ((). x) =  Vo(x ) +  e .  x б R, (7)
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where e  > 0  is a fixed sufficiently small positive constant. By the comparison 
theorem ne > e ,  v f > e  everywhere in the domain o f  existence o f  the solutions, 
and therefore equation (1) is uniformly parabolic on these solutions. Let us denote 
the number o f  spatial intersections o f  the functions it At. x)  and vf (t, x)  by N f (t). 
It is easily seen that by construction N f (0) == /V(0) for every e  > 0,

The difference u'(t. x)  =  uf (t. x) — vt (t, ,v) satisfies the linear parabolic equation

и’, =  (a ( t .  x ) u \ ) x +  b(t .  x)n>, (8 )

where the coefficients of the equations

a ( t . x)  =  f \rjitf +  (1 -  17) 1',. \'r clrj. b (t .  ,v) =  /3 f \rjttt +  (1 — i7 )i't drj,
Jo  ,/o

are sufficiently smooth, and a(t ,  x) > e ,r. Equation (8 ) is uniformly parabolic in 
the domain under consideration. Therefore Proposition 1 is valid for the function 
N f( t ) .  which is a consequence of the Maximum Principle, A simple short proof 
o f  this fact is presented, for example, in 13551; for similar statements sec 113, 316, 
303, 315, 171, 175, 2 6 3 1. The original general ideas of such a comparison go back 
to C, Sturm, 1836 13 6 8 1,

Thus, N e (n  is non-increasing and N t (t) <  N t (0) .  Using now the fact that 
nt U ,x )  —» t t ( t .x ) .  V fU .x )  —* v ( ! ,\ )  as e  0  uniformly on every compact 
set in [0, T 0) x R, after the necessary elementary consideration o f  the possible 
configurations of the intersections o f  the generalized solutions tt(t. x) and n(t. x) 
and the corresponding regularized solutions it A t.  О and vt U, x) .  we arrive at the 
desired result for the function N(ty, sec 1140, 175[. □

Let us note that for 11 > e  the coefficients of equation (1) arc analytic. Therefore 
its solutions t i f ( t . x )  and vf ( t , x )  for t > 0  are analytic in ,v functions (see, e.g.
1100, 249, 2 5 6 1). Therefore each of  their intersections for t ~> 0  is an isolated 
point, However, as we pass to the limit e —* 0, an intersection point of  itf (t, x)  
and vf ( t . x )  can be transformed into an interval of intersection o f  the generalized 
solutions u(t. x)  and i,'(/, л). Nonetheless, any intersection in the domain of strict 
positivity of the generalized solutions n ( t . x )  and v U .x ) ,  where the equation (8 ) 
for their difference w — n — u is uniformly parabolic, and the solutions are classical 
and as smooth as is allowed by the coefficients (therefore we can also claim that 
the solutions arc analytic in л in the domain of  their strict positivity), is tin isolated 
point. Hence an intersection interval can only arise when it contains end-points of 
the supports o f  the functions under consideration.

Thus the number of spatial intersections is non-increasing in time. As we al
ready observed, this fact is true for a wide range o f  parabolic equations, and we 
always have the upper bound (6 ) for the number o f  spatial intersections. How
ever, to be able to use intersection comparison o f  solutions we also need, roughly
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s p e a k i n g ,  a  l o w e r  b o u n d  o f  t h e  n u m b e r  o f  i n t e r s e c t i o n s .  I n d e e d ,  f o r  e x a m p l e ,  t h e  

f a c t  t h a t  t h e  n u m b e r  o f  i n t e r s e c t i o n s  c a n n o t  d e c r e a s e  t o  z e r o  d u r i n g  t h e  e v o l u t i o n  

o f  s o l u t i o n s  w o u l d  m e a n  t h a t  t h e r e  e x i s t s  a  c e r t a i n  r e l a t i o n  b e t w e e n  s p a t i a l  p r o f i l e s  

o f  t h e  s o l u t i o n s  o n  t h e  w h o l e  i n t e r v a l  o f  t h e i r  e x i s t e n c e .  U n f o r t u n a t e l y ,  it d o e s  n o t  

a p p e a r  p o s s i b l e  t o  o b t a i n  s u c h  a  l o w e r  b o u n d  f o r  t h e  n u m b e r  o f  i n t e r s e c t i o n s  in  

t h e  g e n e r a l  c a s e ;  f o r  t h a t ,  s o l u t i o n s  m u s t  s h a r e  s o m e  c o m m o n  p r o p e r t i e s .  In  t h i s  

c a s e  s u c h  a  s h a r e d  p r o p e r t y  w i l l  b e  e q u a l i t y  o f  b l o w - u p  t i m e s .

T h u s  w e  s h a l l  a s s u m e  t h a t  ttd, x) a n d  v(t. x) h a v e  t h e  s a m e  b l o w - u p  t i m e .

l i m  x u p t r ( r .  .v) =  l in t  s u p u U ,  ,v) =  o g . ( 9 )
' - Г|р pc-R u-R

L e t  u s  n o w  s t a t e  t h e  m a i n  i n t e r s e c t i o n  c o m p a r i s o n  t h e o r e m .

Proposition 2. Let »( / ,  .v) and v(t, x) have the same blow-up time t =  7'(l. Then 

‘Ж *  =  (/ б  [ 0 .  7 'o )  | it(t, .v) >  o f / ,  a ) in R  and

( 10)

s u p p  v(t, a ) C  s u p p » ! / ,  a )) =  0 .

Proof. L e t  u s  a s s u m e  t h e  c o n t r a r y :  le t  W *  ф  0  a n d  t h e r e  e x i s t s  t „ б  [(). T o ) ,  s u c h  

t h a t
tt(t. ,  a ) >  v(tt . A) in  R .  

s u p p  V(tt , A) C  SUpp U(l A).

T h e n ,  f i r s t  o f  a l l ,  b y  t h e  S t r o n g  M a x i m u m  P r i n c i p l e ,  a p p l i e d  t o  e q u a t i o n  ( 8 )  

in  a n y  s u b d o m a i n  w h e r e  it is  u n i f o r m l y  p a r a b o l i c ,  in  w h i c h  tt(t, x) a n d  v(t. x) a r c  

s e p a r a t e d  u n i f o r m l y  f r o m  z e r o ,  a n d  a l s o  u s i n g  c o n t i n u i t y  o f  s o l u t i o n s  a n d  o f  t h e  

b o u n d a r i e s  o f  t h e i r  s u p p o r t ,  t h e r e  e x i s t s  a  s u f f i c i e n t l y  s m a l l  t i m e  T t >  0 ,  s u c h  t h a t

i i(tt -b т i , a ) >  и ( / * +  т i , a ) in  s u p p  v(t, +  T| . A),  

s u p p  v(t, +  n ,  a ) C  s u p p i f ( r ,  +  n .  a ).

U s i n g  a g a i n  c o n t i n u i t y  o f  t h e  s o l u t i o n  n ( r ,  v) a n d  o f  t h e  b o u n d a r i e s  o f  i ts  s u p p o r t ,  

w e  c o n c l u d e  th a t  t h e r e  e x i s t s  a  s u f f i c i e n t l y  s m a l l  т з  >  0 ,  s u c h  t h a t

n(l, +  T | , A) >  ! ) ( / ,  +  TI +  T2 . A) in  R .

T h e r e f o i v  b y  t h e  u s u a l  c o m p a r i s o n  t h e o r e m

U(t. a ) >  1 / ( /  - b  Tt. a ) in  (t, +  T |  , To) X  R .

S e t t i n g  h e r e  t =  To — tj. w e  a r r i v e  a t  t h e  e s t i m a t e

i>(7'o, a ) <  i / ( 7 ' о -  tj. x) in  R ,
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which, obviously, contradicts (9 ), since the function in the right-hand side is uni
formly bounded in R, □

Proposition 2 can be described (with certain caveats) as providing a lower 
bound for the number of intersections; under the above assumptions N (t) >  0 for 
all t € [0 . 7'o). Without any caveats, one such result is presented below.

C orollary . Let it ( t . л) and v(t. x) have tlw same Mow-up time t = To i assume 
that им x ) has compact support and u()( a) > 0 in R. Then the solutions u (t. x) 
and v(t. x) intersect foe a ll t e [0 . To). Furthermore,

N (t) > 2 in [0. 7’,,). ( ID

Proof, Since under these assumptions the solution u ( t .x )  has compact support, 
and v(t. v) > 0  in [0 . To) x R, the estimate (11) follows immediately from (10) if 
we replace u(t. a ) by u(t. a ). □

In the sequel we shall have to compare a solution of the problem (1), (2) 
with exact solutions, which are not defined everywhere in [0 , To) x R. Below we 
formulate an intersection comparison theorem for a solution u(t, x) of the Cauchy 
problem and a solution v(t. x) of a boundary value problem for equation (1), 

Thus, now we shall assume that a generalized solution v(t. x) is defined in 
some domain of the form [0 , To) x (rp (t). 172(0), where 171(0 < 172(/), v(t.rp (t)) 
are continuous functions in [0. To), and it is unbounded in the sense that

lint sup !.'(/, a ) = OO.
' "III HrO),(/).,/:(<>>

In this context we shall denote by N(to) the number of spatial intersections of 
the solutions 11(h), .v) and v(tu, a) in the domain (171(h)), 172(0)), We shall take
N (0 ) < 00.

P ro p o sitio n 3 . 1) F o r any h> e [0 . 7'()) the number N (t0) does uni exceed the 
number o f changes o f sign o f the difference w(r, x) = a (t,x ) — 1 >(t,x) on the 
parabolic boundary of the domain [0 . To) x ( p f t ) ,  172(0).

2 ) Let the solutions 1'(/. a ) and a(t, a ) exist fo r the same time T (l. Then

T ‘ = j/ (l 6 ((), To) I U(h), -V) > !'(/(), A) 111 (171(h)), 7)2(10)), 

sup !.'(/, 17,(1)) < inf ltd . T),(D) fo r i — 1,2} = 0.
111(1,1.7',I) I 1.U11. Jn> >

( 1 2 )

Proof The first statement is a corollary of the Maximum Principle and, as Propo
sition 1, is proved by first regularizing.
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The proof o f  statement 2) is also similar to Proposition 2. Indeed, i f  there 
exis'ts /о 6 T \  /(, < T 0, then, after "small translations in time" of size t \ and to, 
justified by the Strong Maximum Principle and boundary data comparison theorem, 
we conclude that the solutions »(/, .v) and v(t, x)  have different blow-up times (that 
o f  v(t, л) is somewhat larger). Observe that Proposition 2 is a direct corollary of  
this more general assertion. □

R em ark . Since proof o f  statement 2) is entirely based on the Strong Maximum 
Principle and boundary data comparison theorem, it will still hold if i'(/, x) is a 
generalized subsolution o f  equation ( 1) in ihe domain [0 . To)  x (171U). 172( r)) with 
blow-up time T 0.

We shall start our applications o f  the intersection comparison theory by analyz
ing the S blow-up regime.

2 Localization for (}  =  ir  +  \ (S-regim e)

The main localization result is the following claim.

T heorem  1 (localization in the S-regim e). F o r  (3 =  tr  +  1 u nbou nded  so lution  
o f  the C auchy  p ro b l em  (1),  (2 )  is lo ca l iz ed ,  an d  i f  (3) h o ld s . ire b a r e  f b r a i l  
t €  (0 . To) the estim ates

It , (t) < h , (0 ) +  l . s / 2 .  b . (t ) > /; .(()) -  L s / 2  (13)

and . in particular.
meas a>(7'„') 5  meas cu(0) -)■ Ls-  (13 ')

w h ere  L s ~  2ir(rr +  1 )|/-/<т is the fu n d a m en ta l  length o f  the S-regime.

Below we shall also prove other theorems, which describe more precisely the 
penetration depth of the thermal wave for specific initial perturbations.

Actually, the word "unbounded" in the statement o f  the theorem is superfluous, 
since, as we showed in § 3, for all (3 e  ( 1, tr  -f 3),  N =  1, to any initial function 
tto ф  0  o f  the Cauchy problem there corresponds a solution that exists only for a 
linite time.

The estimates (13) mean that in the S-regim e the front of a thermal wave can 
advance a distance which does not exceed half of the fundamental length L s. We 
Stress that the estimates (13) and (13')  are independent of  the spatial structure 
and amplitude of the initial perturbation ia>(x): therefore the length L s  is indeed a 
fundamental (independent of no) characteristic of the nonlinear medium.

Proof of Theorem 1 is based on intersection comparison o f  the solution 1 1(1 . x)  
with a family of exact non-xelf-.similar solutions u , ( t . x )  presented in Example 14
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in § 3. Ch. 1. Since during the time of existence thermal fronts o f  such an exact 
solution travel a distance exactly equal to L s / 2 .  for arbitrary compactly supported 
.solutions the estimates (13) arc optimal.

I C o m p a r iso n  with uu ex a c t  s e l f - s im i la r  so lution

Proof o f  Theorem 1 proceeds in two stages. First we shall prove a weaker re
sult. which will serve as a simple and illustrative example o f  the power o f  the 
intersection comparison method applied to an exact self-similar solution.

T h eorem  1'. In the cond it ions  o f  T h eorem  1. f o r  al l  t б ((). '/'(>)

It , ( t )  < It i ( 0 )  +  /..s. I t . (t) > h (0) -  L s . (13")

P r o o f  o f  T heorem  Г. In § 1 we presented an example o f  a simple localized self
similar unbounded solution for (3 =  it +  1:

»„(/. ,v) =  C/'o -  /) h ,rl>s(x). 0  < t < V'o. .v б R .  (14)

where

( f i x )
2 (гм-1) 
trf,r } 2) / .  S

! /гг

0 .

I.vl < /,s/2 ,

|A-| >  l -s/2.
(15)

The support of this solution is constant in time, and its length is L s  =  meas supp 0$- 
We shall prove the estimate (13")  by intersection comparison with the above self
similar solution existing for the same length of time. Since (14)  is a solution in 
separated variables and has a very simple spatio-temporal structure, this allows us 
to give an exhaustive graphical illustration of  the proof.

Let us denote by » s(/. ,r, ,V(>. T n) the self-similar solution (14),  symmetric with 
respect to the point x =  лц ((14) is symmetric with respect to x =  0 ) .  Let us prove 
the first inequality (1 3 ") ;  the second one is established in a .similar manner. Let us 
set a’o =  I t (0) +  Ls/2 . and in addition to nU. x)  let us consider a different solution 
i'(r. ,v) =  localized in the domain (|л — ло| < l - s / 2 ) ,  having the
same blow-up time / =  7'n. The interrelation o f  graphs of  the corresponding initial 
functions a  n(.v) and u((). ,v) s= » s (0 .  ,v; лц. 7'(l) s  T { ) l / 'r 0 s ( x  — ,vo) is shown in 
Figure 5f>. It is clear that they intersect only at the point л =  I t , (0),  so that 
TV(0) =  1. Then by Proposition 1

N (t)  S  TV(0) =  1 for all t б (0, 7’0 ). (16)

Let us prove that I t , (/) < It ( (0) +  /.v. Lc.. that the thermal wave cannot advance 
beyond the right front point of the solution 14/. x ) .  Let as assume the contrary. Let 
/* =  sup)/ > 0 1 I t , (/) < It t (0) +  L s )  < 7'o. that is, tt(t. ,vt ) > 0  for all t e  ( t\  T 0 )
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Us ( 0 , X iX BJ 0)

h A O )  O' hAO)  x „  x ,

Fig. 56. N ( 0) = 1; iniiial functions luive a unique inicr.seeiion at the point л =  /!-,.(())

at the point л, =  h  t (0) +  L s . Then there exist two ways the front point x =  li 4 (/) 
can move past the right front point л =  л* of the self-similar solution f/y.

The lir.st o f these corresponds to the case N(t") =  I. Then, since, as is well 
known, the moving front o f  the solution u ( t , x )  cannot stop, for any arbitrarily 
small т > 0  there exists 11 б U ' .t *  +  t ) such that N ( t i) > 2. This situation is 
shown in Figure 57. where N(t\) =  2. Indeed, by continuity o f  the solutions, 
under a small shift in time the intersection that existed for / =  A persists, and at 
least one “new" one is ereuted to the left o f  the point x  =  x ,  due to the motion 
o f  the right front o f  the solution (/(/, л). Hence N(t\) >  2. In other words, during 
the evolution the number o f  intersections o f  u(i .  ,r) and v(i.  x) increases, which is 
forbidden by (16) (and contradicts the Maximum Principle).

In accordance with (16).  the only other way o f  violating the lirst bound in (12") 
is by having N (t*)  =  0. Then by Proposition 1 we have N(t)  < N (t*) =  0  for all 
i б (r*, 7 о), and therefore by the usual comparison theorem with respect to initial 
functions, at any moment o f  time t =  м б (/". 7'(t) we must have the situation 
as in Figure 58. (The case o f  //.у(ь, л: ли. Тц) being tangent “ from inside” to the 
spatial profile of л(/т, ,r) is ruled out by the Strong Maximum Principle applied 
to equation (8 ) for the difference o f  these solutions in the domain o f  uniform 
parabolieity, where the solutions are uniformly separated from zero.) Clearly, 
such a configuration o f  the graphs o f  the functions //(/:. .r) and //у(ь, .r:.r(i. T o) 
contradicts the condition o f  them having the same blow-up time.
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Thus, we have considered the two eases: N (t*) — 1 (which leads to Figure 57) 
and N(t")  =  0 (see Figure 58).  By (16) there are no other possibilities. Therefore 
1 * =  7'o, which concludes the proof of Theorem F. *  □

Next we are going to exploit similar ideas of the intersection comparison method 
applied to the self-similar solution (14),  (15) to study in more detail the dependence 
o f  the character o f  the motion o f  the front o f  a thermal wave in the S-regime on 
the spatial structure o f  the initial perturbation //о(л ).

2 C ondition  o f  t im e- in d ep en d en ce  o f  the  support o f  cm u n b ou n d ed  so lution

The support (localization domain) of the self-similar solution (14),  (15) does not 
change during the time o f  existence of the solution t б (0, T n). Let us show that 
in addition there are many other (non-self-similar) solutions, that are localized in 
the domain supp»o(-t) of their positivity at the initial moment o f  time.

T h e o rem  2. Assum e that /3 ■- ir +  1, con d it ion s  (3) a r e  sa t is f ied  and
meas (supp no) >  /-$■ b e t  the  initial fu n c t io n  tt0(x) sa t is fy  the f o l l o w in g  con d it ion :

there  exists a  constan t  A0 > 0, su ch  that 
и s(0, л ;ло. A()) < //(IU )  in R, w here  лц =  /?*.(()) — L $ /2 ,  
w hile the fu n c t ion s  itn(x) a n d  //,y(0. ,r, л'(|. A) h a v e  exactly  

on e  in tersect ion  point f o r  al l  А б (0. A0 )

(this s ituation  is show n  in F igure  59). Then

h + ( t )  =  h ± ( ( ) ) f o r  a l l  t  €  (0, Т а ) .
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P roo f .  Let us denote by N(i\ A) tbe number of spatial intersections o f  the solutions 
//(/. л) and //.yU. л; л0, Л). From the condition of the theorem it follows that 7'o < 
A0. If  7"0 =; A0, that is, if  /V(0; A(l) =  0, then the hypothesis concerning the motion 
o f  the right front leads to a contradiction with Proposition 2 (here obtains the 
situation of Figure 58). Therefore we have to consider the case T (l < Au. Let us fix 
A — T о and consider the solution n s (t, л; Лц, A), which has by construction blow-up 
time 77,. Then for t =  0 there is ;t unique intersection point o f  the initial functions 
Uo(x)  and //.v(0. ,r; ло, A) =  A ' 1/,r0 s-(.v — -to), i.e.. /V(0; A) =  1. Arguing now as 
in the proof o f  Theorem L, we conclude that there are two possible scenarios for 
the motion o f  the right front o f  the solution //(/, .к). According to the first o f  these 
( N ( P )  — 1), we arrive at the configuration o f  spatial profiles as in Figure 57 (which 
contradicts Proposition 1). The second scenario (N ( t ’ ) =  0 ) leads to Figure 58, 
that is, to a contradiction with Proposition 2. Hence the front of the solution //(/, л) 
mus4 be perfectly immobile, which concludes the proof. □

R e m a rk .  It is o f interest that for the right front point o f  the solution to be immobile 
throughout all the time o f  its existence, we need a non-local condition on the 
behaviour of the initial function //0(л ) in an /„.у-neighbourhood (/ц (0 ) — Ту, /г+ (0 )) 
o f  the front point ,r =  It  ̂ (0).  I f  the condition of Theorem 2 holds, the behaviour 
o f  //()(,c) in the rest o f  the space, (л < h + (0 ) -  /.y), has no inlluenee on the 
immobility o f  the right front o f  the solution. Formally, the initial function can 
go to any large value as ,r —>• — oo (as long as a local (in time) solution exists). 
This again emphasizes the universality o f  the fundamental length L s  characteristic 
of a nonlinear medium, which here plays the part of a kind o f  effective radius ol 
inlluenee o f  thermal perturbations.

Imposing similar conditions on the behaviour o f  //o(.c) in a neighbourhood ol 
the left front point, we obtain a set of  initial perturbations //»(л ), which generate 
unbounded solutions with a constant support. It is easy to show that this set |//(l)
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is quite large and contains functions other than the initial functions corresponding 
to the self-similar solutions (14).

3 Condition  f o r  lo ca l iza t ion  on  the fu ndam en ta l  length L s

Let us show that under certain conditions an initial perturbation with a small support 
(m eas(sup p//(,) < Ly)  cannot propagate beyond the domain (|л| < L.s/2) in finite 
time o f  existence of the solution. Here we shall assume that in addition to (3) we 
also have the conditions

//o(— x) =  //o(.c). x б R ;  Unix) is non-increasing for л > 0. (17)

Under these conditions, due to uniqueness o f  the solution and the Maximum 
Principle we have that // =  //(/.|л|), //,(/, л) £  0 for л б |(). //,.(/)) and 
sup( //(/, л ) s  //(/, ()).

T h e orem  3. Assume that f3 — ir +  1, condit ions  (3),  (17) h o ld  a n d
meas(supp //(l) < l . s . Let  //o(.x) a l s o  sa t is fy  the condition

there  exists  Ац > 0, su ch  that  //.y(0. д;(),  A(l) ^  //o(,c) in R, 
while  the fu n c t io n s  tto(x) a n d  //y((). л ; 0 . Л) 

in tersect  p r e c is e ly  at two p o in ts  f o r  a l l  Л > Ац

( s e e  F ig u re  60). Then

\h i (/)| < L s / 2  f o r a l l t  б (0, 7 0 )

an d  in p a r t ic u la r
meas w ( T a ) 5  L s . (18)

P r o o f  By Proposition 2 T a >  A(l. Setting A =  7ц and denoting by N + (r,A)  
the number o f  spatial intersections of the solutions //(/, X) and //s-(/. л;().  A) in the 
domain j.r > 0), we obtain N+(()', A) =  1. Then by Proposition 1, in view o f  the 
condition и =  l td .  |.v|), we have that N  ( (r. A) < 1 for all t б (0. У'ц). Therefore 
we can now use the method of proof of previous theorems. □

Thus in the conditions o f  Theorem 3 the thermal wave can move in any direc
tion, but the total distance covered by the thermal perturbations up to the blow-up 
time cannot exceed

Ls -  measa>(0) < L.s■ (19)

4 C o m p a r is o n  with a fa m i ly  o f  ex act  u on -se l f- s im ilar  so lut ions.  P r o o f  o f
T h eor em  I

We move on now to prove the optimal bounds (13).  As we already mentioned, the 
proof is based on intersection comparison with the more complex solution //*(/. x)
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o f  equation (1), presented in § 3, Ch. I. It has the form

i u U. .<) =  {ф (!)\ ф (!)  +  eos(27r.r/Ly)| t } ' /<r > 0 ( 2 0 )

for л б ( —L s-/2, L s /2 )  and / / ,(0  -v) =  0  for л б R\( — L s / 2 .  L s / 2 ) .  The function 
///(/) is determined from the equation

г// =  rr(rr +  1)“ 1 C'o ĵ l — i/r] . !  >  0 ; ф(0) =  — 1. (2 1 )

and ф и )  =  Col 1 -  ф2(1) | where

Co =  C o(7 о) =  (<г +  1 )<r 17 о 1 B( 1 +  rr/2, 1 /2). (22)

Then ///(/) is defined on (0 , 7'0 |, and ф(Тф) =  1 (hence ф (Т и) =  + o o ) ,  so that 
(20) is an unbounded solution with blow-up time 7'(). The generalized solution 
i/*(/, л'), which is symmetric with respect to a =  0 , has compact support, and its 
right front is located at the point

h * ( 0  =  .4(0 =  ( L s / 2 tt)\tt/ 2  +  aresin i//(/)|. (23)

Clearly, h \ (t)  is a strictly increasing function and h\U )  < L s / 2  for all t e  (0. 7'()), 
so that the unbounded s'olution (2 0 ) is localized in the domain ( | a | < T.y/2 ).

In § 3, Ch. 1 we showed that //*(/, a ) satislies the singular initial condition 
i/„(0 , a ) =  /i'o5(A), /л» > 0  is a constant, and stipp//*(/, a ) —>• (0 ) as t —>• 0 . 
Therefore for intersection comparison we shall in the following take functions of 
the form u ,( !  +  e, a ) (the constant e  >  0  is taken to be sufficiently small), to which 
correspond regular bounded initial functions i i , ( e ,  a ).

In view o f  the fact that the support o f  this exact solution (unlike the self-similar 
one) varies with time, we shall modify somewhat the proof. We shall exhibit new
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facets o f  the intersection comparison method by comparing not with a single fixed 
solution, but in fact with a continuously parametrized family o f  exact solutions, 
all having the same blow-up time.

For a fixed e  > t), 8  б R , let us denote by vU, x) =  v(r. x ; e .  8) the function 
i i*U +  6 . x  — (/i4_(0) +  8 )) .  where Co =  C 0(7'o +  e ) .  Then v(t, x)  is an unbounded 
solution o f  the Cauchy problem (1), (2) with initial function //ц =  ut ( e , x  — 
(/t+ (0) +  <5)) and support supp v(i.  x) =  11 .c — (/;+(())+  <5)| < ,?(/ +  e)|. Let us note 
that the function //,(/ +  б. л -  ( h + (0) +  8))  is continuous in e , 8  in |0, 7'o) x R. 
By construction, for all 8  б R  the solutions //(/, x) and vU, x : e ,  8) have the same 
blow-up time Г (|. For any t б |0.7‘o) let us denote by N ( t\ e ,8 )  the number of 
spatial intersections in R  of the functions n(t, x) and v(t. x).

It is not hard to check that for any e  >  0 and 8  >  8 e — g ( e )  supports o f  the 
initial functions /1(|(л) and o(0. x)  do not intersect, so that N ((Y .e .8 )  =  1. Then 
by Proposition 1 we have that

N(t\ e ,  8) < 1 for all t б (0. Го).  (24)

Thus, let us fix sufficiently small e  >  0  and 8 =  2<V, then supp i’(L -ri e, 2 8 e }  =  
(|.r -  !f \ < g(t +  б)), where l e — /i+ (0) +  2 8 e . Obviously, l e —>• /t+.(0) as e  —»■ 0. 
Let us show diat h + (t) < l e +  ,t;(/ +  e)  in |0, Го), Assume that this is not the ease 
and

П  =  sup[/ б |0. 7‘o) | h + U ' )  <  l ( +  g W  +  e )  

for all i' 6  |(), /1} < 7’(l.
(25)

Clearly, /? f (/ ,) =  l t +  g(i„ +  e)  =  x , .  By Proposition 1, two eases are possible.
Cr/.sr I :  N U , ; e , 2 8 t ) =  1. Here we shall arrive at a contradiction similar to 

the one in Figure 57, where us(-)  should be replaced by the .solution (/»(■). In this 
ease the difference ш(/,, x)  =  ;/(/,, л) — г (С .  x)  changes sign in R  exactly once. 
Then we can find — < до < Л| < x,  =  h , (/ ,) ,  such that either

//(/,.д i) < f(/ ,,  да: б. 2 8 , ).//(/,, X2) > u ( f , . до', e. 25 t (26)

or, on the contrary,

!/(/,, Л'|) > !>(/„. Л ь  б, 2 8 t ) , ! / ( / , ,  до) < e(C, 6, 28 f ) .  (27)

If  (26) is satisfied, then choosing <5| б (8t , 2 8 c ), 8\ ~  2S i,  we have that by continu
ity of the function v(t,  д ;б , 5)  in 5, inequalities (26) would still hold i f  the function 
и (/ ,,л ;б ,  2 8 , )  is replaced by u(/,, л; e ,  r51) and, furthermore v(t , , ,r'; e ,  8 \) =  0 < 
u ( i , , x') at the point л' =  |.r, - (28 t. — 5 1) | б (.Ci, x t ). Therefore /V(/„; 6 , 5 t ) > 2, 
which contradicts Proposition 1. If, on the other hand, we have (27), then the same 
contradiction is obtained by comparing the functions v ( i t , x , e ,  8 t ) and i i , ( t .  x)  for 
<5i > 2 8 t , with 8\ -  28 f sufficiently small.
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C a se  2 :  /V(/*; f , 2<5C) =  0. We shall show that this case leads to the situation 
of Figure 58 ((/$(•) is replaced by //*(•)). Then either ;/(/*, x)  < i;(/*, x) in R  (but 
then by the usual comparison theorem u(t, x)  < v(t, л ) ,  supp u(t, x) C supp v(t, x)  
in |/*,7'o) x R , which contradicts (25 )) ,  or //(/*, х) > v (t t , x )  in R. In the latter 
case by (25) there exists ь  б (/,, 7'o), such that h + (t2) > h  +  gUz +  e) and in 
addition obviously u(t2, x)  > v (t2, x) in R . But then we can find <5| б |0, /t4 (t2) — 
( le +  tfU2 +  e ) ) ), such that STTpp i>(ь, л; e, й , ) C supp ttUi. x)  and v (t2, .c, e ,  8 \) < 
//(/2, -i) for all x б R. This contradicts Proposition 2.

Thus, /t4 (/) 5  l f +  g(t  +  e ) in (0, To) for any arbitrarily small e  > 0, Passing 
in this inequality to the limit e —»• 0 (then /,, —>• /г4 (0 ), g(/ +  6 ) —> g ( t ) ) ,  we obtain 
the first o f  the bounds (13),  which completes the proof of Theorem 1, □

Let us note that the above argument proves a sharper optimal time-dependent 
upper bound for the motion of the front.

C orollary . In the cond it ions  o f  T h eor em  I

h + U) S / ' t - ( O )  +  (Ls/2.it)\it/2 +  arcsin?//(/)|. t б |(). 7'()). (28)

Clearly, by (23), for the solution n , ( t , x )  instead of  the inequality we have 
in (28) an exact equality. Since the initial function for the solution »,(/. x)  is 
singular, the estimate (2 8 ) describes, in particular, the maximal speed o f  motion 
of the thermal front for small t >  0 . It is not hard to compute from (28) that

//.,(/) < /1 , ( 0 ) +  />(l/ V /'"r ,2 l<l + 0 ( 1)) as / — 0 ,

where

b0 = Ur+ 1 )</ ~2(<r + 2)2/i,M 2,7'02/i'r t2||/}( 1 +,r/2. 1 /2) |2/t,r4 2|.

3 L ocalization  for /3 >  <r +  1 (LS-regim e)

The main assertion concerning localization in the ease of the LS blow-up regimes 
has the following form:

T heorem  4  (localization in the LS-regim e). Let /3 >  w +  1. Then an  unbounded  
so lution  o f  the p ro b l em  (1).  (2) hav ing  b low -u p  time  =  7'o(i/(,) < oo is lo ca l iz ed  
and

/г i (Тц ) < /i+ (0)  +  ( 4T[l  h AT„) >  /».(()) -  e  Т'Ц. (2 9 )

i.e.,

metis'zo(7’(l ) < measat(O) +  2 £ T | "  < oc, (30)

where m = \fi -  Ur + 1 ) |/ |2 {(i — 1)| > 0  and f* > 0 is a constant that depends
only on tr. /3.
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R em a rk .  For /3 — cr +  1 we have m =  0. and as will be seen in the following, 
£*  =  L-s. i.e.. in the ease /3 =  cr +  1 this theorem becomes Theorem 1'.

Let us stress that unlike the S-regime (Theorem 1) the “fundamental" length 
o f  the LS-regim e L , s — mea.sa>(7'~) depends, via its dependence on T q. on the 
initial function. An upper bound on the blow-up time T {) =  7'ц(а0 ) in this problem 
was obtained in § 3,

I Construction  o f  a  s e l f - s im ila r  substitution

In § 1 it was shown that for /3 > cr +  1 equation (1) has no localized self-similar 
solutions. All the self-similar solutions constructed there are strictly positive and 
are only effectively localized (us (t. л) grow without hound as t —> 7'(l only at the 
point ,v =  () and remain uniformly in t bounded in R\(()|).

However, it is easy to verify that Proposition 2 still holds, if as the second 
solution v ( t . x )  we take some unbounded stibsolution of equation (1). We shall 
construct stieh a subsolution for the L S  blow-up regime, and, since it is not defined 
in (0, 7'd) x R , we will in fact be using as otir main intersection comparison theorem 
Proposition 3, which is specifically suited to deal with this case. We shall seek the 
self-similar localized subsolution in the usual form:

i/v (/. л) =  (7'o — /) (£ ).  f  =  . v / ( 7 o ( 31)

where the function 0 (£) >  0  satisfies almost everywhere in R  the equation

( I f  O' )' -  mil[ £  -  - — - 0 .  +  0fi ~  0. (32)

L em m a 1. F o r  any f3 > cr +  1 there  exists a  non-trivict! so lu t ion  b . . (£ )  satis fying
(32) on  an  interval  h ( —£ ' .  0), > 0, a s  w ell  a s  the con d it ion s

0 . ( 0 )  =  0. (0 ,r0' )(()) =  0. (3.3)

0 (tj) > 0 on  ( ~ £ * .  ()) a n d  ( С ( { * ) =  0.

From (33) it follows that the function 0 (£).  which is the same as the function 
of  Lemma 1 for £ б ( —£M)| and zero for £ >  0, is a generalized solution 
of equation (.32) on ( - £ * ,  oo), Then (.31) is a generalized unbounded solution 
of  equation (1) in the domain (0, 7'0 ) x ( x t (t),  oo) with a moving left boundary 
a , ( /) =  —£*(7'(, -  /)'", on which us ( t . x A t ) )  =  0. Hence we have that (31) 
is a localized solution: even though us ( t , x )  grows without bound in any left 
neighbourhood of the point ,v =  0 as t - *  T u , the front of the solution x /U )  =  0  is 
immobile, and perturbations do not penetrate into the domain ,v > 0  (see Figure 61).

(’Hcre the constant £' ~ £*(tr. /3) is the same as in the statement of Theorem 4.
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Fig. 61. 1 .ocalized subsolution (31) Гог /3 > it  +  1 at different times

If now we set в - ( f )  =  0 for f  < — f \  then us U ,.\) will be an unbounded 
subsolution ol'equation (1) in (0. Го) x R,

P r o o f  o f  L em m a  1. It is not bard to demonstrate loeal solvability of  the problem 
(32),  (33) Гог small |£| by reducing it to an equivalent integral equation and using 
the Sehauder lixed point theorem. The property o f  the solution extended into the 
domain of f  < 0 , alluded to in the lemma, follows immediately from the results 
o f  § 1 (see (29))  for /3 > cr +  1, N =  1, П

2 P r o o f  o f  T h eorem  4

Let us denote by u, s (/, ,v; .v(), 7‘o) the function which coincides for (0. 7'o) x 
( — £ * (7 ’n — o '"  < ,v -  .Vo < 0) with (31) ( 0 - ( f )  > () is as in Lemma 1 and 
n j s =  0 outside that domain). As we already mentioned it, s is an unbounded sub
solution o f  the Cauehy problem7 in (0, Г (|) x R , i.e,, if «()(.v) > i f  s ((), x\ до, Г n) 
in R  then u { i , x )  > i i / s U ,  л ;ло ,  7’o) in R  for all admissible 1 >  0, Therefore 
Proposition 3 remains valid if as the function v(t,.\) we take tt,s U, ,v; ,vo, T 0 ) 
(or any other subsolution o f  a similar form). Let us note that at the same 
time the function n , s satisfies the equation in a generalized sense in the domain

7 N o l c  t h a t  th i s  f ac t  is u s e f u l  in d e r i v i n g  c o n d i t i o n s  f o r  g l o b a l  i n s o l v a b i l i t y  o f  b o u n d a r y

v a l u e  p r o b l e m s  f o r  (1 ) .
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(0, T o) x (R\(.v — л» -  £ * ( T о — o '" ) ) .  All this allows us to compare the solution 
n(t. x)  with ttjs as was done in the previous subsection. In brief, it goes like this.

Let us prove localization on the right. Set .vo =  /i4 (0) +  .v*(0  =  -Vo —
£ * ( T u  —  t ) " '  ( T o  is the blow-up time o f  ii(t,  ,v)>. Then u q ( x ) and .r; .v0 . T o )

do not intersect in (.v*(0 ). oo). and, clearly, in the course o f  the evolution there can 
be only one intersection o f  u(t, ,v) and ut s (/, ,v; до, Г») in ( .v * (o ,o o )  ( if  и > » u js 
for л =  ,v„(0). Therefore u ( t .x )  will become larger than v — n f s (r. x : x o , T (l) at 
the point .v =  .vo (there u =  0 ) only after it becomes at least as large as v(r. .v) for 
all ,v < .vo. However, by Proposition 3 it contradicts the fact that the solution и 
and the subsolution v have the same blow-up time. Therefore /ц (о  < .vq, which 
is the same as (29). □

In conclusion, we present a result for the LS-regim e, which is similar to T h e
orem 2 in statement and method o f  proof.

3 Condition o f  im m obility  o f  f r o n t  po in ts  o f  an u n bou n d ed  solution  

T h e o re m  5. A ssum e that (3 >  <т +  1 a n d  let  <<o(.v) a l s o  satis fy  the condit ion

there  exists  Ao > 0, su ch  that  uo(.v) > u f s ((). .v; /t.( (0), Ao) in R, 
w hile  the fu n c t ion s  <<o(.v) a n d  u/ s.(0, ,v; h + (0),  A) 

in tersect  p r e c is e ly  at o n e  po int  f o r  a d  0  < A < Ao.

Then
h + ( t )  == Л 4 (()) f o r  a l l  t  e (0 , T o ) .

w h ere  To <  oo is the b low -u p  time o f  the so lution  u(t, x).

A graphical interpretation of the condition of  the theorem is presented in Fig
ure 62. In the LS-regime the length o f  the part o f  the support suppun(v), which, 
in accordance with the condition o f  the theorem, influences immobility o f  the front 
point x  -• /t.+ (0  s  /it (0) is ^ T " f  Unlike the S-regime case, this length depends
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on the behaviour of  the initial perturbation mo(.v) (via Тц(ии)) on practically the 
whole spaee.

4  N on-localized unbounded solutions of the H S-regim e, 1 <  (3 <  or +  1

Absence of localization of  solutions of the Cauchy problem in this case (all non
trivial solutions are unhounded; see § 3) is easily proved hy the method of station
ary states, which is presented in Ch. VII. It is used there to study the localization 
phenomenon in arbitrary nonlinear media.

However, for equation (1) sharper results can he obtained by comparing the so
lution u(t, x ) with a self-similar solution of the HS-regime, which was constructed 
in § 1.

T heorem  6  (absence of localization in the HS-regime). Let  1 <  (3 <  cr +  1, a n d  
let  condition  (3) b e  satis fied. Then the u nbou nded  so lu t ion  o f  the Ccutcliy p ro b l em  
(1),  (2) is not lo c a l iz ed , a n d  i f  t =  7'o is the b low -u p  time, tec hav e  the estim ates

h , ( t )  > I t ..(()) +  £ () 1 (Г „ - O " '  -  7*5'1,
(34)

l ,.At)  < h ,  (0 ) -  £ ()[(7‘о -  t )m -  T^\, t €  (0 . T „).

w h ere  m =  \ ( 3 - ( t r -f 1) ]/[ 2 (/? — 1)[ < 0 a n d  th ere fo r e  |/tt(Ol -»  cx> a s  t —► T,j.  
T he constant f o  > 0 in (34) d ep en d s  only  on <r, (3.

Inequalities (34) mean that as t —► 7',j

measwU) =  /i+ (o  -  h „ (t ) > meastu(O) 4- 2£o[(7’,) — t)'" -  7'J"] ->  oo. (35)

P r o o f  It is similar to the proofs of  previous theorems; there is a direct connection, 
for example, with the proof of  Theorem 1. Let us write down the unbounded 
self-similar solution o f  equation (1) for (3 < it +  1 (see § 1):

.v) =  (7*tl -  1 У l/(^ ' 4 ( £ > .  f  =  х /(To -  I)"1 e  R- (36)

The function f l s ( f )  has compact support: meas suppf7A(£) =  2 £ (l < o o ,  where 
the constant £ () is as in the right-hand sides o f  (34).  As before, let us denote by 
a n s ( t .  x ‘, ,v(), 7'o) the self-similar solution (36) symmetric in л with respect to the 
point x ~  .(<). Let us, for example, sketch the proof o f  the second bound in (34). 
Let us place uus(L ,  x; x (), 7'ц) relative to the initial function »o(x) as in Figure 56 
(replace u,s in that figure by u//.s)- For that we have to set .vu =  /u(0) 4- 7’J".

The relative position o f  these two functions is, in principle, the same as in the 
proof o f  Theorem F. However, the general structure of the proof is somewhat
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different due to the nature of the hounds in (34) (they are lower, not upper hounds 
as in all the other theorems).

With these positions of the supports o f  no and uus((). x\ X o .T o )  (suppwofl 
supp t<H.s(0. A'l A'o. To) =  И). the number o f  their intersections in R  is equal to one. 
As the solutions evolve, this number eannot increase. Therefore the number o f  
intersections o f  different solutions u ( t ,x )  and u u s ( t , x\ x {). To)  having the same 
blow-up time t =  To (no) < oc does not exceed one for all t e  [0, To). This means 
that the left front o f  the self-similar solution чц.s, which for all t e  |(),T()) is at 
the point

.17 (о  =  до -  й>(то - 1)"' =  л , ( 0 ) -  foK To -  n " ‘ -  t ;;'|. <37>

cannot overtake the left front point л =  It,, (t) of the solution uU, л ). Were that to 
happen, then either at some moment of time t — t 1 we would have two interseetions 
of t t i t .x )  and и 11,4 ( 1 . x :  До, To), which contradicts the Maximum Principle, or for 
some ь  6 (0, T (l) we would have a situation precluded by Proposition 2. Therefore 
In ( 0  < x 'i it),  Taking into account (37),  we obtain the second bound o f  (34), 
which concludes the proof, □

Therefore for any compactly supported initial perturbation, the fronts o f  the 
thermal wave in the HS-reginre move as t —► T^Uto) not slower than at the self
similar rate

l * i  (Ol >  ^o(Tc, -  o 1̂  ,,r+il|/|2(/j " I ,  t~ >  T 0 . (38)

In the next section we shall show that as t —► 7'0 the motion o f  the front points 
x — li±U)  approaches asymptotically the self-similar one, that is, in addition to 
the inequality (38) we also have the reverse one.

As far as equivalence o f  conditions {lt±U)  —► 0 0 , 1 —* T () ) and \ u (i ,x )  —» 
0 0  in R ,  1 —► T(, ) for 1 < (3 < <t +  1 is concerned, we shall prove assertions of 
that sort in 8 1, Ch. VII. For example, it is especially easy to prove

T h e orem  7. Let  1 < ( i  < a  -\- 1 a n d  a s su m e that con d it ion s  (3),  (17)  hold ,  Then  
it(r. x) —*■ oc in R  as  t —* T„ (no).

§ 5 Asymptotic stability of unbounded self-similar solutions

We have already discussed above certain essential difficulties in the analysis of the 
spatio-temporal structure of unbounded (singular in time) solutions, which always 
arise when solutions are unstable with respect to small perturbation of the initial 
function. Therefore in this section we shall not strive for maximal generality of 
presentation, which would entail exerting a great amount o f  effort in overcoming
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complications that are not o f  any particular importance. We shall use the example 
o f  the Cauchy problem in N — 1 to present the crucial stages of the proof.

First, to simplify the presentation helow, we state in a compact form the methods 
o f  comparison o f  unbounded solutions we used in S 4  in the study o f  the Cauchy 
problem

tt, =  («"'«,)( +  u f1, t > 0, v e R ; i t  >  0. P  >  1. (1)

»((), л) =  i<n(.v) > 0, x e  R :  u<) e C (R ) .  (2)

where suppno =  (/t. (0), I t , (())), h[J is Lipschitz continuous in R :  suppu(t.A ) =

(/t-(0 . Л, (0 ).

1 A low er bound for the am plitude of the unbounded solution

This is the simplest corollary of the comparison theorem.

T heorem  1. Let cr > ( ) , / ? >  1, a n d  let  uU . x) b e  an u nbou nd ed  solution  o f  the 
C a u c h y  p r o b l e m  (1),  (2). Then

sup u ( t , x )  > e , d T a - t ) -  lnii ” , t e  10. 7 o>; в „  =  (/3 -  1)“ l/</J " ,  (3)

w h ere  7’() =  7"o(uo) is the b low -u p  time.

P roo f .  The estimate (3) follows from the corollary to Proposition 2 in ij 4, if we 
take as v ( t . x )  a spatially homogeneous solution of equation ( 1) with the same 
blow-up time:

v(t) =  e „ { T a - t )  u . t e  [0, Г„). (4)

Then we have that u(t. x) and v(t)  must intersect for each t e  JO. To), Moreover, 
each intersection point in the domain of  strict positivity of both solutions is an 
isolated point. For the number of intersections we have

N(t)  > 2 for all t e  [0, 7'o). (5)

Obviously, this means that

supu(L.v) > n (o ,  t 6 [0. To). (6 )
ir lt

from which (3) follows. □

Let us note that this estimate can be obtained directly from equation (1).
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2 Sim ilarity tran sform ation . R estrictions on the form  of initial functions

Self-similar solutions o f  equation (1) have the form

,„•(/. л) =  (Го -  / f  > * ( £ ) .  (  =  a'/(7’o -  O'" 6 R. (7)

where the function > 0 satislies the ordinary differential equation

О В Д '  -  mtl'st -  J Z T \ e* + fl? =  (W e R .  (8)

In § I we found that for all <r > 0 , /3 > 1 it has an even solution $<;(£), which 
is non-increasing for £ > 0. We shall study asymptotic stability o f  precisely these 
solutions (for p  > i r  -f  1 there are other, non-monotone solutions

Consequently, we shall introduce the following restrictions on the compactly 
supported initial perturbation:

« o f - л) =  it{)(x). x  e R; mea.s suppn0 =  2/() <■ oo, (9)

«о(Д ) is non-increasing for л > 0 . ( 10)

Then u(r. л ), an unbounded solution of problem (1),  (2) is even in .v, non-increasing 
in .г for ,v > 0 . and supt u(t. x) ~  u(t, 0 ) for any t e  (0 , T o(«o)L

Corresponding to (7),  let us introduce the similarity representation 0 ( r . f )  o f 
the solution of problem ( 1), (2 ):

»( / . £> =  ( Г , , - n i/t/b i, t dr . £ ( 7 ' 1) - n ,">. i e  (0. Г о ) .^ e R. (11)

where to =  [/3 -  (tr +  1 )]/[2(/3 — 1)]. Similarity transformation o f  the solution (7) 
gives us exactly the function fly(£).

We shall be interested in the behaviour of W(r, £) as t —>■ T n . Asymptotic 
stability o f  the self-similar solution (7) means that

- *  flv( £ ) , r  -> T {;UH)). ( 12)

for a sufficiently large set o f  initial functions i<().
Let us note that under the assumptions (9), (10) the limiting function is neces

sarily even and non-increasing for £  > 0. Therefore we are analyzing asymptotic 
stability o f  the most elementary (in its spatial “architecture” ) self-similar solution. 
Many o f  the results stated below extend to the multi-dimensional case (see § 6 ).

3 A sym ptotic stability o f the self-sim ilar solution for /3 =  <r +  1 (S-regim e)

If (9), (10)  are satisfied, the only “candidate” for a stable self-similar solution is 
the following one (S 1):

us U, x)  =  (To -  t) l/"tfy(.v). 0 < I < T 0. x  6 R . (13)
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where the function

satisfies the ordinary differential equation

(14)

(OsO's)' ~  -W.v +  в[’ и  =  0. a e  R. (15)

In the S-regime the similarity transformation has an especially simple form:

T h eorem  2. Let /3 =  <r+  1, as su m e that the cond it ions  (9),  (10) ar e  sa t is f ied , a n d  
let  7'o < oo b e  the b low -up  time f o r  the u n bou n d ed  solution  o f  the p ro b lem  (1),

uniformly in R, where fls (x )  is the fu nc t ion  (14).

The main obstacle that arises in the proof of (17) is the derivation o f  bounds 
in L ~ ( R )  for the similarity representation, which are uniform in t e  (0, 7'o). 
Upper bounds guarantee global boundedness of 0(t, x) ,  while a lower bound is 
needed in order that the limiting function 0 ( T f ,  v) in (17) be non-trivial. These 
are the two most crucial stages of the proof. The point is that the function в  =  
( f i x )  is an unstable stationary solution o f  the parabolic equation satisfied by the 
similarity representation 0(t, x)  (for a similar example see S 1 1. Ch. 11). Therefore 
in the course of derivation o f  (17),  we single out in the space o f  initial functions 
{(7(0, .v)) the attracting set of an unstable stationary solution. We emphasize that 
similar problems o f  asymptotic stability o f  stationary solutions arise precisely in 
the analysis of  singular solutions o f  evolution problems, which have a singularity 
in time.

L em m a 1. In the condit ions  o f  T h eor em  2, f o r  a l l  t e  {(). 7‘o) n r  h a v e  the  estim ates

l)(t, . г )  =  (Tо  -  t),/lTu(t. л ) ;  Tо  =  7 ' o ( u [ ) )  <  o o . (16)

(2), Then
в ( 1 . л) 0,s(x ) ,  t —» 7'() , (17)

/ Auxiliary  results

supp u(t. x) C  { - /o  -  L s , /о +  7,.s |; 

su p u (t . x)  > it i/,r(7'o — г Г 1/|' ;

(18)

(19)
i6U

there  exists 0 , > <r i/ir, such that

sup u(t. x)  < 0,  (7'o — t)
vc-U

( 2 0 )
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A sharper estimate than (19),  which is “distributed” over R , can be derived 
using the method of stationary states (see $ 1, Ch. V 11).

Proof.  The estimate (18) was obtained in the course o f  proving Theorem 1 in § 
4. Inequality (19) is none other than (3) for /3 — <r +  1.

Inequality (20) follows from Proposition 3 in S 4. Let us pick the value 0* >
0ц  ~  <r i,,r large enough, so that, first. > ?<<)((>), and. second, that the
Cauchy problem for equation (15) for л > 0  with the conditions

0(0 )  =  (h .  «'(()) =  0 ,

has a solution в  — 0( .v>, which vanishes at a point л =  x t (0 t ) > 0. This is always 
possible, as can he immediately seen from equation (15),  which can he integrated 
in quadratures (see Lemma 2 in § 1). Let us set 0( — x)  =  0(x )  in ( - . v . , 0 ) .  Then
v(t.  л) =  (To ~  t)~ i,<r0 (x )  is an unbounded solution in (0 , To)  x ( — л*, a , ).

It is easily cheeked that x , ( 0 t ) —> тг/[2(<г +  l ) i/ :[ and (0<r) , ( x .  ) —> — o o  as 
0 ,  ->  oo. Since is uniformly Lipsehit/. continuous, we can pick 0 ,  > 0  so 
large, that if  (9),  (10 )  hold, the initial function tto either does not intersect u(0, .v) 
at all in ( —л», a , ) (i.e., N (0) =  0). or intersects it exactly at two points, which are 
symmetric with respect to x  =  0  (N (0) =  2). Then hy the comparison theorem 
N d )  < 2 for all i e  (0, 7’o).

Let us show that u(t. 0)  =  supv tt < sup( v =  v(t.  0) (this immediately results 
in the estimate (2())). If u ( t i , 0 )  > i’(t|,<)) for some О e (0, To),  then u (t\ .x )  > 
v ( i i . x )  in ( — v,, a . )  =  supp v. Indeed, if this is not the case, then u ( i |,л) =  0 

for v =  ±.v, (since N(t\) <  2),  and this equality holds for t e  [(). i\ [. Therefore 
N (()) =  (), and hy assertion 1) o f  Proposition ,3 N(t\) =  (). which is impossible.

Thus, ii( i i . v) > i’(t|,.r) in ( ~ x t . x , ) .  If supp i'(t), л') C suppu(t\, x ) .  we 
obtain a contradiction to Proposition 2, § 4 .  If, on the other hand, su p p u L i ,  x) — 
( — л . . a , ) ,  then, by slightly increasing the value o f  0 , ,  and thus decreasing 2 л\ =  
meas suppfL we are back at the previous case. □

2 P r o o f  o f  T h eor em  2. a )  E qu a tion  f o r  the fu n c t io n  0(t.  x)

It is not hard to check that the similarity representation (16) satislies the Cauchy 
problem

(To  -  1)0, =  ( Г 0 , ) ,  -  -W  +  Г  " . ( )  < t < T o, a e  R .  (21)
(T

0(0 .  A) =  l)o(x) =  r ’/"■(/„(A), a e  R. (22)

Setting in (21) r  =  — ln( 1 -  t /T o )  : |0. To) —> |0, oo), we obtain the equivalent 
equation

0 T =  (fTW ,), -  - 0  +  0 ,T' ' ,  T > 0. A €  R .
(T

(23)
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The initial condition (22 )  remains the same.
Comparing (23) with the “self-similar” ordinary differential equation (15).  we 

see that in the new notation the study o f  asymptotie stahility o f  the unbounded 
self-similar solution o f  the S-regime is equivalent to the analysis o f  asymptotic 
stahility o f  the non-trivial stationary solution (14) o f  equation (23). It is important 
to note that for arbitrary initial perturbations 0o(.r). when the quantity T n in (22) 
has been chosen “incorrectly” , and does not equal the blow-up time of the solution 
t t ( t .x ) .  the problem (22) .  (23) can have both unbounded (sup( 0 (r .  .v) —»• со  as 
т —> тjj < oo) and global solutions, which stabilize to the trivial stationary solution 

=  0  as r  -> со. In other words, the stationary solution (14) is unstable with 
respect to arbitrarily small perturbations. A proof o f  this fact is presented in § 11. 
Ch. 11.

h) E st im ates  o f  the fu n c t io n  (H t.x).  In the conditions o f  the theorem (with a 
“correct'' choice of T о =  7'o(/<o) in (2 2 )) ,  the Cauchy problem (23),  (22) always 
has a global solution, which stabilizes to the function (14).  The proof is based on 
the estimates (1 8>—(2()>. which assume the following form in the new notation:

C oro llary  o f  L em m a  1. In tlw cond it ions  o f  T h eorem  2

supp0 (r.  л) c  | —/о -  L,s. /о +  /-.vI• L.s =  27т(ст +  1 ) l/2//r: 

su p 0 (r,  л ) > <r l/"';
vcR

0(T. X)  <  0,

f o r  a l l  т > О, .г e  R.

(24)

(25)

(26)

From that we immediately have

L e m m a  2. Assum e that con d it ion s  (У), (10) hold ,  a n d  that T () 
h e  a  dom ain  in R, su ch  that ( —hi ~  L.s, h) +  /-.v) C 12. Then

()\ыг>2 e  L - ( R t  . ^ т > ) .

( 0 " ,r,2>7 e  /.2( R 4 ;

()'rl 1 e  7 ^ ( R + : H'ita i ) ) .

T()(iio). Let i l

(27)

(28) 

( 20 )

P r o o f  By (25) в  =  0  on (1П for any r  > 0. Taking the scalar product in L : ( i l )  
o f  equation (23) with (0,H ! )T and integrating over r ,  we obtain the equality

4(<r + 1)
Ur +  2 f

(0
1 Ctrl'. ) т (S) (Is +

2Ur +  1)

11 1
(0" + i U t )| +

i ^   ̂  ̂ и/)/..-. и,г1-  ̂ и/)/ . i|7(/j. )• l)
H : ~ ~  I I I I /.■/■ -'(sii —  ̂II ^ T>ll/.'i" ' l,(S!) +tr(iT +  2 ) 2 Ur +  I ) II(«o' I'H/.'ini

(30)



§ 5 Asymptotic stability of unbounded self-similar solutions 263

By (26) the right-hand side o f  (30) is bounded from above, from which we obtain 
the estimates ( 2 7 ) - (2 9 )  (for details see ij 2 in Ch. VII),  □

c)  P a s s a g e  to the limit т —► do. Thus, the Cauehy problem (23), (22) is 
equivalent to the boundary value problem with the condition

0(т. л) = 0 , r  > 0 . л 6 (HI =  П\П . (22 ')

and the estimate (26) ensures its global solvability.
Stabilization of  в(т. x)  for т =  т, —> x  to a stationary solution in the weak 

sense* follows from the estimates (2 7 )—(29).  which ensure boundedness o f  the 
sequence 0 |г+1(т. л ) =  в 'г 4 1 ( x +  т,. ,v). n — 1. 2 . . . .  in W '( (0 , 1) x i\) (see § 2 . 
Ch. V ll ) .  By compactness o f  the embedding H l C L~ and the estimate (28). this 
allows us to choose from any sequence r, —» oc a subsequence (which we also 

denote by r ,) ,  such that О"4 ' ( т .  л) —» в " "* (л) as т, —► oc in /.-((0. 1) х £2). See 
subsection 6 . ij 3.

Passage to the limit in equation (23)  is also effected by using the estimate (29), 
as well as the fact that (22),  (22 ')  admits the Liapunov function

V ( 6 ) ( t )
2 (<r +  1)

+
<r +  1 

trier +  2 ) 2
e :,r+ d x .

which is non-increasing in т on any solution of the problem. By formal computa
tions. we have

(/

(It
V(0)(t)

4 ((T T  1)

Ur +  2 ) :  ,/si
0 .

Stabilization in С ( Ш  follows from stronger estimates; using the method of 
Bernstein, it is not hard to show that \(ti'n  1 ( т. л)),| < const < ext everywhere in 
R ,  x R . By (26) this means that the trajectory {0'r *1 (x. x) \ т > 0) is compact in
C H I) .

Thus, в(т, x) —* IHx) for r  =  r o o .  where в  is some stationary solution 
of equation (23),  and Tl e  C’o ( I i ) .  Then, first o f  all, (26) means that в  ф  0, 
and, secondly, by (9),  (10 )  7l(x) is an even function, which is non-increasing in 
л > (). Now, since Tl is a function with compact support (by (24) suppfl C 
| —/о — L.v, /о +  L,v]), from the uniqueness of the stationary solution 0 S Ф () (see 
subsection 2, § 1), we have 0 (x )  =  0 s ( x ) .  Stabilization of (Hr, x) to e s{ .r) as 
r  ••> v  (that is, on any sequence t , - *  o o )  also follows from uniqueness o f  the 
stationary solution 0 =  fl.y(.r) with the required properties. This  concludes the 
proof. □

Let us present a corollary of (17).
__________________________________  i -4

xSee examples of analysis of degenerate equations in [20, 308, 3591. i
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C orollary . In the cond it ions  o f  T h eor em  2 u(t , л) ■-+ o o  ал t —> at any point
o f  the dom ain  .v e (~-L.s/2, Ls /2 ) .

Thus, inside the “fundamental” localization domain ||.v| <■ Ly/2), a non-trivial 
solution o f  the problem (1), (2), where /3 =  <r +  1 and no satisfies (9 ),  (10).  grows 
without bound as t —► T {). Here condition (17) docs not preclude unbounded 
growth of the solution outside the localization domain; this growth has to he at a 
rate о((Го  — t) i.c at a slower than the self-similar rate.

In numerical computations na more striking phenomenon was observed; for 
practically all non-monotone initial perturbations //0(.r) in the process o f  evolution, 
a thermal structure was formed in a neighbourhood o f  an extremum point of м0(л). 
which developed as t T 0 (tto) <  oo as the self-similar solution (13).  (14):  
furthermore, outside the localization domain the solution was bounded from above 
uniformly in t e  (0. 7'o) (see, for example, Figure 37). It is o f interest that an 
optimal result o f  this sort can be obtained by combining Theorem 2 and Theorem 
3 o f  § 4.

T heorem  3. Let (3 =  <r +  1, mea.s supp no < I-s. a n d  a s su m e  that con d ith m s  
(9).  (10) a n d  the condit ion  o f  T h eor em  3 in § 4  hold. Then u ( t , x )  —> со  a s  
t —»■ T^(tt{)) < oo at a l l  po in ts  o f  the  loca l iza t ion  dom ain  ш ( Т ) =  ||.v| < L.s/2 ) 
a n d  u ( t .x )  =  0  ev ery w h ere  in |(), 7'()) x (|л| > L s /2 } .  At a l l  po in ts  ,v e R  the  
so lution  a p p r o a c h e s  the s e l f - s im ila r  o n e :

( 7'o -  t ) l/lTu(t.  л) -  e s ( x ) . t  7'0 . (31)

Proof.  From Theorem 3 in § 4  it follows that и =  0  in 10, 7'<>) x (|л| > L.y/2), while 
from Theorem 2 (see (17))  follows (3 1). and therefore the fact that u(t.  л) —» oo. 

*t ->  T {) in {|л-1 < L s / 2 } .  П

4  On asym ptotic stability of self-sim ilar solutions of the H S-regim e,
1 <  P < <r +  1

We shall consider the Cauchy problem (1).  (2) for 1 < f i  < <r +  1 with initial 
function satisfying conditions (9), (10).  Asymptotic stability o f  the self-similar so
lution means that the similarity representation ( 11) satisfies ( 12), where ds ( f ) ф. () 
is the unique non-trivial compactly supported solution of  the ordinary differential 
equation (8 ). Existence o f  the compactly supported function 0S has been estab
lished in Theorem 2 in subsection .3 of § 1; uniqueness will be proved below. We 
start with some auxiliary estimates.

Lem m a 3 . U nder  the a b o v e  as sum ptions

supp u(t. X )  C  |-/„ -  £„77/ -  f 0(7 „  -  i f " .  In +  g n K  +  ^ , (T „  -  t f"  |, (32)
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w here  £o  =m eas  (£ > 0 | 0y(£) > 0 ) < со .  m =  |/3 -  (<x +  1) |/|2 ( p  -  1 )| < 0 ; 

sup u(t, x)  > ( / ? -  1 Г ,/,/3 " ( Г , ,  -  i) l/('3’
u-R

(33)
there  exists a  constan t  0 .  > y«c7i that

supidr. л) < fl,(7'o ~  t) 1/41 " .  (34)

Proof.  Estimate (33) was obtained in Theorem 1. inequality (34) is derived by the 
method used in Lemma 1 to analyze the S-regime. Existence of the unbounded 
subsolution v(t. x)  appropriate in this ease was established in § 1. The magnitude 
of  I f  here can always he chosen such that itu(.r) and u(0. л) do not intersect. The 
estimate (32) of  the length o f  the support follows from Propositions 1 and 2 of 
§ 4  (using an argument as in the proof of Theorem Г in § 4).  □

R em a rk .  In the course o f  proof o f  Lemma 3 we established a stronger result: f o r  
1 < P  < ir +  1 a n d  any  initial function  Uo(.v) o f  c o m p a c t  su p p ort  n r  h a v e  the  
estim ates

mcas suppj. n(t. x)  -  £0(Г »  -  t)'" +  0 ( 1 ) .  t -*■ 7 ( ) . (32 ')

w here  supp^ u(t. x) =  (л > 0 | u(t. x) > 0 ). supp u(t. x) =  {л < 0  | n(t. x) > 0 ).
Let us show that (32')  implies the following important claim (which could not 

he proved in S 1 by analyzing an ordinary differential equation):

C oro llary . Let  1 < (3 < <r+  1, Then the c o m p a c t ly  su p p or ted  so lution  o f  eeptation
( 8 ) is even  a n d  unicpie.

P r o o f  If e s #  0  is some compactly supported solution o f  equation (8 ). then the 
corresponding self-similar solution its (see (7))  satisfies the condition

meas supp., us(t .  a)  =  (Г» -  t)"‘ mcas suppj f ly (f ):

so that by (32')  s u p p l y  =  supp.Wy — £«. liquation (8 ) is invariant with respect 
to the transformation $ —> — and.  as can he easily verified hy a local analysis, 
admits a unique nontrivial extension from the point £ =  £ () into the domain (£ < 

£o) with ()“ '■’ (£()) =  {d"s * ( f«)  =  0. Therefore 0 S( ( )  is an even solution. Now.

if  there exist two different solutions with compact support Wy and then (32 ')  
ensures that their supports are the same and therefore e  в\. which completes 
the proof. □
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From Lemma 3 wc deduce the following estimates o f  the similarity represen
tation ( 11):

supp <>(t . £) C  |- f o  -  (/о + £<>7'J',')7'0"' ехр(шт). £() + (/a + ^i}T’(")7'0 схр(шт)).
(35)

sup f l ( r . f )  > в и =  ( р -  1) l / 'P " .  (36)
fcR

sup 0(т. £)  < 0/, т =  — 1 n (1 -  r/7‘o) 6 |0. сю). (37)
i< n

Let us note that from (35) and from the estimates of Theorem 6 in § 4, it follows 
that

meas |supp 0 (r .  £)\( —£o. £o)  | —> 0 .  т —> со. (.35')

Let u.s consider now the equivalent boundary value problem:

Or =  u r o ( ) i  ~  m o ^  -  10/(/3 - 1)1 +  в 11. T > 0 . $ 6 n .  (38)

m  f ) =  « o (t )  =  f  e п .  (39)

0 ( т . £ )  =  0. T > 0. £  6 (HI. (40)

Here П is a bounded domain in R. such that supp0(T. £}  С П for any т > 0 (such 
П exists in view o f  (35 )) .  The estimate (37) ensures global solvability of the 
problem, while (36),  by force of an easily derived uniform in | l . c o )  x R bound 
for W r< l)'( , precludes stabilization as т —» со  to the trivial stationary solution 
0 =  0 .

Therefore. since we have shown that the admissible non-trivial compactly sup
ported solution o f  equation (38) is unique, uniform in R stabilization to it as 
т  —► oc would follow from existence o f  a Liapunov function with appropriate 
properties for the problem (38)~ (40).  Such a function can be formally constructed 
using the general approach o f  142, 383). However, it cannot be written down ex 
plicitly and admits a representation in terms o f  a two-parameter family o f  solutions 
o f  the ordinary differential equation (8 ). This makes verification o f  the necessary 
properties o f  such a Liapunov function difficult, and therefore we do not consider 
this problem here; see Remarks.

R em ark . Conditions (9), (10) were not used in the derivation of  (3 2 ) ,  (3.3). Let 
us show that (34) (or, which amounts to the same. (37 ))  for 1 < /3 < a  +  1 also 
holds without these restrictions. Indeed, let us consider a solution O(p.jx)  o f  the 
stationary equation (38) for (  > 0. satisfying the conditions 0 (0 ;  /x) =  fx > (). 
Q'( (Q\ jx) — (). From the analysis contained in the proof o f  Theorem 2 in subsection 
3 o f  § 1 it follows that there are sufficiently large /x > 0. such that 0 ( £ : jx) vanishes 
at a point (; •—  We also have that —► oo as fx  —► сю. Let us choose /x  >  0
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so large that П C and 0 u ( ( )  5  0(|£|:/x) in 11. Then by the Maximum
Principle 0(т ,£)  <  в ( \ £ \ :  p.) in R + x 11. i.e., the problem (3 8 )—(40)  is globally 
solvable and estimate (37) holds. Thus we have proved the following general 
statement:

Proposition 1. Let  1 < /3 <  cr +  1. let no(x) b e  an arb i tra ry  c o m p a c t ly  su p p or ted  
function a n d  Tn — 7'o(iio) < oc b e  the time o f  ex is ten ce  o f  tlte so lution o f  the 
C au c h y  p ro b l em  (1).  (2). Then f o r  a l l  t e  [0. T n) tee h av e  the e s t im ates

sup m t . x )  > (/3 -  i )~ 1/<0 - |*(7'() _
u;R

there ex ists  0 » > 0 . such that supllR u(t. x) <  в Л Т о  -  t) l/,/i n ;

meas supp//(r. x) =  2 £ n( T n ~  t)W ''l'r+ll|/|2(/i~ "I + 0 ( \ ) . t  T ( l .

5 O n stability of the self-sim ilar L S-regim e, ( i  >  cr +  1

For /3 > cr +  1. the self-similar functions 0 s (£ )  (let us note, that in general, there 
is more than one) are strictly positive in R  (see § 1). The similarity representation
( 11) has compact support in £,  but as t —► T q the size o f  the support goes to 
infinity:

meas suppfl(r. £)  ~  (To -  t)~^' t,n "l/Fi/i-Dl t T 0 .

It is not particularly hard to show that under the assumptions (9),  (10),  0 ( t . f )  is 
uniformly bounded; for / ? > « ■ +  1 we have the estimate (34)  and, therefore (37),  
This is done as in the case /3 < cr +  1. using the results o f  § 1 (see Lemma 4), 
By Theorem 1 we also have the lower bound (36),  so that if  в (т ,£ )  —» в (£ )  as 
r  —> oo, then ( 9 ^ 0 .

However, the fallowing difficulty arises in the analysis o f  the behaviour of 
d ( T . f )  as т =  — ln( 1 -  t /T o )  —*■ o o .  Unlike the eases o f  HS- and S-rcgimes 
nothing so far stops в(т. tj) from stabilizing to the spatially homogeneous solution0 
o f  equation (38).  (9 =  (/3 — ) y-W(p-■))_ That would mean that the asymptotic 
behaviour o f  the blow-up process does not follow a self-similar pattern. Sufficient 
conditions of  non-triviality of the limiting function в  (в  ф (/3 — 1) - 1Л£~П) are 
given by Theorem 4, where we have denoted hy the elementary solution of 
equation (8 ) constructed in Theorem 3 o f  § 1.

T heorem  4 . l.et /3 > ir +  1. con d it io n s  (9).  (10) a r e  satisfied, a n d  Tn — Tn(ua) < 
oo is the  b low -up  time o f  an  u n b ou n d ed  solution o f  the p ro b l em  (1).  (2). F u r 
therm ore ,  let the initial function  nn(x) b e  such that т\{^~ 'iniffT,"') in tersects  the

l,This occurs, for example, for и  ■— 0 (s’ee Remarks).
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в; «К .

О

F ig . 6 3 .

11(1 , 0) > % (0 )(7 '„  -  / 6 [0. 7»), (41)

Proof.  In the situation o f  Figure 63, (41) follows from Proposition 2 in § 4. Indeed, 
considering the unbounded solutions u ( t , x ) and v ( t , x )  =  u s ( t ,x )  we have that 
N ( 0) =  2, Since N (i)  > 0 always, and the functions it, u are even in x, then 
N it )  — 2 for all t e  10, T {)). This means that

In the conditions of Theorem 4 Oir, 0) > ffy(0) > i f  — 1) ~ d{P- 11 for all т > 0, 
and therefore в {£ )  ф 0ц.  In § 6 we shall obtain a pointwise estimate, which 
precludes stabilization of 0 (r, £ )  to a spatially homogeneous solution.

Therefore one of the main difficulties which arise in the proof of stabilization 
o f  в(т, ■) to 0 S( ) as т —> oo, has to do with lack o f  a uniqueness theorem for 
a non-trivial self-similar function fly o f  the simplest form. Another difficulty, 
mentioned in subsection 4, is of constructing a good enough Lyapunov function. 
See Comments.

§ 6 Asymptotics of unbounded solutions of LS-regime in a 
neighbourhood of the singular point

This whole section is devoted to the proof o f effective localization of unbounded
self-similar solutions of the Cauchy problem (0.1), (0.2) for [i > <r + 1. Below we

sup a =  ltd .  0 ) > sup v =  usit ,  0 ).

from which (41)  follows. □
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shall show that under certain restrictions on u0(x )  and /3, the combustion process in 
the LS blow-up regime leads to unbounded growth of the temperature as t —► 7ц 
at one singular point only, that is

mcaswf. г  mcas (x e R w | h( 7 0' ,  x ) =  со) =  0

(see Figures 43, 44).  Let us recall that this is a property o f  unbounded self- 
similar solutions of the LS-regime, existence of which was established in § I for 
all и  +  I < (3 < Ur +  l)(/V +  2 ) / ( N  -  2 ) , .  Here we shall consider non-self-similar 
solutions.

Let us introduce a class o f  functions uu(|x|) with compact support, for which 
we shall show that m easw, =  0. As u() we shall take functions (7(|x|: (70 ), which 
satisfy the stationary equation

-ТГ-Г (V v 'U,rU '\  +  U 0 =  0. ;• =  |X| > 0,
,-л • I V )  ( |)

(7'r (();(7„) =  0, (7(0: (7„) =  (7o, (7„ =  const > 0.

It was shown in subsection 4 .1 ,  § 3. that for (3 < ( i t  +  I ) (N  +  2 ) / ( N  — 2) + . 
(7(|x|;(7n) vanishes at some point r =  ro((7o) > 0. Let us set (7(|x|;(7o) =  0  for 
|x| > ro((7o).

Let i t  +  I < f3 < ( i t  +  I ) (N  +  2 ) / { N  — 2 ) , .  Let us consider the Cauchy problem 

и, =  V • (u'r Vu) +  n0 . t > 0. x  e  R w. (2)

« (0 .  x) =  (7(|x|: (7„). x e R " ;  (/„ > 0. (3)

Then и =  u(i.  |x|) is monotone decreasing in |x| and is unbounded: u ( i . 0 )  —» со 
as i —► 7',, (see Theorem 3 in § 6 , Clt. V. and the Remark following it). Moreover, 
the solution, which has compact support in x ,  is critical:

n,(t.  x) > 0. ( i.  x) e (0. 7’o) x (x e  R w | u d ,  x) > 0 ) ;  (4)

see § 2. Ch. V. This means, in particular, that for each x e  R w there exists a
(finite or infinite) limit

it (T t), x) =  lim u (i.  x).

Our goal is to prove that u ( 7 0 . x) < oc in R^MO). A lower bound for u ( 7 0 . x) 
is proved relatively easily using the method o f  stationary states. The following 
assertion will be proved in § I. Ch. VII for quite general o0 =  u<)(|x|).

T heorem  1. Let i t  > 0, i t  +  I < (3 <  ( i t  +  I )(/V +  2 ) / ( N  — 2 ) Then  

u ( T {) . x) > C,|x| 2/10 ' l'r " )1.

т и п  i )") i/i/t --urH)|

c ,
2 N

( 3 -  Ur +  I )

/3 — (it +  I ) (5)
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fo r  a l l  sufficiently small  |x| >  0 .

Derivation o f  an upper bound lor iiOT  ̂ , л ), which proves validity o f  the equal
ity measw/. =  0 ttnd the fact o f  effective localization itself, is accomplished by 
comparing tt(t, x) with the self-similar solution

,,s (t.  X)  =  (7*o -  / )  ' / ‘ P -  ' % ( { ) .  $ =  i - v | / ( 7 ' o  -  t ) " ‘ . ( 6 )

where m =  |(3 — Ur +  l)|/[2(/3 — l)| (existence o f  the function W.s(f) > 0 has 
been established in Theorem 4 o f  § I) .  Solution (6 ) is effectively localized; in 
particular, for <r +  I < /3 < Ur +  I )N / ( N  -  2)+ (Theorem 5, § I)

iht.sU. x)
91

> 0, t e  ( —oc, 7*o) x R "4 (7)

ns (t. x)  <  us ( T t u x) s C s I x l ' 2^  x e  R'v\(0). (8 )

Let tts state the main result.

T heorem  2. Let cr > 0, cr +  I < /3 < Ur +  I )N /(N  — 2 ) f . T h at  the solution  o f  
the p ro b l em  (2 ), (3) sa t is f ies  the est im ate

u(t.x) <  иСГц.х) <  C .s I a-I < " - " Ч  

t e  (0, Го). Д 6 R 'M O ) .
(9)

R em a rk .  From (5), (9) we immediately obtain the estimate C iS > C*,  where 
C,v is the constant in the asymptotic expansion o f  the similarity function 0л-(£) ~  

('rt|h. £ —► oo (see subsection 4. § I) .
Let us prove first some auxiliary claims.

L em m a  1. Let  n =  u(r, |x|) a n d  i ts =  u.<,(r.|x|) /toee r/ic .sotiic M ow-np time  
t =  T  о < со. Then the fu n c t io n s  и () =  U ( r :U  o) «;«/ ».s(0, r) in tersect  (in r  =  |.v|j 
exactly  at o n e  point.

Proof.  The functions iio(r) and «<,■((), r) have to intersect, since the corresponding 
unbounded solutions have the same blow-up times, and ii() is a function with 
compact support (see Proposition 2 in § 4).

Let us prove now that

u.y(0, r) > U(r\ A), r > 0; 0  < A < ».s(() ,0 ) .  (10)

It is clear that the condition (7(0; L/0) > ns(0.  0) will follow from that, since in the
opposite case u( t , r )  and u s-(r, r) will have different blow-up times. More general
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inequalities of the form of  (10) are derived in § 1, Ch. VII. Below we shall briefly 
discuss the main idea behind the proof.

Let us fix Л e (0, «,y(0. 0)|. The self-similar solution (6 ) is defined in R w 
for all t e  ( —0 0 . To), -such that, moreover, its —► 0, (n.v)r —1- 0  a.s t —> —oo 
uniformly on every compact set in R w. Therefore there exists to < 0, such that 
itsUo- W )  intersects U(r.  A) only at one point for r >  0, However, its and (7(r, A) 
are classical solutions o f  equation (2) in (to- To) x {|,v| < j'o(A)) and its > ( 7  =  0 
for r =  r o( A). Therefore the number of intersections of « s and (7 cannot increase 
in t. and thus at time t =  t,  < 0. when /<<;((»• 0 )  =  (7(0: A), wc must have the 
inequality i t s ( t , . r )  > (/(r. A), r > 0, By (7),  (10) follows from that.

Thus. (7(0; (7 ц) > ity(0. 0) and the functions (7(r;(/o) and н,у(0. r) intersect. We 
shall show that there is precisely one intersection point. Assume that this is false, 
and that there are several inersections. Let us consider the family of stationary 
solutions {(7(r ; A)). For all A < nx (0 . 0 )  the functions ( J ( r :  A) and /<$(0. r)  do 
not intersect (see (10 )) .  Obviously, for sufficiently large A > 0  there is only one 
intersection (this follows from well-known properties o f  the functions (7(r, A) for 
f i  < (cr +  I )(/V +  2 ) / ( N  — 2) t ; see § A). Therefore by continuous dependence 
o f  (7(r;A) on A there exists A =  A, > 0, such that the curves it =  U (r ;\ „ )  Ind 
ii =  h.v((), r)  in the (it. r)  plane are tangent at some point r ~  r ,  >  0 , and at the 
tangency point we have us  =  U, u's =  (7'r, u'̂  < (7" , But then (i)/i)t)u:s-(0. r t ) < 0, 
and that contradicts (7).  □

The following lemma is a direct corollary o f  Lemma I and Proposition 2, § 4,

L e m m a  2. U nder tlw cond it ions  o f  L em m a  I, it(t, r) a n d  u s (t . r) in tersect  ex act ly  
at o n e  po int  f o r  e a c h  t e  |0. T«) f o r  r > 0, a n d  there fore

P r o o f  o f  T heorem  2, Let us assume that at some point t — t, < T 0, r  =  r ,  > 0, 
inequality (9) is violated. Then by (4)

Let usU, x)  blow up at the same time as u(t, x ) .  Let us compare these functions, 
considering them as solutions o f  boundary value problems for (2 ) in the domain 
(r , .  To) x (o,, where w, =  (|,v| < r * ) .  i)wt is the boundary of w ,.  From (8 ). ( I I )  
wc have

u(t.  0 ) > iis(t .  0 ), t 6 |0 , T 0),

( П )

It s it .  x)  <  Cy|.v| (12)

From Lemma 2 it follows immediately that

i i s d i t ,  x )  <  u ( t , ,  x ) ,  x  e га». (13)
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But then it, itx have different blow-up time’s (see Proposition 3 in § 4 ) .  Indeed, 
from (12), (13) it follows that there exists т e (0, To — t , ) ,  such that u s d ,  +  t , x ) < 
«(/,, x)  in 5 * .  By (12) and the Maximum Principle it means that u s d  +  t . x ) < 
u(i,  x)  in (г,.  Г» — т) x o j , .  Passing in this inequality to the limit as t —► (Тп — т)~, 
we obtain the inequality « х ( Г 0 , л ) < u(T() — t , x)  in cu», which is impossible, since 
ir,v(T(7,0 )  =  oo, u ( T n — 7 . 0 ) < oo. П

From Theorems I, 2 we immediately have 

T h e orem  3. I . Lei

(т +  I +  2 /N  < (I < ( (т +  1 )(N +  2 ) / ( N  -  2) 4 .

Then f a r  any f i x e d  p  > \fi -  d r  +  I ) ]N / 2  > I, e  > 0, so lution o f  the p r o b l e m  (2).
(3) satis fies the condit ion

\\ud ■ ■) II/.’■ (I! I! • f I) —» oo, / —► Г() . (14)

2, Let i t  +  I +  2 /N  < P  £  (rr +  I ) N / ( N  — 2 ) , .  Then f o r  any  I 5  p  
\P — {cr +  I )|/V/2 , e  > 0 , a n d  a l l  t e  (0 , 7'ц) we h av e  the estim ate

\a(t, •)II/./■(nit- f и

x N

, 7tNI2
Ur

C< x

(15)

P  — (ct +  I )

Ur
e N/P 2/j/i (tr t 1 )j < ^

Let us note the two main requirements on tt0 — u(i(|.v|), for which estimate (9) 
holds. First o f  all u{) is a critical function, that is, it, > 0  almost everywhere in 
(0 , 7’о) x R w. and, secondly, /<()(|.v|) intersects uy((). |.v|) (u s(/,|.r|) has the same 
blow-up time t =  7 '0 < oo) only at a single point r  =  |л| > 0. As far as the lirst 
requirement is concerned, no special problems arise here. The family o f  critical 
/<о(|л'|) includes, in addition to functions (7(|.г|,(70) with compact support, for 
example, smooth functions of the form

«od.vl) =  M et2 +  l . i f )  uus' Л- 6 R lV; Л > 0, t r  > 0 .

It is easily verified that V • («[fViqj) +  ttjj > 0  in R ,v if A^ ( ,rfh > 2N/\P  -  
(r j  +  l)| (this is sufficient for criticality o f  the classical solution; see £ 1, Ch. V). 
The functions u()(.r) =  A exp{ — a|.i|~) are also critical, if

д /J-o m ii  > 2a/Vexp ||/У -  « г  +  U lt j— j • « > 0 .

H o w e v e r ,  f o r  c r i t i c a l  i n i t i a l  f u n c t i o n s  « 0 ( .v )  d i f f e r e n t  f r o m  U(\x\,  ( У 0 ) , t h e  q u e s t i o n

c o n c e r n i n g  t h e  n u m b e r  o f  i n t e r s e c t i o n s  i n  | .v|  o f  t h e  f u n c t i o n  i r i / . | . r | )  a n d  t h e

s e l f - s i m i l a r  s o l u t i o n  н . у ( / ,  | , r | )  w i t h  t h e  s a m e  b l o w - u p  t i m e  i s  a  m o r e  d i f f i c u l t  o n e .
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Here we would like to stress again that all the assertions of the intersection 
comparison theorems o f  § 4  are applicable to comparison o f  radially symmetric 
solutions o f  equation (2) with the same interval o f  existence. As an example o f  a 
fairly general application we shall now derive an exact “self-similar” upper bound.

We shall consider the Cauchy problem for equation (2) with a radially sym
metric initial function

«(О, л) = !<()(|л|) > 0, л e R's. (16)

where the compactly supported function n()(/■) is non-increasing in r =  |x| > 
0, sup|(t<Jf)'| < oo. Let T о be the finite blow-up time o f  the solution, From 
the Maximum Principle, which can be applied to the parabolic equation for the 
derivative uT( t , r ) ,  we conclude that u ( t . r )  is non-increasing in r. First o f  all, let 
us note that the elementary intersection comparison with the spatially homogeneous 
solution v(i)  =  вц(Т{)  -  t)' l/(/i" "  leads to the self-similar lower bound:

sup н(/.г) з  u ( i , 0 )  > 0 „ ( T a -  t) ' ,al " .  t e  |(). 7'o), ( 17)
i >o

Indeed, as in the one-dimensional ease, solutions u ( t . r )  and v(t)  must intersect 
for each t e  [0, To), otherwise by Proposition 2, § 4  (its proof obviously holds 
for radially symmetric solutions o f  the multi-dimensional equation), they will have 
different blow-up times. The upper bound is proved by comparison with less 
trivial self-similar solutions. We shall state the most general result, which holds 
not only for the LS-, but also for the HS- and S-regim es of evolution o f  unbounded 
solutions.

T h eorem  4. F o r  I < f i  < (ir +  I ) (N  +  2 ) / ( N  -  2 ) f there cxixt.s a  constan t  
ti, > 0ц, s o  that

»(/.()) < 0,O\\ - t) l/(/i ". i 6 |(), Го), (18)

Proof.  Proofs of all the three cases, f i  < < r + \ , f j ~ t r + \ ,  and f i  > о  +  I 
arc similar: see proof o f  Lemmas I and 3 in § 5 for f i  < cr +  I, Here we shall 
consider the ease f i  > it -f  I. As solution v(t. r ) .  having the same blow-up time 
T {i as u(t.  / ). let us take

U(/. r )  =  ( 7*0 -  /) ]/UI ' " m c . f i ) .  £  =  r / a -a - t ) m. ( 19)

where the function fl(£;/x) (solution o f  problem (4), (17)  in tj I)  vanishes for 
all sufficiently large /х > 0ц  at some point £ =  £ /t > 0  (see subsection 4 .3 in 
§ f). Therefore (19)  is an unbounded solution of equation (2)  in the domain 
(0. T0) x |r < , (7 '() -  /)"'). As shown in subsection 4.3, jj I, for all f i  <
(гг +  I )(N +  2 ) / ( N  -  2)  |, -> 0  and F )  —>■ - o c  as /n —> oo. Let
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/VM(r) be the number оГ intersections o f  the solutions u ( t , r )  and v ( t , r )  in the 
domain {/• < £ M(7’0 — /)"'). Then under the above restrictions on u(), we conclude 
that /VM(0) =  I lor any fixed sufficiently large /j.. At the same time the following 
condition clearly holds for the support o f  the solution: sUpp v(t, r )  C suppifir, r)  
for t e  [0, To).  Therefore by Proposition 3, § 4  (it is easy to cheek that it is valid 
in this context), it immediately follows that /VM(t) =  I ( i f  /VM(/') =  0 at some time 
I =  then solutions u ( t . r )  and v ( t . r )  would have different blow-up times), from 
which we obtain (18)  with =  ц .  О

Therefore the estimates (17)  and (18)  show that in the suberitical ease I < /3 < 
Ur +  I ) (N  +  2 ) / ( N  — 2 ) f the spatial amplitude o f  radially symmetric solutions 
grows according to a self-similar law.

R em ark . From the method o f  the proof it is easy to see that Theorem 4 is valid 
not only for the Cauchy problem, but also for the boundary value problem in 
(0 ,  To) x B/(. B„  =  { IA'| < R) (R =  const > 0 ) with the boundary condition 
n(t, R)  =  0 for i > 0 ; the initial function satisfies the same assumptions.

§ 7 Blow-up regimes, effective localization for semilinear 
equations with a source

In this section we study unbounded, as well as some classes o f  global, solutions 
o f  the Cauchy problem for semilinear parabolic equations o f  the form

which describe combustion processes in a medium with a constant heat conductivity 
coefficient k{u )  =  I. It is assumed that Q(ii) > 0  for it > 0  and that for all s > 0

and that, furthermore, F ( 0) =  oo (this property is necessary for uniqueness of 
solutions o f  the Cauchy problem; see ij 2, Ch. I).

Equation ( I )  with a source term describes processes with an infinite speed of 
propagation o f  perturbations, and if it о ф  0 . then it(t, ,v) > 0 wherever the solution 
is defined. Therefore heat localization in strict sense is impossible here, unlike the 
case of 5!) 1 , 4 ,  and we have to use the concept o f  e f fec t iv e  loca l iza t ion .  There 
will be two directions o f  inquiry; first o f  all, we shall clarify the conditions for

it, — Au +  Q (u ), t > 0 . л e R ^ ,

« ( ( ) .  ,v) =  h o ( a' )  >  0 ,  x e  R ,v; « о  e  C (R 'V), supu() <  o o ,

( I )

(2)
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occurrence o f  unbounded solutions and, secondly, we shall establish conditions for 
their localization (or lack thereof).

The main results will be obtained by applying methods, many o f  which are 
lined to the analysis o f  semilinear equations of the form ( I ). This has to do with 
being able to invert the operator (il/dt — Д), as a result of which the problem ( I ) .  
(2 ) is reduced to an integral equation o f  a sufficiently simple form.

1 A general result of non-existence of global solutions

We shall start the study by deriving conditions for unboundedness o f  solutions o f  
the problem ( I ) .  (2)  with a general source term Q(u).  A great advantage o f  the 
semilinear equation ( I )  in comparison with quasilinear ones is, in particular, the 
fact that the solution o f  the corresponding equation without a source term,

г, = A r, i > 0, a 6 R^; u((), a) = !<o(a), a 6 R,v. (4)

can be written down in terms o f  a heat potential

"" » = п я т L  {”1 7 } + yUly- 151

It turns out that one can effectively compare the solution o f  the problem (4) 
with the solution o f  the original problem ( I ), (2 ).

Let Е ( р .т )  be a sufficiently smooth function, which is monotone increasing in 
p  > 0, E ( p ,  t ) > 0 for all admissible p > 0 , r  > 0 ;  E ( 0. r )  =  0  and E ( p .  0) =  p.  
The function E  has been introduced for an operator (functional) comparison o f  
solutions o f  equations ( I )  and (4). By the change of variables

lt(t. A) = E (U {t ,  A), o, (6)

in terms of the new function U, equation ( I ) takes the form

U, ==AL +  ^ | V f / | 2 +  ^ ^ ^ ,  (7)
E „  E „

and (/(О. a) =  a(i in R w by the identity E ( p , 0 )  =  p. Then, comparing (7) with 
the linear equation (4) (see § I, Ch. I), by the Maximum Principle we have that 
in order to be able to compare their solutions, that is, in order that we have the 
inequality

U(i ,  a) > v(t.  a), i > 0, a e R,v. 

it is sufficient for the function /• ( p, т) to satisfy the conditions

t ) > 0, Q ( E ( p . r)) -  £'r (/t, r) > 0. (8 )
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L em m a 1. Let Q(u) b e  a  con v ex  fu nc t ion  in R +, that is,

Q"Ut) > 0, it > 0. (9)

Then
ТЛ p. т) =- V 1( F ( p )  — r ) ,  (10)

w h ere  F  1 is  the function inverse  to (3 ), is a  so lution  o f  the system o f  in equa lit ies
( 8).

P m o f .  The function (10)  transforms the second inequality in (8 ) into an identity. 
Let us write the lirst one in an equivalent form:

F ”( i »  +  Q '(F  ' ( F ( p )  - t ) )F ' 2( P ) > 0.

It is satisfied for r  =  0. Therefore it holds for all r  > 0  ( r  < F ( p ) )  by convexity 
o f  Q and monotonicity o f  F .  П

Operator (10)  is the identity for r  =  0,

L em m a 2. Let Q(u) h e  и con v ex  function . Then f o r  the p ro b lem  ( I ) ,  (2) ire h av e  
the lo w er  hou n d

u(t, x )  > F  '\ F ( v ( t .x ) )  -  /|. / :> 0. . l e R " .  ( I I )

w here  v ( t , x )  is d e t e rm in ed  f r o m  (4).

Since /•’ is a decreasing function, inequality ( I I )  is equivalent to the following 
one:

F (v ( t ,  .v)) -  F {u {t .  a )) > t, t > 0, a e  R'v . (12)

In the case of a source term o f  power type, Q(u) =■- i f f  f i  > I. we have F ( s )  =  
s ]~ b / ( f j  -  |) and ( 12) assumes the form

u1 >j (t. x) -  i f  is(t. x) > ( / 3 -  I )/. (13)

These inequalities come in handy for determining conditions of  global insolv
ability of  the Cauchy problem ( I ) ,  (2 ).

T heorem  1. Let Q"(u)  >  0  f o r  и >  0, a n d  a s su m e  that the limit

s.l 1 2/N

lim ........ .... =  c  < n c  (14)
s ■«' Q(s)

exists. Then f o r  any  in it ia l  functions ,  such that

IK>llr>(R'> > \2ttNi>\n/2, (15)

the C aac l iy  p ro b lem  ( I ), (2 ) h as  n o  g l o b a l  so lutions.
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P roo f .  First of all let us note that F - l (0)  =  oo. Therefore it follows immediately 
from (12)  that u(t. x )  is unbounded, if  we can lind t, > 0 and ,v„ e R w, such that 
F ( v ( t , .  л»))  — t, <  0 . or. equivalently.

F ( v ( i , . x , ) ) / t t < (16)

Let us set x ,  — 0. From (5) and the assumption u() e  JL1 (R A) we obtain

V(t.O) — (47Tt) ~ Ihd) II/.'(R'vl - г —> о с .

and therefore, resolving the indeterminacy in the expression F (v ( t .  0 ) ) / t  as t —► со, 
we have

F(vUA))) 
l i m ---------------

/ - *  'X : {
2ттЫ\\и{) 2;x 

/.'(R' lim
s -()•

, l  + 2/«

~QUA
277-/V||«o||/_i2(/̂  |t/.

Therefore by (15)  for this class o f  initial functions (16)  holds for ,vt =  0  and 
some sufficiently large which entails unboundedness o f  solutions o f  the Cauchy 
problem ( I ), (2 ). □

C oro llary .  Let о =  0  in (14).  Then f o r  an y  и о ф  0, so lution  o f  the p ro b l em  ( I ) ,  
(2 ) is  unbounded .

In the case v > 0  Theorem I delines a certain minimal initial energy needed for 
the occurrenee of finite time blow-up: F„nn =  (2 ttN u)n/2. In fact, for r  e R ,  in 
many cases all non-trivial solutions of  the problem are unbounded. In the sequel 
this will be demonstrated for the example o f  a power type source term, Q(tt) — it13. 
Let us note that using the inequality (16),  we eould establish conditions o f  global 
insolvability also for v — o c  (in which case conclusions o f  the theorem to some 
extent indicate the possibility o f  existence of a class o f  global solutions).

2 liquation with a pow er type nonlinearity u t =  A n  +  id1

In this subsection we present a detailed analysis o f  unbounded and global solutions 
o f  the Cauchy problem for an equation with a power type source term:

А (о ) =  и i — А и — и11 =: 0, / > 0, л 6  R w.

„  (17)  
0 (0 , л)  =  « о ( л)  >  0 , -г е  R * : /3 >  1.

Some o f  the results arc the analogues o f  those obtained in § 3 for quasilinear 
equations; therefore they are stated without proofs. Observe that from Theorem 1 
we immediately have that all solutions u(t. x) ф  0  arc unbounded for /3 e (1. 1 +  
2 /N ) .  Therefore globally existing solutions are possible only for /3 > 1 +  2 /N  (in 
fact they do not exist for / 3 = 1 +  2 /N  cither).
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We shall start the study of the problem (17)  hy constructing unbounded sub- 
and global supersolutions. These provide explicit conditions o f  local or global 
solvability.

I Condition,s o f  g l o b a l  in so lvab ility  o f  the /m ib le m

Construction of unbounded subsolutions o f  problem (17)  allows us to derive a sharp 
upper bound on the time of existence of a solution, which due to the technique of 
the proof was not obtained in Theorem 1,

Let us consider in (0. T)  x R"4' the function

,i ( , . .v)  =  (7’ - / )  Ч Ч *-" в  (£ ) .  £ =  \ x \ / ( T - t ) , / : . (18)

Let в  e  ( 10. oo)), в ’ (0) =  0. For the function (18)  to be a subsolution of 
equation (17) .  it is enough to satisfy the inequality A(n ) < 0  in (0, T)  x R'v , 
Substitution o f  (18)  into (17)  gives us the following condition:

^Jrr (f* '10' У - £ - “ j-« +ffl< ± °- f <1 9)

We shall seek the function в  in the form 0 (£ )  =  Л exp{ — a £ 2), where Л > 0. 
«  > 0  are constants.

Then from (19)  we obtain the inequality

a ( 4 «  +  1 ) f -  +  Л11 1 ex p (« (  1 -  (3)£2) > 2 a N  +  1 /( /3  -  1 ). (20)

It is easy to see that it is satisfied for any

_  2«/V +  1 /Q3 — 1 ) 1 1/2 

"' — « ( 4 a  -f 1)

and in order that (2 0 ) holds for the remaining £  e  [0 . £ t \. it is sufficient that the 
inequality

A>! ' ex p (« (  1 -  f3 )£ ;)  > 2 a N  +  \ / ( f3 ~  1) (21)

be satislied.

T h e orem  2. Let the in it ie l  fu nc t ion  и о in (17)  b e  .sueli that

Но (л) > T  " A e x p l - a l . i f y  ')• r e R ,v.

w h ere  T . a . A  o r e  pos it iv e  constants, a n d  a .  A .satisfy inequality  (21).  Then the  
.solution o f  p ro b l em  (17)  exists f o r  t ime not ex ce ed in g  T.

For convenience, we state an immediate corollary o f  Theorem 1.
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T h eorem  3. Let 1 < /3 < 1 +  2 /N , uo ф  0. 'Then the so lution  o f  p ro b l em  (17)  is 
unbounded.

It is not hard to obtain this result by reasoning as in § 3. subsection 2. that 
is. by comparing the family of suhsolutions (18)  with an arbitrarily small funda
mental solution o f  the heat equation. In the ease /3 < 1 +  2 /N  this procedure is 
comparatively simple. In the critical case / 3 = 1 +  2 /N  it is much harder to do, 
and therefore it is more convenient to construct an unbounded subsolution by an 
iterative method, as is done in the proof o f  the following assertion.

T h eorem  4. Let / 3 = 1 +  2 /N ,  no ф  0. Then the p ro b lem  (17) d o e s  not h av e  a 
g lo b a l  solution.

Proof.  We carry out the proof for N — 2. that is. /3 =  1 +  2 /N  =  2. With slight 
modifications the same argument works for any N.

First of all let us note that for any initial function и цф О  we can always find 
constants /о. До- «о. such that n(/(). л) > Aoexp{ — a o N ' ) in R 2. Therefore by the 
comparison theorem, it is sufficient to prove the claim for functions o f  the form

n„(.v) = А „ е х р ( ~ а „ | А | 2). ,v e R 2. (22)

The Cauchy problem (17) ,  (22)  for N  =  2. /3 =  2. is equivalent to the following 
integral equation:

Let us form the recurrent sequence of functions

U ,( t .  x)  =  P (0 ) ;  U„.n ( t . x )  =  P ( U „ ( t .x ) ) .  n =  1 . 2 ...........

From (23) it follows immediately that for any n

u(t, x)  > U„(t,  a ). t »  0. л e R : .

Therefore if {(/„) diverges at least at one point, the original problem has no global 
solution. Let us show that this is indeed the case.

First of all we have

U ,( t .  a ) =  P (0 )  =  p > ( t )E ( t .x ) ,

w h e r e  v x(t) =  A ()/ ( l  + 4 « o /) ,  E(t.  x) =  e x p { — « о М ’ / П  + 4 a 0O). L e t  u s  n o w

e s t i m a t e  o t h e r  t e r m s  i n  t h e  s e q u e n c e .



280 IV Nonlinear equation with a source

Let us prove by induction that

II
U A t . x )  > Y  Vk(t)Ek U . x ) .  и =  2 . 3 ..........

*“ i

where functions >  0  will be delined below (rq we already know). From 
we easily obtain

л) > v\h +

»'a( t )/s* ( t . y)

“ rt k

> /',/•; +  Y  Y ,'l(T)l'M ~l(T '>c,T x
* i •'0 / 1

X -  r) 1 1 exp | - У) cly.

The inner integrals in spatial variables are easily calculated for each к — 1 , 2 , .  
and are equal to

1 +  4гг0т

1 +  4  «о/ — 4 кацт
exp ( -

(k  4- 1 )«у|л|~

1 -F 4 (к +  1 )«o I ~~ 4кацт  

l + 4 “ ”T
~  (k +  1)(1 +  4 a 0/)

Therefore from (25) we obtain the estimate 

U„.f i(t .  л) 2:

6 A t l ( / , . v)

j ! (k +  1 )( 1 +  4сГ(|/) ., „ ; (и
i'/(t  )»'*-, i ./(r)( 1 +  4 a o r )  d r .

that is, in (24) we can set 

1
+ i (0

[i к
/ Y v ,(T )v k н , (т )(  1 +  4 « 0T) d r .
In(к +  1)(1 +  4 « ()/) ./о (_ (

Let us show that hence we can obtain the following inequalities:

pk(t) > fTT7V-- ------ - ( — Л  4a„ln* '(1 + 4 a,,/).
6* 1 (1 +  4 а 0/) V 4a„ J

(23)

(24)

(25) 
. . ,  n

(26)

(27)
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This estimate is valid for к =  1. Let it hold for all 1 < к < M ,  and let us show 
that (27) holds also for к =  M  +  1. From (26) we have that

i'm h U) > (M  +  1)(1 +  4 « ()/)

Лп_

4«o

Мл 1
(4«o)"

f
■I о

' >n (1 +  4rt,)T) 
1 +  4«(|7

6 МЛ
cI t  ^  l ( M  + (28)

It is not hard to verify that Y l t h  l ( M + \ —l) =  M ( M +  1 ) (M  +  2)/ 6  > M (M - f  1 )2/6 , 
so that (27)  follows immediately from the inequality (28) for к =  M +  1.

Thus, as n —> oc we obtain the inequality

u(t.  -t) >
Л()Е(/._£) 

1 + 4 « n/
.A ■ 1 (29)

where

;  =  -“(L л) =  E r r - —  ln(t +  4rt„/) > 0.
24«o

However, the series in (29)  diverges for г =  1. for example, for л =  0  (E (t .O )  — 
1 )./ =  /,. where

~ ^ - l n ( l  + 4 r t 0/ J  =  1,
2 4 « 0

that is.

Therefore solution of the problem with an initial function o f  the form (22)  exists 
for time not exceeding t , .  П

Summing the series in (29),  we can obtain an explicit form of the presumed 
“subsolution’' » . ( / . . r), which has been constructed by the iterative procedure for 
the critical ease f3 =  1 +  2 /N ,  N — 2. It has quite an unusual spatio-temporal 
structure:

n(t. л) > n  (/. л) =

4(i
---------- exp
1 +  4 «и/

Q'oN 2 

1 +  40-01 2 4 o ()
exp

« п|а1 - 

1 +  4«(|/
ln( 1 +  4«oO

( ) < / < / , .  л- e  R 2.

Thus, if 1 < (3 < 1 +  2 /N  all non-trivial solutions of the problem (17) are
unbounded.



282 IV Nonlinear equation with u source

2 E xistence time o f  e l em en tary  per turba t ion s

Using inequality (13) ,  derived in subsection 1, it is possible to obtain explicit upper 
bounds on the time of  existence o f  unbounded solutions. In the case o f  power type 
nonlinearity, this inequality has the form

U()(.V +  V) r/.V > MtX/1 l/t/1-П (30)

where M — ( 4 n ) Nl2(f3 — l ) ■ >/t0- i>, Ц- this inequality is satisfied at a point (/,. ,v.), 
then the unbounded solution exists for time not exceeding

Let iio(.r) be an elementary perturbation: »<>(л) =  8 > 0  for all |.v| < a  <  oc, 
иo(.v) = 0  for 1 л-1 ^  a.  Using the estimate exp|-|y|: /(4/)) > (1 -  |y|2/(4/)) + , we 
obtain a lower bound for the integral in (30):

Hi. x) > [  ( 1 -  | Unix +  y )(/y ,
■l\y\-nn \ 4/ J  (31)

l(t)  =  min(ci, 2/1/2}.

Clearly, in this case we can set л ,  =  0. Let us assume initially that t t > c r /4. 
Then /(/,) =  ri, and the upper bound for the time of existence of the solution is 
determined from the equation

M
/.' (R v) i  =  M t Nr-~ 'nii l ) . M , =- „  

t 2 l ( N /2 ) (N  +  2)

For certain /3 this equation can be solved exactly. 
For example, for /3 =  1 +  2 /N

M  |

l l , ,o l l l . ' ( R * ) M , I K  II/.'(it" i > M.

This formula is correct if i, > n2/4. that is.

M  < || no lb. i,r . ' i < 4 M  i/n2 +  M.

If f i  =  (4 +  N ) / ( 2 +  /V), then

M +  M i  4
L  — - —  ------------ . l | u o l l i . i ( R - v ) <  — ( M  +  M i ) .

I K I I i . ' ( R ' v ) a -

Let us note that this estimate shows that for fi  =  (4 +  N) / ( 2  + N)  < 1 +  2 /N  solu
tions corresponding to elementary initial perturbations with arbitrarily low energy.
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are unbounded. The same applies to the case /3 =  (3 +  N ) / (  1 +  /V), when

M
+

I-1 |R,S)

M

2 !i!!(} I! /.' (КЛ )

1/2 '

+  M ,

(here we must have t, > c r / 4 ,  that is. the energy II»oI!лi<r-v) must not be too high). 
This estimate is valid, for example, if  l|»olli.i(R-'i 5  2 M /a .

Let us now consider the case /* < c r / 4 .  Then /(/) =  2 i l/1 in (31) ,  and the 
solution of  the inequality (30) has the form

M

A#2||ik»IIl ',r ')

p - i ->\ч l
. M-, =

( N  +  2 ) r r

The estimate To < t ,  holds if t“ < c r / 4 ,  that is, if

!! no II i.1 (Rv) > Ж

cr

~4

\ H P - U

3 G lo b a l  so lu t ions  f o r  (3 > 1 +  2 /N  

We shall seek a bounded supersolution o f  equation (17)  in the form

n , U . s )  =  (T  +  t) f  =  |л1/0Г +  г ) '/2. (32)

where fl+ (£)  =  Л е х р ( ~ а £ : ) and T , A , a  are positive constants. Substitution of 
(32) in the condition A( u + ) > 0  results in an inequality, which can be brought to 
the form

« ( 4 a  — 1)£ 2 +  A11" ' e x p (« ( l  -  f3)£2} < 2 a N  -  1 /(/3 -  1), £ e  R + . (33)

From this we obtain the restrictions on the parameters A and a .  First o f  all, the 
right-hand side of (33) must be positive, that is

2 N t f -  1)
(34)

Secondly,
l/t/i-n

A S  y 2 u N  — j - j  , a  < (35)

a n d  f r o m  t h e s e  i n e q u a l i t i e s  w e  h a v e  t h e  r e s t r i c t i o n  (3 > 1 +  2/N. T h u s  w e  h a v e

p r o v e d
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T heorem  5.  Let f3 > 1 +  2 /N  anti let the initial fu nc t ion  и о b e  such that

w h ere  T, A, a  a r e  constants, the two last on es  satis fying inequalit ies  (34),  (35). 
Then p ro b l em  (17) h a s  a  g l o b a l  solution, a n d  fu r th e rm o re

In conclusion, let us observe that the stable set IT constructed here consists of 
functions no which decay exponentially as |.v| —► oc. As in subsections 4, 5 of 
§ 3, for /3 > 1 + 2 /N  we could construct a different set IT with a weaker (power) 
decay rate of iio(.r) at infinity. In this case the boundary of  IT consists of global 
self-similar solutions of equation (17) ,  which will be considered in subsection 2 .6 .

4 E ffective  loca l iza t ion  o f  u n bou n d ed  so lutions. L S-reg im e o f  com bustion

In this subsection wc move on to a description of particular properties o f  unbounded 
solutions o f  problem (17) :  their spatio-temporal structure for times close to the 
blow-up time. A fundamental property o f  blow-up regimes, which docs not depend 
on precise initial functions, is the property of localization. Equation (17)  describes 
processes with infinite speed of propagation of perturbations, therefore, as in the 
case of the boundary value problem for the heat equation without a source term 
(see S 4  o f  Ch. Ill),  we shall introduce the concept of effective localization of 
combustion.

Definition. An unbounded solution of the Cauchy problem (17)  is called e f fec t ive ly  
l o c a l i z e d  if it goes to infinity as t —> 7'|j (7'o < oo is the time o f  existence o f  the 
solution) on a bounded set

which we shall call the lo ca l iza t ion  dom ain .
If, on the other hand, tot is an unbounded domain (for example, w/ =  R ,v) 

then we say that there is no effective localization.
For our purposes the above definition is sufficient. In the general ease the 

following blow-up set should be considered: I f  =  (,v e R 14 1 3/„ —► 7'(, and ,v„ —> 
,r, such that »(/„,.v„) -»  oo as n - *  oo), which by definition of  an unbounded 
solution is non-empty for bell-shaped data.

In the following an effectively localized combustion process will be called sim
ply localized. In the one-dimensional case it is convenient to introduce lo ca l iza t ion  
depth

i i o (A - )  < 7 " ' M e x p l - a U f r ' 1). x 6 R \ (36)

it(t, x) <  ( 7  4- t ) " ' iHi' 1 ’Д exp in R 4 x R ,v. (37)

u>i =  |.v e  R a 11 f (T„ , x)  =  lim u(t, x) ~  oo) .

Lj  =  meas (.v e R )  u (T { ) . x) =  oo)
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Fig. 64. Effective localization (/.■/■ is the localization depth)

(that is, L f  is the extent of the domain in which the solution grows without hound 
as t —> T see Figure 64). If  u(t. x) becomes inlinite at one point, then Ц  =  0, 
which corresponds to the L S  blow-up regime o f  combustion.

Evolution of  unbounded solutions of  the problem (17)  proceeds for (3 > 1. 
as a rule, precisely in the LS-regim e and u(t, x) ->  oo on a set a>/ o f  measure 
zero. This is indicated, for example, by the estimates obtained in Theorem 2 , in 
which we derived unbounded subsolutions that do evolve in the LS-regime. And, 
of  course, this conclusion is corroborated by numerical computations. In Figure 65 
we present results of one such computation. It is clearly seen that in the blow-up 
process there arises a spatio-temporal structure with ever decreasing half-width and 
a conspicuous unique maximum in .c o f  the spatial profile.

Let us consider the spatio-temporal structure of  unbounded solutions for times 
close to blow-up time. For that, by analogy with the quasilinear case (§ 1), we 
can consider unbounded self-similar solutions

U s d .  X) =  (T , , - / )  l/(/f" > s ( £ ) .  f  =  |.r|/(7’„ - / ) ,/2. (38)

where the function (Ул(£) > 0 satisfies the ordinary differential equation

1 _ ( i *  ' 
i W  ~  +  e 's =  °-  f  • (): (39)

0's (0 ) =  (). fl.y(oo) =  (). (40)

If  we assume that the self-similar solution n.y describes characteristic properties 
o f  L S  blow-up regimes, then the amplitude o f  the solution u,„(t) and the half-width 
of  a symmetric domain of intensive combustion (t) can be estimated as t —► T f) 
according to

u,„(t) =  sup u(t. x)  ~  C/'o -  П l/,/J'  ” . (/) ~  (7'u -  t ) ' / : , (41)
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Fig. 65. Numerical solution of the problem (17) for f i  — 4, /V =  1; 1: i, = 0.236, 2: 
i2 =  0.269, 3: i , -- 0.291, 4: i4 =. 0.299. 5: i5 = 0.3006, 6: ih -  0.3018. 7: i7 =  0.3022

There is, however, one significant difference hetween this and the quasilinear 
ease.

Proposition I.  Let N  =  1. Then f o r  an y  (3 > 1 the p ro b l em  (39),  (40) h a s  no  
so lu t ions  > 0 .

F o r  t h e  e a s e  (3 —  3 i t  h a s  b e e n  p r o v e d  in  | 2 1 9 | ;  f o r  a r b i t r a r y  (3 > 1 it  h a s

b e e n  e s t a b l i s h e d  i n  | 3 |  ( s e e  a l s o  | 1 ,  2 ] ,  w h e r e  1 < f3 < 3 ) .  I n  t h e - c o u r s e  o l

t h e  p r o o f  ( s e e  | 3 | )  it  i s  s h o w n  t h a t  e v e r y  s o l u t i o n  o f  e q u a t i o n  ( 3 9 )  i n  t h e  d o m a i n
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I f  > fo > 0 ), satisfying conditions

W fo) =  ц  > ви  ~  Ф  -  1 ) '  « '(ft.)  =  0 (42)

vanishes at some point f  =  f i  > fo- «nci is monotone on ( f n . f i ) .  Therefore
(39).  (42)  has no non-monotone positive solutions having a point of minimum. 
We remind the reader that in the proof of  Theorem 3, suhseetion 4, S 1, we made 
essential use of non-monotonicity of solutions.

It is appropriate to reeall that the analysis of that subsection concerning the 
self-similar equation (39).  linearized around the homothermic solution в  =  (/3 — 
1 j - i/t/з- siwws t)ia[ |t |ias n0  non-monotone solutions.

Let us observe that this argument correctly indicates non-existence o f  non
trivial solutions o f  the problem (39).  (40) for any 1 < /3 < (N +  2 ) / ( N  — 2) +
1197|. Therefore for those values of  /3 asymptotic evolution of unbounded solutions 
follows non-self-similar patterns. In distinction to (41) .  the half-width o f  the 
combustion domain changes as t —> V(j according to l , .f (t)  ~  (7'o — /)|/2| 1п(Го — 
/ ) | l/2 (see Remarks).

In the case (3 > (N +  2 ) / ( N  — 2)., the problem (39),  (40) may have non-trivial 
solutions. Then as t —> Т /  . the solution evolves according to the self-similar laws 
o f  (41).

Exam ple . Let /3 =  2. Then for all N e  (6 . 16) (note that here /3 > \ +  2 /N ) .  
there exists a solution o f  the problem (39) ,  (40)

f W f )  =  A n / ( < i n  +  f - ) 2 +  B N/ ( a N +  f ' ) .  (43)

where a ^ .  .-U . H.\ are positive constants:

e N = 2 ( 1 0 ( 1  + N / 2 ) ' / : - ( N +  14) |.

AN = 4 8 | 1 0 (1  +  N / 2 ) h'2 -  (N +  14)1.

B,\ =  24[(1 4- /V/2), , :  -  2|.

Non-existence of self-similar solutions in the one-dimensional case requires a 
Substantial modification of the method o f  proof of effective localization for un
bounded solutions.

5 P r o o f  o f  e f fe c t iv e  lo ca l iza t ion  in the on e -d im en s ion a l  c a s e

Thus, for TV — 1 the problem (39).  (40) has no solutions. However. (39) admits 
solutions 0s($) with the asymptotics

ff.s =  в , ( £ )  =  C f  :/t/b" ( l  +  w (£)) .  £ - > o c .  (44)

where a j ( f )  —► () as f  —* oo and Г  > 0  is a constant. Let ns lix a C  — C , in (44) 
and extend the solution into the domain o f  sufficiently small f , Then, obviously.



296 IV Nonlinear equation with a source

Fig. 68 . Solutions of equation (76) for 1 < (3 <- 2

Therefore for /3 > 2 the solution is' strictly positive in R +, □

Let us also observe that for all /3 > 1. the required solution fly is not smaller 
than the decreasing solution o f  the equation without a source.

J L r L
U p  - 1

f ' c - /  =  (), l  >  0 , /(()) = ( ) „ .

which was considered in detail in ij 4. Ch. Ill,  There it was shown that the function 
f ( £ )  ^  0 is determined from a certain algebraic equality, which allows us to derive 
lower hounds' for Bs(£ ) .  Hence, for example in the case 1 < /3 < 2, we have

meas su p p0 , > meas supp / — I r P
/ 3 - 1

t -  /О/ 1 - Ф

Quite a good understanding o f  qualitative properties o f  the solution 0, can he 
gleaned from considering Figures 6 8 . 69. whieh show the field o f  integral curves 
o f  the equation

O'
/ 3 - 2Л --------- £

4(/3 — 1) ‘

' /8 - 2  

,4(/3 -  1) £ 2 + P~ 1o ~  в 11 (76)

which is equivalent to (70),  The thick line denotes the solution в,  > 0 with the 
asymptotics (72). which satisfies conditions (71) ,

Here it has to be said that lor /3 > 2, apart from a solution o f  the form (72) .  there 
exists another family of admissible positive solutions with different asymptotics:

tiP£) ~  (P -  1) - 2\  £ 0: C =•- const > 0. (72')
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Fig. 69. Solutions of equation (76) for [5 > 2. Solutions of the problem (70). (71) are not 
unique

which is not analytic at £ =  0  and is shown in Figure 69, Numerical simulations 
o f  the problem (56). (57)  indicate that the spatio-temporal structure o f  a.s.s. (6 8 ) 
does correctly describe the asymptotic properties o f  unbounded solutions and that 
the function (72) is realized in the LS-regimc as t —► Г,,'.

Validity of this “slicing” o f  equation (56) and passage to a lirst order equa
tion has been checked by numerous numerical experiments, which demonstrated 
asymptotic convergence of the unbounded solution o f  problem (56).  (57)  to a.s.s. 
(6 8 ). In numerical computations, similarity representation of  the solution U (t, ,x )  
was determined from the formula

0 ( t . £ )  -  (M<>)
l!  ( t .  £||(/||[: /,l/: • '-'/-’ (0 ))

(77)

where ||(7||c, =  sup, (/(/. .v). (0 ) =  ф  — 1) - |/((<-И1 д s always, the spatio-
temporal structure o f  a.s.s. (6 8 ) is implicit in the representation (77).  and i f  u (t . x) 
evolves according to the rules o f  (6 8 ). we must have the limiting equality

lim 0 ( t , £ )  -  0 , ( 0 .
ili/ll,,

(78)

We emphasize that in this case it is hard to accomplish numerically the usual 
similarity normalization as, for example, in S 4. Ch. Il l ,  since here the blow-up 
time is not known a  p r ior i .

Convergence in the sense o f  (78) to a.s.s. (6 8 ) for .sufficiently general initial 
functions has been established numerically for different f5 e  ( 1 . 2 1. For (3 > 2 
(LS-regim e). as we know, the similarity function ft, =  0,(|£|) in (6 8 ) is not
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FiR. 70. Numerical veiilicmion of asymptotic stability in the sense of (78) of a.s.s. (68) 
for p  =  2  (C == Л-). N  =-.■ I: I: i, =. 2.82. 2: и  = 3.03. 3: p, =  3.12. 4; i4 =  3.16. 5: 
15=3.18

uniquely detined. As an example (Figure 70) we show the results o f  similarity 
transformation (77)  o f  the solution of problem (56) ,  (57)  for f3 =  2, when 0, has 
a very simple form; see (74). Convergence (78) is clearly seen already when the 
solution grows by a factor of 10-20 .

4 T hree  types o f  u n bou n d ed  so lu t ions

From (6 8 ) it follows that the spatio-temporal structure o f  a.s.s. depends on the 
sign o f  the difference /3 — 2. Thus, if  /3 < 2, then Us(t, x)  —*• oo as t —* Г,', 
simultaneously in the whole space; this is the HS-regime. and there is no local
ization. Thus we have found a sentilinear equation with unbounded HS-solutions 
(recall that the equation u, =  An +  does not admit such solutions). Figure 71 
shows the results o f  numerical computation of the one-dimensional problem (56).
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Fig. 71. Numerical solution of the problem (56), (57) for (3 =  1.35 (HS-rcgime). N — I; 
I: i 1 =  2.10. 2: i ,  =  2.87, 3: i ,  =  3.00, 4: i4 =  3.11, 5: =  3.19, 6: i„ =  3.28, 7:
i7 =  3.34, 8 : iK =  3.40, 9: =  3.45. 10: =  3.51

(57)  for f3 <  2, which are in good agreement with (6 8 ), in particular, as regards 
the change in the amplitude and half-width o f  the solution.

For [3 =  2, as follows from (6 8 ) and numerical results, the combustion process 
evolves in the S-regime; u(i,  x)  becomes infinite on a bounded set. In the case 
o f  a symmetric elementary initial perturbation, the localization domain o f  the S- 
regime is the support of the function (74):  ы ,  — (|л| < 7r) (Figure 72).  Similarity 
transformation o f  this computation is shown in Figure 70. If  localization domains 
corresponding to different perturbations are disjoint, combustion inside each one 
o f  them proceeds almost independently as t - *  (Figure 73).

R e m a rk .  Proving localization of sufficiently arbitrary unbounded solutions of 
equation (56)  for f3 ^  2 is an interesting mathematical problem. In particular, in 
the one-dimensional case for f3 =  2, one could use to that end the method o f  in
tersection comparison o f  the solution under consideration and an interesting exact 
non-invariant solution (it is not invariant with respect to Lie-Backlund transforma-
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Fig. 72. Numerical solution of the problem (56). (57) for fi  — 2 (S-regime), N — 1; I : 
/1 =  3.007, 2: ь  =  3,107. 3: i , = 3.142. 4: i., -  3.156. 5: i , -  .3.165. 6: i(, =  3.173. 7: 
/7 =  3.179. 8: is" =  3.1 S3, 9: -  3 .187

tion groups). This exact solution, which is 277--periodic in space, has the following 
form:

U ,( l .  x)  =  ф(1)\ф(1) +  cos A-1,

where the functions ф(1). ф(1) satisfy the system o f  nonlinear ordinary differential 
equations

<p' =  —ф +  2ф2ф, ф' ~  ф +  ф -  фф2, I > 0 .

as can be easily checked. In fact, this dynamical system is precisely the semilincar 
parabolic equation on the linear subspace ' / { I , cos л ). which is invariant under the 
nonlinear operator (/,,  +  (U ф 2 +  U2. This system is equivalent to the first order 
equation

Фф/с/ф =  <(// +  ф -  фф2) / ( 1 ф 2ф -  ф).

It is easy to show that this equation has a family of trajectories e-orresponding to
various unbounded solutions of equation (56) for N =  I, f3 =  2, with the following
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asymptotic behaviour close to the blow-up time t — Т»:

Ф(П  =  ( 1 / 2 ) ( Г „ -  /) - ’ 11 +  OUT» ~  t)\\n(T» -  ODI-

(p it )  =  I +  OUT» -  r)| In(7’o -  i)\).

Therefore, as t —> Т»

U . U .x )  =  (To -  t) 1 cos"(.v/2) +  0(| ln(7"o -  r)|).

that is, as the blow-up time is approached, the exact solution U ,( t .  0  converges 
uniformly (after the corresponding similarity transformation) to the approximate 
self-similar solution (6 8 ), (74).  However, in the general case the problems of 
localization for [3 =  2, N > I, remain for the most part open.

If (3 >  2, then (6 8 ) ensures unbounded growth o f  the solution at one point 
only. This is the localized LS-regim c; a specilic example is shown in Figure 74. It 
is clearly seen that everywhere, apart from one singular point, the solution U U. x)  
o f  (56). (57).  is bounded from above uniformly in t by some limiting prolile
U (Т» . л) < oo, а ф  3.

In those figures, dashed lines indicate the motion o f  the half-width x,.jU)  o f  the 
thermal structure, combustion of which is initiated by the same perturbation. First 
the amplitude of the solution U (i.  x) becomes smaller and the half-width increases, 
which corresponds to the process o f  spread o f  the non-resonance perturbation. 
Then, approaching finite time blow-up. x,.fU)  starts to change in accordance with 
a.s.s. (6 8 ): x,.f(t)  ~  (Т» — i ) {f1 ' n|, t |n particular, for [ 3 — 2
(S-regime) the half-width stabilizes, which can be clearly seen in Figure 72.

Conclusions concerning stability of a.s.s., which we presented above, are in 
good agreement with the qualitative non-stationary averaging theory. As in $ 2, 
we shall seek an approximate solution I I , i t .  x) in the form U , ( t , x )  ~
£ =  х/ф (1) :  I >  0 , f  e  R * .  and let us demand that I J , satisfy the conservation 
laws

Then we arrive at a system of  ordinary differential equations for the amplitude 
([ id )  and the half-width ф и ) :

where tq (i =  1 , 2 , . . . .  5) are some functionals o f  /z (their exact form can be easily 
written down). From the system we pass to the single equation

( i[h [>N ) '  ::::: I q i / T r / / 3 3 +  V l <[lf1 </>N .

(i//3(/>'v )' =  —/qi//3c/fv 3 +  iu>lx<[>N 2 + I'si/TJt !r/fV.
(79)
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Fig. 73. Independent combustion of thermal structures for /3 — 2 (S-regime), N -  I; I: 
I, =  0. 2: ь  = 2.915. 3: t3 =  3.026. 9: i4 =  3.079. 5: t5 = 3.115. 6: /„ = 3.133. 7: 
r? =  3.1421. K: N =  3.1459

([Ф -  _ д г I  У 2 ~  1’ 1Ф ~  1
(1ф Ф I  riit//̂  1 r/>- — 1иф — I

ф > 0 . ф > 0 . ( H O )

where « u r n .  /q./o me some constants, which we take to be positive based on 
natural requirements on the behaviour o f  the trajectories.

Equation (HO) is more complicated than the one considered in § 2 . The main 
difference is essentially the following: (80) contains three independent critical 
values o f  the parameter f3, which “control'' the general structure o f  the phase plane. 
First is [3 — 2'. the criterion /3-5 2 determines the presence, or lack, o f  localization 
o f  unbounded solutions (in the cases [3 > 2 and [3 < 2 the behaviour of  the integral 
curves is completely different). Secondly, [3 =  I + 2 //V; for [3 < I +2//V equation 
(80) has no globally defined trajectories, while on the other hand, for [3 > I +2//V 
there are trajectories to which there correspond global solutions o f  the original
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Fig. 74. Numerical solution of the problem (56), (57) for /3 =  2.50 (LS-regime). N  — I: 
I : / , = 4.257. 2: t ,  * 4.275, 3: i , =  4.280. 4: r4 -- 4.283. 5: (5 = 4.285, 6: /„ =  4.286. 
7: t ;  -  4.2873. 8: N =  4.2870, У: Л, = 4.288.3

problem. Finally, the third critical value is /3 =  2 +  2 /N .  For large amplitudes ф 
we can neglect constant terms in the numerator and the denominator of (80).  As 
a result we have the approximate equation

с!ф ^  ( rii^//j~~</>~ -  /?! 1

dip Ф |  O i l / / 4* “ (/>" —  />2 J

which is the same as the one considered in § 2 for rr =  I. Therefore the phase 
plane behaviour depends on the condition (3 •; ir +  I +  2 /N  =  2 +  2 /N .  For 
/3 < 2 4- 2//V all unbounded trajectories converge to the “separatrix" generated by 
a.s.s. (6 8 ):

ф ~  ф ф —► oc;

<//(() ~  " .  rA(M ~  ( 7 'o - / ) UJ~3,/|-,/J~ 111 (81)

as I -* T{). On the other hand, if 0  > 2 +  2/N,  then the asymptotics of unbounded
solutions as / —► Tu is a non-self-similar one (see Sj 2).
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Fig. 75. Integral curves of equation (X0) for f i  e ( 1.2) .  f i  > I + 2 / N

Most of tlie.se results are in good qualitative agreement with the conclusions we 
arrived at earlier. The estimates (HI) give us. in addition, quantitative agreement 
for I < /3 < 2 +  2 / N , which supplements the evidence that the construction of 
unhounded a.s.s. (6 H) is valid.

Figures 75-77 show schematically the fields of integral curves o f  equation (HO) 
in. respectively, the eases I < /3 <• 2 (HS hlow-up regime), / 3 = 2  (S-regime), 
/3 > 2 (LS-regimc). In all three figures the parameters /3, N  have been so chosen, 
that, first, /3 > I +  2 /N ,  so that there is a class of global trajectories, and. second, 
/3 < 2 +  2 /N ,  that is. unbounded trajectories behave according to (HI).  We denote 
by ips the separatrix, which separates families o f  global and unbounded trajectories, 
and by t//(l and i// ,̂ the isoclines of zero and inlinity, respectively.

Thus, localization of unbounded solutions of the problem (56). (57)  occurs for 
/ 3 = 2  (S-regime) and /3 > 2 (LS-regim e), while for /3 < 2 there is no localization. 
Clearly, this classilicatiou remains the Same if we go back to the original problem
(54),  (55). Setting u, =  exp(f/,) — I, we obtain the following expression for a.s.s, 
o f  equation (54):

n ,( i  ,v) =  cxp((7'o -  О х'ф  " « , ( £  >) 

£  =  |.v|/(7'o -  i ) 4< 3l/|:,'j h|.
(H2)

It is not hard to see that it satislies the following nonlinear lirst order equation ol 
Hamilton-Jaeohi type:

d l l , / 01  =  |Vu,|3/(l  +  и, )  +  (I  + 1 1 , ) ln/J( l  +  и, ) .  (H.2)
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Fig. 76. Integral curves of equation (80) lor fi ~  2 (the case fj I f  2 / N  for N  > 2).
(/>, ~ (h i / i i i ) *'"

Fig. 77. Integral curves of equation (80) for (3 -> 2 (the case I -I- 2 / N  ■- f j  2  -I- 2 / N )

Let us note that in the original variables /..v. и the evolution o f  the b low 
up process looks different. In particular, from (82)  it is not hard to obtain an 
expression for the dependence on time of the half-width of the structure. /,./•(/).
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for all /3 > 1.

/,/•(') ~  (7'o — i ) [/1, t —► T a . (84)

In this sense there is no difference between the three linite time blow-up 
regimes. At the same time, for /3 < 2 the solutions are not localized and 

—► oo in R w, i —► 7‘0 . On the other hand, for /3 > 2 solutions are 
localized. The estimate (84) holds in all the eases. Therefore in numerical simu
lations of the original problem (54). (55) the difference between the HS- and S- . 
LS-regim cs becomes apparent only once the amplitude o f  the unbounded solution 
has grown significantly (by order of tens o f  hundreds). The logarithmic change of 
variable U =  ln(l +  ") removes this inconvenience (see Figures 71. 72. where in 
order to identify the blow-up regime it is sufficient for the amplitude to grow by 
a factor o f  5-10).

5 G l o b a l  a.s.s.

For /3 > 1 +  2 / N  there exist global a.s.s. o f  the problem (54).  (55).  From the 
method of  construction of bounded supersolutions in Theorem 9 it follows that at 
the asymptotic stage we have to neglect the term | 1- in equation (56).  Therefore
the global a.s.s. (/, satisfy the parabolic equation

i H J j n i  =  M l ,  +  t / f .  i > 0. .v 6 R w.

asymptotic properties o f  the solutions o f  which arc well known: see subsection
2 .6 .

Going hack to the original notation, we see that the global a.s.s. u, =  exp{L\) -  
1 satisfies the following parabolic equation:

i)u,/i)i =  Mi , -- |V/vJ3/ (1 +  n,) +  (1 +  n , ) ln ^ ( l  +  //,). (85)

Therefore equation (54) has the following interesting property: asymptotic be
haviour o f  its unbounded and global solutions is described by vastly dissimilar 
nonlinear equations o f  different orders, (83) and (85),  respectively.

Remarks and comments on the literature

The first qualitative and numerical results for unbounded solutions of the problem 
(0 .1 ) ,  (0 .2) were obtained in 1349, 353 , 391 , 89, 92, 268 ,  2 7 6 1. These papers also 
contain a preliminary analysis o f  unbounded self-similar solutions and first formu
late the concepts o f  localization in Finite time blow-up regimes in heat conducting 
media with volumetric energy production.
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§ 1. Numerical examples o f  evolution of S-, HS-, and LS-regim es are taken from 
1391, 92, 3 5 3 1. The idea o f  describing non-monotonicity o f  the functions ft,s-(£) 
for (3 > (т +  1 close to the homothermic solution by linearizing the equation, 
appears- in 1349, 89] (see also |9(), 267, 268], which present numerous examples 
o f  numerical construction of the families of solutions (Os) for various <x > 0 and 
(3 > it  +  1. N =  1). This idea was then exploited in 11, 2 |. where existence o f  a 
finite set o f  self-similar functions 0.s-(£) of the LS-regim e is proved for N — 1 (the 
methods o f  11, 2| are different from those o f  ij 1). The asymptotic expansion (33) 
can be proved by the methods of 12 1 0 1 and 139. 40 , 41, 370| (for N =  1 it was 
done in 11. 2 1).

§ 2. The idea of  methods of non-stationary averaging is due to the authors of 
|91]; for more on this method see also 189. 90. 268|. Let us note that simplicity, 
constructiveness and sufficient trustworthiness o f  the method make it applicable in 
a number o f  other problems, for example, in the study o f  nonlinear problems o f  
thermochemistry |56|. There are reasons to consider it as a version of the method 
o f  radially spherical decomposition o f  the function space (as opposed to the method 
o f  spherical decomposition 1335. 336|).

§ 3. In the presentation of subsections 1-3 we mainly follow 1152]. We note that 
for a  =  0 Theorem 2 gives the familiar result |296. 112 ] (the same is true for 
Theorem 3), though, o f  course, the proof in the quasilinear case is substantially 
different from the semilinear case. Theorem 2 is also true for the critical exponent 
(3 =  tr -f  1 + 2 / N  \ 138|. Let us brielly mention a modified simpler argument based 
on inequality (19) (see a slightly different approach in 1244]) .  As in the proof 
of Theorem 2, there exists a solution u.s of (10) such that и S3 uy everywhere. 
Integrating equation ( I )  with (3 =  <r +  1 +  2 / N  over R w we conclude that

—  I  u(l .  x ) i l x  =  f  f  v1!( I .  x)c lx  =  — —------ .
clt J  J  J  • (7 I + t )

Hence, f  ii(i.  x ) i lx  c  hi(7'i +  I) —>■ oc as t oc. Therefore, there exists 
I S> 1 such that М\ — J  u(t.  x ) d x  5>> 1. By comparison we have u(i,  x)  ^  v(t,  .v) 
for t > /1, where v ( t . x )  solves ( 10) with initial data u d i . x ) .  It follows from 
asymptotic stability of the self-similar solution ( 11) (| 107[) that for ь  S> L there 
holds v ( i2, x) ~  !',(/;>, л) where i\ has the same mass M\ »  1. Therefore, the 
constant 170 in (12) satisfies 170 =  i)d(M  1) »  1. Finally, the profile i \ ( i i , x )  
satisfies the property (19),  and hence u(t. x)  blows up in a finite time.

The survey |290| (see also |292|) contains a large number of nonlinear equations 
and systems thereof, for which there exists a critical value o f  the parameter o f  the 
source term (in the sense o f  Fujita 11 12|).

The assertions of  subsection 4  were obtained for it =  0 in 1210[. The basis 
of the proof o f  Lemma 1 is the well known Pohozaev inequality 1332. 333] ;  
the scheme of the proof is taken from 1210]. The family o f  solutions (50) was 
discovered in 1298]. where the equation Да — u{N 12,/,lV ‘ 21 =  0  was considered.
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Existence o f  such a family has to do with invariance o f  the elliptic equation with 
respect to a conformal transformation; see the bibliography in 122 1 J, as well as 
1220j. Results o f  subsections 5-6  are obtained using the methods of 1125, 127. 162|. 
In the passage to the limit r  —> oo in (75) we follow an idea from ] 178, 179| 
where a more detailed analysis is given.

§ 4. Intersection comparison theorems o f  subsection 1 were lirst applied to study 
unbounded solutions of equation (1) in |129| (see also 1130], where Theorem 
Г  (subsection 2) is proved). The subtler Theorem 1 is proved in | 132, 139). 
Let us note that intersection comparison with the explicit solution u , ( t .  x)  for 
/3 =  <x +  1 establishes the following upper bound for an arbitrary unbounded solu
tion; u(i,  x) <  sup, ut (t, л) =  |ф ( 1 ) (ф( 1 ) +  1 )|l/'r in (0, To) (see 1135|), which is 
optimal, since it is attained on the solution «„(r, .v). Furthermore, the same method 
is used to prove results concerning the structure of the blow-up set В/ (see 114()|): 
i f  a' i , a' i e  Vi — R\B/ and |.v i — .vij < T.s, then | . С | .  л’:| C V t . It is found that 
measB/ > L s for any initial function with compact support.

An essentially different example o f  combustion in the S-regime is presented in 
11091 (see also 114|). where the boundary problem with zero Diriehlet conditions on 
the boundary is considered for the equation tt, =  ( r ( t t ^  +  it). The authors prove 
localization o f  the unbounded solution in the localization domain В/ =  (|.vj < 
77-/2 ). Unlike the example considered above, the problem of asymptotic behaviour 
o f  the solution in В/ close to the blow-up time, remains largely ripen. It is proved 
that n(r, x)  % <4(0 cos .v in B/.. but the behaviour of the amplitude AU)  as t —► T„
is at this stage unknown. Note that the conjecture 11()9| AU) ~  ( T  — i ) ' 1/21>(t) with
g(D =  |In i ln(T -  t)i|l/:!. I —* T, seems to be true, since the factor f>U) is a natural 
one for the equation without a source term. i>, =  i n i , , ,  which governs the process 
in a small neighbourhood of the end point o f  В/, л =  тт/2. where | u2ttKK\ »  u\ We 
invoke now a formal matching argument. There exists an explicit solution of the 
log-travelling wave type, v, ( t ,  x) =  (T  -  t ) г/ =  x  -  n / 2  +  A ln (T  -- t )
(cf. Ch. 11, tj 12), where /  solves the O D E  f 2f "  +  A/' -  //2 =  (). Since
/ ( 17) ~  ( —17) I In( —17) 11 /“ as rj —> —o c,  by slightly perturbing v, (for instance, by 
assuming that A =  A(r) is a slowly decaying function) we have the following outer  
expansion for .r tt/2:

v(t, x) A(n(T -  t) 1/2j ln(T -  r )i,1;(/)11 -  U  -  n /2 )/M t)  j ln(T -  r)j|.

Then a matching procedure with the inner  expansion u ( t , x )  ~  A (t)co s .r  for 
x  ~  tt/ 2  (for instance, by taking a ,  == u, at x =  tt/ 2 )  yields A(t)  =  (T —t ) ;(/).

Proof of localization of unbounded solutions for fS <т +  1 (subsection 3) is 
given in 1129 [. The presentation o f  subsection 4  uses results o f  1130 [.

As we mentioned earlier. Proposition 1, on the number of spatial intersections 
(or number of changes of sign of  the difference of two solutions) is a natural 
consequence of the Strong Maximum Principle for linear parabolic equations and
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has been known for a long time; see the first quite general results by 13 6 8 1 and 
|316. 355[.  as well as various examples o f  analysis o f  the zero set of solutions o f  
parabolic equations in 1303. 315. 13. 171, 175, 180, 2 6 3 1 and others. Among the 
general results contained in these papers, let us note those 113 1 and 12 6 3 1, where 
the zero set of solutions o f  linear parabolic equations is studied under quite weak 
restrictions on coefficients.

The idea of intersection comparison turned out to he very fruitful in the anal
ysis o f  unbounded solutions o f  a wide class o f  equations. The above results 
were obtained by studying the variation with time o f  the number o f  intersections. 
More subtle results, obtained for different types o f  equations with a source in 
1170, 171. 175. 180|, deal with analysis not only o f  the number, but also o f  the 
charaeter o f  points of  intersection. One o f  the main results o f  these papers is the 
following conclusion, which has a simple geometric interpretation: in certain con
ditions a point o f  "inflection" with a stationary solution can arise, as the solution 
evolves, from at least three intersection points. Such a comparison with a family 
o f  stationary solutions allows us, for example, to show that for an equation o f  the 
general form tt, =  (<A(u)),, + Q ( u ) ,  a solution that has become sufficiently large at 
a point ,r =  An at time t =  r(). can only increase in time : An) > 0 for t > to;
see 1175. 1801. Other applications o f  intersection comparison with radial stationary 
solutions in the multi-dimensional case can he found in 1137 [. 11 6 4 1 contains a 
general description o f  applications of the method o f  stationary states (m.s.s.)  in 
the study of unhounded solutions of nonlinear parabolic equations and systems; 
see also other applications in 1172, 1 7 41 (for other details see § l .C l i .  V 11). M.s.s. 
provides sufficient conditions for absence o f  localization o f  unbounded solutions 
with arbitrary coefficients.

§ 5. The main results were obtained in 11 3 0 1; see also 11 2 9 1. Everywhere in S 
5 we are concerned with the determination of  an attracting set Ж of  an unstable 
stationary solution. In the case o f  equation (23) it has the form I f  =  (в () =  
T lJ a U()(.v). where u(l > 0 satisfies (9), (10) and 0  < 7’n < oc  is the blow-up time 
of the solution of the problem ( 1). (2 ) with the given initial function uo(.v)|. It 
is o f interest that i f  is unbounded and contains functions 0 (), the difference of 
which with (>s in R  can be arbitrarily large. It is important to note that I f  is- an 
infinite-dimensional set. which, of course, is not dense in L z.

As of now there are relatively few complete results concerning the structure 
of attracting sets of unstable stationary solutions of nonlinear parabolic equations. 
In this direction, let us mention 1226, 158. 169, 170, 197, 3 1 4 1; results of 14 7 1 
(fast diffusion equation in a bounded domain) are discussed in comments to Ch. 
11. A large number of papers deals with asymptotic stability of regular (without 
points of  “singularity'- in time) solutions o f  parabolic equations; see. for example 
|42. 378. 158, 162. 184. .383. 241. 242, 10. 11, 20, 21. 22, 50, 107, 208 , 21.3, 2.34. 
2.35, 308, .344, 356. .3591 and references contained therein. We should also like
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to mention the interesting ideas of  18 [ and |284| concerning stabilization without 
constructing Liapunov functions. The problem that arises most frequently in this 
context is that o f  finding an attracting set that contains a neighbourhood o f  the 
stationary solution (that is, is dense). In 11 5 8 1 we obtain conditions' for asymptotic 
stability of unbounded self-similar solutions of quasilincar equations with a source, 
for which boundary value problems in hounded domains with moving boundaries 
were formulated. This ensured asymptotic stability o f  the corresponding stationary 
solutions. Let us note that the estimate (20) (or (2 6 )) ,  which plays an important 
part in the proof o f  Theorem 2 dealing with stabilization, holds also without the 
restrictions of die form (У), (10) on the compactly supported function uo(.i) (see 
1130, 1711). Asymptotic stability of self-similar proliles for (3 > <r +  1 is proved 
in 1141 [.

§ 6 . Results presented here arc contained in 1131. 1 2 3 1. Statement 1 of Theorem
3. dealing with the semilinear equation for a  =  0, p  > ((3 — 1 )/V/2, has been 
proved in |379| (see also 126, 21 3 1 and comments on Ch. VII).

O f  utmost importance in demonstrating localization in blow-up regimes is the 
derivation of upper bounds for the solution u(t,  x).  In i) 6  we present an approach 
based on intersection comparison with a localized self-similar solution with the 
same blow-up time. It is, however, not without disadvantages. In particular, its 
use throws up a restriction on the maximal value of the source parameter (3. In 
this context, very effective is an idea that lirst appears in |1()8 |. where it is used 
to prove blow-up at a .single point for semilinear equations u, — Att +  Q ( “ ). A 
certain modification of this approach (see [172, 1 7 3 1), applied to radial solutions 
of quasilincar equations of general form, и, =  Аф(и) +  Q(i<), which consists of 
deriving conditions under which in(t. x) ■ r N 'ф'(п)и, +  r NI-'(tt) < 0 in (0 , T o) x 
R-i for a special ‘'optimal" choice of the non-negative function /■'(«) (it satisfies 
a certain ordinary differential equation), allows | 17 3 1 to prove an estimate of the 
form (9) for a special class of tt{) for arbitrary (3 > <r +  1. The same approach 
to equations of  general form [172. 1771 provides conditions of localization of 
unbounded solutions in terms o f  the coefficients ф(и),  Q(u) .  It is interesting that 
practically in all cases this approach gives upper bounds that coincide precisely 
with the real asymptotic behaviour of a wide class of  unbounded solutions.

Questions of  c o m p l e t e  blow-up. i.e.. o f  possible extension of a blow-up solution 
for t > T via construction of a certain minimal solution (as the limit o f  solutions 
to truncated equations) have been considered in [271 for semilinear equations tt, ~  
Att +  Q(u).  A criterion of  i n c om p l e t e  blow-up for a general quasilinear equation 
u(t) =  ( ф ( ч ) ) хх + Q ( t t )  has been derived in 1193] via intersection comparison with 
the set of travelling wave solutions. For equation (2),  N -■ 1, it is p +  a  ^  1. <r e 
( - 1 , 0 ).

§ 7. In the presentation of most of the results of subsections 1 and 2.1-2.3
we follow | ISO], Inequality (12) was obtained earlier by a different method in
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1112, 1 1 4 1, where Theorem 1 is proved. Theorem 3 is proved in [1 1 2 1 (on this see 
als'o 1296, 2 5 4 1). For the eases N =  1 and N  =  2 Theorem 4 is proved in 1212]; 
a generalization of the method of 1212 ], which is used in subsection 2 . 1, to cover 
the case of arbitrary /V > 1. is contained in 122, 254]. For / 3 = 5  Proposition 1 
was proved in 1219 1: the case of arbitrary /3 e  ( 1. со) was considered in 13, 2 |. 
Solution (43) was constructed in 1158], using the ideas o f  |34|, where a solution 
o f  a similar structure was found for an equation (39) with a sink — 0 2 ( p  =  2), 
instead o f  a source.

In the conditions of Proposition 1 the similarity representation 0 (1 . £) =  (To — 
,)i/(/j - ! )„ ( ,  .stabilizes, for a large class o f  uo(.v), as t —► T 0' on any
set {|.vi < c(7'o -  0 1/2} to the unique non-trivial solution 0ц  =  (/3 — 1)' ‘/i/s-n 
o f  equation (39) in R 1169, 170, 171 [. In 1170, 171] the estimate u(t, .x) < 
/л,(To -  t )~ l/{/i' 11 in (0. T 0 ) x R was obtained under the following restrictions 
on no', sup no < oc. »o is uniformly Lipschitz continuous in R ; these conditions 
are weaker than the ones in 1380, 3 8 1 1, The results o f  11701, as well as o f  1169], 
were obtained by applying comparison theorems for different solutions и and u, 
based not only on the time dependence of the number of their spatial intersections, 
but also on the nature of those intersections (for example, in 11 70] under certain 
restrictions, a theorem o f  the following form is proved: if  m(fo, ль) == /<(r0 , *«) — 
uUo, л’о) =  0. then in,(to. ль) ф  0),  These theorems are fairly general: they hold 
true for a large class o f  quasilinear (degenerate) parabolic equations, including the 
multi-dimensional case, и =  u(t,  j.vj). Sec also general results for linear parabolic 
equations in 113] and |26.3|,

Let us note that if there are lower and upper bounds for u(i.  x),  the stabilization 
0(t.  £) -+ 0 H, which is uniform on all compact sets in R, follows from the results of 
1197]; they also consider the multi-dimensional case. In 1197| it is shown that under 
these conditions, stabilization occurs for any 1 < p  < P ,  =  (N +  2 ) / ( N  — 2) + , 
which has to do with non-existence o f  non-trivial solutions 0 ( £ )  ф 0ц  o f  the 
elliptic equation

311

Д( 0 -  ■ £ -  tf/(/3 -  1) + O1* =  0, fe R ^

(for 0 =  0(|£|) it becomes (3 9 )) ,  if 1 < (i  < ( i , .  This is proved in |197| by 
deriving Pohozaev type inequalities 1332. 3 3 3 1, listimates of sup( u(t, x) .  as well 
as the structure of the blow-up set, were later studied in |19H, 199|. Results 
concerning existence of non-trivial self-similar functions Ws ф const (see (39))  in 
the supercritical case /3 > /3» were obtained in ]286, 287 ], where it is .shown that 
for

P. ■ P- P N  -  2 (N -  l ) l/:

1
N > 3.

there exists an infinite number o f  solutions |286| (see also the exact solutions 
1158] for 6 < N < 16, p  =  2 and the existence theorem of  1370] for N  — 3,
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6 < (3 < 12), while Гог (3* < (3 < 1 +  6/(/V -  10) + 12 8 7 1 ranges o f  (3 with any 
finite number of solutions are determined. In this connection, let us mention the 
result of 139, 40],  who show that for /3 > /3* the asymptotic behaviour of a solution 
as t - *  T {) is not self-similar if it satisfies everywhere the condition u, > 0, that is. 
in this ease we can say that the non-trivial self-similar solution in unstable in this 
class. The proof uses results of  intersection comparison with a singular stationary 
solution. The resulting non-self-similar asymptotics will be presented below.

A more accurate qualitative analysis shows that the spatio-temporal structure 
of u ( t . x )  as i -> 7'() is described by a.s.s. o f  the form j \ U . r j )  =  ( T о — 
f )-t/(/i--о jj  =  x / ( T 0 ~  r ) ,/ :| lnfTo ~  r)|l/2, where the function / , ( 9 ) > 0
satislies in R the first order equation —/ '17/2 -  f / ( ( 3  — 1) -f / /! =  0, f ( ± 0 0 ) =  0. 
It has a whole family o f  non-trivial solutions / ( 1 7) = ((3 — 1 + Ст)-)~,ЛР' h . 
C  =  const > 0. Such an a.s.s. was first introduced in |219|. A similar phenomenon 
of convergence to a self-similar solution o f  a first order Hamilton-Jacobi equation 
occurs for solutions of the porous medium equation with strong absorption 11 8 8 1.

From the requirement of analytieity of the corresponding similarity representa
tion

/ ( M 7> =  C/'o -- t ) > M~ b u ( t . r i ( T 0 -  t ) i / ; \\n(T0 -  П|1/2) 

at the point 1 — 7’0, 77 =  0, it follows that as 1 —* T ĵ only one solution in the 
family {/) is realized: to it corresponds С  =  C ,  — ((3 -  1 ): /(4/3), and we have 
the stabilization —> j \ ( y )  as 1 —» T { ) , which was verilied numerically.
These conclusions for (3 =  3 were derived in |219| (which contains some results 
for N  =  2); the analysis of arbitrary (3 > 1 was performed in 1169. 1 7 0 1.

A rigorous justification of  the non-self-similar asymptotics mentioned above 
has been carried out by different methods in 136, 215 . 216| (see also the results of 
197, 143)). Upper bounds, which are exactly the same as this asymptotic behaviour, 
have been derived earlier by 1172, 177). A similar situation occurs in the scmilinear 
equation with an exponential source, u, =  An +  c". The first qualitative result 
concerning non-self-similar asymptotics was obtained in |7K|; see also |79|. Non
existence of non-trivial self-similar solutions of the form tisU. x) — -  ln(7"<> — t) +  
%(.г/ГГ(| — was established in |37. 87| for N  =  1 ,2 .  Such solutions can 
exist for N  ^  3 |K8 |. The whole spectrum of results obtained here is presented 
in 140). Justification of the non-self-similar asymptotics as t —> 7'() is earned out 
in [52. 36, 215, 216. 2 1 7 1; see also 11 4 3 1 (whose approach is also used in the 
problem for n semilinear equation with strong absorption in the study o f  the total 
extinction phenomenon in finite time |218, 14 4 1).

Theorem 6 is proved in 11 6 9 1. In 11 7 01 it is shown that the criticality of the 
solution condition («, > 0  in (0. 7'o) x R) can be dispensed with. In 1170. 1 7 11 it is 
removed by the following quite general result: there exists a constant M i  > 0 , such 
that i f  !<(/(,. л'о) :> M i .  then 11, ( 1 . .r(i) > 0  for all 1 e  |r(). T ()). hi 1380] .  under fairly 
severe restrictions on щ,(х)  and (3 > 2.  it is shown that the unbounded solution 
uit, |.r|) of equation (17)  .satisfies the condition mens м/ =  0. so that u ( T {) . x ) =  o c
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only at one point. As we already mentioned, a very effective approach to proofs o f  
localization is that o f  11 0 8 1. which wits used in a wide variety o f  equations; see the 
references in 140 . 104, 133, 164. 172. 173, 1 7 7 1: for its applications in a problem 
o f  total extinction sec 1106, 144). A special role in the study of semilinear heat 
equations with a source is played by methods o f  analysis o f  the set of zeros in 
spaces, or, which is the same, by intersection comparison methods. This approach 
allows us to obtain reasonably complete results concerning the s'tructurc of the 
blow-up set for semilinear equations with a source (see 162, 104, 115. 6 5 1) and o f  
the total extinction set |6 6 |.

Theorem 7 is taken from 12 1 0 1. The main results of subsection 3 were obtained 
in 1150, 127. 3 4 7 1. The exact solution presented here for /3 =  2. /V =  1 was 
constructed in [134, 176), convergence as t —» V,, to the self-similar solution of  
a Hamilton-Jacobi equation and localization for a large class o f  equations were 
e.s-tablished in [189) (a similar asymptotic technique based on a general stability 
theorem for perturbed dynamical systems 11 9 0 1 can be used for (3 <  2 and (3 > 2). 
There it is shown, for example, that meas/J/ =  2 n .  Absence o f  localization 
in the boundary value problem in a bounded domain for 1 < (3 < 2 was first 
demonstrated by [ 2 8 1 1; localization at one point for (3 > 2 and upper bounds 
corresponding to spatio-temporal, structure of a.s.s. were established in 1177); 
see also the references there. The asymptotic behaviour o f  blow-up in the three 
parameter ranges, (3 < 2. (3 ~  2 and (3 > 2 for a more general qtmsilinear heat 
equation has been established in 1192|. Proof o f  convergence of some classes of 
global solutions o f  heat equations with a source to a.s.s. which satisfy nonlinear 
Hamilton-Jacobi type equations can be found in 11 601.

Let us note that for equations o f  other types the problem o f  determining the 
blow-up set is formulated in a different way. The structure o f  the so-called degen
eracy surface in (r, a ) space was studied in |60, 61, 1101 for hyperbolic equations 
tt„ — An +  F ( u )  and in 111 11 for Hamilton-Jacobi equations u, +  H ( D xtt) =  F ( u ) .

We do not consider here in detail questions of line structure o f  quasilinear 
parabolic equations. In this context, we mention 189, 90, 267, 268, 270 . 271 , 272, 
274. 276. 3 4 9 1 (sec also SS 3, 4, Ch. V I 1). Multi-dimensional non-symmetric 
eigenfunetions of nonlinear elliptic problems, which arise in the construction of 
unbounded self-similar solutions, have up till now been studied only numerically 
1274. 2 7 6 1. They can have a varied spatial .structure; for example, a "star-shaped'’ 
localization domain 12 7 4 1. Group-theoretic analysis of multi-dimensional nonlinear 
heat equations with a source was carried out in |H3. 84. 8 5 1. General ideas con
cerning the role of eigenfunctions of nonlinear continun in mathematical physics 
are developed in [267, 268. 2 7 5 1. Lor applications, consult 1267, 392 . 3 5 0 1. as well 
as the survey o f  12 6 9 1. which contains, in particular, a bibliography o f  applications 
of blow-up processes in the theory of self-organization of nonlinear systems.
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Interesting properties are also exhibited by unbounded solutions o f  a different 
parabolic equation with power form nonlincarities:

и, =  V ■ (|Vu|,rViO +  « ■ > ( ) ./ ? >  1; и =  u ( t . x )  > 0.

Conditions for unboundedness of  solutions of the boundary value problem were 
obtained, for example, in 13 7 1 , 2V3) (sec the survey o f  1157)). The Cauchy problem 
was considered in 1128). where it is shown that for /3 e  (1, «■ +  1 + ( < r + 2 ) / N )  all the 
non-trivial solutions и ф  0  are unbounded (it is also true for (3 =  сг+  1 +  Ur +  2 ) / N  
[ 138)). while for (3 > a  +  1 +  (<r +  2 ) / N  there is a class of small global solutions. 
There it is also shown that for (3 > ir +  1 unbounded solutions are localized, while 
for 1 < /3 < <r +  1 there is no localization. The localization property for (3 =  r r +  1 
(S-regimc) is illustrated by the separable self-similar solution constructed in 1128); 
«.v =  (Го — i) l/,rfl(.v) > 0 for |A'j < C.v/2 , 0 =  0  for |.vj > T.s/2 . where L s  is the 
fundamental length of the S-regime: L s =  n(<r +  1 )1/{"4 3l|rr sin(7r/(rr +  2)))  ( . 
Fine structure o f  localized self-similar solutions for (3 > <r +  1 (LS-regim c).  
«у =  ( Т {]- 1 )  л / ш  и 0 ( ( ) .  £  =  х / ( Т о ~ 1 Г . т  =  \ ( 3~ U r +  \ ) M \ U r + 2 ) ( ( 3 -  1)]. 
was studied in [155). where the elliptic problem for the function 0 ( £ )  > 0  is 
considered:

V ■ (|Vfl|"V0) -  ,nV(i ■ £  -   -- - 0  +  ( f  =  0 .  ^ e  R'v .

It is shown that even in the symmetric case, 0 =  W(i^i). it has quite a com 
plicated spectrum o f  solutions, which consis'ts, roughly speaking, of four families 
o f  solutions: three discrete (two countable) families and one discrete continuum 
o f  solutions. Existence theorems for self-similar solutions are proved in [156]. 
Localization of unbounded solutions for (3 =  <r +  1 and an estimate for the thermal 
front o f  the compactly supported solution. It t (r) < It+ (0) +  L .s, are proved in 11 3 4 1 
by intersection comparison with the above exact self-similar solution. Asymptotic 
stability of the self-similar solution is proved by the methods of ij 5. Blow-up at a 
single point for /3 > a  +  1 has been established in 1133| (for N  =  1) and in 11 8 1 1 
(arbitrary N > 1).

Open problems

1. ( § 1 )  Show that the number of positive solutions o f  the problem ( 5 ) - ( 7 )  is 
Unite for 1 < (3 <  Ur +  1 ) N / ( N  -  2)^. Are the predictions o f  the linearization 
procedure in subsection 4.1 correct?
2, ( S I )  Prove existence o f  solutions for the self-similar problem ( 5 ) - ( 7 )  for 
(3 > [ t r +  1 )(/V +  2 ) / ( N  -  2 ) ,  .
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3. (§ 1) Prove existence o f  radially non-symmetric solutions of the elliptic equation 
(2) in for /3 > i r +  1. a  > 0, N  > 1 (for a  =  0. 1 <  /3 < (N +  2 ) / ( N  — 2 ) + they 
do not exist [ 197)). Determine the number and spatial structure o f  such solutions 
(qualitative and numerical analyses are carried out in [274)).
4. ($ 1) Prove uniqueness of  the strictly monotone solution constructed in Theorem 
4 (it is important for the stability results discussed in § 5) and o f  any symmetric 
solution having a given number o f  maxima.
5. ( § 4 )  Demonstrate localization of unbounded solutions of  the Cauchy problem 
for а, ~  V ■ (a 'rVu) +  a/j, t > 0. г e  R ,v for /8 > <r +  1, a  > 0  in the case of 
arbitrary initial functions up. Is it possible to derive, as in the one-dimensional case 
(§ 4),  an estimate of  xupp a ( 7 7  . * )  in terms of suppuo and the time o f  existence 
o f  the solution?
6 . (ij 4) Prove effective localization in the case /3 > a  +  1 for arbitrary (non- 
compactly supported) a,,(a ) -+  0 . j.vj —» oc.
7. (ij 5) Prove asymptotic stability o f  unbounded self-similar solutions o f  the 
LS-regime. /3 > <r +  1 for N > 1 (for N  =  1 see 1141 j ).
8 . ({; 7) Prove that the asymptotic behaviour of blow-up solutions o f  equation (17) 
is stable with respect to “small’' nonlinear perturbations o f  the equation, whefi it 
becomes it, — V ■ (k(u)'Vu)  +  Q(u).  For which k(u)  is there non.symmetric single 
point blow-up (see [167] for such examples)?
9. ( § 7 )  Justify in the general case the asymptotics o f  unbounded solutions of  
the problem (17).  u { t . x )  ~  (7't) -  / Г  l/t/:f"~ n /*(.r/(7'o -  I) l/2j ln(T'o — /) |1/2) as 
I —* 77,.  which was suggested, at a qualitative level, in [219. 169| (this problem is 
partially solved in 136. 97) and 1215. 216)).  What is the structure o f  the attracting 
set of  non-trivial self-similar solutions, which exist in the supercritical case /3 > 
(N  + 2 ) / ( N  -  2 ) , .?
10. (S 7) Prove effective localization of arbitrary unbounded solutions o f  the 
Cauchy problem for the equation и, =  Да +  (1 +  a ) ln ^ ( l  +  a), t > 0, л’ e  R ^ , 
for /3 > 2 (see the partial results o f  11K9| for /3 =  2 and 1177) for /3 > 2 and also 
11921).
11. (v? 7) Determine conditions, under which asymptotic behaviour of nonsymmet- 
ric unbounded solutions of  the problem (54).  (55) is described by the degenerate 
a.s.s. (6 8 ) (see the result o f  |189] for the case /3 =  2 and general analysis of 
symmetric solutions in |192|).



Chapter V

Methods of generalized comparison 
of solutions of different nonlinear 

parabolic equations and their applications

In this chapter we prove comparison theorems for solutions o f  different parabolic- 
equations, based on special poinwtise estimates o f  the highest order spatial deriva
tive o f  the majorizing solution in terms o f  the lower order derivatives. Derivation 
of such estimates is done under conditions o f  criticality of  the problem (§ 1, 2 ), 
In § 3 we consider the more general i//-criticality conditions. In § 4, 5, using an 
operator version o f  the comparison theorem, we study the heat localization phe
nomenon in media with an arbitrary thermal conductivity. In § 6 the results of § 
1-3 are used to study unbounded solutions o f  quasilinear parabolic equations. In 
§ 7 we obtain conditions for criticality o f  finite difference solutions. Using these 
conditions, we prove a direct comparison theorem for implicit finite difference 
methods for different nonlinear heat equations.

§ 1 Criticality conditions and a direct solutions comparison
theorem

1 Form ulation  of the boundary value problem  and the C auchy problem

Let Я  be an arbitrary domain (not necessarily bounded) in R N with a smooth 
boundary nil. For a nonlinear parabolic equation

it, =  A ( a )  =  L iu .  jViij, Ли) (1)

(here jVuj =  jg r a d j i j ) ,  let us consider the boundary value problem in tor — 
(0. T)  x i l  with the conditions

»((), x) — U{)(x) > 0, x e  11; (2 )
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uU, x) =  it]U, x) > 0, 0  < t < T, x  e  Dil.  (3)

Let us assume that it0(л ) —► 0, it\U, x) —* 0  as j.rj —» oo and u ( t , x )  —* 0  as
j.rj —> oc lor any 0  < i < T.  The problem (1 )—(3) includes the Cauchy problem 
as a particular case (then simply i l  =  R"4’ and (.3) should be omitted).

The function L ( p , q . r )  in (1) is delined and once differentiable in all its argu
ments; furthermore HL/dr  > 0  in R* x R + x R, which means that the equation is 
parabolic.

We shall also assume that there exists a real valued function ;• =  l ( p , q , Y ) 
which satisfies the identity

U p .  q ,  l ( p ,  <pT))  =  Y, ( p . q . Y ) e  R ( x R 4 x  R. (4)

The function / is differentiable in all its arguments in view of the smoothness 
o f  L  and the parabolicity condition. F'rom (4) we obtain the following identities;

Ц ( р ,  q ,  l i p ,  г/. Up ,  q,  Y))  +  U ( p ,  <p l ( p ,  q ,  Y ) ) U ( p ,  q , Y )  =  0,

/..,(/>, </./(•))/,(•) =  1, (5)

i M p .  q.  /(•)) +  L y (p .  q ,  1(0)1 i ( - ) s ( )

(here and below we are using the notation L] =  i l L / d p , /| =  III/ д р ,  /о =  8L/rtq,  
Ly =  i lL/ i lr  and so forth).

Let us set

/<)(/>.</) =  U p .  q .  0 ). (6 )

By (4) the function /о satisfies the identity

U p ,  q ,  l{)(p,  < / ) )  s= ( ) .  ( / > ,  q )  e  R+ x  R ( . ( 4 ’ )

The above requirements are satisfied, for example, by the quasilinear operator 

M i l )  =  K ( u ,  \Vu\)A,t +  N(u,  |V«|), (7)

where K ( p , q )  > 0, N ( p , q )  are given sufficiently smooth functions. In this case

/(/>,</, Y) =  \Y -  N ( p , q )  | - 1 . /(,(/>.(/) =  <8 )
A (/>.</) A ( p , q )

For the operator of nonlinear heat conduction with a source,

M u )  =  V ■ (k( i t )Vu)  +  Q(u)  s  к ( н ) А н  +  k'Ui)\Vu\2 +  QUO, к > 0, (9)

the analogous expressions have the form

l i p ,  q , Y ) =  \ Y — k ' ( p ) q 2 -  Q(p)\
k ( p )

/o(/'. q) =
. U p ) .

Q ( p )  
k ( p )  '

(10)
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We shall assume that in to,  there exists a positive classical solution of  problem 
( 1)—(3), and that it is unique.

Everywhere below we shall take the following restrictions on the function L  to 
hold;

a) the operator A is parabolic: i ) L/dr  > 0;
b) there exist functions /, /» satisfying, respectively, the identities (4), (4'),

2 Conditions fo r criticality  of the problem

Definition, We .shall call a problem ( 1 )—(3) and its solution n ( t , x )  cr i t ical  if 
everywhere in tor it satislies the condition

n,(t,  -О > 0 .  (11)

Condition (11) will be used to derive a purntwr.se estimate of the highest order 
spatial derivative (Laplacian) o f  the solution, AuU,  л-), in terms of the lower order 
derivatives, jVir(r,.r)i and i t ( t .x ) ,  Indeed, by (1),  condition (11) is equivalent to 
the inequality

L(u(t ,  x ) .  jV «(r,  ,r)j, Дп(г, ,v)) > () in tuy. (1 Г )

However, T r ip ,  </, r)  > 0. and therefore the inequality (11')  can be solved for Дit. 
This leads to the estimate

AuU, x) >  /п(н(г, .v), jVirif, .v) |) in to ( 12)

In particular, for the operator (7) we obtain

Дгг >
NUt,  iVrri) 

KU t , iVrri)
in toj ,

while for the operator (9) we have

Д и >
k\ u)

k(it)
iVni2 +

QUO
k(,0

in с о , .

(13)

(14)

Pointwi.se estimates o f  the form ( 1 2 ) - ( 1 4 )  arc the basis of the approach to co m 
parison of  solutions o f  different parabolic equations we propose below.

For simplicity, let us assume initially that «о e  С 2(П )П С (П ),  ip £  Cn'VlO, T ) x 
<Ш), it €  С'}'*((Ог)Г\С]\~(7ог). This allows us to differentiate equation (1) once in 
t in to, .
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T h e orem  1. F o r  cri t ical i ty o f  the p r o b l e m  (1 )—(3) it is n e ce s s a r y  a n d  sufficient  
that

P r o o f  Necessity of the conditions of  the theorem is obvious. Let us prove suf
ficiency. Let us set u f i t . x )  — z in wT, Then L ( u , |Vm|. Д м )  =  c and therefore 
Au =  Hu. \Vm|. z).  From (1) it follows that the function r. satisfies in enj  the 
equation

=  L f u .  |V«|. Hu.  |Vm|) +  L f i u .  |Vm|. H u . |Vm|. z ) ) ( V i i  ■ Vr/iVni) +

Here V ii ■ Vz is the scalar product of two vectors obtained as a result of differ
entiation: |Vm|, =  ( V u  ■ V c)/|Vm|. Formally this equation is a linear homoge
neous parabolic equation with bounded coefficients, which is ensured by sufficient 
smoothness of  the solution u(r, x)  and of the function L.  Therefore by the M ax
imum Principle (see i? 1, Ch. 1) г > 0  everywhere in the domain a>r  as soon as 
г > 0 on its parabolic boundary у/ =  (i e  ((), T).  x  e  dft) U (r =  0. ,v e  ft) .  This 
completes the proof. □

In the following, inequalities (15),  (16) will be called the cri t ical i ty condi t ions  
for the boundary data o f  the problem (1 )~(,3),

R e m a r k  1. It follows from the theorem that criticality o f  the problem does not 
impose any restrictions on the elliptic operator of equation ( 1) (if  it does not depend 
explicitly on the variable t)\ it is fully defined by properties of the boundary data. 
For an operator of a more general form,

the same statement is no longer true.
Following the proof o f  Theorem 1, it is not hard to see that in this case for 

criticality of the problem we need in addition the following inequality:

A( mo) s  Ниц. |VmoI, Д м о ) > 0. x e ft, 
(hi]U. x)/ i l t  > О, (г. л) e (0, T )  x i)ft.

(15)

(16)

+  LH u.  |Vm| . / ( m, |Vh |. : . ) )Az.
(17)

AhO ~  H u .  |V«|, A w, t. x)

U p ,  q .  i". t. .v) |, 0. (/>. q)  e  R ,  x R + . ( r . x ) € w  T. (18)

For example, if
A («)  =  V -  |k(w,  r)V«) +  Q(w, t). 

then condition (18) can be written in the following form:
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In view of the fact that the quantities p  and q  vary independently, this relation 
decomposes into the two inequalities

( ■ ) k'p (p\ 1)
> 0 , Q(/K O'

(il k(p\ t) lit L  *  (  / j ;  t)

R em ark  2. Let us show that the smoothness restrictions on the solution it used 
in the proof, may be weakened substantially. Under the natural assumption that 
it e  C j p ( a j r )PiC(f f i f )-  the proof follows exactly the same lines, with the difference 
that instead of the function c =  л ) we consider the linite difference

:.(L x)  =  — |«(/ +  t , x) -  tt(i, л ) 1. U. x)  6  cur- 7. 
т

where т e  (0, T )  is a fixed constant.
Then a parabolic equation o f  the form (17) satislied by ;  can be derived in 

a similar manner. As far a.s boundary data are concerned, in this case under the 
same conditions (15),  (16), for (I, x)  e  (0, T — t ) x  Oil we have

: i i ,  x)  =  -\i t iU +  t , .v) -  itiU, x ) 1 > 0 . 
т

Furthermore, for t =  0

.-(О, Д-) =  Iu (t , x)  -  а„(л)|/т, x e  i l .

However the function v U . x )  =  tio(x) is, in view of (15).  a subsolution of the 
equation ( 1)', in addition, v =  и |((), •v) £  i‘ 1 (r, x ) on 'Oil, Therefore к > v on у r,  
and thus u U . x )  > v U . x )  =  tio(X) in cuj.  The last condition is equivalent to the 
condition ;((),  x) > 0  in П for any т e (0. T),

Thus the function r. satisfies a parabolic equation in cur 7 and c > 0 on the 
parabolic boundary y ;  r . Then z > 0  in « ;  r , from which it follows that for all 
U, x ) e (uT

4,(1. x)
u(i  +  г, x) -  uU, x)

I m i ------------------------------- > 0 .
7—0' т

Obviously, using this method of proof, we can replace condition (16) by a 
weaker one: ;q (r ,  л) does not decrease in t on ;)П, We can also weaken the 
smoothness requirements on the initial function u»(x).

3 A theorem  on direet com parison of solutions

Let us consider in ш, boundary value problems for two different parabolic equa
tions (v =  1, 2 ):

= A l r , ( u , " >) =  L u ‘ } U i u ' \  | V » I,' I |, Д м 110) 1, ( 1 У )
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u '^ O .  л) =  a ^ U )  > 0, л- e IT. к},"' 6 C(l l )\  (20)

» “"(/, л) =  а'/” (г, л ), 0  < 1 < Т, х е  (21)

a j1’1 е  С(|0, Т)  X М ) .

The functions i J ' f p ,  </, г)  are assumed to be .sufficiently smooth. As in subsec
tion I. vve denote by /'2l(/->, f/, L) U[f '  =  l i2t(p ,  q,  ())) the solution o f  the equation

l J 2t(p .  </. Il2]) =  Y. (/>. </, L) e  R ( x  R 4 x  R.

Let there be positive classical solutions o f  these problems in t o , ,  and assume that 
a *21 > a 111 on у i . In the following assertion we state two sufficient conditions for a 
direct comparison of the solutions o f  the problems ( I 9 ) - ( 2 I ) ,  under which a ' 21 > 
a ' 11 everywhere in coj .  Let us emphasize that we are talking about comparing 
solutions of two substantially different equations.

Theorem  2. Lei  a '2' > a 111 on y , ,  that us,

u!,2)( a ) > a j 'V v ) ,  .v e П,
( 22)

a\2’(l,  x) > u\'\t,  л), 0 < t < T, x  6 i)ih

In addition,  let tlw .solution o f  tlw p r o b l e m  ( I 9 ) ~ ( 2 1 ) f o r  v =  2 h e  er i t i ca l  (this  
m e a n s  that i t ) 2 ' >  0  in toj ) ,  a n d  that f o r  a l l  ( p ,  q . r) e  R., x  R , x  R  i r e  h a v e  the  
inequal i t i es

H L i : , ( p . r / .n  -  U " ( p , q , r ) 1 > 0, (23)
or

L<n(/>, r/, l[)'(p< </)) < 0 - (24)

Then  a 121 > a 1"  e v er yw h er e  hi cor .

P r o o f  Let us set ut2) -  a tn =  Then the function c satislies in to,- the equation

=  /.(2, (a '21. |Val2l|. Д а 121) -  / - '" (a 12' -  c. |Vat21 -  Vc|, Д а '2) -  Дг.), (25)

and, by (22),  > 0 on y - , . Linearizing the right-hand side o f  (25) with respect to 
the function c and its derivatives, we obtain for a linear parabolic equation with 
bounded coefficients:

-  L\ "uT 2'. |Vat2,|. ьч)Д: -  /-V V 2’ . |Vib|,Aat2l)(Vu : - V:)/|Vio| -  

-  L \ " (а,. |Vat2)|. Да(2))г =

=  L l2l ( a ' : \ |Val2’ |. Д а|2)) -  /.U)(u(2\|Va'2)|, Да121).

( 2 6 )
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where the hounded smooth functions v,,  j  =  I, 2 , 3 (some average values), depend 
on the solutions /i(l), ul2).

Let us consider the right-hand side of (26). By criticality of the solution i P ], 
we have the pointwise estimates (see subsection 2 )

ДuC) > l$ ' Uia '.\Vul2'\) in ш , .  (27)

Condition (23) means that the function l J 2Hp,  q .  r) — L lU(p .  q, r)  is non-deereasing 
in its third argument. Therefore, using (27),  we obtain

A a \ , i a ) ) -  A (1|(u,2)) > L a '(n(2>. |Vut2l|, 1(2)( н а>. |V«,2||)) -  

-  L a , (u{2). |̂ , i i2)\,l'2t(ur~\ |Vi/2,|)).

However, hy delinition L a>( p , с/. l[2t(p-  r/)) — 0. Hence by (24)

A (2)(u{2]) -  A ( ll(u(21) > - L a ' U 2'. |Vut2)|. l[2)(n{2\ |Vu(2I|)) > 0. 

Therefore from (26) we have that

L { ltДг. -  /
- |Vm| ~

everywhere in шг , Since c > 0 on у/, invoking the Maximum Principle, we 
conclude that c > 0 in o j j , that is id21 > ii1"  everywhere in that domain. □

Let us see what form the comparison conditions (2.3). (24) take in the case of 
particular parabolic operators.

E x a m p le  I. The inequality (23) depends, in general, on the three variables p,  q ,  r. 
However, lor quasilinear operators of the form

A l" l( » 1"1) =  K (,,V " ' .  |Vu(,' l |)Ai / ' ' 1 +  /Vl" l (u 1" 1, | W ' | ) .  v  =  1 . 2 ,

it depends, as does (24 ) ,  only on p ,  q.  The inequalities (23),  (24) in this case have 
the form

K a \ p , q )  -  K (U( p , 4 ) > 0, 

K (2]( p , q ) N (" ( p , q )  -  K {" ( p , q ) N a ] ( p , q )  < 0.
(28)

E x a m p le  2. For the nonlinear heat equation with a source.

/<!'■’ =  V- (C ’-’O r" ''^ » '" ’) +  ( /" '(I t '" ') . ( 2 9 )
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due to independence of p  and q  in the second of  the inequalities (28),  these
inequalities can he written as

k a , ( p )  -  k lU(p)  >  0, (30)

k ,2)' ( p ) k iU( p )  -  k fU' ( p ) k ,2,(p)  > 0 , (31)

Q i2,( p ) k (]>( p )  -  Q (" ( p ) k n ] ( p)  > 0. (32)

The inequality (31) can be put into a more compact form:

\ki2]( p ) / k n , (p)]'  > О, ( З Г )

E x a m p le  3. Let the functions i’11'1 satisfy the equations

r ! " ’ =  в ' - Ч г ’'-’ ) +  / / " V ' ) . 1 . 2 . (33)

The comparison conditions (23),  (24) (or (28))  o f  solutions of equations (33) have 
the form

a a \ p )  -  « " ’ (/>) > 0 .

b i2' ( p ) u iU( p)  -  b lU( p ) u i2'(p) > 0 .
(34)

and look much simpler than (3 0 )—(32) (at least they do not contain derivatives of  
the functions entering them).

At the same time equations (29) can be reduced to the form (33) by simple 
transformations. Indeed, let us set

H u,,( p ) k u'’ (ri) i lp ,  p  > 0 . v 1,2 ,

and denote by /i"’’ the functions inverse to H (r>, so that H (l')( h (l‘>( p ) )  =  p  (/i11’1 
exist at least for all small enough p  by monotonicity of M1" 1; the latter is ensured 
by the conditions к {‘,] > 0 ).

Let us make a change o f  variable in the equations (29),

i r \ i r ] ), v =  1, 2 . (35)

Then, taking into account the fact that k il’t(ll(l', ( p) ) l l (l', ( p )  =  I, we obtain for the 
functions t’11'1 the equations

A-(" l (/i"'’ ( c ('' ) )A V ‘ -L C?(,"(/i<"4t'<,"))A:<"4/;<"4v<"')). 1,2 ,

which are the same as (33 ) ,  if we set in those equations 

« ' " ’ (/>) =  k l"'(h{" ' (p )), 

b u,]( p )  =  Q {"'(l>i", ( p ) ) k Ut)U,il' '(p)) .
(36)
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From (35) it follows that the inequality i/ 21 > i/ "  is equivalent to the inequality

W,2V 21) > H t u (u{" )  in ш-f. (37)

As a result we obtain that under the conditions

k i2>(l, i2>( p ) )  -  j t " ' ( / i " ’ (/>)) > 0, (38)

Q,2t(lti2)( p) )  -  y “ ’ (/i'"(/>)) > 0. /> > 0. (39)

and also under the other conditions o f  Theorem 2, in particular the inequality

H l2t(ul2>) > W ' V " )  on y , . (40)

(37) holds.
The comparison conditions (38).  (39) can he written as:

k i2]( p)  -  k iU\lia , ( H {2) (p))\ > (), (38')

Q{ : , (p )  •- Q{ l , \lt{" ( H a , (p))\ > 0, / > > 0 . (39')

Then the inequality (37) can he written in the following form:

ul2] > h i2'\HlU(nl l ')\ in a>r . (37')

Therefore, by comparing not the solutions nll'] themselves, but rather some
nonlinear functions of these solutions (see (37) or (37 ') ) ,  we managed to simplify 
the comparison conditions considerably: instead of  the three inequalities (30 )—(32), 
only two remain: either (38), (39),  or (38 ') ,  (39 ') ,  We shall call this generalized 
comparison method the o p e r a t o r  or the fu n ct io na l  comparison method. It will be 
considered in more detail in the following section.

R e m a rk .  It is not hard to see that the comparison conditions (3 0 )—(32) will he 
satisfied if and only i f  the functions k ll) and Q il) can be represented as

* " ’ (/» =  k (2\ p )11 4- f i (p)\

Q " ’ (/>) =  ( ? t2 ' ( />)11 +  MP) Г ‘ | I +  i d / > ) !

where p . . u  are arbitrary smooth non-negative functions; in addition p. is a non
decreasing function.

§ 2 The operator (functional) comparison method for solutions 
of parabolic equations

In this section we prove a more general comparison theorem for solutions of two
different nonlinear parabolic equations than that of in § I . We present the material
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using degenerate equations, which, as is well known (see § 3, Ch. I) ,  do not 
necessarily have a classical solution. We shall consider in most detail the one
dimensional case, though all the results hold lor equations in many independent 
variables (corresponding examples are given below).

1 C riticality  conditions for solutions of degenerate p arab olic equations

Let us consider in w7 =  (0, T)  x R + the boundary value problem

it, =  (k { u ) u >)> =  (<A(tO)M: ( I )

h(0, л) =  it()(.c) > 0. a > 0; sup no < oc,sup||r/>(»o]v| < 0 0 ; (2)

»(/,(>) =  u f f t )  >  0 , 0  < t <  T.  (3)

Let the equation ( I )  be degenerate for и =  0, that is A(0) =  0 and к e 
C ' ( R + ) П C(|(), oc)) .  The solution o f  the problem is classical in

Pr\u\ =  {(/, a) 6 (or I t‘U. x) > 0)

and it can happen that at points of

.S',|tt) =  Pr\u\\Pr\u\\dcor

(degeneracy points) not all the derivatives in ( I )  are defined. There the function 
k(u(t ,  .v))u.i(L x)  is continuous in x  in R| for all lixed t e  (0 , T).

As in § I, we shall call the problem (1 )—(3) and its solution cr i t i ca l  if  u,(t,  x )  > 
0  everywhere in Pj\u\.

L I .  For convenience, we shall assume below that nn e  C 2 everywhere where 
tin > 0 , and that 10 e  C 1 ( |(), T))  (these restrictions can he weakened substantially), 
Under the assumptions made, we have the following theorem.

T h e orem  1. F a r  cri tical i ty o f  the p r o b l e m  ( l ) - ( 3 )  it is n e c e s s a r y  a n d  sufficient  
that

(k(un)u’{))’ >  0 , r 6 (.v > 0 I uo(.v) > 0 ), (4)

i/ , ( 0  > 0 . 0  < / < Г.  (5)

Proof .  Let us prove sufficiency of  conditions (4), (5). Let us make the preliminary 
observation that a critical initial function tt{)(x) ,  bounded in R t , is non-increasing. 
Indeed, by (4), it cannot reach a positive maximum in R , .  Let us assume that 
at a point r ‘ 6 R | , where tto(.v*) > 0, it is increasing, that is и(',(л*) > 0, Then 
itoU) > 0, /<(',(л) > 0  for all ,v > л*, and we have from (4) that

k(tt{)(x))u'{)(x) >  A-(«(,)«,',! v,_-v > 0 , .v > a ’ .
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Therefore lor all x > x*

/ • " I I I  O

/ к(т))с1т) > A ' ( « n ) « , ' ) | v - V' ( - v  -  A * ) .
J l(n( ** )

that is, ho(a ) grows without bound as л —> сю, which contradicts the assumption 
that u() e  C’(R ,t ) (sup U{) < oo).

Thus the initial function tto is non-increasing, and we are entitled to conclude 
that the set o f  degeneracy points .S'; |//| lies on only one curve (0, T)  x (a =  £(/)), 
such that furthermore

k i n d ,  £ ( i ) ) u x(i.  ( U ) )  =  ( ) , ( ) < /  < T.  (6 )

The function a =  £(t)  is nondeereasing and continuous in |0, T)  (see, for example. 
118, 252. .3281).

Theorem I can be established in a number of ways. Below we briefly present 
one o f  the proofs, which makes substantial use o f  the property (6 ) and the assump
tion that tt e  С 2А[Р-Г\ч\)<

Let us set =  u, =  ( k ( u ) u x) x. The function z satisfies in P  r\u\ the formally 
linear parabolic equation

=  |Д(п):|м. (7)

Then :.((), a ) > 0  in (0 < a < £(())) by (4) and, as follows from (5), we can 
assume that .’ (/,()) > 0 for t e  (0, T),  It remains to verify that, roughly speaking, 

> 0 near the curve (0, T)  x (a — f(/)) ,  the right lateral boundary o f  Pr|a|- This 
follows directly from the equality c =  ( k ( u ) u x) x, Integrating this equality over a 
small interval (£(t)  -  e, £( t ) ) ,  e  > 0 (it is not hard to cheek that this makes sense), 
by (6 ) we have

r ( u i r"
/  : ( / ,  a ) ( lx  =  ~(r/>(tO)v|(, an e), «£( /<)  =  /  k(T])dr).  ( 6 ' )

J a n  < ./n

Since ф (и( 1 . a )) > 0 on (£(t )  -  e .  £ ( ; ) )  and ( ф( и( 1 . a ) ) ) ,  ->  0 as a ->  £ it),  
we can always find an arbitrarily small e  > 0 . such that ( ф ( и ) ) х < 0 at the point 
(/, £ (t) e ) and therefore

/4 ( /)
/ ."(/. a ) (lx > 0 .

J a n  <■

Therelbre at any arbitrarily small left half-neighbourhood o f  the point a =  £(t)  we 
can find a ,(0  e (£(t)  — e, £( t) ) ,  such that zU, x , ( t ) )  > 0.

The function c is a classical solution o f  equation (7) in the domain (0. T)  x (0 < 
л < a \ ( 0 ) ,  such that, furthermore. > 0 on its parabolic boundary. Then, 
by the Strong Maximum Principle, c > 0 at all interior points of the domain
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(0. T)  x (0 < v < x,(/)). Since e > () can be arbitrarily small, we obtain that 
:  =  it, > 0  in P T\a\, □

R e m a rk  1. It is not hard to show that we can take the set (0. T)  x (x =  x , ( 0 )  to 
be a continuous curve. Moreover, under the conditions o f  the theorem n, > 0  in a 
neighbourhood (0. T)  x { £ ( 1 ) — 5 < x  < ( U ) }  (see 1252)),

R e m a rk  2. Using the same method, it possible to prove that under the conditions 
of Theorem I

a xU. x)  £  0  in P r \n\. (8 )

We note that the functions :  =  n, and :  =  u x satisfy in Pr\n\ the same linear 
parabolic equation (7).

1.2, An assertion, similar to Theorem 1, is true for a degenerate parabolic 
equation more general than ( I ) ,

it, =  V • (A-(/<)V/0 +  Q( t t )  =  Д ф (а )  +  Q ( n ) ,  (9)

where (7 £  C’ '(|0, o c)) ,  (7(0) =  0, is a given function. Let П he an arbitrary 
domain in R'v with a smooth boundary г)П. For the equation (9) let us consider, 
for example, the boundary value problem (or the Cauchy problem if П =  R'v ) 
with the conditions

//((),-v) =  «of x) > 0 , л e  П; ( 10)

u(t. x) =  0 , 0 < t < T, x  e  0П, ( I I )

For our aims, the following assertion concerning the criticality of solutions of 
the problem (9) ( I I ) ,  which is far from being optimal in terms o f  requirements 
on i io(x),  will be sufficient.

T h e o rem  2. Let Q e  C 'd O .o o ) ) ,  (7(0) =  0  a n d  Q ’iu) > 0 f o r  и > (), Let  the  
d o m a i n  П () =  sttppuu С П h a v e  a  s mo ot h  h ou n d a r y  ОПц a n d  u(l 6 С '(П о )  П С (П ). 
Then f o r  cri tical i ty o f u ( t ,  x) it is bo t h n e c e s s a r y  a n d  sufficient that

h t f i u o )  +  (7(ко) > 0, .v € If». (12)

Proof ,  As our point o f  departure we take the fact that the generalized solution 
uU. x)  can be obtained as the limit as e —> 0 * o f  a sequence of  strictly positive 
classical solutions u, o f  equation (9) in ш/ — (().'/') x П with the conditions

»,((), л) =  ufi)(A) s  +  e)  u{)

uniformly in П us e  (L . ue =  ф ' ( 6 ) on (0, T)  x г)П. Let us lix a small enough 
т > 0 and let us consider the function :.f (t, x)  =  |н*(/ 7- т. л) ~  ut U. л)|/т. which
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satisfies in u>r r the linear parabolic equation

t i e ) ,  -  A(«r.f ) +  b z t .

where we have denoted by u, b  the smooth functions

b  Q’(T]nt (i + г, x) +  (1 -  rj)ut U. л)) с1т].

Furthermore, r.c =  0 on |(), T  — t | x <)П.
Let us consider the function :.f (0, x)  s  |»e(т, л ) — »ео(л')|/т in П. Since by the 

Maximum Principle ut > ф  ' ( e )  in со,- (recall that Q(ti) > 0  for all и > 0 ). then 
for all ,v e П\Пи we have ; f ((). x)  =  л-) — ф ' (е ) ] /т > 0. Furthermore, let
us consider the function vU.  л), a classical solution o f  equation (9) in (0. T)  x Q (l 
with the conditions v ( 0 . x )  =  iqnU ) in fin, v =  ф ' ( e )  on (0. T)  x iin,,. It is 
critical, since by ( 12)

Дф («(0 ) +  0 ( “ fu) =  А 0(мn) +  (2(d!> '(c/dno) +  e))  > Аф(ии) +  Q(i ‘n) > 0 in П 0 .

and therefore u(/, x) > n(0, x)  in (0, T)  x П п. From the comparison theorem we 
then obtain uf > v > nf!l in (0, T)  x П (|, Therefore zf (0.  x) > 0 in По for any 
т e (0 . T).

Thus, zf > 0  on the parabolic boundary of the domain со, r , and by the 
Maximum Prineiple zt > 0 in w, ,.T, Hence, by passing to the limit e  —»■ ()1 and 
т —»■ 0 4 , we obtain that »(/, .c) does not decrease in t in tor  and therefore it, > 0 

in F/ |n|. Necessity o f  condition ( I2 )  is obvious, □

We shall first demonstrate the possibilities o f  the operator method o f  comparison 
using relatively simple equations. The comparison theorem we obtain in the process 
will be used in i? 4  in the study o f  the localization in boundary blow-up regimes. 

Let us consider in cu, boundary value problems for two different (degenerate) 
parabolic equations (n — I, 2 ):

2 An o p erato r com parison of solutions theorem

( I4)

( I5)
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Let the functions in the statement o f  the problems ( I 3 ) - ( I 5 )  satisfy all the require
ments of subsection I concerning the functions k,  tt(,, to in the statement o f  problem 
( I )—(3), and assume that there are in <w/ non-negative generalized solutions o f  the 
problem we are considering.

Let us introduce a function E ( p ) .  which is twice continuously differentiable 
for all i> > 0, such that, moreover, £'(()) =  0, E ( o o )  =  oo and E ' ( p )  > 0  for all 
p  > 0. The last condition means that E  is a bijection R + t-> R + . Therefore the 
inverse mapping £"'(/>) is delined on R t ; it satisfies all the requirements made 
on the function E ( p ) .

Let it1- 1 > E  '( tt1' 1) on у f .  The problem of  the o p e r a t o r  (functional) 
comparison of solutions id’ 1 and tt(l1 is to determine conditions under which
ui2) > E~~l ( f l>) everywhere in cor . In the following theorem we use to that
end pointwi.se estimates of the highest order derivative of the majorizing solution, 
which follow from its criticality.

Theorem  3. Let  id21 > £  '( tt1' 1) on y t , that is,

u\2'(л) > E  ‘ («^ '( .v)).  ,v e R 4 ,
i , (16)

u \\ t)  > E  '(id/’O)). 0 < t < T.

Moreover ,  let the so lut ion o f  p r o b l e m  ( I 3 )—( 15) b e  cr i t ical  f o r  v — 2 a n d  a s s u m e  
that f o r  a l l  p  > () the condi t ions

k i2)(p)  -  k lU( E ( p ) )  > 0. (17)

\k{2,( p ) / k i l t (E( p) )E'(p)\  > 0. (18)

hold.  Then  id-1 > E  ' ( tt111) e ve ry w he r e  in a>r.

P r o o f  Let us set £ " l (/t, l ) ) =  V*11. The function V '11 satisfies in <wy the equation

Vl, l> -  L ,I|(V(I|.|VI1"|. VW) =

=  k l i t ( E ( V i h ))Vf "  +,i. , I А-1" ( £ ( У1" ) ) Г ( У 1" ) Г /|„ || ,,
E'( Vf ")

( 19)

- ( V V T .

and, hy (16).  id’1 > V*11 on y T. The solution ui2)(t, ,r) o f the equation 

и!2’ =  l J 2)(u{2),\u{2)\, tt\2') =  k l2>(ua > )u{2' +  k a '\ul2') (ul2f 2 ( 20)

is critical, that is, t/‘21 > 0  in £ 71id211, which ensures that in P / j« (2|| we have the 
pointwise bound

i .C U ' l  , . l 2 b  ,
(■JI _ K t "  1 , (2)

n \ , i  - s -,— ; —  (n \ ) •
k l24 u (2t)

(I)
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It is not hard to see that the inequalities (17), (18) are the conditions for direct 
comparison o f  solutions o f  parabolic equations (19),  (2 0 ), if we have the estimate 
(21) (see Theorem 2 of § I ).

Let us use the fact that generalized solutions o f  the problems (1 3 ) - (  15) can be 
obtained as limits as к —* ос o f  sequences of classical strictly positive and bounded 
solutions ( i q ’1) o f  the corresponding equations. It is not hard to see that monotone 

decreasing with к sequences of infinitely differentiable functions {/^'’ (О, л)) and 

(tq2)(/, ())), converging to the functions tq2) (.v) and iq2)(0 , can be chosen to be 
critical.

Existence of the sequence |iq‘ , (M )))  with the required properties is obvious. 
As far as the initial function is concerned, this problem reduces to approximation 

o f  a piecewise smooth convex function (л) =  <Д(2, (н[2, (л)) (U[2) > 0 at

all points where U\2) > 0 ) by a sequence of smooth convex positive functions 

[ф{2) (n|: , ((). л*))) uniformly bounded away from zero. Clearly, this can always be 
done.

In the construction o f  the approximating smooth solutions (tq’ ') it is not hard

to have tq2) > Vj,1’ =  E  1 (k 1̂ *) on y r  lot' any к =  1 , 2 ......... The functions iq2)

arc critical and satisfy the inequality (21),  Therefore by Theorem 2 iq2) > V̂ 11 in
tor for each к =  1. 2 , 
a 121 > \/(l) in л»/-.

Hence by passing to the limit к oo we have that
□

C orollary . Let  the J unct ion  E  h e  such  that

k i ])(E( i ) ) )  =  C : ’ (/,). /, > 0 , (2 2 )

a n d  a {2) > E  ' ( id 11) on  у  /. Let us have ,  furthermore ,  that

E " ( /») < 0, /) > 0. (23)

Then  id21 > E  ' ( a 11*) e ve r y w h e r e  in иг/.

The inequality (23) is equivalent to the following one:

k {2)’ ( k i2) ' (/ ,) ) 
д.(1)'(д:Гп^, (/,)', > 0 ( ku ’ (/») Ф 0 . /» > 0 ), (23')

Let us note that in the conditions of the corollary there is no assumption о I 
criticality o f  a i2). Validity of the inequality id2’ > E ~ t (u,l>) =  \/(l1 in my follows 
from a direct comparison o f  equations (19) and (20), The lirst of  these can be 
written in the form

V/J" =  ( C 2>(\/<")VV’ >, +
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from which, if  (23) holds, it follows that V*'1 is a subsolution o f  the problem
(13)—(15) for v =  2, and since id21 > V*'1 on y r ,  id21 > V (l) everywhere in w>y.

In the proof of Theorem 3 we used our ability to approximate a critical initial 
function «{,-’ ( * )  by a sequence o f  positive smooth critical functions. Under the 
assumption that this can be done (sec Theorem 2), the comparison theorem is valid 
in the case o f  boundary value problems for parabolic equations with a source:

« ;н =  V .  (A.-(" , (id,'’ )Vid"i H -  (/ " ’ (id1'1). г  =  1 .2 ,  (24)

where Q u'] 6 C’ 1 (10. d o )) are given functions.

T heorem  4. Let  id2i > E  ' ( id 11) on  у/, a n d  let the .solution id"1 h e  cri tical ,  that  
is, uj"1 > 0  in Pr\ui2>\. Assume,  moreove r ,  that  ire h a v e  the inequal i t i e s

k t2' ( p ) - k l u ( E ( p ) ) >  0. (25)

{ k i2,( p ) / \ k t l)( E( p ) ) E' (p ) \Y  > 0, (26)

Q i2\ p ) k {" ( E ( p ) )  -  Q {{\ E ( p ) ) k a \ p ) / E ' { p )  > 0, (27)

Then ut2) > E  ' ( id 11) e v e ry w h e r e  in <ы/.

Proof .  To prove the theorem, it is convenient to write the equation satislied by the 
function V й 1 =  E  ' ( i d 11) in the form

V,tn =  V - |A-‘ " ( £ ) V V " " |  +
k a , (E)E'

F:
| W n,f  + e (" ( g )

e :

(28)

Then the inequalities ( 2 3 )—(27)  are the conditions for a direct comparison of so
lutions of equations (24) for v =  2 and (28) (see Theorem 2 in {j 1). □

Using the Maximum Principle it is not hard to check the validity o f  the following 
simplest possible version of the operator comparison theorem;

C oro llary . Let the f unc t i on  E  b e  such  that the inequal i ty (22)  holds ,  a n d  let  
id2’ > E  ' ( id 11) on у  i . Assume,  moreover ,  that f o r  a l l  p  > 0

E ” ( p ) < 0 , Q i2)( p)  > Qa>( E ( p ) ) / E ' ( p ) .

Then  id2’ > E  ' ( id 11) in со,.

§ 3 t/r-criticality conditions

In this section we present one possible generalization o f  the concept o f  criticality 
of a solution, and derive a new class of pointwise estimates of the highes't order 
derivative o f  a solution o f  a quasilinear parabolic equation in terms o f  lower order 
ones. These results can be used to prove more general comparison theorems for 
solutions o f  different equations; they can also be applied in other areas.
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1 Definition of a  i//-critical problem

Let П be a bounded domain in R'v with a smooth boundary Ш .  In this section 
we consider a boundary value problem lor a quasilinear parabolic equation:

и, =  M u )  =  V .  (k( t i )Vu)  +  Q ( u ), t > 0, л e П: (1)

«((). л*) =  iiu(x) >  0 . a e  П ; (2 )

n ( i . x) = ■  0 . 0  <  i  <  T.  a e  <)П. (3)

For simplicity we shall assume that the positive in a>r  solution of the problem 
(1 )—(3) is classical.

Suppose we are given a function ф ( р ) ,  which is twice continuously differen
tiable for p  > 0, i//(0) =  0, ф e C(|0. oo)).

Definition. The problem ( l ) - ( 3 )  and its solution will be called ф-cri t i ca l  (with 
respect  t o n  given Junct ion ф), if everywhere in шт we have the inequality

u , ( t .  x )  — t / l ( l l ( t .  a )) >  0. (4)

In accordance with the definition o f  § 1, we shall call a zero-critical problem 
(that is, i//-critical with respect to ф =  0) simply critical. From inequality (4) 
follow more general estimates o f  the highest order spatial derivative of the solution 
in terms of the lower order ones, than those obtained in § 1;

Да
* ' ( » )  , '/'00 -  QUO ,
k ( n )  k(u) (5)

„.Using estimates of the form (5) with a sufficiently general function ф widens the 
scope o f  the direct and operator methods o f  solution comparison.

2 Sufficient conditions for i/r-criticality of a problem

Let t«, e  C : ( f l )  n C ( f i ) ,  и e  Cj'KA( i o r ) П C j ;2(5-/-). Let us note that the smoothness 
requirements on the solution in a>r (and, in part, on the initial function /<0 ) can in 
principle he weakened. Under these assumptions we have

T heorem  1. F o r  ф-crit ical ity o f  the  p r o b l e m  ( 1 )—( 3 ) it is sufficient that the function  
in, .satisfies the condit ion

A(«o(.r)) -  i//(»o( a‘)) > 0. a 6 П.  (6)

a n d  that f o r  a l l  p  > 0 ire h a v e  the inequal i t i es

\(кф)'/к\'(р) > 0 ,

I k'xff -  (£~( к ф / Q)' \(p) > 0 .

(7)

( 8 )
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The inequality (8 ) can be written in the more compact form

- (  -  
к \ ф

(/>) > 0. p  > 0. (8 ')

Let us note that (8 ') makes sense also for values p > 0  where i//(p) =  0  (similarly,
( 8 ) is defined at points- where Q =  0).

Р п ю /  Let us set ;  =  и, — i/iiu). From (6 ) and the condition <//(()) =  0, it follows 
that - > 0  on у  i . Using the equalities

u, =  z +  ф(и) .  Arr =  ------ {- +  ф(и) -  Q in )  -  Л '(к )IVk I2).
к(н)

it is not hard to obtain the parabolic equation .satisfied by 

z , - k i „ ) \ z  -  2k ’u, )V, i  ■ V :  -

'к'(ч)

(9)

к in) к (a)
------- q- -------(2 i i iu)  -  Qitt)) +  Q in)  +  k in )

k i n ) kin) k i n)
IVi/l

( 10)

k ’i i t ) i /r(u)  ~  Q' iu)
kiit)iji(tt)'

~ Q w T . k iu )
+  k i n )

i kiiQi/tju))'

kilt)

To derive this equation, it suffices to notice that z, — и,, -  ф'{и)и,  and then to 
determine from equation ( 1) the derivative it,,, simplifying by using the equalities
(9).

Conditions (7).  (8 ) guarantee that the right-hand side o f  equation (10)  is non
negative, which by the Maximum Principle ensures non-negativity o f  the function 
r =  it, ~  ф{и)  in a>r if > 0  on у i•. □

R e m a r k  1. In the case ф s  M =  const < 0. criticality conditions for an operator 
Л have the following form: i k ' / k ) '  <  0, \ i Q / M  — \ )/k\' > 0. They hold, for 
example, for k i n )  =  (1 +  u)'\ a  > 0, and Q =  0. Therefore the solution ol 
the equation и, — V - ((1 +  и у' Уи ) ,  which satisfies conditions (2), (3), has the 
following interesting property

titit. л ) > inf tq(0 . Л) s  inf {V ((1 +  Ко)"-Vi<o))(-v).
u:S! ui!

that is, for / > 0  the solution cannot decrease in t faster than it did at the initial 
time.

R e m a r k  2. Let ip i p )  > () for p > 0. Then from (4) it follows that everywhere 
in ю г  the solution of a (//-critical problem is related to the initial function in the
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following way:
' dr]

J „„(л) Ф(т\) / , ( ) < / <  7‘. (11)

This inequality provides us with a pointwise lower bound from for the solution 
(for an application o f  this kind o f  bound, see {j 6 ).

R e m a r k  3. As we already mentioned above, the smoothness requirement ti e 
С?;4 (£0/ ) П C]'K2(d>r ) can be weakened, if we prove the claim lirst for the function

z d .  ,r) =r - | ll{l +  г, л ) -  lt(l.  л)| -  ф(и(1. x) ) .  т e  (0 , T ),
T

and then pass in the inequality - > 0  in ш г r to the limit as т -»  0 f .

R e m a r k  4. Theorem 1 holds also in the ease of generalized solutions of the 
problem (1 М 3 ) .  If, for example, we use the regularization o f  the proof o f  Theorem 
2 , § 2 , then tinder the assumption ф(ио) e  С’2Ш ), &ф(ио) +  ()(/<<,) > i//(«o) in П. 
for initial functions it,о =  <f>~ 1(ф(ио) +  e )  > <A~‘ (e) in П we obtain

A<£(n«o) +  (?(«*<>) -  <//(ufo) s  Аф(ип) +  Q ( u f{)) -  t/dnut) >

> (?(uto) -  Q d t o) -  |<//(«fo) -  i/»(no)) =  o( l )

as 6 —> ()f in П. Here (uf ), -  i//(uf ) =  —ф ( ф ~ ] ( е) )  ~  o(  1) as e  —+ ()* on 
(0, 7’) x 9П. Therefore if  inequalities (7). (8 ) hold, by the Maximum Principle we 
have that

(ut ), -  ф(не ) > inf|(»t ), -  ф {ие )) = o ( l )
у,

as 6 —> (L in wy. Now, passing to the limit 6 —> 0* we derive the inequality 
it, — <//C/0  > 0 in /Mu],

It is possible to give a different proof. Let us consider, lor example, the case 
o f  radially symmetric solutions, n ~  l t d ,  r), v — |.r|. Let P[\u\ —  ( 0 . 7 ’ ) x 
(0 < |.v| < f ( 0 ) .  As in the prcxif of Theorem 1, § 2, we use continuity of the 
derivative: ( ф ( н ) ) /  - *  0 as r —* £ U).  Then we can find in 7’ /|u| a subset 
(0  . T)  x (0 < r < r t (t)],  such that, lirst, t\(t) e  ( i d )  -  e ,  i d ) )  for all t e  (0 , T ), 
and, second, it, -  ifi(u) > - 8  at the point (/, /•„(/)), where e  > 0 , 8 > 0 can be 
arbitrarily small. In the derivation of the last inequality, the value r =  r , ( i )  is 
chosen from the condition u,(t,  /■,(/)) > 0 , while the estimate и, -  ф(и) > —8  for 
r — c ,U )  follows from the conditions r , U )  e  ( i d )  - e .  i d ) ) ,  ф(0) =  0. Therefore 
the argument o f  the proof o f  Theorem 1 shows that by the Maximum Principle 
с =  и, — ф(и) > —8 in all interior points o f  the set (0  , T)  x (() < r < r , d ) } .  
Hence, letting e and 8  go to zero, we obtain that c > 0  in P,|u|.

R e m a r k  5. It is not hard to extend the proof o f  Theorem 1 to the Cauchy problem. 
In this ease »0 (л') must be such that ;  =  и, — ф(п) —* 0  as |.v| - *  oo for all
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t e  (0, T ). Under the restrictions of Remark 4, the same statement also holds if  и 
is a generalized solution of the Cauchy problem with compact support.

§ 4 Heat localization in problems for arbitrary parabolic 
nonlinear heat equations

The main result of this section is the proof o f existence of the heat localization phe
nomenon in media with arbitrary dependence of  the thermal conductivity coefficient 
on temperature. In § 5 we obtain a slightly less general result on non-existence of 
localization.

Proofs of these assertions are based on the operator comparison theorem formu
lated in § 2. A different approach to the study of the heat localization phenomenon 
in general media is suggested in Ch. VI.

1 Form ulation  of the problem

We are going to consider in u>r =  ( 0 . 7 ’ ) x R t , 7 '  < oo. the first boundary value
problem for a degenerate parabolic equation:

u,  =  ( k ( u ) u l ) l =  (</>(u))lv: ( I )

n(0. a ) ~ i<o(л ) > 0. л 6  R 4 : no e C ( R + ). sup ii() < oo; (2)

u(t .O)  =  i i ] U ) > ( ) . ( ) < / <  7‘; iij e  C(|0. 7")). (3)

where the boundary function щ(1)  blows up in finite time:

!!](/) —* o o , t  — 7‘ . (4)

The function k(u)  (thermal conductivity coefficient) is sufficiently smooth: к e 
C’: ( R t ) П C(|(). o c ))  and is positive for и > 0. 7 (0 )  =  0. Moreover, we shall 
assume that the inequality

[ '  k i n )  ,
/ ------- (In < o c  (5)

Jo n

holds; this is a necessary and sufficient condition for finite speed of propagation of  
disturbances in processes described by equation (1) (see § 3, Ch. I). We shall also 
assume that k'(u)  > 0  for all sufficiently small и > (). The initial function u»(a-) 
will be taken to have compact support, which by (5) ensures that the solution of 
the problem (1 )—(3) has compact support in ,v fur each 0  < / < 7’, Furthermore, 
let sup ||r/>(tto)]v| < oc.
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Under these assumptions there exists in w T =  (0. r )  x R , . т <r T.  a unique non
negative generalized solution of the problem (1)—(3). We remind the reader (see 
§ 1, Ch. Il l)  that by definition problem (1)--(?) with the given boundary regime 
with blow-up will exhibit hea t  l oca l i za t ion  if there exists a eonstant Г  < ос, such 
that

meas supp u(t.  x)  < /*. 0  £  t < T.  (6 )

The smallest possible value o f  /* in (6 ) is called the l o ca l i za t ion  depth.
If  on the other hand meas supp u ( t , x)  -+ oc as t -+ T~,  then there  is no  

h ea t  local iz.atian in the p r o b l e m  (in this ease the thermal wave heats to infinite 
temperature the whole half-space л > ()),

In this subsection we solve the following problem: given a  (sufficiently a r 
bi trary)  th erma l  conductivity coe f f i c ient  k ( n ) in equat i on  ( 1) find the c l a s se s  o f  
b o u n d a r y  r eg imes  with b l ow -u p  {«](/)) which l e a d  to h ea t  local izat ion.

To that end we use the method o f  generalized comparison of  solutions of two 
different parabolic equations (see § 2 ).

2 Sufficient conditions for heat localization

The main result of this subsection is

T heorem  1. Let the th erma l  conduct ivi ty coef f i c ient  k ( t t ) satis fy f o r  s o m e  a  =  
const >  0 the condit ion

|A"]'(0) < oo. (7)

*Then there exist b ou n d a r y  b lo w - u p  regimes,  which l e a d  to hea t  l oca l i za t ion  in the  
p m b l e m  ( 1)—(3).

Therefore the existence o f  the heat localization effect is independent of the 
behaviour o f  k ( a )  as a —> oo. Naturally, the form o f  the boundary regime with 
blow-up, which leads to localization is primarily determined by the behaviour of the 
thermal conductivity at high temperatures. Sharp estimates for classes o f  localized 
boundary regimes will lie obtained below.

2.1. Let us consider tirst the c a s e  o f  u n bo u nd ed  coe f f i c i ents  k .  when

k( u)  —► o o , u  - *  oo. ( 8 )

In this case the localization effect will be analyzed using the operator Compari
son method for solutions of equation ( 1) and an equation with power nonlinearity.

it, =  ( / /"/ /v) v. (У)

where a  > 0 is a constant.



§ 4 Heat localization in problems for arbitrary parabolic nonlinear heat equations 337

The operator method will be used to compare the solution o f  the problem (1 ) -  
(3) and the separable solution o f  equation (9) (S-regime):

u u n (t.  X) =  i T -  n  , / , r ( 1 -  л'/ло)2/ " .  л-ц =  |2(<т +  2 ) / ir\, /2. ( 1 0 )

This solution was studied in detail in Ch. III. §§ 2. 3. It graphically illustrates the 
heat localization property. Here I* =  л(). Note that the function uiir) is critical, 
since id / i ) t )uUT]it,  x) > 0 almost everywhere in to/.

Given a thermal conductivity coefficient к in (1),  let us land out which functions 
(operators) £  ensure that if the inequality ullT)( t . x) > E  ' ' («(/ , л-)) holds on y j .  
then it holds in a j j .  It follows from Theorem 3. § 2, that for that it suffices to 
find at least for one a  > 0  a solution E i p )  o f  the system of ordinary differential 
inequalities

p'r -  k i E i p ) )  > i ) .  p  > i). (11)

> 0 . p  > 0 . ( 1 2 )

_*(£(/>))£'(/>).

We remind the reader that the mapping £  : R ,,  и  R ,  must be bijeetive and 
monotone, that is E ' ( p)  > 0  for p  > 0, £(()) =  0, E i o o )  =  со.

Inequalities (11) ,  (12)  follow directly from the comparison conditions (17) .  
(18)  of  Theorem 3, $ 2, if we set there &l h (u) =  k(u) ,  k i2)(u) =  n".

The following assertion gives necessary conditions for solvability of the system 
of inequalities ( 11). ( 12).

L e m m a  1. Lei  the th erma l  conduct ivi ty coe f f i c i ent  xulisfy (7) f o r  s o m e  a  > 0. 
Then f o r  any  ( ) < « ■ <  rr() =  1 / a  there  exists a  so lut ion E  o f  the  sys tem of  
inequal i t i es  ( 11). ( 12).

Proof .  For convenience let us set £  1 =  /7. Then the inequalities (11) ,  (12)  take 
the form

k i p )  < H " . p  > 0 . 

k i p )

Let us set

I T ’ l p i U ' l p )

k i p )

< 0 . p  > 0 .

-. p  > 0 .
H ‘rH ' i p )  to ip)

Then, clearly, inequality (12)  will be satisfied if

w i p )  > i i . t o' ip )  > 0 . p  > 0 . 

The function H i p )  has the following form:

H i  it) ( 1 + r r )  [  ki p)coi r ) )  d p
.1 о

I/Or ( I)
p  > 0 .

( 11')

( 12')

( 13)

(14)
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By condition (7) and the assumption tr < rr(), we have

Therefore we can always find a smooth function «(//), satisfying the inequalities
(1.3), such that

since the expression in the right-hand side is bounded for all p  > 0 ,
Let us substitute into (14) an arbitrary function со, which satisfies conditions

(13),  (15), and let us show that the operator (14) constructed in this way is a 
solution of the system of inequalities ( 11'), ( 12'). Indeed, in the new notation 
( 11') takes the form

and by (15) is satisfied lor all p  > 0.
Next, from (14) it immediately follows that H i 0) =  0, H 'ip )  > 0 for p  > 0 

(the latter inequality is ensured by the first condition in (13)) ,  Moreover, using
(15),  we have from (14) that

Hence by (8 ) H i oo) =  со.
Thus the function /7 : R + —* R +, defined by (14)  satisfies the system ( 11'), 

(12 ') .  Therefore E  =  H  1 : R t —>- R b is a solution of the original system (11),

R em ark  1. It r.s not hard to see that the claim of the lemma is still valid without the 
restriction (8 ) on the coefficient к , since no conditions on the rate of increase o f  the 
function (o(p)  (apart front (13),  (15))  arise in the course o f  the proof. Therefore 
we can always choose the function со so that the integral in the right-hand side of
(14)  grows without bound as p  —>■ o o ,  which ensures that /7(oo) =  oo, or, which 
is‘ the same, that E i o o )  =  oo.

R em ark  2. Let u,s show that from (7) It follows that condition (5) holds. Indeed, 
by (7) there exists a constant M  > 0 , such that k(u )  < for all 0  < к < L
and therefore

(15)

( 1 2 ). □

l

k ( u )
chi < M n  < oc.
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Let us note that there exist coefficients к for which condition (7) does not hold 
for any a  > 0  and system (11),  (12) has no solutions. This is true, for example, 
for a coefficient к which has for it g (0 , e | ,e  < 1, the form k(u )  =  ( — lntt)M, 
where p. < — 1 is a constant. At the same time condition (5) for finite speed of 
propagation of perturbations is .satisfied.

Let us observe also that solvability o f  the system o f  inequalities (11),  (12),  
which defines conditions for heat localization in this problem, depends only on the 
behaviour o f  the thermal conductivity coefficient k(u )  for small и —► ( V .

From the method of proof of  Lemma 1 we immediately have

C orollary . Let cond it ion  (8 ) hold, a n d  a s su m e  that there  ex ists  a constant a  > 0, 
such that

\k"(p)\" 1  0 . L> > 0 . (16)

Then E  =  к w here  к 1 is the function  inverse  to к ( к ' 1 ex ists  d u e  to
m onoton ic ity  o f  k ;  this f o l l o w s  f r o m  (16)), is a  so lution  o f  the system o f  in eq u a l i t ie s  
( 11), ( 12) f o r  <r =  1 / a .

Now using Lemma 1 and the operator comparison theorem from § 2, we can 
formulate sufficient conditions for heat localization in the problem ( l ) - ( 3 ) .

Theorem  2. l.et the th erm a l  conductiv ity  coe f f ic ien t  k(u)  satis fy  (7) f o r  s o m e  a  > 
0 ; let E  h e  s o m e  so lu t ion  o f  the system  o f  in equa lit ies  (11),  (12), c o r r e sp o n d in g  
to и f i x e d  <r g (0, 1 fa\ . M oreover ,  let the b ou n d ary  cond it ions  o f  p r o b l e m  (1 ) - ( 3 )  
satis fy  the in equalit ies

u d ( x ) < E T -  I / f Г x > 0 : (17)

a p t )  <  E  [ (7 ‘ -- / Г 1/,г] . ( > < / <  Г. (18)

Then ev ery w h er e  in ш/ u ( t ,x )  < E\uUr)(t, л)|, w here  uUr) is d e f in ed  in (10).  
T h ere fore  there  is h ea t  lo ca l iza t ion  with dep th  P  < л р  in p r o b l e m  ( l ) - ( 3 ) .

R em ark . In § 4, Ch. Ill it was shown that solution o f  the problem for equation 
(9) with the boundary regime u ( t . O )  — (T  — t)~' l/,r. t e  (0, T)  and an initial 
function a ( 0 , .v )  e  C'(R+) is bounded uniformly in t g ( 0 .7 ' )  for all x >  л р  =  

12(zr +  2)/гг|1/3. Using this result, it is not hard to show that the restriction (17) 
on uo(.r) in the theorem i.s not essential: if all the other conditions hold, in order 
to have localization, it is sufficient for u0 to be a function with compact support. 
A method to prove this type of assertion will be presented below.

The result o f  Theorem 2 proves Theorem 1 in the case o f  unbounded thermal 
conductivity coefficients k,  which satisfy (8 ).
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Let us consider now some specific examples o f  the use of Theorem 2 (all 
the coefficients o f  the examples below satisfy the condition o f  finite speed of 
propagation of perturbations).

E xam p le  1. Let k(tt) =  n'r/| 1 +  /z(u)|. cr > 0, where p.(tt) is an arbitrary smooth 
function, satisfying f i (u )  > 0 , fi'(u) >  0 , a  > 0 .

In this ease a solution o f  the system o f  inequalities (11).  (12) is the identity 
transformation /•_'(/>) =  p.  This is equivalent to an application of the direct compar
ison theorem to solutions of  equations (1).  (9) (see Theorem 2 in ij 1 and Example 
1 considered there). Therefore by Theorem 2, there is heat localization with depth 
I* < .ip =  12(<r +  2)/<r\l/2 in problem ( 1)—(3) with boundary conditions that 
satisfy the inequalities

uo(.r) < a Ur) (0. л), a- e  R t ; m ( i )  < ( T  -  t )  1/,r, 0 < t <  T .

E xam p le  2. Let k(tt) ~  \e" — 1|л. where A > 0 is a fixed constant. In this 
case inequality (16) holds for a  =: 1/Л, and therefore a solution of the system of 
inequalities (11),  (12) with tr =  A is the transformation

£(/>) =  к '(//) =  1 n(1 +  p ) .  p  > 0 .

Then from Theorem 2 we conclude that boundary conditions that satisfy the in
equalities

i ioU) < ln| 1 L U(A)(0. a ) | . A e R ( ;

к, (П 5  1 n 11 +  (T  -  M 1/A|. 0 <■ t < T .

ensure occurrence o f  heat localization in the problem ( 1)—(3) with the depth /' < 
12(A +  2)/A|l ,“ (let us observe that here «(/. a ) £  ln| M  a ) | everywhere in
(O ; ).

Exam p le  3. Let us consider the coefficient k(u )  =  u e x p ( i r ) ,  which satisfies 
condition (16) for rv =  1. Therefore the transformation E ( p )  =  к '(/;) is the 
required one, and if inequalities (17),  (18) hold, there is heat localization in the 
problem (1 ) - (3 )  with the depth Г  < Уб- Let us estimate the asymptotic behaviour 
as t -+ T  o f  the boundary regime leading to localization. Since

к ' (u )  ~  ln1/2 II -
1 In 111 It 

4  ln l/2 и
it —»■ oo.

for localization it is enough that

HiO) ~  I Inf/’ -  /)|''
1 In | l n f f  -  n | 

4 | ln(T' — r ) | 1
T
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Exam p le  4, Let k(u )  — exp(e" — 1) — 1. Here the required operator E  corresponding 
to a  =  1 is

E ( p )  "■ к '(/;) =  ln| 1 +  ln( 1 +  //) |, 

and therefore if и о (л ) < E [« , i , (0 .  л)| in R 4 and

«I (П < In 1 1 +  ln| 1 +  (7‘ — /) 1) j . U < t <  T.

then heat localization with the depth Г  < У б occurs in the problem (1 )—(3).
Using the methods of the theory of  a.s.s. (sec Ch. V I) .  it can be shown that 

the estimates of localized blow-up regimes obtained in Examples 2-4. are optimal 
and cannot be improved.

Let us consider now an example for which this is not the case.

E xam p le  5. Let k(u )  =  lnA(1 +  «), A > 0 is a fixed constant. In this case condition 
(7) is satisfied, for example, for a  =  1 /А, and therefore we conclude from Lemma 
1 that for any (T €  (0. A| there exists a solution o f  the system o f  inequalities (11).  
(12). Following the proof of Lemma 1. let us construct the desired E.

Let us fix arbitrary i t  e  (0. A|. Inequality (15 )  is equivalent to the inequality

A lnA/,r 
to (p)  > -----------

' ( ! + / »  

1 + P
p  > 0 . (19)

The function in the right-hand side is bounded from above by the quantity

С'л.г A / A

I T  \ I T

A/.r I
exp

A

I T

i t  <r A, C .u  =  1.

Hence, taking into account conditions (13),  we conclude that to achieve the maxi
mal growth rate of E ( p )  as p  —► oo (and therefore the maximal admissible growth 
rate of boundary blow'-up regimes m ( t )  < E\(T -  t) 1/,r| as t —► T  ), it is nec
essary to set io (p )  =  Сд,г in (14). Recall that H  =  E  *, and therefore the slower 
H ( p )  grows as p  —» oo, the faster will E ( p )  grow.

Thus, from (14) for i t  6 (0, A| we obtain

H ( p )  =  /•: 1 ( /?) = (1 +  t r ) C [  lnA( 1 +  Tj) t ip  
./о

t/(a i i )

Hence

E  1 ( /?) ~  IU,r(p  lnA p ) * ' U"  ".((A,,  =  [(1 +  <'-)Сл„Г/“  1 -

/•;</;) ~ a J  l,r’(i + i t ) xpu,T in A/r

for sufficiently large p.
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From Theorem 2 we conclude that in this problem localization is produced by 
any boundary blow-up regimes that satisfy as t —> 7 "  the condition

щ (/) < b : \ ( T - t )  1/,r| 1)|л( 7 ' - / Г а+,г,/'г|1п(7'-/)|- л. (20)

Recall that here the value o f  the parameter <r e  (0, A| is arbitrary. In particular, 
decreasing <r we have that any power law boundary blow-up regimes

i i i (t )  =  (7' — 1)", () < t <  7’; n =  const < (), (21)

will he localized.
However, the right-hand side of (20 )  does not allow rigorous passage to the 

limit as <r —> O' (because, among others, the estimate Г  < x() =  |2(rr +  2)/rr|1/: 
does not make any sense then) and therefore we cannot obtain in this way the 
precise boundary o f  localized regimes.

Such a boundary will be determined in § 2, Ch. VI by constructing approxi
mate self-similar solutions o f  this equation. To this boundary there corresponds a 
function of exponential form,

tii(t)  =  exp((7 ' -  t) () < t < T,

which agrees on the whole with the fact that the exponent n < 0 in the family
( 2 1 ) o f  localized regimes is arbitrary.

2.2. Let as now consider the c a s e  o f  b o u n d e d  co e f f ic ien ts  k.  Without loss o f  
generality we shall assume that

k(  /?) < 1, p  > 0 . ( 2 2 )

In § 4, Ch. Ill we studied the action o f  boundary blow-up regimes on a medium 
with constant thermo-physical properties, diffusion of heat in which is described 
by the linear equation

V[ =  ! ' „ , ( ) < / <  Г ,  Л e  R , ; (2 3 )

u(0 , .r) =  0 (which is not essential by the superposition principle).
It was shown, in particular, that the boundary blow-up regime

v(t. 0)  =  exp{(7 ' — /) ' ) .  ( ) < / < -  7‘. (24)

leads to effective heat localization with depth L' =  2. This means that u(/..v) —» 
со  as t —> T  for all 0 £  л £  2 , while for x > 2 the solution is bounded from 
above uniformly in t e  (0, 7'):

v( t .  л)  <  v ( T  , л) =

V- r ^  i (25)
/  C ’’ t) i / :  d r j  <  DC.

./ ( o —n/oin
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This result will be used in the operator comparison o f  solutions of  equations 
(1) and (23);  comparison conditions are inequality (22)  and the inequality

|k (E (p ))E '(p )\ '  <  0. p  > 0 (26)

(this is equivalent to ( 12) if i t  =  0 ).
Setting H  =  E  ' .  we rewrite (26) as

IH '(p ) /k (p )\ '  > 0. p  > 0.

Hence

/Г '(/;) =  W(/>) =  / к(т])ш(т])с1т], p  >  0, (27)
J o

where io (p )  is an arbitrary bounded function, which satisfies (13) and the condition

[  k(7])w(r])ilr] =  oc. (28)
Jo

The restriction (28) ensures that E ( o o) =  oc. 
From (27) it follows that in the case

k(T])tlri =  oc. (28')

in order to have the maximal growth rate of E ( p )  (or minimal for E ~ ]( p ) )  as 
p  —► oo. we have to require that the non-decreasing function ш be bounded in R + , 
for example, by setting со =  1,

Thus, if  conditions (13),  (28) hold, operator E  in (27) guarantees comparison 
of solutions of  equations (1) and (23). Without loss of  generality we can consider 
only the case к() s  0 in R t . Then, since the boundary condition (24) is critical, 
we conclude from the operator comparison theorem (see & 2 ) that the boundary 
blow-up regime

«I ( 0  5  /:(cx p {(У - / ) ■ ' ) ) ,  0 < / < 7 ' ,  (29)

leads to effective heat localization in the problem ( 1) - (3 )  with depth L* <  2 , such 
that, furthermore

ii( i.  a) < E [n (T  ' ,  л ) |, 0 < 1 < T, .г > 2. (30)

In the next theorem we "pass” from effective heat localization to localization 
in the strict sense.

T heorem  3. Assume tluu in tlw p ro b l em  (1 )—(3) uo(.r) =  0, <m<l that the b ou n d ary  
b lo w -u p  reii 'tme satis fies  condit ion  (29), w here  E  : R ,.  —>• R., is a  so lu t ion  o f  the  
system  o f  inetpialities  (22),  (26). Then there  is h ea t  loctd iza l ion  in the p rob lem ,  
a n d  there  exists a  constant  /* > 0 , such that

u(t, л )  =  0  in ( 0 ,  / ' )  x  ( a  >  / * ) . ( 3 1 )
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Proof.  Let us fix arbitrary x* > 2. Then it follows from (30) that tt ( f .v*)  < 
E\v(T  , .v")| <  oo for any 0 < t < T,  and therefore by the comparison theorem 
for solutions of parabolic equations (see § 1, 3, Ch. I) in (0. T)  x (a > л*) the 
function u(t. x)  docs not exeeed the solution o f  the problem

U , =  ( k ( V ) U , ) v, 0 < t < T, x > a \

U((). x) — 0, л- > л * ;  U(t,  a *) =  E\v(T  , a ' ) | .  0 < i < T.
(32)

The solution of this problem is a self-similar one (see § 3. Ch. II) and has the 
form U ( 1 , a ) =  / (£ ) ,  where £  =  (.v -  a * ) / t l/2. The function f  is determined from 
the following boundary value problem for an ordinary differential equation;

(k( f ) f ' ) '  + - f ' i  =  0 .  C >  <>•
-  (33)

/ ( 0)  =  E\v{T \ a * ) | ,  / ( о c )  =  0.

Existence o f  a solution o f  the problem (33) for any Unite / (0 )  > 0  has been 
established in ]23. 6 8 | (see ij 1, Ch. I). There it is also shown that under condition
(5), the function / (£ )  has compact support, that is. f { [ )  =  0 for all f  > f<, 
( fn  =  ( o ( x * )  < oo depends on the choice o f  a * > 2).

Thus, everywhere in (0, T)  x  {л > a *) we have the inequality

u(t, x)  < V (/, a ) =  / ■

Hence we immediately infer that

metis supp « ( / , a ) <  .C +  nteas s u p p (7 (f, a ) =

=  A* +  ^o(A*)/1/2 < A* +  ^ )(a ') 7 'I/2 < OO.

Therefore the problem ( l ) - ( 3 )  exhibits heat localization in the sense of (6 ). 
while for localization depth we have the estimate

I* <  inf { л '  +  £ o( a*)7 ' i/2 j  < oo, (34)

which completes the proof □

R e m a rk .  In § 4. Ch. Ill it was shown that the opposite "passage," from strict (for a 
lunction ito(x) of compact support) to effective localization (when uo(.v) e C ( R t ) 
is an arbitrary function) is also possible. It is made by deriving a special energy 
estimate for the difference of two solutions of  equation ( 1) which correspond to 
the same boundary condition.
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Let us note that there is no restriction (7) on the thermal conductivity coeflicient 
in Theorem 3; it is sufficient that the condition for finite speed propagation of 
perturbations holds. Let us consider some examples.

E xam p le  6 . Let k(u )  — 2тт~1 aretann. Then condition (22) is satisfied (inequality
(5) also holds). Setting ш =  1 in (27),  we obtain

E - \ p ) f  k(T))dr) 
./()

P + - P
7Г

arctan p
ТГ 

2

P - i  l n p

ln(l +  /Г)

for sufficiently large p .  Hence E ( p )  ~  p  +  2/тг ln p ,  p  —> oo, and by Theorem 3 
we conclude that localization with depth (34) is produced by boundary regimes, 
which satisfy the estimate

u\(l) < E { c x p { ( T  — t)'  1)) ~  exp{(7' -  /)
i

+  -  1) 
7Г

as .

E xam p le  7. Let us consider the coefficient k(u )  =  n| 1 +  2 u ln ( l  +  h)I In this 
case condition (2 2 ) holds, since 2 n ln ( l  +  u) > 2 i r / (\  +  tt) for all и > 0 and 
therefore

k(ii)  < u| 1 +  2 ir/ (  1 +  «)| =  n( 1 +  u)( 1 +  « ( 1 T 2n)| 1 < 1

for any и > 0. Equality (28')  also holds. Then from (27) for ш =  1 we have

£ ' ( / , ) =  f -------------------------- ~ I J L  p ^ o o .
,/n 1 +  2r) In( 1 + 7)) 2 ln p

Hence E ( p)  ~  2/rln /), and therefore the localized regimes satisfy

iq (t) < £ {e x p { (7 ’ -  1) 1)) ~  2(7 ' -  t) 1 exp {(T  - /)' 1). t -> T  .

E xam p le  8 . Let k (u )  =  2u/(l +  i r ) .  In this case conditions (22),  (28 ') hold. 
Setting in (27) (o =  1, we have E  1 ( />) =  ln(l +  p 1), E ( p )  =  ( c r — l ) 1'-. 
Therefore any boundary regime o f  the form

i‘ i d )  < (exp(exp((V ~  /) 1)) -  1 ) l/2 ~  exp I  ^ exp((7’ -  t) ')j. ,

leads to strict localization with depth (34) (and to effective localization with

L ' sj 2).
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Estimates o f  localized boundary blow-up regimes obtained in Examples 7, 8 

are not optimal. Sharp estimates for these cases will be derived in Ch. VI.

E xam p le  9. Let k(u )  =  »/( 1 + u } ). Then condition (28')  is not satisfied. Choosing 
<o(p) =  p  (conditions (13) are satislied), we obtain from (27)

/: '(/>) =  ^ ln(l +  p y), E ( p )  =  ( e in -  l )  ~  о 1’, p  - »  oo.

and therefore the localized regimes are

u\U) < exp {exp ((7' -  i) 1 ) ) ./->■ T ’ .

Setting now co(p)  ~  p /In p  as p  —* o c  (conditions (13) are still satisfied), we 
obtain from (27)

/ f  1 (p )  ~  In In p ,  E ( p )  ~  exp{e '’ ), p  —> oo,

and localization is produced by blow-up regimes

u\(t) < ex p lexp lexp K T  -  /) ' ) ) ) . /  T .

As со we could also take the function io (p )  ~  /?/{In />(1 n In p )| as p  —i• oo and so 
on.

Proceeding in this fashion, we conclude that in this case all the blow-up regimes 
o f  the form

u \ ( t )  < exp{exp . . .  {exp{(7‘ -  t ) ~ '  ) ) . . . ) . / —► T  .

with any Unite number o f  exponents in the right-hand side, will be localized.
In § 2, Ch. VI we shall obtain results showing that under the condition

-------P jj <  до (35)
V

all boundary blow-up regimes are localized. (Actually, this can be proved by 
comparison with a solution o f  travelling wave type, which, if (35) holds, blow up 
in finite time; see § .3, Ch. I). It is not hard to see that the coefficient к o f  Example 
9  satisfies this condition.

3  Effective heat localization

A l l  t h e  r e s u l t s  o f  t h e  p r e v i o u s  s u b s e c t i o n  c a n  b e  u s e d  t o  a n a l y s e  e f f e c t i v e  l o c a l 

i z a t i o n .
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A solution o f  problem (1 ) - ( 3 ) ,  which blows up in finite time, is called effectively  
l o c a l iz ed  i f  it becomes infinite as t —► Г  on a set of finite measure:

L'  =  nieas | x e R t lim tt(t, x)  — oo) < oc (36)
l — T

(L'  is the localization depth).
In this definition there is no requirement on the initial function 1<о(л) to have 

compact support; it is only necessary for it to he bounded in R.t.. Moreover, 
condition (5),  o f  finite speed o f  propagation of perturbations, is not necessary.

To study effective localization, it is not hard to modify Theorems 2, 3, as well 
as the results obtained in Examples 1-9. Then analysis of unbounded coefficients 
к (it) uses the operator comparison methods and the derivations o f  § 4, Ch. III. As 
a result, for the localization depth we obtain the estimate L *  <  | 2 ( i t  +  2 ) / < t ] 1 / " .  

where tr e  (0 . 1 /at) is the parameter in the system o f  inequalities ( 11). ( 12).
The case of bounded coefficients is analyzed as in subsection 2. Note that the 

boundary blow-up regimes mentioned in Examples 6-9 lead to effective localization 
with depth V  < 2 ,

E xam p le 10. Let k(n)  =  1 / ( 1 +  n). Setting to =  1 in (27),  we obtain £(/?) =  e 1. 
Hence the boundary regimes

Hi (/) $  exp {exp {( Г  -  /) 1) ) . / - +  T  .

lead to effective localization with depth V  < 2 (this upper bound for localized 
boundary regimes is not optimal; see $ 2, Ch, VI).

4 H eat localization in the C auchy problem

The solution of the Cauchy problem for equation (1) with an initial function of  
compact support

n((). ,v) =  ii(](.v) > 0. л- e  R ;  u e  C'(R), u„ ^ 0 .  (37)

is called lo c a l iz ed  i f  its support is stationary for some finite time, that is, there 
exists T * e  (0 , oo), such that

supp u(/, л) =  supp u»(.v), 0  < / < T*  (38)

(here, naturally, we assume that condition (5) is satisfied).
It is well known (see Remarks) that stationarity of a front point o f  a generalized 

solution o f  equation ( 1) is determined by the asymptotics of the initial function in 
a neighbourhood of that point. However, the magnitude of the localization time 
T \  which is o f  physical importance, depends on the "global” spatial structure o f  
the function u<,(.r). This dependence is reflected in the theorem stated below. i
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T h eorem  4. Let the coefficient к satisfy condition (7) fo r some a  > 0, and let L  
he a solution o f the system of inequalities ( 1 1 ) ,  ( 1 2 ) ,  which corresponds to a fixed 
or e  (0, \/a\. Let un(x) satisfy the inequalities

0 < i<o(.0 < ЕКн(1 -  и1/лшГ/'г|, .v e R,

where u,„, x„, are fixed positive constants. Then the solution of the Cauchy problem
( I )  , (37) is localized in the domain (|.v| < ,v,„) and fo r localization time we have 
the estimate T* >  <tx]„/\2u"„Ut +  2 ) | .

The validity o f  this statement is deduced from Theorem 2 using a technique 
applied in § 3, Ch. Il l to a similar analysis o f  equation (9). To illustrate Theorem 
4, let us consider

E xam p le  11. Let k(n )  — eu -  1. In this ease a solution of the system o f  inequalities
( I I )  , (12) for a  — 1 is the function L(p)  =  ln(l +  p). Then from Theorem 4  we 
have that the solution generated by the initial function

U n i x )  -  1 n {1 +  !/,„( 1 -  U1 / . v„ , )  + ), x e  R ,

is localized in the domain ||.r| < л',„) for time not less than a'~,/(6 i/„i ).

§ 5 Conditions for absence of heat localization

1 Form u lation  of the problem

As in § 4, we shall consider in w r  the first boundary value problem for a degenerate 
parabolic equation:

it, — (k(u)ux)f, (1)

11(0 , X) 3  О, Л- e  R t ; u(t,  0) =  u ,( t )  > 0 .  t e  (0, T ).  (2)

where the boundary function iq e  C '(|0. 7")), nj > 0, blows up in finite time.
Let all the restrictions imposed on the function k(u )  in subsection 1 o f  § 4 

hold. In particular, we assume that the condition for linile speed of  propagation of 
perturbations is satisfied:

/ d i p )  < oc. (3)
./o V

There will be no localization in the problem (1), (2) if 

meas supp u(r. x)  —* oc. / —► Г  . ( 4 )
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that is. as / —> T  heat penetrates arbitrarily far from the boundary л- =  0.
Let u.s remark that (4) i.s equivalent to the condition

uU. x)  —> oo in . / —♦ 7” (5)

(the truth of this statement is proved by the method used in the proof o f  Theorem 
3 of S 4).

2 Sufficient conditions for the absence of heat localization

Let us denote by uUr)(t, л) the solution of the equation with a power law nonlin
earity

it, =  (it1 r t t , ) , ,  i t  — const > 0 . ( 6 )

which satisfies the boundary condition

U(,r>(L 0) =  (T  — t )" . 0 < t < T\ n — const < — 1 / a .  (7)

««„(О. a ) e  C ( R t. ).

In § 2. 3 of Ch. Il l it is shown that the function uUr) is not localized, and that 
there exists a constant о» > 0 . such that

meas .supp itur)V. s )  > tu>{T -  / ) ,1't" ' ,|/2 t T . (8 )

This result will be used in the comparison o f  solutions of equations (6 ) and (1).  
Below we shall assume that the conditions

k'(tt) > 0 . it > 0 ; A-(oo) =  oo. (9)

are satisfied. Conditions for the absence o f  localization in the case o f  bounded 
coefficients k(u )  will be obtained by a different method in Ch. VI.

Suppose we are given an arbitrary coefficient к e  C~(R , . ) П С  (]0 . oo)) ,  which 
satisfies conditions (3), (9). Let us find what functions l i  enable u.s to apply opera
tor comparison methods to the solution ttin) o f  equation (6 ) and the solution o f  the 
original problem ( 1), (2 ), that i.s, when does the inequality u(t. x)  > £ ' " , |к1,г)(/, .v)| 
hold everywhere in tor-

Since the solution u(i.  x)  is critical, from Theorem 3, $ 2 we have that to 
that end we must find the solution E ( p )  ", R t i-> R t o f  the system o f  ordinary 
differential inequalities

k ( p )  ~  E " ( p )  > 0, p  >  0. (10)

E'r ( p ) E ' ( p )
( I D



350 V Methods о Г  generalized eomparison

These inequalities eoincide with the eomparison eonditions (17),  (18) of Theorem 3 
o f  § 2, if we set there A‘U)(t<) =  u'r, k t2\u) ~  k (u ) ,  Suflieient eonditions for 
solvability of  the system ( 10), ( 11) are given by the following

L em m a 1. A ssum e that cond it ions  (9) a r c  sa t is f ied  a n d  that there  exists a  constant  
a  > 0 , su ch  that

|A"|'(0) > 0. (12)

In addition , let the function  [A'', |"U0 h a r e  f o r  n > 0 a  f in ite  num ber  o f  zeros. Then  
f o r  (г =  1 / a  there  exists a  solution  К o f  the system o f  in equa lit ies  ( 10), ( 11).

P r o o f  Let us set k ( p ) /\ I d ’ (p )E '(p)\  =  \/to(p).  The inequality (11) will be 
satisfied if

w (p )  > 0 , ш'(р)  < 0 , // > 0 . (13)

Then

P(P) (1  +  IT) I  k(rj )co(rj )  dr)
,/»

1/(1 Mr)

Inequality (10) then takes the form

I  k(r j )  { [ k ,/ir(r))\ ~ w(i7)| drj  > 0. p  > 0 , (14)

Assumption (12) for a  — 1 /<т enables us to construct the function w ( p ) satisfy
ing eonditions (13) and the inequality io (p )  < [A:1 /<r| (//) lor all sufficiently small 
p  > 0, The second condition of the lemma means that the function [ C /,r| (//) is 
monotone for all sufficiently large p  > p t > 0 (this condition, obviously, is not 
optimal). Therefore there exists lim A:1 /,r | (p )  — к.  If  к  > 0, we can set 

for p  > p„ ш (р )  ~  1п1' ,м и .,м 11*, Л , 1 ip ) ) -  M 011 lhe dther hand к  — 0 , we set 
u>(p) =  | A:’/<r | (p )  lor p  > p t . In both cases such an extension of the function 
a>(p) for large p  > 0, while preserving eonditions (13 ) ,  (14), allows us to achieve 
the equality Ti(oo) — oo .  □

R em ark . There exist coefficients k , for which condition (12) is not satisfied lor any 
or > 0, This is true, for example, lor the function k(n )  =  exp {— n1'), v =  const < 0. 

From the method of proof o f  the lemma we deduce

C orollary . Let condit ions  (9) hold ,  a n d  let there  exist a  constant a  > 0, such that

|C4p)|" 5  0, p  > 0 , (15)

Then the function li =  k"(p ) is a solution o f the system o f inequalities (10), (11)
for (T =  1 /  or.
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It is not hard to see that if (9), (15) hold, then the function к defines a bi- 
jective mapping [0, oo) - *  [0, oo). Therefore the mapping E  =  k °  has' the same 
properties.

Using Lemma 1 and the operator comparison theorem, we state

T h e orem  1. Let k ( o o) =  oo. a n d  suppose ,  fu r th erm ore ,  that condit ion  (12) is 
sa t is f ied  f o r  s o m e  a  > 0. Let E  b e  a  so lution  o f  the system o f  in equa lit ie s  (10),  
(11) f o r  <r =  1 jet. I f  f o r  suffic iently la rg e  t < T  ice h a v e

til(f) > 1(7" h ” I- 11 =  const < — 1 f a .  (16)

then there  is no h ea t  lo ca l iza t ion  in the p ro b lem  ( 1), (2 ) :  n(t. x)  —*  oc ev ery w h er e  
in R + ct.v t —* T ~ , a n d  there  exists a  constant d(, > 0, su ch  that

meas supp uU, x) > d {)(T  -  / ) (1 uurd 2 _> oo. t —* T  ~. (17)

Proof.  The proof i.s based on comparing in (т. T)  x  R .( the solution u(t, x)  o f  the 
problem ( 1), (2 ) with u,, =  vu Ur)( t , x p "1'12). a self-similar solution of equation (6 ), 
The constants т e  (0. 7 ), v > 0, are chosen from the condition u ( t , x ) > iv (* .  x )  

in R 4 , Since v,.(t , x ) • 0 and supp u,,(r. ,v) —» (0) as v —>• 0 + , this can always be 
achieved. Then the claim o f  the theorem follows from the inequality и > E " '(v , , )  
in ( t T )  x  R ( . Furthermore, in (17) а  о =  a о i/r /2 , where =  a o ( n .c r )  >  0  is the 
constant in (8 ). О

E x a m p le  1. Let k(u )  =  ua [l +  /z(iO|, tr > 0, wliere p. e  C : (R .t ) satisfies the 
conditions p  > 0, p  > 0. In this case a solution o f  the system (10),  (11) is 
E ( p )  s  /;, whicli is equivalent to applying the direct solution comparison theorem 
to equations (6 ), (1) (see Theorem 2, § I) . From Theorem 1 we then obtain that 
boundary regimes u f t )  > ( T - t )", t —> T , wliere n < — 1 /<т, do not lead to heat 
localization.

E x a m p le  2. Let us consider the coefficient k(u)  =  InA(1 +  »), where Л > 0  is a 
fixed constant. Then for о  =  1/Л, condition (15) holds, and therefore the function

E ( p )  =  k t/A(p )  == 1 n(1 +  p) ,  E  ' (p )  =  e<’ -  1.

is a solution of the system o f  inequalities ( 10), ( 11), which corresponds to <r =  
1 f a  =  Л. Thus there is no heat localization in the problem (1),  (2) if

« i ( 0  > exp К Г - -  П") -  1, t -  Г ' ,  ( IB)

where n < — 1 /Л, There exists a constant 7цi > 0, such that

meas supp u(t. x)  > 7ц)(Т — ()(1 у  _ (19)
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E x a m p le  3. Let k(u )  =  ln[l +  ln(l +  to 1 - Since k"(u) < 0 in R  t , the required 
operator is the function

E ( p )  =  k(i>). E  '(/>) =  exp (ег -  1) -  1.

wliieh sati.slies (10),  (11) for <r =  1. Therefore boundary regimes

к i ( 0  >  exp (exp {(/' - / ) " ) -  1) -  1. \ —■ 7  . (20)

for ti < — 1 lead to absenee of heat localization:

incus supp u(t, x) > a ()(7' -  t )11 —> тс. i —•• T  (21)

The lower bounds of non-localized boundary blow-up regimes we have com 
puted in Examples 2, 3 are not optimal. In ij 2, Ch. VI. by constructing a.s.s. for 
equations under consideration, wc shall establish sharp bounds for such regimes. 
In particular, it will be shown that in Example 2 there is no localization for any 
ti < — 1/(1 +  A) in (18), and unlike (19)

meas supp u(t, x) > h {)(T  -  t ) 1' tA||/“ • v .  t • 7  ,

where 7»<> > 0  is a constant, which depends only on a, A.
In Example 3 absence o f  Idealization is caused by boundary blow-up regimes 

that are weaker than (2 0 ):

it\U) > exp j ( 7  -  /)''(/(ln (7  -• 0| — 7  , (22)

where a < — 1. Furthermore, estimate (21) holds for some n() =  <Т()(;г) > 0. 
J^et us stress that the limiting exponents in these non-localized boundary regimes, 
n =  —1/( 1 +  A) in (18) and n =  — 1 in (22),  are sharp and cannot be replaced by 
larger ones.

E x a m p le  4. Let k(u)  =  ue“. In this ease condition (12)  holds for every a  e  (0, 11 
(note that (15) does not hold for any a  > 0). Therefore it follows from Lemma 
1 that for any <т =  1 / а  >  1 there exists a suitable solution of the system of 
inequalities (10),  (11).  For example, let us set cr =  1. Then conditions (13), (14) 
are satislied for ш == 1 and the transformation E  has the form

£(/ » = 2 [  7 j e ’hlr]. Jo p  — *  0 0 .

Hence E  l (p )  ~  2 In /; — ln(41n/>) for large p .  and therefore under the influence 
o f  boundary regimes o f  the form

ii\(D > 21n|(7 -  i) 11 -  In |41n|(7 — i) 111 , t —» 7  ,

there will be no heat localization.
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§ 6 Some approaches to the determination of conditions for 
unboundedness of solutions of quasilinear parabolic equations

In this section the methods of 1-3 are used to derive conditions o f  global 
insolvability o f  quasilinear parabolic equations o f  the form

и, =  V ■ (A-(j i )V u ) +  Q(u)  =  At/;(it) +  Q ( и). (1)

where k .  Q  are sufficiently smooth non-negative functions, such that Q(it) > 0  for 
и > 0 and QUi) > 0.

We consider two problems for equation (1): a boundary value problem for 
1 > 0. л e  П (11 is a bounded domain in R ,N with a smooth boundary 911) with 
the conditions

it((). л) =  ttoU) > 0 , x  e  11; it» e  C ( l l ) ,  ( 2 )

ii ( t . \) = 0. / > 0. x e 911, (3)

and the Cauchy problem with the initial condition

it((). x) =  ttoU) > 0, x  e  R ,v: it() e  C’ tR ^ ) .  (2')

It is assumed that the function Q satisfies the inequality

dr]

Q(V)
<  OCk (4)

which, as we know (see § 2, Ch. I), is a necessary condition for existence of 
unbounded solutions of the problems we are considering. In the following we shall 
use extensively results obtained for the equation with power type nonlinearities.

и ,  =  V • (H,rV«) +  i t 11, it  >  0. f 3 > (5)

which appear in § 3. Ch. IV.

1 A m ethod based on i/r-criticality of the problem

Let us consider the boundary value problem (1 )—(3).  A solution o f  the problem is 
called i j i - c r i i i c u l .  if  everywhere in the domain we have

11,0. x)  -  i//(u(t. A')) > 0 . (6 )

Sufficient conditions o f  (//-criticality o f  the problem were established in Theorem 
1, S 3. Assuming that the solution is sufficiently regular (it is also assumed that
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ф e  C 2(((). oo)) nC'([().  со )) .  ф(0) =  0, «о e  C 2(U )) .  these conditions have the 
form

A (u 0 ) =s V • (A'(ho) V h(,) +  Q ( mo) >  i//(ho). -v e  П ;  (7)

[(Д'|//)'/А'Г(р) > 0 , p  > 0 . 

\к'ф2 -  0 : (кф /() )'\ (р )  > 0 , p  > 0 .

(8)

(9)

Wc shall use the inequality (6 ) to determine conditions for unboundedness of 
solutions to the problem. Let the function ф be positive in R + and

l

■v (I T] 

ф(Т])
( 10)

Then, if  the solution of the problem is (//-critical, it follows from (6 ) that the 
function «,„(/) =  m a x , м(/. л) will be for all t > 0 not smaller than the solution 
Y (t) o f  the following Cauchy problem for the ordinary differential equation,

^
1 

^
 

i It V о ( 1 1

Y ( 0 ) =  M,„(0 ) =  maxnof.v) >  0 . ( 1 2

i«S!

By (10) the function Y (t) is defined on the bounded interval (0. /*), where

L (0)

ch)

ф(т])
< 00 , (13)

Hence it follows that the original problem ( l ) - ( 3 )  lias no global solutions and that 
there exists T« < /*. such that

l i n i , . m a x «(/, .v) =  oo. (14)

As no we can take any non-trivial non-negative solution of the boundary value 
problem for the quasilinear elliptic equation

V ■ (£(ni,)Vu0 ) +  C/(«o) =  Фи>о), a- e  П ; Melon =  0. (1-5)

In the one-dimensional case this equation can be integrated in quadratures, which 
allows us to give a reasonably detailed description of the spatial structure o f  its 
solutions (see subsection 2),  For N > 2 the question of solvability o f  the problem 
(15)  is an interesting and sufficiently complicated problem in its own right (sec § 
3, Ch. IV).

Let us indicate another application of the inequality (6 ). If  (10) holds then 
from (6 ) we can deduce the following upper bound for the unbounded solution (it
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is derived by integrating (6 ) over U, Ft,), where Го is the time of existence of the 
unbounded solution):

г■lull

dr]
> Г 0 -  / e  (0 . Г„).  x e  11. (16)

E xam p le  1. Let k ( p )  =  1. and let the function Q be convex: Q " ( p ) >  0  for all 
p  > 0. Then as ф we can take ф (р )  — v Q ( p ). where e e  (0. 1) is a constant. 
Indeed, inequalities ( 8 ), (9) are satisfied, while (10) holds in vdew o f  (4). As 
an initial function satisfying (7), we can take a solution of the boundary value 
problem

Atm +  (1 — i')Q(tio) =  0. .v e  11; («i|on =  0. (17)

This problem does not always have a non-trivial solution. For example, if f l  e  Ил , 
N > 3. is star-shaped with respect to some point (in particular, if it is convex) and 
Q(n) =  i f i , then for j3 >  (N  +  2 ) / ( N  -  2 ) there are no solutions (see § 3, Ch, IV), 
At the same time, in the case of  annular domains 11 =  (0 < a  < |.v| < h  < oc), a 
solution exists for all f3 > 1 (See the Comments section). #

Thus, let the initial function no satisfy (17).  Then it follows from (13) that the 
solution o f  the problem grows without bound in finite time not longer than

d p

./»,„(()) Q ( V )
< oo; !!«,(()) =  max no.

Let us observe that ф (р )  =  i'Q (p)  satisfies the inequality (9) also for arbitrary 
non-increasing coefficients к (when k'(p )  < 0 for p  > 0 ).

Let us sec now what can be deduced from the estimate (16).  Let the solution 
be i/r-critical with respect to the function i//(p) =  v Q {p ) ,  v €  (0, 1). Then

dr]

./„к.,» Q (v )
> i d T o  -  О in (0 , To)  x 11.

In particular,
1) if  Q(u)  =  id1. /3 > 1, then

uU . x )  <  И / З  -  1 ) Г 1/̂ ' " ( Г „  -  ,)- '/(//-и.

2) if Q(u) =  (1 +  к) ln/J(1 +  u). f i  > 1 (Q" > 0  in R t ). then

11(/. .x) <  exp 11//()3 -  1 ) Г 1/(,Ь " ( Г , ,  -  i)  l n, l ~ -  1;

3) if QUi) =  e". then

u (t . x) < lnlt' 1 (Го -  /) 11.1 e  (0, To).
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All these estimates are sharp in their dependence on (7 '(1 -  1 ). This is 
demonstrated by comparing uU. ,v) with the spatially homogeneous solution i>: 
v'U) =  Q ( v(D),  it(7'(1) =  со. By the comparison theorem of § 4, Ch. IV, u(t. x)  
must intersect vit)  lor any t e  (0 . 7’o). and therefore sup, u(t. x) > u(f) in (0. 7'o). 
which produces the following lower bounds for the amplitude:

1) sup( ti > (/3 — 1) 1/(/3 ‘ " ( 7  n -  i)  1,,|/3 ‘ 11:
2) supp, > exp{(/3 -  1) " (7 '„  - /) 1/(й" } ~ 1 :

3) sup, ii > ln|(7'0 —- О ~11- t £ '/'о)-
Let us consider two examples o f  degenerate parabolic equations (the possibili

ties of derivation of  (//-criticality conditions are discussed in jj .3).

Exam p le  2. Let us consider equation (5) for f3 > <r +  1. Let us set ф (р )  — v p " .
where v > 0. a  e (1. f i  — <r| are constants. Inequalities (8 ). (9). which reduce,
respectively, to (a  -- 1 ) («  +  cr) > 0 and ctv — ( a  +  cr — (3)р^~ “ > 0 . are satisfied. 
Since a  > 1. condition (10) holds as well. Choosing the initial function in the 
form no =  |(rr +  1 )Ц)|1/1<г + 1>. where ииф()  is a solution of the problem

Ai.’o +  | (ir +  1 ).ч/ /,,г 1,1 — ;/| (tr +  1 ) 11 =  0 in П, i>(> — 0 on Ml.

we have that for some 7'() < t" =  |max i<0 11 " " /\ u (a  — 1)| (14) is satisfied.

Exam p le  3. Let equation (1) have the form

It, -  V ■ (ln( 1 +  !()V|() +  (1 +  к) 1 ,Л  1 +  n). (18)

where (3 > 2 is a constant. Let us take ф (р)  =- //(1 +  /?) In "(1 +  p ) .  i> > 0,
a  e  (1. /3 — 1) (for a  > 1 the integral in (10) converges). Conditions (8 ) and (9)
assume, respectively, the form or — 1 > 0  and v — ( a  +  1 — f3) ln^~"( 1 +  p)  > 0, 
and since by assumption a  e  (1. /3 — 1), hold for p  > 0. Therefore if  no satisfies 
inequality (7), the solution o f  the problem becomes unbounded after time 7'o which 
is not larger than

/* =  i I n i  1 +  m a x  » o | l  "  / I i / ( o  — 1 ) |  <  o o .

There is a close connection between the results o f  Examples 2, 3. Let us make 
the change of variables n =  e l/ — 1 in (18), Then the function U satisfies the 
equation

U, =  V ■ ((7V(7) +  Up +  U\VU\2, (19)

which differs from (5) for <т =  1 by the presence of the additional non-negative 
term 7/|V(7|2 in the right-hand side. Therefore solutions o f  equations (19) and (5) 
for a  =  1 are related by U(t. x)  > a (/. x)  if it holds for t =  0 (here we are in fact 
using the simplest version o f  the operator comparison theorem). This argument 
allows us to derive unboundedness conditions for solutions of one equation from 
similar conditions for another one (see subsection 3),
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2 Unbounded solutions of the C auchy problem  with a critical initial function

In this subsection we show that criticality o f  solutions of a wide range o f  equations 
(1) frequently leads to global insolvability of  the Cauchy problem.

An initial function and the solution o f  the problem (1), (2')  are called cr i t ica l ,  
if ti, > 0 in P/-|a|. Thus и does not decrease in t in (0, T)  x  R ,v. As can be seen 
from the results of j? 2 , for criticality of  a solution it is, in general, sufficient that 
the initial function satisfies the inequality

V ■ (k ( kq)Viio) -f- Q (uo) > 0, .v G {.v G R ' | uo(.v) > ()}. (20)

In particular, a critical function is any non-negative solution o f  the boundary prob
lem

V ■ (A(iio)Vno) +  У О т )  =  0- .v g П: uoImi =  0 (21)

(П c  R a is an arbitrary bounded domain with a smooth boundary i)il) extended 
by zero into R a Al.

When П is a ball, all radially symmetric solutions of the problem (21) can he 
determined from the equation

N  -  1
( к  (t<o )t ‘o) H-------— k ( u {]) u ’{) +  Q ( u o )  =  0. i" ■ I a1 I > 0, (22)

and the boundary conditions

!!«((» =  it,,,. !<;,(()) =  0 , (23)

where tt,„ > () is an arbitrary constant.
In the one-dimensional case equation (22) can be integrated and the solution 

of  the problem (22),  (23) has the form

nu(.v) =  X t y(,v), (24)

where X fy  is the function inverse to

Xky(.V)
k( 1 7 ) tit7

, f
1 1/2

2 I k ( £ ) Q ( ( ) , l £
’ 1

,V G ( 0 , It,,,). (25)

Hence it follows that the function (24) is delined and strictly positive for all 
I л I < r0(tt,„), where

» '« ( « „ , )  =  ~ m e a s  s u p p  n „  =  XkQ(0). (26)
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Equalities' (2 4 )—(26) give u.s an idea about the nature o f  the dependence o f  the 
spatial structure o f  a critical initial function uq on the magnitude o f  its maximum 
u,„ and the coefficients к , Q,

For arbitrary N > 1, equation (22) can be integrated, for example, if Q(tt) =  
рф (и).  v — const > 0 , where

ф(и)  =  / k(rj)<lrj, 11 > 0. (27)
./o

Then by a change of variable Щ) —>■ ф (и{>) it reduces to a linear equation, the 
solution of which is the function p -  N)r~.l{,s where . l{\ 2);i is the
Bessel function.

Let us now state the main results. Let us fix an arbitrary R > 0, We denote by 
the hall (|,v| < /() and introduce the function

<A/f(.v) -  c „ r {2 w,/2./(,v :,/2(Al/:r ) .  (28)

which is positive in ПдС here

A =  \:.^ /R \\ (29)

and is the lirst (smallest) positive root of the Bessel function Ju\-2);2-  The 
constant C'n is determined by the condition ||(//д||/.ч!ц.| =  1, It is not hard to verify 
that t//«(,v) solves the problem

Д<//д -(- А<//д =  0, фн — 0  on ;)Пд, (30)

We set i//д =  0 in R'v\ n«,
Let us consider the function

НцО) — (u(l,  x) .  фн) =  [  tt(l, х )ф и (х )  d x ,  (31)
■/!!*

Taking scalar products in L - ( i ln )  o f  both sides o f  equation (1) with t//« and as
suming for simplicity that the function H n(t)  is differentiable in t. we obtain the 
equality

d H u / d t  =  (\ ф ( и ) ,ф к )  +  ((J(t<). t > 0. (32)

L e m m a  1. P a r  a l l  ad m iss ib le  t > 0

(А ф (и ).ф ц )  > - М ф ( и ) - ф к ) -  (АЗ)

P roo f ,  If  the solution a > 0  is a classical one, (3,3) is immediately verilied. Indeed, 
using Green’s formula, we have

(\ ф (и) ,  <//«) =  (ф(и), Афк)  +  / (ф к'-~ —  ~  ф ( и ) 1~р1 ) (/.у, (.34)
it!* V <>ii bn )
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where 8/i)n  is the derivative in the outer normal direction to However.
фи =  0 . 8фк /8 п  < 0  on 1){\r (the last statement follows from positivity of фк in 
i ln ) .  Therefore, taking into account (30),  we obtain from (34)

(Аф (и),  фн ) > (ф(и), Афк ) =  - М ф ( ч ) .ф к ) -

If, on the other hand, it is a generalized solution, then the estimate (33) is 
proved hy a standard regularization argument. □

Using (33) to estimate the right-hand side of (32),  we deduce the inequality 

( IH H/cli > - к ( ф ( ч ) . ф к )  +  (О (п ) .ф к ) .  t > 0. (35)

which forms the basis o f  the following analysis.

L em m a  2. Assum e that the function  Q satis fies  condit ion  (4),  a s  w ell  as' the in
equa lity

Q"(u) > 0 . и > 0 , (36)

an d  that there  exi sts a  constant p. > 0 , such that

ф (а)  < p Q ( u )  in R , , (37)

Then the so lution  o f  the C au ch y  p ro b l em  (1),  (2 ) is u n b ou n d ed  a n d  exists at most  
f o r  time

min
R 2

RL
U/v ) г■I Hu

1>V )

(0) 0<T?) J 3C, (38)

P roof,  Lei us choose the constant R > such that H id 0)  > 0 (this can
always he done if Пц ^ О ),  By (37), from inequality (35) we have

d H n
' dt

i H > \ '
<-,v > P  
R 2

(Q ( u ), фц), i > 0 , (39)

Hence, using Jensen 's inequality for convex functions 12 111. (Q(tt). фц) > 
(J|(и, <//,;)| =  Q (H n)  (recall that IHA/vII(£i„i ~  D. we derive the estimate

d H K
d t" R 2

Q ( H H), i > 0 .

From this estimate, in its turn, we obtain

Г " (п J J L  > ,f  ~  ,
//„an Q ( v ' )  ~  R 2

> o.

Hence H K(t) is unbounded on ((),/* |, which, in view o f //«(/) 
u ( t ,x ) .  ensures that (14) holds.

(40)

< I'UIX,el!
□
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Theorem  1. Let cotulitions  (4).  (36)  hold, a n d  a s su m e  that there exist constants
p. > 0, h > 0, such that f o r  a l l  и > h inequality  (37) holds.  Let the Initial function  
«о he  critical,  an d  that, m oreover ,  i<o(x) ^  li f o r  a l l  |.v| $  a, w here  the constant  
a  > 0 is such that

1 - / x ( : . " V «) 2 > 0. (41)

Then the so lution  o f  the C au c h y  p r o b l e m  (1).  (2') exists  at m ost f o r  time

a 2 /"■" drj

a2 -  (r.'/vl’ l V  ' ' " ' " ' i  0 * 7?1
< oo. (42)

P roof.  By criticality o f  the initial function, we have the inequality u(i.  x) > h 
for all |,r| 5  о and admissible / > 0, Let us take R — a. Then ф(и)  < p Q (u )  
everywhere in Ц , ,  Therefore from (39) follows validity o f  the inequality

dH „

di

, j u  - 
<-/v ) P

((?(»). Ф,,). 1 0 .

which hy (41)  ensures global insolvability o f  the problem (see the proof of Lemma
2). □

A stronger result than that o f  Theorem 1 will be obtained for N  =  1. Here we 
shall assume that the condition

k(rj)
d p (43)

holds, which ensures that the solution o f  the problem has compact support in x if 
mens suppiio(.v) < oo (see 3. Ch. I),

Let us denote hy

i’s'(t. x) =  / (/ ) .  £  = x / t ' /2. (44)

the self-similar solution of the equation

a, =  (k (v ) i\  ) , ,  / > 0 , x €  R , , (45)

which satisfies

vs (t, 0 ) -  u,„. in,(t, oo) = 

(here 11,,, >  () is a fixed constant).

= 0 . t > 0 (46)

The function /(/) is determined from the following boundary value problem 
for an ordinary differential equation:

( k ( f ) f ' ) '  +  -  f ' £  =  0 , / > 0 : /(()) =  и,„. /(oo)  =  0 , (47)
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where / ' =  d f  / d f ,  Existence and uniqueness o f  the solution of problem (47)  for 
sufliciently arbitrary coefficients к have been established in 123, 24, 6 8 J, There 
it is also shown that if (43) holds, the function / ( f )  has compact support: fo =  
meas supp /  < oo and wherever it is positive, it is strictly decreasing. This 
guarantees the existence o f  a point f  =  f,„ e R , , such that /(f,„) =  /.//2.

T h e o rem  2. A ssum e that the cond it ions  (4),  (36),  (43) a r e  sa t is f ied  a n d  that the  
function  Q /ф  is lu m -decrea s in g ,  that is,

Q'(u)d>(u) -  Q (n )k (n )  > 0. a > 0, (48)

Let the initial fu nc t ion  tip he  c r i t i c a l1, a n d  max ito(,v) =  it,,, > 0, Then f o r  N =  1 
the so lution  o f  the C a u c h y  p ro b lem  (1),  (2 ')  exists  at m ost f o r  time

“ 0 ( h.../2 )

. to
-/V

Cm
+  2

Л  d y

»,„/2 Q W
(49)

P roof.  For definiteness, let supttp he attained at ,v =  0, that is, ;/,,(()) =  u,„. Then 
hy criticality of the initial function we have the inequality n(t. 0 ) > u,„ for all 
admissible / > 0, Comparing equation (1) (for N  =  1) and (45), we see that

n(t, x) > J\\x\/t'n ) (50)

everywhere in the domain of definition of  the solution o f  the Cauchy problem 
we arc considering. The validity of this conclusion follows from the Maximum 
Principle; also taken into account are condition (46)  and the assumption (4 3 ) ;  in 
addition, we make use o f  the fact that us (/. |,r|) - »  () as t —> O4 everywhere in

R\(<>).
Let us set lt„, =  ti,„/2, p,„ =  cf>(lim) / Q ( h m). Then by (48) for all n > li„, 

inequality (37) holds for p  =  p,„.  From (50)  we have that for all t > t],  where

1 pm  , ( 1)2 
“ „I t-/V I

 ̂ Ф(Чт/2)  ( i)2

~QUtn,/2)Ci,
(51)

on the interval |л| < a„, =  СпА1] ) 1'2 we have the inequality u ( t . x )  > li„, =  
u,„/2 .  This choice of  the constants li,„. p m, <i,„ ensures that (41) holds (here 

f i'm)1 =  1/2  < 1), By Theorem 1 this guarantees unbounded growth of 
the function H Ui„(tJ +  /) in time which does not exceed

c  — /„(1)
( './v )*

d p

//„, (t;> Q ( y )  ./m„,/2 Q ( i7)

dr)
(52)

'Without loss of generality we can take t/p to lie defined by (24), It is not hard to show 
that (24) is the minimal critical initial function having a maximum u,„ > 0.
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(in the derivation of  the last inequality we used the obvious estimate H„m(t])  > 
um/2 ) .  Adding (51) and (52) together, we arrive at the required result, □

The conditions o f  Theorem 2 are satisfied, for example, by coefficients of 
equation (5) for f i  > it  +  1 (this restriction is connected with (48)) .  It is known, 
however (sec § 3. Ch. IV), that for 1 < /3 < cr +  3 all non-negative non-trivial 
solutions of the Cauchy problem (5).  (2')  are unbounded in the case N  =  1. Hence 
we have

T heorem  3. Let the initial Junct ion  иu ^  0 o f  the p ro b l em  (5), (2 ') f o r  fS > 1. 
N  =  1, h e  c r i t i c a l  Then the p r o b l e m  h a s  n o  g l o b a l  so lutions.

This theorem can be extended to the multi-dimensional problem (5 ).  (2')  under 
the condition 1 < (i < ( i r + \ ) ( N  +  2 ) / ( N  — 2 ) { . Let us briefly explain the method 
o f  proof.

If  Unix) is a critical initial function with compact support, then assuming that 
it(t. x) is u global solution leads to the following conclusion: u(t. x)  —» oc in R'v 
as t —> oo. If  that is not the case, then two possibilities arise: either tilt. .v) is 
bounded uniformly in t in R ^ , or t t ( t .x )  stabilizes from below as / —» oc to a 
.singular stationary solution f t , (л ), delincd, for example, in R /v\(0), and ft,(0) =  oc 
(such solutions exist for f i  > ( i r +  1 )N / ( N  — 2 ) s e e  |2()1.2 2 7 1). By monotonicity 
o f  u ( t .x )  in t (which implies existence o f  a Liapunov function -  fK t i ( t . x ) d x  
with an arbitrary compact subset К  C  R w, and hence the estimate jh. |tt,(/)| e 
L ' ( ( l , o o ) ) ,  which would he sufficient to pass to the limit as / =  / * —>■ oo), 
the first assumption leads by standard arguments to the conclusion that u ( t .x )  
Stabilizes from below to a stationary solution а , (л )  > 0  in R w, which does not 
exit for (3 < (cr +  1 )(N  +  2 ) / ( N  — 2 ) , .  (For the case и ,  =  u,(|.v|) this has been 
established in 3, Ch. IV: non-existence of asymmetric in |x| solutions of  the 
equation Д tt'J11 +  u* =  0 in R w has been proved in 12 0 1 1.)

The second assumption reduces to the first one. It means that и —* со  as 
t —> oo only at the point .v =  0. However, u ( t ,x )  < h , ( x )  in R.(. x R r .  since 
u, > 0  in /J .̂|a| by the Maximum Principle 11011 (z =  u, > 0  in a neighDourlmod 
o f  any point where the equation lor r. is uniformly parabolic). Therefore there 
exists ли e R w, such that u(t. x) s  П*(л' +  л'о), and therefore u(t.O) < й ,(х » )  <  oo 
for all t > 0, which means that the solution it is uniformly hounded in R + x R^.

Thus, if  и is a global critical solution with compact support, then it o o  in 
R w as t —► oo. Therefore sooner or later t t ( t .x )  will satisfy the conditions of 
Theorem 1 (the case f i  ^  cr +  1) and eventually will become unbounded. For 
1 < /3 < w +  1 every solution tt ^ 0  o f  the Cauchy problem for (5) is unbounded 
(sec tj 3. Ch, IV).
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3 A pplication of generalized com parison  theorem s

In this subsection unbounded solutions of equation ( 1) are studied by comparing 
them with various solutions of equation (5).  properties of which were studied in 
detail in j? 3. Ch. IV.

For convenience, let us introduce the function

where T . a . A  are some positive constants, the latter two of which satisfy the 
relations

In § .3. Cli. IV it is shown (Theorem 1) that if the inequalities (54) hold, the 
function (53) is an unbounded subsolution of equation (5). We shall use the fact 
that for 1 < f i  < tr +  1 +  2 /N  all the non-trivial solutions of the Cauchy problem
(5),  (2') are unbounded (Theorem 2, tj 3, Ch. IV).

3.1. First we use the direct solutions comparison theorem (Theorem 2, § 1).

T heorem  3. Let the co e f f ic ien ts  k, Q in (1) satis fy  f o r  a l l  it > 0 the  in equalit ies

w h ere  <r > 0, f i  e  (1, tr +  1 +  2 /N )  a r e  f ixed  constants. A ssum e that the initial  
function  ho(.v)=£() in (2')  is critical.  Then the C au ch y  p ro b l em  (1),  (2') lias  no  
g lo b a l  so lutions.

E xam p le 4. Let us consider the equation

и , тц(1. x\T) -  (T  -  t) 110 "A|l -  |л-|-(Г -  t) -W-am-UMUi-u 

0 < t < T. x  e  R A: <r > 0. f3 > 1.
(53)

4 A" ir +  1 -  /3

7 r 7 f  > ~fi~—~\

(54)

k ( a )  >  i t" ,  ( k U D / t f ’ )' >  0 ,  Q U O  >  u 0  lrk ( t t ) . (55)

tt, =  V ■ ( t tc": Vtt) +  t t V \  f i  > 1. (56)

It is not hard to see that conditions (55) are satisfied with tr — 1. Then it follows 
from Theorem 4 that in the case of 1 < f i  < 2 (N +  1 ) /N  any critical initial function 
и о ф  0 generates an unbounded solution of the problem.
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Let us consider in more detail the problem (56),  (2')  lor N  =  1, Here

f"  1 ;
ф(и)  =  / к(т)) (It) =  ~(e"  — 1 ) , t t > ( ) ,

./о 2

It is easy to cheek that

Sgn(|0/<A!'(")) =  sgn V ,; -  l ) - 2 i / ,M ] > s g n | ( 0 - 2 ) i i /,'‘ , | =  sgn (/3-2)

Hence it follows that for f i  > 2 inequality (48) holds, and then, using Theorem 2, 
we conclude that for N — 1 any solution o f  the problem (56), (2 ’ ) corresponding 
to a critical initial function (delined, for example, by (24)) ,  is unbounded,

3.2, Below we apply to the Cauchy problem (1), (2')  the operator comparison 
method in the form presented in the corollary to Theorem 4, § 2. The following 
claim is proved using the results o f  § 3, Ch, IV.

T h eorem  4. l,et there  exist a  m o n o to n e  increas ing  Junction  E  : R + —* R  . , such  
that

E"{u)  < 0, и > 0; (57)

k(u )  =  \E(u) 1". <200 > \ E U < )f/E ' (u ) .  и > 0: <r > 0. /3 > 1, (58)

Then:  1) (/ 1 < /3 < <г +  1 +  2 /N  a n d  ttn^O, the C auchy  p r o b l e m  (1),  (2')
h a s  no g l o b a l  solutions  

2 ) i f
Unix) > E  [ \U,rp ( 0 . x : T ) ) .  ,v e  R A. (50)

f o r  so m e  T  < oo (E  1 is the function inverse  to E), then the so lution o f  the p ro b l em  
^exists f o r  time To < T, a n d  f o r  a l l  ( )< / < •  To  n r  h a v e  the est im ate

iid. -v) > E x{U „p(t.  л; 7')).  л e R " .  (60)

Let us consider some examples.

E xam p le  5. Let E(u) — ln(l +  tt). Condition (57) is satislied, and examples
o f  functions k . Q  which fulfill the requirements (58) are the coefficients o f  the
equation

и, =  V • ( ln " ( l  +  toVu) +  (1 +  tt) ln/J(l +  to, (61)

Therefore for 1 < (3 < <r +  1 +  2 /N  all non-trivial solutions of this equation are 
unbounded. In the ease (3 > <r +  \ +  2 /N  a solution will be unbounded if  the 
inequality (50) holds; here it has the form

Unix) > cxp[(/,r/j((), x\T)}  -  1, л e R s .

2In this case the interval of time of existence of the problem saiisfies [lie upper bound
obtained in Theorem 2 of £ 3, Ch. IV.
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In S 7, Ch. IV it is shown that lor ir =  0, (3 > 1 +  2 /N  for s'ufliciently small 
initial functions tin equation (61) has global solutions.

More detailed information concerning unbounded solutions o f  equations o f  the 
type o f  (61) is obtained in § 7, Ch. IV by a different method.

E xam p le  6 . Now let EUt) ... и / ln(e:  +  tt). It is not hard to check that the function 
E  is monotone increasing and concave in R , .  Then conditions (58 )  are .satisfied 
by the functions

k(u )  =  u"7  In"'(г*2 T  tt). Q(n)  > 2 tt  ̂ In1 +  tt).

Therefore the Cauchy problem for equation (1) with such coefficients does not
have global solutions in the case 1 < /3 < <r +  1 +  2 /N .  tto^O.

A.s other examples of  functions /•.' ; R ,  -+  R i ,  which satisfy (57).  we could
take, say, EUt) =  tt,/■ ln(e ' +  tt), E(tt)  =  ex p [ln ,/:!( 1 +  tt)) — 1 and so on.

§ 7 Criticality conditions and a comparison theorem for finite 
difference solutions of nonlinear heat equations

In this section we show that the assertions concerning criticality and the co m 
parison theorem can be extended without requiring major modifications to cover 
the case of  finite difference solutions o f  the same parabolic equations, that is, the 
solutions o f  implicit difference schemes constructed using an approximation of 
the parabolic operator in divergence (conservative) form. This indicates that quite 
subtle properties of the heat transfer process are shared by its correctly constructed 
finite difference approximation. This fact is o f  supreme importance for us, since 
at all stages of the investigation o f  nonlinear processes o f  heat conduction and 
combustion we use numerical methods extensively. The theory o f  comparison ol 
solutions o f  different parabolic equations is one o f  the main tools o f  our study. 
Therefore it is important that this theory can be used almost as freely at the level 
of linite difference solutions.

Below we present our analysis using as an example the nonlinear heat equation

« , - ( < / > ( « ) ) , , .  ( 1)

for which we shall consider a boundary value problem in (0 , T)  x (0 , /), where T , 
I are lixed positive constants, with the conditions

«((). .v) =  uo(.v) > 0 . л- e [0 , /[; (2 )

u(i,  0)  =  U[ (0  > (), tt(i, I ) =  /<2(7) > 0, 0 < / < T. (3)
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The non-negative function ф e  C 2( R , ) П C (10. со ))  is strictly increasing: ф'(и) > 
0 for и > 0 , ф (0 ) =  0 . 'l'lie functions no, itu tt2 are taken to be sufficiently smooth, 
//o(0 ) =  U|(0 ), n<)(/) =  “ 2{0 ).

Let us introduce a spatial grid

ш,, =  [Aa =  k h ,  h > 0 ;  к =  1 , 2 ..........M  -  1; ItM =  I )

and a (non-uniform) grid in time w T. generated hy a system o f  time intervals

\ r 1......... N-, X > ,  =  T).

Let us denote hy
“ o h  —  ito(kh) .  0  <  к <  M ,

the corresponding grid functions, which coincide with u0( a ) and it,U) at the nodes 
of the grids a)/, and uiT. respectively.

Corresponding to the problem ( l ) - ( 3 ) ,  let us set up the implicit (nonlinear) 
difference scheme:

Пд ~  Vk
(vk ), = ----------- =  (<Д(п;))м. U. ,v) 6 uhi, =  ю т x “>h'~ <4)

T l

Щ  =  “ Oh  >  о ,  Л 6  1 0 , , \  Do =  l<<|(0), v ' M  -  “ o ( l ) \  (5)

Do =  “ \ T >  0, Од./ =  “ 2 т  >  0, I e  W T . (6)

Here we have introduced notation which is standard in the theory o f  difference 
schemes 1346): 0 =  ujf1 vk =  is the unknown function, ( щ ) ,  =  (vk — vk i ) / h .  
(uQ , =  ( vk 11 — \>k)/h arc first order difference operators, so that

f>h(vk i - 0 a- I 'm )  =  (Ф(“0 ) , ,  =  -р ;)Ф (“к i) -  2 ф (щ )  +  ф ( о к^ )\ .  (7)
li-

The problem ( 4 ) - ( 6 )  is a system o f  nonlinear algebraic equations. Questions of 
existence and uniqueness of the solution o f  the resulting linite difference problem 
are considered in § 5. Ch. V II . Iterative methods of solution of similar nonlinear 
finite difference problems arc considered in detail in 13 4 6 1.

We shall assume that the solution o f  the difference problem (4)~(6) is delined 
everywhere in u>Th, and that at each j-tli  step in time the system o f  equations is
solvable for till 0  < r  < r ; . We shall also assume that in some class o f  grid

functions Dj( 11 close to v[ the mapping r  —> Пд+| is a Injection and continuous

in CU oh ) and that njfM —► v[ as т - *  О1 in w/,. The last requirement is natural:
the two preceding conditions arc not restrictive and arc satisfied in a more general 
setting (sec § 5. Ch. V I l ).
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1 A M axim u m  Principle

Let us denote by 9u>Th the parabolic boundary of u>rh, that is, i)u>Th ~  [t =  0, .v e 
uj/,) U [/ e шт. .v =  0) U [/ e шт, .v =  /), ш/, =  [,v =; k h ,  к =  0 , . . . .  M\. In 
the following lemma (it is repeatedly used helow) we obtain restrictions on the 
finite difference approximation of the parabolic operator, under which the solution 
of  the problem cannot take negative values, that is, it satisfies a weak Maximum 
Principle.

L em m a  1. Let the g r id  function  h e  the so lution o f  the p ro b lem

(.д ), = —----- - = 0 h ( ~ k -  |. f k  11) i n  (Orh- (8)

w h ere  the function I f , ( a .  h. c).  which is continuous on  R x R x R, is such  that

e h(a .  h. c)  > 0u(b. h. h) > 0. a  > h. c  > h. (9)

Let > () on  ihur/,. Then  > 0 in u>Tn,

Proof.  Let ./ =  max[y | > 0. л e  <oh\ 0 < i < j )  < N. Then there exists .v e ш/, 
(a point o f  negative minimum in .v in up,). such that M < 0 .

> r . ;11. Therefore, using (8 ), we obtain from (9)

J  i I .7
: k : -t n  ( j  t l  . 7  t I J ( l \  .  , 1 / 7 ( 1  . 7 ( 1  _ 7 t l \ ^ n  

----  -  -  {- к  I ' ‘-7 • '■;•( i )  -  w* { ‘■к " А  --к )  s  0-

Therefore : { ! 1 > z{ .  which contradicts the choice o f  the number J .

( 1 0 )

C orollary . The so lution  o f  the p ro b lem  (4)~(6) satis fies  the w ea k  Ma.xiinum Prin 
c ip l e :  i'l > 0 in ioT/i, I f  v" > 0 in u>h. then >  0 in ioT/,.

Proo f.  Let us consider the system of equations

C.k)i =  —----- - = dtAtk i • ik- ~k ( i ) s  Lf (fk) ) \ i .  -') £ <°Th- (11)

with the boundary conditions (5), (6 ). where if ( v )  =  r/i(|n|)sgn v. It is not hard 
to check that for this problem all the conditions of Lemma 1 are satisfied, so that 

>  0 in uiTh. However, for f  > 0 equation (11) is the same us (4),  so that 

by uniqueness o f  solutions (see § 5, Ch. VII) v[ s  >  0  in wT/,. The second 
assertion follows immediately from the analysis of equation ( 10) with right-hand 
side ( 11). □
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2 Sufficient conditions for criticality  of the finite difference solution

Definition. A solution o f  the problem ( 4 ) - (6 )  will be called cr i t ic a l  if  for all
t £ Oij

fit -■ i>t > 0 , л 6 ш/,. ( 12)

In the ease of the problem (4 )—(6 ), the theorem concerning criticality of the 
solution is to all intents and purposes the same as its differential analogue o f  § 1.

T heorem  1. Criticality o f  solution  o f  tlic p ro b l em  ( 4 ) - (6 )  is en su red  by the in
equa lit ies

(</>((<(>/,)), ,  > 0 , -V e top, (13)

u\(t) > O .ih ( t )  > (). t e  [О. 7 ) .  (14)

O f course, (14) can lie replaced by a condition o f  non-deereasing of  the func
tions u,(t) (i ■— 1, 2 ).

Proof.  Let us set z.k — d'k — Then z.k is a solution o f  the problem

--------  = 0h(Zk I.Zk, Z.k f | 2=
Tj

= ~~ \ptA vt i + TjZk i , t't + TjZk. Vk, i + T,Zk 11) —

- P h C ’k | .  V k -  > < u  i ) | ,  ( l • -V) 6  ( O r I , - .  

~'k —  P t A v \  i • u(/- I’t! ̂  t )- -r 6 ( ° h .  4> — ' - M
.0 _  ,, ,< >  , , ( )  , , ( )  ,  ^  , , .  ,0 ______0 Q .

it |r ~~ a | T . ihr  ~~ Ч2

t e  coT.

(15)

(16) 

(17)

To deline the initial function in (16).  we have introduced an additional fictitious 
time level with index j  =  —1; r .  i > 0 ,

- 1 о , о ,o о .Vk =  l ’i  -  т  I puU'k , . v k. n t l ( 1 )

in 0 )1,.
Let J  — maxl7|-/i <L .v 6 юр, 0 < i < j )  < N. Since > 0 in щ ,  we

deduce from (4) that (ф(и{ ))y v =  z{  > 0 in «/,. Let us consider (15) for j  =  J .  
By assumption, • vk — vk —» () as t , - *  O' in CUoh).  Therefore there 
exists т j > 0 , such that т , а  ~  0 lor some л e ш/, and тр.к-t i £  0 ( r ,  > 0 by 
the condition (r/>(i'0)Tv > 0 in ш/,). Then from equations (15), (7) we arrive at 
a contradiction, since its right-hand side (hAz.k -i.O.f.ui) is non-negative hy the 
conditions ф'(и) > 0 for tt > 0 , z.ku  £  0 - □
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3 A com p arison  theorem

Let us consider in toTi, the two finite difference problems corresponding to boundary 
value problems for two different ( e  =  1, 2 ) nonlinear parabolic equations with 
operators of the form ( 1):

U't), =  (18)

=  “on > ()- л e (19)

f-j; 1 = й',;’ > o, (%> =  «у;1 > о, / s coT . (20)

The following assertion is quite similar to the comparison theorem o f  § 1. The 
methods of proof are. however, signilicantly different.

T h e o rem  2. Let

! ’i~10 > ’'Г '0- r e  to(,; /rj-1 (/) > n j1 ’ (/), 0  < t < T, i =  1 ,2 .  (2 1 )

a n d  let the b ou n d ary  cond it ions  o f  the p r o b l e m  f o r  и =  2 b e  cr i t ica l :

> 0 . .v e to , , ;

> 0, 0  < 1 < 7’, i =  1 ,2 .

A ssum e that f o r  a l l  p  > 0

<t>{2) i p )  -  ф 1,} i p )  > 0 , (2 2 )

{фа ) \ р )И > {" \ р ) \  > 0. (23)

►ri ( 2) » 11)
I h e n  vk >  vk m  o)T/,.

Proof.  Setting z. =  i'j' 1 -  v[u , we obtain for this grid function the problem

— 0 / A f  i, h .  r.i4 1) =  !J‘i </(0 ,0 !)

and by (21)  z.k > 0 on ik o Th-. r ‘;J > 0 in (oh. Using the method of  proof o f  Theorem 
1, we have that z.k > 0 in «/, if UiAz.k |,0 , 7 t 4i) > 0 where ,~ц. i > 0 (here we 
have introduced the notation z.k =  zJf ' , J  =  max{ j  \ z.[ > 0  in coh\ 0  < i < j ) .

Since
OidZk I , ( ) . : n i ) >  « * ( ( ) . 0 . 0 )  s  .■у:*,2', ') ;2' -  \

the theorem will he proved if

t / ; ( 2 ) - l2>  , ( i ( l ) - ( 2 )
J h ' I ~ J h ! к р|<А,2, (.-;2, 1) - ^ |,(Г';2,1) +

+  ^ ’ (f-n1,)  -  -  2 [ (A,24 i f ’ ) -  (A " > ( i f ’ )!) > ().

(24)
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From the criticality of the solution it follows that in coTi, we have the 
inequality

Therefore

< (Фа>) (25)

where ( ф <2)У  1 is the function inverse to ф 12>.
Since ф 12) — ф 11] does not decrease in R ,  (see (22)) ,  using (25) we obtain

Substituting this estimate into (24).  we obtain

(26)

Let us introduce the notation гД^Чп^,1, ) =  ш щ ,  Then the last inequality can 
he written in the form

cn : , ’f ’ -  ‘О ! 21 > U " '  ( ui>i2)' ' (

\  [ ф (" и ф {2)) V r  ,)) + ф п ' и ф {2)) '(mM , ) ) ] j .

(27)

However, inequality (23) ensures that the function ф {1Ч ( ф {2])~1 (p)) is concave, 
since

[ ф { ' \ и ! > 0 ) ) ■ '( /> ) ) ]"  =  [гД,2 , ' ( 17)] ' [гД, п '07)/<А( : ’, ( ’7 ) ] '  <  0 .

where rj = ( ф {2))” '(/>). Since / ( ( 1 7 1  +  1 7 2 )/2) > 1 / ( 1 7 1 ) +  / ( т ц ) \ / 2  for any
concave function /'( 1 7 ) and any 1 7 1 . 1 7 2  > 0 , wc have that the right-hand side of
(27) is non-negative, which completes the proof. □
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Remarks and comments on the literature

Results o f  § 1, as well as o f  subsection 1 of § 2, are presented in detail in 
[147, 148, 151]. Comparison theorems proved here, which are based on spe
cial pointwise estimates o f  the highest order spatial derivative of the majorizing 
solution, can be considered as generalizations of well-known assertions concern
ing the relations among subsolutions and supersolutions o f  equations or systems 
o f  equations o f  parabolic type (see, for example, [101. 338, 361, 378)) ,  Earlier 
eriticality theorems for solutions of  semilinear parabolic equations were used in 
[356, 357. 378). Criticality conditions for a generalized solution o f  a scalar quasi- 
linear heat equation were obtained in [295], Particular comparison theorems for 
solutions o f  specific quasilinear parabolic equations, proof o f  which uses the sign 
of the second spatial derivative o f  one o f  the solutions, can he found in [252], 
Slightly after [147, 148. 1 5 1 1, the same method was used in [ 4 5 1 to establish the 
comparison theorem for operators (33)  with b u) =  0 (see § 1); the comparison 
condition then has the form o f  the lirst inequality (.34),

The operator comparison theorem, particular cases o f  which are Theorems .3, 4 
o f  $ 2 . stated for sufficiently arbitrary nonlinear parabolic equations, which uses 
estimates following from i//-criticality o f  the majorizing solution, was proved in 
1117, 1 1 8 1 (in [118] the results are presented using an example of quasilinear 
equations with a source).

Sufficient conditions o f  i//-criticality o f  solutions (Theorem 1, ij 3) o f  problems 
in one space variable were obtained in 11 17, 118), In [117] in the case o f  the 
Cauchy problem the dependence i// =  i//(u.«,) was analyzed (the setting o f  the 
Cauchy problem allows us to determine the sign o f  the function r (0 .  x) — u,(0 .  x ) ~  
i/f(Uo(.r). u(' ,U ) ) ) .  Later concepts equivalent to (//-criticality were introduced in 
[364. 365);  these papers contain applications to unbounded solutions See other 
applications to explicit solutions in 1139|.

Most of the results o f  ij 4, 5 are contained in [ 146, 154|. Л different approach 
to the analysis o f  the localization phenomenon is used in Ch. VI. Theorem 4 
o f  § 4. concerning heat localization in the Cauchy problem, was proved in [ 1 4 6 1. 
Conditions for immobility for a finite length o f  time o f  the front point o f  generalized 
solutions o f  equations with kUt) not of power type, were studied in [ 2 5 2 1, For 
k(tt) =  и", сг > 0 such studies are to he found in |58. 232, 2 4 8 1, For the 
multidimensional equation some results in the same direction are contained in [59]. 
There (see also 13 2 8 1) the authors also study the properties o f  the degeneracy 
surface, which corresponds to an arbitrary generalized solution o f  the Cauchy 
problem for the equation u, =  An" 1 Most  of these results are analyzed from a 
general standpoint in the monograph 110 3 1,

The method of analyzing unbounded solutions of parabolic equations with a 
source (subsection 1, 6 ). based on (//-criticality conditions of the problem, was
presented in 1120, 1 2 5 1, To establish upper bounds a similar approach was used
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independently by 1108| and in a large number o f  consequent papers. In proving 
assertions of  § 2, we use a method (called in the terminology of |289) the method 
of  eigenfunctions), which was also applied for a similar analysis o f  boundary value 
problems in bounded domains for semilinear (A-(n) s= 1) [243. 2 89) .  quasilinear 
[120. 121, 125. 225] parabolic equations and systems thereof [ 161).

Proof o f  Theorems 1-3 in § 6 , which uses a new idea, viz., criticality of  the 
initial function, is given in 1120. 1 2 7 1. Part of the results o f  subsection .3 of § 6 

is to be found |150). For other methods applicable to the study of unbounded 
solutions see Ch. IV, VII. For short surveys concerning unbounded solutions of 
evolution problems see 1157, 289 , 3 3 4 1.

The results o f  § 7 are a particular case of the statements proved in [ 126). where 
criticality of finite difference solutions has been established for parabolic equations 
o f  general form u, — L ( u , u , . u vv). |126| also contains comparison theorems for 
solutions o f  implicit difference schemes for two different equations o f  the form 

h,1" ’ =



C h a p t e r  V I

Approximate self-similar solutions of nonlinear 
heat equations and their applications 
in the study of the localization effect

§ 1 Introduction. Main directions of inquiry

In this chapter we propose a general approach to the study o f  asymptotic behaviour 
o f  solutions o f  quasilinear parabolic equations

//, — (k ( i t )n , ) , ;  к (и) > 0 , it > 0 , ( 1)

where к e  C 2((0, эо))ПС(|(), o c )) .  For this equation we shall consider a boundary 
value problem in w, =  (0, 7') x R + , T  < oc, with the initial condition it(0, x)  =  
u0(x)  > 0 in R ( , and witli the lixed boundary behaviour /<(/, 0 )  =  ii\(i) > 0, 
1 e (0 .7 ") ,  which shows blow-up behaviour:

»i (t) —*  o c ,  t —> T  . (2)

We shall be interested in the asymptotic properties o f  solutions o f  the problem 
under consideration, which arc expressed at times sufficiently close to the blow-up 
time 1 — T ~ . and in particular the restrictions on u(t.O ) =  u\(t) under which the 
problem admits or does not admit localization of heat (understood in either the 
.strict or the effective sense; see § 1, Ch. 111).

We want to undertake such a study for sufficiently arbitrary boundary regimes 
ii\U). and for a wide class o f  coefficients k(tt) as well.

As we have mentioned already (see Ch. 1-111), an efficient method o f  studying 
such problems consists o f  constructing and analyzing self-similar or some other 
invariant solutions of equation ( 1). which satisfy some ordinary differential equa
tions. These particular solutions have a simple spatio-temporal structure, which 
defines the form of the boundary condition «(/.()) =  n p i )  and supply us with 
the necessary information concerning the asymptotic behaviour o f  the process. 
Reasonably detailed information concerning invariant solutions o f  equation (1) is 
contained in Ch. 1-111.
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However, the group classification of equation (1) performed in [ 3 2 1 ,3 2 2 )  shows 
that the number o f  solutions of  this equation invariant with respect to a Lie group of 
point transformations is not large. The more general Lie-Biicklund transformations 
do not significantly enlarge the class of invariant solutions; new possibilities here 
arise only for k (u )  =  (1 + '« )  2 (see [221, 51, 262[) .  For k(u )  not o f  power 
(k (n )  ф  </", (t =  const) or not o f  exponential (k(\\) Ф c") type, equation ( 1) 
admits only two types of nontrivial invariant solutions: us(t .  x)  =  / v( a/( 1 ~N)I , : )) 
and i i s ( t .x )  =  f s ( x  -  t). O f  these only the second one, in the ease when the 
integral (к(т))/т)) dr) converges, is generated by the boundary blow-up regime. 
Equations (1) with a power law or exponential nonlinearity admit other invariant 
solutions of interest for us (see ij 3. Ch. 11).

The fact that certain parabolic equations of the form (1) admit a wider class 
o f  invariant solutions provided one o f  the main stimuli to the development of the 
special comparison theory for solutions o f  various nonlinear parabolic equations 
(sec Ch. V). However, the upper or lower bounds of solutions o f  equation (1) of 
general type, obtained in the framework o f  comparison are frequently not sharp 
enough, and thus do not allow us to describe the asymptotic stage o f  evolution 
o f  the process. Using the theorems proved in Ch. V. it is not always possible to 
.single out. using upper and lower bounds, a sufficiently narrow ‘'corridor'' o f  the 
solution's evolution in time (narrow enough to enable us to speak about a correctly 
determined asymptotic behaviour of the solution). This is mainly connected to the 
paucity of invariant solutions of equation ( 1).

To determine asymptotic behaviour of solutions of  equation (1),  we use in 
the present chapter approximate self-similar solutions (a.s.s.), which, though they 
do not satisfy equation ( 1), do describe the asymptotic properties of its solutions 
correctly. In each of the following sections we shall describe n different method of 
construction o f  a.s.s. The main problem is that o f  determining the principal (or we 
can say, dclining) operator in the right-hand side o f  the equation, which dominates 
the fully developed stage o f  evolution of a boundary regime with blow-up. O f 
particular interest are the results of § 2 , where we determine a class o f  coefficients 
(A'rid). for which the dclining operator is a first order operator, and linally the 
asymptotics o f  a heat transfer process is described by invariant solutions o f  an 
equation of Hamilton-Jacohr type.

It has to be noted in particular that every non-trivial self-similar solution of 
the nonlinear heat equation ( 1) is, as a rule, asymptotically stable with respect to 
small perturbations not only of boundary conditions, which is quite natural, but 
also of the equation itself (that is, to perturbations in the coeflieicnt k(u )  with 
respect to the corresponding invariant dependencies). It has to be said that in the 
latter case the term “ small” docs not have to be taken literally, since frequently 
an a.s.s, obtained from an invariant solution as a result o f  a small perturbation of 
k(u ) ,  does not look anything like it.
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As discovered in 1184, 185, 186, 1871, the set o f  sufficiently "regular" asymp
totic behaviours of solutions o f  equation ( 1), which grow unboundedly, can be 
subdivided into three classes, depending on the character o f  growth o f  k(u )  for 
large tr, each o f  these classes consists of three subclasses, ordered by the form o f  
the boundary functions (iq(/)). The lirst class, k(u)  of "weakly linear" form, is 
considered in § 2 ; the second class, o f  k(u )  ' ‘close" to power law dependence, is 
studied in £ 3. In § 4  we propose another method of constructing a.s.s,, applicabil
ity o f  which is perhaps more restricted: this study leads, nonetheless, to intriguing 
general conclusions.

In this chapter we do not consider the third class, of nonlinearities k(ti)  close 
to exponential, since in the analysis of asymptotic stability o f  the corresponding 
a.s.s., a boundary value problem in a bounded domain with moving boundaries 
has to be considered [ 186[, so that this case cannot be applied in the study o f  heat 
localization in half-space.

Questions related to eons'truction of a.s.s. connected with usual boundary 
regimes without blow-up: iq(/) —> oo as / —> oc, are not considered here. In 
this regard, see the papers [ 184, 185, 186, 187[; in the last o f  these a classification 
o f  such a.s.s. in the "plane o f  boundary value problems" is made. *

§ 2 Approximate self-similar solutions in the degenerate case

1 Statem ent of the problem

Let us consider the lirst boundary value problem:

//,=(£(//)//,),, (/. л) e  ш ,■ =  ((), T)  x R , ;  (1)

//((). A') =  u0( a ) > 0. a 6 R ,  , u,) 6 C(R+), sup no < oc; (2 )

h(i . 0 )  =  i it(i) > 0 .  0  <  1 <  7 ‘:

i i i (t )  - *  oc,  t T  ; iq e  С ‘ (|0. T )) .  (3)

We shall take the function iq in (3) to he monotone increasing.
In this section we construct a.s.s. for a large class of equations ( 1) with non

power law nonlinearities. These a.s.s. arc .shown to satisfy certain first order 
quasilinear equations.

The construction of a.s.s, is done under the following restrictions on the co ef
ficient k: k'(ti) Ф () for и > 0 ,

\k(s)/k'(x)\ '  oc, ,v—> oc. (4)
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Г  Ш  = , 5 ,
,/c) V +  1

Condition (5) places a restriction from below on the behaviour o f  к (it) for 
large u, while condition (4) restricts its behaviour from both above and below. In 
particular, it follows from (4) that for any a  >  0  and all sufficiently large s  > 0, 
we have the estimates

s ‘' < k ( s ) < s n . (4')

In the following we shall need the function E  defined by the equality

k( rj) 

V +  1
</’7 ,v > 0 . ( 6 )

The function E  is positive and strictly increasing in R ( , E  e C3((0, ос))  П  
C ([0 ,  oo)), E ( 0) =  0, and E { oo) =  oo (the latter is assured by condition (5)),  
Therefore E  is a one-to-one mapping R ,  —> R+ and there exists E  1 : R ,  —> R ( , 
a monotone function inverse to E.

For all n > 0 let us deline the function

l>k(u) -  max к(Е(т])):
tr|0-''l

(7)

from (4) it follows that
p k (u ) / i i  ->  0 , oo (8 )

(we shall need this result below).
Some typical coefficients k(u ) .  which satisfy conditions (4), (5), are shown in 

Table 1. There we also give the leading terms of the asymptotic expansions o f  the 
functions E( i i) o f  (6 ) for large n. These are needed in the determination of the 
form of a.S.s.

Table 1

___________ к ( n)  r._____

explln'T I + tii), 0 < n  < 1

In"(I +  n) .  <r '> 0 
1и| I + ln( I -f n)|
I
( I +  ln( I + ln( I 4 n)|) 1 
(I + lil"(l 4-tt)) ‘ .0  a  <  1 
(1 4  l i l( l  +  n ) l  1 
[ I + 1 п ( I + гОГ ‘11 + l n | l  -Find

___________ E(n) = ___________

exp {In17" a ( I 4

expdd 4 ojtil13111"*) 
exp(n/ 1 11 rf)
i’"
exp(ti In и l
expdd -  (r)n|1/"  " ’l
exp(r")
exp|cxp|e" ||

We shall show that from the point o f  view o f  study o f  the localization phe
nomenon, the most interesting boundary regimes with blow-up are o f  the form

„(/,(>) =  „,(/) =  E \ ( T - t ) " \ .  0 < / < Г. (.V)
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where a < 0  is a fixed constant. As E ( o o) =  oo, the function (3') describes a 
regime with blow-up.

2 F orm al determ in ation  of a.s.s.

Below we shall demonstrate that under the assumptions made above the solution 
of the problem ( 1)—(3') converges asymptotically in a special norm to the exact 
invariant solution o, of the following lirst order equation (a Hamilton-Jaeobi type 
equation);

k(n)  i
ч, = ------- rOri Г . ( ( .  A) 6 t o i . (9)

и +  1

The function ii , is an a.s.s. o f  the original equation (1) and has the form

п , ( / . л - ) = £ ' [ ( Г - / ) " « , (f)|. t  =  s / ( T  -  (10)

The non-negative (unction #, is the solution of the boundary value problem for 
the ordinary differential equation obtained by substituting the expression ( 10) into
(9):

{ в у -  _ + „ в ,  =  о. t  > о.

(9,(0) = 1. #,(oo) = 0.
( И )

Existence and uniqueness of solutions of the problem (11) were established in 
tj 4, Ch. III. There we also .studied its properties, and. in particular, obtained the 
following estimates:

#','(£) > 0. t  e  [O.^o):
„ ( P )

q„ —  max в  A t )  =  (1 -  n)/4 < o o ,
rr|0.r„)

where tn  =  mcas supp#,;  moreover, tu  =  oo for n e  ( —1, 0 ) (that is, 0 , > 0  in 
R 4 ), tii — 2 for i i  =  -  1 and

tn  — 2 ( — ) " ' - ( — 1

for n < - 1. For n — — 1 the solution o f  the problem (11) is the function

#,(.v) =  (1 -  a/2)~.  x > 0  (13)

(in this ease t  =  a ). By the condition (MO) =  1, the function (10) satisfies (3 ') .
Let us denote by the similarity representation o f  the solution o f  the

problem ( П - ( З ' ) .  defined by the spatio-temporal structure o f  the a.s.s. (10);

#(/.£) =  (7‘ - /) "Ii 11t/(r. t ( T  -  /)" *" ,/2)l. ( t . x ) e w r . (14)
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3 The con vergen ce to a.s.s. theorem

Let us show that the similarity representation o f  the solution of the problem under 
consideration converges as t —*■ T  to which ensures that the solution n ( t .x )  
is close to the a.s.s. (10). Thus we establish asymptotic convergence of non- 
stationary solutions of equations of different orders; a parabolic one ( 1), and one 
o f  the Hamilton-Jacobi type (9).  The physical reason for this sort o f  degeneration 
o f  the original equation in the case o f  k (n )  =  1 was discussed in $ 4 .  Ch. III. It 
is not hard to present the same kind of  analysis for k(u )  o f  general form.

Theorem  1. Let cond it ions  (4 ) , (5) h e  satis fied .  Then the s imilarity representation
( 14) o f  the so lution  o f  the p ro b l em  ( 1)—(3') f o r  n e  1 — 1. 0)  c o n v erg es  a s  t —>■ T  
to  the function  the so lut ion  o f  the p r o b l e m  (11). M oreover ,  u r  h av e  the
est im ate

||0 (L •) ~  0 i(-)il( (R , s  sup \lHt.  f ) -  t f , ( £ ) l  =  
Геи.

=  О (т - t ) [' (/T
о 7 ~  T

( U T . 

(15)

P roof.  Let us introduce in a>i new functions IJ,  I f  defined by U ■= E~'(tt).  
U s =  E f a d '  Substituting n =  E (U )  and u, =  E ( U d ,  into, respectively. (1) and 
(9 ).  we obtain the equations

U, =  k\ E (U )\ U ,y +  U\, (16)

W d ,  =  O J d ] .  (17)

Let us set U (t,  x)  — L\(L .r) =  :.(t, x) .  As follows from (16),  (17).  the function 
r. satisfies the parabolic equation

r, =  k\E(U)\zyl +  k \ E ( l l )\ (U d ^  + z d l T  4- U l d . d  (18)

and the conditions

-((), л ) =  E  ' [n 0(.v)| -  r ' l l f i x / T " 1"1'2)' x  e  R t ; :.(/,()) =  0. / e (0. T ). (19)

Below we shall analyse the solution of equation (18) with the help o f  the 
Maximum Principle. To justify its use, we make the following remark.

The generalized solution n(t, x)  (and therefore U(t,  x))  of the degenerate equa
tion ( 1) does not necessarily have the smoothness required for the formal appli
cation of the Maximum Principle (see § 1, Ch. I). However the function tt(t. x) 
(U ( t . x )) can he represented as the limit as к —* о с  of a sequence of smooth, 
positive in шт solutions iq 6 C ] p U o f )  (U ц 6 С ] р ( ш т)).
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For it — — 1 the function I J S =  (T  — /) '(1 -  x /2 ) \  also does not have the 

requisite smoothness: L\ $ C ][2(a>r) (but, which is very important, Us e  С 1{шг )), 
Therefore we shall be using the fact that the non-negative generalized solution of 
the first order equation (17) can be obtained as the limit as e —»■ O' o f  a sequence 
of classical positive solutions U\ o f  parabolic equations

W\), =  ( U \ )\ + e (U \ ) .„ .  c >  (). (20)

satisfying the same boundary conditions as U , [257. 260|. Here, since we have 
that L\ e C 1 (cl»/ ), we have the uniform in r  e  (0. 1) estimate \(U i < COnSt 
in ((5, t ) x R t ; () < S < т < T  are constants (this is important in the proof o f  
convergence to a.s.s.).

The sequence o f  functions z\ =  Ui, -  Ufs e  C,' 7 (017) converges uniformly as 
к —> ос. 6 —> С)'. to a function e on each bounded set <o'r C w r =  (0. r )  x  R + , 
т e (0. T).  From the argument above, we shall formally assume that the function 
: ( i . x )  is sufficiently smooth. Here we are implicitly assuming that the neeessary 
estimates are first derived for the smooth functions z{(t .  v), and the final result is 
obtained by passing to the limit as к —> ос, e  —> 0 1. Let us note that i f  equation 
(2 0 ) is used instead o f  ( 17), the equation lor : fk includes an additional term, which 
is not essential for the final estimate (15) as e  —* O ' .

Thus, let e e С ]'2(ш г)  П С(о)у).  Then from equation ( 18) by the comparison 
theorem we conclude that

тахгО .л) < :.'(/), m in :.(/,.v) > г (/),

where the smooth functions : l (i) satisfy the inequalities

cl:1 /ell < sup k\E(U (i,  л )) | sup((7v) v v (/, a-), (2 1 )

i t :  / i l l  > 0 . 0 < i < T , ( 22 )

and moreover ; 4'(0) = m a x :((), a ) < oo, c~ (0 ) = m in .:((), a ) > -oo.
In the derivation of  (22 ) we take into account the first o f  the inequalities ( 12), 

Using the notation (7) and the explicit form o f  the function (7, =  (T  — t) " (M £ ) ,  
we obtain

supA[/;((7)| =  sup k\E(.s)} =  p k\(T ~ /)"[,

sup(t/v) , ,  =  (T  -  t)~ 1 maxW"(£) =  (T  -  t)"'ci„ . t ->  T .
у

Substituting these equalities into (21),  (22).  we derive as t —* T  the estimates

5  q , r
~7h

0 ,
ill T  -  1
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Hence by the inequality

||0(L •) -  0 , ( ' ) l lc  <  (T  -  t)~" m a x ( : f (/), |c~(/)||.0 < t  < T ,

we deduce the validity of the estimate (15),
We need only to demonstrate convergence of в  to 0 Д as t T~ .  Resolving 

the indeterminate in the right-hand side of  (15),  and taking (8 ) into aeeount, we 
obtain

lim ||0 (1 , ■) — (Л(-)||г £  lim /—'/■- / т
‘In Pk\(T  -  П" 1 

- n  ( Т - 1 ) "
□

Theorem 1 allows us to determine asymptotically exactly the dependence of 
the depth of  penetration of the thermal wave on time, From the convergence 
estimate (15) it follows that л , . / (0  satisfies as t ->  T '  the equality us( t . , v , ~  
\/(2E\(T — /)"]).

Hence, using the specific form of a.s.s, Kv(r, ,v) (see (1 0 )) ,  we obtain

x v f (t) ~  (T  -  / ) ' " М)/2(У1
'|£'|(7' -  t)"|/2| 

(T  -  t)"
, t ->  T - . (23)

Here W; 1 is the function inverse to <A ( 0 \ 1 exists on the interval (0, 1) in view of  
the monotonicity of 0 ,) .

Let us demand in addition that

lim
Ш / 2 )

k ( s i
(24)

Then it is easily verified that E  l (£(.v)/2)/.v —» I, ,v —> tx,, Since 0 " ' ( £ )  — 
(1 — £ ) / ( - ; i ) l/2 for small £ > 0, wc derive from (23)  the following estimate for 
the penetration depth of the thermal wave:

AV, ( 0
('T  -  /)<l("' »/2 E -' \ E \ ( T - t ) tt\/2] 

~  ~ (T  -  I)"
(25)

which holds for all t sufficiently close to T  ,
Let us consider separately the c a s e »  < —1, For n < - 1  the function ((7,)  v has 

a jump discontinuity o f  the first kind at the “front” point ,v0(/) =  (T  - t ) {U ")r- , so
that U s e  C(u>r). Therefore additional difficulties arise in the proof of  convergence 
to a.s.s, for n < —1, Below we obtain an estimate of the rate of convergence (15) 
for it <  — 1 for the case k(i<) =  1, when /;(.') =  exp .v— 1, so that the similarity 
representation (14) has the form

=  ( Г - / ) - "  l n | l  +  u ( t ,  ( ( T  -  i ) n  , M| / 2 ) |, ( 1 4 ' )
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T heorem  T .  Let k(u )  =  1. Then f o r  any  n < 0  the fo l l o w in g  es t im a te  o f  the rate  
o f  c o n v e r g en c e  to a.s.s.  is valid ;

1| 0(/ .-)-0Л -)!1г(К .,  =  О [ ( Г ~ П  "I ln(7- -  Oil. t - *  T  . (15 ')

P r o o f  The ease n e  [ —1 ,0 )  was eonsidered in Theorem 1. Let us note for к =  1
(15) is the same as (15 ') .  sinee then p ^ u )  =  1 (see (7)).

Thus, let it < — 1 and without loss o f  generality Но(л) =  0, Then the solution 
o f  the problem ( 1)—(3') has the form

«('• -V) = — [  CXP A —77“ ----- }  |exp{(7' -  T)"| -  11(1 -  T) 3/2 dr.
I n ' I -  ,/() [  4 (t -  T)  J

The main problem is to estimate u ( t .x )  on the weak discontinuity surface o f  
a.s.s, ( 10), *()(/) =  £{)(T  -  t )u 1" l/2, on which the a.s.s. n, == () and does not have 
the requisite smoothness. Setting in the last equality л- =  g o (T  — /)( , t ">/2 and 
introducing a new variable of  integration by (T  — t)(t — t ) 1 =  s, we have the 
following estimate:

«(/. .v«(/)) < Г  exp(~A"/J ,,(.s')|.v' U 2d s .

where we have introduced the notation \ =  T  — t —*■()*, t —* T  , and /J„(,v) stands 
for the function £,2,s'/4 — (1 +  ,v)".v ".

It is easily checked that P„(s)  is non-negative exactly for f () =  2( —i i ) "/2( —I — 
ii) |l,+ l | /2 Therefore the above integral converges and goes to zero as A =  T — t —> 
0 + . Hence п(/,л0(О) =  o ( ( T  -  t)"12) and thus U ( t ,x » { t ) )  ~  0\ | ln (7* — i)|] as 
t —> T  . Since i i , ( i , .v) < 0  (see § 2, Ch. V ),  this estimate holds everywhere in 
(,r > до)r ) |. In the domain (0 < x < ло(0 |. where IJS e  C^~, the method o f  proof 
o f  Theorem 1 can be applied, which gives us as a result the estimate (15 ')  o f  the 
rate o f  convergence to a.s.s. □

4 Suffic ient conditions for  absence of  localization

T h eorem  2. A ssum e that cond it ions  (4),  (5) hold. Then there  is n o  lo ca l iza t ion  
in the p ro b l em  ( 1 )—(3 ') f o r  n < — 1. The solution  grow s  without h ou n d  a s  t — 'T  

ev ery w h er e  in R ( . Furthernunv,

/-' l (u(t,  x))
>  1, л 6  R ,  . ( 26 )
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I f  eq u a tion  (1) adm its  f in ite  s p e e d  o f  p ro p a g a t io n  o f  p er tu rba t ion s  a n d  
meas supptio < со, then f o r  the size  o f  the support  o f  the solution  we h a v e  the 
est im ate

x , (D  =  mea.s supp u ( t .x )  > (T  -  t ){>{" ,/2(£ » -  e ( t ) ) .  0  < t < T .  (27)

w h ere  £ {) =  ineas suppfl, =  2 ( —;/)"/2(—1 -  n) an i i the non -n egative  J u n c 
tion e( t )  —> ( ) , / —> T . I f  к == 1. then hv T h eorem  Г o r  h a v e  e q u a h tx  in 
(26).

P roof.  Let us denote by i i ( t .x )  the solution of problem (1)—(3')  in (0 .  7 )  x 
(0, .vo(/)K л о(0  =  (T  -  O ' " ' ' 1' 2. satisfying йО.лцО)) == 0, 0(0. x)  < u0(.v) in 
(0, л’о(О)). Since tt(0, ло(О) > 0 in ( 0 ,7 ' ) ,  by the comparison theorem и >  и 
in (0, T)  x (0 , л,)(/)). But ti, e  C ' ; 2( (0. T )  x (0. л»(/))), u f t . x o U ) )  =  0. 
Therefore as in the proof o f  Theorem 1 , wc see that ()(t, £) —* O f f )  as t —>■ T  in 
C’( (0 , in ) )  with the rate o f  convergence given by (15) (here в ( 1 . £)  is the similarity 
representation (14) o f  the solution h).  Then the elaim o f  Theorem 2 follows from 
the inequality и > a  in (0, T)  x (0, л о (/)); in the derivation of (27) we use the 
expansion

t f ( £ )  ^  - Ц - " Ы £ ( >  - £ ) ■  £ ->  i n  ■ (28)

□

Theorem 2 provides sufficient conditions for the absence o f  localization in the 
problem (1 ) - ( 3 ' ) .  Unfortunately, Theorem 1 cannot be used to establish the parallel 
result for presence of  localization for n > — 1. In the case n =  — 1 we can prove 
the following assertion:

T h e orem  3. A ssm ne that cond it ions  (4),  (5) hold .  Then the solution  o f  the  p ro b l em  
( 1)—(3 ') f u r  — — 1 satis fies  the relation

lint
i -  r

I I  l ( u ( t ,  X ) )

7 7 3 7 7 1 “ д e R +. (29)

R em a rk .  If  и e  ( —1 ,0 )  in (3') ,  then l i  1 [/?(/, .v)| =  o ( ( T  — /)''), t —> T ~ ,  in R ^.

Relation (29),  which follows from (15) and (13) for f f ( £ )  in the case n  =  
— 1, means that u ( t , x )  grows without bound for all ,r e (0 , 2 ) and u ( t .x )  ~  
E\(T  — t) ‘ (1 — л/2)~ [ as t —> T  . If, on the other hand, x > 2, then u(t, x)  =  
o (E \ (T  — t) 1 [), which, however, does not ensure uniform boundedness o f  the 
solution. At the same time it is clear that a. s. s. (10) (which correctly describes 
the asymptotic behaviour of the solution of the problem) is localized for n > — 1.
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In the case k(u )  =  1, localization o f  the solution o f  (1 )—(3 ')  for it > — 1 is proved 
in § 4, Ch. Ill, by analyzing the heat potential. All the arguments above, as well 
as the results o f  numerical computations, indicate that for it > — 1 the solution o f  
the problem (1 )—(3') is localized.

5 E xam p les

Let us consider other examples.

E xam p le  1 (compare with Example 2, § 5, Ch. V ).  Let k(it)  =  lnA(1 + n ) ,  where 
A > 0 is a constant. Conditions (4), (5) are satisfied. The transformation E  in (6 ) 
has the form (see Table 1) E(n)  =  e x p {[(1 +  A)u|l/(l ’ Л|) -  1 and therefore, setting 
ил =  n/(l +  A) in (3') we obtain

n, (t) =  e x p (( l  +  А)1/П,Л' ( Г  -  / ) ' " ) -  1. 0 c t < Т. (30)

То this boundary blow-up regime corresponds the a.s.s.

u , ( l . x)  = e x p ( ( l  +  А)|/1||Л|(7' -  * ' ( { ) ]  -  1. (31)

where £  =  .v/(7’ — t )11 ,(1 * Л|||4/2
From Theorem 1 it follows that for ti 6 [ —1 .0 )  the similarity representation 

(14) converges as t —> T  to the function в ,,  and that we have the estimate

||fl(L-) -  fM d llr  =  O ( ( 7 ' - 0  ' " ' )  - * ( ) . ! - >  Г .

From the structure of the a.s.s. (31) it can he seen that for n,\ < —1/(1 +  A) 
there is no localization in the problem, and that i i ( i . x)  ~  е х р ( (Г  -  /)"')• 1 T ~ , 
for any л e  R .( . Equation (1) describes processes with finite speed of propagation 
of perturbations. Therefore for n.\ < — 1/(1 +  A) the size o f  the support of the 
solution can be estimated using (27).

For n,{ > - 1 / (1  F A )  a.s.s. (31) arc localized. In particular, in the ease 
Ял =  — 1/(1 +A ) (S-regim e) the following equality holds asymptotically as t —> T~  
(see Theorem 3):

it(i. x)  ~  exp(( 1 +  A) 1/(1 + At r i(У -  t ) I/O (.o (1 -  x / 2 ) 3/O-l-Al.
( I

Penetration depth of  the thermal wave depends on time thus:

x,.,U)  ~
(1 +  А)л/||,А|1п2 ..
T ^ r r + T )  ) ^  (/ "  П

I I и,(Л H/2 -> т  .

Hence it follows that in the case A > 1 for и л e  [ — (A — 1) 1. 0 )  in (30) penetration 
depth decreases to zero as / —> T . This conclusion also holds true for the
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boundary HS-regime, which heats up to infinite temperature the whole half-space 
R + (see § 4, Ch. III). For A =  1 the behaviour of x e f ( t )  is practically independent 
o f  the parameter n: x r / (t) =  0 ( ( T  — i ) ‘ /2), t - *  T  .

The above conclusions confirm that, in general, shrinking o f  the half-width is 
not sufficient for localization.

Exam ple 2 (compare with Example 3, § 5, Ch. V). Let us consider equation 
(1) with coefficient k(tt) =  ln| 1 ( - ln( 1 +  /<)[. Since here FAu) ~ e x p ( u / ln x )  as 
it —> oc, from Theorem 2 we deduce that the boundary blow-up regime

itiU)  -  exp((V  - /)"/|а ln('T ~ d l l .  t - *  T , (32)

leads for a < - 1  to absence o f  localization. Here

meas su p p xd , ,v) > £ ()(7’ -  /)ll+" l/: • x .  t —* T~ .

If  on the other hand n > — 1, then the a.s.s. are localized. To the boundary 
S-regime (n — - 1 )  corresponds an a.s.s. o f  the following form:

u(t. x)  ~  x v(/, a ) ~  exp <
(T  ~  t) 1(1 — x /2 )  ( ['

11п(Г  -  0| / , , ln[(l -  л/2)+ [ 
"  | ln(7* — /)|

i T " : 0 < x <  2 .

Front the relation (25) it follows that in this problem (n > —1) the half-width 
decreases as t - *  'Г :

~  ( - a )  l/2(7' - /)" "h'2 In | ln(7' — / )| —> 0, t ->  T A

E xam ple 3. Let
k(u )  =  |1 +  ln(l +  x)| '. (33)

In this case E ( n ) =  exp(e" — 1) — 1, therefore it follows from Theorem 2 that the 
boundary regime

нА П  =  exp{exp{(7 ' -  /)") -  1) -  1 (34)

ensures for n <  - 1  unbounded growth of the solution o f  problem (1). (2), (34) 
everywhere in R + . On the other hand, if n > —1. then we should expect heat 
localization in the problem (at least the corresponding a.s.s. have this property).

Exam ple 4. Let the thermal conductivity coefficient have the form

3 ln“[1 + ln(l + и) [
k(tt) —

1 +  ln(l +  u)
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Conditions (4), (5) are then satisfied and the function E  defined hy ( 6 ) has' the 
form

E(u)  =  e x p le x p l» '^ )  -  1) -  1).

Therefore in this problem the boundary hlow-up regime

tq(M =  exp(exp((7 ' -  /)") -  1) -  1)

will produee no localization for n < —1/3. For n > —1/3 the a.s.s, are localized.

6  Localization conditions fo r a rb itra ry  boundary blow-up regim es

In the construction of a.s.s. in the degenerate case we made substantial use of 
condition (5). If the integral in (5) converges:

и

k ( y )

T} +  1
(It] < oc. (35)

then the function E  in (6 ) is defined on the finite interval (0, <•/*), and therefore 
E ~ l is uniformly hounded in R f . Thus it makes no sense to consider the family 
of boundary blow-up regimes (3 ') ,  and no a.s.s. o f  the form (10) exist here.

To clarify the meaning o f  the restriction (5 ).  let us consider

E xam p le  5. Let the coefficient in equation (1) have the form 

k(u )  =  [ 1 +  ln( 1 +  u)| 111 +  ln( 1 +  ln( 1 +  «)) I 1 x . .  .

. . .  x [ 1 +  ln( 1 +  . . .  +  ln( 1 +  u)) . . . )  | 1. и >  0 .
(36)

In each successive bracket the number of logarithms is increased by one. Let the 
last bracket contain M  logarithms, that is, (36) has M  factors (for M  =  1 the 
coefficient (36) coincides with (33)) .

The transformation E  is determined from (6 ):

E ( h ) =  e x p {e x p { . . .  \c" ~  1) . . . )  -  1) -  1),

where in the right-hand side M  +  1 exponents are used. Therefore from Theorem 
2 we conclude that the boundary regime

=  E\ (T  — /)"[ =
(37)

=  exp(cxp . . .  {c x p {(7’ — / ) " ) — 1) . . .  — 1) — 1. 0  < i < T,

is not localized for » < — 1. Comparison o f  (36)  and (37)  shows that increase in 
the number of logarithms in the last square bracket o f  (36)  leads to the following
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situation: to bring about the HS-regitne without localization, faster and faster (more 
rapidly increasing as / —> 7 '" )  blow-up regimes arc required. As M  —» oc the 
intensity of these regimes does not have an upper bound (in a certain .sense). At the 
same time as M  is increased, the “rate o f  divergence" of  the integral (5) becomes 
lower. Therefore as condition (35) becomes satisfied, the intensity of minimal 
boundary regimes that lead to absence of localization and unbounded growth o f  
the solution in the whole space, becomes infinite.

If  condition (5) holds, all the types of boundary blow-up regimes are possible: 
HS-, S-, and L S-  regimes (under the restriction (4) this was practically established 
in Theorems 1, 2). On the other hand, if  k(u )  satisfies (35).  then, apparently, there 
are no non-loealized HS-regimes. Let us state again the result which can be proved 
by comparison with travelling wave solutions (see $ 3. Ch. I).

I f  the condition

holds,  any b ou n d a ry  b low -up  reg im e  in the p r o b l e m  (1 ) - (3 ' )  l e a d s  to local ization .

Condition (38) is satisfied, for example, by the following coefficients: k(n)  =  
e~", k tu )  =  (1 +  u) ", (r > 0 , ktu )  =  [ 1 +  ln( 1 +  u) | л and

k(u )  =  [1 +  ln( 1 +  it) [ 1 x (1 +  ln[ 1 +  ln( 1 +  it) |) "л. Л > 1.

§ 3 Approximate self-similar solutions in the non-degenerate 
case. Pointwise estimates of the rate of convergence

In this section wc consider non-degenerate a.s.s. o f  the nonlinear heat equation, 
which correspond to given hlow-up regimes on the boundary x =  0. Unlike 
the degenerate a.s.s. o f  S 2 , they .satisfy (under other conditions on the thermal 
conductivity coefficient) a second order parabolic equation.

Main assum ptions  a n d  f o r m a l  definition o f  a.s.s.  As before, we shall consider 
in (o-f =  (0. T)  x R ,  the first boundary value problem

where the function iq o f  (3).  which blows up in finite time, is taken to be monotone 
increasing.

Let us introduce the necessary restrictions on the coefficient k(u)  e 
C 3((0 .  oo)) П C(|0. oo)). We shall assume that k'(u) > 0  for и > 0, k ( 0) =  0.

(38)

и, =  А (и) -  ( к (и ) и л).,;

id 0. .r) =  Hof,r) > 0. .v e  R , :  и о e C ( R , ) .  sup tttl < o o :  

u(t. 0) =  !i ,( i)  > 0 .  / e (0. T ) .  ii, e  C 2(|0, T )) .

( 1)

( 2 )

(3)
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k ( o o )  =  со. The function к detines a bijective mapping R t —»■ R + and therefore 
we can detinc k ' 1 : R + —> R + . the inverse function to k.

Let u.s set

lI>t(“ ) =  \ k(s) /k '(s)  |'|, (4)

The main condition on к is as follows: there exists a constant a  e  R + , such 
that1

Ф<,(и) 1 /(г, n —> со. (5)

In Tabic 2 we list some coefficients k,  which satisfy condition (5).  In all the 
cases the constant у  > 0  is chosen sufficiently large. In the right column o f  the 
table we list the principal terms o f  the expansion of the function к ‘ (u) as it —> cc .

Table 2

k { n )  = k ^  (it) *

//" In" Inly + It) 
n ' r ln''(y + II)

и "  exp{ln"(y + a)}. 0 < a  < 1
„ ( ln(y + II) 1 „a exp { — ------------- L n  > 0

\  In In(у 4 it) J

ii1/'r ln~"/" l n n
In " /,r и

i i ' /^ ex p l—( r - ‘“ +l1 In" i/} 
|/,r /  In/t 1 

" e x p \ - ,r " ln'r In II J

It will be convenient for ns to write the boundary condition (3) in the following 
way:

ttU. 0 ) =  «) ( 0  =  к 'Щ Г (П ).  t 6 (0 . 7 ) .  (У )

where ifi(t) is a smooth monotone increasing function. i/i(i) —+ oc as t —> T ~ .
We shall seek a.s.s. o f  the problem (1 )—(3') in the form

«,(/. -О = к V '(0 »7 (£ > l. f  -  х/ф(1), (6)

where the unknown functions 0 , (£ ) ,  <j>(t) are determined from conditions of con
vergence o f  the solution u(t. x)  to the a.s.s. it,U, x) .  It is assumed that 0 , ( 0) =  1, 
so that a.s.s. (6 ) satisfies the boundary condition (3').

Let us make some necessary preliminary computations. Let us set

И М - x)  =  k (u ,( t ,  x))  s  i]fT (7)

The function (7, satisfies the equation

((Л), = <т(ф,г ' ф’)(t)ti ' l{^) -  (8)

'For ir -- ()*■ relation (5) is equivalent to the equality (l>j(co) - tv. This ease was
analysed in § 2.
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or, equivalently.

((Л ),  =  <r ( 8 ' )

Let us introduce another piece of  notation:

U(t. x)  =  k(n (t ,  -v)), (/, л) 6 w-f. (9)

For U we obtain the equation

U, = D „ ( U )  +  \ 4 h ( U ) -  \/cr\U], ( 10)

where

D ir(U) =  U U ti +  - U \ .
(T

( N )

Let us observe that Us(/,()) =  U ( t ,0 )  =  <p'r(t) for t e  (0. T).  Below we shall 
analyse the equation satisfied by the difference r =  U — (У, using the Maximum 
Principle, and we shall derive conditions such that

where we have denoted by #(/,£) the similarity representation o f  the .solution of 
the problem (1 ) - (3 ') :

The convergence condition (12) ensures that as / —* T  the solution of the 
problem under consideration and a.s.s. (6 ) have the same properties. Then the 
function ф(!)  determines, modulo a constant factor, the dependence of the depth 
o f  penetration o f  the thermal wave x v[ ( t )  on time.

Under the above assumptions, the construction o f  a.s.s. uses exact self-similar 
solutions of the equation with power type nonlinearity;

(here the constant <т > 0 is the same as in condition (5 )) ,  We shall need two types 
o f  self-similar solutions o f  equation (14) (see § 3, Ch. 11):

•)-»; '<•)linn.) -  o. i - T  , ( 12)

t i ( t ,  £)  =  -— - - U u 'r ( t ,  (ф (1))  =  ~ ~ - k l , i r ( u ( t ,  ( ф и ) ) ) ,  t e (0, T ).  £ > ( ) .  (13)Ф(П Ф(1)

и ,  =  (n'r t/v) v (14)

I. u.y(/, x) =  ( T -  / ) " 0 , ( f ) . f  =  x / ( T  -  l ) n  + mr|/2.

1 e  (0 ,  Ту. ii =  const < 0; (15)

II. n . fU .x ) =  e '0 , (£ ) .  £ =  л / exp (rn / 2 ). 1 > 0 . (16)
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Here the functions в х(£)  > 0  satisfy ordinary differential equations obtained by 
substituting t t s ( i .x )  into (14):

1. (в\гв\у - ■ ? t i j  +  -  0 , s  > 0 ; (17)

11. ( в у у  + - « ,  =  o. £ > o . (18)

as well as the boundary conditions

в  AO) =  l . f M o o )  = 0 .  (19)

Under these assumptions on k (u )  the method of constructing a.s.s. in each 
specific ease depends on the form o f  the boundary regime.

1 A pp roxim ate  self-sim ilar solutions o f  type 1

In this subsection we construct a.s.s. o f  the problem (1 )—(3') with function 0 , 
satisfying equation (17). The problem (17), (19) was studied in detail in § 2, Ch. 
Ill, where it was shown that for any n <  0  its solution exists and is unique. For 
n < — 1 jcr  the function ti, has compact support: — meas suppfl, < сю, while
for n e  ( — 1/<t , 0) we have (),(£) > 0 everywhere in R t . Moreover,

HAS) =  ,'"'n  +  . . . . £ - >  сю; С  =  C ( n , r r ) =  const > 0 .

In the case n =  — \ jcr  the solution can he written down explicitly ;

L £ > o: £ 0
2Ur +  2) 1 / 2

To prove convergence to a.s.s. we shall need 

L e m m a  1. Let b e  the so lution  o f  the p ro b l em  (17), (19). Then

(Г-вЧ
<ln =  sup

fcitu.n “ e
T  (£)  < - M r .  f a  =  meas suppfl.,.

( 20)

( 21 )

( 22 )

R em a rk .  For n =  — \/ir we have (see (21))  q n =  2 / S l  =  ( r /U r  +  2) < 1.

Proof.  Let us set # ,(£ )  =  fl‘r(£ ).  The function g, satisfies the equation

„ 1 , 1  1 +  ntr , „ ,,
J O K ,  +  - ( K . , r ------------r — XA +  nirgs =  o .

<r 2i
(23)
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Let us assume that there exists a point f  =  f *  e  R .( , such that y['(£*)  =  ~>ur. 
Let us show that this leads to a contradiction.

Let us consider first the ease n < — 1/«■. Then d f f )  =  0 for $ > fo =  
meas suppg,, and (,t,’ ! /ir,t;'H^o) =  0. It is not hard to show using the Banach 
contraction mapping theorem that as f  —<■ f n we have the expansion

,г 1 +  H(T 1 — H(T „ i
y S f )  =  O K i )  = --------r— ( г Ы { п  -  i )  +   -------- j-wfiro ■ (24)2 4(rr +  1)

Hence ) =  (1 — n e r f r /\2(сг +  1 )| < — ntr. Therefore < £ (). i.e. м Л С )  > 0. 
Then, setting in (23) f  =  £ ’ , we obtain

, , 1 +  ncr
y,S£ ) =  t r   — $ ■  (25)

Let us rewrite (23) in an equivalent form:

( Л 1,) ' -  =  ( ) . £ >  0 .

Integrating both sides o f  the equation over the interval ( £ ' ,  £o) we obtain

(26)

~.f' ! /,r( 0 f i ' S O  ~  i r [- A r ^ ? +

+  <r I ^  я1/,г{т))(1т) =  0 .

(27)

Hence, taking (25) into account, we arrive at a contradiction, since

I  a\,ir(v) ‘iv  > ()-

Now let it > — 1 /(t. Then g ,  >  0  in R f  and g''(oo) =  0 .  We have to consider 
two eases. The lirst case is n e  ( — 1 / it. - 1 / ( < t  +  2)),  when y\!‘r e  L ' ( R + )  (see 
the asymptotics (2 0 )) .  A contradiction in this case is obtained by integrating (26) 
over ( £ * , o o ) .  The second case is n > - l / ( r r  +  2). Then, integrating (26)  from 
£ =  0 to f  =  £'\ and using (25),  we obtain the equality

(rUr +  2) 
-> n +

( T  +  2 0 ' r (T])dT) =  A'l (0 ) •

which cannot possibly hold in view o f  the conditions n > — 1 / и г  +  2 ), g ' (0 ) < 0 .
□

T heorem  1. Lei cond it ion  (5) hold, a n d  lei d ie  fu n c t ion  ф in (3 ') satis fy  the  
cond it ion

; n =  const  e  |— \ / i t .  0 ). 
n

0  ///!//')'(/) (28)
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Then the p ro b l em  f l )~ (3 ' )  h a s  a.s.s .  (6 ), w here

Ф(1) =  \ - п ( ф ,г"  /ф ')(п\ '!2.1 g ( O . n ,  (29)

the function ( f i t ; )  is the  so lu t ion  o f  the p ro b lem  (17),  (19) a n d  the limiting equ a l i ty
( 12) holds.

Let us make some preliminary computations and see what equation is satisfied 
by a.s.s, (6 ) under the conditions o f  Theorem 1. From (17) it follows that

» " = - f f ’
сГч)1’ dOf 1 + ncr dB'l „

n a  ' r / f -  / к г  V  df J 2 ntr tig  ^
(30)

Substituting this equality into (8 ). we derive the following equation for the 
function Up.

1 „ , , ,r d-0''
' i f i f a x i '

П Clg~ —  « Г  V ' x n  ( ‘ ‘§n<r \ df;
+

l + m r  i / dO1’ f  , ,тф'\ dO"

+ — '<r  ф >{' 1Р У ( - [ « ’ ф ) ( п ^ -

Setting now в\’ =  f/,/t//'\ (  =  х /ф ,  we have

Ф'ф-
( l f ) ,  =  I | ( t ) D „ ( U f  +  G ( t ) ( U i ) , x .

where G (t)  =  |ln(i///</>)| ( 0 .  / =  (1 +  iu r ) / (2 n )  and D„

However, by the choice o f  ф (see (29))  

equation for (7, has the form

Ф'Ф"
n \ ф ‘hi'+ 1 (0

is the operator ( 11). 

=  1. Therefore the

( I f ) ,  =  D „(11 ф +  G ( t ) ( U d l x.  (31)

Setting in accordance with (7) i f  =  k ( u s ), we deduce that under the conditions of 
the theorem a.s.s. (6 ) satisfies' the equation

(m), =  A(i/t ) + Ф ф к ( и Р ) к'(иф (ил)2 +  G(t)  (!/л),.г, (32)
(T

which differs from the original equation ( 1) by two additional terms in the right- 
hand side.

R em a rk .  It is interesting to note that a different equation can be derived for an 
equivalent a.s.s. For example, from (17) we have the equality (here n Ф — \/<r)

d t i _  2

</£ ^ i +  n(r
d^ Of l  t  dO'f 

d  f~   ̂ (г V d g
+

2 ntr

+  1КГ
в'
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Substituting it into (8 ), we derive tor (/, the equation

_ 2_  ( W
0Л) ,

Ъ и т  (  ill ' \  1 +  i u r
U)D,r {U t ) +  — ------  In i -  \ U )U S. / =  — ------.

1 4- ;trr \ i//'r )  1 +  пег \ ф I 2n
(33)

If  instead of  (29) we define the function <fiU) so that 

then, setting in (33) (/, =  k(u>) we have for a.s.s. (6 ) another equation.

(t/J, =  A (u ,) +

+ ~  — Ф*(Л(1,,))] k ' u i u u i u ]  + к ) 2iur  
k'(us) 1 + >i<r (!)■

which differs from both (32) and the original equation (1), In the sequel we shall 
only use equation (32).

P r o o f  o f  Theorem  1. Let us set z — U — (/, in а>/, z e  C(m-i) .  Then it follows 
from (10).  (31) that satisfies in w/ the parabolic equation

v, =  -T.\z 3- .74.: 3- M it.  л)  +  Л и ,  .v: z). (34)

Here 7f| is the linear elliptic operator obtained by transforming the difference
DAU)  -  D,r((/,):

7  i =  U z , ,  3—  ( ( / , 3 -  ( ( Л ) i ) . : , ",  7 1 ~. — ( ( Л ) , ,  r,". ( 3 5 )
(T

M. is a function of the following form:

М (/.л)  =  - G U ) ( l  A(/..v)), .v; (36)

M is the nonlinear operator

Л и ,  x\z) =  |Ф*«У, +  :.) -  1/rr|((f/J, 3- r , ) 2. (37 )

Here zU. 0) =  0, =  sup |;((). ,r)| < сю.
Below we shall derive upper and lower bounds for c in щ  by constructing 

spatially homogeneous sub- and supersolutions for equation (34),
Thus, let condition (5) hold. Then there exists a continuous function H (u ) :

-  H(u) <  Фц.(п) ~  1 /(r < H(u).  и  > 0. (38)
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such that
H (u)  > 0 and H (u)  is noD-increasing for и > 0. (39)

H (u)  —* 0. и —> oo. (40)

Let us obtain an upper bound f o r .:(/. •). A lower bound will have the same form. It 
follows front the form o f  the operator X  that the function ;  satisfies the inequality

£  7 -  +  M. +  XoO.  a : ; ) ,  7  =  7 , +  7 2 .

where Лг() is
X oO .  л-, z) =  H (U , +  ; ) ( ( !/ , ) ;  +

Using the fact that hy assumptions (39).  (40)  H ( U s +  ■) 5  H (z)  lor all ;  > 0. it 
is not hard to show that ~ is a suhsolution o f  the equation

=  ■£:.! +  M +  H { z i m u i ) x +  z t r

in the domain (,- + >  0). Therefore ; < . J  ( - '  > 0) in w/ if  this inequality holds 
for 1 =  0 and on the boundary (0 . Г ) x (x =  0 ).

It is obvious that the function ; 1 is. in its turn, a suhsolution o f  the parabolic 
equation

m/' =  7 , u L  +  w + sup,(£/.,),, +  sup, |./M.| +  H (in ' )(iu| +  2 ( U j j w x' +

+  W (m f ) s upt )~. in' > 0 in cor.

Appealing to the usual comparison theorem (with respect to boundary data; see 
§ 1, Ch, I), solution o f  this equation can be estimated in terms o f  the spatially 
homogeneous solution i/'(/).

Summarizing all the above, we have the following estimate:

|.-(/, л-)| < //>(/) in о//', (41)

where the function w satisfies the following boundary value problem for an ordinary 
differential equation:

div

~7t
iv sup(U s) x, +  sup |,/M | +  H (w )  sup((/, )~. / e  (0 , 7')",

f \ \

w (0 ) =  =  s u p ;((),  л ) < oc,

(42)

Taking into account the specific form o f  (/, (see (7)) ,  as well as (29 ) .  it is not 
hard to sec that for n e  [ - 1  /<т. 0 )

su p (f/ J , ,
Ф " У )

Ф Ч п
s » p | K ( f ) ] "

q , i '//'(Г). 
-  n iji(t) '
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sup |./M,| =  |G’ (/)| sup |(//,),.v| =  p n\GU)\i/i"U),
\ Л

lb, =  sup |£(//'/)'| < сю;

r„ ф2'га )  _  r„ ,
sup Ш>)\

— n

r„ =  sup

-(//' ЧПф'О).

There lore equation (42) has the form

d w  q„ ф'
, -  w +  p„i//"\G\-\----- - i p ' r l ip'H(w).

dt - n ф - n
(43)

Since Гог all t e  (0, T)  we have by (44) that

K i r . . )  - * T w i r  -  —  u i r l a f .  Л1 <  (4 4 ,

to prove the limit equality ( 12), it suffices to cheek that n>(t)/ф " (t) —> 0 as
I - *  T  .

From (43) it is not hard to obtain an estimate of w (t) .  for example, on the 
interval ( T / 2 ,  T).  To estimate the last (nonlinear) term in the right-hand side of 
(4 3 ) ,  let us use the inequality

d w  <i„ ip'(t)
—  > —-----------w.
dt - и  ф и )

from which it follows that for all t e  ('/'/2.7')

wU) >  M||l//(0 |,' V  =  iv(T/2)\ip(T/2)\

Therefore in view o f  (39), (40) we have the inequality

^  < J L t t u, +  /V//'K;| +
clt —// Iff -n

Consequently, for all t e  ( T / 2 ,  T)

ioU) < M i ф‘‘“1{ ">(/) +  р„ф'"'1{ ■'” (/) f  ф'т ") (T)\G(T)\dT +
.h /2

+  — ,///-/< " ’ ( 0  f Ф'т 1 u>( т ) ф ' ( т ) Н ( M  1ф ч"п  ">( T ) ) d r  =
-  n J r /2

s /1 (/) +  I j U ) +  /1(0 -
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Let us consider the relation

0 < ю (1)/ф "(П  =  +  +  h ( i) t / i~ ,rU) =

= J  1 (7) +  J  2 (f ) +  J l U ) .

By Lemma 1 q„  < - / и г  and therefore

J\ (t)  s  М ||(//(П|‘/"/( “ " ) “  Г  .

Let us consider the expression for J z ( t ) .  Consecutively resolving all the inde- 
terminacies that arise as t —*■ T  . and using the exact form o f  G (t) .  as well as 
conditions (28),  (29),  we obtain (here C > 0 are some constants)

ф
lim J i U )  =  С  1 in> — |G| =

i - i ' i -  / ф’

Г  ГC  hi» — _  <£_ — C  Hn> / _  &_ф_
i ./ ///' Ф Ф /-*/■ ф Ф'

С  Иг» / — + '/'n1 =  c/ — / 2 l .Ф’. J 2 <t  + •  -  
n

=  0.

Similarly, hy (40)

lim J t.U) =  C  lim Н ( М 1ф‘1", ( ~">и )) =  C  lim H (u) — 0.
i -  7 i -• 7 a— x

Thus w { i ) / i / / TU) 0  as i —»
holds. This concludes the proof.

T  , which, as shown hy (44). ensures that (12)
□

R e m a rk .  For n <  — l/ o ,  by (24) the function (0'r )f experiences a jump at the 
point £  =  £o. that is (/, does not have the smoothness required for the proof by the 
above method. In this case convergence to the a.s.s, is easily proved for T7(/, x),  the 
solution o f  the problem (1), (3')  in the domain (0, T)  x (0, л'о( 0 )  (there U s e  C,1;2), 
satisfying n(7, л'о(/)) s  0 on the moving right boundary .v0 (/) =  £o0 (7), Then using 
the estimate (2 2 ), which holds for any n < 0 , we obtain the same estimate o f  the 
range o f  convergence ( f  ( t . £j  —> !)"(£) as t —> T~ in C’((0 ,  £<)))■ From this 
estimate we conclude that there is no localization in the original problem ( 1)-—(3') 
for n  <  — 1 f e r  and derive, in particular, a lower bound on the size o f  the support 
o f  the non-localized solution (see proof o f  Theorem 2, § 2).

Table 3 shows functions 0 (7) corresponding to various boundary regimes (3 ') ,  
in which ф satisfies condition (28).  Properties of the resulting a.s.s. are largely 
dependent on the relation between the quantities n and <r, Thus, for n  <  — 1 / i r  the 
half-width o f  the a.s.s. grows without bound as 7 T ~ , that is, the solution of the 
problem ( I ) - ( 3 ' )  is not localized (HS-regime). On the other hand, if n >  — 1 /гг
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a.s.s, becomes infinite at the single point x — 0 , which indicates localization o f  the 
solution (LS-regime). For n =  — 1 j a  both localized and non-localized solutions 
can exist.

Let us consider the case n  =  — 1 / i t  in more detail. It is easy to see here that 
condition (28 ) is satisfied by the function

i//(f) =  ( T - t )  (45)

Then in (29) ф ( 1 ) ~  1, so that the half-width is constant (S-regime).

Table 3

_______________ Ф(П -
(T -  /)" li>" lo|2 + (У /) '| 
(7’ -  /)" 1»"12 -I ('/' /) ']

(T  -  /)"exp(li>"((7' -  ,) ')1.

0 <- о  < 1 

(T  -  /)" exp

a  > 0

___ J _  1
111" In12 • | / '  h  '} J

________________ Ф(П = ____________
,-/■ .. /((i i,,...//: 11|)(7-
(T  .. ln(y  _  l)\a"'2

(T - / ) "  exp { "  j In(/' - / ) !» }

(T -  /)* 1 + " " У -  tXp
rr [ In(7' -  /)[ )
2 In" | In(7’ -  /)| J

Thus, if  condition (5) holds, to the S-regime in the original problem there corre
sponds the boundary condition

«(i.O ) =  к ' [ ( Г  -  / Г 11, t e  (0, T ).  (46)

Then a.s.s. can be written down explicitly;

«л(Т x) =  к 11 (7’ — l)  '(1 ~  x/Xn)]  1. л» =  \2(<т +  2)/rr[l/2.

E xam p le  I. Let equation (1) be

ln,s(y  +  и)
n, (47)

where S -ф. 0, у  > 1, and let in problem (1 )—(3)

« i ( 0  =  (T  -  I )" ln"l 1 +  (T  ~  i)  11, t 6 (0. T );  a  =  const ф 0. (48)

Then it follows from (3') that to this boundary regime there corresponds the 
function

ф ( , )  =  -  (-»D Я/1Г( Т  — I ) "  In" ,<7 "|(7 ' —  i ) 11, i - * T  .
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which satislies condition (28).  Therefore, hy Theorem 1, to the regime (48) there 
corresponds the a.s.s. with half-width satisfying

(pit) ~  ( - ; ! )  'V2(T  - /)" ln(7' -  Г ) Г "  f" i2 . I —> T .

In particular, for n =  — \/<r this dependence has the form2

(pit) ~  ((г)й , :| \n(T — /)|",,г-л>/-> , _ *  r  ,

Hence for a  > 8 / i r  we have that (pit) —» oo as r —» 7 '” , which means that the 
solution grows without hound on the whole space (HS-regime). If a  < <5/<r, then 
(pit) —» 0  as t —» 7' . and the a.s.s. is localized (LS-regim e); if  a  =  5/<r then the 
S-regime obtains: as t —» Г  the solution has a constant (non-zero) half-width. 
Substituting into (48) it =  — 1 f i r .  a  — 8 / i r .  we see that in the case of equation 
(47) the boundary hlow-up S-regime is

««,(/) =  iT-t) 1л,1пЛ/,,|1 +iT-t) M. 1 e (0.T).

2 A pproxim ate self-sim ilar solutions of type II

Below we construct a.s.s. o f  problem (1),  (3')  considered in a domain (0. T)  x 
(0 , л'о(М). At)(0  =  fjoipit) > 0 . with an additional boundary condition on the 
moving right boundary n it.  .v()(/)) =  0 . In this case in the a.s.s, (6 ) the (unction 
satislies the problem (18), (19)  and lias compact support; meas suppW, — <  oo
(see S 3. Ch. 11).

L em m a 2. Let IL h e  the so lution  o f  p ro b lem  (18) ,  (19).  Then

i l20\' „
( / ! =  sup -T p r i f ) < (  r.

OHU.a « f -

The proof of this lemma, which is similar to the proof o f  the previous one, uses 
the asymptotic expansion

1 i

ff’ — — ~ ( ^ 0  -  £) + — — - ( £ o  ~  £ ) '  + ---------f  —> ■
2  4 h r  +  1)

In particular, wc obtain i d 1’ ) " i f „ ) =  ( i 2I\2L t +  1)1 < i t .

2Let us note that only in the case S  =  0 (when (47) becomes an equation with power 
law dodIineorily) and n  ~  2 /<т  can the expression </)«) ~  | h)(7‘ — < )|, / -> T  . he obtained 
fro») an analysis of the exact self-similar .solution 1184. 3211.



39 8 VI Approximate self-similar solutions

T h e orem  2. A ssum e that condit ion  (5) ho ld s  a n d  that the function ф in (3')  s a t 
is f ies  the condition

\Ф/Ф'\'(П ~> ». t ->  T  . (49)

Then there  ex ists  an a.s.s.  (6 ), such that

f i ( t )  =  {(t//'"/t//)(n)l/\  t g ((). 7‘).

the function 0 S(£) is the  so lution  o f  the  p ro b lem  (18),  (19) a n d  0 ,r(t. f )  —» # " (£ )  
a s  t ->  7 "  ot C(((), £o)).

The proof of this theorem is identical to the proof of the previous one.
It is easily cheeked that if  condition (49) holds, </>(/) —» oo as t —» T ~ . 

Therefore under the conditions o f  the theorem, boundary blow-up regimes in (3') 
are HS-regimes.

E xam p le  2. Assume that in the problem for equation (47)

u\(t) =  e x p ((7' -  /)"). t 6 (О, T ):  n < 0.

Then the function

ф(П =  k l l"\utU)] =  ( T  — t ) "V1’ c x p \ ( T - t ) " }  

satisfies condition (49).  Therefore we have the estimate

ф(1) ~  ( ~ n )  112( T  -  Г)11 " llSl 1,1/2 exp | ^ ( 7 '  -  „ - }  i t - *  T  , 

for the half-width of the solution.

§ 4 Approximate self-similar solutions in the non-degenerate 
case. Integral estimates of the rate of convergence

In this section we present a different method of constructing a.s.s. for the problem 

a, — ( k ( t t )u K) K, (t , л) e ш-г; ( 1)

n((), a ) =  ttoU) > 0, a e R_,; no e C’ ( R ,  ),suptto < oo; (2)

u(t,  0) =  и i (t) > 0, u\ (t) >  (), r e  (0, T).  (3)

In all the eases considered below, the proofs proceed by deriving some integral 
estimates of  the difference o f  u(t.  a ) and the corresponding a.s.s. This analysis 
in fact establishes “transformation rules '1 for known invariant solutions o f  ( 1) for 
к =  и" ,  (г =  const > (), under the transformation of the thermal conductivity 
coefficient a "  —» k(u ) .
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1 A pproxim ate self-sim ilar solutions of nearly linear equations

In this subsection we shall construct a.s.s. of equation ( 1) with a coefficient k, 
which satisfies

к e  C 2(((), oo)) П C'(|(). oo)) ;  k(u )  > 0 , k'(it) > О. и > 0 ; 

(к /к ' ) '(и )  —» ос. и —* оо.

Some functions к satisfying (4). (5),  arc shown in Table 4.

Table 4

__________________ к (ip =
In" ln(3 +  и ) ,  «  > 0
Id" (3 +  и), a  > 0
ln(3 +  и) In" in(3 + и), a  > 0
exp(ln"( 1 4 »). О < о  < 1

exp
ln( 1 +  it) 

In" In(3 +  и)
, a  > 0

(4)

(5)

It will be shown that for a particular choice o f  tq (t) a.s.s. o f  the problem (1)—(3) 
can be constructed using the self-similar solutions o f  the linear heat equation

и ,  ( 6 )

This approach is different from that of 5 2 , where, under condition (5), a.s.s. were 
determined using invariant solutions of the first order equation tt, ■=, k(u)ti 2J ( u + \ ) .  
Let us observe that in this section we arc considering more general coefficients 
k(u ) ,  since there is no need to impose the restriction (2.5), which was essential in 
5 2 .

We shall need two types of self-similar solutions of equation (6 ):

I. us ( i . a ) =  ( 7 " -  =  .v/(7' -  Ml/2, / 6 (0. T)\ n <  0; (7)

II . ii\(r , л)  =  e ' / i f -1' ) ' ' >  0.  (8)

It is assumed that /',(()) =  1, / , ( oo) =  ( ) , ( = r 1, 2 . Equations for the functions 
/, are obtained by substituting (7), (8 ) into (6 ). It is easy to verify that

/ 1<£> '(1 + s ) " ~ ' r- d s . f z i -О =  e~'.

In each case an a.s.s. ti, o f  the problem ( 1)—(3) is sought in the form

11,(1, л ) - i q U H M f ) .  £ =  А / ф ( 1 ) , (9)
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where the non-negative and sufficiently smooth functions t f ( £ ) ,  Ф(П,  have to be 
determined. Setting 0 , (0 )  =  1, we have that the a.s.s. (9) satisfies the boundary 
condition (3).

Let us denote by 0 ( t , £ )  the similarity representation of the solution o f  the 
problem:

1
0 ( t . £ )  = ------- и (1 .£ ф (П ).  f  e R 4 . ( 10)

i<iO)
We shall show that for a particular choice of the functions iq . I f .  ф. the function 

0 ( t , £ )  converges to 0 , (£ )  as t ~± T'  . which ensures asymptotic closeness o f  the 
solution u(t. x) and the a.s.s. u f t .  x).

In the proof in the sequel it is assumed that u(i.  ■) e  L : ( R f ) for all t e  |0. T)  
(the norm in L 2(R_, ) is denoted by Ц ■ |h). Moreover, without loss o f  generality, 
we shall take the initial function «(>(■ v) to be non-increasing in R 4 . Then by 
monotonicity of the boundary regime, this property will also apply to the solution 
tt(i, x)  (see § 2, Ch. V).

L em m a 1. Let the co e f f ic ien t  к satis fy  con d it ion s  (4),  (5). Then;
1) a s  и —> со, k(u )  g row s  s lo w e r  than an y  p o w e r :  f o r  any  n  > 0 f o r  al l  

sufficiently la rg e  a > 0 we h a v e  the in equa lit ies

k ( u )  < t t“ . k ' ( u )  < u "  1; ( 11)

2 ) k"(u)  < 0  f o r  a l l  su fficiently la rg e  и >  0 :
3 ) f o r  any £  e  (0 , 1)

k ( £ u ) / k ( u )  1. n —>• oo. ( 11')

P r o o f  The claim 1) follows immediately from (5),
Concavity of к for и —» oo (claim 2)) follows from the relation

(k /k ') ' (u ) k" (tt)k ( it )/\ k ’(tt) -> OC. II oo.

To prove 3), we shall use the finite increment formula: k(u)  
k'(£)u (  1 — £),  where £ e  (£и, и). Hence

Щ и ) / к ( и )  =  |1 + k ' ( 0 ‘<( 1 — ^)/Ar(^«)| '■

However, by 2 ) k'(£)  < k'(£u)  for large и > 0  and therefore

к (£u)  +

1 +
k'(£ u )£ u  1 -  £

k ( £ u )  £

which completes the proof of ( 11'). since

,. k ' ,, -vl u l l --------- £u  =  b i l l ----------------
'' k (£ u )  " ' --x. k ( s ) / k ' ( s )

k ( £ u ) 

к ( a )

lim
Ш )

k'(s)
a

□
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I A pprox im ate  .self-similar so lu t ions  o f  type I

T h e o rem  1. Let condit ions  (4).  (5) hold ,  a n d  a s su m e  that f o r  a l l  t su ffic iently  
c l o s e  to T  ,

u\(t) =  (T -  p i  '(/))'',  (12)

w h ere  n < —1/4 is a  constant,  a n d  p  1 : |(). 7") —> |(), 7") is the inverse  o f  the  
m o n o to n e  function

fill) = T -
d r

k\(T  -  rW\
T T .

Then there  exists an a,s.s.  (9), w here

( 12')

a n d

<p(t) =  (T  -  /x ' 1 (/) ) 1/2- t ->  T

«.(f)  s / , ( £ ) .

lim Ц<9(/. ■) -  0 , (■)II:  =  0 .

(13)

(14)

The exact form of the rate of convergence of  0 ( t , f )  to 0 d £ )  will come out of 
the proof of the theorem, Unboundedness and monotonicity o f  the function ( 12), 
(12 ')  as / —> T  follow from Lemma 1,

In a number of cases we can write down asymptotically exact expressions for 
the boundary regime (12).  (12 ') .  For example, if

lim
k ( s )

k ( s / k " ( s ) )

(this condition is satisfied by coefficients of lines one to three o f  Table 4, and by 
the coefficient of line four, if a  e  (0 , 1/2 )). then it is not hard to show that

« i ( 0  ~  (T  -  t)"k"\(T  -  M"|,

tH D  -  ('Г -  /)i/2AI/2|(7- -  0"| . f -  7- .

The restriction n < —1/4 in (12) can Ire related to the need for the inclusion 
I f  =  f\  e L: ( R , ). Since

. / 1 (^ ) - l 2 "77-1/-

it does not hold for n e  | — 1 /4, 0).

Proof o f  Theorem 1. Let u.s define a smooth monotone function p. : |(). T) —► |(). T)
so that

u\(p.(t)) =  (T  -  t)", t T  , ( 15)
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Then the function x) satisfies the equation

и, =

and by ( 12), the boundary condition

0) =  ('/' -  П". t T ~ . (15')

( Г )

Since, as follows from (12),  (12),  ф ( 1 ) =  |ui( I )|l/’1- " 1, the ct|Liality (15) also means 
that ф(/х(1)) =  (T  — t ) l/:, t —> T  , and therefore as t —» T

u s l f i l t ) .  .0  =  (T  -  t )" 0 s l$ h  (  =  x / a  -  n l/:.

0 ( ц ( П . £ )  =  (T  -  I) "it(/j.(i), £ ( T  -  Ml/2).

Observe that us ( / j . ( t ) .x )  is precisely the self-similar solution (7) o f  equation (6 ).
Let us set id(t. x) =  x) ~ i t s (in(i) ,  л). Then under the above assumptions

w(t.  0) =  0, w(t. x ) —► 0 a.s a  —» oo and w(t. ■) e  L~{R ,  ) as t —> T  , Taking the 
scalar product with to o f  both sides of the equation

iv, =  \ijl ( t ) k (u )u ,  -  (t/ j ,| , (16)

and integrating by parts, we obtain

( f i ' ( t ) k ( u ) u K -  ( a , ) , .  w K), (17)

Let us denote by G (s :  I) the function

./o

Using the identity

( / j . ' ( t ) k ( u ) u , -- (к, ) . , ) ( « ,  -  ( « , ) , )  s

=  [\/и.‘( 1 )к(и)\и2 1 1 , -  (к , ) , ) ’ -  ( u . J v|G(u; r)|,.

we derive from (17) the estimate

(19)

Since O oL < 0 and hy assumption < 0  in coy, the right-hand side does not 
exceed
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where </л =  max \в[(£)\ < oo. Then for all t e  (/,. У), where t,  < T  is sufhciently 
close to T,  we obtain

l i m i t .  - ) 1 1 з  5  l i m i t . +  2 r/ j  j  ( T - T f - ' r - G U T - T ) " - ,  T ) d T , i .  < t  < T ,

Hence, using the easily verifiable equality

limit,-)H? = ( У - м 2"',|/2||0(/х(М.-) — 6»,C)|||. 1,  < 1  <  Г .

we obtain

W / jlU). ■) -  (9Л 1 - )  113 <  ( T  -  t )

+  2ch (T  -  t) 1 ' \ т  -  т )" ' ||2С/((У -  r ) " ;  t)cIt.

i m ( t , . - ) l l "  +

( 20 )

Let Lis show that the right-hand side o f  this inequality goes to zero as t —»■ У " .  
The first term goes to zero by the assumption ti < -  1 /4, Let us consider the second 
term. Since /x'(t) =  1/|A((7' -  t)")| as t —»■ T " ,  and resolving indeterminacie.s in 
(2 0 ). we have :ii

lim
i - - / (ML <

In  +  1/2

f  {[/х'(ПА:(т7) 11/2 -  1 ) ’ r/i7. 
/о

( 2 1 )

к lim (У -  О 
i . r

By the change of variable 17 =  (У — t )" ( .  the right-hand side o f  the last inequality 
takes the form

—  iini
I n  +  1 / 2  I -  f ./(I

A(£(7‘ -  t ) " ) l  

All У - " ( ) " ) ’

1 /-
( 22 )

Since A(n) is increasing, the integrand is bounded uniformly in £ e (0. 1) as 
1 ~ • T  , and by (11') goes to zero as 1 —> У for any £ e  (О. 1). This proves 
(14),  while (20) provides an estimate of the rate of convergence to the a.s.s. □

Under the conditions o f  Theorem 1. wc have that ф(1) —> 0 as t --+ T  . 
Therefore the structure of the a.s.s. (9) indicates that the solution u(t..v) grows 
without bound only at the one point л =  0, This points to localization in this 
problem, with (12) an LS blow-up regime.

E x a m p le  1. Take in (1) A(o) =  In" (2 +  n). a  > 0 (see Table 4 ) .  Then it follows 
from (12).  (13) that the boundary regime

</i(M ~ ( - n ) a"(T -  t)"\ ln(7’ -  Ml"", t -*• У  -
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leads to the appearance o f  a thermal wave, the half-width o f  which decreases as 
t —► T  according to

X,./(!) ~  ( - n ) ' , , 2 ^ ( T  -- / ) 1/2| ln(7" -  Ml"''3.

The constant e  R., is such that ./ 'i(f’ ) =  1/2.

2 Approximate’ s e l f -s im ila r  so lu t ions  o f  type II 

T h e orem  2. Let con d it ion s  (4),  (5) hold, a n d  a s su m e  that, m oreover ,

d p

/о kU”>) 

F o r  a l l  t suffic iently c l o s e  to T  , let

<  oc.

U\U) =  e X p {/X (n } .

(23)

(24)

w h ere  p. * : ( 0 . 7  ) —> R , is the inverse o f  the m o n o to n e  increas ing  function  
p  : R.|. —> (0. /'), d e f in ed  f o r  suffic iently  la rg e  т hv

р(т) =  T ~  [
dr]

k ( e ’’ ) '
(25)

Then ф(1) =  1, в ф х )  =  f  i ( x ) =  e  1 an d  the equa lity  (14) holds.

P roo f ,  The proof is essentially identical to that of Theorem 1, We establish the 
following estimate:

1И / 1(М,-) -  0,(O||3 < IIn(/, ,  ■) -  n d t , ,  ■)IIте 2,+

+ 1e  11 J ] [  e r jj|| U/x'(t)A(t7)|1/Э - d r .  t » < t <  T .

Hence, by Lemma 1,

(26)

l i m  | | ()(t. • )  -  ( M d l l 5  <  l i n t, . . r  - j t)
k (u \ (t ) ( )

k(u\(t))
1 } d c  =  o. (27)

(To obtain (27) from (26),  it is sufficient to take (25),  and, taking (24) into account, 
transform back, p ( t )  t.) □

Under the conditions o f  Theorem 2, the a.s.s. (9) has the form

u,(t .  .v) =  exp(/x (t) -  .v).
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and л-) —*• oo in R + as t —► T ~ . It follows from Theorem 2 that the solution 
uU. .v) will have the same properties, i.e. in this problem there will be no heat 
localization and the boundary blow-up regime (24) is an HS-regime.

On the other hand, the boundary condition (24) leads to the appearance o f  a 
thermal wave with a constant (as t —► T  ) half-width ф(1) =  1. Condition (23) 
ensures that such boundary regimes belong in the class o f  blow-up regimes. In 
1187] it is shown that divergence o f  the integral

f'*- ch]
/ ------- =  oo

./<> M e7')

leads to solutions with constant half-width being generated by boundary regimes 
without blow-up, which are delined for all t > 0. In this case a.s.s. are delined 
by the same formula (9). This will he the case for — exp{/x '(M). where we 
have denoted by /j. 1 the inverse o f

/x(i)
chr]

k(c'>)
l > ().

Then, if ф =  1 and в , == c~'  in (9), we have 0(t. ■) —► tf,(-) in /-2(R| ) as / —» oo. 
where is the similarity representation of ( 10).

Therefore the inequality (23). which is equivalent to

l

( I  T]

T } k ( T } )
oo. (28)

is a necessary and sufficient condition for u thermal wave with constant penetration 
depth to be generated by a boundary blow-up regime. The precise form of this 
regime is determined by (24), (25).

Condition (23) (or. equivalently. (28))  is satisfied by coefficients к in the fourth 
and fifth lines in Table 4. and. if a  > 1. also in the second and third lines.

To illustrate the possibilities o f  Theorem 2. let us consider

E x a m p le  2. Let k(u )  — ln( 1 +  u) h r  ln(3 -I- u). Then condition (23) is satisfied 
and it follows from (25) that

I<х(т) ~  T  — 1/ 111 t . r  —■► oo;

/X 1 (t) -  explff -  i) 1). i -> T  .

Therefore the boundary blow-up regime

ii\(t) ~  exp{exp{(7 ' -  /) '))

generates a solution with constant (as t T" ) and non-zero half-width.
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2 A pproxim ate self-sim ilar solutions of equations with nearly pow er law
coefficients

In this .subsection we consider equations (1) with coefficients k .  which satisfy the 
condition

(k /k ' ) ' (u )  —► 1 / а ,  и —► со; a  — const > 0 (29)

(for <r =  ( f l (29) coincides with (5 )) .  We shall also assume that the following 
conditions are satisfied: 

k(£ u )
— :—  is non-increasing in £ e (0. 1) lor any и > 0. (30)

— ---------- > 1 as » —► oo for any £ e  (0. 1). (30')
C ’ k(u)

All the above requirements are fulfilled, for example, by the coefficients k(u )  =  
11" ln“ ( 1 +  u). a  •> 0: A:(it) =  u" exp(ln ,r( 1 +  «)).  0  < a  < \: k(u )  =  и'г+ 1 /1,1 intŝ  «i_ 

In this ease the a.s.s. o f  the problem (1)—(3) are constructed using two types 
o f  invariant solutions of the equation with a power law nonlinearity.

u, =  (it,rit,) (31)

(the constant i r  0 here is the same as in condition (29 )) .  which have the form

A. us(t.x) = iT-n"m(£). £ =  a-/(7~ -  M(l

i e  (0. Ту. и < 0; (32)

B. u.y(l, .V) =  с ' к з ( £ ) .  £ =  .v/expert /2). I > 0. (33)

The functions gi. g : .  which satisfy the boundary conditions ,[*,(()) =  1. g ,(co )  =  0, 
i =  1. 2 , are determined from ordinary differential equations obtained by substi
tuting the expressions lor ti.y into (31) (see ij 3).

In each of the cases under consideration, we shall seek a.s.s. in the form (9), 
and will denote by (Hi, £)  the corresponding similarity representation (10) o f  the 
solution ii(i,.v) of  the original problem.

We shall establish convergence of  0(1.-)  to 0 ,C) in the norm of  the space 
It 1 (R , ). All the functions n in / J ( R ,  ), which satisfy the conditions

/ ll(y)clv €  / „ ' ( R , u(y)cly <  o o .

belong in the Hilbert space li 1 (R , ).
The scalar product in h 1 (R , ) has the form

(ll. i.1) on, td.r) л)г/л.
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where we have denoted by V =  ( — i)2/ d x 2) ' 1 v the .solution of die problem

<)~V/l)x~ =  — v, x > 0,

which satislies
У (0 ) =  0 . |V(oc)| < oc

(it is easily cheeked that under the assumptions we have made on funetions in 
/Г 1 ( R + ). a solution of this problem exists). We denote by ||u|| i the norm in
Л 1 ( R + ):

II"II ' =  ‘ " - ч ' / ч к . г
It is not hard to see that

1 /  ; >  \  1
M I - 1  = ( -  —  )  и >== /  u (y )d y

\  * x ) 2

Below we shall assume that uu e  I f  1 ( R + ), u(t. •) 6 /Г 1 ( R + ) for all t e  (0. T).  
Note that the second condition holds for a generalized solution with compact s'up- 
port и e  C] ~ ( P i |«|),

P,\u\ =  {I 6 (0. T ) . x  e  R + | «(/. -v) > 0),  #

with a continuous derivative к ( и ) и к.
The following easily verilied assertion will he used in the sequel.

Lem m a 2, Let a  function к e  C 2( ( ( ) .o o ))  satisfy condit ion  (29), a n d  let a  e 
(0.rr| b e  on  a rb i tra ry  constant. Then f o r  a l l  suffic iently targe и > 0 ice h a r e  the  
inequalit ies

un n < k i u ) < u,r u \ u,T‘ 1 ’ "  < к f u )  <  u,r ' N,r. (34)

I A pprox im ate  se l f - s im ila r  so lutions o f  type A

T heorem  3 . A ssum e that Conditions  (29),  (30), (30')  hold, a n d  that f o r  a l l  t su f
ficiently  c l o s e  to  I ,

Ml(/) =  (•/’ -  /X ' (M)",  (35)

w here  n < — 3/(3rr +  4) is a  constant a n d  p. 1 : |0. T) —> |(), T) is the Junction  
in rer sc  to

( l i t )

( T  -  T)",rdT
--> T

k\(T -  t )"|

Then the p r o b l e m  (1 )—(3) h a s  the a.s .s .  (9),  where  

ф(1) =  (У -  f i  '(/ ))“ t

(35')

(36)

the function  вЛ £ )  is the s a m e  a s  g i( i j )  in (32) an d

lim \\0(t. •) -  (9,4■)I! i = 0 .  , - (3 7 )

I
’ i.
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Monotonicity and unboundedness as t —► 7'"  o f  the function i<i(i) in (35) 
follow from Lemma 2.

The restriction n < —3/(3<r +  4) has to do with the condition W, =  g| e 
/i~1 ( R + ). Since (see § 2, Ch. Ill)

jfi (£) ~  C £ :,,/Il ,mr\ ( - *  oo: C > ( ) ,  

this inclusion does not hold for ii e  | — 3/(3cr +  4 ) ,  0).

P r o o f  o f  T heorem  3. Let us change the variable t to /x(r), where the smooth, 
monotone function p  is delined by (15). Then the function u ( p ( t ) , x )  .satisfies 
equation ( Г )  and the boundary condition (15'). By (15).  (35). (36) we have

ф ( р ( П )  =  (T  -  i ) lUmnr~. f -*■ 7"  .

and. as is easily seen, for all t sufficiently close to T

us( p ( i ) . x )  =  ( Г  - * ) "« ,(£ ) ,  £ =  x / ( T  ~  DiUmr);2.

0 ( p ( t ) ,  f )  =  (T  -  t) " u (p i t ) ,  t ( T  -  f )11' ^ 2’ ).

By the equality W, =  g i ,  as t —> T  . the a..s.s. u A p ( t ), v) becomes exactly (32), 
the self-similar solution o f  equation (31).

The function ii,’(l, ,r) =  u i p i l ) ,  x) — us[ f i( t ) ,  x)  satisfies the equation

w,  =  | p ' ( i ) k ( t t ) u x -  u / O o ), |,. (38)

and w(t,  0) = 0 ,  u’p , .v) ->  0 as x —> oo, iu(o •) e  /i 1 (R.t. ) as t —» T ~ . Taking 
the scalar product of (38) with ( —<j’ /<)x2) ' id, we obtain

( p'(г - Н М О  )||z , =  /x'(f)[/■'(!/)|, , -------- —
2 cl I l ex -f

■(<fM I « £

’ i)x2

where

F(it)  — I к(т))с1т). и > 0 .
./о

We rewrite the right-hand side o f  (ЗУ) in the equivalent form

p ( D  I I /-'00 -  /''(«О I |  I w I +

+  /x'(o|/'(m)|t l ------ --T (u/H )
\ cr + I ’ dt ’-

ii’

(39)

(40)

-  p ( t ) ( F - ' ( u )  -  / • ' ( « , ) .  u  -  i n )  +

+  (ыл) х\ р ( 1 )к { ч , )  -  u'/1.
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Using now the fact that (F (u )  — /■’(« ,) ,  и — и ,)  > 0 and appealing to the Cauchy- 
Schwarz inequality to estimate the last term in (40), we obtain from (39)

2 dt
!!И!2 1 < ! M U i  | | ( t o ) , | / x ' (n*( to)  -  «'ЛИ: ■

Hence
d

(41)-i 1  \\(u,)x\/j.'(t)k(us ) -  

Let us estimate the right-hand side o f  this inequality:

!!(« ,). ,[/x'(r)A:(m) -  tq I!!: =

(и,)̂ |/х'(П*(и,) - и" I'r/.vl = (/ d'(us) ,|Ф(«,: M|//.v
/о J f./o

Here we have denoted hy Ф(л: t ) the function

Ф(л; I) =
k( T))

F  ( n ~ -
T),r

r f d - t } .  x > 0 ,  r e  ( 0 ,  T ) .

Since the function «, is monotone in л, we have finally

IKmKl/x'mA-On) -  u;r |ib <

< s u p \it\r (u , ) , | j  |Ф(щ; n|,r/.v| =

=  ч\р- ( Т  -  n 1" 1" " - ’ ||/‘1Ф |/2|(7’ -  t)"\ /1, r —> T .

where с/, =  max \в\’ d e s /d^\ < oo. Then we obtain from (41) the following 
estimate, which is valid for all l e d , ,  T)  which are sufficiently close to T  :

IIш(/, -)l! i < IImj(/,,  •)!! i +

+  q ' J 2 j  ( T  -  t ) l>,un2) l|/‘1c|)l/I( (7 ’ -  r ) \  r) d r .

Since

!!tn0,-)l! i = ( Г - м ' " ’...г,/-,!!«(м0), ■) - «.(■)!! i.

from that inequality we derive the estimate

! ! « ( / t x ( t ) , - )  - » , C ) I I -  i <  ! l m ( t , , - ) ! !  , ( T  -  o ’ ^  l '>' w ]  +

+  q'J-er - I) " a "  ! "'r' I (T -  T) ,(,ГV ’ Ф 1 /2((7’ -  7)"; r)(/r.
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Hence, since n <  - 3 / ( 3 <r +  4),  resolving the indeterminacy in the right-hand 
side we obtain

lim ||W -  «,||- , <
~

_________<h_________
| и +  3(1 +  iim)/4 |2

lim
) r

Ф ( ( Г  - I ) ” -. I) 
( y  — t 1'

From (35 ')  it follows that

and therefore

fi'U
(T  -  t Г  t _

к \ С Г - 1 ) иУ '

Urn „ f l - e j V _________Ъ ________ ,  hm
i ~ r 1 и +  3(1 +  nor)/4|- / - r  ,/0 \ £crk ( ( T  — I)")

By (30), the integrand is hounded uniformly in (  e  (0 , 1) as r 
(37) follows from (3()'),

}  ? < n .

T  . Then
□

R e m a rk .  In § 3 we used a different method to construct a.s.s. o f  equation ( I ) for 
coeflicients к and boundary regimes covered by Theorem 3,

It is not hard to derive from (35),  (36) sharp estimates for the spatio-temporal 
structure o f  a.s.s. Let к ( ц )  =  и‘гк (и ) ,  where the function k ( u ) > 0  grows slower 
than any power as a —» oo. Then if the condition

'  k ( . s / k " ( . V ) )

holds, the functions a i ( t ) ,  ф(П  in (35),  (36) admit the asymptotic estimates

iM(0  -  1(7* — /)“  ,,,r4 - | ( 7 ' -  M"|)",

ф(1) ~  ((7' -  o "  '"n k\(T  — o "| )(l 1 '"n /2 , i - *  Г  .

Let us use the above theorem to study the heat localization phenomenon. The 
spatio-temporal structure o f  the a.s.s. (9),  debited by (35), (36), indicates that 
the properties o f  the solution o f  the problem depend on the relation between the 
quantities it and it.

If  n < —I /<г in (35), then ф ( 1 ) —► ос, t —► T  , and therefore the solution 
grows without hound as t T  everywhere in the half-space (,v > 0) (HS-regime; 
no localization).

If  n  >  — l / ( r .  then ф ( 1 ) —> 0 as I T  (LS-regim e), which indicates that the 
process is localized.

The value n =  —\/<r corresponds to the limiting localized a.s.s. (S-regime); 
in view o f  the fact that ф =  I, as t —»■ T  it has constant half-width, which is
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different from zero. Substituting n =  — l/cr, we obtain for the boundary S-regitne 
the expression

U\(t) ~  ((7' ~  /)-A:[(7* -  /) |/,г|Г 1л\  T  , 

or, which is the same,

U](t) -  k - ' \ (T  -  i r ' l  t ~ ^ T \

where we denote by к 1 the function inverse to k. Asymptotic equivalence of 
these two expressions follows from condition (29). In this case the a.s.s. has the 
relatively simple form

uAt, x )  =  u\(t) At)
2 ( r r +  2 ) 1/2

E x a m p le  3. Let k(u )  — n, r ln (2 +  »). Then from (35) we obtain that the limiting 
localized S regime in this ease is

u\(t) ~  [<r(T — f ) ~ 111 ii (7 — l)| V /,r. l ^ T  ,

which generates a solution with half-width which becomes constant as t —> 7”".

2 A pprox im ate  s e l f - s im ila r  so lut ions o f  type В 

T h e o rem  4. A ssum e that cond it ions  (29),  (30),  (30') hold ,  a n d  that, in addition,

c ‘n>
/ --------d p  < oc. (42)

J  о k(c't) 1

S u p p o se  that f o r  a l l  t SnJ]iciently c l o s e  to T

iqO) =  e x p { '(/)) (43)

w h ere  p. (0, T)  R,| is the inverse  o f  the m on o to n e in creas in g  Junction
р(т)  : R , > (0. 7 ), w hich f o r  :sufficiently lory  1е т > () is; d e t e rm in ed  by  the
fo rm u la

p m
р(т)  =

T ~ 1  *A e’7)
d p . (44)

Then

l (n<j>(t) =  exp
} ■ ' T " • (45)

B A f )  =  n: ( 0 a n d  the equ a lity  (37) holds.
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In the course o f  the proof o f  this theorem, which is similar to the proof of the 
previous one, we establish the following estimate:

\\e(/j.(t). ■) -  MMII-| < IIш(/,, -)ll -i exp I  f  1 +  ^  j  | +

+  </!/2exp { ~t ( i +

i •t k̂(т,) i n  (T )— .—  i
V

1 v ' 2

1 / 3

i t  '

+  r l hexp

т)" dr;  > d r ,  t —> oc.

Hence hy the equality

M (0  -
k ( c ’ )

, I —» ЭО.

and assumptions (30),  (30 ')  we have the desired result

lim IIHU. ■) -  MHII'i 5

t/л
lllll

(I +  3 rr/4)- I '7 ./() U ',rM m ( 0 )

k(u\(t)£)
C  dC  =  0 .

R e m a rk .  If  the condition contrary to (42)  holds:

./о k(t”i)
dr) =  oo.

the solution obtained from a self-similar type В solution hy the '‘transformation" 
u‘r —> k(u ) ,  is defined for all I > 0, that is, it does not blow up in finite time 1187|.

From Theorem 4 it follows immediately that under the assumptions we have 
made, the boundary regime (43) leads to absence o f  localization, i.e., it is an 
HS-regime.

E xam p le  4. Let us consider the coefficient k(u )  =  u'r ln"(l +  u). Condition (42) 
is satislied, and therefore we deduce from (44) that

At- 1 (/) ~  (T  -  O ” 1, t - *  T  ■

Hence the boundary regime

щ (I) — ехрК'Г — i) 1), t —  T  ,

generates a thermal wave that moves according to

Л ( 0  -  Г ' M o  =  i f  e x p  t ( V -  0  > . I
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Remarks and comments on the literature

Qur exposition o f  the results o f  § 2 follows mainly 11 19, 185|. First studies of 
the heal equation u, =  it „  using degenerate a.s.s. are reported in 1149, 347, 3 4 8 1 
(see § 4. Ch. III). Applications o f  this theory to the study of  heat localization 
(Theorem 2. Section 4) are contained in |I54|. The theorems of § 3 are proved 
in 11 8 4 1; partial results were obtained earlier in 1119|. Results of § 4  are given in 
1187, 119|.

It must be said that at present there are few examples o f  really non-trivial a.s.s, 
o f  nonlinear heat equations. In this regard, let us mention |234|, where a.s.s. o f  the 
Cauchy problem for it, =  (A-(u)iM,, t > 0, .v e R, with eoeflieienl not of power 
type, are eonstrueled, A related result has been established in 1187| by a different 
method; an estimate of  the rate of convergence to a.s.s. was also derived there 
(this estimate could not be obtained in the framework of the methods of  ]234]) .

Open problems

1. ( § 2 )  Prove that localization of degenerate a.s.s. (10)  for n > - 1 implies loc
alization o f  solutions o f  the original problem ( l ) ~ (3 ' )  (for the ease к =  I this is 
proved in 1149, 347, 3 4 8 1; see S 4, Ch. III).
2, ($ 3) Prove that under the conditions o f  Theorem I lor n  > —I / t r  solutions ol 
the problem (1)— (3') are localized (for u < —I / t r  a.s.s. are not localized, which 
implies that there is no localization in the original problem).



Chapter VII

Some other methods of study of unbounded solutions

In this chapter we conduct a study o f  unbounded solutions of  various nonlinear 
parabolic problems. In § I we study the character o f  the asymptotics o f  unbounded 
solutions o f  a quasilinear parabolic equation with a source close to the blow-up 
time, Wc obtain a nearly optimal condition for the absence o f  localization.

In t; 2 we investigate boundary value problems in bounded domains.
In § 2, 4  wc consider parabolic systems o f  quasilinear equations which admit 

unbounded solutions.
Most results arc obtained using the same approach, the m e th o d  o f  s ta t ionary  

states .  It is based on an analysis of a special family o f  stationary solutions, which 
satisfy the equation or system o f  equations almost everywhere (this is why it is 
convenient to call them states, thus emphasizing the fact that they are not stationary 
solutions in the usual sense).

We lind that the family o f  stationary states contains in a certain parametrized 
form several important properties o f  the evolution o f  the non-stationary problem. 
We stress that the method is applicable to problems with nonlincarities o f  a suffi
ciently general form, when the problem admits no appropriate stable similarity or 
invariant solutions.

In § 5 we study for the most part a nonlinear (implicit) difference scheme for 
the equation it, =  (u, r t l ) , ,  +  id1, The most interesting case here is /3 > a  +  I, 
when the discretized problem admits unbounded solutions,

§ 1 Method of stationary states for quasilinear 
parabolic equations

This section is entirely devoted to the study o f  the phenomenon o f  localization of 
unbounded solutions o f  the Cauchy problem for a parabolic equation with a source 
o f  general form:
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и, =  V -  (A '(m V ,o +  Q (u),  t > 0,л- e R n , ( I )

ii(O.x) =  nn(x) > 0, л- e  R w, (2)

where, as usual, к > 0, Q > 0  are known sufficiently smooth functions, V(-) =  
grad1 (-)- The main question we are considering here is to find conditions on the 
coefficients k, Q. under which the solutions of the problem are not localized.

An unbounded solution o f  the problem ( I ) ,  (2) is said to be l o c a l i z e d , if it 
grows to infinity as t —> T {) < oc on a bounded set in R N, that is the lo ca l iza t ion  
dom ain

w, =  j . r  e R v | u (T 0 . л ) s  lint n(t. x) =  oc j  (3)

is bounded. The function u ( T ^ , x)  is called the liniitiup distribution  (l.d,) of the 
solution. If, on the other hand, or, is unbounded (for example, or, =  R'v ) we say 
that th en ’ is no lo ca l iza t ion  in the p ro b lem .

Earlier, in Ch. IV, we studied the localization phenomenon in detail using as 
an example equations with power type nonlinearities', »

u, =  V ■ ( , ,"Vn)  +  u/J, t >  0, a e  R n : ct > 0 , f3  > I, (4)

by analyzing in an appropriate way their self-similar solutions. It was shown that 
for (3 < it  +  I there is no localization, while for /3 > <r +  I all unbounded 
solutions are localized. Equation ( I )  o f  general form does not admit such self
similar solutions, and therefore the comparison methods developed in Ch, IV are 
not applicable here,

In this section we propose an approach to determining sufficient conditions 
for the absence of localization in the case o f  equation ( I )  with arbitrary (not 
power type) coefficients k, Q, We also study the structure o f  l.d. of unbounded 
solutions, This method encompasses also the case 7'n =  oo, when sup( nit,  .v) —» 
со as t —* oc, Therefore we do not pay any special attention to the condition 
J"*" <It) / Q ( t)) <  со, which, as is well known, is a necessary condition for existence 
of unbounded solutions (see § 2, Ch, I),

The method we employ is based on the construction of a one-parameter family 
((7) o f  stationary solutions o f  equation ( I ) :

V-  ( k ( U m / )  -f-Q (U )  = 0 .  (5)

In essence, we shall show that the family [U] contains information about several 
properties o f  the evolution o f  solutions o f  the non-stationary equation ( I ) ,  which 
are parametrized in a special form. Actually this assertion is quite natural, sfince 
the main part o f  equation ( I )  is exactly the stationary operator, which contains' all 
the nonlinear terms responsible for the evolution of a solution.
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In § 3 (and partially in § 4) we use this method to analyse a parabolic system 
o f  quasilinear equations, and, while studying localization o f  unbounded solutions 
o f  the Cauchy problem, we at the same time determine conditions for global 
solvability o f  the problem in a bounded domain, The concepts we present make 
it possible to give a general formulation o f  the method of stationary states for the 
study of nonlinear parabolic problems satisfying the Maximum Principle.

Below we shall take the function Q(u) to be monotone increasing and we shall 
also assume that ф(и)  —> ос as u —> oc, where ф(и)  =  JjJ' k (r ) )d r ) .  We shall 
denote by ф' 1 the function inverse to ф. As far as the solution of problem ( I ) ,  
(2 ) is concerned, we shall assume that it exists, is unique and for all 0 < t < 
T о =  Ta(uo) <  oc belongs to C,1;" wherever n ~> 0. and that in addition Ar(u)Vu is 
continuous in x in for all t e  (0 . To).

1 C onstruction  of the family of station ary  solutions

We shall be interested in the properties of bounded radially symmetric solutions U 
o f  equation (5). Each of those, at points of positivity, satislies the problem

^  ( r N ' (ф Ш )) ' ) '  +  Q (U ) =  0 .  r =  |л1 > 0. (6 )

UW',U0) = t 7 „ .  U'r (() :U n) = 0 :  (7)

while at all other points we assume for convenience U =  U(\x \:Uq) =  0. Here 
(7o > 0  is an arbitrary constant (the parameter in the family (С(|лТ.(./»))).

Local solvability o f  the problem (6 ), (7) for small r > 0 follows from the 
analysis o f  the equivalent integral equation

ф т г \ 1 1 0)) =  ф Ш -  I '  f 1 N d ( f  r,N~l Q W ( T) ; l J a ) ) d T) ,  r > 0. (8)
./о ./o

Hence we have that the solution can be extended in r > 0 and is strictly monotone 
in /• in the domain [r  > 0 | U (r)  >  0 ).

Let us lirst derive a lower bound for U. Clearly, ( r N" [(ФШ ))')' > — Q (U n)i 'N_l 
for г > 0. Integrating this inequality twice over (()./') we obtain the following 
estimate:

U ( n U  o) U.Ar'.Uu)  — </>"' Ф(Уо)
r~

I'n

i‘o 2N
< м и „ у

Q i f i o ) .
> 0 .

To derive an upper bound lor V , let us use the relation

,•" *'(</,((/))' =  -  [ ’ 7}N
.In

' Q ( U ) d V < —~ Q ( U ) . 0 .
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Integrating it from 0 to t\ we obtain the following estimate:

UU-.Uo) 5  G
I N

+  G (U q) < G
r~ 

2N
r > (). ( 10)

where G  1 is the function inverse to

G (u) -•
k ( i ')) dr)

Q G 7 )

0 .

In the particular case Q(u) — /и.ф(и). ц  =  const > 0, the solution V  can be 
written down in explicit form:

V(i".Uu) =  ф 1 |г-л '(^ о)ru 2)/:(Ml _ r )I ( И )

for 0 t i t 0 is the first root of the Bessel function< r < ,-;V /u where _л,

^ ,v - : , /2and сыШ1))=<Ниа)Г(Ы/2Н2ц |,2)<v : i / : .
The main properties o f  stationary solutions of  equation (4)  with power nonlin

earities,

( r N W ) ’ +  U11 =  0 . r > 0 , ( 12 )

were discussed in S 3, Ch. IV. Let us emphasize that they crucially depend 
on the relation among the parameters <r, (3, N. In particular, for N > 3, /3 > 
(гг +  I )(N +  2 ) / ( N  -  2) the problem (12) ,  (7)  has strictly positive solutions in R N 
(in the other cases the solutions have compact support). For Q  not of power 
type it is also possible to have solutions o f  the problem (6 ), (7) that are delined 
and strictly positive on the whole o f  R ^ , This, for example, occurs if  (sec |332|)

N - 2

~~2N~
itQ((j> x(u)) > / Q ((jG l (r }) ) ch } .  и >  0 ;  N > 2 ( 12')

(the proof of  this fact is the same as in the case o f  power type coefficients; see 
§ 3. Ch. IV),

We shall also need conditions on k ,  Q, under which the functions (7(!.v|;(7o) 
have compact support in R N (that is, they are not stationary solutions in R N ). As in 
tj 3, Ch, IV, it can be shown that for N =  I or N =  2 the functions U(\x\\Uo) have 
compact support, while in the case N  >  3, under the assumption o f  non-negativity 
o f  U we derive the estimate from below

U ( r : U о) > ф l ( i ’/ r N ■), r > I , c  — const > 0 , (9 ')

Comparing (9') with ( 10)  for large r  > 0  gives us the following sufficient 
condition for an arbitrary function (/(|.v|;(/o) to be of compact support:

<//V/,'v : *(.v)
N = 1 . 2  or lint ------------- —  =  0  for N > 3.

Г7Б (?(.«)
( 1 2 " )
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For equation (12)  this criterion imposes the restriction /3 < (<т+ I )N / ( N  — 2 ) + and 
is practically a condition for non-existence o f  solutions U > 0 in a neighbourhood
of r  =  со.

In the one-dimensional case equation (6 ) can be integrated in quadratures, and 
the solution o f  the problem can he determined from the relation

к(т])(1т]

s/2  J v o . v p  j j - j ' . .  * ( £ ) £ ( £ )  t/f} 1’2

It is strictly positive for ( ) < / • <  \{)(U{)), where

(13)

Л‘о((Л>)
I r l!“ k ( r ) ) c h j

Below we shall assume that the following conditions arc imposed on the initial 
function: и о =  »о(|л-|) is a function with compact support, ф(и  о) is uniformly 
Lipsehitz continuous in R N, u,)(r|) < U o ( r 2 ) for all 0  < r 2 <  iq < o o .  Then 
the solution u(t. x)  is radially symmetric and by the Maximum Principle does not 
grow in |.v| for all 1 e  (0, Го). Therefore sup( u(t, x)  =  u(t. 0).

2 Sufficient conditions fo r the absence of localization  

T heorem  1. Let the solution  o f  the p r o b l e m  ( I ) ,  (2) b e  u n b ou n d ed  an il

lim |c/>(.v)/(?(.s-)| =  oo. (14)

Then u(t, x) is not lo c a l iz ed  a n d  u(t , x)  - *  сю a s  t —> 7'0 ev e ry w h er e  in R'v.

Thus, if (14)  holds, the Cauchy problem exhibits the HS blow-up regime. 

R em ark  1. Condition (14)  will necessarily hold if

k ( s ) /Q ' ( s )  —> oo. s —>■ o o .  (15)

R em ark  2. For the one-dimensional (N  =  I) case a sufficient condition for the 
absence o f  localization can be formulated as follows:

Гии /'
Jo

k(T)) dT]
1 / 2 oo. s —>■ oo. ( l b)
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R e m a rk  3. Applied to equation (4),  condition (14)  (or (16) )  takes the form 
yr+ i-/3 _ > oo as s' —> oo. Therefore in the case (3 < tr +  I unbounded solutions 
of the Cauchy problem are not localized (for N  =  I this result was obtained in 
tj 4. Ch. IV).

To prove the theorem we shall need the following Lemma

L em m a 1. Let there  exist  (/’, > 0. such that u n d er  the con d it ion s  o f  T heorem  I 
tee h av e  the inequality

tto(.v) < (./(|л-|;(У(*,К л- 6 R  (17)

Then there  exists to =  ttl(U'{)) e  |(). To), such that f o r  a l l  t e  (to. To)

n ( t .x )  > U(\x\',Uo) in R \  (18)

Proof,  We shall apply the comparison theorem of § 4, Ch. IV (on the “non- 
increase" o f  number o f  spatial intersections of solutions of a parabolic equation). 
First o f  all let us note that from (17)  it follows, in particular, that U is a function 
with compact support. In the opposite case, if U is a stationary solution in R ^ , by 
the Maximum Principle n < U in R + x R"4’, that is, u(t. x)  is necessarily bounded.

Thus, suppf/ C R ,v is a bounded domain. By (17)  the number of  spatial 
intersections (in r)  o f  uo(r)  and (7 (c :(7 (*) in l o W l f  ~  suppU ir .U ^ )  is zero. Let 
N(t)  be the number o f  intersections in г =  |x| in ш(1Г{)) o f  two different solutions 
u(t. r)  and U(r,U*{)) o f  equation ( I ) .  By the comparison theorem (see ij 4. Ch. IV) 
N(t)  does not exceed the number of changes o f  sign of the difference w — и — U 
on the parabolic boundary o f  the domain (0 ,  t) x ш((У,*). By assumption, N (0) =  0 
(!/’ < ( )  for t — 0 in ui(U o )). If и > 0  in (0 , Го) x R ^, then w > 0 on (О, О x choiU^), 
and therefore N (t)  <  I. If, on the other hand, ( I ) admits linite speed o f  propagation 
of perturbations, then by a known property of parabolic equations with a s'ource 
suppuCi. r)  C su p p id b .  r)  for t\ < ь , that is, N (t)  < I for all t e  |(), To).

Obviously, there exists t,  e  (0. 7'n) sueh that ti(/,, д ) >  0 on i)to(U^). In the
opposite case, if  n — 0 on (0 , 7,,) x i)u)(Ut\). (17)  would imply uniform boundedness 
of и in (0. To)  x i)to(Uf\)l n < U.

Then u(t. x)  > 0 on IMf./*,) for all t e  (/,, 7'o). Let us choose now to e 
|/«,7'o), such that u(t0A)) > 6/(* (this is always possible, since by assumption 
lim u(t,  0)  =  oo , t —x T 0 ).

Let us show that NUo)  =  0. Indeed, t t ( to .r )  ~ U (r\ U *,) > 0  for x  =  0  and 
л e iUo(Uo). Therefore in the interval ndf//,) there can only be an even number 
o f  intersections of »(/,). /•) and U ( r . U *,). However, we established earlier that 
N(to) <  I. Therefore N(to) ~  0. so that u(to. r) > l J (r\ U J) in R 4 . By the
Maximum Principle this inequality will hold for all t e  (to. 7 0 ) .  □
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P r o o f  o f  T h eorem  /. From (9) it follows that if  (14)  holds, U(\x\\Uo) —> со  in 
for a sequence —> oc. Therefore we can make (17)  hold for any compactly

supported function uo(|.r|). Then, passing in (18)  to the limit f/’, =  Cf, —> со . we 
conclude that for any л e  R w

hm. n ( t . x ) >  lint U(\x \'.Uq) — oc,
! • / (| (■'{' • -X

that is, the solution grows without bound as 1 —«■ 7 () at the same time everywhere 
in the whole .space, □

From the method o f  proof o f  Theorem I we immediately derive the following 
corollaries (they show how the spatial structure o f  the family of  stationary solutions 
[U] describes the features o f  the evolution o f  the solutions of the non-stationary 
problem).

C orollary  1. Let  ( I ) d es c r ib e  p r o c e s s e s  with a  f in ite  s p e e d  o f  p ro p a g a t io n  o f  p e r 
turbations. Then under  the condit ions  o f  T h eor em  I the d ia m e t e r  D (t)  o f  the 
su pport  s u p p , u(t.  ,v) o f  the so lut ions sa t is j ies  the est im ate

IX t) > 2 n/2  N
ф (п (1, 0 ))

О Ы Т Ж ) .
OO, t

The half-width o f  the structure can  he  b o u n d e d  f r o m  b e lo w  by

г,- / (o  > C w
ф (п (t. ())) 

Q(u(t.  ()H

<l>(n(t. 0 )/2 ) 

//j ( ii(/,0 ))

In the case o f  equation (4), f i  < < г 1, this estimates have the form

D(t)
i C w

\/<r +  I
11( 1. 0)1 Ur cl  till 2 oc, t

- 4 Ш = \ п ( ,  ())| '-* '-/0 /2(| ( ^ 11, 1/2
J 7 C + 1

and agree well with self-similar behaviour (see tj I,  Ch. IV),

C orollary  2. Assum e that under  the con d it io n s  o f  T heorem  I there ex ists  > 0, 
su ch  that /г0( |л |) < U( |.r|: Co) " i  R N f o r  a l l  U о > (7,*,. Let  n(/, , 0)  =  U*r Then 
n,(t.  0 ) > 0 on  ( ! , .  To).

Proof Let us Irx an arbitrary U{) > U ‘{) and set i| =  inf(i e (0, 7‘o ) ! n( t .x )  > 0
on <Mf/(i)) and / о  =  inf(i e (0, T{)) | u(/, 0 ) > ( У ()). By the Maximum Principle
ii < i(|. Let us show that u(/(), л )  > С ( Щ ; С о )  in R v . Indeed, if that is not so.
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there exists t' > to such that u(t'. 0 ) > 11ц. u(t'. x)  > 0 on i)u>(Uo), and u(t'. x)  and 
U(\x\\U{]) have at least two intersections in the interval шО/ц).  This contradicts 
the condition N(t') < I (see proof o f  Lemma I).

Thus tt(/0, л) > (У(|л'|:(Л)) in R ,v. But then u(t.  л) > IJ(  |д-|: I J d) in ( 1ц. 7\>) x R A' 
and therefore »,(/(,.()) > 0, Since Uо > V  was arbitrary, this proves the claim of  
the lemma, □

3 Som e properties of localized solutions

Thus, a necessary condition for localization of unbounded solutions o f  the problem 
( I ), (2 ) is the following:

lim <l’ ( s ) /Q ( s )  < ос ,  (19)
■ -x

In this ease the family ЦУ) of stationary states allows us to determine certain 
properties o f  the limiting temperature distribution u(7't), л).

All the results below rely on the following lemma, which is proved exactly like 
the previous one.

L e m m a  2. Let u ( t .x )  h e  an  u nbou nded  so lution o f  p r o b l e m  ( I ) ,  (2), with initial  
fu n c t ion  n0 such that f o r  a l l  .sufficiently la rg e  fAi > (У ц the fu n c t io n s  iiotU'!) a n d  
U(\x\',Uu) intersect (in |л |) at  m ost at o n e  point. Then f o r  a l l  sufficiently sm a l l  
r  =  |.r| > 0 n't' h av e  the est im ate

и ( Г (), л ) =  hm u U . x ) >  sup (Л|лТ,(Л>), (2 0 )
i • /'„ a „ •(/•,

Inequality (20) allows us to bound from below the size (diameter of or/.) o f 
the localization domain (3) and to describe detailed behaviour o f  u(7't ) ,.v) in a 
neighbourhood of  the singular point. In particular, from Lemma 2 and ( I I )  we 
have

T heorem  2. Let Q(u)  =  р ф (п ) .  w here  p  =  const  >  (), Then an  u n bou n d ed  
so lut ion  o f  the p ro b lem  ( I ), (2 ) cannot  b e  lo c a l i z e d  in a  b a l l  o f  d ia m e t e r  le s s  than

D . =  2 r ^ V  l/:- (2 D

To prove the theorem, it sufliees to eheck that the functions ( I I )  satisfy condi
tions o f  Lemma 2. Therefore for the functions o f  ( I I )  we obtain from (20)

u(7’„ , л ) > sup U(\x\-, (/„) =  oo, 0  < !л| < z.^'p l/:.
t с, .!'•

As an example we quote a stronger' result, which holds in the one-dimensional 
ease.
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Theorem  2'. A ssum e that N  =  I a n d  that the f o lo w in g  cond it ions  h o ld :

Q(r])k(r]) <1T] ex. .
( 2 1 ' )

I ,  =  2 x n ( o c )  s  2  lim л о  ( л ) <  э о .
\ -• -х

Then i f  n(t.  л ) is unbounded, i/ieasa>/ =  tneas (л g R  | a (7 '0 . x) =  тс )  > I .,

P roo f.  For N =  I we obtain front (6 ). (7) that lor any fixed V , e  (0. T'(l) at points 
X =  л» where Т/( |,v|; Т/и) =  U ,.  we have the equality

4~<l>(U(\xx\:U{)))
d x

Q ( r ) ) k ( T ) )  d r ) 00 , U() —► oc.

Therefore in view of uniform Lipxehitz eontinuity o f  ф(пп). for all sufficiently 
large U{) the functions Uo(|.r!) and fy( |л-1; £Уц) intersect in r =  |.r| in m(Un) =  
su p p (/(!лТ, U {)) at most in one point. Then, as in the proof o f  Lemma I, we have 
that n (T 0' , !л-1) > f /(|л-|:(У0 ) in « ( (/ о) for all sufficiently large U„ > 0, and, in 
particular, meascu, > 2.r,)(f/t)). П

O f course this theorem is also true when 7  =  oo in (21 ') .  
Let us now consider the case

sup U(\x\:Un) < oc.  |,v| > 0 . (2 2 )
u„ -o

This condition indicates that the localized solution becomes infinite as t —> 7,7 only 
at one point, that is, it exhibits the LS  blow-up regime. Then Lemma 2 allows us 
to bound from below the asymptotics o f  behaviour o f  u(7,7 , л ) as |.v| —> 0 and to 
determine the rate o f  change o f  the half-width of the localized structure as t —> 7,7.

Let us note that by (9) localization o f  the solution in LS-regime is possible 
when

—  I Г
lim __—  / k(r])dr] =  0 , (23)
> Q(s)  ./о

In the one-dimensional (N  =  I)  ease the necessary condition for the occurrence 
o f  LS-regim e has the following form:

lim a'o(.v) =  0. (23')
\ • CX

If condition (23)  (or (23 ') )  holds, the family of curves {fy =  UU'-.Uu)] allows us 
to construct in the (i\ U\ plane, for all sufficiently large U{). monotone envelopes, 
tangent to the curves U =  U(.u\Uq).
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Fig. 78. Example of construction of ibc family of functions ((/) and envelopes in the 
S-regime (0 •' ло(->е) < ~c). Thick line denotes the initial function к«(л): N — 1,

Let us choose a maximal continuous branch /• =  /-'off/) (.see F-'igure 78).  Two 
cases have to be considered.

I)  The envelope r ~  I-\)(U) > 0 is tangent to the curve U (r :  oo(())) at some 
point /,0 > 0  (see Figure 78). In this ease let us set

no(0 )), |.v|>/-°.

where is the inverse function of /-0 (at points where /•’„ 1 is not delined, we
set /■'„ 1 =  oo).

2) The envelope r  =  F o (U )  > () has no points in eommon with the eurve 
U(i",uo(())), the curve U =  ') is defined for all 0  < r  < /'* and is tangent at
the point r  =  /•* to some curve U =  £/(/•;(/*,), Then we set

=  W " " '
\f/(|.v|;f/*). | .c|>t" .

Front Lemma 2 we immediately obtain
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T heorem  3. A ssum e that condit ion  ( 23)  ( o r  (2 3 ') )  is sa t is f ied , an d  that the so lution  
a ( r . x )  is unbounded. F a r  a l l  U {> > (7*, =  oo(0) let the fu nct ions  оц(|л|) a n d  
U(\.x\:Uq) intersect  (in r =  |.r|) at m ost  a t  o n e  p o in t . Then

u (T n . .x) > ( f i x ) ,  x 6  R ,v. (24)

The estimate (24) makes it possible to determine the degree of singularity of  
the limiting distribution u(T'{) . x )  in a neighbourhood of the point л =  0. where 
the solution nit.  x)  grows without bound as t —► T a , Here it is convenient to use 
the estimate (9) for the stationary states I H r . U o). which we rewrite as

f i ( U ( r : U t))) > < j)(U fir .U n))  == 0((,/o)(I - r / ' o h .

r > 0 : го =
“ Q (U q)

(25)

First let us present a simpler claim, which follows directly from the estimate 
(25)  and Lemma 2, It has the following form: u nder  the condit ions  o f  L em m a  2 

f o r  a l l  t < Yd .sufficiently c l o s e  to the b low -u p  time t =  7’o n r  h a v e  the e s t im ate

a(t .  x )  > V fi[x[-.ii(l ,  ())), |.V| > 0 . (26)

Proof of (26) proceeds as in Lemmas I,  2 ; let us note that similar statements 
were frequently used in tj 4-6, Ch, IV, From the last inequality we immediately 
deduee

T heorem  4. U nder  the cond it ions  o f  T h eor em  3. tee h a v e  the est im ate  

IIf i ( a ( t .  -))!!ri(i{v, >

4 ( 2 тtN ) n>2 \ f i ( a ( t .0 ) ) ] UN/2 r . <27)

“  7V(7V +  2)L(/V/2) \Q(u(t. 0 ))  | л/2  ' '

From this estimate we deduee, for example, the condition for ||f i (u (t .  -))||/j (r ' i 
to grow to infinity as t T 0 :

(f>l+2lN(s ) /Q ( s )  —> oc, .v oo.

O f  course, using (26 )  we can obtain other integral estimates of  unbounded solu
tions, However, for general ф. Q, they look too cumbersome. For some particular 
cases sueh estimates will be obtained below.

Let us show how to derive from (26)  pointwise estimates of o (7 'n ..v). Set 
L (r )  ■ ф ( 0 ( г ) ) ,  where (/’(/■) is the envelope of  the family of curves { U ( r .U f i )  
(see Theorem 3):

G’(|.v|) =  sup (/ (|.v|; (7(|), |.v| > 0 ,
tl„ •(!
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Then if  G ,  — G,(/') is the envelope of the family [U (/•; L/ц)] of (25),  we have 
clearly that L A r )  =  </r(G»(r)) < L (r )  for r > 0.

The funetion L A r )  is determined from the system of equalities

L . ( r )  -  <J>(U _ ( r : U  o)). L'Ar) =  . (r,T'o))||, (28)

where U{l > 0  is a parameter. This system is equivalent to the following one:

L A r )  =  il>(U{i) -  L'Ar) =  - Q ( U {]) j j .  r < /•„.

Then, by eliminating the parameter (/« we obtain a differential equation for the 
envelope L ,  =  /_,(/•):

L A r )  — ф Q
N L'Ar)

+  -  L'Ar). (2 8 ')

This makes sense for all suflieiently small r > 0  (here Q  1 is the funetion inverse 
to Q).

We are interested in monotone decreasing solutions of equation (28')  which 
satisfy the condition /.„(O') =  oo. Such a solution is especially easily computed 
when the coefficients ф, Q  in (4) are o f  power type. Then (28 ')  takes the form

L A r )  =  Ur +  I)  1
NL'Ar)

r

O r I I )//!
+  ’- L ' A r ) .  r  >  0, (29 )

T h e o rem  5. Let i t  +  I < (3 <  ( i r  +  I )(/V T  2)/(/V — 2) ( a n d  let  7'() < oo b e  the  
h lo w a ip  time f o r  a  so lution  o f  the C auchy  p r o b l e m  (4 ) .  (2 ). Then f o r  a l l  suffic iently  
sm a l l  |,v| > 0 , ire h a v e  the est im ate

« ( T u ..v) > G A r )  =  \(,r +  l ) / , , ( O l l/t,r‘ "  =  C\|.r| 2/Ш t,r" " .  (2 9 ')

w here

C  =
2 N

P  -  (<r +  I)
P ~ U r  +  I) [3/Ur H I l/l/J- Ur I I

I f  P  > (ir  +  I )(N  +  2 ) / ( N  — 2) j , this est im ate  is  val id  f o r  a l l  c r i t ic a l  functions  
tio(x) (that is. such that u(t.  ,v) d o e s  not d e c r e a s e  in t in (0 .  7'u) x R N).

P r o o f  It is easy to cheek that in the ease of equation (4) we have the equality

I H l f f i U o )  =  UAUUl l*  I), i h . >0.

For p  < (<r +  I ) (N  +  2 ) / ( N  — 2 ) ,  the funetion (7(|.v|; I)  has compact sup
port, so that supp(/(|,v|;(/o) —► (0) as 11 и —* oo. Therefore in this ease the



426 Vll Some other methods of study of unbounded solutions

conditions of  Lemma 2 arc satisfied. Then, taking into account the fact that 
s u p u ^ i r  U(\x \\Ud) > G\<Ui) in R /v\(0), and computing the precise form of the 

function L,(|.v|) in (29),  we obtain (29 ')  from (29).
Now let (3 > (<r +  I )(N +  2 ) / ( N  — 2 ) , .  Then U > 0  in R v . Let us lix an 

arbitrary f/() > =  2 u(i(0 ) and let us consider the ball В  — (|л| < /'о), where
/•и > 0  is such that i) =  f/u/2. Then if N(t)  is the number o f  intersections
in r  =  |д-| in the ball /J of the functions a(t .  |.v|) and (/ (|.r|; then N (0) =  0  and 
by monotonicity o f  u(t. ro)  in t on \)B. we have that N (t)  £  I for all t e  (0. Го). 
Therefore (20) obtains (see proof o f  Lemma I) and, delining L ,  by (29).  wc arrive 
at (2 9 ') .  □

R e m a r k  1. For f j  > (ir  +  I )(N +  2 ) / ( N  -  2 ) ,  the criticality condition on no can 
be replaced by requiring to satisfy the condition of Lemma 2.

R e m a r k  2. For equation (4) wc can write down the exact expression for the 
envelope G  =  G(|.r|) of the family of  functions \U}. In its dependence on |.v| it is 
the same as (29 ') :  G(|.v|) =  Г|л| :/ld t‘r+D|̂  w|lcrc  f  _  C(<r, /3. N)  is a constant, 
and, moreover, C  > C\.

Juxtaposition o f  the nature o f  the singularity o f  n(7'H . x)  with the upper bound 
derived in § 6 , Ch. IV by comparing with the self-similar solution, testifies to the 
optimality o f  the estimate (29 ') .

Inequality (29 ')  allows us to derive a number o f  other estimates lor unbounded 
solutions o f  equation (4).

T h e o re m  6 . A ssum e that the con d it ion s  o f  T h eor em  5 hold. Then f o r  a l l  jt > 
\ ( 3 - ( < r + \ ) \ N / 2

w h er e  =  { |л-1 < e) is a  h a l l  o f  a r b i tra ry  radius e  > 0 ,

It follows from results of S 6 . Ch. IV that the restriction p > \fi — U r  +  \ )\N/2  
is a necessary and sufficient condition for (2 9 ")  to hold for arbitrary u{) — uu(|.v|) 
if  we demand in addition that f j  < (<г +  I )(N +  2 ) / ( N  -  1 ) , ,

Let us consider another simple example. Let

where <r > ( ) . / ? >  tr (for f i  < ir the solution cannot be localized, as can be seen 
from Theorem I) , Flcrc the equation o f  the envelope !.,{>') has the form

a v( t . .v)(Ix (29")

ф(и) =  e ‘r“. Q(u) =  e'1"
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Hence we obtain

2 crN 

f 3 - i r

It is easy to check that in this case supp U ( |.v|: IJo)  —> {()) as U о —> о с ; therefore 
by Theorem 2 we have

for all sufficiently small |л | > 0 . The corresponding integral property of unbounded 
solutions has the form

for any у  > (/? -  ( r )N j2.
Using the above approach, which is based on the analysis o f  singular solutions 

o f  the ordinary differential equation (28 ') ,  it is not hard to obtain lower bounds for 
the limiting profile u (T { ) , x) in the case o f  suflieiently general ф (н),  Q(u).

In previous subsections we formulated a criterion of localization o f  unbounded 
solutions o f  the Cauchy problem, which determines conditions for the occurrence 
o f  HS, S. and LS blow-up regimes in general nonlinear media.

For convenience, let us restate this criterion. Thus, everything depends on the 
quantity

11/7,  =  oc, then there is no localization (Theorem I,  HS-regime). If  D* e R + 
then only localization in the S-regime (in a domain with a non-zero diameter) is 
possible. Finally, if D , =  0, then, apparently, the LS-regime is to be expected.

This localization criterion has an especially simple form in the case N  =  I; 
л'о(ос) =  oo leads to the HS-regime, л о (о о ) e R + to the S-regime, and л'о(сю) =  
0 to the LS-regirne (see Figure 7У); .v()(oo) is computed from  ( 2 F ) ,  Here the 
dependence ao(U o) also determines certain properties o f  evolution o f  unbounded 
solutions (see Corollary I o f  Theorem I),

" ( T {), ,r) > G , ( n  =  ~  ln|/.,(/-)] =
(T

/ exp(yu(/. л )) d x  oo, t - *  7',, ,
Jn,

4  N ecessary and sufficient conditions for localization
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x0{U0)

(uo(0

0 u0(0)

Fig. 79. Classification of unbounded solutions according to 
the criterion 0 < ло(ое) < x  (N = 1)

Numerous estimates, obtained by constructing approximate self-similar solu
tions, as well as results o f  numerical computations show that the condition D „ < oc 
does indeed entail localization of unbounded solutions for arbitrary coefficients k. 
Q, which do not belong to a certain class' o f  weakly nonlinear functions (this class 
is discussed below).

In the case o f  equation (4) the criterion leads to a correct result: for / ? > « ■ +  1 
there is localization ( if  (3 =  tr +  I , /)* e  R  t , and we have the S-regime; for 
(3 > tr +  I, the LS-regime), while if /3 < tr +  I solutions are not localized (see § 
4, Ch. IV). Let us consider more complicated examples. We restrict ourselves to 
the analysis of the case N  — I.

E x a m p le  1. Let k(u )  =  u" lnM(2 +  it), Q(tt) =  tt‘r¥i ln''(2 +  it), where tr > О, /л, v 
are constants. Then it is not hard to see that for large (7()

Hence we deduce that for /л > r  there is no localization (HS-regime), while for 
/л 5  v it occurs, and meas tot > тт- J tr +  1 if /л =  о (S-regime) and measoi/ =  0 

if /л < и (LS-regime).

E xam p le  2. Let k(tt) =  (I +  n ) V " " ,  Q(tt) =  ( I +  « ) ' V ,H, tr > 0. (3 > 0. /л. i> are 
constants. In this case as Uti ~*  oo

х п Ш  -  L ((r  " )/2exp
TT ’ 1/2 Y(tr/( f3  +  ( r ))

2 Ur +  (3)\ m /2  +  < r / ( f f + ~ a ) ) '
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Hence if  cr > (3 or if  a  =  (3, /j . > v, HS-regime obtains, while i f  cr =  /3, /j. =  v, 
we have the S-regime, and i f  a  < (3 or rr =  (3, jx < v, the LS-regime,

Concerning the class of weakly nonlinear functions k ,  Q, in which the local
ization criterion D , < o o  (or ло(со) < то if  N — I) is no longer valid, its typical 
representatives are the family of functions

к =  k(it),  Q =  Q„{u)
it +  I f k(rj)

clr]
k (u )  l , /о 17 +  1

where a  — const > I and the coefficient k in )  satisfies the conditions

k j r p  

.III T) +  I
dr] — o o .  lim

k(u )

k'(u)
oo.

(30)

(31)

A property o f  unbounded solutions of equation ( I ) o f  this c lass1 is the fact that 
their structure is described by a.s.s.. which satisfy the nonlinear first order equation 
1150. 160. 347|

v, =  -^ -~ -| V u |2 +  Q j v ) .  I > 0 .  л- e  R w. (32)
i' +  I

These a.s.s. arc localized for a  > 2 (for a  =  2 the S-rcgim e obtains and diam u>L =  
27t ), while for a  < 2 there is no localization. At the same time it is not hard to 
check that the localization criterion D» < oc is not applicable here. For example, 
if к =  I, Q iu) — ( I +  u) ln^( I +  и), for /3 > I we have

lim —!— [  k(r i)  ilri — i).

which indicates the presence o f  the LS-regime (the criterion 0  < л’о(оо) < со. 
Л/ =  1. leads to the same conclusion). A correct analysis o f  such a case is given 
below.

E x a m p le  3. Let k in )  =  ln"( I +  n), (J(n) =  (<r +  I ) т ( I +  n) ln^( I +  u), ir  > 
( ) , / ? >  I. у  =  if3 +  i t ) / ( a  +  I).  Conditions (30),  ( 31)  are satisfied if we set 
a  =  if3 +  i r ) / ( i r  +  I) .  Hence it follows that there is localization for f3 > <r +  2 
(that is. a  > 2). while for (3 < rr +  2 there is no localization (for cr =  0  the 
validity o f  this result is demonstrated in S 7, Ch. IV).

To conclude, let us observe that there exists a direct connection between the 
localization property and global solvability of the boundary value problem for 
equation ( I ) in a bounded domain.

Hxi us observe that equation (1) with k(n) =  1. Q(tt) — (1 + ») ln^(l  + n) belongs K> 
this class; it was considered in detail in § 7. Ch. IV (that section also contains the method 
of construction of a.s.s.).
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§ 2 Boundary value problems in bounded domains

In this section we consider, in more detail than in Ch. V. blow-up regimes that 
occur in bounded domains. The need for such a study stems from physical con
siderations (lor example, taking into account heat loss from the boundary of the 
domain where the process takes place). In the analysis o f  boundary value prob
lems there arises a whole range of  new phenomena not encountered in the Cauchy 
problem.

Let I I  be a bounded domain in R w with a smooth boundary till. For the 
qttasilincar parabolic equation

а, =  Дф(ч) +  Q (u) .  I >  0 . л- e 11. ( I )

we consider the first boundary value problem

ii(0 . л ) =  uo( a ) > 0 . a €  11; iin e  С (П ), ф (iif)) e  H l)( i l ) .  ( 2 )

u(t. a ) =  0 . t > 0 . x  e 1)11. (3 )

We impose the usual restrictions on the non-negative functions ф, Q. In particular, 
we require the necessary condition lor finite time blow-up to bold:

dr)

Q(V) (4)

The boundary condition (3) models beat outflow from the domain 11, in which 
diffusion and combustion processes take place. O f course, the magnitude of  heat 
loss depends on the intensity of combustion inside П.

The following questions arise. Under what conditions on the coefficients Q. 
initial perturbation n() ф()  and the spatial structure of the domain 11, will combus
tion in the problem ( l ) ~( 3 )  lead to finite time blow-up? Conversely, when will the 
problem have a global solution, defined for all t > 0 ?  In other words, we want to 
find out under what conditions the heat loss at the boundary is able to “extinguish" 
the vigorous combustion process, and when this will not happen.

For convenience in the exposition helow, let us introduce in the space of initial 
functions {i/o > 0  | I/п e  C ( l l ) ,  ф( iif)) e  /■//,( t l ) } two sets: the s ta b le  set  Ж and 
the unstab le  set  'V. These sets are defined as follows: if u0 e  Ж ,  then there 
exists a global solution with initial data u0; if, on the other hand, но e V. then the 
problem ( I )—(3) is globally insolvable. Below we present methods of constructive 
description of the sets Ж, T .  The structure of the unstable set У  was analysed by 
different means in J; ft, Ch. V.
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1 E quation  with pow er type nonlinearities

In this subsection we consider the problem for equation ( I ) o f  the particular form 

и, =  A ii"+l +  i A  I > 0. x e  11; (t > 0. /3 > I. (5)

il(0. A ) =  !(()(X) > 0. A 6 l i t  ll(t, A) = 0 , 1  > 0. A 6 fill. (6 )

It is assumed that u,, e  C ( l l ) .  n|,r + ' e  In (5) the heat conductivity coeffi
cient k(u )  — i f  / ( t r  +  I ) reduces to the familiar form k(u)  =  i f  by the change of 
spatial coordinate л —► a /(<t  +  I A 2.

It will be shown that the properties o f  the solution o f  the problem (5).  (6 ) 
significantly depend on the relation between the quantities tr and /3: as /3 passes 
through the value /3 =  i t  +  I. the structure of the sets V. "IF changes drastically. 
The value /3 =  ir +  I is critical also for the Cauchy problem for (5) (but for 
a different reason having to do with the localization phenomenon). The relation 
between localization in the Cauchy problem and the structure of the Sets T\ I f  for 
a boundary value problem for the same equation will be discussed in the following.

In the statements of results below, we shall use the fact that the solution e f  the 
problem lor a parabolic equation which admits negative values o f  temperature,

n, =  A(|(i|"(f) +  i / (n ),  t > 0, a 6 П. (S')

f 0 , и < 0 .
q (u )  =  {

l  it1*, a > 0

( (S ')  is the same as (5) if n > 0 )  satisfies the weak Maximum Principle. Therefore 
till, x)  > 0  almost everywhere (a.e.) in i l  for all admissible t > 0  if iio(x) > 0 

a.e. in 11. Analysis o f  the problem (S).  ( 6 ) separates naturally into three eases.

I G lo b a l  .solvability f o r  f3 < ir +  I

T h e orem  1. Let f i  < ir +  I. Then the p ro b l em  (S) .  ((>) h a s  a g l o b a l  Solution a n d

i. 11' " 2 6  /Л((). Г ./ .2( Ш ) ,  - i i l , ,r/’ 6  L - ( 0 , T \ L : ( t t ) ) ,  (7)
dr

и e / Л ( о . т ; « ; , ( « » . ( 8 )

R em ark  1. From (7) it follows that the mapping a 1' " 7 - : |(), 7'| —* T J (f 1) is 
continuous (after, possibly, a modification on a set of measure zero), so that the 
initial condition (6 ) makes sense.

R em ark  2. For /3 < <т +  1 the unstable set T ‘ is empty, i.e.. loss of heat at the
boundary does not allow finite time blow-up.
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The theorem i.s proved hy constructing a global solution hy the Galerkin method, 
using a basis {ш,| in /7^(11), consisting o f  eigenfunctions of the problem

-f А у i у — 0 .  л- £ l i t  uy  €  W ydl),  / — 1 , 2 . . . .  . (9)

The eigenvalues A; can be ordered in an increasing order. Then the eigenvalue 
A, > 0  is simple and the corresponding eigenfunction u'i(.r) > 0  in 11. The 
magnitude o f  A! can be bounded from below by 1282, 2 8 3 1

A| > (s-(/V)r2 ( m e a s l l r 2'w . ( 10 )

I 2( /V — I )
к (\ ) =  k ( 2 )  =  2. k (N )  =  -------------- , N > 3. (10  )

7т N -  2

In the particular case when 11 is a ball. 11 =  (Ul < R}.

Ai =  { z ^ / r } 2  .

where is the smallest positive root o f  the Bessel function , i u ; .

( I I )

L em m a  1 ([ 282 , 283|). Let the  fu nc t ion  и(л') b e  such that М "Ч' e  //(’, (11). Then  
w e h av e  the est im ate

II I,I'........
(').V,

( 11-11ir v }
t.-'tt!)

l / P ( i M  l ) |

( 12)

w here  (3 > I is a rb i tra ry  f o r  N =  1 .2  a n d  (3 e  (1. («■ +  I )(/V -f 2)/(/V — 2)) f o r  
If/ >  3, The constant C\ is d e t e rm in ed  f r o m  the fo r m u la

( I JLJ i'J JJ  1 т Ь
Ci =  { K ( N , ( r , f 3 ) ( m c a s l l ) w -<£+"+" \

w h ere  K (N ,c r . f3 )  — k (N )  f o r  N — I a n d  N >  3, K ( 2 .c r . f 3 )  =  3/2 f o r  (3 e 
( 1, 2 (cr +  I )1 a n d  K ( 2, rr. (3) ~  (f3 +  <r +  I )/|2(cr +  I )1 f o r  /3 > 2 Or +  I ). !j 
(3 — (г +  I, then  u r  h a v e  the inequality

IMIp '(!!)
I/pur till

£ ( M " l ' )
!■(!!)

l/ |2 lir f  l)|

(13)

P r o o f  o f  T heorem  I. For every integer m  > 0  we shall seek an approximate 
solution o f  the problem. in the form

»„,(/. -r) £ « ; » > (  О w.

- (Г/Ur I I )

( 14)
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where the unknown functions e C 1 ([0. T\) will be determined from  the system 
of equations (here and below, ' denotes differentiation in I)

+  (V(|iiJ " ii,m). Vuq) =  ( q (u ,n), ш; ). I < j  < m .  (15)

and the initial conditions

u,„(0 ) =  |u(),„rrut),„ »|p 1 in //(',(П). m ->  oo. (16)

Local solvability in the problem (15) ,  (16)  follows from the theory o f  ordinary 
differential equations (it is not hard to show that the system (15)  can be always 
resolved with respect to the derivatives g'nl). Below we shall obtain a priori 
estimates, which ensure existence o f  the approximate solution for any in on an 
interval 10, 7') o f  arbitrary length.

Let us multiply each equation (15)  by sum the resulting equalities in j  
from 1 to in, and then integrate the resulting expression in I. We have

4 ( f j  +  1)

Ur +  2 ) 2
«Р-

f.-dt) cis +

i

(r +  1 r

/3 +  ir +  1 J{\
(b(u,„(t. A’) ) llX =

CT +  1___ r

(3 +  cr +  1 ./о
<l>(»0„,U))£/.V.

(17)
where Ф( »)  =  (max((). f(})^H<r ’ '•

Using now the estimate (12)  and Young’s inequality, we derive the following 
inequalities (hclow r  stands for various positive constants that do not depend on
m ) :

4(o- +  1) ['

Ur +  2)-
r /2" j  . iis +  -  < y

II f.-(£!) 2 “
Tt ( I n ,n |,r tt ) 
OX i

C +

< <• +  c / И -ir I ] (T +  1

(3 +  (г +  1

N

у ll Or I- I
Lull,./!..... .

(3 +  ir  +  1 E ~r ( Io,u\trll„i)
|1л'< II (.■'(!!)

{(i-i t r \ 1}/|2(<M l)[

N

(К ,Г Ч „ )
f.’ (SI)

(17')
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Hence it follows that the functions (\ttm\‘rl2tt,„)' are bounded in l ? ( 0, T \ L 2(il))\ 
\u,„\,r/2u,„ are bounded in L^fO, 7’; L 2( 0 ) ) ;  \u„,\'ru„, in L^fO , T;  /V/,(11));
( \u,,t\trttm)' in L2(0, T - L ' a i ) ) .  In particular, we have that \uw\‘ru„, belong to a 
bounded set, for example, in Wj((),  T\ W |(Il)) .

In addition to (17) we shall need another identity, to obtain which we multiply 
each o f  the equations (15) hy sum all the equalities in j  from 1 to m. and 
then integrate in I. As a result we have

1 T I l""ll

. 1
r/2 1’ 1

- ('0ni , , +(T +  2 II H(.-(i!) (Г +  1 II (AS!)
( N ( 1 8 )

+  /  E —- ( I ' U V , ! ) '  ] tls — [  [  Ф((!,„(Х. A-)) </.r lls.
,/o 1 A ()Л, (AS!) J /() .In

From the above estimates it follows that \u„,\” l2t<„, are bounded in H [ (u>/) 
(u>7 =  ( 0 .7 ' )  x Ш . However the embedding H '(u >j ) into l?{to-{)  is compact 
[296. 362[, and therefore from the sequence t<„ we can pick a subsequence 
such that |»^|'r/2(q1 —>• \ti\” /2u in L 2( iot ) and a.e. Hence by other estimates we 
conclude that r/Oqj —> q(tt) weakly in L 2(w T). Let us set Л(и)  =  —A(|tr|"w). 
Then it is not hard to see that Д(а,„) arc bounded in 0, T: H  1 (11)). From 
that we can conclude that Л(им) —> x  weak-* in L^ (() .  T , H  ' ( I f ) ) .  The proof of 
the equality x  — M u )  proceeds as in [296|, using (18).  Passing now to the limit, 
and using standard arguments, we have that и is a global generalized solution and 
satisfies the inclusions (7), (8 ), To conclude, let us observe that the inclusion (8 ) 
also allows us to establish the weak Maximum Principle (for the method o f  proof 
consult 1125, 371|), □

It is not hard to show that under the conditions of  Theorem 1 the global solution 
и ф  0  stabilizes as r —> со to the stationary solution U > 0  in П, Д(У'Г 11 +  U l! =  0 
in J l ,  (7 =  0  on ill) (existence and uniqueness of the non-trivial function U are 
established, for example, in |7, 2 1 1), Stabilization of u‘n  Ut. ■) to U” ' 1 in L 2( i l )  
as I —*■ OG follows from the existence o f  the Lyapunov function

, 1 A

~ !r. 1

which is non-increasing on trajectories (n(r. •). t > 0 ), and. in particular, from the 
inclusion (и 1 , ,r/2)i e l } ( R + x 11) (see the estimate (17 ') ,  where г  is independent 
of  T ),  (This means' that the norm IKo1 ,,r/2)ill2:a!) is “s m a ir in  a neighbourhood 
o f  I =  oc, and that is in principle sufficient to prove stabilization to the unique 
stationary solution U ^ 0 ,  (/, =  (),) Stabilization to the trivial solution, u‘n  1 —> 0 
in l 2( i l )  as i —> со, is impossible; this is proved using, for example, the arguments 
used in the proof of Proposition 8 , $ 4  o f  Ch, II,

(l.V,
it” 11 (0

<r +  1

в  + <Г + 1 , / n
Ui u , r " ( t . x ) ( l x ,  (19)
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2 The c a s e  f j  =  ir +  1

T h e orem  2. L ei  (3 — гт-f 1. Then i f  the dom ain  П is such  that  A| > 1, the p ro b l em  
(5),  (6 ) h as  n g l o b a l  so lution, which satis fies  (7),  (8 ). F u rth erm ore

Il'dOll,.....',11, = Od ' " ' ) - * ( ) .  / oc. (20)

If. on the o t h e r  hand.  A| < 1, then f o r  an y  a 0 (л ) the p ro b lem  (5).  (0) has  no
g lo b a l  so lu t ions2 a n d  there  exists  7‘o e (0. 7',|. where

T .  =  |(1 -  A|)fr||i/'|||/7 [ !||(«n. I'M)"'} < c c .  (21)

such  that (u(t) .  ii'|) —> c c  a s  t —»> 7 0 .

Proof.  Let us start hy establishing the lirst claim of  the theorem. Applying estimate
(13) to the equality (17) we derived above, we obtain

S . ( ............. >1S  +

+ m - v> E ~ (\ u ,„ \ " u n
d.X,

(22)

Hence by the condition Л| > 1 the functions (\um\'rl2u lll)' are bounded in
L -((). T : L 2(H )) ,  while | » „ , a r e  bounded in 7 Л ( 0 .  7-: /Y(l, ( l l ) ).

In a similar manner we have from (18) that

(t - f  2 <lt

i i a.c
(1»,н(пГг «,„(/))

(23)

From that it follows, in particular, that the functions u,„ are bounded in 
7Л(().  T : L , r , : ( { l ) ) .  and that |п„,Гк,„ are bounded in /„-(0. 7': Н ^ Я ) ) .  Apply
ing to the right-hand side o f  the above inequality the estimate (13) and the Holder 
inequality, we obtain

(T +  2 d i
I 'Lil'tl l, ,,

It! hr l II'Ll (Oil2itr f 11

and therefore

ll",,i( ') II/.■'ч,!!) £ { I I " o , J , + rr(measH)"'r/l'r , : '(A| -  l) r}

-Local solvability of tile problem in (his ease will be demonsiraied la(er.
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Passing to the limit m =  / i  - *  oo is performed as in the proof o f  Theorem 1, 
Estimate (20) follows from the last inequality.

Let us move on to prove the second part o f  the theorem. Integrating (15) for 
j  =  1. P  — it +  1. over the interval (0 . 1 ). and passing to the limit m =  /j. —> со. 
we have as a result

(u(t).  if  i ) =  (к,,, if  i ) +  (1 -  A,) f  (.v). in |) (Is. (23')
./»

Using the Holder inequality (» 'r | l ,iC|) > ll»'i I I / t/'i )"’T l . we arrive at the 
following estimate:

£'( t ) =  ( и ( П .и ч )  > (»o.i/’i) +  (1 -  A, ) | | i/j , 11/ ,̂, f £ ,r+l (,v) tlx.
./()

Hence it follows that F it )  > F i t )  a.c.. where F ( t )  is the solution o f  the problem 

F'(t)  =  (1 -  A, )||m, II, , ( О.  I > 0: F ( 0) =  («„. m ,).

and therefore

F.(D >  F(d =  /rd  -  А|)||1/1| ц;;;;!, .(Г , -  n
I hr

as I —> T t . □

R em a rk .  It follows from (10) that the global solvability condition Л| > 1 will be 
necessarily satisfic'd if m e a s l l  < |k,(/V)| iV. i.e, Гог sufficiently “small'’ domains 
П.

Let us consider separately the case A| =  1. /3 =  <r +  1. Then from (22). (23) 
it follows that the functions (|ti,„r/2u„i)' and are bounded in L rU oj) .
These estimates are not sufficient to pass to the limit.

In this case it is not hard to prove global solvability using the standard com
parison theorem. Indeed, the function U„(.x) — ' ’ (.v) is for any a  > 0
a stationary solution of the problem Д ‘ 1 +  1 =  0 in П, I I„ =  0 on Ш .
Therefore if  no < U n in 11, then и < U „ in x П.

It is o f  interest that though the boundary value problem has a continuum of 
stationary solutions ((/„ =  ш п[/<1Г+|). a  >  0 ). only one of those is asymptotically 
stable, and n'rl 1 —> 11 m| (,v)in as I —> oo, where

, . / [  m + :)/(<M О , \O'* =  (no, ю |) I j  in, d x j

This follows from the identity (u(r), i/q) =  (ito, Kq) (see (2.3') for A| =  1) 13 4 5 1.
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1,3, The c a s e  (3 > cr +  1. This is the most interesting case: botli the stable 
set TF and the unstable set V  are then non-empty. Below we shall assume that 
(3 > cr +  1 for N =  1 .2  and that (3 e  Ur +  1, (<т +  1 )(/V +  2 )/(/V -  2 ))  for N > 3. 
First we shall prove a theorem concerning local solvability of the problem.

T h e orem  3. A ssum e that t r + \ < f 3 < ( r + \  +  2(<r +  2 ) /N . Then there  ex ists  a  
constant T t > 0 such  that on the in terval  [0. 7"*] p r o b l e m  (5).  (6 ) h a s  a  so lution,  
w hich satis fies the inclusions  (7).  (8 ).

The proof relies on the following lemma [282. 283).

L em m a  2. Let a  fu nc t ion  v h e  such that  |u|"T> e Then f o r  an y  (3 > 1 ij
N =  1 .2 ,  anil f o r  1 <  (3 <  ( it +  1 )(N  +  2 )  /  ( /V — 2 )  i f  N >  3, n r  h a v e  the est im ate

I I’ll •',£!)
i)x. /.=( tii

i ■ i ) 
!!)

H ere  о  = N ( f 3 -  1 ) / { ( f 3  +  t r  +  I )|2(rr +  2) +  N i r } ) ,  C 2 =  (1 +  (it + 2)/ [ l U r  + 1 ) ] ) 2r  

f o r  /V =  1 .2  a n d  C i  =  [2 (IV -  1 ) / ( N  -  2 )\2'' f o r  N > 3.

P r o o f  o f  T heorem  3. Let us use Lemma 2:

a ) ) d x  < C ? ........  ̂ E

N ( p - l )

dx
( I U n i  \ ‘ Г U i , i  ) '/.■•-(Sir

l'\ 2(tr  +  2 ) +  Nir'

(3(2 — N) +  (ir +  \)(N +  2) ,
i,2 =  -------- ---------------- ----------- ( t r +  2) > 0,

2(o- +  2) +  Nir
(24)

where hy the restriction (3 < (ir +  1) +  2 ( ir  +  2 ) /N  we have that iq < 1. This 
allows us to apply Young's inequality to the right-hand side of  (24),  as a result o f  
which we derive the estimate

Ф(н«,(Т x )) t lx £ (l.V,
( I hJ 1"n,„) +  C '/.'"'(111 ' (25)

Substituting this estimate into inequality (18 ) .  which is first differentiated, we 
obtain

(I

I t
UhAnw1;:, nil < c||(q„(t)l|l-p/d - I'd

Л" 1 ’ (£ 1)

Hence it follows that are hounded in L ’XJ(0. Ту, I . " , 2 ( i l ) )  if  T ,  >  0 is suf
ficiently small. Then from (17) and (25) it follows that the functions (|ii,„|',/2h,„)' 
are bounded in L 2((). T ,\ L 2( f l ) ) ,  are bounded in L^ fO . Ту.  /7(,(11)), and
this concludes the proof, □
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This theorem i.s presented to illustrate proofs of loeal solvability using a minimal 
mathematical apparatus. In the course o f  the proof of Theorem 3 there appears 
an inessential restriction from above on the size of (3. This restriction does not 
arise in the construction o f  the loeal solution as a limit of a monotone sequence 
o f  classical positive solutions. Uniform boundedness of  the sequence of classical 
solutions in a domain of the form (0, 7 ', )  x  i l  follows from comparing each of 
these solutions with the spatially homogeneous solution (see § 1 , 2 ,  Ch. I).

Sequences of strictly positive classical solutions a , ,  which converge monotoni- 
cally to it as e  —*■ 0, can be constructed in a number o f  different ways. For example, 
as iif wc can take solutions of the original equation (5) with different conditions: 
iif =  e  -(- ui) for t =  0 in 12, i i ,  =  6 on (0. T)  x Oil. Then it, > e  in (0. T)  x 12, 
and therefore on each solution it, equation (5) is uniformly parabolic. Wc could 
also do this differently: leave boundary conditions as they were, and regularize the 
equation by replacing in (5) the operator Л а|Г+| by ( i t  +  1)V ■ ((it2 +  e 2 )‘r l 2 Vtt) .  

A priori estimates, that guarantee, in particular, convergence o f  и ,  to и as e  —> 0 
are derived in practically the same way.

Let us move on now to construct the stable set 'W. First let us prove certain 
auxiliary statements.

L em m a  3. Let  |tj(.i)|'ru(.v) e Н ^ И ) .  I.et its set

w h e w

L Ф (1|(л)) d x .

Then  u r  h a v e  the hiei/uality

tl =  inf sup7(Au) > 0 .
Л -.0

(26)

P roof,  It is not hard to sec that

./(An) =  -  A2" ' , i W )  -  
2

therefore, using the estimate ( 12). wc obtain

f i - U r  +  1) ( i L v ) )11 ^

2 ( p  +  i t  +  1) ( h ( v ) ) 2,' n  n

I i/lfJ ("i HI

> 0 .

□
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Let u.s introduce the set

' Ж = ( и :  H " u e  H l d l ) :  0  <  J ( \ v )  < d . \  e  |(). 1]). (27)

The distinguishing property of this set. which follows from the method of its 
construction, is reflected in

L em m a  4. Equality  "IT =  "IT, U (()) holds.  More

TV. =  (n : |u|‘rv 6 H ^ il l ) .  a ( v )  ~  h(v )  > 0, J ( v )  < cl\.

P roo f.  Let v e  TV. l i^ O ,  Then

/ « L j . ) \ l/l/J ,,гИ|

U o t J
su p ./ (Л i ’) =  J
A -I)

i f

and therefore a ( v ) / h ( v )  >  1. whence u e TV*. On the other hand, let v e  TV,, 
Then

sup ./(An) =  J ( v )  < il. »
ДНО. I)

so that v e  TV, □

Some other important properties of TV are contained in

L em m a 5. Tlw quantity d  in (26) i.s f in ite :  the .set TV i.s b o u n d e d  a n d  co n ta in ed  
in the b a l l

j n  ; l i f e  e  H [{)( l l ) . a ( v )
2  ( f 3  +  i r  +  1)  Л  

( 3 - ( < r +  \ ) ) '

Proof.  Under these assumptions the boundary value problem 

Ai-„ +  w ? / 1'"  11 =  0  in i l :  v„ =  0  on Bil.

has a positive solution in i l  for some r  e  R ,  (see |332|). (Moreover, such a 
solution exists for all i> > 0 : its positivity follows from the formulation of the 
corresponding variational problem: sec [339. 96, 297].)

Let us set v =  n Then v" ' 1 e  H ^ i l )  and

d  < J  < v
£((m 
b'(v>

I / I / J - U r u  1 ) |

Hence hy the equality n(n) — r b (v )  0. we have

m.l.i,,, ^  £ l ^ f ± l L l l { v ) l f i t < r r O , \ q (.Mill 
2 ( p  +  i t  +  1)

W A T  i .'m

<  0 0 .
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Take о e 'Ж. o ^ O .  Then by Lemma 4 a (v )  — b(v )  > 0  and therefore

d  > J ( v )  =  - c t (v )  -
< r+  1 

f i  +  (г +  1
b(v )  >

(3 -  (cr +  1) 
2((3 +  < r + \ )

a (v ) .

□

Let us now prove a theorem concerning global solvability of the problem.

Theorem  4. Lei f i  > tr +  1 f o r  N ~  1 ,2  an d  <r+ l < (3 < (<r+ \ )(N  +  2 ) / ( N  — 2) 
f o r  N > 3. Assum e that the initial fu n c t io n  u0 in (6 ) is such that tto e  Ж, Then  
f o r  any T > 0 there  exists a  g en e ra l iz e d  so lution  o f  the p ro b lem  (5),  (6 ), w hich  
satis fies the inclusions  (7).  (8 ) a n d  b e lo n g s  to W  J o r  a l l  t > 0  (Ж  is the  c losu re  
O f ‘W in d ie  s e l  (u| |n|'T.' 6  H l f i l ) ) ) .

P r o o f  As in proofs of previous theorems, the solution o f  the problem is constructed 
by Galerkin’ s method, Then the equivalent of (17) can he written in the form

-j_ 1 ) Г' и  ̂ и}
— ,— — / ( | н „ , ( а - ) | , г / '2 « „ | ( я ) '  d s  =  J(Ui\,„) -  J (u ,„ ( t ) ) .  (28)
(<r +  2)~ ,/() II llt.4S!>

Hence it follows immediately that un, g "W for all t > 0 and sufliciently large in. 
since и» e  "W. J( ito )  < d  and IhomT ho,,, -*■ 11 in /7,'(П) as m ->  oc. Then by
Lemma 4  a(u ,„(t))  > b(u,„(r)), and therefore

4(o- +  1)

h r  +  2 ) 2
ft,,, ( , v ) i " ' /2ft„ , ( л ) } '

l Ail)
d s  +

f i  — (tr ~f 1) j 

2 (f3 -\- tr +  1) I <) .v ,

( i  f L „ ( O i ' r f t „ , ( / ) ) ■/(»(),„) < C.

Therefore the functions )' are bounded in i f i iu i , )  and |о,„Га„, are
bounded in T:  From that point on the theorem is proved as the
preceding ones. □

Thus for f i  e  (tr +  1, (tr +  1 )(/V +  2 ) / { N  — 2 ) ,  ) the problem has a global 
solution, if the initial function is sufficiently small. Let us note that the asymptotic 
behaviour o f  global solutions и e  Ж here is completely different from the case 
f i  e  ( l .o -  +  11. The point is that every stationary solution U > 0  in П of the 
problem A(7'M 1 +  UIS =  0 in П. If =  0 on (1П, is unstable (concerning existence 
and stability of V see ]331, 334, % .  200, 2%|), This is easy to demonstrate, 
when, for example, П is star-shaped with respect to ,v =  0 .

Indeed, in that case the function II „ =  a U (a '" x ) ,  in =  \ f i  -  (o- +  l)|/2 > 0. for 
any a  > 0 is a stationary solution in the domain i l „  — ( а 1'1 л e П), If  a  e  (0. 1), 
then clearly П C f l„  and supS! (/„ < supS! U. Therefore if in the original problem
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do 5  Ua  in П, then by the Maximum Principle и < U„ in R., x  П. Therefore 
it cannot stabilize to U as / —» oc, even though the difference «о -  U in СЧП) 
as a  —> Г  can be arbitrarily small. Similarly, choosing a  > 1 we can prove 
instability of a stationary solution from above.

It is not hard to show, using Lemma 4, that if the condition u{) e  I T  holds, 
the function tt(i. x)  stabilizes as / —> oo to the trivial solution U =  0. Indeed, if 
«о 6 V .  then by (28) for m ->  oo we have J ( u ( t )) < J(tto)  < d,  However, i f  
U ф  0, then J ( U )  > d ,  and stabilization of tt to U as t —> oo is impossible.

Let us show now that in problem (5), (6 ) for /3 > сг +  1 all sufficiently large 
initial functions tt„ belong to the unstable set V  (the analysis here employs methods 
different from those o f  § 6 , Ch, V),

T h e orem  5. Let <r +  1 < (3 < сг +  1 +  2 ( a  +  2 ) /N  a n d

J (d o )  <  0 ,  U n o l l , , . . ' , , ! ,  >  0 .  ( 2 9 )

Then the p ro b lem  (5), (6 ) d o e s  not hav e  a  g l o b a l  solution, a n d  иг can  f in d  T 0 e 
(0 , T*|, where

T t =
Ф

P  +  <r +  1 

\ ) [ / 3 - ( < r +  1)|
( in e n s l l )</j » 2 )

II d()||
1 V < OC,

such  that
lim ||»(/)|| • j(ii) =  oo.

(- ■ t „

Proof.  Recall that the restriction /3 < <r +  1 +  2 Ur +  2 ) /N  ensures local solvability 
o f  the problem. Let us show that a cannot be defined for all t > 0. By passing to 
the limit in (28) we obtain J ( u ( t ) )  < , l ( a o) a.e., and therefore

a ( u ( i ) )  < b ( a ( t ) )  a.e, i nR, ,
p  +  <r +  1

Then for m =  oc we derive from (18) the following inequality:

ll"<')llr-(1!l > lld»ll^(1!) +

+  (<r +  (meas 11)( 1 я,/“м2) / ||«<л) llf.’-'j/ii\dx ' 1 > ()>
p  +  <r +  1 ./() '

In deriving this inequality, we used the estimate

iMoii?;:::,'(1! )><measn)1' 1))/ы'2)ып^::^у

(30 )

Taking into account the fact that ||!io||‘' „ V > 0 and using (29),  we deduee the 
required result from (30). □

Let us note that condition (29) of  unhoundedness of a solution of  the problem 
is in a certain sense the opposite of the inelusion tt{) e  W’ (see (27)),
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2 Equ ations  o f  general form

lrt this subsection we consider the problem ( l ) - ( 3 )  with eoeflieients ф(и), Q(tt) of 
sufficiently general form; Q (a)  i.s taken to satisfy (4), The main task is to analyze 
the set IT ,  which is studied hy two different methods. In suhs'ection 2.3 we study 
the unstable set.

I C ond itions  f o r  g lo b a l  so lvab il i ty  f o r  a r b i tra ry  initial functions  ( V =  </>) 
D erivat ion  o f  g lo b a l  in tegra l e st im ates  f o r  the solution.

Here, as in the previous subsection, we apply the Galerkin method. The main 
restriction on the eoeflieients ф (а) .  QUt) consists o f  the following: there exist 
positive constants M\. M i .  such that the inequality

Q(s) < M  i +  M 2<f>(s), s > 0 . (31)

holds;; moreover.
M i  < A], < 3 Г )

For simplieity we shall also assume that

r//(n)/|l +  <fr(ii) \ S  M 2 =  const > 0 for и > 0 . (32)

For convenience, let us introduce the function

i//(s) =  [  \<l>(T])\i/2 dr], s  > 0 .

T h e o rem  6 . Let con d it ion s  (31),  (32) b e  satis fied. Then f o r  any T  > 0  there  exists 
a  g en e r a l iz e d  so lut ion  o f  p ro b l em  ( 1)—(3). such that n(t. x)  > 0 a .e .  in i l  f o r  any 
f ix ed  t > () a n d  the fo l lo w in g  inclusions h o ld :

if/(u) e  /Л((), 7’; Л2(П )) ,  ~ i f / (u )  e  jL: ((), V; I } ( { ! ) ) ,  (33)
i)t

<!>(u) 6 / Л ( 0. T ' j l l f i l ) ) .  (34)

R e m a rk  1. Condition (31),  which plays a crucial part, will be necessarily satisfied 
if

Q(s)/t f)(s)  —> 0, ,v —> oo, (35)

R em ark  2. If in (1) we set <f>(s) =  Q(s). then (31) holds for M 2 =  1 (M\ — 0),
Therefore ( З Г )  holds if A) > 1, Thus in this case existence of a global solution
depends only on the domain П  (this situation occurs for equation (5) for f3 =  r r + 1),
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The above theorem is proved hy Galerkin's method, practically in the same 
way as Theorem 1. It is shown that the approximate solution satisfies for
all T > 0  the inclusions (33),  (34), Condition (32) then allows us to prove that 
(ф (ит))' are hounded in Lr(Q. T\ / , '(П )):  this estimate is needed to pass to the 
limit (for examples o f  similar analysis of quasilinear equations o f  general form, 
see 1125. 294|).

In the course of proof o f  Theorem 6 (and Theorem 1), it is possible to derive 
explicit and practically useful integral estimates o f  the global solution in various 
norms. In particular, the lemmas we proved above permit us to do that at least for 
equation (5). More illustrative estimates in the norm o f  С (П ) will he obtained, 
together with the global solvability condition, by a different method. Let us note 
that construction of the set W  for equation ( 1) o f  general form by the method 
o f  subsection 1,3, requires quite awkward computations and a certain effort. It is 
much easier to do by comparison methods.

2 Analysis  using a  fa m i ly  o f  s ta t ionary  so lutions

Here we present an application of the method of stationary states, which is different 
from the one of § 1. The method is used here to determine conditions o f  global 
solvability of  the problem. Here we shall not be needing any preliminary results, 
as all the necessary material is contained in й 1 •

Below we shall assume for simplicity that a local solution o f  the problem (1 ) - ( 3 )  
exists and belongs to C ,1;2 wherever it is positive and has lor all t > 0  a continuous 
derivative V , </>(»(/, .c)). Then the solution obeys the Maximum Principle and 
depends in a continuous monotone fashion on the initial function; in particular, 
the comparison theorem is valid for solutions of equation (1). The proof o f  these 
assertions proceeds by constructing the generalized solution ns a limit o f  a sequence 
o f  classical strictly positive solutions of  equation ( 1), In the following we assume 
that ф (no) 6 С ( Ш .

Let ((7) be a family o f  radially symmetric stationary solutions o f  equation (1) 
(see (1,6), (1 .7)).  We shall only need the estimate (1 .9) :

U(r\Uo) >  U =  Ф 1 [</>((Л>)(1 -  г / , -2) r 0 =
” Q(Ua)

1/2
. (36)

Here (/« > 0 is the parameter of the family, r =  |.r|. Let us note that in certain 
particular eases, for example for N  =  1 or Q(n) =  /лф(и),  exact equalities, which 
were derived in § 1, can be used.

T h e orem  7. U n der  the a b o v e  assum ptions  the s tab le  set o f  the p ro b l em  (1)-—(3) 
Contains the set

If' =  {fin > 0  | Э t/o > 0 : П c  supp U(i",U0 ). iio(.r) < U (r ;  (7()) in П ). (37)
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Proof.  The proof is' based on the Maxim um Principle. Indeed, if no e I T  then by 
construction o f  W  we shall have for all t > 0  the inequality u(t, .v) < U(r\Uo), 
x e  i l ,  since U(r\Uо) > 0  on Ш ,  The latter follows from the condition l l  C 
supp(7(r; Uo). □

Let us note that (37) allows us to describe the structure oTinitial functions in IV'. 
In particular, the choice of the size o f  U () in (37) determines the maximal amplitude 
o f  the global solution, supt(.(! u ( i , x)  < Uu. t > 0. The magnitude o f  U{) depends 
to a large extent on the geometrical dimensions of the initial perturbation: the 
"wider" it is, the larger must the value of the parameter (7» he, because otherwise 
the function u«(.v) will not he majorized from above in П by the stationary solution 
U(r',U o). Inequality (36) allows us to obtain a reasonably good estimate o f  this 
dependence.

C orollary  1. l e t
lim |r/>(.v)/C?(.i)| =  oo. (.38)Л- *oc

Then the p ro b lem  (1)--(3) h a s  g lo b a l  so lu t ions  f o r  a l l  initial functions .

Indeed, if  (38) holds, by (36) we have U(r\ Uo) —> oo along some subsequence 
U q =  U q —> oo in R ^. Therefore for any domain П and functions m«(.v) there 
exists t/f), such that u f x )  < U ( r ; U (A() in П, which by the Maximum Principle 
ensures boundedness of the solution uniformly in t. For equation (5) this ca.se 
obtains if (3 < rx +  1.

C orollary  2. Ijt I
lim [c/ri.v)/<2(.v)| =  p. ~  const  > 0. (.39)
\ - OO

Then i f  i l  is c o n ta in ed  in a  ha l l  o f  r ad iu s  (2Np.)^'2, the p r o b l e m  (1 )~(3) h as  a  
g lo b a l  so lution  f o r  a l l  initial fu nct ions ,

This claim follows immediately from (36),  Furthermore, from (36) we obtain 

C orollary  3 . l e t
<l>(s)/Q(s) —> 0 ,  ,v •-> oo. (40)

Then, i f supp U(r\Uu) —> (0| a s  U{) —*  oo, the set  IT ,  d e fined  b y  (37) is b ou n d ed  
in C ( i l ) ,  I f  on the o i l ie r  hand,  supp U (r\U q) =  R v f o r  a l l  sufficiently la rg e  
U{) > O3, then IT  contains  fu n c t io n s  iio(x) o f  a rb i tra r i ly  la rg e  norm  in C ( i l ) .

Let us note that it is precisely in the case (40) that we should expect the 
appearance o f  unbounded solutions for suflieiently large initial functions uu(x).  
which do not belong to the stable set (37),

■'This possibility occurs, for example, if condition (1.12') holds.
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3 A nalysis o f  u n bou n d ed  so lutions using  the e igen functions  m e th o d

This method is similar to the one used in subsection 2 , § 6 , Ch. V, As well as' 
the method based on conditions of (//-criticality, it is useful in the analysis o f  
unbounded solutions of boundary value problems in bounded domains.

Let us impose some restrictions on the functions that enter equation (1),  We 
shall take the functions ф, Q to be convex in R i , We shall assume that the function 
P (s )  =  Q ( f ~ ' ( s ) )  is also convex, and that s / P ( s )  is non-increasing in R + . These 
conditions can be written down in the form

<//'(.v) > 0 ,  Q"(s)  > 0 ,  (41)

Q"(sUl>'(s) -  Q ' ( s ) f" ( s )  > 0, (42)

C?'(.v)</>(.«) -  Q ( s ) f ' ( s )  > 0, л > 0. (43)

All the inequalities are satisfied, for example, by the coefficients o f  equation 
(5) for (3 > <r +  1. As shown above, it is exactly for these values of the parameters 
that unbounded solutions can be expected.

As usual, we shall denote by u/i (,v) the positive in П eigenfunction o f  problem 
(9), which corresponds to the minimal eigenvalue Ai > 0, We shall choose the 
function t/’i, such that | | t m | | =  1,

The main result is contained in the following theorem, where we have intro
duced the notation

E о =  / m i U b 'o U )  d.x.
,/n

T h e o rem  8 . Let con d it io n s  (41 )—(43) h o ld  a n d  let llte fu nc t ion  и о in (2) he  such  
that

Л,<//(/•:„) < Q ( E 0 ). (44)

Then p ro b lem  (1 )~(3) d o e s  not h av e  a  g l o b a l  so lution  a n d  there  ex ists  7'o < T t , 
w here

T  =  № ) _____ Г  dr)
Q (E o)  -  к\ф(Еи) J t;„  QiV)  ° t '

such that
lint sup u(t. л ) =  oo. (45)

' 1,-ji

P r o o f  Let us set

L i t )  =  (» (t .  ,v), uq(A')) =  / п(/, ,r)mi(.v) d x .
,11!

Then E (0) =  If).  As in subsection 2, § 6 , Ch, V, we obtain for E{t)  the equality 

d E ( t ) / d t  =  -Ai(t/q, ф (и))  +  (uq, QUO), t >  0, (46)
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which we shall analyze helow.
By Jensen's  inequality for convex functions, from (42) we have the estimate 

( i/)i. Q(n))  =  (uq, Р (ф (п ))) > P[(i/q, ф(п))\, using whieh we ohtain from (46)

(IF.

l i t
/J |(l/),, ф(и))\ 1 -  A

(U'l, ф(п))  

Р\(иц.ф (п))\
(47)

However, the function x /P (x )  is non-increasing in R, (see (43)), and therefore 
in view of the convexity of ф. and thus also Jensen 's inequality (u.q, ф(и))  > 
ф\(nti, (<)I =  ф(10 .  we have (m ,.  ф ( и ) ) / P[(w\. ф(ч))\ < ф ( Е ) /Q (E ) .  Then from 
(47) we get

(IE

7/7 Ф(к))\
Ф(Е)

(48)
Q (E )

From (48),  (43 ) ,  (44) we conclude that E'(i)  >  0, that is, that E (t )  > Ец. 
Then from (48) and Jensen's  inequality it follows that E'(t) > Q (£,'(/))! 1 -  
\ \ ф (Е й)Ю (Е ()) |. Hence we have that the function E ( i )  cannot he hounded for 
all t e  (0, 7\ | and there exists T i £  7',., such that E (i)  - *  oc as t —> T{  , Since 
E d )  < supt u(l ,  л), (4.S) follow^ immediately, which conclude^ the proof. CJ

R em ark . The inequality

E' > pn)Q(F).  0  < t < T- fif) — 1 — > 0 . (49)
Q( б»)

obtianed in the course of the proof o f Theorem 8 , allows us in a fairly general case 
to derive an upper hound of u ( t . ■) in the norm o f  ). Indeed, from Theorem
3 in § 1 it is easy to ohtain a condition on the functions ф and Q, under whieh 
E ( T )  =  no.  if  T  is the blow-up time. Then integrating (49) over ( I . T)  we have

Q(y)
> [M)(T -  t). (50)

Finally, if in the computation of E (i )  •— (u(t,  л). »q(.r))  in (50) we use the es
timate (1,26) of  the solution n (i.  x) in terms of  u(t,  0 ) and the structure of the 
function U given hy (1 ,9) ,  then (50)  leads to an upper bound for the function 
u(iA ))  =  sup,. ii(t,  ;•). In a number of eases in terms of dependence on the nonlinear 
coefficients ф(и)  and Q(u).  this hound i.s quite sharp, which is easily verified.

This is a typical example of  the situation, in whieh from an ordinary differential 
inequality for some “energy-like" functional of the solution, using an inequality of 
the same sign for the “energy," an ТЛ estimate o f  the solution is derived.

Let us make one observation. If ф == Q. then condition (44) assumes the form 
Ai < 1, Therefore the solution becomes unbounded for all initial functions n« ^ 0 .
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Recall that if  A; =  Ai (11) > 1, then the boundary value problem is' always globally 
solvable (see Theorem 6 ).

To conclude, let us note that practically all the results of § 1 having to do 
with S- and LS- blow-up regimes can be used to describe asymptotic behaviour 
of unbounded solutions o f  the boundary value problem ( 1)—(3). In particular, for 
the problem with power type nonlinearities (5),  (6 ), Theorems 5, 6 o f  § 1, as well 
as the results of § 6 , Ch, IV, remain valid. All of these allow us to provide a 
sufficiently exact description of the singularity of the limiting profile u ( T q , л').

§ 3 A parabolic system of quasilinear equations with a source

This section is concerned with the study of the properties of solutions of a parabolic 
system of two quasilinear equations o f  nonlinear heat conduction with sources:

и, = An"11 + vp. (I)
v, -  +  ti'>. Щ2)

Here /л >  0 , v > 0, /> > 1, q  > 1 ore constants. This system describes processes 
of heat diffusion and combustion in two-component continua with nonlinear heat 
conductance and volumetric heat release. The functions it, v can be interpreted as 
temperatures of interacting components o f  some combustible mixture. We shall 
be especially interested in the conditions for existence of unbounded solutions as 
well as conditions for their localization in the Cauchy problem.

Let us observe that there are four parameter's in (1),  (2), and therefore, even 
though the nonlinearities are of power type, for arbitrary ц ,  p, />, q  the system does 
not admit self-similar solutions, which, as we know, provide us with a detailed 
description of asymptotic behaviour o f  unbounded solutions and, in particular, of 
the localization property o f  finite time blow-up regimes.

We shall consider initially the first boundary value problem for (1), (2):

u(0 , x) =  Щ)(х) >  0 . i’(0 . x)  =  i-’o( л ) >  0 ,  a  e  П , (3)

11( / , л )  =  i; ( / .  л ) = 0 ,  /  >  0 ,  a e  Ш . (4)

where П is a bounded domain in R w with a smooth boundary dll', iiu. Uo are 
bounded continuous functions, н^"' e  u(l)1,J e Л/(11), First we shall de
termine the conditions of its global insolvability. Then, using an approach based 
on the analysis of a family of stationary solutions of the system, we shall derive 
restrictions on the parameters of the problem for which it is always globally solv
able for arbitrary initial functions no, n». and establish a condition for the absence 
of localization in finite time blow-up in the Cauchy problem for (1 ),  (2),
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It turns out that much depends on the sign of only one parameter in — p q  — ( 1 +  
/x)(l +  v). I f  m < 0  then the boundary value problem has only globally bounded 
solutions (there is no blow-up) and unbounded solutions in the Cauchy problem 
are not localized. This result appears to be optimal, that i,s, the inequality m  < 0 
is a necessary and sufficient condition for both these properties of solutions.

In this section we study only the most general properties of solutions of the 
system (1), (2). A more detailed numerical investigation of systems of this kind 
is undertaken in § 4, where we also consider self-similar solutions, which exist 
under some restrictions on the parameters of the problem.

1 Conditions for absence of global solutions of the boundary value problem  
for p  >  1  +  f i ,  q  >  1  +  v

Below, under the indicated restrictions on the parameters, we single out an 
unstable set У  in the space o f  initial functions, such that the inclusion {//0 • i ’o) 6 У  
implies global insolvability of the problem (1)-—(4). This means that there exists a 
blow-up time T о < oo and

(||м"11(/.-)||д:(„ , +  1|и""('.-)||д:(Ш)  = 0O. (5)

Let us note that formally in (5) it can happerr that only one of the functions ti 
or v grows without bound as / -»  . However, because of the "entangled" nature
of the Source terms in ( l ), (2) the functions u, v have to become unbounded at the 
same time.
# In the proof of the propositions formulated below, we shall assume that the 
local solution of the boundary value problem satisfies the natural inclusions

l » " ' 7 2 ),. e L 2(0 . T : / Л Ш ) .
( 6 )

к " 4 1 . i'M+1 e  L ° ° ( 0 .  7’; T  <  7',,.

Under the assumption of  boundedness o f  u, n these can be easily derived by 
Galerkin approximations. It is also not hard to establish a weak Maximum Prin
ciple, So that if и, о are bounded in (0, T)  x П, then u > 0, и > 0  a.e. in П, 
0  < / < T.

I D erivat ion  o f  a  system s o f  o rd in ary  d if feren tia l  in equalit ies

Let us denote by mi(.v) > 0  in П and A; > 0, respectively, the first eigenfunction 
and the corresponding (smallest) eigenvalue of the problem

A w  +  А ш  =  0 ,  л  e  11. т к и !  =  0 . ( 7 )
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Let us choose the function 1/4 so that

llu’i ll/.'d!) — 1 ■ (8)

Taking the scalar product in jL2( 0 )  with i/q o f  both parts of the equations (1), 
(2 ) and integrating the resulting expressions in /. we obtain the system of equalities

m i) -  (u0. k-'i ) = - A i  /  (n,M 1 (,v). l/q) d s  +  [  u>i) d.s\ (9)
,/n Jo

(t>(/). 1/11) -  (!>(,. i c r ) =  -A t  f ( с м ч 1  (,v). m , ) d s  +  [ (ii4 ( s ) .W \ ) d s .  (10)
./о ./о

Let us introduce the notation

a n  =  ( и » .  » ’ i ) >  0 .  bo =  ( n o .  H ' i ) >  0 .  ( 1 1 )

and let us set

P(i )  =  I n k ' l l ) .  u<nU U 4 U , R(i)  =  (uM" ( / ) .  id i)1/('i+1). (12)

From the Holder inequality and ( 8 ) it follows that

(ult). w n  < (d'M ’(/). u.,)1/(" fl) =  P(t).
(13)

<tJ(/ ) .  W l  ) <  ( V м "  ( / ) ,  l / q  ) ' / lM  ’ "  =  / ? ( / ) .

Furthermore, taking into account the fact that p > 1 +  /x, q  > 1 +  i\ we have

(v'’ (n. wi ) >  Rr ln. (n41'), m i )  >  Р ' ' ( П .  ( 1 4 )

Using the notation of  (11),  (12)  and the estimates (13),  (14),  we conclude that 
the solution o f  the problem (1 )~(4) satislies for all admissible / > 0  the system of 
inequalities

Р Щ  - t n ,  > - A ,  [ '  P ' "  1 (,v) f/-v +  [  R ’’ (s)d .s .  (15)Jo Jo
R i n  -  feu > - A ,  [ '  ^ " ( . v )  <lx +  [  P ‘l ( s ) d s .  (16)

,/n ,/o

In conjunction with (15 ) ,  (16) let us consider the following system o f  ordinary 
differential equations:

d P / d i  =  -Ai/> M  +  W\ (17)

d R / d i  =  - A , ^ ' 1 + P 4 , i > 0, (18)
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Lei the functions P, R satisfy the conditions

/5(0)  =  f„, >  o ,  R(0)  =  /,„ >  0 .  (19 )

A direct comparison o f  (15),  ( lb )  with the problem (1 7 )—(19) shows that for all 
admissible / we have the inequalities

P (i )  > P d ). R d )  > R d ) .  (2 0 )

Therefore the system of equations (17),  (18) allows us, in view o f  (20),  to 
define the conditions under which the functions P d ) .  R d )  cannot both be bounded 
for all / > 0, that is lim max{/’ (/), R(t)}  =  oc. / —>■ T {) < оо. In view of the 
inequalities

Pd) < l|tt,M i/d' 111 
/.-’(SI)

i/ii'11)
/7(0)

P d )  < | | 41
i/tati) 
!.■'( S!)

this ensures that (5) holds.

I /(m ) I) 
/--(SI) •

2 The c a s e  p  — 1 +  p ,  <i =  1 -t- v

T h e o re m  1. L a  p  =  1 -I- p .  q  — 1 -(- v a n d  tip +  i’u ^ O  i/i П. M oreov er ,  lei ilic 
d om a in  i l  h e  su ch  d ia l

A, < 1, (21)

Then d ie  p r o b l e m  ( l ) - ( 4 )  h a s  n o  g l o b a l  so lutions, a n d  condit ion  (5) h o ld s  f o r  
s o m e  7\) < no.

P roof.  Let us set /:(/) =  P d )  +  R ( i ). Adding up equations (17) and (18) for 
p  =  1 +  p ,  q  — 1 -i- u, we have that E  satisfies the equation

d E / d t  —  ( 1 -  A i ) | P l + , ' +  t f l , M |. i >  0 .  ( 2 2 )

where we also have by assumption that /•'(0 ) =  (н() +  u0 , up) > 0 ,
We have to consider two separate cases, 
a) Let p  =  Then, using the inequality

1 +  ( r 1 *' ■  >  2  ' “ (1 +  £ ) l H \  £  >  0 ,  ( 2 3 )

and (2 1 ), we get from (2 2 ) that

d E / d t  > (1 -  A, )2 "|P + R\U >' = (1 -  A, )2""/f l+'\ , > o. 

Hence it follows that there exists a time t =  Tp < T t , where

T .
/ ' ( 1 -  A I )

E  ''(()) < oc.
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such that £(/) —* o o  as / —>■ T a . Therefore the .solution of the boundary value 
problem is unbounded in the sense of (5).

b) Let f i  ф i> and for definiteness f i  > p, Then, using Young's inequality

R [ ^  > бЛ|+" -  6(,‘ 1

where e  > () is an arbitrary constant and

4- p ll-t
0 ,

M + l V l + M.

we obtain from (2 2 )

d E / d i  > (l -  A,)| P u , r + e R ] , r | -  ( l -  А, )Лоб'м ‘ 1 l,1,J 1,1. (24)

Let 6 < 1. Then, using (23),  we derive from (24) the following estimate:

d E / d i  > (1 -  A|)e2 '7 i14*' -  (1 -  А|)б('“ ||/' " “НЛ0. (25)

Let u.s set

6 =  e „ =  min|l. | 2  *' ' E u ‘'(О)/Л{)\и‘

Then for all E > E (0 )  the right-hand side of (25) is positive and therefore E (i )  —* 
oo as / -»  T {). where 7'(1 < 77.

2 r  dr,
T  — -----------------/ ------------------------------------ < oo

' e(1( 1 — A ,) .//-(Oi r)u *' — ЗМобу , *"

Therefore in the case under consideration the unstable set V  is all the space
|»(>, ер | no +  i,’o ф  0),  □

It i.s not hard to obtain the same result in a different way. In Figure 80 we have 
drawn in a schematic way the integral curves o f  the first order equation

d P  R u 'l - k xP u ^

J k  ~  Z31 ■+'■ — A| ‘
P > 0, R > 0. (26)

which is equivalent to the system (17),  (18),  in the ease Ai <■ 1, f i  > r .  The 

dashed line shows the isocline of zero l\g P =■ [AJ" 1̂ 1 tM|l,(l the dashed and 

dotted line shows the isocline of  infinity, P ^ ;  P =  [ A\RU |I/U 1 ‘ The thick 
curve denotes a special trajectory, the separatrix P x: P — P.s(R)- For large R

l’ s(R) Al/ll l M)/ll I !■) +
1 -  A R
' "7 ------- ~f- , , ,

Л |  1 - f  M
(27)
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Fig. 80. The phase plane in die ease p  =  1 +  /х, (/ ~ 1 +  i\ Л i < I

As time advances (the direction o f  evolution of the trajectories is indicated by 
arrows), all the integral curves hunch up into an ever narrowing neighbourhood 
o f  the separatrix P$,  which hy (27) ensures that the functions P ( i ) ,  R ( i)  grow to 
infinity in finite time.

For comparison, we have drawn in Figure 81 the integral curves of the same 
equation (26),  but in the ease Ai > 1. Here the functions P, R are bounded for 

tail / > 0, and, moreover P ( i ) ,  R(i)  —* 0  as / -»  со. In some sense this indicates 
global solvability o f  the problem (the proof o f  this fact is found in subsection 3).

i  The c a s e  p  > 1 +  /x, q  > 1 +  v 

Let as before £'(/) =  P (i)  +  R ( i ). From (17),  (18) it follows that 

d E / d i  =  —At!/5 1 +  R " »  I +  R v +  P ‘<, i > 0. 

Let us estimate P'1, R 1’ using Young's inequality:

P "  > (1 +  A,)/51 !,‘ -  Л„, R>’ > (1 +  A i) t f1,7‘ -

where Ло and /i() are constants;

Л« =

Ba =

q - U ’ +  1)

' v +  1 

P  ~  (M +  1)

' (c +  1)(1 +  A|)

q

(/x ~h 1)(1 ~L Ai)

'//It -('■ i Dl

n/i/’-m  * bi

(28)

/x  1 P
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Fig. 81. The phase plane in the case /; =  1 -t- /л, </ ~  1 +  v, > 1

Then we obtain from (28) that

d E / d i  > P ] ' "  +  R ' -  C„. / >  0; С» =  Л{) +  Д„. (29)

If /л =  и, using (23),  we derive from (29) the inequality

d E / d i  > 2 1 -  C u, / > 0. (30)

If, on the other hand, /л ф и, then, setting for definiteness /л > v, and using the 
estimate

R ] ^  > /?"'■ - D 0, D„ =
[ л  -f- 1

1, 4- 1 4 <" • n/<M !■)

M +  i /

we obtain from (29)

d E / d i  > 2 -  (C„ +  Do), / > 0. (31)

It is easy to sec that the right-hand side o f  this inequality admits passing to the 
limit /л —* г 1', that is, for /л =  v it is the same as (30).  Therefore we have proved

T h e o rem  2. Lei p  > 1 /л, p  > 1 -\- c  a n d  J a r  de f in iten ess  /л > i>, Let  th e  initial
functions  « о ,  t ’o lie such that

/:(()) = (По + Со, Ш|) > 2‘ 111 (Cp + Dp) 1 ‘ (32)
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Then d ie  p ro b l em  (1 )—(4) d o e s  not h a r e  a  g l o b a l  .soluiions. a n d  f o r  s o m e  7'n < 7\. 
w here

Г  <lT)t .
Jen)) r/ 1 1" — 2"( C'o 4 - /Л>)

condition  (5) holds.

O f course, the I'unetions ito, i;u satisfying condition (32) do not exhaust all the 
unstable set V ,  Even though Theorem 2 gives an upper bound for 7'u, it does not 
use all the information contained in the system (17), (18). A more detailed and 
explicit description o f  the set У  is provided by the analysis o f  the integral curves 
o f  the equation

d P

d R

R 1’ -  A! P u “
P > 0, R > 0, (33)

which is equivalent to that system.
These are given schematically in Figure 82, where we have distinguished the 

isoclines o f  zero l\ :  P =  |A, o f  infinity, f \ :  P  =  \AXR U ^\'/ч. The
thick curves show the separatrices Л — В  and C  — D. The set У  contains all the 
points [P, R) =  ((no, i ), (no, iiq)) lying above the separatrix Л -  B. Trajectories 
through points in this region converge as P, R —> oo to the separatrix C — 77, which 
ensures unbounded growth o f  the functions P ( i ) ,  R (i)  in linite time.

Let us note that the behaviour o f  the integral curves lying under the separatrix 
A — В  indicates the existence in the problem o f  a stable set IT. Here it is charac-
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Fig. 83. The phase plane in the case p q  < ( I +  /х)( I t- v)

terized by P, R -*■ 0 as i о c .  A rigorous construction o f  the set Ж is done in
subsection 2 .

R e m a rk .  In the derivation o f  the system (17), (18) we used the restrictions 
P > 1 +  fi ,  (/ > 1 4- v (see (14 )) .  Nonetheless, the phase plane o f  the system 
(17),  (18) correctly reflects typical behaviour o f  solutions of the original problem 
(1 )—(4) for arbitrary values o f  the parameters. It is not hard to see that the phase 
plane picture depends on the sign o f  the one parameter m  =  p q  — (1 +  /л)( 1 +  v).  
which agrees well with results obtained below,

a) If  in =  0 , thot is, p q  =  (1 + /x)(l +  i>). then global insolvability and 
global solvability o f  the problem for arbitrary uo, i ’o hold for At <  1 and At > 1, 
respectively; phase portraits in these two cases are the same as those in Figures 
80, 81 (See subsection 3).

b) If  in > 0 , that is, p q  > (1 4- yu)( 1 +  /'), then it follows from the analysis of  
the system (17). (18) that there are non-empty stable and unstable sets (see Figure 
82 and subsection 2 ).

c) In the case m — /«/--(1 +/x)( 1 -NO < 0  the phase plane has the appearance as 
in Figure 8.3, Here there are no trajectories to which there correspond unbounded 
solutions, so that the stable set can be the whole space o f  inititil functions.

We should note that the Galerkin method, which was used in Jj 2 to study 
parabolic equations, cannot provide us with all the above results. Roughly speak
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ing, in the process o f  using this technique to derive a p r io r i  hounds lor solutions, 
the “control" parameter in — /«/ — (1 +  /х)( 1 +  u) docs not arise. For example, 
the global solvability condition for the system for arbitrary tm, ц, is given by the 
two inequalities p  < 1 +  /x, q  <  1 +  r.  Clearly, this domain in parameter space is 
much smaller than the (optimal) set p q  < (1 +  /х)( 1

2 The stable set fo r p q  >  (1 +  /u)(l +  v)

Below we shall assume that the functions u, v are in C][2 wherever they are positive 
and have in f l  continuous derivatives V u l+", Vu1 (these assumptions are quite 
natural-, see § 3, Ch, I), Then the solution o f  the problem satisfies the Maximum 
Prineiple and depends monotonically on initial functions,

The stable set can be delined in two ways. In the course o f  applying one of the 
methods, some (later shown to be insignificant) restrictions on the parameters of 
the problem have to be imposed; this analysis allows us to consider quite interesting 
properties o f  the stationary solutions of the problem (1), (2).  (4),

I T he  s ia i io n a ry  so lution

Let p q  > (1 +  yn)(l +  и). Let us consider the functions U .V .  which solve the 
stationary system o f  equations ( 1), (2 ), which we write for convenience in the 
form

\(\U\''U) +  |V|'’ XV ■= 0, (34)

A(|VTV) +  |U\4 ]U = 0 ,  a- €  f l  (35)

(obviously, for positive U ,V  this system coincides with the original one.) The 
functions U, V satisfy the conditions

U (x)  =  0, V (x )  =  0, л e  d l l  (36)

Let us make the change of variables \U\"U —> U. —> V. Then for the new
functions U. V we obtain the problem

\U  +  \V\"-'V =  0. W  +  \ u f~ ' U  =  0. л e  П. (37)

U =  V =  O . x e U i l  (38)

Here wc have introduced the notation a  =  p / ( p i  +  1), /3 =  q / ( t ’ +  1) (let us 
note that a p  > 1). Solving the lirst equation for V, V =  — |Д(У||/‘| 'Д С  and 
substituting into the second one, wc obtain the following problem for the function
U :

-Д(|Д(/|1Л' 1ДТ/) +  \ l l f  1Т/ — 0 , a e  П. 

U — AU  =  0, A e  c ia

(39)

(40)
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Clearly, using the comparison theorem, the stable set can be delined in terms 
o f  the solution o f  the stationary problem (ЗУ), (40). However, such a construction 
would not be optimal. We start with a negative result.

Proposition 1. Let i l ic  d om a in  i l  h e  s t a r - s h a p e d  with respect  m  the p o in t  л =  0 , 
A ssum e that N > 2( 1 +  1 / a )  an d

Then the p ro b l em  (39),  (40) h a s  no non-trivia! n on -n egat ive  so lutions.

P r o o f  Following 1332, 3 3 3 1, let us take the scalar product in L 2( i l )  o f  both sides 
o f  equation (39) with the function И л )  =  Then, taking into account
the boundary conditions, using Green's formula, we obtain

where il/ibi stands for derivative in the direction o f  the outward normal to /Ш. 
It is not hard to see that

This follows from the fact that i l  is star-shaped with respect to л =  0, the boundary 
conditions (40), as well as the assumptions U > 0. ДU < 0 in П, Therefore

/3  >  | / V / a +  2 (1  4- 1 / t r )  | |(V  -  2 (  1 4- 1 / « )  | (41)

0 =  -(Д(|Д(У||;“ 'Д С ),а -)  4- (U>\ in) =  -(|Д(У||/"  ’ Д(У. Air) -

(42)

1/a ' \ U ) d s > 0 . (43)

and then from (42),  using the easily verified identity

~(\AU\X/" 1AU, Au>) =
N

1 4- 1 / «

we obtain the inequality

1 4- 1 / a

N I I l/a (44)

On the other hand, by taking the scalar product with U and integrating by parts, 
we have from (39) that
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and therefore (44) means that we must have the inequality

N

1 +  1 / a

N
( З Т Т ИДУ II

I I I/O 
" 111) 5  0 , (45)

However, if  (41)  holds the left-hand side o f  (45) is non-negative, and therefore 
the only admissible solution is the function U =  0 , □

Let lis note that the Strong Maximum Principle in this ease gives us a strict 
inequality in (43),  and therefore in (45),  so that this proposition is valid if we have 
equality in (41),

2 A fa m i ly  a j 's ta t ion ary  so lu t ions

Let it  be a positive in i\ solution o f  the problem (39).  (40). Returning to the 
original notation, we have that the functions

(Л (л )  =  г/ 1л1 и” (л), Vi (л-) =  v l/llfM'u >

are a solution of the problem ( 3 4 )—(36)-
Let die domain i\ be star-shaped with respect to the point x =  0  (that is. from 

the condition ,v е  П it follows that a x  e  i l  for all a  e  (0 . 1)). It is not hard to sec 
that the family of  the functions

U j x )  =  ( г ( <и м ) П / 1 | ’ <1 n o  I М м  * 1 ! ( ax) .
(46)

V„(x)  " ( " ‘ "IV iU i.r) ,

where a  e  (0 , 1) i.s an arbitrary constant (the parameter of the family), satisfies 
equations (34),  (35)  and i.s strictly positive in domains i l„  with boundaries i)il„ =  
(.v|c.v £  (111), and that U„ — V„ =  0  on Let us note that П С  i l„  for any 
a  £  (0, 1), so that U„ > 0, V „ > 0  on Ml.

Using the family (46) we can now determine the stable set Ж o f  the problem 

(1 )—(4).

3 The s tab le  set f a r  p q  > (1 +  /х)( 1 4- a)

T h e o rem  3. Lei p  > 1, ,/ > 1, a n d  assum e that there  exists a  non-trivinl stationary  
.solution U |. V| o f  (34)—(36). Then there  exists a  non-em pty  s t a b l e  set  ‘IV =  
((do. и») | no > 0. Do > O', 3,1 6 (0. 1) ; tt0 < i f , .  i,(, < V„ in П), such that ij 
(do, i/o) £ "IV, the p ro b l em  (1 )~(4) h a s  a g l o b a l  (b o u n d ed )  solution.

P r o o f  The theorem follows from the Maximum Principle. Under the above 
assumptions concerning smoothness of  the solution everywhere in R^ x 11. the 
inequalities t, <  U „. v < V„ hold. Here the value o f  the parameter a  £  (0. I) is 
chosen so that tto < V do 5  V„ in П. О
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R e m a rk .  The conditions p  > 1, q  > 1 are more or less related to the requirement 
that the solution he unique. There are reasons to expect that uniqueness holds 
even if just the one condition p q  >  1 is satislied (at least i f  p q  > 1 the spatially 
homogeneous problem it' =  id’ . v' =  it4, i > 0 ; »(()) =  v(0)  =  0 has only the 
trivial solution; if. on the other hand, p q  < 1. then non-trivial solutions exist).

4 A d ifferent  m eth od  o f  constructing the s tab le  set

Let us show now that a non-empty stable set W  exists under the condition p q  >
(1 +  /x)(l +  v) even if  hy Proposition 1 there is no stationary solution.

Let us consider first an example that gives a partial explanation o f  the reason 
why absence of a positive stationary solution of  the problem is not that important.

E xam ple . Let N > 4, p  =  1 +  p ,  q  — (1 +  r ) ( N  +  4 )/(/V -  4 ) .  that is, condition
(41) is satislied. For these values of parameters a  =  1, P — (/V-f 4 ) / ( N  — 4) > 1, 
and therefore the boundary value problem (39),  (40) does not necessarily have a 
solution. However, in this case equation (39),

- Д 2U + I f y | O V - 4 ) / ( A ' - 4 )  ly =  ()> д . g  r a  n  >  4<

has a strictly positive solution

U( x )  =  Сл'(п)/(а:  +  l.vl")</v 4,/2 > 0 , .v e  R ^ ,

where Cjv (ft) =  |a 4N ( N  -  4 ) ( /V- — 4)|(Л ’" /S, a > 0  is an arbitrary constant.
It is clear that the family o f  positive stationary solutions o f  the original system

(34) ,  (35),

U j x )  =  |C,v (fi)|l/t l,"7 (< r  +  | A ' l “ ) o v  4 , / 1 2 < l  f"".

V„(x)  =  | - Д ( 7 ( л ) | | / | | ч м 1
\2C,\i(a)(N ~  4)|Lh ^ H N a 2/ !  +  |л12) |/,|+'‘|

. (47)

constructed using this positive solution, can be used to construct a set "IT, since 
U„ > О, V',, > 0 in i l .  It will have almost the same form: W  =  {(tq>, it()) I no > 
0 ,  up > 0; 3 a  > 0  : no £  U„,  no £  V„ in i l ) .

Let us note that the family (47) of positive in R w functions detines in a similar 
way the stable set for the Cauchy problem for the system (1),  (2),

It is not hard to show that for all values o f  (3 that satisfy condition (41) ( a  — 
р Ц р  +  1). /3 — q / ( v +  1)), the system (34),  (35) has a family o f  solutions that 
are strictly positive in R'v , For example, from Proposition 1 (subsection 2,1) 
it follows that in this case there exists a radially symmetric solution which is 
everywhere positive (see subsection 4,1 o f  3, Ch. IV), Using such a family ol 
stationary solutions in R'v , the stable set is easily determined. However, we shall 
proceed in a different manner.
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Indeed, to determine I f ,  it is .sufficient to establish local solvability o f  the 
system (34),  (35),  for example, for sufficiently small |л|. The following simple 
assertion, which will be frequently used in the sequel, is true:

L em m a  1. F o r  arb itrary  p , q . p . , n  >  0  the system  (34), (35) Itas in the b a l l  
соi =  (|,v| < s f l N ]  a strictly pos it ive ,  rad ia l ly  symmetric, m o n o to n e  dec r eas in g  
solution U\(r),  f iO O , r =  !,v|, w hich  stttisjies the condit ions

(7(0) =  V(0) =  1, (7 '(0) =  V '(0)  =  0. (48)

In ajj ti'f h a v e  the estim ates

/ T \ i/ ( "  I I )  / T \ l/<M4

( ' - s )  - v o n  >  f i -  5 ^ 1  ■

Local solvability and tire indicated properties of the functions U\, V\  follow 
from applying the Banach contraction mapping theorem to the integral equation

(7M V )  = Г i N X d l
0

f  JllL Г
v N~' ./()

N h i 4 ( i ) d ^
Pl inth

which is equivalent to the problem.
By (46) the functions U\(r) ,  V|(r) deline a one-parameter family o f  stationary 

solutions o f  the system (1), (2). Let us set co„ =  (,v |a.v e W|), Then for any 
a > 0 U„, V„ are defined and strictly positive in со,,. Now we can determine the 
stable set without any additional restrictions on the parameters o f  the problem.

T h eorem  4. Let p q  > (1 +  /х)(1 +  e) .  Then the p r o b l e m  (1 )—(4) h a s  a  non-empty  
s tab le  set

Tf =  ((/<<,. no) | « о > 0, V(> > 0; 3 a > 0 : 11 С  со,,; щ, < U„. v{) < V „ in П ) ,

(50)

Using the estimates (40),  we can also distinguish another stable set, which is 
smaller than (50),  but illustrative:

" I f  =  { ( » „ ,  vo) |  u o  >  0 ,  Vo > 0 ;  З а  > 0  :  П  с  ( | л |  <  -JlN/а\\

uo(x)  <  1

1 , ,, \ 1/(10 1) 
a~\x\-

2 N

uo(.v) < a 1+  1 » / i i i

■, \ I/(M* И
( 5 1 )

I N
П;

p q  ~  (1 +  /х)( I +  n) >  ()},
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3 Conditions of global solvability of the b ou n d ary  value problem  for 

p q  <  ( 1  +  A*)(l +  v)

As before, the main tool is tire analysis o f  the family o f  stationary solutions,

1 T he  c a s e  p q  < ( 1 +  /jl)( 1 +  r)

T heorem  5. Let p q  < (1 +  /х)(1 +  u), p  > 1, q  > 1, Then the b o u n d a r y  va lu e  
p r o b l e m  ( 1 )—(4) h a s  a  g l o b a l  (h ou n d ed  uniform ly  in t ) so lut ion  f o r  a r b i t r a r y  initial  
functions uu, i'o.

P roof.  We shall be needing only one property o f  the functions U,„ V„ o f  the family 
(46) ( U |. V| were defined in Lemma 1): U„ —> cx>, V„ —> oc a.s a  —> 0 + in 
R ,v. This means that the stable set (50) (or (5 1 ))  covers the space o f  all initial 
functions. In other words, in the case of any hounded domain l l  for arbitrary tt(), 
no €  C ( l l )  we can always lind a  > 0, so that, lirst o f  all, П  С ш„ =  (,r | a y  e  w i ) 
and, secondly, tto(.v) < U „(x).  t.'o(.v) 5  V„(.\) in П. Then, since U„ > 0, Vd > 0  
on ()П (that is, we always have tt«(.r) < С „(л ) ,  по(л) < V,,(л) on <')П), using the 
Maximum Principle we conclude that и < IJ„, v < V„ in R ,  x П, and therefore 
the solution is hounded from above uniformly in t. □

2 The c a s e  p q  =  (1 +  /x)(1 +  v)

Here the situation is completely different: existence o f  the global solution o f  the 
problem (1)—(4) depends on solvability o f  the system o f  stationary equations (34),
(35) with boundary conditions (36).  Below we prove the following simple (but 
not optimal with respect to the admissible domains i l )  result.

T heorem  6 . Let p q  =  ( 1 +  /x ) ( 1 -f u), p  >  1, q  > 1, a n d  let the d ia m e t e r  D u  o f  
the dom ain  i l  sa tis fy  the condition

Du < s f l N .  (52)

Then the p ro b l em  (1 )—(4) h a s  a  g lo b a l  so lu t ion  f o r  any  initiid fu nct ions  u(j, vq.

P m o f .  For p q  =  (1 +  /х)(1 4- v) the functions (46)  are not delined. In this case 
there is a family o f  stationary solutions

U„( y)  =  a l l  d r )  >  0, V„(.r) =  ct"/tM" V l (r )  >  0, ,v e wi, (53)

where a  > 0 is a parameter and IJ\, V i are delined in Lemma 1, Hence we 
immediately have that

(/„(.v) —> c x j , V a (Л) —> oo in to i as a  —* oo, (53 ')
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Condition (52) means that the domain i l  can he placed in a ball o f  radius s /2 N .  
Without loss o f  generality, we shall assume that П c  <wi. But then by (53')  for 
any no, Ц) £  С (П )  there exists a sufliciently large a  >  0, such that n < U„, v < V„ 
in П for t — (), and, since П С ш \ (that is, U„. V„ > 0 on M l) these inequalities

R em ark . It appears that a necessary and sufficient condition o f  solvability of the 
problem (37),  (38) for a(3  =  1 is the inequality A| > 1, As shown hy the proof 
o f  Theorem 6 , existence of  a positive solution o f  the problem (37),  (38)  implies 
global solvability o f  the boundary value problem (1 )—(4) for p q  =  (1 +  /x)(1 +  a) 
for practically all tm, t’o. Let us note that the same condition A| > 1 was obtained 
non-rigorously in subsection 1,

4 On localization of unbounded solutions of the C auchy problem

It turns out that the spatial structure o f  the family o f  stationary solutions contains 
information about quite a subtle property o f  unbounded solutions o f  the Cauchy 
problem for the system ( 1), (2 ). namely, localization.

An unbounded solution o f  the Cauchy problem for (1).  (2) with initial functions 
with compact support,

will be called l o c a l i z e d  if for all t e  |(), '/'<>), where T {) < oc is the time for 
which the solution exists, the functions td/,,v), are non-zero inside some
ball (|.v| < L  < oc) (/, does not depend on t). and arc identically equal to zero 
for |.x| > /,. If, on the other hand, perturbations penetrate arbitrarily far from the 
point ,r =  () a.s t —>■ 7'o (that is. as the solution grows to infinity), then we say that 
there  is no lo ca l iza t ion  in the Cauchy problem.

Here we shall not be establishing the conditions for a solution o f  the Cauchy 
problem to be unbounded, since our main aim is different. That could be done in 
a relatively simple way, for example, by constructing unbounded subsolutions a.s 
in § 3. Ch, IV, Let us note that all the results o f  subsection 1 (Theorems 1. 2) 
extend also to the ease o f  the Cauchy problem, since every unbounded solution of 
the boundary value problem in an arbitrary domain П e  R ,v is u subsolution of the 
Cauchy problem.

The localization phenomenon in the Cauchy problem for systems of equations 
is conveniently studied hy constructing self-similar solutions (see 4) .  However, 
such solutions exist only for some values o f  parameters. Thus, for the system (1),

hold for all 1 > 0 . a

n(0 , л-) =  иц(л-) > 0 . o(0 , ,v) =  i'o(.v) > 0 , x  e  R^; (54)
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(2) self-similar solutions are possible for v ( p  +  1) =  p.(q  +  1). Furthermore, the 
questions of existence, and even more so, of stability of unbounded self-similar 
solutions for systems o f  equations remain largely open,

I The main result (con d it ion s  f o r  the a p p e a r a n c e  o f  the HS b lo w -u p  regim e)

By analyzing a family o f  stationary solutions we can obtain a sufficient condition 
for absence o f  localization in the Cauchy problem. It appears also to be necessary.

T heorem  7. Let p q  < (1 +/ z) (  1 +  t'), p  >  1, <y > 1. Then a l l  u n bou n d ed  so lutions  
o f  the C auchy  p ro b l em  (1).  (2).  (54) a r e  not lo ca l iz ed .

R em ark . By comparing with spatially homogeneous .solutions o f  the system (1). 
(2 ). which satisfy the equations

tt' =  v1’ . v' =  u'L t > 0. (55)

we see that a necessary condition for existence of unbounded solutions of the J $ 
Cauchy problem is the inequality p q  > 1.

P r o o f  Without loss o f  generality, we shall assume that lim max(tt(/, 0) ,  
v(t,  ())) =  oc, t —> 'Г,, < oc.  Let us consider the family o f  stationary solutions
(46),  where I f ,  l7i are defined in Lemma 1, By the condition p q  < (1 + / z)(l  +  »->)
the functions U u, V„ —» сю in R ,v as a —> O ' . Therefore we can find (to e  (0. 1). 
such that for all a e  (0. (to| we have that supp (tto +  no) C co„. tto 5  (/„, e0 < V a 
in w„.

Let us fix an arbitrary a  6  (0. а»|. Then it follows from the Maximum Principle 
that the solution u(t.  x).  v(t.  x)  cannot he larger than the function U V „  in w,, as
long as it 5  U„. v < V„ on Uw„ (and thus as long as supp (it +  w) c  w,,). Therefore
by unboundedness of the solution tt, и, for any a  e  (0 . «o| there exists tu < T (l, 
such that suppl'd/,,- x) +  e(/„, ,v)| <£ 1 0 ,,. Hence, by passing to the limit a —* 0 + , 
we obtain the required result. □

In a similar fashion we can establish the following assertion:

T heorem  8. Let p q  < ( 1 4- p.)( 1 +  n), p  > 1, q  > 1. a n d  let the initial fu n c t io n s  
tto. no b e  radia l ly  sym m etr ic  a n d  n on -in creas in g  in r  ~ |,v|. Then, i f  the so lution  
o f  the C a u c h y  p ro b l em  ( 1). (2), (54) is unbounded , f o r  any  f ix e d  x  G R w

lim max(tt(/, ,v). n(/, .0 ) =- 0 0 ,

i.e.. at leas t  one o f  the fu n c t io n s  it o r  v b e c o m e s  infinite a s  t — r T 0 on the w hole  
sp ace .
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Therefore for ш =  p q  — (1 +  /х)(1 +  v) <  0 unbounded s'olutions express 
features o f  combustion in tire HS blow-up regime.

We are able to provide speeilie bounds for the amplitude and the size o f  the 
support o f  the generalized solution o f  the problem for m < 0. Briefly, their 
derivation is as follows.

Let us write down a simple lwmothermie solution, which satisfies equations
(55),  For p q  > 1 it blows up in Unite time;

■AO — Ci (7 c t) tfH u .v,„( t) € , ( ! « - t) "

0 < / < Г» < oo.
(56)

where

C i = \ ( q  +  \ ) ' ' ( p  +  1 ) / ( p q  -  1)',4I|'/,W "•
C 2 =  IL/ +  1) (/ ;+  \ )Ч/ ( Р Ч -  1 )-«-*' И.

Let us use the fact that the system o f  equations (1), (2), which obeys the M ax
imum Principle, has to have an ‘'intersection” property at least for one component 
o f  unbounded solutions having the same blow-up time (see § 3, 4, 5, Ch, IV), 
On that basis, let us compare the solution o f  the Cauchy problem and the strictly 
positive unbounded solution (56),

Lem m a 2. Let To  < oo b e  the b low -u p  time f o r  an u n bou n d ed  so lution  o f  the 
p ro b lem  (1),  (2 ) ,  (54), Then f o r  an y  t e  |(), To) e ith er

max u(t,  x)  > С , ( Т „  -  / Г ," + 1| / ( ( 57)

o r
s maxt)(/..v) > C 2( T n - /) (58)

Comparing now u,  u at each moment of time with the family (46) o f  stationary 
solutions (С/ j , V\ are taken from Lemma 1), as was done in the proof o f  Theorem 7, 
we arrive at an estimate of the support o f  the unbounded solution.

Theorem  9. Let p q  < (1 + /x ) ( 1 +  n) a n d  let To b e  the b low -u p  time o f  an  
u nbou nded  solution o f  the C auchy  p r o b l e m  (1),  (2 ). (54). w here  the initial functions  
h a v e  co m p a c t  support a n d  a r e  rad ia l ly  symm etric, no =  tto(r), u(l =  i p( r ) ,  r =  |.v|. 
Then fo r  e a c h  t su fficiently c l o s e  to To e ith er

_  -',l llli/H- I I
meas supped/, r) > \ f2N C i  2<fHMl 11 ( 7‘(l - /) 2(m м» mrv b , (5У)

o r
____  ____Ш-- m{q f I )

meas -supp, v(t,  r) > V2/VC-, 1 (7‘(l — /)-<чи-+1к/><, П (60)

Obviously, for m = pq -  (1 +  /x)(1 +  v) < 0, /;г/ > 1. estimates (5 У) , (60)
guarantee, in accordance with Theorem 7, the appearance of the US blow-up regime
as t —> To : meas supp,. ( к  +  и)  becomes infinite as t —> 7'0 ,
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2 S- an d  L S-reg im cs

lrt the ease m ^  0 the condition U V „  —► ex; in R w as a —> ()f is not satisfied 
and therefore Theorems 7. 8 are invalid. We can expect unhounded solutions to 
he localized for in >  0 ,

Here for in > 0, when solutions of the family (46) become infinite as a  —► oo 
only at the one point л =  0  (which is characteristic o f  the LS-regim e), the functions 
Uu, Va allow us to bound from below the singularity o f  the unbounded solution as 
I T (]  (see § 1),

On the other hand, if  in — 0. then the family o f  stationary solutions (53)  
becomes infinite as a —► o o  at least for all ,v e  aq (S-regim e), In this case 
we have, for example, the following statement, which estimates the fundamental 
localization domain o f  the S-regime, It is proved as Theorem 7,

T h e o rem  10. Let p q  =  ( 1 +  /x)( 1 +  v), p  >  1, q  > 1, Let the initial fu n c t io n s  
no, no b e  rad ia l ly  sym m etr ic ,  uou-increas in i’ in r =  |.v|, a n d  a s su m e fu r t h e r m o r e  
that supp  (uu +  vn) C <W|. I f  the solution o f  the C au ch y  p ro b l em  (1),  (2).  (54)  is  
unbounded ,  then

lim m axltth, л ) .  v(t,  л ) I =  oo. -Г ' '

ev ery w h er e  in aq.

In other words for p q  =  (1 +  /x)(1 +  v) an unbounded solution of the Cauchy 
problem cannot be localized in a ball with a radius less than s f l N .

J  C o m p a r iso n  with s e l f - s im ila r  results

It is o f  interest to compare the results with qualitative derivations, obtained by 
using unbounded .self-similar solutions of the Cauchy problem for (1), ( 2 ).

Let

»'(/>+ 1) =  p ( q  +  1). p q  > 1; (61)

the latter condition being equivalent to the inequality q  > v j p  if (61)  is satis
fied, Then, as can be easily seen, equations (1), (2 ) admit unbounded self-similar 
solutions o f  the form

Usd,  .V) =  < 7 \ | -  t) ( I ’ l l  )/0>4 ” fl(£). (62)

Vslt,  A ) =  ( 7 - 0 -  n (</ 1 1 >/0'4 ‘ 7<£> . (63)

л __ gpi  -  id p  +  ]_)
( T o  -  / ) "  ‘ ' 2 ( q p  -  v)

0 <  t <- 'I\) < o o ,  л €  R^,

u (p  +  1)

p q
( 6 4 )
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The functions в  > 0, /  > 0  satisfy the following elliptie system o f  equations 
obtained by substituting the expressions (62),  (63) into ( 1), (2 ) and taking (61) 
into account:

Д( ( )" '1 -  nV ( 0 ■ £ -------- +  г  =  0,
q f i  -  V

(65)

Ai 1 - n V ( f  • £ ----- -— /■ + «■'= 0. £ e R*.
4 H - V

Let this system have a non-trivial solution in R"4 , satisfying the conditions 
(7(£) —► (), /'(£) —► 0 as |£| —► oo. Then it follows from the form o f  the similarity 
coordinate £ in (64) that localization o f  the solution its, vs, or its absence, depends 
on the sign o f  the parameter / =  q/x - v(/x +  1). The critical value / =  0  (that 
is, q  =  i’(/x +  1)/fi\  S-regime, £ =  л and (62) ,  (63) is the solution in separated 
variables) divides the space of parameters o f  the problem into two regions. For 
/ 2  0 the self-similar solution is localized ( / > ( ) ,  that is, q > v(/x +  1)//x, 
LS-regime), while for / < 0  there is no localization, and tt,y(/, x), x) —» oo in 
R w as 1 —► 7'()‘ (HS-regime),

Let us compare the self-similar critical value

q* =  (/x +  1 )i'//x  (6 6 )

with the critical value
(/></)* =  ( 1 +  /*)( 1 +  »'). (67)

derived by the method o f  stationary states. By (6 6 ) we have from (61) that 
/?« =  /х((/, +  1 )/i> -  1 s  /x(i> +  1)/»/. and therefore p , q ,  =  ( 1 +  /x) ( 1 +  v). which 
is exactly the same as (67),

Therefore in the “self-similar region" o f  parameter values, the condition o f  
Theorems 7, 8 concerning absence o f  localization for p q  < (1 +  /х)( 1 +  v) is not 
only sufficient, but also necessary. It appears that this conclusion is valid also 
without the self-similar condition (61).

Let us observe that the rule for growth o f  the amplitude of the unbounded self- 
similar solution (62),  (63) is the same as in the right-hand sides o f  the estimates 
(57),  (58) as far as the form o f  dependence on t is concerned. Those estimates 
were obtained by comparison with the homothermic solution (56).

It is important to note (and this fact again underlines a certain optimality of the 
results that follow from the method o f  stationary states), that sharper estimates of 
the size of the support of  the solution (59),  (60) in the HS-regime coincide with 
those of the self-similar solution, It can be easily checked that if condition (61) is 
satislied, then we have the equalities

m (p  +  1)_________________ m (q  +  1)

2 ( p  +  /х +  1) (p q  -  1) 2 (q  +  и +  1) (p q  -  1)
=  n.
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where n is the exponent in the expression (64) for the similarity coordinate £, 
which determines the law of motion of the fronts o f  self-similar thermal waves 
formed in each component in the HS-regime.

§ 4 The combustion localization phenomenon in 
multi-component media

This section can he considered as the continuation o f  the previous one. It deals 
with a qualitative and numerical analysis o f  combustion with finite time blow-up 
in multi-component media. Most properties of unbounded solutions of quasilinear 
parabolic systems of equations presented here have not as yet been rigorously 
justified.

Below we consider two different systems of equations. We shall concentrate 
on properties of solutions, for which there are no analogues in the theory o f  finite 
time hlow-up developed earlier for a single quasilinear parabolic equation. We 
shall also discuss questions related to the efficacy o f  similarity methods.

It turns out that unhounded self-similar solutions that can he constructed for 
systems with power law nonlinearities, are not always “responsible" for the asymp
totic stage of  the hlow-up process. It can happen that the asymptotic stage of  the 
combustion process is described by self-similar solutions o f  completely different 
equations, tfmt is, a.s.s. appear here, 1

Here we consider a parabolic system of quasilinear equations, which is a gen
eralization o f  the system studied in § 3. It is conveniently written down in the 
following form:

Here it, > 0, f3, >  1, у, > 1 (T =  1 ,2 )  are fixed dimensionless parameters. 
The number of dimensional positive constants k,. q , can be reduced by rescaling

If 8  =  ггт|)3| ~  (yi 4- 1)| — rril^Si — ( у :  +  1)| Ф 0, then this method can he 
used to get rid of  all dimensional constants of the system, hy setting

1 A system of equations with a source

n, =  A-i(ii'r,u v) v 4- q iU l>:vy\

v, =  k 2( +  q 2r li :ny i. i >  0. x 6  R,
( 1)

/ о / .  ,v  — »  Л ( | Л .  i t  — f  U 0 i i . и  ~ >  Т ц с .
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и  _  ^ n y ,jR ^/c2 y r :+ l" /Jj,/'5 v  _  ^ y ' ,/5 ^ у г , и ~*',,/й

If. on the other hand, 5 =  0 then any three constants can he taken to he equal to 
one; only one dimensionless parameter remains in the system, for example.

Ь S i
4\

t 'l  /<У1 t  I / t i l

. 7l + - 0 , Ф 0 .

Therefore instead of (1) we shall he considering the equivalent system

Ui"us), +  u's T ’y;. ( 2 )

v, =  Л( n v) , +  vlh uy>. t >  0, x  e  R. (3)

where A =  1 if 5 ф  0, and A > 0 is arbitrary if 5  =  0. For (2), (3) we formulate 
the Cauchy problem

u (0 ,  ,v )  U ( i ( . t  ) >  0 .  i ' ( 0 .  л )  =  n o ( . t ' )  >  0 ,  л - e  R , ( 4 )

where «о, u« are bounded functions with compact support.

I A nalysis o f  sp a tia lly  h o m o g en eo u s  so lu tion s

First o f  all we have to work out under what conditions unbounded solutions arc- 
possible. This can he done by considering spatially homogeneous solutions o f  the 
problem, which do not depend on л and satisfy the equations

tt'(t) =  i/1' ( t ) v Y : ( t ) .  v' ( t )  =  n/ l l ( t ) u y' ( t ) .  t > 0. (5)

n(0) =  u{) > 0 , i'(0) =  no > 0. (6)

Let a ,  =  у i +  1 — [3, ф  0 (/ =  1 .2 ) .  Then the system has the lirst integral

=  Г() s  < £
ft--

i > 0 . (7)
f*2 (*\ 1*2

using which it reduces to the two (uncoupled) autonomous equations

//'(<) =  tf ix f y " " ‘ -  « 2C 0j  , (8)

t/ ( 0 +  «,C„
ri/n

i > 0 . ( У )

From this we derive conditions for occurrence of finite time blow-up in each
component. If, for example, a i > 0 , a j > 0 , then for и  to blow up. it suffices to
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have /31 +  а \ у 2 / а г  > 1. This inequality is equivalent to the condition ~~у\У2 +  
(/31 — 1)(/Зп — 1) < (), which is satislied in this case (since /3, < 1 + y , ) ,  Similarly, 
it can be checked that i f  a\ > 0 , atj > 0 , the second component ь also blows up 
in finite time. From the identity (7) it follows that the blow-up times o f  tt(t) and 
v (i)  are the same.

An interesting situation arises if « i  and in  have different signs, for example, if 
« I  > 0 , «2 < 0. Here, as can he seen from (7 ),  C’o > 0, and since /32 > 1 +  y 2 > 1, 
v blows up in finite time: i ' (0  —► oc as t —> T n < oc. The function u(i) in this 
case remains bounded: n(t) —► ( a iC u ) l/rt|, i - *  7'0 , The nature o f  homothermic 
combustion is still more varied i f  a\ < 0 , i o  < 0 ,

The constant C (l in (7) can he of either sign. For C'o =  0 equations (8 ), (9) 
lead to finite time blow-up in both the components. If C'o < 0 , then u(t) blows 
up, while eft) remains bounded; i f  C’o > 0 it is the other way around.

Therefore if a | < 0  (or ay < 0), evolution of the components it, v can differ: 
one can blow up in linite time, while the other remains bounded,

2 S elf-s im ila r  so lu tio n s

Let us introduce the notation

in, =  a , / p .  p  =  (/31 -  1 )(/32 -- 1) — Уi У2-

If the conditions

S =  a i  (у :  +  1 -  (82) -  o y (y i  +  1 — /3|) =  0, ( 10)

in 1 <  0 . 1 1 1 2  <  0 . ( I D

hold, the system (2), (3) admits unbounded self-similar solutions of the following 
form:

tis U, x ) =  (7’„ -  0 ”"  ()(£), г'л ( t , ,v) =  (T {) -  t f ' f f l f ) ,  

£ =  x /(T ,)  — O’1. ;/ =  (nt\ir\ +  1П2 СГ1 +  2 ) /4,
( 1 2 )

where the functions 0 > 0 , / > 0 satisfy the .system o f  ordinary differential 
equations

(0 ‘n 0')' -  nti't +  up!) +  o 11' f 7! = 0 ,

к ( , Г :,1"У -  l i f t  + n h f  + f h Hy' = 0 . t  e R.
(13)

and the usual conditions: H (f) , f i t )  —► 0 as | —> 00 ,
As can he seen from (12),  many properties of self-similar solutions, which are 

expressed as t - *  T 0 < 00 , depend on the sign o f  the parameter n.
If  n < 0  then both components evolve in the HS hlow-up regime, which is not 

localized, ns- —> 00 in R ,  t —► 7'(j .
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Fig, 84. Similarity functions of the S-regime (11 — ()); oq =  l,?, cri ~  2, fi\ =  1.9, 
02  =  1.6. УI *  1.05, y ,  *  0.8. к -  1

On the other hand, in the ease n > 0 unbounded solutions are localized-, if 
и > 0 (LS-regime), then «*.  u.y grow without bound as t —» 7'0 only at the point
л- =  0 .

For n =  0 the S blow-up regime develops; the functions i t s .  n.y are a solution 
in separated variables, and therefore grow without bound as t —► T f) on respective 
fundamental lengths L,t — meas suppfl, L / =  mens sttpp /. Localization domains 
o f  each o f  the components are, in general, different. As an example, we show 
in Figure 84 the spatial profiles of  the functions 0 ($ ).  / (£ )  in the ease of the 
S-regime. Here - I. /.

Numerical studies show that for oi > 0, « i  > 0  the sell-similar solution o f  the 
S-regime is unique anil stable (in the norm of the special similarity transformation, 
see § 2 , 5. Ch. IV). For sufficiently general initial conditions, the system evolves to 
a stable dissipative structure on a bounded domain, with each component effectively 
localized on its respective fundamental length L,> or

An example o f  such evolution to a self-similar S blow-up regime can be seen 
in Figure 85. The initial perturbations x ()(.r), vf)(x )  are not symmetric. Therefore 
initially two thermal waves in it, v (I =  /1, / ™ ь )  appear. These collide at time 
t =  I t, and generate a thermal structure (t — 14 ), which evolves in a self-similar 
manner in the S-regime,

For o-| < 0 (or a  1 < 0), when the nature o f  homothermic combustion o f  the 
two components can be significantly different, self-similar solutions do not appear. 
As a rule, in numerical computations one o f  the components blows up in finite 
time as t —> T f), while the other remains bounded as I —► T 0 . Therefore self
similar solutions with coordinated combustion o f  the components comprise a sort ol
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Fig. 85. F o r m a t io n  o f  the  se l f - s im i la r  S - r e g im e  .structure a f te r  in te rac t io n  o f  c o n ce n t r a t io n  
w a v e s  in the  m e d iu m :  [ i \  — f i i  — 1, У \  =  У 2  - -  1. rri — <T-> = 2 . к  =  I; t |  =. 0.27?, 
ь  =  0.672, f3 =  0.7812, = 0.7823

unstable boundary, which separates sels o f  solutions with different (uncoordinated) 
patterns of evolution o f  it and v.

3 The g en e ra l c a s e

A natural question arises: what happens in the general ease when condition (10) 
for the existence of  self-similar solutions is not satisfied'.' First, numerical compu
tations show that for a i  > 0, «т > 0 (that is, when /3\ < 1 +  y\, /32 <  1 +  y i )  
both components always blow up in finite time.

Secondly, if  the similarity condition (10) is not satisfied, the evolution o f  the two 
components proceeds, in general, in an uncoordinated fashion, and can be markedly 
different. For example, it is possible for the first component to blow up in linite 
time in the LS-regime (unbounded growth on a set o f  measure zero; localization), 
while the second component evolves in the HS-regime. and its blow-up set covers 
the whole space as t —► T f) . A numerical computation of such behaviour can be 
seen in Figure 86 . Other situations arc also possible, For example, и can evolve 
in an S-regime, while v evolves in an HS-regime. Alternatively, both components 
can evolve in the HS-regime, but with different speeds o f  propagation o f  thermal 
waves.

To conclude, let us write down for the general case sufficient (and apparently 
necessary) conditions for the absence of  localization o f  unbounded solutions of  the 
problem, that is. for the occurrence of the HS-regime at least for one component.
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Fig. 86. Mixed combustion regime with finite time blow-up (LS in the first component. 
HS in the second): fi\ — fit — 1.5. у | = yn = 1.5. a | — 1. i t 2 — 5. к ~ 1; 1 1  =  0.0745. 
ь  -  0.0771

It is not bard to check that equations (2), (3) admit the following one-parameter 
family o f  stationary solutions:

t/„U) =  x ) . V „{x) =  (14)

Here a > 0 is an arbitrary constant, V\.V\ is some stationary solution, for example, 
one similar to that constructed in Lemma I. i) 3;

m = П Г :  ~ IP , - (<n + 1)||0: - (rm + 1)|.

f, = I + y, + (r, — 0,. i = l .  2.

It has to be expected that it is precisely the signs o f  these parameters that 
determine much o f  the asymptotic behaviour o f  unbounded solutions. In particular, 
an elementary analysis (which uses the method o f  stationary states) o f  the family
(14) leads for small a > 0 to the following result:

Proposition 1. U ’t (3, > I. у, > I a n d  e\ /m  < 0. e 2/in  < 0. Then every  
u n bou n d ed  so lu tion  o f  the p ro b lem  (2),  (3), (4) is not lo c a l iz e d .

2 A system o f  equations with depletion

Below we consider the Cauchy problem for the system

u, =  (A(i«"n, ) ,  +  ip)v‘'u(i.
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it, =  — p av ‘‘ue , 1 > 0, x  e R.

It describes the process of combustion in a nonlinear medium, with volumetric 
energy production, which takes into account decrease in the density of the substance 
due to its depletion as a result of burning (г  =  vU. x) > 0 is the density of the 
combustible substance). Here f3 >  I.  i> >  0 ,  e  >  0  are dimensionless parameters', 
ко. r/o. /•>(i are positive dimensional constants. Diffusion of the second component 
is not taken into account; in fact this has no bearing on the final results.

It is easy to get rid of  the constants A(), z/(), p a by rescaling the dependent and 
independent variables t. л, u, v. Therefore in the following we shall consider the 
dimensionless system

u, =  ( « " и , ) ,  +  v''i it*. 

v, =  — i/'if . / > ( ) .  л e  R,
(15)

Let the combustion process be initiated by giving an initial temperature prolile 
and some initial concentration of the combustible substance:

i i(0. x) =  K(iU') > 0, u(0. x) =■ i’o(.v) > 0, x  e  R, (16)

Observe that for v ~  0 {v  is the order o f  the chemical reaction o f  combustion) 
the two equations of  (15) are uncoupled and the temperature distribution u ( t .x )  
satislies an equation considered in preceding chapters.

We have to lind out how depletion influences the asymptotic stage o f  evolution 
o f  finite time blow-up regimes in a nonlinear medium, and under which conditions 
localization is possible. It is o f  interest to note that in this ease, in general, 
unbounded self-similar solutions do not describe correctly the asymptotic stage o f  
the blow-up process. We shall discuss reasons for that Inter,

/ U n bou n d ed  s e l f - s im d o f  so lu tion s

A great advantage o f  the system (15) is that essentially for all values o f  the 
parameters it admits self-similar solutions:

« . s - ( / . . r )  =  ( 7 ’ 0 - / ) ' l / " f l ( f ) .  ( 1 7 )

ns U .x )  =  (7 „  -  1)^  , f 1 l)l/,7 ( £ ) .  a  =  6 f  +  (l -  е ) ф  -  I)  # 0 ,  ( IS )

where f  is the similarity coordinate,

£ =  x / ( 7‘o -  /)'" ,n ia a ) . (19)

If diffusion o f  the second component is taken into account, then another dimen
sional constant appears in the system, and self-similar solutions will exist under 
an additional restriction on the parameters.
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Similarity representations o f  the temperature в ( £ ) > () and o f  the density / (£ )  > 
0 are determined from the system of ordinary differential equations

ш тв')' -  -------- 0 ' €  ~  - 0  +  f ’e '1 =  0.
l a  a

2 a  a
f “tit =  (), £ G R,

and the boundary conditions

( 20)

( 21)

0(oo) =  0. /(oo) < oo. (22)

which have a simple physical interpretation.
From (17) we obtain the conditions for existence of finite time blow-up as

t —> 7',| < oo:
a  =  e i> +  (I -  i’ )(f3 -  I)  > 0. (23)

In (18) the concentration tty cannot increase with time. Therefore we need another 
restriction on the parameters,

P > e + \ .  (24)

As usual, we classify self-similar solutions according to how the domain (half
width) of intensive combustion depends on time. It follows from (19) that its size 
depends on time according to

~  (Г,, - / ) ,n ,r,/' 2" 1. 0  < t < 7’(|. (25)

Therefore three eases' are possible: a) if a  < <r, then л,./(/) —*■ ос as / —» T^, 
and by the blow-up time the combustion wave covers the whole space (HS blow
up regime); b) if  a  =  <r, then л,./•(/) =  const > 0 , and the intensive combustion 
domain is constant in time (S-regim e): e) if a  > a ,  then x,.fU ) —> ( ) , / —> 7’0 , the 
intensive combustion domain shrinks, and unbounded growth o f  the temperature 
is observed only at the one point л =  () (LS-regime).

We shall not consider in any detail the analysis of  (he system o f  ordinary 
differential equations (20),  (21);  there is no need. Let us only note that in the 
S-rcgim e ( a  — ir) it simplifies drastically; for i> < I (21) becomes the equality

/ ( f )
r r ( l  -  n ) ! ' 21' ' ' '

(T  -  €
|0 ( £ ) Г " (26)

while the lirst equation of (2 0 ) takes the form

where

i f f ’ t f) '  -  - 0  +  i r 0 ur ^1 " V "  " 1 = 0 .
(T

7 ( T {  I  ~  / ' )
r/( I')

(26')

( Г
(T —  €
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and is easily integrated. The (unction в (£ )  is found from the quadrature

II -  I?1: 1' <' ~"4l/: 2 (cr +  2 ) < & - £ ) + . £ >  o, (27)

i •, a (tr  + 2)0 -  p )
It  = a " ---------------—------ .

c r  +  ( I — v ) ( c t  +  2)

Therefore (f(£), / (£ )  are functions with compact support; the size of the support 
determines the fundamental length of the S-regime:

2fo
2n(cr + 2) 1/2 Г (  I / 2  — p/2) 

Г( I -  P/2)
( I -  p ) x

(T —  6
i ‘ / 2

' (T  +  ( 1  -  p ) ( ( r  +  2 ) '

( 7 ( 1  -  P ) a ( a  +  2 ) (  1 —  p )

(28)

Naturally, for p =  0 . 6  =  0 this equality defines the fundamental length in a 
medium without depiction; L s =  2тг(а +  l ) l/2/rz (see § I, Ch. IV).

2 A sym ptotic b eh a v io u r  o f  b low -u p  reg im es

The above self-similar solutions are structurally unstable, that is, their (coordi
nated in both components) spatio-temporal structure is not observed in numerical 
computations.

Figure 87 presents the results of numerical simulation o f  equations (15) for 
values o f  parameters, which formally correspond to the S-regime ( a  =  cr). The 
initial functions are non-zero on an interval o f  length 2 L,S, where (see (28))

Ls =
Г ( 1/4) 

П З/ 4)
5.205.

Maxima of the initial distributions correspond to the self-similar solution (26),  
(27).  which blows up at Tft -  I. However, the spatial proliles of ie<i(.r) and a()(.v) 
arc not the self-similar ones. As a result, since uu(.r) is too large (as compared 
with the self-similar one), only a part o f  the energy of the initial distribution uo(.v) 
is needed to cause finite time blow-up in temperature u. This can be clearly 
seen in Figure 8 7 ,b. Therefore the process o f  substance depletion stabilizes at the 
asymptotic stage of the finite time blow-up process in u. and as t —+ T f  (the real 
value o f  the blow-up time is To  =  0 .525  <  I ), the density u (t , x) does not change 
much in the intensive combustion domain.

Therefore as / —> 7 ^ ,  the equation for the concentration falls away, and asymp
totics of temperature blow-up is described by the single equation

u, =  (ic'Tc,), +  £>oiA (29)
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where <2o is a constant equal to ( v (T () , л-))", the average value o f  the limiting 
density in the intensive combustion domain. But for these parameter values (3 > 
(7 + 1, which ensures development o f  the usual LS-regime, which can be clearly 
seen in Figure 87, a. And in general, an S-reghne perturbed in temperature and 
density from above, degenerates as t —► into a self-similar (with respect to
(29))  LS-regime, since from the inequality a  > e, which always holds for the 
S-reginte ( a  =  cr), it follows that /3 > cr +  I in (29).

If, on the other hand, in the S-reginte { a  =  cr) the initial protiles are below 
those o f  the self-similar solution, the result most often is complete depletion o f  the 
combustible substance in the whole .space and energy is no longer produced by the 
medium. The consequence is that the temperature does not blow up in finite time, 
but satisfies instead an equation without a source,

и, =  ( n " u , ) ,. (30)

Thus the self-similar solutions (17),  (18) comprise an unstable boundary be
tween two large classes o f  “degenerate” equations (29) and (30).

In the LS-regime (with respect to (15),  a  > <r) initial functions lying above 
the self-similar ones’ lead to the development o f  the LS-regime, which corresponds 
to (3 > a  +  I in (29).  Figure 88 shows the result of numerical computation o f  the 
LS-regim e with initial data o f  the S-regime, as in Figure 87. As t —> - 0.291
the density stabilizes, while the temperature grows in the LS-regim e ([3 =  6 > 
cr +  I =  3 in (29 )) .

For the HS-regime ( a  < <r), these initial data are lower than the self-similar 
ones. It can be .seen from Figure 89 that the constant density profile vo(.x) s  I is 
also too low. Therefore initially there is fast depletion of combustible substance 
in areas where the initial temperature is non-zero, and then two thermal waves 
propagate into the surrounding space which has high density o f  combustible mate
rial. Due to the higher rate o f  energy production at high temperatures, these waves 
blow up in finite time (T () =  1.72).

§ 5 Finite difference schemes for quasilinear parabolic 
equations admitting finite time blow-up

An important place in this study o f  blow-up regimes is occupied by results ol 
numerical computations on the non-stationary problems being considered. In this 
section we analyse properties of difference schemes for a quasilinear parabolic 
equation with power type nonlinearity in one space variable:

1(, =  (п"'и ) , ,  +  K(l. ( I )

Here, as' usual, <r > 0 and (3 > I are constants.
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. Simulation of equations (15) in the S-regime with <r — 2 , fi ~  4. e — I, i> = 0 . 5

): a: the lir.st component, b: the second component
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Fig. 8 8 . Simulation of equations (15) in the LS-regime with a  = 2. (i — 6 . e
( «  >  (t)\ a: tile lirst eomponeitt. b; the second component
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■ u ( ( ,x l

Fig. 89. Simulation of et]nations (15) io the HS-regimc with a  — 2. /3 — 3, e
(a < <r): a: the first component, tv the second component
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We consider for (1) the boundary value problem in the domain (r > 0, л e 
(0 . /)), / =  const > 0 , with the conditions

The results we obtain here give an indication o f  difficulties that arise in nu
merical computation o f  blow-up regimes. The main emphasis is on the study o f  
implicit (nonlinear) difference schemes, which, in view o f  their many advantages 
]346] as compared with explicit difference schemes, were used in all the numer
ical computations. Below we consider such classical questions of the theory of 
difference schemes as conditions of solvability o f  the discretized problem on a 
time level, conditions for global solvability of the discretized problem, and condi
tions of convergence o f  the finite difference solution to the solution o f  the original 
differential problem.

We treat in detail the question of conditions under which there is no global 
solution, that is. to the appearance o f  finite difference blow-up regimes. Related 
to that are two comparatively unusual properties of the implicit scheme: if the 
solution grows at a fast enough rate, it can happen that at a certain time level 
either the solution is non-unique, or it does not exist at all, that is. the scheme is 
no longer solvable.

All these properties (unboundedness, non-uniqueness, and non-existence o f  so
lutions) are possible in the ease f i  > tr -f  1. when the difference operator corre
sponding to the right-hand side of (1)  is not coercive. For 1 < f5 < <т +  1 and 
sufficiently small steps in time, a global solution always exists; moreover, it is 
unique.

Many of the obtained results also hold for difference schemes for equations of 
the type ( 1) with sufficiently general nonlinearities.

At the end of the section we briefly consider explicit (linear) schemes; the 
weak Maximum Principle is analyzed, and conditions for unboundedness erf the 
difference solution are established.

Let us introduce a uniform grid in space tu/,, with step size h  =  l / (M  +  1). 
where M  >  0 is an integer: a system of time intervals ( r y ). t j + \ <  r t  and the 
corresponding grid in time. шт. Everywhere, apart from subsection 1.4. we shall 
take the grid wT to be finite and uniform: т ; =  r  =  T /(N  +  1). 0 < j  < N. N > 0 
is an integer. T > 0 is a constant (in subsection 1.4 r ; —► 0 as / —> oc. and шт is 
a non-uniform grid). Let us denote by Н/, the set of grid functions

«(О, л) =  u „ u )  > о. о < л < /: 1 e W'dO. /).

i /O.O)  =  i /O. /) =  0.  / >  0.

( 2 )

(3)

и/, =  { v, | no =  vm i i =  0 , u, > 0 , / =  t . 2 ..........M ).
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1 Im plicit (nonlinear) difference schem e

Following ]346], we write down the implicit difference scheme corresponding to 
the problem (1)—(3):

( f t  ■ -  l l j / T j  =  ( f / " + 1 ) l l  +  / А  ( / ,  л )  6  ш 7 x  w u ,  ( 4 )

n °  =  но/, > 0 .  -v e w,, : n e  t e (DT. ( 5 )

where we have introduced the usual notation ii =  it =  u[ is the desired grid 
function defined on the discrete set io- j , =  шг x ш/,. i\ , =  (иц.-i — 2 пц +  i't+ i)//t" 
denotes the second difference operator, and i/()/, is the projection o f  iio(.v) onto w/,.

In the formulation of the problem (4),  (5) and all the subsequent results, we 
assume that the difference solution fi is non-negative (otherwise the operation of 
taking an arbitrary power is not delined). This is one o f  the properties o f  implied 
schemes for parabolic equations. It is easily verified that the scheme

(fi -  i i ) /T j =  ( 11>Ггii)A, +  (max{(), fz) A  (I, x ) e  шт /„ (6 )

which is identical to (4) for /7 > 0, cannot admit for any r ; , Ii negative values of /7 
if  ii > 0  in ui/, (furthermore, /7 > 0  in ui/, i f  it Ф 0 ) .  This follows from an analysis
of (6 ) at a point of negative minimum in x o f  the function /7 (see § 7, Ch, V). An
analogous weak Maximum Principle holds for the differential problem (see S 2), 

Let us introduce the necessary linite dil'ferenee functional spaces. The spaee of
grid functions V/, — (u, |i =  0. 1..........M  -(- 1. u() =  v\j , 1 =  0) is equipped with
the scalar product and the norm

( i ’l l .  » ' / , ) / ,  =  h  Y i  v < u ' ' '  l ' - V i l i i . 2  =  ( 1 7 . .  i ' l l ) ) / 2 ■ (7)
1-n

Norms in the grid analogues of the spaces Л(,( 0 , /), // > 1, and H q(Q ,I) have, 
respectively, the form

I w / i =  /̂< ^  A T ' j

1/</

|U/,ll/,.i
Wit -  11,

, 4  1/2

We denote by || ■ ||;* •, the norm dual to || • ||/, i with respect to the scalar product
( 7 ) :

11 ’h II Л.2 sup 1(11/,. 14/,)/, I

O,< V),,4’I,/О II ’"/, H/,,2
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We hove the equality

!l<U/i)лл-I I =  II^/iII/1.2' v ii 6 V7/,. (8)

In the grid analogue o f  the space C ( ( ) ./), the norm takes the form

\vh\c =  max |u,|, щ  e V h.
1 -i'CM

Let us introduce the extension operators />/,, qn by assuming that p hvu is a 
continuous function, which is linear on each interval (i l i , ( i +  1 )/t). such that
щV/, (ill) =  v, (i =  0 ,1 ..........M +  1); quvt, is a pieceswise constant extension
of the grid function v/, €  V/h which is equal to v, for all ih < x < ( i +  1 )/i. It is 
clear that p hvh e  ). ец,}», e  L ' ' (0 , /), and that

II //,>,(()./, — II t-’/i II /1.2 '

In the same way for grid functions' vTj , ,  defined on the nodes of the grid w- 

we introduce the extension operator q T, defined by q Tpi,vTj, =  d rq iP ’r.h =

qhVJf 1 for all ]т < t < ( j  +  1 )r .  j  =  0, 1..........N  (the grid u>T is assumed here to
he uniform).

Let us denote 1346 ] hy

(9)

, , tan(7r/i/(2/)) . л-x
<A/l (A-) =  --------------------- Sin —— , 0  < Л < /,

ll I
( 10)

respectively, the first (smallest) eigenvalue and the first eigenfunction of the dif
ference problem

O/'/ih* +  Ai//,, =  0 , л- e  ioh\ ф,, e  V h. ( 11)

The function i///, in (10) is chosen so that |t///,|/,.i =  1. We observe that фи(х) > 0 
in w

We start by considering the question o f  solvability of the scheme on a time 
level, that is, the question o f  existence and properties o f  the transition operator 
13 4 6 1 from one time level to the next. Below we denote by Л(>. Л ( . . . .  various 
constants independent of r, h.

I Su fficien t con d ition s  f o r  so lv ab ility  o f  the d if fe r en c e  s c h e m e  at a  fix e d  tim e le n d

1. We shall show first that for {3 < tr +  1 and also in the case (3 =  tr +  1, 
A'l > 1 (this imposes an upper bound on the length o f  the interval |()./|; see (У)) 
the scheme (4) is solvable with respect to the grid function ft for any magnitude 
o f  r .  For this purpose we shall need the following assertion, which is the finite 
difference analogue of Lemma 1 of S 2 (see |2%, 346]).
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L e m m a  1. Any fu n ction  i>i, e  H h .satisfies the estim ates

k „ i ^ : v u < p i i c ' i i L .  ( i 2 )
a i

i^ C -tr'+ i s  л«)1|1'Г111 Г̂,м ’/" г+" - л<) = /"'#*-'"+"/i2<"+" i.  (i3)

Let us consider the continuous operator Pi, : Rw —» R |l/:

Pi,(ii) = [(in - in)/f - H 'T ' ) n  ~  » ? '  к -  1 . 2 . . . . . . . . M). ( 1 4 )

Existence o f  a root o f  the equation Pi,(fi) =  0  means that the scheme (4) is solvable. 
Let initially 1 < (3 < cr +  1. Then

( p „ (n ) - c ir r ' )h =  - a , i i r +')i, +  ii'', r+ in L -

Using the inequality (13) as well as the easily eheeked estimate

( 1 5 )

<£ -  V)£"

we obtain from (15)

(Pt,(ii). С Г  1)/, >

cr +
t r + 2 ). £. t? e R +. (16)

I I ( Г  - r  c.

' i 7 + 2  7 |,' l,M,+;!
I ~ if3 + (D 1 I . I - l)

+  M 1, , l/|. ti l и и
2(ir+ 1)

д   ̂ I ~ ф ГЪг ir)/[ ft { ir-[ \ )

Let us estimate the second term using Young's inequality. As a result we have

I ft НГ t 1
/i./a+cr+i -  A  ' " U . f i + ' r + t  +  A2Ifil

<r +  1 -  /3 

2 (rr +  1)

A 1 .

/3 +  tr +  1

. A\(ir +  1).

I 111 I г I i)/Kr 1 1 ~fl)

and then the final estimate has the form

(/’/,(ii), Ci,r ‘ 1)/,
A 1 I - 12{«r i 1)

/I Иг l I a 2 +
er +  I t

tr b  2
-) 1 ••1 h. it \ 2 (17)

From this, hy the Brouwer fixed point theorem for continuous operators in a 
Imitc-dimcnsional spaee (see, lor' example |2%|), wc conclude that the equation 
Pi,(n) =  0  has at least one solution in the hall

'Im m I’h  < Т . \ А г +  , 7 ^ Г2 ; |, |1»п г н -2 (18)
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Outside this bull there are no solutions, since there, as follows from (17),

(/>*(«). Д " и )/, > <>■
Let us move on now to analyse the ease /3 =  cr +  1. Then from (15), (12) we 

have that

(/>„(«). A" % (A',' -  1)|A|2(rM I) 
h. 2(fr+ I) w +  2 тm V

Therefore for A'1 > 1 the equation Pi,(It) =  0  has at least one solution ft, sueh that

К
2(/r + I )

’(<r f I ) (A'1 -  1 )(cr +  2)7

I I IT f
M h. ir ь (19)

Thus we have proved

T h e o rem  1. L et f3 < (г +  1 o r  j i  =  cr +  1, A'1 > 1. Then f o r  any  r  > () there  
ex ists  a t  lea s t  on e  solution  a  e  H h o f  the sch em e  (4), w hich  b e lo n g s  to  o n e  o f  the 
s e t s  (18)  o r  (19). w hile th ere  a r e  n o  so lu tion s ou ts id e  th es e  sets.

As the estimates obtained in subsection 1.5 show, under the conditions o f  T h e
orem 1, the difference scheme (4) has a unique solution for .sufficiently small 
т  > 0 .

2, For /3 > о  4- 1 or (3 =  tr 4- 1, A'1 < 1 the parabolic operator o f  the scheme
(4)  is no longer coercive, so that the Brouwer theorem, which uses coereivity of 
the operator, is not applicable and Theorem 1 is invalid. Therefore we shall seek 
for sufliciently small т a solution h close to u.

Let us set ft—it =  z. and let us introduce the continuous operator I f ,  : R w —* R 'w:

l f , ( i )  =  M ( f t  +  <u-)'M 1 In + r ( z t  4 - i n ) " , *  =  1 , 2 ......... M ).

Existence o f  a fixed point o f  the operator I f ,  implies solvability o f  the scheme 
(4).  We have the obvious estimate

I /' *(r )lr 5 (I и Ir 4' 141 r)"T 4- —у (|u|c + |г.|г)'гИт.
/I-

Hence it follows that I f ,  maps the set X ( „ =  ( ;  | |f|( - < Г ()) into itself (here C’o > 0 
is an arbitrary constant), if

7 < _________________ ___________________  (O0 )
~  ( M r  + C „ ) ^  +  2/r~-(|i(|r 4- C , ,) " * 1 

Therefore by the Sehauder lixed point theorem 11 0 1 1 we have

Theorem  2. Let condition (20) hold. Then the scheme (4) has a solution it e I I /,.
such that, moreover, |f t— ir|£- < C().
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R em a rk .  Setting C () =  |<7|(- in (20),  we obtain the following estimate o f  the 
practically maximal possible time step r w;/, lor which the scheme is solvable at a 
lixcd time level:

t „„ -  (2^|ee|f 1 +  2lr 12|ir|'t' h 2)' 1. (2 1 )

Below we shall show that as far as the dependence of т л„, on |«|t- is concerned, 
this estimate is optimal. It is important for large |n|(\ when the solution exhibits 
linite time blow-up. In the class of  uniformly bounded |i<i( we obtain the usual 
for parabolic equations estimate t ,„, =  0 ( / r )  for It -С 1 (see ]346]) .

2 C onditions fo r  n on -u n iqu en ess  o f  the d iffe r en ce  so lu tion

Let us show that for f3 > <r+  1 and sufficiently small т the implicit scheme (4) has 
in addition to the small solution constructed in Theorem 2 another, large solution, 
which is close to the root U =  r " 1/1/1 11 o f  the difference equation

U / t  =  V 1 1 . (22)

This equation is the same as the original one if we neglect the term (i?'r '*■1) , д and 
set и =  0. The second solution has the property that \U\c —* со  as т —> 0.

Let us set z =  ft -  r  1 11 and delinc the continuous operator Gi, : R'w —> R M:

G ,,(z) =  (r(f.i +  т 1/1 l ) f  +  T\(zt +  т l'ui 1 ’ ),r ' 1 hv —

-  г 1/̂ - "  +  и -  z t . k  -  1, 2 ..........M ).

Existence o f  a root of the equation G h(z) =  0  implies solvability o f  the scheme 
( 4 ) .

Let us consider the expression

( C „ ( : ) , r ) „  =  ( ( :  +  r  « / < / * - 11, z)hT 4-

+  T(|(* +  T w  V ' l , , .  Z)h +  dr. z)i, -  Ifl7,.2 =  /l +  12 +  /« -  U T L  

on the sphere \ z \ i ,=  «о > 0. Obviously |f|c < «oh  l/::. and therel'orc, by setting

г?,, =  «,,/Г1/:т |/(̂  "  (23)

we obtain

h>~~\:h.i\(:. + r l))V'\i,2T > -т'<* ' " ♦ ’- ' iw  ‘> ^ ( 1 + 7 )o), r , l /l/2

h — — lrh i.:|n |/i.2  =  -«ohchi.2- 

To estimate the term /1, wc use the inequality

i i  n ii  /3 -f 1 i
T ) | ( l  +  T ) ) 0  -  1 |  >  — Г — 71 ( 2 4 )
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which holds for all /3 > 1, 1171 < C„, where C + =  C \ (0)  > 0 is some constant. 
Then, choosing r  so small that

7?o =  fl»/i ,/2r 1 № 11 < CAP). 

taking (24) into consideration, we obtain

(25)

/ 1
0 + 1

-:\i
0 +  1 ,
—  —  (l-

Thus we have the inequality

(O’,,(:.).:.)„ >

0 -(to < do
0

I if 1 /1.2  +  ^ J l l <  " ( 1  + C , ( 0 ) ) ' r 4 l / 1/:

Hence (G/,(f), :)/, > 0 lor all

l"-l/i.:  =  dy
0 -

N „ .s  +  r l/J " ^ d  +  C , ( 0 ))'r , l / I/2 (26)

It remains to check that for small r  conditions (25).  (26) are compatible. Sub
stituting into (25) the value o f  oy from (26), we have

17»
0

' \ 4 \ h . 2 T
i/tl> - n + / 1  v ’ | 1 +  с л 0 ) Г " / |/-,7

0

<r 1 1 ;i/:_i/r ur+ni/tp- n

(27)
whence 170 —> 0 as т —> 0 if  0  > <r +  1. so that condition (25) does not contradict 
(26) for small r .  Thus we have proved

T h e orem  3. Let f3 > cr -f  1. Then f o r  su ffic ien tly  sm a ll  т the d iffe r en ce  sch em e  
(4) h a s  in ad d ition  to th e  so lu tion  con stru cted  in T h eorem  2, a n o th er  so lu tion . Ij 
0  =  cr +  1 then this co n c lu sion  is still valid, p ro v id ed  that (see (27))

-// 5/-| 1 + t \ ( r r  +  1 ) Г " / |/: <  С Л сг  +  1).
(Т

Fortunately the second (large) solution, which has no physical interpretation, 
is unstable, and a correct solution algorithm for the implicit scheme |346| con
verges only to the required solution. In this context, we might observe that in any 
neighbourhood o f  the solution U =  т n (|ie 0 pera[0r

=  [T(zk + т  ЧЧ} и)р -  т l / (d ' n , к — 1 . 2 .  ■ ■ ■ .  M )

is not contracting, and therefore the solution U cannot be obtained by the method
of successive approximations. This testifies to its instability.
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3 C onditions o f  n on -ex is ten ce  o f  the d iffe r en ce  so lution

A second manifestation of non-eoercivity of the operator o f  the scheme (4) for 
/3 ^  a  +  1 is the fact that it can actually be locally insolvable (on a given time- 
level).

To establish the conditions for non-existence o f  the solution, let us use the 
estimate

which the function it must satisfy everywhere in w,,.
It is clear that it is sufficient to verify this inequality at the point at which max и 

is achieved, that is, to determine the conditions under which the inequality

has no solutions in R  ( .
Let us consider lirst the case /3 =  cr +  1. Then (29) assumes the form

in view o f  which we deduce from (4) the inequality

it > и +  TH"i l ( i^  ~  2 //Г). ( 28 )

f > M  r + T-r'V* - 2/A-) (29)

€ > Hr +т£""<1 -2//Г) .  f  e R4.

and, as is easily seen, has no solution if

i
(30)

Now let /3 > <r +  1. Using Young's inequality

13 Ur +  1) Г4(cr +  1 ) ] " , 'HI/1'

t =  P  L P lr

we see that (29) has no solutions if everywhere in R .(

n/l/i {tr-\ 1) |

Hence we obtain conditions for insolvability of the scheme for f3 > cr +  1:
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T h e orem  4. Let f3 =  cr +  1. Then, i f  condition  (30) holds, the sch em e  (4) is 
in so lv ab le . In the c a s e  /3 > cr +  1 so lu tion s d o  not ex ist i f  (31) is satisfied .

Inequalities (30), (31) provide us with quite sharp estimates o f  the size o f  the 
time step, for which no iterative process o f  solving the implicit scheme (4) will 
converge (for the simple reason that the difference solution does not exist). These 
estimates can be utilized in real numerical computations. Therefore let us consider 
(31)  more carefully.

Let us set

2 | j 8 -  ( r r +  1)|a = ---------P
Then (31) has the form

\u\c> n{)T (h 2) 11/111 +  h nr  1/(11 11

4(<т +  1) ip-t 1 J/|P' {tl t * ) |
. hn

P 7 \ i/ф- i>

and is satisfied, for example, in the case

\ u \ c ^ p a o d f)(h 2 ) u u l- (in" ], d ()
h) tm p -u

j i o ( P  -  1).

7 = 7 ..... , = < / П(А2) '"

(32)

(33)

At the same time condition (21) for the solvability o f  the scheme with |i/|r taken 
from (32). has the form

7M„ =  /0(/Г )‘Д
(33')

f 0 =  \2/3( p a 0d o ) li 1 + r i2 ((3and f)),r\ ' ,

and has the same dependence on the size of the spatial grid as (33). Hence we 
conclude that condition (2 1 ) for the solvability o f  the scheme for / ? > « ■ +  1 is 
optimal for large |«|r- (for example, when the difference solution is unbounded).

4 U n bou n d ed  d iffe r en ce  so lu tion s

Let us move on now to determine the conditions for global rnsolvabrlrty of the 
difference problem (4),  (5) for p  > <r +  l 4. Recall that the time grid here is not 
uniform: r y —» 0 as j  —> со  and Y l ^ o 7 ) =  'I'и < °o ,  where To  is the time of 
existence of the solution.

The proof of unboundedness o f  the solution will utilize die method used earlier 
in § 2, as well as in S 6 , Ch. V.

4lr will be shown in subsection 1.5 dial, just as in die differential case (§ 2). there arc
no unbounded solutions if fi < ir + 1 .
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1. Let us set
=  £  -  ( Л ,  <//„), ,,  i e  u) T , ( 3 4 )

where i/n, is the first eigenfunction (10) o f  the problem (11), Taking the scalar 
product of the system of equations (4) with i///,, we obtain the sequence o f  equalities

- — -  =  -  i u)!,.
T i

E m =E()  — (u q i (Д/,)/,,

t  G C 0 T,
(35)

deriving which we have taken into account the fact that

<(iVrH =  « < " н . (<//,, ) - , )„  =  -  А'; ( Л ' ' " .  !//,,)„.

By normalization of i///, > 0 we have the Holder inequality

( и ^ Ф ь ) ь  =  1 *//„)„ >  ( f t "  * 1 . l / / i i ) f / l i r  и

in view o f  which we obtain from (35)

^  > u r +1, Фь a '; ( v r * 1. <//„ c  11 ■ д а  * 111.

Thence, again applying the Holder inequality (///,)/, > (a, i///,)','4 vve deduce
the inequality

/•' -  E

т]
> («' ■ фь )

P I Ur t I 1 
h

*T
frp <IMl> (36)

Let E о be .such that
ak> =  i - a' ; C  > o. <37>

Then from (36) we conclude that E  > E  in шт for sufficiently small тr  j — 
0 , 1.........and therefore

E -  E A?
f I) =  Щ)Е'*- t 6 mr . (38)

Since
|/i|c =  max Лц > /;, I e  wr , (39)

i -1 - w

in order to determine conditions for unboundedness of  the solution o f  problem (4),
(5 ) ,  we have to lind a system ( r , )  o f  time intervals , such that YLT) =  < °o
and that from (38) it would follow that E (,) oo as / — >• о о. Then by (39) the 
difference solution will blow up in linite time, that is In'lc 00  as j  —> oo.
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Let
A p "E j  =  О, I ..........

where Л > 0, a  > 0, p  > 1 are constants. Then

To -  A p " /(p "  -  1) < oo.

Let us determine the conditions for A. « ,  p , for which

/i‘y) > Unp>. . , = ( ) .  1. . . .

(40)

(41)

For that, it is enough that

E f)p ! +  т,(101С № ' > l-np J H . j  =  0 . 1 ..........  (42)

Substituting into (42) r y from (40) and simplifying, we obtain the condition 1 +  

A iaqE q 1 p )lli ,,~11 > p , j  =  0 ,  1........  This condition will hold if

a ~ f i ~ \ . p = \  +  Арр)Ец ’ . (43)

Therefore we have proved

T h e o re m  5. Let /3 > tr +  \ a n d  let the in itia l fu n ction  и on in (5) h e  such that (37) 
h o ld s , Let the finite d iffe r en ce  p ro b lem  (4 ) ,  (5) h e  s o lv a b le  on a  s eq u en c e  o f  time 
s t e p s  (40), w here the Constants A .a t .p  satisfy  (43).  Then the so lu tion  exists f o r  
tim e  (41), an d

M r  > ld)PJ oo, j  ->  oo.

R e m a rk .  In S 2 it is shown that in the differential (continuous) case the problem 
for p  =  ( г +  1 has an unbounded solution if  A'1 =  ( tt/ I ) 2 <■ 1, If, on the other hand, 
A',’ > 1, then it is' globally s'olvable. From condition (37 ) ,  which for /3 =  гг +  1 

takes the form A'1 < 1, and the easily vended inequality A'1 < A1,1 (see (9 )) ,  we 
then easily conclude that it is possible for the finite difference problem to have an 
unbounded solution, while the differential problem is globally solvable. This will 
happen if the length of the interval / is such that A1,1 > 1 but A'1 < 1,

Inequality (38),  which was derived in the course o f  the proof of Theorem 5, 
can be used to analyze the problem o f  insolvability o f  the scheme on a given 
time-level. For example, from (38)  it is easy to derive the following estimates for 
insolvability of the scheme at the j - t h  time step in the ease P  =  tr +  1. They are 
sharper than the estimates o f  (30):

. r  > r . (/ M )
Ur +  l ) ,r+l( l  -  A'.')'
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The first one o f  these is optimal, since for Л'1 > 1 the solution always' exists' (see 
Theorem 1).

Let us present an interesting corollary, which has a differential analogue (see 
§ 3, Ch. IV).

C oro llary .  L et /3 e | cr +  1, cr +  3) a n d  let us h e  g iven  a  function  и<>(л‘) > 0, 
л e R , ,  Let a s  fix an arhiti'ary  It > 0. Then J o e  su ffic ien tly  lai'gc M th ere  is a  
co lle c tio n  o f  tim e steps  (r^j. satis fy in g  7'n — f f 7 ) < со, s a c k  that the so lution  o f  
the fin ite  d if fe r en c e  p rob lem  (4),  (5) f o r  I =  (M  +  \ )h a n d  ищ, ф  0  is unbou nded . 
lf\uou\hA > 2 f o r  so m e  M  > 1, then the s a m e  con clu sion  is  v a lid  a l s o  in the c a s e  
/3 =  0- +  3.

P r o o f  For large / p o  in (37) satislics the estimate

/x(, ^  1 - ( К „ 1 „ | / 2 Г И

Therefore under the above assumptions p {, > 0 for sufliciently large /. which by 
Theorem 5 ensures global insolvability o f  the problem (4),  (5). □

2. To conclude, let us give an example o f  an unbounded solution o f  the Unite 
difference problem (4), (5), which can he written down explicitly. This example 
shows, in particular, that the requirement (40) of Theorem 5 concerning solvability 
on a sequence of time steps, is not especially burdensome.

Let /3 =  <t +  1. As in the continuous ease (see § 1, Ch. IV), we shall seek the 
difference solution of the problem in separated variables:

иl — S ’ в , .  U- -f) e a>T x to,,. (44)

Substituting u[ into (4) we obtain the following problems for the grid functions 
S ', (h

S -  S
t e  ioT (45)

( 0 " и )т> +  4"  И =  ~ IL  x  6 0 e  H h. (46)
cr

Let there be given a system of time intervals (40), where p  > 1, a  =  cr. Then 
a solution o f  the problem (45) is the function

S' =  p'.  j  =  (). 1.......A = о у / ' " г И | ( р  -  1). (47)

Let us cons'truct a .solution of the problem (46) in the particular case cr =  2. 
Let us fix an arbitrary M > 0  and s'et It =  2 sin(37r/|2(M  +  1 )|). In this case the 
length o f  the interval is

//, =
37r/ l

1
. h 

aresm - . 0 < /i «  2 . (48)
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Then ft can he easily seen that the solution of the problem (46) has the form

e k = 2 3

1/2

srn(rt/,Ar/r), к =  0 ,  1..........M +  1, (49)

where a h =  n / ! b.
By (44), the functions (47 ) ,  (49) deline an unbounded difference solution of 

problem (4),  (5) for cr =  2, (3 — 3, / =  //,, which grows without bound at all 
points of o>i,. conserving its spatial structure. As h  -> 0 the difference solution
(49) converges to a solution of the corresponding ordinary differential equation 
(see § 1, Ch. IV):

0{.x) =  (3 / 4 ) l/: srnU/3), 0 < .v < /о =  37t . (50)

The length of the support o f  this solution, /о, defines the fundamental length of 
the nonlinear medium. The difference fundamental length (48) is close to /n =  Зтг 
for /; «  1. For large'/; the difference can he significant; for example, /,, =  9 for 
li =  1, /,, =  6 for h =  2 .

Let us note that the grid function (49) is not the projection onto ши o f  the 
solution (50), the differential analogue of  problem (46)  for a  =  2, though it has 
a similar structure. The dissimilarity is even more substantial in the case cr =  1, 
when equation (46) also has a simple solution:

в к =  Ah *\n2(b ,,k h ) + B , , .  к =  0. 1 , ___ M +  1,

■svhere

I),, =  - y  aresin ~~, 0 < /; < 2; Ah =  — 12(2*/, -  l)|l/:!.
2h  2 к,,

Bn =  ^ ( 1 - 12(2 . , ,  -  l)|l/:), =  1 - 1
2 k  i, h-

which, however', does not satisfy the boundary conditions and is strictly positive. 
However, in the limit /; —> 0, when Kh —> 3/4, Й/, —> 0, the function в ц is the 
solution of  the differential problem for / > 47t.

Let us move on now to questions of global solvability of the difference problem 
and o f  convergence o f  the difference solution as h —* 0 to the generalized solution 
o f  the differential problem (1) ~(3). Two separate cases have to be considered.

5 G lo b a l so lv ab ility  a n d  p a s s a g e  to  the lim it f o r  (3 < <r +  1 

Recall that below the grid o>r is assumed to be uniform.
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T h e o re m  6 . L et (3 < tr +  1. Then f o r  su ffic ien tly  sm a ll т th e d i f fe r en c e  p rob lem  
h a s  a  u n iqu e g lo b a l  so lu tion . I f  (3 =  a  +  1, then  the sa m e  a s s e r t io n  is  true u nder  
th e  a d d it io n a l requ irem ent

4 , i 77-/1

7^ s,n‘  2 7
(51)

In bo th  e a s e s  /3 < tr+  1 a n d  (3 ■= tr +  1, Лj > 1, th e  d if fe r en c e  Solu tion  co n v erg es  a s  
t , h —* 0  to the g en era liz ed  so lu tion  o f  the d iffe ren tia l p ro b lem  ( 1 ) —(3) con stru cted  
in T h eorem  2 o f f  2.

We shall need two lemmas, the first o f  which is verilied directly. The Second 
is proved in [296, 346[.

L e m m a  2. F o r  a l l  £ , 17 e  R t the fo llo w in g  in equ a lity  h o ld s :

( £ " ■ * 1 -  V ” ' 1) *" + 1 -  v l u '" ' 1) +

+  C i [m ax(£, -q)f ft1+1’ /1 -  г/и "/ -)2, 

w h ere  C) C'i (<r, (3) > 0 is a  constan t.

(52)

L e m m a  3. F o r  an y  g r id  function  1 >/, e  I I /,

|t'/,lr £ Л ||c(/ I 1 
It

1/W \ 1) 
h. 2 , Л 3

_  /1/12П/ М)! (53)

P r o o f  o f  T h eorem  6. Let us fix an arbitrary T  > 0.
1) Let us first consider the ease (3 < ir +  1. By Theorem 1 the difference 

scheme (4) with (3 < tr +  1 is solvable for any r ,  that is, the function it is delined 
everywhere in <or We shall need estimates of the finite difference solution.

Taking the scalar product o f  both sides o f  (4) by Л " ' 1 and using the obvious 
inequality

i f  ~  ri)£'n l  > -  V,n '2).
i t  +  2

we obtain

<r •(- 2 r (M
a t 2 
h.tr { 2 l«l

•r f 2 
h.tr {2 ) + 1| Л " ' И

li 1 n 1 1 
h./JHr 1-1 • (54)

We estimate the right-hand side o f  this inequality using (13)  and Young’s in
equality, taking into account the fact that (3 < tr +  1. As a result we obtain the 
inequality

,/U i4  1
>l,,p h, 1 I

r," 1 1 I +  Л.\ (55)

tr +  1 — (3 rr +  1

2 ф  +  ( г  +  1)  [ Л и С р  +  r r  +  1)

2(</ H l/l/i m in i
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and then from (54) we have

. ... .................L £  At +(r +  2 т

Hence we obtain the estimates

, , ;н  ем-:

T <T -f

max |u;t \\W\-, < /̂ 4V (cr + 2) + |«о»IJ[i S /Ь
()' j' N

and, by (53),  the inequality

(56)

(57)

max |icM 1 |c < A\
{)■■_]-,v

-> i \ i d-i" ’ i )i
2Л 4 +  - - Л 5

т а -f  2
(58)

To derive other estimates, we take the scalar product of (4) with (tt"11 - и 1 )/т 
and use the inequality (52) as well as the inequality

( £ " "  - i ) " " ) ( t - i ) )  > C 2( £ " " ' 2 ~ v " ‘, / 2 r

for all 7/ e R t , where C 2 =  C 2( a )  > 0 is a constant. As a result, we have

_  ..i-m/:
C\ rT ( V ' " , l i i b  -  ii“ " r l i i ; . : )  +

I ! r + 1 ' t\n\l3' " { ' \„\13ы’ "  \ I+  J ^ 7 7 t (|1"l/'.dt.M-i +

+  С ,т[тах(|Лг . |u|r)l/J
a 11'//: _  ..I \„/г

h.l

(59)

In the derivation o f  (59) we also used the inequality

« < ? 'М )Т|. Г Г М - « , r H )* < -(ЦЙ1<r-f I и2
/t.2

,/r-4 и2
:>/2

(since £ ( £  -  T)) >  ( £ 3 -  t}2) /2  for any £, 17 6 R t ).
Let us choose N  so large (that is, т =  T/(/V + 1 )  so small), tha 

Crr[max{|d|r. |«lr)l/J 1 5  6’:/2 for all 0  < j  < /V. It follows from (58) tha 
for this it is sufficient that

2/\<i -f
r  it +  2

us C 3

2C
(60
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For / ? < « ■ +  1 that can always be clone. Then, summing the Inequalities (59) In 
j  from 0  to N , and applying Young’ s inequality, we obtain

ft' ,,r/2 It \-ir! 2

T
+ 1)

2
lt,2

t r +  1

~  /3 +  (T +  1 

Q -+ 1 

/3 +  (T +  1

|,/лм 1,0 -H r+ l  
I h.fi 3-tr ■

I'd)/, I(S \ ir-г I U.p \-<r \ |

I +  ' II/,.2 "

< ^ll(uV+l)'r , | | l L  +  Aft

(to derive the last inequality we used the estimate (13)) ,
estimates

E^
r--o

Лт.
Л . 2

Hence we have the

(61)

max ||(//''1 )'rt 11|j; т 5  А». (62)
n-n./v

Thus restriction (60) on the size of the time step r  ensures global boundedness 
o f  the difference solution of problem (4),  (5) for (3 < tr +  1. Let us note that by 
(53),  from (62) follows the estimate

max |;z'1 |f £  Лч. (63)
0- Г:Д'

Let us show now that in the ease

r  < Л,1, h /(3  (64)

the solution is unique. Let ;"zi, th  be two solutions of  the problem. Then from (4) 
we have that /"/1 -  ih  =  T(f/'1, t l  -  u ' * 1 )t > +  r(f/f -  ft4). Taking the scalar product 
o f  this equality with /7,'11 — tt" * 1. we obtain

( « 1  — i t i .  ft"  * 1 — ft"  1 1)/, =

=  “ т||/7,м1 -  «л *' II/,.2 +  T (u f  -  Г/'1, ft"'1 1 -/7;M l )/, г)-

< r/3|max(|f/i |r . l/nlrll^ ’ 1 («1 ~  th > ft" "  - f t V l )i,.

Hence by (63), (64) wc conclude that (ii| — ib ,  /7,'*' — ft" f 1)/, =  0, that is'. ft\ =  fn_.
To prove the validity of passing to the limit, we shall need another estimate. 

From (4) we have

II (ft
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Therefore, taking into account (8),  and using (62).  we obtain

max ||(u;+1 -  м; )/т||, 7 < Лю* (65)
о<лл/

For convenience, let us introduce the notation

V r q r vTh -  ( i t / / 1 -  i ' / , ) / r .  ] t  < / < ( ;  +  1 ) 7 .

From (57), (61).  (62).  (65),  using the results of [339[, we obtain the 
following estimates; the functions r/T/>/iOF)', + l are uniformly bounded in 
L ”° (0 . T\H'0(Q. /)) and in / Л (0 ,  Г ;  /,(,м :,/ur+ " ( О , /)); q rq h (ttj )"'л are uniformly 
bounded in Г х' ( 0 , Г ; / 3 " +2,/('^  " ( () ./ )) ;  q rq h (u>)u " l2 in 2 Л ( 0 ,  T \L : ( 0 . /)); 
^ rq rq i,(u J ) U " /2 in l J ( 0 .  T\ L 2(0 , / )): r/T/>„(F in / Л ( 0 . Г :  £ " ♦ ’ «) ./ )) :  V T<lrPi,"J 
in / Д (0 ,  Г . Я  '( ( ) ./ )) :  [</,/>/,(«') " f l ]Tl in / 4 ( 0 .  Г ;  H ( 0 . /)); ch q ,,(u ' )p in 
/ 4 ( 0 .  7’: / J ( 0 , /)); tn,(tiNi ') in L ‘,+ 1(Q .I). This information is suflieient to be 
able to use a compactness theorem [86[ to pass to the limit as r.  Ii 0  (details 
can be found in [296. 339 [),

As a result we have another proof o f  existence o f  a global generalized solution 
o f  the problem ( 1 ) 4 3 )  for /3 < cr +  1. which satislies all the inclusions o f  Theorem 
1, {) 2, Observe that we have in addition that u, e  L 2(0. 7'; H ~ 1 ( 0 , /)),

2) Let us consider the case /3 =  i r +  1. Applying the inequality (12) to estimate 
the right-hand s'ide o f  (54) for /3 =  <r +  1, we have

‘ - Л ?
ti '•ir И и 2\\U 11 ,l"*2

" * - 2 -  <r +  2 T m h -'r ' 2 '

Hence (see (51)) we have the estimate (58) with Д4 =  0  and the inequalities

1 1 A, , ,.rl1 Д,,

(66)

I * 1II2 <
Г7 +  2 7  A'1 -  1 l" 0/,l/M,t'2

Let us take т so small that (see (60))

( I /  l O > / P ( . r  I l ) | C i
< —  Л С ’ Л 
— 2  C  '

tr Л - I f / P t . r  t

Then it is not hard to see that the following inequality is satisfied:

C i
E t

ft I 'br/2 __ -\,r/2

h.  2
. ................ . <
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from which the estimates ( 6 1 ) - ( 6 3 )  follow. Subsequent analysis is carried out as 
in the ease (3 < <r +  \. □

Thus in the cases (3 < cr +  1 and /3 =  ir +  1, Â1 > 1, no matter how line 
the grid in time (which, obviously, can be taken to be non-uniform), there is no 
blow-up o f  finite difference solutions, which agrees with the conclusions of  4} 2 
concerning the differential problem. This agreement is even more clearly seen for 
(3 > (т +  1.

6 F in ite  d iffe ren ce  s t a b le  sets  a n d  p ass in g  to th e  lim it f o r  (3 > tr  +  \

Here we shall show that for (3 > ir +  1 we can construct a difference stable set 
IV'/,, which has a structure quite similar to the one for the differential problem 
constructed in § 2. The latter will be denoted below by 'Wo, to emphasize that it 
is W/, lor It =  0 + „

Let us define for all t>/, e  Н/, the functional

Jh U ’h) =  Zj “ h < vh )
< r+  1 

(3 +  <r +  1

where д/,(и/,) =  ||i^111|,~ 2, h id 1'/,) =  I l ' / .  I /k / j ' h V h  - Us>nS Lemma 1, it is not hard 
to prove (see Lemma 3 in § 2)

L e m m a  4, Let (3 > ir +  L Then  ice h a v e  the in equ a lity

di, =  inf sup.//, (At//,)
I iLc-lh,.ui, ^  0 A .0

(3 (<T + 1 ) , Di/1/i  ^  Q

2(f3 +  tr +  1)

Now we ean define the finite difference stable set W/, (which is non-empty by 
Lemma 4):

W„ =  { tv, | tv, e H/,, 0 < i/,(Ae/,) < с//,, A e [0. 1 [). (67)

From the construction of W/, we obtain (see Lemma 4, S 2)

L em m a 5, We h av e the eq u a lity  W/, =  'Wjt U {()), w h ere

W/*, =  (u/, | tv, 6 Hi,, a i, ( it/,) -  h 1, ( 14 ,) > 0. J  1, ( 1 4 ,) < d h ).

Let us state the main result o f  this subsection.

T heorem  7. Let (3 > <r+  1 a n d  a s sa a te  that ищ, e  W/,. Then f o r  su ffic ien tly  sm a ll  
т th e fin ite  d iffe r en ce  p ro b lem  (4),  (5) h a s  a g lo b a l  so lu tion  w h ich  b e lo n g s  to  W/, 
f o r  a l l t e  u)r. M oreover, th e  so lu tion  is  un ique. If, fu rth erm o re  ttn e  Wo, the  
fin ite d iffe r en c e  so lu tion  co n v er g e s  a s  t , b  —* 0  to  th e  g e n e r a l iz e d  so lu tion  o f  the  
o r ig in a l d ifferen tia l p ro b lem , w h ich  ц>дл co n stru cted  in T h eorem  4, S 2.
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R em ark . In the conditions' o f Theorem 7, no refinement o f  the time step r  (which 
by itself has to be sufficiently small) can lead to the finite difference solution being 
unbounded. Therefore, as follows from Theorem 7, inequality (37) cannot hold if 
m(„, £ IT/,, that is.

1 — Â Oio/i, |///|)),гИ < 0 , «о/, e W

This inequality is an additonal characteristic of the difference stable set 1T/Ir

P r o o f  o f  T h eorem  1, This largely follows the lines o f  proof o f  the "differential" 
Theorem 4, § 2, If щi/, e  IT;,, then by Lemma 5 we have a/,(ito/,) -  b/,(«o/i) > 0 
and therefore

Jh (« m ) -U/,(U(1/,) -
< r+  1

/3 +  <r + 1/>/, («0/1) >
P - U t +  1) 

2(/3 +  rr +  1)
U/,(U( l/ib

Therefore it follows from (53) that

|uo/,lr £ Л,
2(f3 +  tr +  1) 

/?~’ (m +  1)
.//, (!0)/i)

l/|2(,r+l)|
5  /112 ■

that is, 'W/, is bounded in C(<oh ). 
Let ns show that the condition

< mini 1 „ C z / ( 2 C i ))
T 5  (1 +  Л , ^  +  2/r 2( 1 +  Л ,2)'Л|

<6K)

ensures solvability of scheme (4) at each time level.
Let ns make the first step in time. From Theorem 2 (see condition (20) for 

Co =  1) it follows that tinder the restriction (6 8 ) the scheme is solvable. Since by 

(6 8 ) |n'|r 5, lnnlr +  1 £  Л i2 +  1,

r[max(|n1 |c, |un|r )l^ ' < C’2/(2C'i ). 

and, consequently, we obtain from (59) the inequality

C f
i

( u ' ) " " /J (к1 V  Hf/:
S  ~\J hi 4[)) — J  h(U )]. (69)

Let us prove that u 1 e  ‘W’/,. Indeed, let it’ $  IT/,. Then since n 1 —► n° as 
r  — > 0  (see proof of Theorem 2) .  and it" e "IT/,, there exists a r  — r , ,  such that 
it1 e  (TIT/,. By (67) this means that J/.tu1) =  r//,. Hence we have a contradiction 
with (69 ) .  since by assumption J  i,(u {>) < d,,.
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Thus, u ] 6 ‘IT/,. Then from Lemma 5 we have that <•//,(«') > /?/,(«'). Using 
this inequality to estimate the second term in the right-hand side o f  (69),  we have

Сз
T

(« ' ) <«") i мг/:

r

1 /3~ ( QT+ 1)

,  +  T 2 ( p  +  (T +  1 )
< " ') 'r H n L  <

Hence
P ~ ( ( r  +  1) 

2 (f3 +  i r +  1)
( u ] ) ' r t N/1.2 5  •//,(«"),

and therefore |u'|f < Л 12. This justifies making the next step in time under 
restriction (6 8 ) on die magnitude of r  and so on.

Thus, if ( 6 8 ) holds, the difference scheme has a global solution it e TV'/,, 
|Л|с- £  A i:  for all 0 < j < N. and furthermore

j -u

+
1 , . 2

P ~ U r  +  1) 
2 (P  +  rr +  1)

If/ ^ 11 J1 i (U()/i ).

Uniqueness for т < p  'Л р ^  
proved as in Theorem 6 ,

o f  a uniformly hounded solution и e  IT/, is
□

The finite difference solution constructed above satisfies estimates which allow 
us to pass to the limit as t . I i —» 0, Here it is only necessary to ohserve that in 
the case /щ e  1T(, the inclusion ttw, e  IT/, holds for all sufliciently small /1 > 0 , 
As a result we have the existence of a global generalized solution of the prohlcm 
(1 )—(3),  which is in TTi, for all 1 >  0,

To conclude, let us note that by the estimate (21) for global solvability of the 
finite difference problem in the set ‘If’/,, it is sufficient that т =  O ( lr )  for /t <$C 1, 
The restriction (6 8 ) on the size of the time step r  is essential, since too large steps 
can sooner or later “throw" the solution out of TT/,, and it will hecome unbounded. 
The necessary shortening of the time steps r y will he automatically performed hy 
the iterative algorithm we arc using, when Theorem 4 (on the non-existence of 
solution) comes to the fore.

2 Explicit (linear) difference schem e

Below we shall consider hriefly unhounded solutions o f  the explicit difference 
scheme for the prohlem (1)—(3):

(it -- u ) / t , ~  ( « " '  1 )t i +  U. x) e  (oT x ay,. (70)

iP —  0, Л  &  (O jt ’, It tr /7/,, f  £  t i ) r . (71)
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The main difference between this' scheme and the implicit one lies in the fact 
that the “elliptic" operator in the right-hand side o f  (70) is computed from the 
values of  the grid function и not on the next time level as in (4), hut on the current 
time level. Therefore, obviously, the question o f  solvability of the scheme (70), 
(71) does not arise. We shall not discuss in detail the comparative advantages and 
disadvantages o f  the two schemes (this was already mentioned earlier). Such a 
detailed analysis can he found in [ 346),

Let us consider one basic question: when is the solution of the explicit scheme 
(70),  (71) non-negative for any initial function uo(.v) > 0, л e o>/,, that is. when 
does the solution satisfy the weak Maximum Principle? If  it does not, (70) does 
not neeessarily make sense (it will not be possihle in (70) to perform the operation 
of raising to an arbitrary power). It turns out that in some cases ((3 < <x +  1) the 
weak Maximum Principle is not ,satisfied at all, while for f3 > (г +  1 it requires 
very severe restrictions on тг  It.

I The w eak  M axim um  P rin c ip le  

The time grid here is taken to be uniform, r ; =  r.

T h e orem  8 . F o r  (3 < ir +  1 the w eak  M axim um  P rin c ip le  d o es  not h o ld . If 
(3 =  ir +  1, a n e e e s s a r r  a n d  .sufficient con d ition  f o r  it to h o ld  is the in equ a lity  
I r  >  2. In the e a s e  f3 > tr +  1 such a  con d ition  is the fo llo w in g :

т < P -  1
2 \ f 3 - « r +  1)]

(i
■ i r / \ ( 5  I t r  -j 1 | |

(72)

P roof. W c start from the fact that a necessary and sufficient condition o f  non
negativity o f  it for any и > 0 in ш/, is the requirement that the function

P M )  =  i  +  т ^ - 2 Л Г " .  A — r /I t2. (73)

be non-negative everywhere in R,.. This follows from the form of (70) resolved 
with respect to ft: in, =  P^Un) +  M u f" , +  u f  ' l ), if  we set iq.. i =  i q f i =  0 for 
some 0  < к < M  (such a situation could obtain, for example, at the initial moment 
o f  time). An elementary analysis of the function (73) leads to the conclusions of 
the theorem. □

Let us note that in the dependence of r  on h, inequality (72) resembles condition 
(3,3') o f  solvability o f  the implicit scheme on a time level for (3 > <r+ 1, However, 
there is a crucial difference between the two: while (.3,3') is needed only at a fully 
developed stage of  hlow-up (|u|c large), without (72).  in general, the computation 
simply cannot he started. Naturally, for certain initial functions ut>n condition (72) 
may not be required.
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2 U n bou n ded  d iffe r en c e  so lu tion s o f  the ex p lic it  s c h e m e

Here we shall consider the appearance of finite difference finite time blow-up in the 
problem (70).  (71) for /3 > <r +  1. To that end we could apply the eigenfunction 
method, which was used in suhsection 1.4; for the explicit scheme it is' much 
simpler.

Below wc employ a different method. In the following we take the grid uir to 
he non-uniform, r ,  —* 0 as j —*■ эс ,  T о =  Y T f.4 T/ ‘c o c '

Let the Maximum of an initial function щц ф (). the value |uo/, |r. be attained at 
some point л e  o>/,. It is easily seen that at that point the value o f  the grid function 
tt l + '  is estimated in terms of  td as follows:

u' +  T, d d f
Id

U d ),r" t e. m . (74)

ui] — |f > 0 ,

Here we are assuming that и > 0 in сот x ш/, (see Theorem K),
From (74)  it is not hard to derive conditions for the solution to he unbounded. 

Let us write (74) in the following form:

tn 1 > i d  +  T , ( t t > f f s U d f "  11
It-

t G (07 (75)

Let the initial function a»/, he such that

АЮ =  1 -  f f j th ih l'c "  > «. (76)

Then it immediately follows from (75) that id  ' 1 > td  for all / =  0, 1 . . . , ,  and 
therefore we have from (75) that

i d * 1 > f i u T f i d f .  t <= ior . (77)

It remains to choose suitable sizes for the time steps тr  For example, let us set

r ,  =  —  ( t d ) 1 ^ . j =  0. 1 . . . . ;  q  — const г- 1. (7H)
/Ml

Then (77) assumes the form

i t " 1 >  q t d . j  =  0, 1----'. t/' = |uo/,|r .

Hence we immediately have

« '  >  k i t l r f / ' -  У - » - 1. . . . . . .  ( 7 9 )

that is, it' —* oc as / c x j .
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Let us show that this is indeed finite difference linite time blow-up. By (78),  
(79) we have the following estimate for the time of  existence o f  the difference 
solution:

7’,, =  £ r ,  =  ^  $ > ' ) i-n

Mo i о

< - K t . l ^ x y 11 < oe,
MU 7 t ,  MU < r -  1

(80)

Thus, if  (76) holds, им, belongs to the unstahle set T'V

T h e orem  9. L et /3 > tr +  1 a n d  a ssu m e that ccm dition  (76) h old s. Then th ere  
ex ists a  s eq u en c e  o f  tim e step s  ( r ; ). d e fin ed  by  (78). such that the so lution  o f  the 
ex p lic it  s c h e m e  (70),  (71) is  u n b o u n d ed  an d  the tim e o f  ex is ten ce  o f  the so lu tion  
sa tis fie s  the estim ate  (80),

Let us note that to get finite time hlow-up in the explicit scheme, it is necessary 
to choose small time steps. For example, in the framework o f  the above approach, 
we derive the following estimate for the magnitude o f  r (1 (the lirst step): if (76) 
holds, we have the inequality

l « t » l r  >  ( 2 / / r ) l/U1 U M l 1 1 . 

and therefore from (78) we ohtain

r„ =  ^ \ a i]h\'r  >j < ^ - 2"  ^  •■""“ (Л2)** =
Mu Mu (Hi)

=  0 \ (h 2){li " nii 1,11. /i «  I.

Naturally, in view o f  (78),  (79)  subsequent steps will he even shorter. This 
estimate has the same dependence o f  r,, on It as the optimal inequality (З У ), which 
ensures solvability of the implicit scheme. Thus to have hlow-up in the explicit 
scheme, its apparent simplicity notwithstanding, we still have to compute with very 
small time steps. The reason for this is clear: from (70) it immediately follows 
that inarching in time with large time steps never leads to finite time blow-up. This 
is true, for example, for a uniform grid wr . Let us also note that a restriction of 
the form of (81) is needed to have the weak Maximum Principle (see Theorem 8 ).

Remarks and comments on the literature

§ 1. The presentation of results of S 1 largely follows 1123. 127. 131, 169, 17()| 
(| 1.311 contains a brief account o f  the results pertaining to the one-dimensional
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equation). Certain results of i? 1 were obtained earlier in |120|. Theorem 6 for 
cr =  О, p  > (f3 -  l)/V/2, /> > 1, and more general initial functions was proved by 
a different method in 13 7 9 1 (see also theorems 3.2 and 3.3 in |26|). Let us note 
that 1379. 26| make significant use of the semilinearity of equation (4) for ct =  0. 
i.e, o f  the ability to invert the linear operator 9/<)r — Д and reduce the problem to 
an equivalent integral equation. Therefore the method o f  |379| is not applicable in 
the quasilinear ease when ф'(и) ^  const. In the ease a  =  0, N  =  1 and arbitrary 
uo(.v) Theorem 6 was proved in |170|; an exact form of the envelope o f  the 
family {U(r\ (7a)j in Theorem 5 was also established there: u (T ^ , x ) > G (r )  =  
С(>|л‘Г 2/|̂ where Co > C ,  is a constant. Some classes of equations o f  the form 
(30),  (31) were studied in 1127, 150, 3 4 7 1 (see § 7, Ch, IV), In the most general 
form degenerate a.s.s, of similar quasilinear equations were considered in |160). 
Many other examples of the use of the method o f  stationary states are contained in 
1164|; for other possibilities see 1137, 174, 175, 180, 181. 189|. Another approach 
to construction of  lower bounds for unhounded solutions of  quasilinear equations 
of the form (1) has heen developed by |306| (see also |223|, where houndary value 
problems in a hounded domain are considered). In its final results, this approach 
is similar to the method of stationary states. For example, in 1306) it is show* that 
for 1 < /3 < cr +  1 the solution grows without bound on the whole space, while 
for /3 =  a  +  1 a "lower bound” for the localization domain is ohtained.

The main results of this section are based on intersection comparison with 
the given set !J ‘ o f  particular stationary solutions to the quasilinear heat equation 
(1) with one space varable r — |.r|. A similar comparison can he performed with 
respect to an arhitrary set 2ft o f  other solutions if it is sufficiently large (“complete" 
in the sense o f  existence and uniqueness o f  tangent solutions in spatial variahle). In 
this case wc arrive at the notion of  generalized B-convexity/concavity properties of 
the solutions with respect to the given functional set f!ft. Under certain assumptions 
these properties are proved to be to he preserved in time or to appear eventually 
in time, see general results in |194|. Observe that the "criterion" of complete 
blow-up for a general one-dimensional quasilinear heat equation with source [193) 
is a straightforward consequence fo such intersection comparison with the set of 
travelling wave solutions depending on the variahle £ — x — At, and looks like the 
property o f  eventual B-convexity.

§ 2. Theorems of subsection 1 arc proved in 1121, 1251. A similar problem was 
considered, using a different approach, prior to that in |372|: the results obtained 
there are not quite optimal. The main claims of subsection 2.1 are contained in 
[120, 1 2 5 1 (results o f  similar generality were established in |294|). The greater 
part of conclusions of subsection 2.2 can be found In 1125). A generalization o f  the 
concavity method to study unhounded solutions of parabolic equations and systems 
of equations with a given type of nonlinearity was undertaken in 11241. Later 
conditions for appearance of unhounded solutions of quasilinear parabolic equations 
were established in [307. 2 9 4 1. 13 0 7 1 employs the method of eigenfunctions, which



504 VI1 Some oilier methods of study of unbounded solutions

is not unlike that o f  1120, 1251 (see Theorem H of § 2); |294| uses the same 
approach as [124|. A similar analysis of the boundary value problem for the 
quasilinear equation и, =  ф {и)и<х +  ф(и) in the one-dimensional ease appeared 
earlier in [2 2 5 1; in particular, a version of the method of eigenfunctions was used 
there. A brief survey o f  the literature on unbounded solutions’ can he found in 
| 1571 and 1290).

§ 3. The majority o f  results o f  S 3 is contained in 11611 (see also 1157)). Other 
examples of the use o f  the method o f  stationary states to derive lower bounds for 
unbounded solutions can be found in 1159, 164. 1 7 4 1, The problem o f  computing 
upper bounds and thus proof o f  localization for systems o f  equations is almost 
completely open. The single result of 1105|. ohtained hy the method of 11081. 
deals with the semilinear system (1 ),  (2) for p  =  v =  0  and p  =  q . Let us 
note the paper |УЗ| (see also |290|), which considers the Cauchy problem for a 
semilinear sys'tem and shows that for (у  +  1 ) / ( p q  — 1) > /V/2, у  =  шах{/>, r/j, 
every non-trivial non-negative solution blows up in finite time, thus determining 
the critical (in the sense o f  Fujita 11 121) exponent o f  the source.

§ 4. Numerical and qualitative results of subsection 1 are taken from 1273 .  279|. 
T h e  analysis of subsection 2 comes from 11 4 2 1.

§ 5. All the main assertions of § 5 are proved in [ 1K2 , 18 3 1. Studies of 
unbounded solutions o f  explicit linite difference schemes for the semilinear (cr =  
0 )  equation using different methods were conducted in |311, 31 2|. Interesting 
results concerning localization in the context of an explicit-implicit scheme for the 
equation with cr =  0 , when the source term nli is taken not from the next, but from 
the current time level, are obtained in [64|. In particular, it is shown there that for 
/3 =  2 the difference solution becomes inlinite at three central points, while for 
/J > 2 it happens at a single point.

The results o f  § 3 and the proposition o f  § 4  are based on the derivations 
o f  1161, 1591. Let us note that the practically optimal result concerning global 
solvability of the boundary value problem for pc/ < (1 +  /х)(1 +  i>) (Theorem 
5 o f  g 3), established by using the method o f  stationary states, is hard to obtain 
by using the usual techniques o f  a priori estimates, for example, those employed 
in Galerkin’s method. This is indicated by the analysis o f  [ 1571, as well as, for 
example, the results of  [299|, where restrictions o f  (he form p  <  1 +  p ,  q  <  1 +  v 
are obtained. These restrictions are the natural ones for a single equation (see jj 2).  
They characterize the easily explainable relation between intensities o f  processes 
o f  heat diffusion and combustion, which is necessary for the occurrence o f  thermal 
perturbations of linite amplitude. As shown in S 3, these conditions are far from 
being optimal for systems of equations.
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Open problems

1. (g 1) Describe the whole class o f  coefficients (к , Q) for which the absence of 
localization condition (16) (for N =  1) is not only .sufficient, but also necessary 
(for the case k(u ) =  it'r . Q (n) — it13, /3 >  (r +  1, <r > 0, this has been done in 
112У|).

2. (g 1) Derive an upper bound for u (T {) , x) o f  the form (2У') in Theorem 5 
for arbitrary initial functions u(,(.r) (for a particular class o f  «о this has been done 
in 1131, 172, 1731).

3. (g 1) Prove localization o f  unbounded solutions o f  equation (1) with general 
coefficients (30) for a  > 2  (in the case k(u ) ~  1, Q (u) — (1 +  u )ln ^ (l  +  n), 
/3 > 2, this has been done in | 189| (/3 ■ 2) and 11771 (/3 > 2); see also 1102) and 
g 7. Ch. IV).

4. ( § 2 )  Determine conditions for which the behaviour of unbounded solutions 
of  the boundary value problem (5).  (6 ) as t —* T {) (im) -e ou, /3 e  ( a  +  1. Ur +  
1 )(N  +  2 ) /(N  — 2 ) 4 ) is described by the self-similar solutions constructed in § 1, 
Ch. IV. Analyze the asymptotic behaviour of  unbounded solutions o f  the problem 
for /3 > ( а  +  1 )(N  +  2 ) / (N — 2) t. (let us note that in this case there is an unusual 
class o f  global solutions; see |314|).

5. (ij 3) Is it possible to construct a family of explicit solutions of  equation 
(ЗУ) in for the critical value o f  the parameter /3 =  \ N /a  +  2( 1 +  \ /a )]/\ N  -  
2(1 +  1 /гг)|, а  ф  1, similar to the one given in the example in subsection 2.4 for 
the semi-linear ease a  =  1, /3 =  (N  +  4 ) / ( N  -  4)7

6 . ( § 3 )  Determine conditions for localization of compactly supported un
bounded solutions of the Cauchy problem for the system (1), (2).  Is the condition 
in — p(/ — (1 +  /х)(1 +  i’ ) > 0 sufficient for that?

7. (§ 3) What a.s.s. describes asymptotic behaviour of unbounded solutions 
o f  the Cauchy problem for the system (1), (2) in the eases when it does not have 
self-similar solutions?

8 . (g 3) Determine conditions for solvability of  the elliptic system (65). What 
is the structure o f  the set of its solutions for various values of  parameters (some 
numerical results are contained in 1273, 27У|).

У. (§ 4) Find conditions for localization o f  unbounded solutions o f  the problem
(15) ,  (16).

10. (g 5) Are the finite difference solutions of the explicit scheme (70),  (71)  
localized for /3 > <r +  1 in the ease of an initial function > 0 with ‘'compact 
support" (that is, can it happen that ( r e  <uf, | n (T {) . x) =  oo) ф  ay,)7 The implicit 
scheme does not have this asymptotic property.
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