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Preface

The finite-difference solution of mathematical-physics differential equations
is carried out in two stages: 1) the writing of the difference scheme (a differ-
ence approximation to the differential equation on a grid), 2) the computer
solution of the difference equations, which are written in the form of a high-
order system of linear algebraic equations of special form (ill-conditioned,
band-structured). Application of general linear algebra methods is not always
appropriate for such systems because of the need to store a large volume of
information, as well as because of the large amount of work required by these
methods. For the solution of difference equations, special methods have been
developed which, in one way or another, take into account special features of
the problem, and which allow the solution to be found using less work than
via the general methods.

This work is an extension of the book Difference Methods for the Solution
of Elliptic Equations by A.A. Samarskii and V.B. Andreev which considered
a whole set of questions connected with difference approximations, the con-
struction of difference operators, and estimation of the convergence rate of
difference schemes for typical elliptic boundary-value problems.

Here we consider only solution methods for difference equations. The
book in fact consists of two volumes. The first volume (Chapters 1-4) deals
with the application of direct methods to the solution of difference equa-
tions, the second volume (Chapters 5-15) considers the theory of iterative
methods for solving general grid equations and their application to difference
equations. The special form of the difference equations plays an important
role when using direct methods. For solving one-dimensional 3-point equa-
tions, various forms of the elimination method are considered (monotone,
non-monotone, cyclic, flow elimination, and others).

Chapters 3 and 4 present up-to-date efficient direct methods for solving
Poisson difference equations in a rectangle with various boundary conditions.
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These are the cyclic reduction method, the method of separation of variables
(using the fast Fourier transform), and also combined methods.

For the study of iterative methods, the iterative method is considered as
an operator-difference scheme, as was described in the books An Introduc-
tion to the Theory of Difference Schemes (1971) and The Theory of Differ-
ence Schemes (1977) by A.A. Samarskii. This concept allows us to present
the theory of iterative methods as a part of the general stability theory for
operator-difference schemes, without any assumptions about the structure of
the matrix system (see also A.A. Samarskii and A.V. Gulin Stability of Dif-
ference Schemes (1973)). Writing the iterative schemes in a canonical form
not only allows us to isolate the operator responsible for the convergence
of the iteration, but also allows us to compare different iterative methods.
Much attention is given to the study of the convergence rate of the iteration
and to the choice of the optimal parameters, for which the convergence rate
is maximal. The availability of convergence rate estimates, and also a study
of the character of the computational stability, allows us to compare vari-
ous iterative methods and make a choice in concrete situations. Although the
reader is undoubtedly familiar with the basic theory of difference schemes and
elementary functional analysis, Chapter 5 presents the basic mathematical
apparatus from the theory of iterative schemes and shows how the difference
approximations for elliptic equations lead to operator equations of the first
kind Au = f where the operators A are in a Hilbert space of grid functions.

The succeeding chapters investigate two-level iterative schemes with
Chebyshev parameters (a stable method); three-level schemes; iterative meth-
ods of variable type (the steepest-descent, minimum residual, minimum cor-
rection, and conjugate-gradient methods, etc.); iterative methods for non-
self-adjoint equations and for indefinite and singular operators; alternating
direction methods; “triangular” methods (where a triangular matrix is in-
verted in order to define a new iterate) such as the Seidel method, successive
over-relaxation, and others; iterative methods for solving nonlinear difference
equations, for solving boundary-value difference problems for elliptic equa-
tions in curvilinear systems of coordinates, etc.

A fundamental place in the book is occupied by the universal alternate-
triangular method, which was proposed and developed between 1964 and
1977, and which is particularly effective for solving the Dirichlet problem
for Poisson’s equations in an arbitrary region and the Dirichlet problem for
the equation div (k gradu) = —f(z), ¢ = (z1,22) with a rapidly changing
coeflicient k(z).

The book shows how to pass from the general theory to concrete prob-
lems, and mentions a great number of iterative algorithms for solving dif-
ference equations for elliptic equations and systems of equations. Estimates
are given for the number of iterations required, and comparisons are made of
various methods. In particular, it is shown that for the simplest problems, di-
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rect methods are more economical that the alternating directions method. It
should be emphasized that the linear algebra problems that arise in practice
are constantly becoming more and more complex, and that they require new
methods of solution as well as widening of the field of application of older
methods.

For the writing of this book, the authors used their own lecture notes
presented between 1961-1977 at the mathematical-mechanics faculty and the
computational mathematics and cybernetics faculty of the Moscow State Uni-
versity, and also materials from their own published works.

The authors would like to take this opportunity to express gratitude
to V.B. Andreev, 1.V. Fryazinov, M.I. Bakirova, A.B. Kucherov, and L.E.
Kaporin for their many useful comments on the text.

The authors also thank T.N. Galishnikova, A.A. Golubeva, and espe-
cially V.M. Marchenko for their help in preparing the manuscript for publi-
cation.

A A. Samarskii, E.S. Nikolaev
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Introduction

The application of various numerical methods (difference, variational-differ-
ence, projected-difference methods including the finite-element method) to
the solution of differential equations leads to a system of linear algebraic
equations of special form, the difference equations. This system possesses
the following special features: 1) it is of high order, equal to the number of
grid points; 2) the system is ill-conditioned (the ratio of the largest to the
smallest eigenvalue is great; for the Laplace difference operator this ratio is
inversely proportional to the square of the grid spacing); 3) the matrix of the
system is sparse — only a few elements in each row are non-zero, and this is
independent of the number of nodes; 4) the non-zero elements of the matrix
are distributed in a special way — the matrix is banded.

In approximating integral and integral-differential equations on a grid,
we obtain a system of equations relating to a function defined on the grid
(the grid function). These equations are naturally called the grid equations:

> a(z,&yé) = f(z), z€w (1)

£€w

where the sum is taken over all points of the grid w, i.e., over a discrete set
of points. The matrix (a(z,£)) of the grid equation is, in the general case,
full. If the grid points are enumerated, then the grid equation can be written

in the form
N

Za,-,-y,:f,-, i=12,...,N, ()

J=1

where ¢, are the indices of the grid nodes, and N is the total number of
nodes. It is obvious how to reverse the path of this reasoning. Thus, the
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linear grid equation is a system of linear algebraic equations and, conversely,
any linear system of algebraic equations can be expressed as a linear grid
equation relative to a grid function defined on some grid with the number of
nodes equal to the order of the system. We remark that variational methods
(Ritz, Galerkin, etc.) for numerically solving differential equations usually
lead to dense systems.

The difference equation is a particular case of the grid equation when the
matrix (a;;) is sparse. So, for example (2) is a difference equation of m** order
if, in row i, there are only m + 1 non-zero elements a;;(j = ¢, +1,...,i+m).

From the above remarks it is clear that the solution of grid and, in
particular, difference equations is a problem in linear algebra.

* ok %

There exist many different numerical methods for solving linear algebra prob-
lems, and research continually leads to re-evaluations and reworkings of these
methods, as well as to the discovery of new methods. Many of the existing
methods have a specific set of problems to which they are best-suited. Thus,
in order to solve a given problem on a computer, there arises the problem of
choosing one method from a set of admissible methods for solving the given
problem. This method must, obviously, display the best characteristics (or,
as one would like to say, be an optimal method) so that the computer time
is a minimum (or the number of arithmetic and logical operations for finding
the solution is a minimum), and so that the computation is stable (i.e. stable
in relation to the rounding error), etc.

It is natural to require that any computational algorithm in principle
allow the solution to be obtained to any pre-specified accuracy € > 0 after
a finite number of operations Q(€). An infinite set of algorithms satisfies
this requirement, so the algorithm should be found which minimizes Q(e)
for any € > 0. Such an algorithm is called economical. Finally, the search
for an “optimal” or “best” method in general leads to a set of known (but
not always admissible) methods, and so the term “optimal algorithm” has a
limited and conditional meaning,.

* K ok
The problem for the theory of numerical methods consists in finding opti-
mal algorithms for a given class of problems, and in establishing a hierarchy

of methods. The notion of the best algorithm depends on the goal of the
computation.

There are two ways of defining what is meant by a best method:

[a] require that it solve one concrete system of equations Au = f with
matrix A = (ai;)

[b] require that it solve several variants of some problem, for example, the
equations Au = f with several right-hand sides f.
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For multi-variant computations, it is possible to reduce the average num-
ber of operations Q(e) for one variant if some quantities are saved and not
computed anew for each variant (for example, preserving the inverse of the
matrix).

From this it is clear that the choice of an algorithm must depend on
the type of computation (single-variant or multi-variant), on the possibility
of saving sufficient information in the computer memory (which is to some
degree dependent on the type of computer), as well as on the order of the
system of equations. For theoretical estimates the computational work is
usually estimated by the number of arithmetic operations required to find
the solution to a given accuracy; for this question, the parameters of the
computer are as a rule not considered.

The stormy development in recent years of numerical methods for solving
difference equations approximating elliptic differential equations, and the ap-
pearance of new economical algorithms, has necessitated the reconsideration
of the applicability of existing methods.

* % *

The contents of this book to a considerable degree hinge on the need to give
effective methods for solving difference equations corresponding to boundary-
value problems for second-order elliptic equations. The classifiction of the
boundary-value difference problems can be carried out according to the fol-
lowing rules:

[1] the form of the differential operator L in the equation

Lu= f(z), ==(z1,...,2p) €G; 3)

[2] the form of the region G in which the solution is to be found;
[3] the type of boundary conditions on the boundary I' of the region G;
[4] the grid @ in the region G = G + T and the difference scheme

Ay = ——(p((l,'), TEwW, (4)

i.e., the form of the difference operator A.

Some examples of second-order elliptic operators are

P 52
Lu=Au= 0_1; the Laplace operator, (5)
— Oz,

a
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=y 2 (For (0) 3 ) - e (®)

a,f=1

where the coefficients ko () at each point = (zy,...,,) satisfy a strong
ellipticity condition

o Z &< Z kap(2)bats < o2 Ec,,,

af=1 ()

¢1,c2 = constant > 0,

where § = (§1,...,§,) is an arbitrary vector. If u(z) = (u!(z), v%(2), ...,
u™(z)) is a vector function, then (3) is a system of equations and

i K u’ .
(Lu)t = E Z . <;ﬂ5$;), i=1,2,...,m,

=1 a,f=1

where the condition of strong ellipticity has the form

m p
ay S (E) < Z Z oa(2)ELED
i=1 a=1 t,j=1 a,ﬂ—
<e; Z Z (f;)z , ¢1,c2 = constant > 0.
i=1 a=1
* ok *

The shape of the region strongly affects the properties of the difference ma-
trix. We will consider separately regions where separation of variables can be
used to solve the equation Lu = 0 with homogeneous boundary conditions.
So, for example, separation of variables can be used for the Laplace equation
in Euclidean coordinates (z1, z3)

?u  O%u
Lu=Au=—+——
022 * Oz}
when G is a rectangle. A difference scheme on a rectangular grid (for example,
the “cross” scheme) possesses an analogous property; in this case, the grid
can be non-uniform in either direction.

In order to compare various methods for solving systems of algebraic
equations, we will use as a standard or model problem the following boundary-
value difference problem:
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Poisson’s equation, on a square region, with boundary conditions of
the first kind on a square grid with steps hy = h and hy = h along
z1 and z2, and with the five-point difference operator A.

The second group of boundary-value difference problems corresponds to
the following data: L is an operator with variable coefficients of the form (6):
a) without mixed derivatives, b) with mixed derivatives, and the region

G={0<z4<ly, a=1,2}

is a rectangle (a parallelipiped for p > 3).

The third group of problems has a region of complex form, where L is
any Laplace operator or any operator of general form; here the degree of
complexity of the problem is determined by the shape of the region, and by
the choice of the grid and the difference operator near the boundary.

For the second and third groups of problems the difference operator is
usually chosen so as to preserve the basic properties of the underlying problem
(self-adjointness, definiteness, etc.) and in order to preserve the necessary
order of approximation in relation to the grid spacing.

* ok %

Direct and iterative methods are used to solve elliptic difference problems.

Direct methods are generally applied in the multidimensional case to
problems from the first group (L is the Laplace operator, G is a rectan-
gle for p = 2 and a parallelipiped for p > 3, A is a five- or a nine-point
difference scheme for p = 2). For one-dimensional problems, where the differ-
ence equation is of second order (the matrix is tridiagonal), and where the
equation may have variable coeflicients, the elimination method (a variant of
a method of Gauss, see Chapter 2) is used. There are a number of variants
of the elimination method: monotone elimination, non-monotone elimination,
flow elimination, cyclic elimination, etc. (see Chapter 2). For two-dimensional
problems from the first group (see above), the following are effective: the
cyclic reduction method (Chapter 3), the method of separation of variables
using the fast Fourier transform (FFT), and also the combined method using
incomplete reduction with the FFT (Chapter 4). In all cases, the elimination
method is used to solve the second-order difference equation along each of
the directions.

The direct methods indicated above for solving the Dirichlet difference
problem for Poisson’s equation in a rectangle

G=(0<z4 <, a=1,2)
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on the grid
@ = {(t1h1,12h2),tq =0,1...,No, ho = lo/Na,a = 1,2}

require ) = O(N;N; log, N;) arithmetic operations, where N; = 2", n > 0
is an integer.

Direct methods are used for a very special class of problems.

* ok X

Elliptic difference problems in the case of general operators L for complex
regions are generally solved using iterative methods.

Grid equations can be treated as operator equations of first order
Au=f (8)

with operators defined on spaces H of grid functions. In the space H, there
is an inner product (,) and energy norm

|« ||p=+/(Du,u), D=D*>0, D:H - H

where D is some linear operator in H.

Iterative methods for solving the operator equation Au = f can be
treated as operator-difference equations (differenced according to fictitious
time or according to the index-number of the iteration) with operators in the
Hilbert space H. If the new iteration yi+; is computed using the m previous
iterations

YesYe—15- - -y Yk—m+1

then the iterative method (scheme) is called an m + 1-level (m-step) method.
From this, the analogy between iterative schemes and difference schemes for
non-stationary problems is clear. In fact, it follows that the theory of iterative
methods is a special case of the general stability theory for operator-difference
schemes. We will limit our attention to two-level and, to a lesser extent, three-
level schemes. Going to multi-level schemes gives no special advantages (since
this also follows from the general stability theory, see [10]).

An important role is played by the writing of iterative methods in a spe-
cial (canonical) form that allows us to separate out the operator (stabilizer)
responsible for the stability and convergence of the iterations, and compare
different iterative methods having the same form.

Any two-level (one-step) iterative method can be written in the following
canonical form:

BYHLH | gy =f, k=0,1,..., weH, 9)
Tk+1
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where B : H — H is a linear operator having inverse B~!, 11,7;,... are
iterative parameters, k is the iteration number, and y; is the k't iterative
approximation. In the general case B = By, depends on k. In the general
theory we will assume that B does not depend on k.

The parameters {7} and operator B are arbitrary, and they should be
chosen to minimize the number of iterations n required to insure that the
solution y, to equation (9) approximates in Hp the exact solution u to the
equation Au = f with accuracy € > 0:

[yn —ullp<ellgo—ulp - (10)

For the general theory presented in the book, the iterative methods do
not require any assumptions on the structure of the operator A (the matrix
(aij)). All that is required are properties of the general form:

A=A*>0, B=B*>0, 7lBSAS’)’2B, ’Yl>0 (11)

The operator inequalities signify that there exist energy-equivalence constants
71,72 for the operators A and B or bounds on the spectrum of the opera-
tor A in the space Hp (y1 and 7. are the smallest and largest eigenvalues,
respectively, for the generalized eigenvalue problem: Av = ABv).

* % X

The solution 71, 72,...,T, of the above minimization problem

min no(e)

TLyesTn

for fixed 71,72 and fixed B in the case D = AB~!A can be expressed via
the zeroes of the n*® order Chebyshev polynomial (the Chebyshev iterative
method). For these optimal values 71, 72,..., T, and for any given € > 0, the
number of iterations n required by the scheme (9) can be estimated using

o> In(2/e)
~ In((1+v8)/(1 - VE))

o In(2/¢) _
2\/5 ) E_ 71/72

n > ng(e) =

and the following inequality is satisfied:

| Ayn — f llB-1< €|l Ayo — f |lB-1 -
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The computational stability of the Chebyshev method is valid for a spe-
cial ordering of the zeroes of the Chebyshev polynomial and the parameters
T4, T3, ..., Tn; this ordering is indicated in Chapter 6.

For B = E (E is the identity operator) the method (9) is called explicit,
and for B # E, implicit. If the parameter 73 is chosen as a constant

nn=1=2/(1+7), k=12,...,n

then we obtain the implicit simple-iteration scheme, for which
1
n >ng(e) =In ;/(26)

The operator B (stabilizer) is chosen using an efficiency condition, i.e.,
in order to minimize the computational work to solve Bv = F for a given
right-hand side F, and, as was already mentioned, to minimize the number
of iterations ng(€).

We will assume that we can efficiently solve the problem Rv = f using
Qr(e) operations, where

RCH—)H, RZR*>0, CIRSASC2R, Cl>0. (12)

Then it is possible to set B = R and find the solution to the problem
Au = f using the scheme (9) with parameters {73} and with v1 = ¢1,72 =2
using

Q9 ~ 3v/ealex 1n(2/e)Qn(o)

operations.

If, for example, L is a general operator and G is a rectangle, then R
can be taken as the five-point Laplace difference operator and the equation
Rv = f can be solved using a direct method.

It can be remarked that, if it is more advantageous to solve the equation
Rv = f iteratively, then B # R and B is not written out in explicit form,
but realized as the result of an iterative procedure.

* % %

The well-known Seidel and successive over-relaxation (SOR) methods are im-
plicit and correspond to triangular matrices (operators) B. The convergence
of these methods is proved using the general theory of difference schemes
(see A.A. Samarskii, Theory of Difference Schemes, Moscow, 1977, or A.A.
Samarskii and A.V. Gulin, Stability of Difference Schemes, Moscow, 1973).
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However, for Seidel’s method and for SOR, B is not self-adjoint, and it is
not possible to use the Chebyshev method (9) with the optimal selection of
the iterative parameters 7", ..., 7, in order to accelerate the convergence of
the iteration. The operator B can made self-adjoint by setting it equal to the
product of mutually adjoint operators

B =(E+wR)(E+wR;), R.=R (13)

where w > 0 is a parameter, R; and Ry can be taken as operators having
triangular matrices (R; lower- and R; upper-triangular), so that

R1+R2=R:H—)H,R*=R>O.
In particular, it is possible to set
R+ R; = A, R; =R;. (14)

It is typically assumed that
A
R>6E, RiR; < ZA’ §>0, A>0. (15)

Choosing w = 2V/6A from the condition min no(€), we find the parameters
71,72 and compute the parameters {7}}. Determining yx41 from yx and f
leads to the sequential solution of two systems of equations with lower and
upper triangular matrices.

The iterative method (9) with the operator B factorized in the form (13)
is called the alternate-triangular method (ATM). ATM is clearly a universal
method, since the representation of A in the form

Ry + Ry, = A, R;=R1

is always possible. Constructing R; and R; in the case of an elliptic difference
problem presents no difficulty. Thus, for example

4 P
Yz Yz
Riy— Y L=, Ry—-Y L
1Y o ha 9 2Y e ha

if A is the 2p + 1-point Laplace difference operator, and

p
Ay - = Zyiaza’
a=1
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where hq is the grid step in the direction z,. This method converges quickly.
If we take the Chebyshev parameters {7} } and use (14), (15), then the number
of iterations for the ATM satisfies
1 2 )
In-, =—. 16
agite "Ta (16)

In particular, for the model problem we have

n > ng(e) = 0.31n2/\/ﬁ.
€

no(e) >

In the case of an arbitrary region and with equations having variable
coefficients, it is appropriate to use the modified alternate-triangular method
(MATM), setting

B=(D+wR,) D" (D+wR;), Rs=R,, D=D*>0, (17)

where D is an arbitrary operator. If in place of (15) we use
1 A
R>6D, R\D 'R; < zD, 6§>0,A>0, (18)

then the estimate (16) remains valid.

Here, § and A are given, and the operator D and the parameter w are
chosen so that the ratio £ = v; /72 is maximized. In practice, the matrix D
can be taken to be diagonal.

We indicate here two effective applications of the MATM.

[1] The Dirichlet problem for Poisson’s equation in an arbitrary two-dimen-
sional region; the basic grid in the plane (z1, z3) is uniform with step &,
and a five-point scheme is used. The MATM for some given D requires
only 4-5% more work per iteration than for the same problem in a square
with side equal to the diameter of the region.

[2] For elliptic equations with quickly changing coefficients (the ratio cz/c;
is large), the MATM with a corresponding choice of D weakens the de-
pendence on ¢y /c;.

In practice, besides the one-step (two-level) methods (9), two-step (three-
level) iterative schemes are also applied. With the optimal iterative param-
eters, they are comparable (in terms of the number of iterations) with the
Chebyshev scheme with parameters {7} as £ — 0, however they are more
sensitive to errors in the definition of v; and 2. With the conditions (11), it
is appropriate to use the Chebyshev scheme (9) with parameters {7} }.

X X %
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For solving elliptic problems, a very important role is played by the alternat-
ing-directions iterative method (ADI), which has been developed, starting
in 1955, by many authors. However, it appeared to be efficient only for a
very narrow class of problems from the first group, those which satisfied the
conditions

A=A, + A,, A,,:A:ZO,azl,2, AZA*>0, AjA; = A A,

If A; and A2 commute, then it is possible to choose the optimal pa-
rameters for the ADI. For the model problem with these parameters, the
number of iterations satisfies ng(e) = O(In 4 In1), and the number of oper-
ations Q(¢) = O(45In 4 In1), whereas for direct methods @ = O(351n}).
Direct methods in this case are more economical than the ADI. If A4; and A,
do not commute, then the ADI requires 0(71; In %) iterations whereas for the
ATM O( lh ln%) iterations are sufficient. For three-dimensional problems,
when A = A; + Az + Ajz, even with the assumption of pairwise commuta-
tivity, the ADI requires more operations than the ATM. Thus, the ADI to a
great degree had little significance.

* %k ¥

If the operator A > 0 is not self-adjoint, then it is not possible using the
scheme (9) with any choice of parameters and self-adjoint operator B = B* >
0 to construct an iterative process with the same convergence rate as for the
Chebyshev method for A = A* > 0. All known methods possess a slower
convergence rate. Here we consider the simple-iterative method (Chapter 6)
with a priori information of two types:

[a] parameters 77, 42 entering into the condition (for simplicity we assume
D=B=E)

‘)’1(1‘,1‘) S (A.’L‘,{t), (A(t,A.T) S ’)’2(A[E,.'L'), 51 > 07 Y2 > 0, (19)

[b] three parameters 71, ¥z, 3, where 41 and v2 (for D = B = E) are
bounds on the symmetric part of the operator A:

NMELALS%E, ||A1|£7, m>0, 73 2>0, (20)

where A; = 0.5(A — A*) is the skew-symmetric part of A.

Choosing 7 from the minimum norm condition for the transition or re-
solving operator, in all cases we obtain an increase in the number of iterations
in comparison with the case A = A*.

* % %k
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Any two-level method, constructed on the basis of the scheme (9), is charac-
terized by the operators B and A, the energy space Hp in which the conver-
gence of the method is proved, and the choice of parameters. If the operator
B is fixed, then the basic problem is finding {74}.

A priori information about the operators of the scheme is used to choose
the parameters {7 }. The form of the information is determined by the prop-
erties of the operators A, B, and D. So for the Chebyshev scheme with
D = AB7'A, when A and B are self-adjoint operators, it is assumed that
the constants 7 and 72 in (11) are given. In the general case, when DB~ A
is self-adjoint in H, then in place of (11) it is sufficient to assume that

1D <DBT'A< 1D, 1 >0.

In the non-self-adjoint case, when A # A*, but B = B* > 0, we use either
the two numbers 7v;, 72 or the three numbers v;, ¥2 (entering in (19)) and
73 (a constant, entering into the estimate of the skew-symmetric part of the
operator A). In a number of cases, finding the constants 1, v2, and v3 with
sufficient accuracy can lead to a separate complex problem, requiring special
algorithms for its solution. If the a priori information can be obtained at low
cost, or if several solutions of the equation Au = f with different right-hand
sides are required, then it is appropriate to once find the constants v;, 2 and
v3 and then use the Chebyshev method or the ATM. If the problem Au = f
must only be solved once, or if there is a good initial approximation, and if
the computation of the constants 7;, 7, is time-consuming, then a variational
method should be used.

In order to compute the computational parameters {7} } for a variational
method, it is not necessary to know 71, v2. These methods only use informa-
tion of general form

D=D*>0, (DB™'A)*=DB'A (21)

In order to determine yx41, the same scheme (9) is used; only the formula
for Tr41 is changed. The parameter 7x4; is found by minimizing the norm in
Hp of the error

Zk+1 = Yk+1 — U,

i.e., minimizing the functional

Ily] = (D(y — u),y — u).

The parameter Ti4+; is computed using yg. Choosing D = A, we obtain the
steepest-descent method; for D = A*A, the minimum-residual method; etc.
These methods have the same convergence rate as the simple-iterative method
(with accurate constants 71, v2). The convergence rate of the iterations can
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be improved if local (per-step) minimization of || zx+1 || p is avoided and if the
parameter 7y is chosen by minimizing the norm of the error || z, ||p after n
steps, i.e., after the passage from y, to y,. This leads to a two-parameter (for
each k), three-level iterative conjugate-direction scheme (conjugate gradient,
residual, correction, or error), which possesses the same convergence rate as
the Chebyshev method with parameters {75} computed with accurate values
of 71, ¥2. If A = A* > 0, then it is possible to accelerate (approximately 1.5
to 2 times) the convergence rate of two-level gradient methods.

* % %k

In the general theory of iterative methods, knowledge of the concrete struc-
ture of the operators is not required — only a minimum of information con-
cerning the general character of the operators is used, for example, condition
(11). The choice of the operator B in (9) is subject to the requirements:
1) securing the fastest possible convergence rate for the method (9), 2) the
efficient inversion of B. To construct B it is possible to start with some op-
erator R = R* > 0 (the regularizer), and with some energy equivalence for
A=A*>0,B=B*>0:

ctR< A< R, 1 >0, $9B<R<%B, % >0. (22)

Thus
Mm=cavm, 7 =ct.

For various A, it is possible to choose the same regularizer R. Most common
is the case of a factorized operator B, for example,

B = (E + le)(E + sz), R1 + R2 = R, (23)

where
R} = Rz > 0 for the ATM (24)
RI =R; >0, R; =Ry >0, RiR,= RyR; for the ADIL (25)

In order to apply the theory, it is necessary to find 4; and 42; the pa-
rameter w > 0 is found from the condition

min($1 (w)/¥2(w)) -

If the equation Rw = F' can be solved efficiently by a direct method, then
we set B = R (for example, in the case when (—R) is the Laplace difference
operator, and the region is a rectangle). The operator B cannot be written
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out explicitly, but is realized as the result of the iterative solution of the
equation
Rw=rg, re=Ayx—f

(a two-stage method).

For equations with indefinite, singular, and complex operators A, it is still
possible to consider the same scheme (9). However, the choice of the optimal
parameters is more complicated, and the convergence rate is slower. Applica-
tion of the general theory in these particular cases requires prior “reworking”
of the problem. It is possible to construct modified versions of the Chebyshev
method, as well as the methods of variational type.

If A is a singular linear operator, i.e., the homogeneous equation Au =0
has a non-trivial solution, then the problem (9) for B = E and for any 7;
is always soluble. Let H(®) be the null space of the operator A, and H(1)
its orthogonal complement in H. Any vector y € H(® satisfies the equation
Ay =0.If f € HD and yo € HW, then at each iteration yx € H®). If the
following condition is satisfied

n(,9) < (4y,y) < 1y, y), y€ HY, ~ >0,

then it is possible to use the explicit scheme (9) with the Chebyshev param-
eters {73 } found using 71, v2. Under these assumptions, y; converges to the
solution of the normal equations having minimal norm.

If
f=fO+ O and fO #0,

then the generalized normal solution of the equation Au = f will be taken
to be the solution of the equation

(1) — (1) ¢))] 1
Au i, JWeH

having minimal norm. We then have the estimates

N i [1-di_
” Yn — u ” < gn ” Yo — u(l) “’ Gn=¢qn1 |1+ (n - 1) Tﬂl y

oo = 207 Pl—l_\/g
n — n’ - b
1+ pf 14 V¢

§= ﬂ’ Yn,Yo € H(1)7
T2
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if 77,...,7a_; are the Chebyshev parameters, and
n—1
* __ *
Tp = — TJ- .
=1

The convergence rate is diminished in comparison with the non-singular case
with the same 47, 2. There is a corresponding modified method of variational
type.

The general theory allows us to investigate the implicit simple-iterative
scheme for the case when H is a complex Hilbert space, A = A+ qF, Ais
a Hermitian operator, ¢ = ¢; + t¢2 is a complex number, and to choose the
optimal value for the iterative parameter. The transfer to the alternating-

direction method presents no difficulty.
* k%

It is not difficult to use results from the general theory to solve difference
equations approximating boundary-value problems for elliptic equations. It
is easy to formulate general rules for the solution of difference problems. Let
Au = f be a difference equation, where A : H — H is a difference operator
defined in the space H of grid functions defined on the grid w. Initially we
study the general properties of the operator A and establish, for example, that
it is self-adjoint and positive, A = A* > 0, then we construct the operator
B = B* > 0 and compute the constants 71, 72 and, finally, find n = ng(e)
and the parameters {r}}.

If we are using the ATM with factored operator
B = (D +wR))D (D +wRy)

then it is necessary to choose the matrix D and the constants §, A (see
Chapter 10), and knowing &, A, we determine w, 71, ¥2, and so forth.

In the book, many examples are introduced which apply direct and it-
erative methods to solve concrete difference equations. In Chapter 15, in
particular, methods for solving elliptic difference equations in curvilinear co-
ordinates (both cylindrical (r, z) and polar (r, ¢)) are considered.

In Chapter 14, we consider multi-dimensional problems, schemes for elas-
ticity theory equations, etc.

It is important to note that, independent of the method which is being
used to solve the given boundary-value difference problem, the preliminary
work follows the same formula: initially formulate the operator A4, then study
it as an operator in the space H of grid functions. After this “harvest” of
information about the problem is completed, consider the problem of choosing
a method, taking into account all the particular circumstances (the machine,
the availability of software, etc.).



Chapter 1

Direct Methods for
Solving Difference Equations

In this chapter we study the general theory of linear difference equations,
as well as direct methods for solving equations with constant coefficients,
which give the solution in a closed form. In Section 1 general concepts about
grid equations are introduced. Section 2 is devoted to the general theory
of m' order linear difference equations. In Section 3 methods for solving
constant-coefficient equations are considered, and in Section 4 these methods
are used to solve second-order equations. Solving grid eigenvalue problems
for the simplest difference operators is discussed in Section 5.

1.1 Grid equations. Basic concepts

1.1.1 Grids and grid functions. A significant number of physics and engineer-
ing problems lead to differential equations with partial derivatives (mathe-
matical-physics equations). A great variety of physical processes can be de-
scribed by equations of elliptic type.

Explicit solutions of elliptic boundary-value problems are obtainable only
in special cases. Therefore these problems are generally solved approximately.
One of the most universal and effective methods in wide use today for ap-
proximately solving mathematical-physics equations is the method of finite
differences or the method of grids.

The essence of the method is as follows. The continuous domain region
(for example, an interval, a rectangle, etc.) is replaced by a discrete set of
points (nodes), called the grid or lattice. In place of a function of continuous
arguments we consider a function of discrete arguments, defined at the nodes
of the grid and called the grid function. The derivatives entering into the
differential equation and the boundary conditions are changed into difference



2 Chapter 1: Direct Methods for Solving Difference Equations

derivatives; thus the boundary-value problem for a differential equation is
changed into a system of linear or non-linear algebraic equations (grid or
difference equations). Such a system is often called a difference scheme.

We will expand in more detail on the basic concepts of the grid method.
We first consider the simplest examples of grids.

Example 1. Grids in a one-dimensional region. Let the domain of the
variable z be the interval 0 < z < I. We split this interval into N equal
parts of length h = I/N using points z; = ¢h, ¢ = 0,1,...,N. This set
of points is called the uniform grid on the interval [0,]] and is denoted
@ = {z; = th, i« = 0,1,...,N AN = [}; the number A — the distance
between points (nodes) of the grid & — is called the grid step.

To subdivide the grid @ we will also use the following definitions:

w ={z;=th, 1 =1,2,..., N-1,Nh=1}
wt={z;=th, ¢« =12,..., N, Nh =1}
wT={z;=th, ¢ =0,1,..., N-1,Nh=1}
¥y ={z0=0, zn=1

The interval [0,] can be split into N parts using arbitrary points 0 =
o < T <...< 2 <Tit1 <...<zNy-1 < zn = l. In this case, we obtain
the grid ® = {z;,: = 0,1,...,N,z¢ = 0,zx = [} with step h; = z; — z;_,
at the point z;,¢ = 1,2,..., N, which depends on the index : of the node z;,
i.e., hi = h(%) is a grid function.

If h; # hit: for even one index i, then the grid @ is called non-uniform.
If h; = I/N, then we obtain the uniform grid constructed above. For a non-
uniform grid, we define the average step %; = A(z) at the node z;,

hi = 0.5(h,‘ + h,‘+1), 1<i:<N-1, he=0.5hy, hny=0.5hyN.

On the infinite line

—o0o <z <0
it is possible to consider the grid
Q={z; =a+1ih,1=0,%£1,%2,...}

beginning at any point £ = a and with step h, consisting of an infinite number
of nodes.
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Example 2. A grid in a two-dimensional region. Let the domain of the
variables z = (z1,z2) be the rectangle

G={0S$afla,a=1,2}

with boundary T'. On the intervals 0 < z, < I, we construct the uniform
grid @, with steps hq:

&1 = {1() = ihy,i = 0,1,..., M, byM =1},
w1 ={$2(j):jh2,j:0,1,---,N, h2N=l2}

The set of nodes z;; = (1(z), 22(j)), having coordinates on the plane z;(z)
and z3(j), is called the grid in the rectangle G and is denoted

U_)Z{:L‘,'j =(ih1,jh2), i'—“O,l,...,M,j=0,1,...,N,h1M=ll, h2N=lg}.

Clearly, the grid @ consists of points intersecting the lines z; = z,(7)
and zo = z5(j).
The constructed grid & is uniform for each of the variables z; and z3.

However, if one of the grids @, is non-uniform, then the grid @ is called non-
uniform. If hy = hy then the grid is called square, otherwise it is rectangular.

The points of & belonging to I' are called boundary points and their union
forms the boundary of the grid: y = {z;; € T'}.

In order to describe the structure of the grid @, it is convenient to use
the notation @ = @&; X &y, i.e., to represent & as the topological product
of the grids @; and @;. Using the definitions of wt, w™ and w introduced in
example 1, it is possible to subdivide the grid @ in the rectangle, for example:

wy X wi = {z;; = (ih1,jhe), 1=1,2,..., M -1, =1,2,...,N}
wf X Wo ={.'l',] =(ih1,jh2), 220,1,,M—1,]=0,1,,N}

We now consider the concept of a grid function. Let @ be a grid intro-
duced in a one-dimensional region, and let z; be the nodes of the grid. A
function y = y(z;) of the discrete variable z; is called a grid function defined
on the grid @. Analogously, we define a grid function on any grid @ in a do-
main. For example, if z;; is a node of the grid @ in a two-dimensional region,
then y = y(z;;). Obviously, grid functions can also be considered as functions
of an integer variable, the node-number of the grid point. So, we can write
y = y(zi) = y(1),y = y(zij) = y(3,5). We will sometimes use the following
notation for grid functions: y(z;) = yi, y(zi;) = ¥ij-

The grid function y; can be represented as a vector if we consider the
values of the function as components of the vector Y = (yo,1,-..,yn)7. In
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this example, y; is defined on the grid @ = {z;,i = 0,1,..., N} containing
N + 1 nodes, and the vector ¥ has dimension N + 1. If & is a grid in the
rectangle

(I)={:Eij=(ih1,jh2), i=0,1,...,M,j=0,1,...,N},

then the grid function y;;, defined on @, corresponds to the vector ¥ = (yoo,
e YMOsYOL, -y YM1, -y YON, - - -, Y N)T of dimension (M +1)(N +1). The
nodes of the grid @ will be ordered according to the rows of the grid.

We have considered scalar grid functions, i.e., those functions for which
the value at each node is a number. We now introduce examples of vector
grid functions, which are vector-valued at each node. If in the example above
we denote by Y (z3(5)) = Y; the vector consisting of the value of the grid
function y;; at the nodes z¢;,21,...,zp; of the 3 row of the grid @ : Y, =
(Yoj»Y1j,--+,ymj) T, 5 =0,1,..., N, then we obtain the vector grid function
Y; defined on the grid @, = {z2(j) = jhe, s = 0,1,...,N}. If the function
defined on the grid has complex values, then the grid function will be called
complez.

1.1.2 Difference derivatives and various difference identities. Let & be a given
grid. The set of all grid functions defined on & forms a vector space with the
obvious definitions of addition and multiplication by a scalar. It is possible to
define difference or grid operators on the space of grid functions. An operator
A, mapping a grid function y into a grid function f = Ay, is called a grid or
difference operator. The set of nodes used to write the difference operator at
a node of the grid is called the stencil of this operator.

The simplest difference operator is the difference differentiation operator
for a grid function, which gives rise to difference derivatives. We will now
define difference derivatives.

Let © be a uniform grid with step h, defined on the line —o0o < z < o0

Q={z;=a+ith, 1=0,£1,£2,...}.

Difference derivatives of first order for the grid functions y; = y(z;),z; €
Q are defined by the formulas

and are called left and right derivatives, respectively. We shall also use central
derivatives

A3yi =Yii= Yira — Wina = 05(A1 + A2)yi- (2)
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If the grid is non-uniform, then the following definitions are used for first-
order difference derivatives:

_Yi —Yia _ Y-y _ Y1 — Y
Yz, = y Yz, = y Yi&i =
h; hit1 hi (3)

O'S(yi,i + yz,i), hi = 05(h; + hi+1).

Yi,i

From definitions (1) and (3), we obtain the following relations:

Yz,i = Yz,i+1 (4)
ki
2, = T Yi,is 5
Yosi = V5 ()
and also the equalities
Yi = Yit1 — hit1Yz,i = Yi-1 + hiyz i (6)

The difference operators A;, Az, and A3 have stencils consisiting of two points,
and are used to approximate the first derivative Lu = u’ of the one-variable
function v = u(z). For smooth functions, the operators A; and A, approxi-
mate the operator L with error O(h), and A3 with error O(h?).

Difference derivatives of n't order are defined as the grid functions ob-
tained by computing the first difference derivative of a difference derivative of
n — 1% order. We now introduce examples of second-order difference deriva-
tives:

Yzz,i = + =12 (y. 1= 2Yi + Yiv1),
B = o = h2 —5 (Yi—2 = 2yi + Yit2),

1
Yzz,i = h_(yz i+1 — yi,i) = h_i(ya:,i - yi,i)

_ 1 (Y- y Yi—yia
R\ hip hi ’

which are used to approximate the second derivative Lu = u" of the func-
tion u = u(z). In the case of a uniform grid, the error of approximation is
O(h?). The corresponding difference operators have three-point stencils. To
approximate the fourth derivative Lu = u!Y, we use a fourth-order difference
derivative

1
Yzziz,i = ﬁ(yi—Z —4yi—1 + 6yi — 4yit1 + Yig2)-
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Analogously, we use an n*? order difference derivative to approximate the nt®
derivative.

There is no difficulty in defining difference derivatives for grid functions
of several variables.

To transform expressions containing difference derivatives of grid func-
tions, we need formulas for the difference derivative of the product of grid
functions and formulas for summation by parts. These formulas are analogous
to the corresponding formulas in differential calculus.

[1] Formulas for the Difference Derivative of a Product.

Using the definitions of difference derivatives (3), it is not difficult to verify
the identities:

(uv)z,i= Uz iVi—1 + UiVz i= Uz V; + Ui_1Vz,i= Uz,iV;i + UiVz,i — hiuz vz,
(uV)z,i= Uz,iVig1 + UiVg,i= Uz, iVi + Uig1Vz,i= Uz iVi + UiVzi + hip1Uz vz i,

(uV)2,i= Uz,iVit1 + UiVz,i= Uz iV + Uip1V5,i= U3,V + UiVz i + Biuz vs ;.

Using (4), (5), the last identity can be written in the form
_ hit1
(w0)s,i = z,ivi + =~ Uit1Vz,i41. (7)

[2] Formulas for Summation by Parts.

Multiplying (7) by k;, and summing the resulting relation for ¢ between m +1
and n — 1, we find that

n—1

D (uv)z,ihi = UnVp = Um410me1
1=m+1

n—1 n—1
= z uz ivih; + Z Uit1Vz i41Pig1.

imm+1 i=m+1
Using (6), we obtain the relation
VUmt1 = Um + Am41Vz,m = Vm + Bmg1Vz,m41,

which we substitute in the above equality. As a result we have

n—1 n—1

UnUp — Ump1Vm = Z uz ivih; + Z Uit1Vz,i41Pig1-

t=m+1 t=m
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Changing the index of summation to ¢’ = ¢ — 1 in the second sum on the
right-hand side gives the following formula for summation by parts:

n—1 n
Z Uz iVihi = — Z Uiz ihi + UnVn — Um41Vm. (8)

i=m+1 t=m+1

Using (6), it is easy to obtain from (8) another formula for summation
by parts

n—1 n—1
Z ui,ivihi = - Z uivi,ihi + Up—1Vn — UpVUm,. (9)
i=m+1 i=m

From the formula (8) it follows that the function u; must be defined for
m + 1 < i < n, and the function v; for m < i < n. Suppose now that y; is a
grid function defined for m < 7 < n. Then the function u; = yz; is defined
for m + 1 <1 < n. Substituting u; in (8), we obtain the following identity:

n-—1 n
Z Yzz,ivihi = — Z Yz,iVz,ihi + Yz.nVn — Yz, mUm. (10)

i=m+1 i=m+1

The following is valid

Lemma 1. Suppose that the grid function y; i3 defined on the arbitrary non-
uniform grid
©={r;,1=0,1,...,N, zg=0zy =}

and that y; 1s zero for i =0, i = N. For this function, the following equality

18 valid
N-1 N
E Yzz,iyihi = — E(yf,i)zhi-

The proof of lemma 1 follows in an obvious manner from (10).

Corollary. If & is a uniform grid, yo = yn = 0 and y; £ 0, then

N-1 N
Y yreiyih =—) y2 ;A <0
i=1 i=1
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With this we conclude our discussion of difference formulas. Several other
formulas will be considered in Chapter 5.

These identities are not just used for transforming difference expressions.
They are often applied, for example, to compute alternate forms of finite sums
and series.

We mention here an example. We wish to compute the sum
n—1
Sp = Zia', a#1.
=1

We introduce the following grid functions, defined on the uniform grid @ =
{zi,1=0,1,...,N,h =1}
v =1, u;=(a'—a")/(a-1). (11)

On this grid, the summation by parts formula (8) for any grid functions has
the form (m = 0)

n—1 n
E Ug Vi = — g UiVz,i + UpVp — UV
=1

i=1

Taking into account that the function (11) satisfies the relations

we obtain

a-—1 (a —1)2
The desired sum has been found.

1.1.3. Grid and difference equations. Let y; = y(z) be a grid function of
the discrete variable i. The values of the grid function y(z) in turn form a
discrete set. On this set it is possible to define a grid function, and equating
this function to zero we obtain an equation related to the grid function y(¢)
— the grid equation. A special case of the grid equation is the difference
equation. Difference equations will be the basic object of study in our book.

Grid equations are obtained when approximating integral and differential
equations on a grid.

We will first mention difference approximations of ordinary differential
equations.
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We will transform first-order differential equations
du
E = f(.’l,‘), z>0
into first-order difference equations

VLW f(ai), @i = ih, i=0,1,...

or yi+1 = ¥i + hf(z;), where h is the step of the grid w = {z; = ih, ¢ =
0,1,...}. The desired function is the grid function y; = y(3).

To approximate the second-order equation

we use a second-order difference equation
Vitr1 — 20 +¥ic1 = @i, wi=hfi, fi=f(zi), «i=th
If the equation of general form
(ku') +ru' — qu = —f(z)

is approximated on the three-point stencil (z;-1, =i, Zi+1), then we obtain a
second-order difference equation with variable coefficients of the form

a;yi-1 — ¢i¥i + bivi+1 = —pi, 1 =0,1,...

where a;, ¢;, b;, and ¢; are given grid functions, and y; is the desired grid
function.

Approximating the fourth-order equation
(ku")" = f(2)
on a grid leads to a fourth-order difference equation; it has the form

Yi-2 + agl)yi—l +ciyi + bﬁl)ym + bgz)yi+2 = pi.

e
For difference approximations to the derivatives u', u”, and u"’, it is possible
to use stencils with a large number of points. This leads to higher-order
difference equations.
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The linear equation related to the grid function y(¢) (a function of the
integer variable )

ao(i () + ar @yl + 1)+ +am(yG +m) = 1G),  (12)

where ao(i) # 0 and a,,(?) # 0, and f(7) is a given grid function, is called an
m*t order difference equation.

If (12) does not contain y(z), but contains y(¢ + 1), then changing the
independent variable from :+1 to ¢’ transforms this equation into an equation
of order m — 1.

This is one difference between grid equations and differential equations,
where a change in the independent variable does not lead to a change in the
order of the equation.

Let F(¢,y(¢),y(: + 1),...,y(t + m)) be a non-linear grid function. Then
F(i,y(i),y( + 1),...,y(i + m)) = 0 is a non-linear m'* order difference
equation if F explicitly depends on y(¢) and y(i + m).

For convenience when comparing with differential equations, we intro-
duce (right) grid function differences:

Ayi = yiy1 — ¥i, Ay = A(Ay),..., Ay = A(ARy), k=12,... .
Then (12) can be written in the form
ap(Dy; + a1(DAY; + ... + an(DA™y; = fi, (12

where a,, (i) = an (i) #0.
The difference equation (12') is a formal analog of the m** order differ-

ential equation

dm-1 d™u

du u
a0u+a1-£ +...+ozm_1d$m_1 + an, e

f(=),

where apy, # 0, ax = ax(z), k =0,1,...,m. Let w = {z; = th,1 =0,1,...}
be some grid. If we designate

Yit1 — Ui
=2 i = Wo)er ¥ =y g
N o’

ktimes

Yz,i

so that (0)
y® = (), k21, 4 =40,

z
then y(¢ + k) is expressed in terms of

y(), yY,...,ykF
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for example
y(i +3) = y(5) + 3hyz,i + 3h%Yzz i + h2Yras i
Then equation (12) will be written in the form
aoy(i) + @1(yz(0) + - + Emo1y{" V) + @myi™G) = fi,

where &,, = a,, # 0. Here the analogy with the m*® order differential equa-
tion is obvious.
Analogously, we define the difference equation relative to the grid func-
tion
Yir,i = Y(i1,%2)

of two discrete variables, and in general of any number of variables. For
example, the five-point “cross” scheme for Poisson’s equation

8y Ou

Au = __x—? +a—xg = —f(z1,z32)

on the grld w = {.’L’,‘ = (ilhl,i2h2),i1,i2 = 0, 1, .. } has the form
y(i1 —1,49) — 2y(41,42) + y(i1 + 1,42)
h

y(l, i? — 1) — 2y(21,22) + y(il,i2 + 1) _
+ h2 = _fixiz
2

and is represented as a second-order difference equation in each of the discrete
variables 71 and i5.

The grid equation of general form is obtained by approximating the
integral equation

u(z) = /0 K(z,s)u(s)ds+ f(z), 0<z<1

on the grid @ = {z; = th,i = 0,1,...,N,hN = 1}. We replace the integral
by a sum

1 N
/0 K(z,s)u(s)ds ~ hz a;K(z,jh)u(jh),

j=0
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where a; is a coefficient from the quadrature formula, and in place of the
integral equation we write the grid equation

N
yi= Y o; K@ih,jh)y; + fi, i=0,1,...,N,

§=0

where the summation is taken over all nodes of the grid @, and the unknown
is the grid function y;.

The grid equation can be written in the form

N
Zcij’yj=f,', Z=0,1,,N (13)
i=0

It contains all the values yp,y1,...,yn of the grid function. It can be ex-

pressed as a difference equation of order N, equal to the number of grid
nodes minus one.

The m*® order difference equation (12) is a special form of the grid equa-
tion where the matrix (c;;) is only non-zero along the m diagonals parallel
to the main diagonal.

In the general case, we can take i to be not only an indexi = 0,1,..., but
also a multi-index, i.e., a vector ¢ = (iy,13,...,1,) with integer components
t« =0,1,2,..., «=1,2,...,p, where ¢t € w, and w is a grid.

The linear grid equation has the form

Y ejyi=fi, i€w

jEw

where the summation is taken over all nodes of the grid w, f; is given, and
y; is the desired grid function.

If we renumber all the nodes of the grid, then we can write y; = y(3),
where 7 is the number of a node, 7 = 0,1,2,..., N. Then the grid equation
(14) has the form (13).

Obviously, this is a system of linear algebraic equations of order N + 1
with matrix (c;j). Thus, any system of linear equations can be expressed as
a grid equation, and vice versa.

If y(i) is a vector grid function, we speak of m'® order grid (difference)
equatlions.

Let F(7,y0,%1,.-.,yn) be a given function (generally speaking, non-
linear) of the N + 2 variables ¢,¥yo,y1,...,yn. Setting it equal to zero, we
obtain the non-linear grid equation F(7,yo,%1,...,yn) =0,7=0,1,..., N,
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the solution of which is the grid function y(¢) which turns this equation into
an identity.

We now consider the grid function F(i) = F(i,y0,y1,.-.,YN), ¢ =
0,1,...,N. From this it is clear that the function F is a grid operator which
maps the grid function y(¢) into the grid function F (7).

If F is a linear function, then we obtain equation (14), which clearly can
be written in the operator form Ay = f, where A is the linear operator with
matrix (a;;), and y is a vector in the space of grid functions.

If the coefficients a;; do not depend on i — j, then (14) is called a grid
equation with constant coefficients.

Although in this book the basic focus is on the numerical solution of dif-
ference equations obtained from difference approximations to elliptic differ-
ential equations, iterative methods are applicable to any linear grid equation,
i.e., to any system of linear equations. Therefore, the theory of iterative meth-
ods presented here has a general character. What is specific to grid equations
is that this system is of high order, since refinement of the grid increases the
order of the equations (the number of unknowns is equal to the number N
of grid points, N = O(1/h?) in the p-dimensional case, where h is the mesh
size).

1.1.4 The Cauchy problem and boundary-value problems for difference equa-
tions. We will now mention several further examples of difference equations
and dwell on the posing of problems for difference equations.

Notice that the simplest examples of first-order difference equations are
the formulas for the terms of an arithmetic or a geometric progression:

Yisr=Yi+d, vYip1=4qyi, 1=0,1,....

The solution of a first-order equation can be found if an initial condition
is given for 7 = 0 (the Cauchy problem).

The solution y(i + m) of an m** order difference equation is fully de-
termined by the values y(¢) at m arbitrary but sequential points 29,79 +
1,...,%0 +m — 1. In fact, since an,(2) # 0, from (12) we find that

YE+m) =bpo1()yGE+m —1)+ ...+ bo(D)y(?) + ¢(2).

Setting ¢ = t9, t9+1,. .., we can find the values of y(z) for ¢ > ¢9. Analogously,
using (12) to express y(i) in terms of y(i +1),...,y(i + m) and setting ¢ =
i0—1,79—2,..., we can find y(7) for ¢ < ig—1. If in equation (12) it is necessary
to determine y(¢) for ¢ > 0, then it is sufficient to give the values at the m
points y(0) = yo,y(1) = y1,...,y(m — 1) = ym—1 (the initial conditions).
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Adjoining these conditions to equation (12), we obtain the Cauchy prob-
lem or the initial value problem for an m!® order difference equation.

As we saw, for first-order equations (m = 1) it is sufficient to give one
initial condition.

Non-linear difference equations are obtained when solving non-linear dif-
ferential equations. Consider, for example, the differential equation

d
d_: = f(z,u), >0, u(0)=y

(a Cauchy problem). Applying the Euler scheme (an explicit scheme), we
obtain a first-order difference equation y;11 = y; + hf(zi,y:),% > 0,90 = ;.

If the derivative du/dz at ¢ = z; = th is changed to the left difference
quotient, then we obtain for y; a non-linear first-order equation, y; = y;_1 +
hf(zi,yi),t > 0,y0 = p1. To determine y; it is necessary to solve the non-
linear equation ¢(y;) = yi — hf(z:,yi) = yi1.

We now consider an example of a second-order difference equation. Sup-
pose it is necessary to compute the integral

" ¥ — k
Ik(¢)=/ cosk¥—cosky 0 j_019... .
0

cos ¥ — cosp

First of all, notice that Io(¢) =0, I;(¢) = w. Consider the identity

[cos(k + 1)¥ — cos(k + 1)} + [cos(k — 1)F — cos(k — 1)¢p]
= 2cos k¥ cos ¥ — 2 cos kyp cos
= 2(cos k¥ — cos k) cos ¢ + 2(cos ¥ — cos ) cos k.

Using this, we obtain
Iit1(p) + Ix—1(p) = 2 cos pIi(p) + 2/ cos k¥ d¥ = 2cosplx(p), k > 1.
0

Thus, the computation of the integral Ix(¢) leads to the solution of a Cauchy
problem for the second-order difference equation

Iit1(p) = 2cos pIi(p) + Tk-1(9) =0, k 2 1, Io(9) =0, Ii(¢) = 7. (15)

We will consider one further example. We are required to find the solution
to a boundary-value problem for a system of first-order ordinary differential

equations

d
d—::Au+f(x), 0<z<l, (16)
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where Bu = y for £ = 0, Cu = p, for z = . Here u(z) = (u1(z), uz(2),. ..,
um(z))T is a vector function of dimension M, A = A(z) is a square matrix
of size M x M, and B and C are rectangular matrices of sizes M x M and
M, x M respectively, where M; + M, = M. The vectors f(z), p1, and pu, are
given and have dimensions M, My, and M, respectively.

Introducing the uniform grid @ = {z; = ih,7 = 0,1,...,N,h = I/N}
onto the interval 0 < £ < I and defining on it the grid vector-function ¥; =
(y1(3), y2(), - - - ,ym(3))T, we obtain from (16) the simple difference scheme

Yir —(E+hA)Y;=F 0<i<N-1,

17
BYy = w1, CYn = po, ( )

where F; = hf(z;). This is an example of a first-order linear vector difference
equation with M; conditions at ¢ = 0 and M, conditions at : = N. Thus, we
have a boundary-value problem for systems of first-order difference equations.

Boundary-value problems are more typical for second-order equations.
Let us consider, for example, the boundary-value problem

-3% —q(z)u =—f(z), 0 <z <!, u(0) = p1, u(l) = pa, g(z) >0. (18)

Choosing the grid @ = {z; = ¢th,i = 0,1,...,N,h = I/N}, we obtain from
(18) the corresponding boundary-value difference problem

Yez,i —divi = —i, 0<i< N, yo=p1, ynN=ps, (19)

where d; = ¢(z;), p; = f(z;) for smooth ¢(z), f(z). This problem is a special
case of a boundary-value problem for second-order difference equations

—ai¥i—1 +¢iYi —biyiy1 =i, 1<i<N-1, yo=p1, yn=p, (20)

with a; = b; = 1/h2, c; =d; +2/h2.
The difference problem (20) can be written in the form

AY = F, (21)
where Y = (y1,¥2,...,yn-1)7 is unknown,
1 1\’
F={p1+ gm0, ,oN-2,¢N-1 + Tzh2

is a known vector of dimension N — 1, and A is a square tridiagonal matrix
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of the form

(5] —b1 0 0 e 0 0 0
—ag C2 —bz 0 e 0 0 0
0 —as C3 ——b3 e 0 0 0
A= . .. . . (22)
0 0 0 0 fe e CN-3 —bN_3 0
0 0 0 0 cer —AN-2 CN-2 ——bN._2
0 0 0 0 e 0 —aN-—-1 CN-1

From this it is clear that a boundary-value problem for the second-order
difference equation (20) represents a system of linear algebraic equations of
special form. If the Cauchy problem for the second-order difference equation
is soluble everywhere, then the first boundary-value problem (20) is soluble
for any right-hand side whenever the matrix A of the system (21) is non-
singular.

Boundary-value problems for m*" order difference equations lead to sys-
tems of linear algebraic equations with matrices which have no more than
m + 1 non-zero elements in any row.

To approximate equations with partial derivatives, we also arrive at a
system of difference or simply algebraic equations with a special matrix. Since
the number of unknowns in such a system is usually equal to the number
of nodes in the grid, in practice we encounter systems of very high order
(having tens or even hundreds of thousands of unknowns). Other features of
such systems are the sparsity of the matrices and the band structure, i.e.,
the special distribution of the non-zero elements. These features, on the one
hand, make the problems easier to solve, but on the other hand, demand the
invention of special solution methods which take into account the specifics of
the problem. Thus it is not surprising that classical linear algebra methods
are often ineffective for solving difference equations, and that there is no
universal method which effectively solves every difference equation.

At the present time, two types of methods are used to solve systems of
linear equations: 1) direct methods; 2) iterative or successive-approximation
methods. As a rule, direct methods are oriented to solving a narrow class
of grid equations, but they allow us to find the solution at very little com-
putational expense. Iterative methods allow us to solve more complex equa-
tions and often contain direct methods as a basic step in the algorithm for
solving special difference equations. The fact that difference equations are
ill-conditioned requires us to develop rapidly-convergent iterative processes,
and to isolate the region of applicability for each method.

In a number of cases, for example for linear equations with constant co-
efficients related to grid functions of one argument, the solution can be found
in closed form. Such methods for solving grid equations will be examined in
Section 3 of this chapter.
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1.2 The general theory of linear difference equations

1.2.1 Properties of the solutions of homogeneous equations. In this section,
we will consider the general theory of m** order linear difference equations
with variable coefficients

am(i)y(i + m) +...+ ao(i)y(i) = f,',

where a.,(2) and ao(i) are non-zero for any i. First of all, let us investigate
the homogeneous equation

m

am(i)y(i +m) + ... +ao(i)yi = ¥ ar(i)y(i + k) =0. (1)
k=0
We will assume that the coefficients ax (i), ¢ = 0,1,...,m, are finite for all

values of 1.

Each particular solution of (1) is determined by the values of the function
y(2) at m arbitrary but sequential points z9,%20 +1,...,20 + m — 1.

Theorem 1. If v1(z), v2(2), ... ,vp(7) are solutions of equation (1), then the
function
y(2) = c1v1(2) + c2v2(2) + . .. cpvp(3), 2

where ¢1, ¢y, .. ., cp are arbitrary constants, is also a solution of equation (1).

Proof. In fact, the condition of the theorem guarantees that
m
> a(iyu(i+k)=0, 1=1,2,...,p. (3)
k=0

We substitute (2) in (1):

m

> ar(iyl+k) =D a(i) Y cwi(i + k)
k=0 =1

k=0

and change the order of summation on the right-hand side of the equality.
Using (3), we obtain

Y a(yG+k) = ad a(iyu(i+k)=0
k=0 =1 k=0

and consequently the function y(z) defined by (2) is also a solution of equation
(1). The theorem is proved. O
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We will denote by A;(vy,...,v,) the determinant

vl(z:) v1(2:+1) vl(z:—l-p—l)
Aoy = |0 BOFD) e R
v(z) vp(i+1) ... v(i+p—1)

Then

Lemma 2. Let v1(z),v2(%),...,vm(¢) be solutions of equation (1). Then the
determinant A;(vy,...,v,) i3 either identically zero for all i, or is non-zero
for all possible values of i.

Proof. Actually, since v1(%),...,vm(i) are solutions of equation (1), the fol-
lowing equalities are valid:

a(Dv1(t) + a1(DviE+ 1) + ...+ amo1 (it + m — 1) = —am(D)v1(c + m),
ao(t)v2(2) + a2(D)v2(+ 1) + ... + am—1(D)v2(i + m — 1) = —ap(2)ve (s + m),

ao(D)vm (D) + a2(Dvm(E+ 1) +.. .+ am_1(Dvm(t+m—1) = —an(t)vm (i +m),

Solving this system for ao(i) and for fixed : using Cramer’s rule, we
obtain

vl(z:-{-m) vl(z:—i-l) v1(2:+m—1)
Qo(D)Ai(01rrs0m) = —a ()| ) CHD) mlEAm D)),
Um(i+m) vp(i+1) ... vu(i+m-—1)

After an appropriate rearrangement of the columns of the determinant on
the right-hand side of this last equation, we have the relation

ao(D)Ai(v1,---,0m) = (=1)"am(t)Ait1(v1,. . ., V).

Since ao(2) and an,(2) are non-zero for all possible values of ¢, this proves the
lemma. O

We now introduce the concept of linearly independent solutions of equa-
tion (1). The grid functions vy (2),v2(z),...,vm(i) are called linearly inde-
pendent solutions of equation (1) if: 1) they assume finite values and satisfy
equation (1); 2) the relation

c1v1(2) + c2va() + ... + o (i) =0 (4)

for constants ¢y, ¢y, ..., Cm, not all zero, is not satisfied for any :.

For linearly independent solutions we have
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Lemma 3. If vi(2),v2(2),...,vm(:) are linearly independent solutions of
equation (1), then the determinant Ai(v1,...,vm) 18 non-zero for all pos-
sible values of 1. Conversely, if for solutions vy (z),...,vm(2) of equation (1)
the determinant A;(vy,...,vm) 18 non-zero for some i, then v1(7),...,vm(2)
are linearly independent solutions of equation (1).

Proof. By lemma 2, the determinant A;(vy,. .., vm) is either identically zero,
or non-zero for all . Let v1(2),...,vm(z) be linearly independent solutions to
equation (1), and assume that A;(vy,...,vm) = 0. Consider the system of
equations
3% (20) + CQUg(io) +...+ cmvm(i0)= 0.
Clvl(io + 1) + szz(io + 1) +...+ Cm’vm(io + 1)= 0. (5)

c1v1(to +m—1)+ cova(io + m—1) + ... + cmVm(io + m —1)=0.

Since the determinant A;(vy,...,vy) of this system is, by assumption, equal
to zero, there exists a non-zero solution c1,¢g, .. .,cm to this system. Conse-
quently, for these c;, ¢z, .., cm, equation (4) is valid for ¢ = 29,20 +1,...,%0+
m—1. We now show that (4) is valid for i = iy +m. For this, we take equation
(1) with1=1,2,...,m

> ax(io)vi(io + k) =0,

k=0

multiply it by ¢; and sum for I = 1,2,...,m. Using (5) we obtain

m m—1 m
0= am(io) Y _ cmi(io +m)+ > ai(io) chz(io + k)
=1

k=0 =1

= am(i) E ci(ip + m).

=1

Thus we have shown the validity of (4) for ¢ = ig + m. Proceeding in the
same fashion, we find that, for above choice of ¢;, ¢z, . .., cm, equation (4) is
satisfied for all 7 > 7y. The validity of (4) is analogously proved for i < 2.
Consequently, (4) is satisfied for all 7 with non-zero ¢y, cy,...,cm, contra-
dicting the linear independence of v;(2), ..., vm(2). Therefore the assumption
that the determinant A;(vy,...,vn) is identically zero is false.

We will now prove the second part of lemma 3. Suppose that the deter-
minant A;(vy,...,Vm) is non-zero for some 7 = ig. Then let us assume that
v1(2), v2(4), - - . , Um(¢) is a system of linearly independent solutions to (1). This
implies that we can find constants ¢y, ¢z, . . ., ¢m, not all zero, so that equation
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(4) is an identity for all i. Then we write (4) for ¢ = ip,40 +1,...,50 +m —1
in the form of the system (5). By force of the assumption in the lemma, the
determinant A;(vq,...,vy) of this system is non-zero. Therefore, all of the
€1,€2,...,Cym must be equal to zero. We have arrived at a contradiction. The
lemma is proved. [

1.2.2 Theorems about the solutions of linear equations. First we will prove a
theorem about the general solution of the homogeneous linear equation (1).

Theorem 2. If v1(2),v2(2),...,vm(¢) are linearly independent solutions of
equation (1), then the general solution of this equation has the form

y(i) = c1v1(2) + c2v2(3) + - . . + cmom(3), (6)
where ¢1,¢a,...,Cm are arbitrary constants.

Proof. In fact, by theorem 1 the function y(z) defined by formula (6) is a
solution to equation (1). We will now show that all solutions of equation
(1) are of this form. Let u(i) be an arbitrary solution of equation (1). It
is fully determined by the initial values given at the m points u(io), u(io +
1),...,u(io + m—1). From the set of all functions of the form (6), we choose
the one which has these same initial values. To do this, it is sufficient to find
the constants ¢y, ¢s,...,cn which satisfy the m equations

c1v1(%0) +c2v2(i0) + ...+ Cmvm(i0)=u(i0),
cv1(to+1)+cave(io+1)+...+ emUm(to+1)=u(ip +1),

avi(ip+m—1)+cva(to+m—1)+...4+ cpvm(io +m—1)=u(ig +m—1).

Since v1(2), v2(%), ..., vn (i) are linearly independent solutions of (1), by lem-
ma 3 the determinant A;(v1,. . .,vm) of this system is non-zero. Having solved
this system for ¢, cz,...,¢m, we obtain the function y(¢) having the same

initial values as u(¢). But since the initial values fully determine the solution
to equation (1), y(z) = u(z). The theorem is proved. O

We now consider the solution of the non-homogeneous equation
am(y(i +m) + ... + ao()y(d) = f(2). ()
We have

Theorem 3. The general solution to equation (7) is the sum of a particular
solution to (7) and the general solution to the homogeneous equation (1).
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Proof. We will show that any solution to equation (7) can be represented in
the form _
y(1) = () +¥(i), (8)

where §(3) is some solution to equation (7), and (i) is the general solution
to equation (1). Suppose

am()F( +m) + ... + ao(8)5(2) = f(3). (9)
Substituting (8) in (7) and using (9), we obtain
am(D)y(i + m)+ ... + agy(s) = 0.

Consequently, 3(i) is the general solution to the homogeneous equation (1).
The theorem is proved. O

Corollary 1. From theorems 2 and 3 it follows that the general solution to
the non-homogeneous equation (7) has the form

y(z) = g(z) + v (2) +...+ Cmvm(i)’ (10)
where §(2) s a particular solution to equation (7), v1(i),v2(),...,vm(2) are
linearly independent solutions to equation (1), and cy,...,c,m are arbitrary

constants.

Corollary 2. Using lemma 3, Corollary 1 can be reformulated as: the solu-
tion to equation (7) has the form (10) where the particular solutions vy(z),
.++,Um(%) of the homogeneous equation are such that Aij(v1,...,vm) # 0 for
some value 1.

Corollary 3. If the right-hand side f(i) of equation (7)is the sum of two
functions f(i) = fOE) + fP(3), then a particular solution of equation (7)
can be written in the form y(i) = gV (1) +§P (i), where (¥ (i) is a particular
solution to equation (7) with right-hand side f( (i), a = 1,2.

1.2.3 The method of variation of parameters. The above theorems give the
structure of the general solution of the linear non-homogeneous difference
equation (7). We will now consider the following questions:

[1] how to construct linearly independent solutions to the homogeneous
equation;
[2] how to find a particular solution to the non-homogeneous equation;

[3] how, using the general solution to the non-homogeneous equation, to
find a unique solution to equation (7) satisfying additional conditions.
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First of all we will study one possible way of constructing linearly inde-
pendent solutions to the homogeneous equation. Since a particular solution
to the m*® order linear equation is fully determined by given initial values at
m points, for example at i =i, g + 1, ..., ip + m — 1, then by lemma 3 the
desired solution of equation (1) can be constructed in the following way. Let
A be a non-singular matrix

ay aio ces A1m
A= ag 15 eee  Qom
Gm1 QGm2 ... Omm
Construct m solutions to equation (1) v;(2),v2(2),...,vm(?) using the
initial values
v,(io-{-k—-l):a”c, Lk=12,...,m. (11)

Then A, (v1,...,vm) = det A # 0. Consequently, the problem of construct-
ing the desired functions v;(2), ..., vm(7) is solved.

Let us now consider the question of constructing a unique solution from
the family of solutions to (10). From (10) it follows that we require pre-
cisely m conditions on the function y(7) in order to determine the constants
€1,C2y- -+ ,Cm.

In the case of a Cauchy problem, i.e., when the initial conditions y(ip) =
b1,y(io + 1) = bs,...,y(io + m — 1) = by, are given, it is easy to determine
the constants c;, ¢, . .., cy. From (10) we obtain a system of linear algebraic
equations in ¢y, ¢2,...,Cmp!

v1(t0)er + v2(d0)c2 + - .. + vm(i0)em = b1 — §(%0),
v1(io + 1)eg +v2(lo + ez + - .. + vm(o + em = by — §(40 + 1),

vi(lo+m—1)c1+v2(o+m—1)c2+...4vm(lo+m—1)em = b —G(io+m—1).

(12)
Since the determinant A;,(v1,...,vm) of this system is non-zero, this sys-
tem has a unique solution ¢y, ¢c2,. .., ¢y, which fully determines the unique

solution to the non-homogeneous equation (7).

In the case of a boundary-value problem, when the m auxiliary conditions
for y(7) are given at non-sequential points, we again obtain a system of linear
algebraic equations in ¢, ¢,...,cn. But in this case, the solution of this
system will exist only with additional assumptions about the coefficients of
the difference equation.
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Let us now consider the question of solving the equations (12). Since by
(11) the matrix of the system (12) is AT, then, choosing A as the identity
matrix, we obtain the solution to the system (12) explicitly: ¢; = b — §(3p +

[-1),1=1,2,...,m.It is obvious that, from among all solutions to the non-
homogeneous equation (7), it is possible to select the one for which §(3p) =
g(lo+1)=...=g(to+m—1) = 0. Then we will have ¢; = b1, [ = 1,2,...,m.

Such a choice for the matrix A corresponds to the following initial values for
v1(2), ..., vm(2):

o +I-1)=1, v(ic+k-1)=0,k=1,2,...,m, k£, 1=12,...,m.

We will now find particular solutions to the non-homogeneous equation,
given m linearly independent solutions to the homogeneous equation. Let us
consider finding a particular solution with variable coefficients in the general
solution of the homogeneous equation.

Previously it was shown that the general solution of the homogeneous
equation (1) has the form

7(1) = c101(3) + . .. + emvm(3),

where v1(%), ..., vm(?) are linearly independent solutions to equation (1), and
¢1,€2,...,Cny are arbitrary constants. We will now let ¢y, cs,..., ¢, be func-
tions of ¢ and consider the problem of choosing them so that the function

7(1) = aa(Dvi(D) + ... + em(Dvm(?) (13)

is a particular solution to the non-homogeneous equation (7). Notice that each
function ¢;(7) is determined only up to a constant, since v;(z) is a solution of
the homogeneous equation:

am(@uii + m) +... + ao(?)ui(s) = 0, 1=1,2,...,m. (14)

We introduce the following notation:
di(i) = Y el + k) — (@ +k), k=0,1,...,m.
=1

Substituting (13) in (7), making the above substitution in the resulting
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expression, and taking into account (14), we obtain
m m

F@) =Y a(gl + k) = ar(@) Y aii + k(i + k)

k=0 k=0 =1

= Y a(de(i) + Y ax(i) Y eliuili + k)
k=0 k=0 =1

= ar(i)de(i) + ) ali) [Z ak(1)ui(i + k)
k=0 =1 k=0

= ar(i)dr(s) = D a(i)di (i),
k=0 k=1

since dy(¢) = 0. The resulting relation is satisfied for all ¢ if we set
di(1) =0, k=1,2,....m—1, dn(i)=f()/an(?). (15)

Thus, the problem of constructing functions ¢;(%), c2(2), . . ., cm(?) leads
to the conditions (15), which must be satisfied identically for all <.

Let us transform the system of equations (15). We designate bi(¢) =
a(i+1) —a(i), I =1,2,...,m. From the definition of di(7), we obtain for
k=1,2,...,m:

m

k(i) — di—1(i +1) = D _[ai(i + k) — ci(d)]oi(i + k)
=1
- i{c,(i + k) — ai 4 D]oi(s + k)
=1

=Y bi(i)u(i + k).
=1

Substituting (15) and taking into account the equation dy(i) = 0, we obtain
a system of linear algebraic equations in b;(¢) for fixed i:

by(D)vy (s + 1) + ba(8)v2 (G + 1) + .. . + by (106 + 1) = 0,
b1 (8)v1 (i 4 2) + b2(d)v2 (1 4+ 2) + - . . + b (v (i +2) = 0,

149,

bi(D)v1(z + m) + bo(Dv2(t +m) + ... + by (D)o (1 + m) = am()’
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The determinant of the system (16) is equal to A;+1(v1,v2,...,vm) and it is
non-zero because of the linear independence of v;,vs,...,v,. Therefore the
system (16) has the unique solution

56 D)

bl(l) = cl(i + 1) - cl(i) = (_l)m-Ham(i) D(Z) e =L4...,m, (17)
where D(z) = Ai+1(v1,v2,...,0m), and
v1(2+1) U1_1(1.+1) v1+1(z+1) Um(l+1)
v1(i+2) ... v—1(G+2)  vp(i42) ... vg(i+2)

vii+m—1)...0-1G+m—=1)vp1(t+m—1)...om(i+m—1)

i.e., Di(i) is obtained from the determinant D(i) by deleting the I*" column
and the last row.

The equalities (17) are first-order difference equations in the functions
a(i), I = 1,2,...,m. Since ¢(z) is only determined up to a constant, from
(17) we find an explicit representation for ¢;(%):

iy = Sy S6) D) _
(i)=Y (1) D) 1=1,2,...,m.

J=to

Substituting this expression in (13) and changing the order of the sum-
mation in the resulting expression, we obtain the following formula for the
particular solution #(z) of the non-homogeneous equation (7):

(i) = Y _ ald)u(i)

=1

= Z f(J)Z( 1)’"“731(1)1)1(2] / (D()am(5))

J=io
= Z G(i, 1) f (),
J=to
where
G(,5) =

D(])a (]) Z( 1)m+ka(J)vk(Z) (18)
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Notice that the sum in (18) is easy to compute

vi(j+1) v(f+1) ... vm(G+1)
m vi(7 +2) 120 +2) ... vm(j+2)
D D) FEDGIOR(E) = | ceeeee e .
k=1 vi+m-—1Dv(G+m—1)...v,G +m—-1)
v1(7) v,(2) Vm(7)
This sum is equal to zero for j =i—1,:—2,...,i—m+1. Thus the particular

solution to equation (7) has the following form

vi(j+1) vm(j +1)
I
=2 G e pa D
omG+1) r vm(G+m)

where g is arbitrary, and §(z) = 0 for ¢ = 49,30 + 1,...,%0 + m — 1.
For first-order equations (m = 1), the formula (19) takes the following

form: )
3 u(d) Gy
= 2 oG4D wpy =0 20

1.2.4 Examples. We now consider several examples illustrating the application
of the general theory. Suppose we must find the general solution of the first-
order equation

y(i + 1) — eZiy(i) = 62"+, (21)
We first find the solution of the homogeneous equation
Y +1) - Piy(i) =0. (22)
From (22) we sequentially obtain
y(i +1) = e¥y(i) = ezie2(i_l)y(i -1l)=...= ezziﬂky(l) = ei(H’l)y(l).
Setting y(1) = 1, we find the particular solution v; (¢) of the homogeneous
equation (22) in the form v; (i) = €1, Consequently, the general solution

of the homogeneous equation has the form y(i) = ce!*=1), where ¢ is an
arbitrary constant.
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We now construct a particular solution of the non-homogeneous equation
(21) using (20). From (20) we obtain

izl LiGi-1) 6k2ek +k

i-1
N . — poili-1) 2
y(i) = Z ek(k+1) 1 = Ge Z k.

k=io k=io

Since 7o can be chosen arbitrarily, setting io = 1 we get §(z) = ¢(1 — 1)(2¢ —
1)e!i=1). Further, by theorem 3 the general solution to (21) can be written
in the form

y(3) = §(3) + ¥(3) = [c + (s — 1)(2i — 1)]61‘(:'—1)

where ¢ is an arbitrary constant. The problem is solved.

Let us now find the general solution of the second-order equation

az(1)y(z +2) + a1 (1)y(i + 1) + ao(d)y () = f(5), (23)
where 1 =0,1,2,...,
ax(i) =4* —i41,
ao(d) = ax(i+1) =2 +i +1,
al(i) = —'ao(i) - ag(i) = —2(i2 + 1),
f(5) = 2'(3% = 3i 4+ 1) = 2'[2a(3) — ao(4)).

(24)

Since the coefficients a;(7) and ag(7) are non-null, we can apply the general
theory to find the general solution to (23).

First we construct linearly independent solutions to the homogeneous
equation. Using (24), it can be written in the following form:

a2(8)y(t +2) — [02(d) + a2( + D]y(e + 1) + a2 (i + 1)y(2) = 0

a()[y(z +2) —y(i + D] — a2(i + D[y(i + 1) — y(i)] = 0. (25)

The particular solutions v;(z) and v2(¢) to the homogeneous equation (25)
are determined by the following conditions: v1(0) = v1(1) = 1, v2(0) = 0,
v2(1) = 3. Since the determinant satisfies

v1(0) v1(1) ~340,

Do(v1,v2) = v2(0) wva(1l)|

by lemma 3 the functions v;(¢) and vy(z) are linearly independent solutions
to equation (25).
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We now find v;(2) and v () explicitly. From (25) it immediately follows
that v;(7) = 1. Let us construct v2(z). From (25) we sequentially obtain

a(i+1)

4G +2) =i+ 1) = 2D 1) -y 0)
_az(z+1) N — uli —
- 2 D) —y(i- )
_ _ag(z-{—l)
- .= 20 - o)

Taking into account the initial values for v,(7), we obtain
v2(i + 1) — va(i) = 3az(i) = 3(:* — i + 1). (26)
Summing the left- and right-hand sides of (26) for i between 0 and k — 1, we

get
k-1

vy (k) = v3(0) +3) (i% —i +1) = k(k? — 3k +5).
i=0
Thus, the particular solutions of the homogeneous equation (25) are
v(k) =1,  v(k) = k(k* — 3k +5), (27)
and the general solution (25) has the form

E(k) =c + Czk(k2 -3k + 5)

We now construct a particular solution to the non-homogeneous equation
(23). Substituting (24) and (27) into the formula (19), we obtain

Qv —wk+l)  f(R)
yi) = kz::o va(k +2) — va(k + 1) . az (k)

= i v;(f:z];:';()’;:('kl)) [2k+1a2(k) _ 2ka2(k + 1)]

2 k+1 k
[v2(2) — v2(k +1)] a2(2k +1) azz(k)

(28)

I
Wl
b
1l
[=]

Here (26) was used.
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We now calculate the resulting expression. Denoting

2]:
v(k) = va(2) —va(k+1),  u(k)= a(F)’

we write (28) in the following form:
12
96) = 3 Yol +1) — u(B)o(k).
k=0

We will use now the formula for summation by parts (cf. (8) from Section 1)
for a uniform grid with step h = 1. This gives

i—-1

965) = —3 > u(k)o(k) ~ v(k ~ 1)

k=0
1. .
+ §[u(2 —1)w(i — 1) — u(0)v(-1)].
Using (26), the condition v2(0) = 0, and the definitions of the functions v(k)
and u(k), we get

(k) = vk — 1) = vy(k) — w3k + 1) = —3as(k),
v(i — 1) = v2(2) — v2(2) =0,
v(—1) = v2(i) — v2(0) = v2(3),

and hence
i—1 1 ) 1
g(i) = k§=0:2’° —gn@)=2'-1- §z'(z'2 —3i+5).

Consequently, the particular solution of (23) is found. By theorem 3, the
general solution of the second-order non-homogeneous equation (23) has the

form
y(1) = §(i) + y(i)

. 1
:2'—1—§i(i2—3i+5)+c1+c2i(i2~3i+5)
=¢ +2' +&i(i2 - 3i +5),

where ¢, = c¢;—1,¢ = ¢y —% are arbitrary constants. The problem is solved.
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1.3 The solution of linear equations with constant coeflicients

1.3.1 The characteristic equation. The simple-roots case. We now consider
an important class of difference equations — linear equations with constant
coefficients. For this class of equations, it is quite simple to find linearly-
independent solutions to the corresponding homogeneous equations. This,
as was shown above, leads to the problem of solving a non-homogeneous
difference equation.

We wish to find linearly independent solutions of the m** order homo-
geneous linear equation with constant coefficients

any(i+m)+ am_1yG+m—1)+... +aoy(i) = 0. (1)

We will search for particular solutions of (1) in the form v(¢) = ¢*, where the
number ¢ remains to be chosen. Substituting v(z) instead of y(i) in (1), we
obtain

qi(amqm + am—lqm_1 +...4+a1q+ aO) =0.

Since we are searching for a non-zero solution to (1), we divide by ¢*, and
obtain the following equation for g¢:

Amq™ + am_1¢™ 4+ ... +a1g+ao =0. 2

Equation (2) is called the characteristic equation for (1). The roots q1, ¢z, . .,
gm of equation (2) can be simple or multiple. We will consider each case
separately.

Suppose the roots are simple. We will show that the functions

U1 (l) = qi.’ v2(i) = q;’ ) vm(i) = qin (3)

are linearly independent solutions to equation (1).

Actually, by lemma 3, it is sufficient to show that for some ¢ the deter-
minant A;(vy,v2,...,Vm) is non-zero. Setting 7 = 0 we find

_ 1 1 .o 1
1 ¢ ¢ ... ¢ 1
1 @ & g non I
Ao(vl,...,vm) = N ) = qq 92 I
1 2 7,::_1 SRR SERRRRREEEEE .
dm 9 q q;n 1 q;n 1 q 1

and consequently Ag(vy,...,Vn) is the Vandermonde determinant. It is non-
zero because all g; are distinct. Thus, the functions (3) are in fact linearly
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independent solutions to (1), and therefore the general solution of the homo-
geneous equation (1) can be written in the form

y(i) = c14} + 20} + ... + Cmdl, (4)

where ¢;,¢s,...,cn are arbitrary constants.

If the roots ¢1,¢2,...,gm are real, then a real-valued solution y(z) cor-
responds to a choice of the constants ¢, c,...,cn as real numbers. We now
consider how to obtain a real-valued solution when there are complex roots.

Let
gn = p(cosp +i*singp), (i* = \/_1)

be a complex root of the characteristic equation (2). Then

gs = p(cos p — 1* sinp)

the conjugate of gn, is also a root of equation (2). Consider the part of the
general solution (4) formed by a linear combination of ¢!, and ¢%:

¥(i) = cugh + cagh = p[(en + c1) cosip +i*(ca — ) sini.

The function y(z) will be real-valued if the constants ¢, and c, are com-
plex conjugates. Setting

cn = 0.5(¢p — i*c,), cs = 0.5(¢n +1%¢C,),

where &, and ¢, are arbitrary real numbers, we obtain y(:) = p*(¢, cosip +
€, siniep).

1.3.2 The multiple-root case. Suppose now that the characteristic equation
(2) has a root ¢; of multiplicity ny, a root g, of multiplicity n., etc., i.e.,
d1,92,---,9s are roots of multiplicity ni,n,,...,n, respectively, and n; +
ny + ...+ n, = m. We will construct linearly independent solutions of the
homogeneous equation (1). For this we require

Lemma 4. If q; s a oot of the characteristic equation (2) having multiplicity

ny, then
m

Zakk”qlk=0, p=0,1,...,n;— 1. %)
k=0
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Proof. Actually, since ¢; is a root of equation (2) of multiplicity n;, we have

EakQI’c:Oa (6)
k=0
Zk(k—l)...(k—s+1)akq{°=0, s=12,...,n1—1, )
k=0

which was obtained from (2) by differentiating s times and then multiplying
the result by ¢;. We shall show that (5) is equivalent to (6), (7). Obviously,
it is only necessary to prove the equivalence of (7) and (5) for p > 1.

Since Py(k) = k(k —1)...(k — s + 1) is a polynomial of degree s in &,
multiplying (5) by the corresponding coefficient of the polynomial P,(k) for
p=1,2,...,s and summing the results gives us equation (7).

We will now show that (5) follows from p = 1,2,...,n; — 1. We use the
expansion for kP:

P
K=Y kk-1)...(k—s+1)a,, 1<p<k, (8)
9=1

where @, = a,(p) will be defined below. We multiply the s** equation in (7)
by a, and sum for s betweeen 1 and p. Using (8) we obtain

P m
0=> a, <Zk(k—1)...(k—s+1)aqu'°>
s=1 k=0
m P m
= Zakq{‘ (Z k(k—1)...(k—s+ l)a,) = Zakk”q,".
k=0 k=0

s=1

It remains to justify the expansion (8). Notice that both sides of (8) are
p*? degree polynomials in k. If we set @, = 1, then the coefficients of highest
degree will be equal, and the coefficients of lower degree are zero. We find
ai,Qs,...,0p_1 by equating the values of the polynomials at p — 1 points,
for example, setting k = 1,2,...,p — 1. For k = 1 this gives a; = 1. For
k=n,2<n<p-1 wehave

P n

n":Zn(n—l)...(n—s-{-l)a,:Zn(n—l)...(n——s—{-l)as

s=1 s=1

-1
a
=n! ! d
=nla, +n! SE=1 (n — s)! .
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Hence it is possible to find @y if a1,as,...,an—1 are already determined.
Thus, we obtain the following recurrence relation for the coefficients ay:

-1
n? nz Oy
an:m_ _1m’ n=2,3,'-'7p_1’ al:l'

The lemma is proved. O

Using lemma 4, we now find m particular solutions to the homogeneous
equation (1). Since

n!

F 7 o N . . —
G4k =3 ks Pi(n—p)!

multiplying (5) by cfj "_Pq{ and summing for p between zero and n < n;—1,
we find that for any j,

m

Zak(j+k)"q,k+j=0, n=0,1,...,n;— 1.
k=0
Using this, it is easy to show that the grid functions

vn1+n2+...+m_1+n+l(j) = jnqua 0 S n S ny— 17 l = 1,25 ey Sy (9)

are particular solutions of the homogeneous equations (1), i.e., if ¢; is a root
of the characteristic equation of multiplicity n;, then the functions

ql]7 jq{a"'ajm_lq{, l:1,2,...,3

are solutions to (1).

It remains to prove that the functions v;(j),...,vm(j) defined in (9)
are linearly independent solutions. For this, we compute the determinant

Ao(v1,...,Vm), which in this case has the form
1lq q% q{‘ qi"‘l
0qi 2¢ ... kef ... (m—1)g"
0 2°¢2 ... KF ... (m-— 1)2¢m!
A v yeres vm S ; .......
o(v1 ) lgg ¢ qéc aq 1
0g; 2g3 kg3 (m — 1)gp™!
0g,2"s g} ... k"s7Mqh ... (m—1)"s™ ¢!
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It can be obtained directly from the Vandermonde determinant

W(z1,Z2,...1Tm) =] cereeennn... ...... = l:I H (zj — i)

1%y 22, ... 20 7] i=1 j=i+1
1 z,, 22 zm-1

in the following way. We take the first derivative of W along z,, and multiply
it by 3. We denote the result by Wy = z, aW We further compute

o [ ow, 8 ( 8 ([ ow
Wa=2s5r, ( 8z3>’ Wi =25, (x43w4 ("’4ax4))’

etc., until we obtain W,,. Then we compute

oW,
axnx +2 ’

W42 = Tny42

and continue the process of differentiation, computing

0 ow,
Wn1+3 = .’En1+3a—— ( Tn,+3 a 1+2) 9

Tni+3 Tny+3

until we obtain W, 4 ,,, etc. In the end we obtain W, = Wp,(z1,22,...,Zm)-
We now set

TI=T2=...=ZTp, =q1, ZTpy4+1 =Tp,42 = ... = Tp,4n, = q2, €tc.
It is easy to verify that Ag(vi,ve,...,vm) = Wp, and simple calculations
give
8 np—1 s—1 8
We=1[ II ™ [T II (¢&5-a)™™-
k=1 m=1 i=1 j=it1

Hence it follows that Ag(vy,...,vm) is non-zero, since g; # ¢; for j # ¢, and
therefore the functions v1(j),v2(j),...,vm(j) constructed above are linearly

independent solutions to the homogeneous equation (1). Here the general
solution of (1) is written in the form

s n-—1

y@) = Y ig,
=1 n=0

U

where ¢y, are arbitrary constants.
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1.3.3 Examples: We now consider the simplest examples of finding the general
solution to homogeneous difference equations with constant coeflicients.

[1] To find the general solution of the equation
Wi +2) -y +1) - 24(3) =0. (10)
We form the characteristic equation ¢> — ¢ —2 = 0 and find its roots

q1 = 2,¢q2 = —1. Since the roots are simple, the general solution of (10) has

the form _ .
y(3) = e12' + c2(—-1)".

[2] To find the general solution of the fourth-order equation
v+ -G +3)+3y0 +2)+ 229G+ 1) () =0 (11)

The characteristic equation ¢* — 2¢* + 3¢? + 2¢ — 4 = 0 has two real roots

q1 = 1, g2 = —1 and two complex-conjugate roots
g3 =2 (cos% +isin§) and ¢4 =2 (cos% —isin-g) , t=+-1.

Consequently, the general real-valued solution of equation (11) has the form

y(j) = e1 4 ea(—1) + 27 (03 cos gj + ¢4 sin —g;) .

[3] To find the general solution of the fourth-order equation
WG +4) =Ty +3)+ 189G +2) - 209G + 1)+ 8y(i) = 0. (12)
The characteristic equation
q* —7¢" +18¢" —20g + 8= (¢ - 2)’(¢ 1) =0

has a root g = 2 of multiplicity 3 and a root g = 1 of multiplicity 1.
Consequently, the general solution of (12) has the form

y(i) = c1 + 2 (cz + caj + caj?),
and particular linearly independent solutions of (12) are the grid functions

vl(j)> v2(j) = 2j’ v3(j) =j2j’ v4(j) = j22j'
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[4] To find the general solution of the fourth-order equation
Y +4)+ 80 +2) + 16(7) =0. (13)

The characteristic equation ¢* +8¢%+16 = (g2 +4)? = 0 has the complex
root

0 =2(cosI +isin£)
2 2

of multiplicity 2 and its conjugate root

92 =2(cosI—isin-7£)
2 2

also with multiplicity 2. Therefore the general real-valued solution of (13) has
the form _ x o
y(7) = (a1 + ¢27)2’ cos 5] + (c3 +¢45)2’ sin 5]

We now consider two more examples. In one example we will find the
solution of a Cauchy problem for a non-homogeneous equation; in the other,
of a boundary-value problem for a fourth-order homogeneous equation.

[5] To find the solution of the following problem
y(i+1) —ay(x) = (i), i20, y(0)=yo, (14)

where a = constant. The characteristic equation ¢ — a = 0 has the single root
¢1 = a. Therefore the general solution of the homogeneous equations has the
form y(i) = ca’, ¢ = constant. A particular solution of the non-homogeneous
equation (14) is found using the method of variation of parameters. Formula
(20) of Section 2 gives the following particular solution to (14):

i—1

J6) = S () = S ek — k- 1),
k=0

k=0

By theorem 3, the general solution of the non-homogeneous equation (14)
has the form

y(i) = ca' + iakf(i -k -1).

k=0

Setting ¢ = 0, we obtain yo = y(0) = ¢ (the sum here vanishes). Thus, the
solution of (14) is given by the formula

t—1
y(i) =yoa' + Y a*fi—k—1), i>0.
k=0
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[6] We now find the solution of the fourth-order equation
y(i+2)-y(+1)+2y() -y -1+y(i+2) =0, 2<;<N-2, (15)
satisfying the following boundary conditions:

2y(2) — y(1) + y(0) = 2,

y(3) —y(2) +y(1) —y(0) = 0,

Yy(N —3) —y(N -2) +y(N —1) —y(N) =0,
2y(N —2) —y(N - 1)+ y(N) = 0.

(16)

The characteristic equation
¢ —¢+2¢ —g+1=( -¢+1)(*+1)=0,

corresponding to (15) has the simple complex roots

T .. T
qq = cos— +tsmn—,

3 3

T .. T
g2 =cos— —isin—,

3 3 .

x x 1=+v-1
qs =cos—2—+isin§,

T .. T
s = cos g —ising,

consequently, the general real-valued solution of the homogeneous equation
(15) has the form

. 1 . .1 . 1 . .1
y(5) = ¢ cos 37 + ¢ sin 3™ + c3 cos 5™ + c4 sin 3 17

We now isolate from the general solution of (17) the solution which
satisfies the boundary conditions (16). For this we substitute (17) in (16)
and obtain the following system for the constants ¢y, ¢z, c3, and c4:

c 2Wc + 'n27rc c3—cC 2
08 — sin—cy —Cc3 —Ccy =
3 326 ¢ )
¢c1+0:¢c24+0:¢c53+0:-¢4 =0,
cos%c1+sin%c2+0-63+0-c4=0,
N-2 N-2
cos %cl + sin (—3)—7rc

™ v in™ Vet (eos™ —sin ™) e, =0
Cos 9 sin 9 / C3 COs ) sin ) Ccq4 = U.

2
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The determinant of this system is equal to —2sin % cos % and is non-zero
if N is even and not divisible by 3.
In this case, using the fact that N is even, we obtain ¢; = ¢; = 0,

¢s = ¢4 = —1. Thus, if N is not a multiple of 3, then the solution of the
boundary-value problem (15), (16) exists and is given by the formula

y(i):—cos%l—sinw—zj, 0<5<N.

If N is odd or a multiple of 3, then the solution of the boundary-value
problem (15), (16) either does not exist or is not unique. This example il-
lustrates the difference between boundary-value problems whose solutions do
not always exist, and Cauchy problems possessing unique solutions.

1.4 Second-order equations with constant coefficients

1.4.1 The general solution of a homogeneous equation. The current section
deals with various second-order equations with constant coefficients

a2y(j +2) + a1y(j + 1) + aoy(§) = f(§), ao,a2 #0. (1)

First of all, we will find the general solution of the corresponding homoge-
neous equation

a2y(j +2) + a19(j + 1) + aoy(j) = 0. (2)

The characteristic equation azq? + a1¢q + ag = 0 has the roots

—a; + v/a? — 4apaz = —a; —y/a? — 4aga;
) 2 — .

a
2(12 2a2

@ =

According to the general theory of difference equations with constant
coeflicients found in Section 3, the functions v(j) = q{ , v2(j) = qg are
linearly independent solutions of equation (2) if a? # 4agay, and v;(j) = q{,
ve(j) = ]q{ if a2 = 4aga;. In the latter case, it will be convenient for us to
use another set of linearly independent solutions

N 24— a4 N _ B4
wli) == —, o wi=— 3)

which take the following values for j = 0 and j = 1:

v1(0)=1, v(1)=0, wv(0)=0, wv(1)=1. 4)



1.4 Second-order equations with constant coefficients 39

Clearly, it is only necessary to show that the functions (3) are solutions
of the homogeneous equations if a? = 4aga;. The linear independence of the
functions (3) constructed above follows from the condition Ag(vy,v;) # 0,

where
v1(0) (1)

Ao(vlyv2)= 92(0) 'U2(1) .

If in (3) we take the limit as ¢ tends to ¢;, then we obtain the functions
v1(j) = =(j —1)¢}, v2(§) = j¢} ™", which in fact are solutions to the homoge-
neous equation (2). Notice that the functions v;(j) and v,(j) from (3) take
real values even in the case when the roots ¢; and ¢; are complex. This allows
us to avoid considering the complex-root case separately. Thus, the general
solutions of the homogeneous equations (2) can be written in the form

Jj_ J J_
90291 — 019> +eo 92— % : (5)
92— 92— qQ1

¥(j) = c1v1(§) + cav2(j) = &1

where ¢, and c, are arbitrary constants. Notice that, by (4), we have 7(0) =
Cy, ?(1) = C2.

We now consider an example. It is necessary to find the general solutions
of the homogeneous equation

y(j +2) - 22y(5 + 1) + y(§) = 0, (6)

where z is a real-valued parameter. In this case we have
1
a=z+Vz2-1, 2= g@2—q =—-2Va? -1 (7)

Substituting (7) in (5), we obtain the general solution to (6) for any z in the
form

e (I~ e N G
i) = -ERES S GV

(8)
(@+vaZ=1) - (z + Va2 - 1)
2v/z2 -1

In particular, if |z| < 1, (8) can be written in the form

y(1).

+

sin(j — 1) arccos sin j arccos z

1) = 1).
y(7) sin arccos z y(0) + sin arccos z y(1) )

(In order to obtain (9), the identity z = cos(arccosz) was used.)
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This final result can be used to compute the integral in the problem
posed in Section 1.1.4

Ik(¢)=/o cosk¥ —coske 1y p_g1... .

cos ¥ — cosp

It was shown that this problem leads to the solution of a Cauchy problem for
the equation

Iiy1 —2cosply + Iy1 =0, Iy=0,I, =m. (10)

This equation is a particular case of (6) with z = cos¢. Since |z| < 1, the
general solution of (10) is given by (9), i.e.,

in(k —1 in k
Ik____sm(' )cpI0+s1.n cle'
sing sin ¢

Substituting the initial values for I, we obtain the solution of the problem

sin ky

I = .

k(p)=m— "

As a second example, we consider the solution of the boundary-value
problem

v+ -y(G)+y(i—-1)=0, 1<j<N-1, (11)

y(0)=1, y(N)=0.

The equation in problem (11) is also a particular case of (6), corresponding
to ¢ = 1/2. The formula (9) gives the following general solution to equation

(11):
y(j) = (cl sin € —31)7r + c2 sin %)/sin—g.

The constants ¢; and ¢, are found from the boundary conditions for y(3). If
N is not a multiple of 3, then ¢; = —1, c; =sin im(N — 1)/sin 17N and the
solution of (11) has the form

1 1
y(j) = sing(N——j)ﬂ'/singNn, 0<j<N.

If N is a multiple of 3, then the solution of the boundary-value problem (11)
does not exist.
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1.4.2 The Chebyshev polynomials. We now return to equation (6). First of
all we consider the following Cauchy problem:

y(n+2)—2zy(n+1)+y(n) =0, n20,

W0 =1, y(1)=s. (12)

Notice that from (12) it follows that

y(2) = 2zy(1) — y(0) = 22° — 1,
y(3) = 2zy(2) — y(0) = 4z* — 3z,

and in general y(n) is polynomial of degree n in . We denote this polynomial
by T.(z). Substituting T,,(z) for y(n) in (12), we obtain a recurrence relation
satisfied by these polynomials

Tn+2($) = 2.’2Tn+1(.'t) - Tn(.’E), n Z 0
To(z) =1, Ti(z)=z, —-o0o<z<o0. (13)

On the other hand, the general solution to (12) is given by (8) for any
z. Substituting in (8) the initial values for y(n), we have

(0+ V=) + (z+ V2 =1) "
; .

T.(z) = (14)

In particular, if |z| < 1, setting = cos(arccos z) gives us
Tn(z) = cos(narccosz), |z|<1.

Thus, the solution of (12) has been found. The solution is the polynomial
T.(z), which is defined for any z by (14) or by any formula

cos(n arccos z), lz] <1,
To(z) =

: [(x+\/x2—1)n+(z+\/xz—1)_n], |z} > 1. (15)

The polynomial T,(z) is called the Chebyshev polynomial of the first kind of
degree n.

We now consider another Cauchy problem for equation (6)

y(n+2) —2zy(n+1)+y(n) =0, n2>0,

y(0)=1, y(1)=2z. (16)
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It is obvious that here also y(n) is a polynomial of degree n in z. Here we
denote it by Uy (x). The polynomial is an explicit form for U, (x). Substituting
the initial values for y(n) in (8), we have for any z:

% (z+val—1)" — (s + V22 —1)"
2v/z2 -1
7 —(n—l)_ 2 (2 7 —-n
+(w+\/x 1) g x2—21( + 1 (17)
_ @+ V)" - @ Vo) Y
2Vz2 -1

Un(z) =

In particular, if |z| < 1, then

sin(n + 1) arccosz

Un(z) =

sin arccos

The polynomial Uy(z) is called the Chebyshev polynomial of the second kind
of degree n and is defined by the formulas

( sin(n + 1) arccosz

sin arccos
lz| <1,

57 e+ V=) = (e Ve

L |z] > 1.

Un(z) = 4

b

_(,,H)] (18)

From (16) we obtain the following recurrence relation for the polynomials
Un(z):

Un+t2(z) = 22Up41(z) — Un(z), n >0, (19)
Uo(z) =1, Ui(z) =2z.

The formula (17) allows us to replace (8) by the following representation for
the general solution of (6):

y(n) = —ClUn_.z (:E) + CzUn_l(.T).

We now obtain still another representation for the general solution of
(6). We shall show that the functions vy(n) = T,(z) and vz(n) = U,_1(z)

are linearly independent solutions of the homogeneous equation (6). In fact,
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it is only necessary to show their linear independence. Since the determinant

1 =z

To(z) Tu(z) _IO X

U_i(z) Uo(z) =1

Ao(vl,v2) =

is non-zero, the assertion is true. Consequently, the general solution of (6)
can be represented in the form

y(n) = e1Tu(z) + c2Up—1(2), (20)

where ¢; and c; are arbitrary constants, and the functions T, (z) and Uy,(z)
are defined by (14) and (17) for any z.

In conclusion, we introduce several easily verified relations which show
the connection between the Chebyshev polynomials T,(z) and U,(z) and
also some properties of these polynomials. The formulas are as follows:

To(z) =T-n(z), U—n(z)=—Up—2(z), n>0, (21)
Tin(z) = Ti(Ta(®)), Uin-1(z) = Ui1(Ta(2))Vn-1(=), (22)
Ton(z) = 2(Ta(z))? - 1, (23)

Tpo1(z) — 2Ta(z) = (1 — 22)Un_1(x), (24)
Un-1(2) — 2Un(z) = —Tota(2), (25)

Un+i(z) + Un—i(z) = 2Ti(z)Un (). (26)

By changing correspondingly the indices ¢ and n, we obtain from (26)

Unti-1(z) + Un-i-1(z) = 2Ti(z)Un-1(2), (27)
U,,.,.;(x) + U,,_,'_g(.’t) = 2T,'+1(.’L‘)Un_1(:t). (28)

Setting ¢ = n in (26)—(28), we have

2T (z)Un(z) = Uzn(z) + 1, (29)
2T (2)Un-1(z) = Uzp-1(2), (30)
2Tn+1($)Un_1(.’L‘) = U2n($) - 1. (31)

Here we used equations (21) and Up(z) =1, U_y(z) = 0. If we set n = 0 in
(26), we obtain
2Th(z) = Up(z) — Un—2(z). (32)
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1.4.3 The general solution of a non-homogeneous equation. We will now con-
struct the general solution of the non-homogeneous equation (1).

az2y(n +2) + a1y(n + 1) + aoy(n) = f(n). (33)

By theorem 3, the general solution to equation (33) is the sum y(n) =
g(n) +y(n), where y(n) is the general solution of the homogeneous equation
(2), and §(n) is a particular solution of the non-homogeneous equation (33).

It was shown above that the functions

Q6 — 09 92 —4qr
vy(n)= =112 (p) =211 34
1( ) 92 — 41 2( ) 42—‘11’ ( )

are linearly independent solutions of equation (2), and that the solution y(n)
is defined by the formula (5):

y(n) = civ1(n) + cav2(n).
In order to find a particular solution §(n) to equation (33), we will use

the method of variation of parameters, outlined in Section 1.2.3. Formula
(1.2.19) gives the solution §(n) in the following form:

vi(k+1) wvo(k+1)

o e wm) | k)
y(n)_kzzno vi(k+1) vi(k+2)| a2

va(k+1) wvo(k +2)

After some simple calculations we get

"z‘fq;-k —gi™F 1 f(k)

92 — q1 az

y(n):: , n # no,n0-+1

k=ﬂo

and
g(no)=g(no +1)=0

Consequently, the general solution of the non-homogeneous equation (33) has
the form

n—k—1 n—k—1
I —qd Z -9 fk
y(n) = ¢; 9291 — 192 +e a2 1 . ( ), (35)
92 — Q1 112 - q1 P g2 — Q1 a

where ¢; and ¢, are arbitrary constants.
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If we are solving a Cauchy problem, i.e., seeking the solution of (33)
satisfying the conditions

y(no) =0, y(no+1) =y, (36)

then from (35) and (36) we obtain the following representation for the solution
to this problem

n—ngo n—ngo n—no n—no
929, — q144 ‘D) —q
yn)="Yo + 4%
( ) 92— q1 92—
ke (37)
E " (1? k-1 f(k)
+ . .
F—n 92— q as
=Tno

We will now find the solution to the first boundary-value problem for a
second-order difference equation with constant coefficients. It will be conve-
nient to write the problem in the following form:

ay(n+ 1)+ a1y(n) + apy(n —1) = —=f(n), 1<n<N-1,
y(0) = p1, y(N)=pe

This formulation is obtained from (33) by shifting the index n; therefore,
using (35), we obtain the following formula for the general solution of (38):

(38)

-1 n—k n—k
e —aw &4 @ —a = f(k)
n)=c . . 39
y(n) ! @2—q 2—41 kZ; @2—q a2 (39)
We will determine the constants ¢; and c¢; from the condition that the
solution (39) take on the values y(0) = p; and y(N) = pp. Omitting the
simple computations, we obtain the following formula for the solution of the
boundary-value problem (38).

N—-n n

qlqz"q "—gq 9 —q
y(n) = 2122) N‘ )1+,f, N H2

‘12 @ —q

= @e)" M =g TN - ) SR
* Z (@ —a)@ — ) a? (40)

4 Z (i T e ) fR)

(@2 —q1)(gd —ql) az

Notice that the solution of the boundary-value problem (38) fails to exist
only in the case when ¢ = ¢¥ and ¢; # ¢,.
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We will now consider a particular case which uses the formula (40).
Suppose we are required to solve the first boundary-value problem for the

equation
y(n +1) —2zy(n) + y(n — 1) = —f(n), (41)

Earlier we found the roots ¢; and ¢z of the characteristic equation corre-
sponding to (41)

g=z+Vz?-1, @=z-V12-1=1/q.

Substituting these values in (40) and taking into account formula (17) for the
polynomial Uy,(z), we obtain the solution of problem (41) in the following
form

v = ez, 1 Y Uk_1<z>f<k>]
Un-1(2) I:j )
+ 20 s+ Y Une —1(w)f(k)] :
Un-1(z) H2 lc:Zn N-k

The solution exists and is given by the formula (42) if the following condition
is satisfied:

kw
—, k=1,2,... —-1.
z¢cosN, b b ’N

We now return to equation (38). If apa; > 0, then the solution (40) of
this problem can be written in a more compact form. To this end, we write
the roots

1 / 1 /
Q= 2—(12 [_al + a% —4aoaz] y Q2= 5(;; [_al - a% - 40002]
of the characteristic equation corresponding to (38) in the following form:
q1=p(w+vm2—1), q2=p(-'v— wz—l), (43)

where

(44)
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We then substitute (43) into (40) and use (17). We obtain the solution of
(38) for the case aga; > 0 in the form

i) = et { +ka 1(2) f(k)]

Un_l(z) . 1
Un-1(z) pN-m

it 3° My, _l(z)f(k)}
k=n

where p and = are defined in (44). The solution of (38) for the case aga; > 0
exists if

a; +2\/a0a2cos% #0, k=12,...,N-1.

We now look at a first-order boundary-value problem for the three-point
vector equation with constant coefficients

Yn_l—CYn+Yn+1=—Fn, ].STLSN—l

45
Y0=F0) YN=FN7 ( )

where Y,, and F,, are vectors, and C is a square matrix. It is easy to verify
that the general solution of the non-homogeneous equation (45) has the form

n—1
1 1 1
Y, =Un_s (§C> Ci+Uny (EC) C; - k§=1 Upn—k-1 (§C> Fy,

where C; and C; are arbitrary vectors, and Upn(X) is a matrix polynomial in
the matrix X, defined by the recurrence relation (19).

If the matrix C is such that U N-1(%C ) is nonsingular, then the solution
of the boundary-value problem (45) is defined by a formula analogous to (42)

n—1
- 1 1 1
Y. =Uxt, (50) UN-n-1 <§C> Fo + kE=1 Uk-1 (50) Fi
N-1
- 1 1
st (26) v (20)

1
Fy + E UN_k-1 (§C> Fi|.
k=n

Below it will be shown that a Dirichlet difference problem for Poisson’s equa-
tion in a rectangle leads to problem (45).

(46)

In conclusion we remark that the existence condition for the solution of
(45) can be formulated as follow: the solution exists and is defined by (46) if
the numbers cos(kn/N), k = 1,2,..., N —1 are not eigenvalues of the matrix
C.
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1.5 Eigenvalue difference problems

1.5.1 A boundary-value problem of the first kind. In Chapter 4 we will look
at the method of separation of variables, which is used to find the solutions of
boundary-value grid problems for elliptic equations in a rectangle. In connec-
tion with this, it becomes necessary to represent the desired grid functions as
an expansion in the eigenfunctions of the corresponding difference problem.
In this section we will consider eigenvalue difference problems for the simplest
second-order difference operator, defined on a uniform grid.

We now formulate the boundary-value problem of the first kind. Suppose
that the uniform grid @ = {z; = th, i = 0,1,...,N,hN = [} with step h
has been introduced onto the interval [0,!]. We must find those values of the
parameter A (the eigenvalues) for which there exist non-trivial solutions u(z;)
(eigenfunctions) to the following difference problem:

yzz + Ay =0, z€w, y(0)=y(l)=0, (1)
where 1) — 2 1
oy = WHDZBOREZD - o)

We now find the solution to (1). For this we write (1) in the form of a
boundary-value problem for a second-order difference equation

Y
y(i+1)—2<1—h7)y(i)+y(i—1)=0, 1<i<N-1,

y(0) = y(N) =0.

(2)

In Section 1.4.1 it was shown that the general solution of (2) has the form (see
(1.4.20)) y(¢) = e1Ti(2) + c2Ui—1(2), where ¢; and c; are arbitrary constants,
and where z here denotes

z=1-h2)/2. (3)
The constants ¢; and ¢, are determined from the boundary conditions
y(0)=c1 =0, y(N)=cUn-1(2)=0. 4)

Both here and later we use the formulas (1.4.15) and (1.4.18), which define the
Chebyshev polynomials of the first and second kinds, and also the formulas
(1.4.21)-(1.4.32).

Since we are seeking a non-trivial solution to (1), ¢; # 0, and from (4)
we have the condition Uy_;(2) = 0, which determines the solution in the
form y; = coU;—1(2).
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Since the numbers 2z = cos k—A’;, k=1,2,...,N —1 are the roots of the
polynomial Uy _1(z), from (3) we find the eigenvalues of (1) as
4 ., km 4 ., kmwh

’\"='h_23m oN = st o k=12,...,N-1. (5)
Each eigenvalue Ay corresponds to a non-null solution of (1)

krz;
l b

-
ye(2) = c2Ui-1(2x) = &k sin% = ¢t sin
(6)
0<i<N — G sin ¥
<:i< ez = Crsin ).

We define the scalar product of grid functions defined on the grid & in the
following form

N-1
(u,0) = Y u(i)v(i)h + 0.5hu(0)v(0) + u(N)v(N)).

=1

We now choose the constants ¢ in (6) so that the functions yi(z) will
have norm one, i.e., (yg,yx) = 1.

A simple computation gives ¢x = 1/2/l. Substituting this value for ¢ in
(6), we obtain the eigenfunctions pi(z) for (1)

(')_\/2- k_”ﬁ_\/? krz
ﬂk 1) = lSln N = lSln l ; (7)

i=0,1,...,N, k=12...,N—1.

Thus, the problem (1) is solved and the solution is given by (5) and (7).

We now enumerate the basic properties of the eigenfunctions and eigen-
values of the boundary-value problem of the first kind (1).

[1] The eigenfunctions are orthonormal:

1, k=m,

(.uka/‘m) =bkm, Orm = {0’ k # m.

[2] For any grid function f(i) defined at the interior points of the grid @,
ie., for 1 <i < N — 1, we have the expansion

9 N1 kme
£ =N2¢ksin7, i=1,2,...,N—1, (8)
k=1
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where

<Pk—Zf(z)smN, k=12,...,N-1 9)

i=1

Let us clarify this assertion. Let f(i) be an arbitrary grid function defined
on w (or defined on @ and reducing to zero for : = 0 and ¢ = N). Find
its eigenfunction expansion

iy g D
@)=Y femG) =) \/;fk sin ==, (10)
k=1 k=1

where fi is the Fourier coefficient of the function f(¢). Computing the
scalar product of (10) with pp,(:) and using the orthonormality of the
eigenfunctions, we obtain the Fourier coefficient

gy = mi
fm= Z fe(prspm) = (f pm) = [f(z) sm———h
k=1

The connection of this formula with (8)-(9) is easy to establish if it is
noted that fr, = (V2I/N)pm.

The expansion (8), (9) is convenient in that, for both the Fourier trans-
form and the inverse Fourier transform of a function f(z), it is only necessary
to compute a single type of summation. An algorithm for efficiently comput-
ing such a summation will be considered in Chapter 4.

[3] The eigenvalues satisfy the inequalities

8 4 T 4
— = < < <k< —
7S h2 sin? N M <A <AN_1= 7z cos? 2N’ 1<k<N-1.

1.5.2 A boundary-value problem of the second kind. We now consider a
boundary-value problem

yi:+Ay=0, T EwW

2 2
Eyz-i-)\y:O, z =0, —Zy5+/\y=0,a:=l. (11)

We now find the solution of (11). Writing out the difference derivatives
at the points in (11), we obtain the problem

yG+1)—2zy(i) +y(t—-1)=0, 1<i<N-1,
y(1) —zy(0) =0, y(N —1)—zy(N)=0, (12)
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where z = 1 — Ah?/2. From the general solution to equation (12) y(z) =
a1Ti(z) + c2Ui—1(z), we determine the solution satisfying the boundary con-
ditions. Using (1.4.24), we get

y(1)—2y(0) =c1z+c—2—-c1z2=¢c =0, c2=0,
and also
y(N —1) — 2y(N) = c1(Tn-1(2) — 2Tn(2)) = e1(1 = 22)Un-1(2) = 0.
Since ¢; # 0, we obtain

k
zk=cos—1{rr-, k=0,1,...,N,

and consequently, the eigenvalues of (12) are

4 k 4 kmh
/\k:—sinz—W:-——sin2 1r

h2 aN ~ R2? TR k=0,1,...,N. (13)

Here, each \j corresponds to a non-null solution of (11)

i
ye(i) = eTi(zx) = cxcos ==, 0<i<N.

We choose the constants ¢ from the condition (yi,yx) = 1, where the scalar
product is defined above. Direct calculations show that

=2/, k=1,2,....N-1, cx=+/1/I, k=0,N.

Thus, the normalized eigenfunctions for (11) are

pk(z)-—\/jcs \/— k”', 1<k<N-1,
/T kmi 1 k7r.1:,
pk(z)—v Jeos T = \/;cos ] k=0,N,

defined on the grid @. Notice that the eigenfunction corresponding to the
zero eigenvalue \¢g = 0 is the constant po(i) = 1/1/1.

(14)

We now formulate the properties of the eigenfunctions and eigenvalues
of the boundary-value problem of the second kind (11).
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[1] The eigenfunctions are orthonormal: (pk, tm) = km-

[2] For any grid function f(i) defined on @, we have the expansion

N .
) 2 kri
f(l =Fk2=%pk<pk6087, l=0,1,...,N, (15)
where
N kmi
ka=2p,~f(i)cos—, k=0,1,...,N, (16)
=0

1, 1<i¢<N-],
Pi={ X (17)

0.5, i=0,N.

The formulas (15) and (16) are modifications of the traditional expansion
of f(¢) in the eigenfunctions k(%)

N
FG) =" frmi),  fe=(f, )

k=0
where the following substitutions have been made:

Lo, 1<k<N-1,
=9 |
*Vier, k=0,N.

[3] The eigenvalues satisfy the inequalities

0=X <A <AnN, 0ZEKk<SN

1.5.3 A mixed boundary-value problem. We now consider an eigenvalue prob-
lem where on one side of the interval [0, ] a first-kind boundary condition is
given, and on the other — a second-kind condition; for example:

yiz+/\y=0, r Ew,
2
y(0)=0, —2yz+ly=0, z=1 (18)

We will call such a problem a mized boundary-value problem.

Let us find the solution of problem (18). The corresponding problem for
a second-order difference equation has the form

y(i+1)—22y(i) +y(i—1)=0, 1<i<N-1,
y(0)=0, y(N-1)-2y(N)=0,
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where z = 0.5\h2. From the general solution to this equation
y(?) = e Ti(2) + coUi—1(2)

we extract the solution satisfying the given boundary conditions. Using
(1.4.25), we obtain
y(0) =1 =0,
Yy(N = 1) — zy(N) = co(Un—-2(2) — 2Un-1(2)) = —c2Tn(z) = 0.

Since ¢z # 0, we obtain Tn(zx) = 0, where

(2k — )r

o k=1,2,....N

Z) = cos

and consequently, the eigenvalues for problem (18) are

h2 aIN o 4 ) =1,2,...,N. (19)

The normalized eigenfunctions for problem (18) corresponding to the eigen-

values A\, are
N (2 . (2k=D)mi
o= a2

=\/?sinQ—k~;—ll)E, k=1,2,...,N.

We now formulate the properties of the eigenfunctions and eigenvalues
of the mixed boundary-value problem (18).

[1] The eigenfunctions are orthonormal: (g, fm) = Skm-

[2] For any grid function f(i) defined on w* = {z; = th,1 < i < N} (or on
@, and reducing to zero for ¢ = 0), we have the expansion

(20)

N .
N 2 . (2k=Dm .
fG@) = I E_ Pk sin ", i=1,2,...,N, (21)

where

(2k 1)7rz

<pk—-2p,f(z)sm k=1,2,...,N, (22)

and where p; is defined in (17).
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[3] The eigenvalues satisfy the inequalities

8 T 4 T
- =AM <M <Ay = — cos? — <k<N.
(2+\/_)l2_h2 sin? iy =M <X < AN hzcos N’ 1<k<N

If for equation (18) the first-kind boundary condition is given at the right
end of the interval [0,1], i.e.,

Yzz + Ay =0, z€w

2
Vs +Aly=0, z=0; y()=0, (23)

then the eigenvalues are defined by the formula (19), and the normalized
eigenfunctions are

. 2 . (2k-1)}N — ) 2 . (2k—-1)n(l — z;
pi(i) = \/;sm( 2)5\7 ) = \/;sm( )21( ),
k=12,... N.

We have the following proposition. For any grid function f(i) defined on
~={zi =1th,i=0,1,...,N —1,hN = [} (or on & and reducing to zero
for i = N), we have the ezpansion

N .
. 2 . (2k—1)m .
f(N—z)=ﬁZ= prsin ===, i=12,...,N, (24)
where
Pk = E PN-— ,f(N—z)sm(z—k—Nl—)m-, k=1,2,...,N, (25)

i=1

and where p; i3 defined in (17).
Notice that the eigenfunctions constructed for (23) are also orthonormal:

(Bks im) = 6km.-

1.5.4 A periodic boundary-value problem. Suppose that, on the grid =
{zi = th, i« = 0,£1,42,...} introduced on the line —c0 < z < oo, we
are seeking a non-trivial periodic solution with period N to the following
eigenvalue problem:

yzz + Ay =0, z €,

26
yi+N)=y(), 1=0,+1,42,..., h=I/N. (26)



1.5 Eigenvalue difference problems 55

Since the solution is periodic, it is sufficient to find it for : = 0,1,...,N — 1.
Writing out (26) at the points ¢ = 0,1,...,N — 1 and remembering that
y(=1) = y(N — 1), y(0) = y(N), we obtain the following problem:

yE+1)—229(¢)+y(i—1)=0, 0<i<N-1,
y(0) =y(N), y(-1)=y(N-1),

where z = 0.5\h2.
We shall now solve (27). Let us substitute the general solution

(27)

y(i) = a1 Ti(2) + c2U;i—1(2)

into the boundary conditions. Taking into account the properties of the
Chebyshev polynomials, we obtain the following system for determining the
constants ¢; and ¢;:

61(1 - TN(Z)) - CzUN_l(Z) = 0,
Cl(TN_l(Z) - Z) + 62(1 + UN._2(Z)) =0. (28)

This system has a non-null solution if and only if its determinant is zero. We
calculate it using (1.4.25), (1.4.29), and (1.4.31). We obtain

(1 = Tn(2))(1 + Un-2(2)) + (Tn-1(2) = 2)Un-1(2)
=14+Un-2(2) — 2Un-1(2) — Tn(2) + Tn-1(2)Un-1(2) — Tn(2)Un-2(2)
=2[1 - Tn(2)] = 0.

From this it follows that, for 2 = z, where

k
zk=c05277r-, k=0,1,...,N -1, (29)

the system (28) has a non-null solution. Thus, the eigenvalues of (26) are

_4 .2k7'r_4 .2@ _
Ak—h2s1n N = RS k=0,1,...,N-1. (30)

We now obtain the solution of (28). Since

TN-—l(zk)=zk7 OSkSN_]w
N-1, k=0,N/2,

Un—2(2) = {—1, k ¢O,N§2,
N, k=0,

Un-1(z) = =N, k=N/2,
0, k+#0,N/2,
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we obtain, substituting (29) in (28), the following solution to (28):

[a] for k =0 and k = N/2 we have ¢c; =0, ¢; =c§k) # 0;

[b] for k # 0, k # N/2,0 < k < N — 1, the constants ¢; = cgk), cy = cgk)
are arbitrary, but not simultaneously zero. From this we obtain that the
functions

2kmi

ye(?) = cik) cos—, k=0,N/2
N (31)
. k 2kmi B 2kmi N
yk(z)zcg)cosT-{-cg)T, ].SkSN—l,k#(),E

are solutions of (27) corresponding to the eigenvalue A;. Notice that, in
the case k # 0,N/2, the formulas (31) in fact determine two linearly
independent functions

2kmi and cgk) sin 2k7rz,

N

k
Cg ) COs

each of which is a solution to (27) corresponding to the eigenvalue Aj.

We now construct the normalized eigenfunctions for (26). We remark
that, for periodic grid functions, the scalar product introduced above can be
written in the following form:

N-1
(u,0)0 = Y _ u(i)v(i)h + 0.5h[u(0)v(0) + u(N)v(N)]

i=1

N-1
= > u(@)(i)h.

i=0

We consider two cases. First suppose that N is even. From (31) we obtain
that the eigenfunctions corresponding to Ag and Ay, are

. 1 2kmt N
pi(d) = \/;cos T k=0, 5 (32)

We further remark that it follows from (30) that

4 ., (N—-k 4 | L km
ANk = ﬁsm2 % = ﬁsm2 N = Ak,

k=1,2,...,= —1.

|2
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Choosing as eigenfunctions

2 2kmi N
) = — _ <k — —
pr() \/;cos N 1<k< 5 1

corresponding to the eigenvalue Ag, and

2 . 2km N
_(2) = — Qi ——— < < — -
uN—k(7) \/;sm N 1<k< 2 1,

corresponding to the eigenvalue Ay_x = Mg, in place of (32) we obtain a
full system of eigenfunctions for the problem (26). Thus, the eigenvalues are
Ak, defined in (30), and the eigenfunctions of problem (26) are given by the

formulas
. 1 2kme N
uk(l)—\/;COS—N—’ k=0,
2 2kne N
_ /2 i N_ 33
) = 2eo 20 <Xy )

yk(i)=\/gsinw+k)’”, %+1gng—1

IA
IA

for the case of N even.
We list here the basic properties of the eigenfunctions and eigenvalues
of the periodic boundary-value problem (26).

[1] The eigenfunctions are orthonormal.

[2] Any periodic grid function f(:) with period N, defined on the grid 2,
can be represented in the form

N/2 . N-1 .
) 2 2kmi 2 . 2(N = k)mi
f(l = ﬁ Z PEPEk COS N + ﬁ Z Pk SlnT, (34)
k=0 kE=N/2+1
where
N-1 .
. 2kmi N
<pk=,z=;p.'f(l)cos N OSkSEa
Nt (35)
~ .. 2N—-kmi N
(pk=§f(z)sm—N—, 5 F1<k<N -1,
1, k#0,N/2,
= 36
P {1/\/5, k=0,N/2. (36)
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The formulas (34)—(36) follow from the expansion of the function f(z)
in the eigenfunctions u(7):

N-1

FG) = fam(@)s  fr = (fime)
k=0

with the substitution fi = (\/ﬁ/N) Pk-

[3] The eigenvalues satisfy the inequalities

0= < Mk < Awjs = o

5y 0Sk<SN-1

We now consider the case where N is odd. In this case, the eigenvalues
of (26) are defined by the formulas (30), where Ag = 0, and Ay_x = A4,
k=1,2,...,(N -1)/2.

The eigenfunctions corresponding to the eigenvalues A\; are defined by
the following formulas:

po(?) = \/I, k=0,

2 2kmi N-1
) = 4/= cos — <k< 37
0] \/;cos N 1<k< 5 (37)
yk(i)z\/gsin%N;/,k)m, Ng_lskSN—l.

The eigenfunctions (37) are orthonormal, and the eigenvalues )y satisfy
the inequalities

4 g T
0=)\o</\k<)\¥—ﬁcos ﬁ, 0<k<N-1.

In addition, any periodic grid function f(z) with period N (N odd), defined
on the grid 2, can be represented in the form

(N-1)/2 . N-1 .
2 2k 2 . 2(N—-k
f@) = v Z PEPE COS ]\77” + i Z Pk sin AN = kjmi N )m,
k=0 k=(N+1)/2
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where

N-1 .
. 2kmi N-1
<Pk=ZPkf(2)COS N 0<k<——m,

i=0

[\

N-1

=Y f@an BT T oy g,

N 2

=0

and where p is as defined above.
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Chapter 2

The Elimination Method

In this chapter, we study several variants of a direct method for solving grid
equations — the elimination method. The application of the method to the
solution of both scalar and vector equations is considered.

In Section 1, the elimination method for scalar three-point equations is
constructed and studied. Section 2 is devoted to several variants of the elim-
ination method; flow, cyclic and non-monotonic elimination are considered
here. In Section 3 we look at monotonic and non-monotonic elimination for
five-point scalar equations. In Section 4, we construct block-elimination al-
gorithms for two- and three-point vector equations, as well as the orthogonal
elimination method for two-point equations.

2.1 The elimination method for three-point equations

2.1.1 The algorithm. In Chapter 1, methods were set forth for solving dif-
ference equations with constant coefficients. The current chapter is devoted
to the construction of direct methods which solve boundary-value problems
for three- and five-point difference equations with variable coefficients, and
also three-point vector equations. Here we will study several variants of the
elimination method, which is the Gaussian elimination method applied to a
special system of linear algebraic equations, and which takes into account the
band structure of the matrix of the system.

We will begin our study of the elimination method with the scalar-
equation case. Suppose we must solve the following system of three-point

equations
coyo — boy1= fo, =0,
—ai¥i-1 + ¢iyi — biyiti=fi, 1<i<N -1, (1)
—aNynN-1+cNyn= fN, i=N,
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or, in vector form,

AY = F, (2)

where Y = (yo,41,--.,yn)7 is the vector of unknowns, F' = (fo, f1,..., fn)T
is the right-hand-side vector, and A is the square (N + 1) x (N + 1) matrix

Co —bo 0 0 ce 0 0 0 0
—ai Cy "'bl 0 cen 0 0 0 0
0 —a Co —bg . 0 0 0 0
0 0 0 0 ee.. —AN-2 CN-2 —bN..z 0
0 0 0 0 .o 0 —aN-1 CN-1 —bN_1
0 0 0 0 .o 0 0 —aN CN

with real or complex coefficients.

Systems of the form (1) arise from a three-point approximation to a
boundary-value problem for second-order ordinary differential equations with
constant and variable coefficients, and also when realizing difference schemes
for equations with partial derivatives. In the latter case, we are usually re-
quired to solve, not a single problem (1), but a series of problems with dif-
ferent right-hand sides, where the number of problems in the series can be
in the tens or hundreds and the number of unknowns in each problem is
N = 100. Thus it is necessary to find efficient methods for solving problems
of the form (1), where the number of operations is proportional to the number
of unknowns. For the system (1), such a method is the elimination method.

The possibility of constructing an efficient method is restricted by the
characteristics of the system (1). The matrix A corresponding to (1) belongs
to the class of sparse matrices — of (N +1)? elements, no more than 3N +1 are
non-zero. Besides, it has a band structure (it is a tridiagonal matrix). Such a
regular distribution of non-zero elements makes it possible to construct very
simple computational formulas for solving the equation.

We now move on to construct the algorithm for solving the system
(1). We first recall the sequence of operations for the Gaussian elimination
method. At the first stage, the first equation is used to eliminate yo from all
the other equations; then, the second equation is used to eliminate y; from
equations i = 2,3,..., N of the transformed system; and so forth. As a result,
we obtain one equation in yn. Here the forward path of the algorithm termi-
nates. On the reverse path, we find y; for i = N —1,N —2,...,0 from the
transformed right-hand side and the already computed yi+1,Yi+2,---,YN.

Following the idea of Gauss’ method, we carry out the elimination of
the unknowns in (1). We introduce the notation a; = by/co, f1 = fo/co, and
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write (1) in the following form

Yo —aayi=p1, 1=0,
—a;¥i—1 +ciyi —biyin1i=fi, 1<i<N-1, (1)
—anyn-1 +cnyn= fn, t=N.

Take the first two equations of the system (1')

Yo —oqy1 =P, —aryo + iy — by = fi.

Multiply the first equation by a; and add it to the second equation. We get
(a1 — a1a1)y1 — biy2 = fi1 + a1 51 or, after dividing by ¢; — a1

b By = fi +arby

Y1 —aays = P2, az= , P2 .
1 —a1ay ¢ —ajay

All the remaining equations of the system (1') do not contain yq, therefore
this stage of the elimination process is completed. As a result we obtain a
new “reduced” system

Y1 — oY= P2, 1=1,
—aiyi-1 + ¢iyi — biyiy1=fi, 2<i<N -1, (3)
—anyN-1 +cNyn= fn, 1= N,

which does not contain the unknown yo and which has a structure analogous
to (1'). When this system has been solved, the unknown y, is found from the
formula yo = ayy; + B1. We can apply the above described elimination pro-
cedure to the system (3). At the second stage, the unknown y; is eliminated,
at the third y;, and so forth. At the end of the I*! stage we obtain a system
for the unknowns yi, Yi41,---,YN

Y —ayi1= By,  i=1,
—ai¥i-1 + ¢iyi — bivit1= fi, I+1<i<N-1, (4)
—aNyN-1 + cNYN= fN, t=N,

and formulas for finding y; for: <1 -1
¥i = air1¥it1 + Bivr, t=1-1,1-2,...,0. (5)
The coefficients «; and S;, clearly, are found from the formulas

desn = b; g _fi+ai,3i.i
= — g = LGP
i+ Ci"'aiai, i+ Ci_aiai,

_f

bo
=1,2,..;a1=—, B = .
Co Co

Substituting I = N — 1 in (4), we obtain a system for yy and yy_;
YN-1 —anyN = BN, —anyn-1+cNyN = fN,

from which we find ynv = Bn41,yn—1 = anyn + On.
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Combining these equations with (5) (I = N — 1), we obtain the final
formulas for finding the unknowns

Yi = di+1Yi41 +ﬂi+la i=N—1aN'_2a"'10a
yN=ﬂN+1’

(6)

where «; and §; are found from the recurrence formulas

b; .
ai+1=——a—, 1=1,2,...,N -1, a1=?—q,
Ci — Gi0; o
fi + aifi fo (8)
Bipr= "2, i=12,...,N,  p=

)
Ci — a0 Co

Thus, the formulas (6)-(8) describe Gauss’ method which, when applied to
the system (1), is given a special name — the elimination method. The co-
efficients a; and §; are called the elimination coefficients, formulas (7), (8)
describe the forward elimination path, and (6) the backward path. Since the
values y; are found sequentially in reverse order, the formulas (6)-(8) are
sometimes called the right-elimination formulas.

An elementary count of the arithmetic operations in (6)—(8) shows that
realizing the elimination method using these formulas requires 3N multipli-
cations, 2N + 1 divisions and 3N additions and subtractions. If there is no
difference between arithmetic operations, the total number of operations re-
quired for the elimination method is @ = 8N + 1. Of this total, 3N — 2
operations are used for computing «;, and 5N + 3 operations for computing
Bi and y;.

Notice that the coefficients a; do not depend on the right-hand side of
the system (1), but are determined solely by the coefficients aj, b;, ¢; of the
difference equations. Therefore, if we must solve a series of problems (1) with
different right-hand sides, but with the same matrix A, then the elimination
coefficients a; are only computed for the first problem of the series. Thus,
solving the first problem in the series costs @ = 8N + 1 operations, but
solving each of the remaining problems only costs 5N + 3 operations.

In conclusion we indicate the order of the computations for the formulas
of the elimination method. Beginning with a; and f;, we calculate and store
a; and §; using (7) and (8). Then the solutions y; is found using (6).
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2.1.2 Two-sided elimination. Above, right-elimination formulas for solving
the system (1) were obtained. The formulas for left elimination are derived
analogously:

’ a; . an
= =N-1,N-2,...,1, = —, 9
5! i — bi£i+1, ? ) ) ﬁN eN ( )
Ji + binita . N
= LT N1 N—2,...,0, ny=1Y 10
T~ bifin ' =N (10
Yit1= &iv1yi + niy1, t=0,1,...,N -1, Yo = No- (11)

Here the values of y; are found sequentially in order of increasing i (the
left-hand ordering).

Sometimes it is convenient to combine left and right elimination, ob-
taining the socalled two-sided-elimination method. It is most appropriate to
apply this method when it is only necessary to find one unknown, for exam-
ple yu(0 < m < N) or a group of sequential unknowns. We now obtain the
formulas for the two-sided-elimination method. Suppose 1 < m < N and use
formulas (7), (10) to find @y, as,...,am, B1,B82,---,Om and €N, EN—1, .-+, €m,
TN, TIN=1,-- -, Jm. We write out formulas (6), (11) for the reverse path of right
and left elimination for : = m — 1. We get the system

Ym—-1 = QAp¥Ym + ,Bm, Ym = ﬁmym—l + Nm,

from which we find y,;,:
_Nm+ EmBm

" 1_gmam ’

Using yp,, we sequentially find yp—1,Ym—1,...,yo from (6) for : = m —
1,m-2,...,0, and we compute Ym41,Ym+2,--.,y~ from (11) for i = m,m+
1,...,N.

Thus, the formulas for the two-sided elimination method have the form:

b; . b
aip1= ———, i=12....m-1, o= —,

Ci — a;0g Co

i +aipi .
ﬂi+1=f'——'ﬁ—', 1=1,2,...,m—-1, ,Blzﬁ,
C; — Q04 Co (12)

ai . aN
bi=————, i=N-1,N-2,....m, &{n=—,
i — bikit1 CN

_ Jitbinigs f

, i=N-1,N-2....m, ny==2
ci — biliya mw CN
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for computing the elimination coefficients and

¥i= ait1¥i+1 + Pit1, i=m—-1m-2,...,0,
Yi+1= Eiv1¥i + Nit1, i=mm+1,...,N -1,

_ m+&mBm
" 1—émam

(13)

for determining the solution.

It is obvious that the number of operations needed to find the solution
of problem (1) using two-sided-elimination is just the same as for either left
or right elimination, i.e., @ = 8N. Notice that for the special case of constant
coefficients a; = b; = 1,¢; =¢,fori =1,2,...,N—-1and by = ay = 0,
the number of operations can be reduced in the following way if N is an
odd number. Suppose N = 2M — 1. Substitute m = M in the formulas
(12), (13) for the two-sided-elimination method. Then én_j41 = a4, ¢ =
1,2,...,M. Consequently, the elimination coefficient &; need not be found,
and the formulas for the two-sided-elimination method will have the form

1
Qip1= ) i=1’27"'7M_1’ al=0a
c—q;
Bit1= (fi + Bi)ais, 1=1,2,...,. M -1, ﬂ1=-£—:)1,
= : _In
7i= (fi + niv1)an—i41, 1=N-1,N-2,... .M, nn= on’

Yi= Qiy1Yiv1 + Biy1, =M -1,M-2,...,0,
Yi+1= aN—i¥i + Ni+1, t=MM+1,...,N -1,

where yu = (M + amBum)/(1 — o).

2.1.3 Justification of the elimination method. Above we obtained formulas
for the elimination method without any assumptions about the coefficients
of the system (1). Here we consider what requirements these coefficients must
satisfy, in order that the method can be applied and the solution obtained
with sufficient accuracy.

Let us clarify the situation. Since the computational formulas (6)-(8) of
the elimination method contain division operations, it is necessary that the
denominator ¢; — a;a; in (7), (8) be non-zero. We will say that the algorithm
for the right-elimination method is correctif ¢; —a;a; # 0for1 =1,2,...,N.
Later the solution y; is found from the recurrence formula (6). This for-
mula can induce accumulation of the rounding errors from the results of the
arithmetic operations. In fact, suppose the elimination coefficients «; and 5;
are found exactly, and that the computation of yy results in an error ey,
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i.e., N = yN + en. Since the solution g; is found using the formulas (6)
Ui = aip19it1 + Biv1, 1 = N—=1,N—2,...,0, the error ¢; = §; — y; will obvi-
ously satisfy the homogeneous equation €; = ajy1€i41,t = N—-1,N-1,...,0.
From this it follows that, if all the «; are greater than one in modulus, then it
is possible to produce a large increase in the error €, and if NV is sufficiently
large, the computed solution §; will be significantly different from the desired
solution y;.

Being unable to present a more detailed discussion of the questions of
computational stability and the mechanism whereby instability arises, we
formulate the requirements usually presented for the elimination method. We
will require that the elimination coefficients «; not exceed one in modulus.
This is sufficient to guarantee that the error €; will not grow in the above-
considered model of the situation. If the condition |a;| < 1 is satisfied, then
we shall say that the right-elimination algorithm is stable.

We now clarify the correctness and stability conditions for the algorithm
(6)-(8). The following lemma contains sufficient conditions for the correctness
and stability of the right-elimination algorithm.

Lemma 1. Suppose the coefficients of the system (1) are real and satisfy the
conditions

Ibol > 0, lan] 2 0, leol >0, fen] >0, lail >0, [l >0, i=1,2,...,N-1,
leil > Jas| + 6], i=1,2,...,N—1, (14)
leol = Ibol, len] = lanl, (15)

where at least one of the inequalities in (14) or (15) s strict, i.e., the matriz
A s diagonally-dominant. Then for the algorithm (6)-(8) of the elimination
method we have

C,‘—a,-a,'aéo, |a.—]§l, i=1,2,...,N—1,
guaranteeing the correctness and stability of the method.

Proof. The proof of the lemma is carried out by induction. From the condi-
tions of the lemma and (7) it follows that

0<joi| == < 1. (16)

We will show that from the inequalities |a;| < 1 (: < N—1) and the conditions
of the lemma it follows that

ci—a;o; 0, |aipil <1, <N -1 (17)
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Then, using (16) we obtain that |a;| <1for:=1,2,...,N and ¢; — a;a; # 0
fort=1,2,...,N—1. To complete the proof of the lemma, it remains to show
that cy—ayan # 0. Thus, we first establish (17). Suppose |a;| < 1,i < N—-1.
Then from (14)

lei — aiei| > lei| = laillai] > [bi] + |ai|(1 = |as]) > [b:} >0,  (18)
and consequently ¢; — a;a; # 0. Further, from (7) and (18) we obtain

|bil [bil
tip| = —H— < =
[ 1+1l |Ci _aiail Ibgl ?

which is what we were required to prove.

It remains to prove that ¢y —anyan # 0. For this we use the assumption
that at least one of the inequalities (14) or (15) is strict. There are several
possible cases. If |en| > |an|, then from |ay| < 1it follows that ey —anan #
0. If the inequality (14) is strict for some ig,1 < ig < N —1, then from (18) we
obtain that |c;, — a;,a;,| > |b;,], and consequently we have that |a; 41| < 1.
By induction it is easy to establish that |a;| < 1 for ¢ > i + 1. Consequently,
in this case we have that |an| < 1, and therefore ey —anan # 0.If |co| > |bol,
then |a;| < 1, starting with ¢ = 1. Therefore we again obtain |ay| < 1 and
cny —ayay # 0. The lemma is proved. O

Remark 1. The correctness and stability conditions for the algorithm (6)-
(8) formulated in lemma 1 are only sufficient conditions. These conditions
can be weakened, allowing certain of the coefficients a; and b; to be zero. So,
for example, if for some 1 < m < N — 1 it occurs that a,, = 0, then the
system (1) splits into two systems:

CmYm — bmym+1= fm, 1= m,
—aiyi—1 + ¢iyi — biyiy1= fi, m+1<i<N -1,
—anyN-1+ enyn= fN, i= N,
for the unknowns ¥y, Ym+1,- .-, yn and
coyo — boy1= fo, 1=0,
—aiyi-1 + ¢iyi — biyit1= fi, Ii<m-2,

—0m-1Ym—-2 + Cm—-1Ym-1= fm—l + bm—lym

for the unknowns yo,¥1,...,Ym—1. The algorithm (6)—(8) can be applied to
each of these systems if they fulfill the conditions of lemma 1. But in this
case the formulas (6)—(8) can be used to find the solution of the whole split
system (1), and the algorithm will be correct and stable.
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Remark 2. The conditions of lemma 1 guarantee the correctness and stabil-
ity of the left- and two-sided elimination algorithms. The conditions can also
be used for the case of a system (1) with complex coeficients a;, b;, and c;.

We now show that, if the conditions of lemma 1 are satisfied, then the
system (1) has a unique solution for any right-hand side. In fact, taking
into account relation (7), it is possible to show, using direct multiplication
of matrices, that the matrix A of the system (1) can be represented as the
product of two triangular matrices L and U.

A=1LU,
where
co 0 0 0 0 0 0 0
—a; A 0 0 0 0 0 0
0 —-a A, 0 0 0 0 0
0 0 —a3 Az 0 0 0 0
L=1{ - . . . . . .
0 0 0 0 An_3 0 0 0
0 0 0 0 —an-—2 An_2 0 0
0 0 0 0 0 —anN -1 AN—I 0
0 0 0 0 0 0 —anN AN
1 —a 0 0 0 0 0
0 1 —ay 0o ... 0 0 0
0 0 1 —az ... 0 0 0
U=1|l- . . . .
0 O 0 0 1 —any-_: 0
0 o0 0 0 .0 1 —apy
0 o0 0 0 0 0 1

and A; =¢; —a;a;,1=1,2,...,N. Since

N
det A=det L-detU = co [] A,

i=1

and by lemma 1, ¢g # 0 and A; # 0 for 7 = 1,2,...,N, then det A #
0. Therefore the system (1) has a unique solution when the conditions of
lemma 1 are satisfied, and this solution can be found by the elimination

method (6)—(8).
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2.1.4 Sample applications of the elimination method. We now consider several
examples applying the elimination method described above.

Example 1. A boundary-value problem of the first kind. Suppose we are
required to solve the following problem:

(k(z)u'(z))' = g(z)u(z) = —f(z), 0<z <],
u(0) = p1, u(l)=p2, Kkz)2c1>0, g(z)>0. (19)

On the interval 0 < z < | we construct an arbitrary non-uniform grid @ =
{z; € [0,]],: =0,1,...,N, 2o = 0, zy = I} with steps h; = z; — z;_1,
t1=1,2,..., N and replace (19) by the following difference problem:

(ayz)z,i — divi= —¢i, 1<i<N -1,

20
Yo = K1, YN= W2, ( )

where d; = q(z;), pi = f(z;), and for a; we use the simplest approximation to
the coefficient k(z) : a; = k(z; — 0.5h;). Writing out the difference derivative
in (20) at a point

(ay—)~-=-l @ yi+1"y.'_a‘yi—y;_1
PR R U hin N ¥ ’

where ; = 0.5(h; + hiy1) is the average step at the point z;, we obtain the
problem (20) written in the form of a system

Coyo — Boy1= fo, i=0,
—Aiyi—1 + Ciyi — Biyiy1= fi, 1<i<N-1, ")
—Anyn-1+ Cnyn= fN, i=N.

By=AN=0, Co=Cn=1, fo=pm, fn=u2 fi=¢ei

ait1 .
i , i = , i=Ai+Bi+di,1<i:<N-1
hoh: B hohiss Ci=A;+B;+d;,1<:<N

(21)

By construction, the coefficients a; and d; of the difference scheme (20)
satisfy the following conditions: a; > ¢; > 0, d; > 0. Therefore from (21) it

follows that for (1") the conditions of lemma 1 are satisfied, and this problem
can be solved by the elimination method.
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Example 2. A boundary-value problem of the third kind. We now consider
the case of boundary conditions of the third kind:

(k(z)v' () — g(e)u(z) = —f(z), O0<z <],
k(0)u'(0) = k1u(0) — p1, (22)
—k(l)u'(l) = Kzu(l) — K2.

We will assume that the following conditions are satisfied: k(z) > ¢; > 0,
g(z) >0, k1 >0, k3 > 0, where if g(z) =0, then «? + &2 # 0.

On the non-uniform grid introduced above, the problem (22) is approx-
imated by the following difference scheme:

(ayz)z,i — diyi= —¢i, 1<i<N-1,

2 2 2 .
o ()= (s im) =0y
2 2 .
"h_I;"aNyi,N= (dN + EM) YN — (‘PN + 7&'#2) , 1t=N,

where the coefficients a;,d; and ; are chosen as indicated in Example 1.
Writing out the second difference derivative (ayz): at a point, and also the
first derivatives

o Yi+1 Ui o _ YT Yia

Yz,i = hist y Yz = ki )

we bring (23) into the form of (1") where

2a 2a 2
h_gla AN th’ CO=BO+d0+_51

By =
0 I

2
Cn=AN+dN+ ks, fo=wo+ 71, fN = pN+ 7 p2,
h h hn

B — Git1 ’Cl‘=A.'+Bi+di, fi=‘Pi, 1SlSN_1

Ai= g Bi= g

It is easy to check that, in this case also, the conditions of lemma 1 are
satisfied.

Example 3. Difference schemes for a thermal-flow equation. We now consider
a boundary-value problem of the first kind for a thermal-flow equation:

du_ 0%u

8t a2’
u(0,)= pa(t),  u(ht) = pa(t),
u(z,0)= uo(x).

O<z<l, t>0,
(24)
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On the plane (z,t) we introduce the grid @ = {(zi,t,), z; = th, 1 =
0,1,...,N, h=1/N, t, = nr,n =0,1,...} with step h in space and 7 in
time. We approximate (24) by the difference scheme

Yei =0yp i +(1—0)g, 1<iSN-1,

n n 0 (25)
Yo = .ul(tn)a Yn = “Z(tn)a Yi = UO(IE,'), n= 0’ 17 ceey
where o is a real parameter, y = y(zi,%5),
1 1 a1 n
Yzz,i = ﬁ(yi+1 —2yi +Yic1), Ypi= ;(y,- —yi) (26)

It is known (see, for example, [9]), that the scheme (25) has order of approx-
imation O(7 + h?) for any o, O(7% + h?) for ¢ = 0.5, and O(7? + h*) for
o =1/2— h?/(127). The stability condition for the scheme (25) with respect
to the initial data has the form

o >1/2— h?/(47). (27)

We turn now to the method for solving the equations (25) for y**!

Assuming that y is already known, we write (25) in the following form:

1 .
—yrtt —yitl =P, 1<i<N -1,
oT

yot = pa(tns1), v = pa(tngr),
where
ot = oot + (3 -1) ik,
if 0 # 0. Using (26), we bring this scheme to the form of (1"), where

By = An -——10, Co=Cn=1, . fo=p1(tas1), v = p2(tat1),
,=Bi=+, Ci=Ai+Bi+—, fi=¢}, 1<i<N-L
A; i =7 Ci=A+ +a’r fi=" t<N-1
We now find the conditions under which the constructed system (1") can
be solved using the elimination method. From lemma 1 it follows that the
condition |2/h%+1/(o7)| > 2/h? must be satisfied. Solving this inequality, we
find a sufficient condition ¢ > —h?/(4r) for applying elimination. Comparing
this inequality with (27), we obtain that, if the stability condition (27) is
satisfied for the scheme (25), then the elimination method can be used to
find the solution at the new level.
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Example 4. The non-stationary Schroedinger equation.

We now consider the non-stationary Schroedinger equation

Ou  Ou
ZEZ@’ 0<I<l,t>0,

u(0,t)=u(l,t) =0, u(0,z)=wuo(z), i = V1.

For this equation, as for the thermal-flow equation (24), it is possible to
construct a two-level scheme with weights

Wik =0ypi i+ (1 —0)yhpy 1<k<SN-1, (28)
yo =yn =0, y}=uo(zx),

where the parameter ¢ = oy + 101 can take on complex values. The scheme
(28) has approximation error O(r + h?) for any o, O(7% + h?) for o = 0.5,
and O(7% + h*) for o = 1/2 — h?i/(127). The stability condition with respect
to the initial data has the form

o =Reo >0.5. (29)

The scheme (28) is usually transformed to the system (1"), and the conditions
of lemma 1 assume the following form: |2/h? 4 i/(o7)| > 2/h2. Solving this
inequality, we obtain that the elimination method will be correct for finding
the solution of the scheme (28) at the new level if the condition ¢y = Im o >
—h?/(47) is satisfied.

Thus, for this example, the applicability condition for the elimination
method does not coincide with the stability condition for the same difference
scheme with respect to the initial data.

2.2 Variants of the elimination method

2.2.1 The flow variant of the elimination method. We will now look at a
variant of the elimination method which is used to solve difference problems
with widely varying coefficients. Examples of such problems are thermal-flow
hydrodynamics and magnito-hydrodynamics problems, where the coefficient
of thermal-flow or conductivity depends on the thermodynamic parameters of
the medium. In the case of thermal problems, it is possible to have adiabatic
cells, where the thermal-flow is infinitely large. In magnetic problems this
corresponds to ideally conductive or non-conductive cells.
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Often in such problems it is necessary to find, in addition to the so-
lution, the heat flow (the thermal problem). Using the usual elimination
formulas to solve the second-order difference equations produced by the dif-
ference schemes for these problems leads to a considerable loss of accuracy.
The preceding investigation of numerical differentiation for flow problems
leads to unsatisfactory results. Getting around this deficiency leads us to the
so called flow variant of the elimination method. The formulas for this vari-
ant of elimination can be obtained by transforming the formulas for regular
elimination.

Thus, we consider a boundary-value difference problem

—a;Yi—1 + ¢i¥i — aip1Yis1= fi, 1<i<N-1, 1)
Yo — K11= K1, YN — K2YN-1 = M2,
where
¢i=a;+aj41+d;, 0<a;<oo, (2)
di>0, i=1,2,... . N—1, [k1|<1, [|ss|<1. (3)

The formulas for right elimination (see (2.1.6)—(2.1.8)) for problem (1)
have the form (taking into account (2))

- 2 . +I€ 3
Yi = @it1¥i+1 + Bit1, t=N-1,N-2,...,0, yN=l;2—2—ﬂN (4)
— KON
Qi1
ait+1 +di + a,'(l - 5‘!’),
_ T . a
Bivi=(fitaB), i=12. N -1 fi=m. ©)

&,‘+1= i=1,2,...,N—1, C_!1=I‘E1, (5)

We now introduce a new unknown grid function (the flow) with the formula
w; = —a,-(y,- —y,'__l), 1= 1,2,...,N, (7)
and rewrite (1) in the form

wit1 — w; + diyi= fi, 1IK:<N -1,
Yo — K1y1= Ha, 1= 0, (8)
—KWN +aN(1—I€2)yN= anpa, i=N.

From (7) we find

1 .
Yi = Yi+1 + Witi, Z=0,1,...,N—1,
ait1
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and we substitute this expression in (4). As a result we find a relation con-
necting y;+1 with wijq:

Wit1 + ait1(1 — @ig1)¥i41 = @it1Bit1, i=0,1,...,N—1.
Introducing the notation
a; =a;(l-a&), Bi= a;Bi, i=1,2,...,N,
we rewrite this relation in the form

wi +aiyi =0, t=12,...,N. (9)

Notice that (8), (9) form an algebraic system containing 2N +1 equations
in the 2N + 1 variables yo, v1,...,yn and wy, ws,...,wy. The structure of
this system is such that it splits into two independent systems in the variables
Yo,Y1,.--,yN and wy,ws,...,wn. Let us construct this system

From (9) we express y; as y; = (Bi—w;)/ai,t = 1,2,..., N and substitute
it in (8) for i = 1,2,..., N. As a result we obtain the equations

@i difi — aifi .
; —— =N-1,N-2....,1
ai+diw'+1+ aitdi N-LN 7

w; =
(10)
_ an[(1 = k2)BN — anps]
(1 — k2)an + anks

which we can solve sequentially to find all the w;.

We will now obtain the equations for y;. For this we use (9) to express w;
as w; = —a;yi + fi, t = 1,2,..., N and substitute in (8) for i = 1,2,...,N.
As a result we obtain the equations

@it fi=-Bim+8i .
.= ) £ = = =N-1,N-2,...,1
Yi ai+diy'+l+ ai+di ) ? ) ) )+
Yo = Kmay1 + 1, (11)
K2BN + an 2
Yn =

- (1 = &2)an + ank2

for sequentially computing y;.
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We shall now give the recurrence formulas for determining a; and ;.

Using (5) and (6) we find

aivifai(l —@)+di]  aipi(ai +dy)
agiv1 +di+ai(l — &) aiq1+oi+di’
(12)

ait1 = ait1(l — @ip1) =
i=1,2,...,N—1, ag =al(1—f€1),

aip1(fi + Bi)

1 =1,2,... -1 = . (1
a.‘+1+01.'+di’ ? y &y )N ) 131 a) g ( 3)

Bi+1 = @it1Biy1 =

From the conditions (2), (3) and formula (12) it follows that a; > 0. Since
the coefficient a;/(a; + d;) in (10) is not greater than one, the algorithm for
computing w; is guaranteed to be stable. Further, since it follows from the
conditions a; > 0 and d; > 0 that a;41 < ai41 + «; + d;, we have from (12)
the inequality a;y1 < a@; + d;. Therefore, the coefficient a;t1/(a; + d;) in
(11) is always less than one, and this guarantess that the computation of y;
is stable. Notice that the denominator in the expressions for wy and yy is
always greater than zero.

Thus, the algorithm for flow elimination is described by (10)-(13). No-
tice that the indicated recurrence relations for «; and §;, and also the ex-
pressions for yy and wy are appropriate if a;41 < 1. If @;47 > 1, then it is
recommended that the following formulas be used, which were obtained from
(10)-(13) by dividing the numerator and denominator by a;4:

Q= ai +di Biri= fi + Bi
W4 (ai +di)/ais1’ T+ (ai +di)/aiy1’
yn= Kafn/[an + pa w _ (1—r2)BN — anp
N 1—I€2+I€2aN/(lN, N 1—I€2+I€20’N/GN ’

Let us now compute the number of arithmetic operations which are re-
quired to realize (10)-(13). With a reasonable organization of the computa-
tion, where expressions which occur in several expressions are computed only
once, and where the general multiplier for several terms is extracted, the
number of operations required for (10)—(13) is @ = 21N + 1. This is approx-
imately twice as many operations as were required by the usual elimination
method to find y; for problem (1), but in addition the flow w; has been found
from formula (7).
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2.2.2 The cyclic elimination method. Let us now consider the following system

—a;Yi-1 + ¢Yi — :y:+1 fn 1= Oa :t11 :t21 ey (14)

the coefficients and right-hand side of which are periodic with period N:
(15)

a; = ai+N, bi=biyn, ci=ciyn, fi= fixn.

Systems of the type (14), (15) arise, for example, from three-point dif-
ference schemes designed to find periodic solutions of second-order ordinary
differential equations, and also when approximating the solutions of equations

with partial derivatives in cylindrical and spherical coordinates.

A solution of the system (14) satisfying the conditions (15) will, if it
exists, also be periodic with period N, i.e.,

(16)
 N-1.

Yi = Yi+N-

Therefore it is sufficient to find the solution at, for example,: = 0,1, ...
In this case, the problem (14)—(16) can be written as:

i=0
1<i<N-1,

—apyN-1 + coyo — boy1 = fo,
—a;¥i—1 + ¢iyi — ¢iYi+1 = fi,

(17)

YN = Yo- (18)
We appended the condition (18) to the system (17) so that the equations for
t = N — 1 would not include yy, it having been replaced by yy. This allows
us to retain a unique form for the equations (17) for ¢ = 1,2,...,N — 1.

(¥0,¥1,---,yn—1)T and the
,fn-1)T, then (17), (18) can be written in

If we introduce the vector of unknowns ¥ =
right-hand side F = (f,, f1,...
the vector form AY = F where

Co —bo 0 0 e 0 0 —dap
—ay (5] —bl 0 e 0 0 0
0 —ag C2 —bg e 0 0 0
0 0 0 0 CN-3 —bN_3 0
0 0 0 0 —aN-2 CN-2 —bN_2
_bN-—l 0 0 0 0 —aN-1 CN-1

is the matrix of the system (17), (18). The presence of non-zero coefficients ag
and by _; in (17) does not allow us to solve this system using the elimination
method described in Section 1. To find the solution of the system (17), (18)
we construct a variant of the elimination method called the cyclic elimination
method.
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The solution of the problem (17), (18) will be found in the form of a
linear combination of the grid functions u; and v;

Yi =ui +yovi, 0<:i<N, (19)

where u; is the solution of the non-homogeneous three-point boundary-value
problem
—aiui—1 +ciui —buip =f;, 1<i<N-1,

20
’llo=0, UN=0 ( )

with homogeneous boundary conditions, and v; is the solution of the homo-
geneous three-point boundary-value problem

—a;vi—1 +¢iv; — bjviy; =0, 1<i<N -1,

21
vo=1, ovy=1 (21)

with non-homogeneous boundary conditions.

We now find under what conditions y; from (19) is the desired solution.
Multiplying (21) by yo, adding it to (20), and taking into account (19), we
find that the equations in (17) can be satisfied for : = 1,2,..., N — 1. From
the boundary conditions for u; and v; it follows that (18) will be satisfied.
Thus, if y; satisfied the remaining unused equation at ¢ = 0 in (17), the
problem would be solved. Substituting (19) in this equation, we obtain

—GoUN—1 — GoYoVUN—-1 + CoYo — bouy — boyov1 = fo. (22)
Thus, if we choose yo from the formula

_ Jfo—aoun—1 + bouy
- b
Co — aoUN-1 — bovy

Yo (23)

then (22) will be satisfied, and consequently the solution of the problem (17),
(18) can be found from (19).

We are left with solving (20) and (21). They are particular cases of the
three-point systems of equations solved in Section 1 using the elimination
method. For (20) and (21), the elimination formulas have the following form:

Ui = @ip1Uit1 + Bit1, t=N-1,N-2,...,1, uny=0, (24)
Vi = Qip1Vit1 + Qiga, i=N—1,N—2,...,1, N = 4

where the elimination coeflicients «;, §; and +; are found from the following
formulas

i=1,2,...,N, a;=0, (25)
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fi +aiB;

it1 = 1 =1,2,... =

ﬂl+1 Ci“aiai’ ? )&y aN’ /Bl 0’ (26)
a;v; .

‘)’i+1=ci_'—:;ia'_, t=1,2,...,N, 11 =1, 2n

Let us transform (23). From (24) we obtain uy_; = ayuy + SN = fn,
vN-1 = YN + an. We substitute these expressions in (23) and take into
account (15), (25)-(27):

fn +anBn + Brvur __Byt1tanyim
cN —anan —anNYN —byvi 1 —N41 —anpn

Yo =

We have constructed an algorithm for solving problem (17), (18), called the
method of cyclic elimination:

a = bl/cl’ B2 = fl/Cl, Y2 = al/cla

bi fi + aifi aiYi .
P S N i b 1 R o/ SR S N 8
®iy1 o —aa;’ Bit+1 P Yi+1  — agor; ¢ )
uN-1= PN, UN-1=CaN+TN, (28)
Ui = @i1Uit1 + Bit1, Vi = @ip1Vip1 +Yit1, t =N —2,N =3,...,1;
+ anyiu .
Yo = B +1 +171 ¥i = u; +yovi, 1=1,2,...,N—1.

1 —9N+1 —an+1m1 ’

An elementary computation indicates that the algorithm requires 6(N —
1) multiplications, 5N — 3 additions and subtractions, and 3N + 1 divisions.
If no distinction is made among arithmetic operations, the total number is

Q =14N - 8.
We now investigate the applicability of the algorithm (28). We have

Lemma 2. Suppose the coefficients of the system (14), (15) satisfy the con-
ditions
|ai| >0, |b;] >0, |ei| > |ai| + 6], ¢=1,2,...,N, (29)

and there ezists 1 <19 < N such that |c;,| > |ai,| + |bi,|- Then

ci—aio; #0, oy <1, oyl + || <1, i=2,3,...,N,
1—vyN41—any1v1 #0.
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Proof. In fact, since «;, §; and +4; are elimination coefficients for the right-
elimination method applied to the problems (20) and (21), and by (29), the
conditions of lemma 1 are satisfied, from lemma 1 it follows that

ci—aia; 20, |ag| <1, :=2,3,...,N,
lei — aias| 2> |ei| — |asl|ai| > |b:] > 0. (30)

Further, on the basis of the conditions from lemma 2, |a;| + |b;] < |e4]
and, consequently |az| + |v2| < 1. By induction, we obtain from this the
inequalities

|01i|+|7i|51, i1=2,3,...,N, (31)

since
[6i] + laillvil  lail + 6] — lail (L = |7])
lei —aiai| — lei| = |asllas]

< lail + 15| — lailles|
lei| — |ail|ev]

loviga] + |yita| =

<1
and thus we have (30). Notice that |¢;| > |a;|+|b;| for ¢ = iy and consequently
|aig + 1|+ |vip+1] < 1. Since 1 < i < N, |an41| + [ynv41] < 1.

It remains for us to show that 1 — yn4+1 — an+1v1 # 0. On the basis of
(28) and (31) we obtain

lvn-1| < |an|+ [yn] <1,

and further, by induction, we prove that |v;] < 1,1 < ¢ < N — 1, since by
(31)

[vil < laitallvier] + rigal < loiga| + Prigal < 1.

In particular, |v;| < 1. Hence, taking into account |an41|+ [yN+1] < 1, we
deduce that

I1 = yN41 — ansv1| 2 1= fynsa| = lavsallor] 2 1= Janta| = lyv4a| > 0.

Lemma 2 is fully proved. O

In conclusion, notice that the elimination coefficient 3;, and consequently
u; and y;, depend on the right-hand side f;. The elimination coefficients a;
and +; and also v; do not depend on f;, and in a series of problems with
difference right-hand sides they would be computed and saved. This allows
the second and all subsequent problems to be solved in @ = 9N —4 operations.
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2.2.3 The elimination method for complicated systems. We continue to con-
struct variants of the elimination method in order to solve systems of differ-
ence equations with non-tridiagonal matrices. In Section 2.2.2, cyclic elimina-
tion was used to solve a system whose matrix only had two non-zero elements
off the main diagonals. We shall now consider a more general case.

Suppose we must solve the following system of equations:

N-1
coyo — ) diy; —oyn = fo, i=0,
i=1
—piYo — &iYi-1 + ciyi —biyii —Yiyvn =fi, 1<i<N -1, (32)
N-1

—ONYo — Z 9i¥j +enyn = fn, t=N.
i=0

A system of the form (32) arises when approximating second-order or-
dinary differential equations in the case where the associated boundary con-
ditions satisfy auxiliary conditions of integral type, as well as in a series of
other cases. In particular, all of the systems of difference equations considered
above can be written in such a form. For example, if in (32) we set

d]-_-bo,dN_l:ao,d,':O, 2§z§N—2,
<p;=2,b,-=g.-=0, 157'SN_1’
¢0=0a90N=CN=1a fN=0a

then we obtain the problem (17), (18).

If we introduce the vectors Y = (yo,1,...,yn)T and F = (fo,..., fn)7T,
then (32) can be written in the vector form AY = F, where

Co —dy—dy—d3---—dn_3 dn_y —dN—1 —ho
—p1—a; |r (551 _bl o - 0 0 0 ! —1/)1
—@2 : —ag Cy '—bg 0 0 0 : —’ll)z
—p3 1+ 0 —az cg -+ O 0 0 ! -3
A= e e e e 1
~pn-3 |, 0 0 0 - cnvg —bvg 0 |  —¥n-s
—pN—2 1 0 0 0 ---—an_2 cy—2 —bN_2 : —tN-2
—N-1 , 0 0 0 - 0 =—an-1 cN-1 | —bN-1—%N1
Lot o e e e J
—¥N —91—92—93""*—gN-3 —gN-2 —gN-1 CN

Clearly, the matrix A is obtained by bordering a tridiagonal matrix with
columns and rows on all four sides. Notice that, by reordering the unknowns
as Y* = (y1,¥2,--,UN,%)", the system (32) becomes A*Y* = F*, where
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the matrix A* is obtained by bordering the same tridiagonal matrix with two
columns on the right and two rows at the bottom. We now go on to construct
a method for solving the problem (32). The solution of (32) will be found as
a linear combination of three grid functions u;, v;, and w;:

Yi = u; + Yovi + ynw;, 0<i <N, (33)

where u;, v;, and w; are solutions of the following three-point grid problems:

—a;Ui—1 + it —biuip1 = f;, 1<i<N-1, (34)
ug =0, uny=0;
—a;Vi—1 + ¢ —bvip1 =¢;, 1<i1<N -1,
1 +1 =@ } (35)
Vo = 1, UN = 0’
—a;wi_1 + cw; —bwiy 1 =19;, 1<i<N-1, (36)
wp=0, wy=1;

From (33)—(36) it is clear that, for 1 <7 < N — 1, the equations of the
system (32) are satisfied. The boundary conditions for u;, v;, and w; guarantee
that (33) is an identity for : = 0 and i = N. Thus, if the problems (34)—(36)
are solved, and yo and yn are known, the formula (33) will determine the
solution to (32). We shall first find yy and yx.

We will find the values of yo and yn using the equations of (32) for i =0
and 1 = N. Substituting y; from (33) in these equations, we obtam a system
of two equations for yo and yy:

N-1
(CO_Zva)yO_(¢0+Zdw1)yN—f0+Zdu17

=1 Jj=1 7j=1

N-1 N-1 N-1
—en+ D givi v+ [en- Y giwi |yn = v+ ) gju;.

j=1 1=1 1=1

If the determinant of this system

N-1 N-1
A= Co—Zdj'Uj CN—Zgij'
j=1 j=1

N-1 N-1

—{ %o+ Z djwj | | N + Zijj

(37)
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is non-zero, then we have that

N-1 N-1
+ (Co - Z dj’l)j) (fN + gjuj)} ) (39)
=1 Jj=1

Let us now look at a method for solving the auxiliary problems (34)-
(36). Since here we are dealing with ordinary boundary-value problems for
three-point equations, it is possible to use the elimination method described
in Section 1. For (34)—(36), the formulas for the right-elimination algorithm
take the following form:

Ui = @ip1Uip1 + Bit+1, t=N-1,...,0, uny=0,
Vi = Qi41Vi+1 + Vi1, Z =N-1,...,0, vy=0, (40)
Wi = Qi1Wit1 + 641, t=N-1,...,0, wy=1,

where the elimination coefficients «;, 3;,7i, and §; are determined by the
formulas

b _ fit+aiB;
it1= c; — a.~a,~’ ﬂﬂ-l_ C; — a;0; ’
i=1,2,....,N—-1, a;=0, B =0, (41)
- pitai P ¥i + a;é;
Vitr= Cc; — a;0; ’ e C; —a;a; ’

i=1,2,...,N—=1, m=1, 6 =0.

Thus, for problem (32), the elimination method is described by (33),
(37)—(41).

Let us now consider the question of stability and correctness for the
algorithm. By lemma 1, the conditions

la;| >0, |bj| >0, |ci|>|ai|+ 6], 1<i<N-1 (42)

are sufficient for the stability and correctness of the elimination method (40)-
(41) for the auxiliary problems (34)—(36). It is possible to show that, if the
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original system (32) has a unique solution, then the determinant A, defined
by (37), is non-zero. In this case, the formulas (38) and (39) for computing yo
and yn will be correct. We now formulate this result in the form of a lemma.

Lemma 3. If the system (32) has o unique solution and the conditions (42)
are satisfied, then the algorithm (33), (37)—(41) of the elimination method for
problem (32) i3 correct and stable.

Notice that the formulation of simple and, at the same time, not overly
restrictive sufficiency conditions for solving the system (32) is a complex
problem. Here is an example of conditions which guarantee the correctness
and stability of the above algorithm. Suppose that the matrix of the system
(32) is diagonally dominant, i.e., that it satisfies the conditions

il > |ail + [b:] + |oosl + hsl, 1<i<N-1, (43)
N-1 N-1

leol > [bol + Y Idil, len| > lenl+ D lgil; (44)
=1 i=1

la;] >0, [bj|>0, 1<i<N-1, |co|>0, Jen|>0,

where at least one of the inequalities in (43) or (44) is strict.

We will indicate the basic steps of the proof. It is first shown that |a;| +
|v:l+16:] < 1,1 << N. It is further shown that |vi|+|w;| <1for1 <i < N,
and, if for some i one of the inequalities in (43) is strict, |v;| + |wi| < 1 for
all 1 <7 < N. We also have

N-1

N-1
co— Y djvi| > leol = Y Idjllvj
j=1

J=1

N-1

> ol + 3 (1= loDld|
Jj=1
N-1

> ol + Y |wjlld;|

=1
N-1

> (%o + E wjd;
=1

and analogously

N-1 N-1
CN — Zg;w,‘ 2 |eN+ Zgjvj )
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where at least one of these inequalities is strict. From this it follows that the
determinant A defined in (37) is non-zero. Stability and correctness of the
elimination method for solving the auxiliary problems (34)—(36) then follows
from (43).
As a sample problem which leads to (32), we consider the scheme with
weights
yi=oyrai+(1-olys,, 1SiSN-1,

n_ ,n_ t
y: yf, Hl( n)’ (45)
YN — yp= pa(tn),
YW=1up(z;), n=0,1,..., 1<k<N-1,

which approximates the thermal-flow equation with associated (non-local)
boundary conditions

o _ o
ot 0x?’
u(0,t) —u(v(t),t) = m(t),

u(l,8) —u(v(t),t) = pa(t), u(z,0) = uo(2),

0<z<l, t>0,

where the function £ = v(t) takes on values between 0 and [l. Notice that,
in the scheme (45), the curve z = v(t) approximates the broken curve z; =
v(ty), so that the points (z,%,) are nodes of the grid.

The difference scheme (45) is written in the form of the system (32)

in the variables y; = y:""l with the following values for the coefficients and

right-hand side (o # 0):
=1 dr=1, fo= /Jl(tn+l)7 $o = 0, dj =0, J # k,

en=1, =1, fN = /J2(tﬂ+l)a ¢N =0, g9; = 07] :)é k7
pi=%i=0, ai=b=1/h% ¢i=a;+b+1/(o7),

1 1 . .
f,~=;y?+ (;“1> Yzz,i0 t1=1,2,...,N -1

From this we obtain that the requirement |2/h2 + 1/(o7)| > 2/h? guar-
antees that the conditions (43), (44) are satisfied. Consequently, for o >
—h?/(47) it is possible to use the variant of the elimination method de-
scribed here to solve the equations of the scheme (45), and it will be stable
and correct.
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2.2.4 The non-monotonic elimination method. We now return to the elimi-
nation method constructed in Section 1 for solving three-point equations:

CoYo —.boy1= fo, =0,
—QiYi-1 +Ciy:’ _biyi+l= fl" 1= 1,2,---,N— 1, (46)
—aNynN-1 + cNyN= fN, =N,

Remember that, for the right (left) elimination method, the unknowns y; are
found sequentially in reverse (forward) order. Thus, y; is expressed only in
terms of the later unknowns. This structure in the algorithm is the justifica-
tion for calling the method monotone elimination.

The monotone sequence for determining the unknowns y; on the re-
verse path of the method arises from using the natural order to eliminate
the unknowns on the forward path. Thus, monotone elimination is Gaussian
elimination without pivoting applied to a special system of linear algebraic
equations (46) with a tridiagonal matrix. It is known that such a variant
of Gaussian elimination is correct for systems of equations with diagonally-
dominant matrices. For the system (46), this assertion was proved in lemma 1.

We now look at this in more detail. Remember that, in Section 2.1.1, at
the It stage of the elimination process a “reduced” system

(q—a)yi =y fi +aify, i=1,
—ai¥io1 + 6y — by fi, 1+1<i<N-1, (47)
—aNyN-1+cNynN = fN

was obtained for the unknowns yi, Y141, - ., ynN- Assuming that ¢; — aja; was
non-zero, we transformed the first equation of the system (47) to the form

N = i + Biv1,  ar = bi/(a — aray) (48)

and used it to eliminate y; from equation (47) for i = I + 1. Lemma 1 guar-
anteed that, if the matrix A of the system (46) were diagonally dominant,
then |¢; — ajay| > |by|. Consequently, in the first equation of the system (47),
the coefficient of y; would be larger in modulus than the coefficient of yi4;.
Therefore choosing a pivot element is unnecessary, forming (48) is feasible,
and the stability condition |a;+1| < 1 is automatically satisfied.

If we do not have diagonal dominance, then it is impossible to guarantee
that ¢; — aja; is non-zero, or that |aj4;| < 1. In this case, the monotone
elimination algorithm can give rise to division by zero or extreme sensitiv-
ity to rounding errors; consequently, the algorithm must be modified. The
construction of a correct elimination algorithm for the system (46) is based
on the use of column pivoting in Gaussian elimination. In this algorithm,
the monotone ordering of unknowns y; can be disturbed, and therefore this
method will be called non-monotonic elimination.
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We now move on to a description of the non-monotonic elimination al-

gorithm. Suppose that, at the I** stage of Gaussian elimination with column
pivoting applied to the system (46), the following “reduced” system is ob-
tained:

CYym, —biyiy1=F, i=1, (49)

—Aym, + cr1yi41 — g4z = @, i=1+1, (50)
—ait2yi+1 + Cir2yi2 — bip2yirs = fi2, i=1+2, (51)
—ai¥i—1 +ciyi —bivip1=fi, [+3<i<N-1, (52)
—aNyn-1+ cNynN = fN, i=N, (53)

where m; < 1. (If | = 0 in (49)-(53), set C = ¢o, A = a1, F = fo, ® = fi,
and my = 0).

We now describe the (I + 1)-st step of the elimination process. The

column-pivoting strategy leads us to two cases:

2)

b)

If |C| > |bi], then (49) is transformed to the form

Ymi — Q+1¥i+1 = Big1, a1 =b/C, By = F/C,

where |ai4+1| < 1, and the unknown with index m; is found from the
unknown with index [ + 1. Further, this equation is used to eliminate
Ym, from (50). This gives:

CymH.; - bl+lyl+2 =F 1= [+1, (54)

where mi41 = l+ 1, C= Cl4+1— Aa1+1, F = ¢+ A,BH-I- Equation (51) is

not changed, since it does not contain y.,,, but is rewritten in the form
—AYmyy + Crp2yivz — bipayipa = @, i=1+2, (55)

where A = aj42, ® = fiy2. Combining (54) and (55) with (52), (53),
we obtain a new “reduced” system of the form (49)—(53), in which [ has
been replaced by I + 1. The (I + 1)*® step is completed.

If |C| < |bi|, then (49) is transformed to the form

Yi+1 — X41Ym; = ﬂl+1, a1 = C/bl, ﬂl+1 = —F/b,,

where again |ai4+1| < 1, but this time the unknown with index I + 1 is
computed from the unknown with index m;. The resulting equation is
used to eliminate y;4; from (50) and (51). Here (50) will be transformed
to the form (54), where m;4; = my, C = ciy1a141 — 4, F = ®—ci418141,
and (51) is transformed to the form (55), where the quantities A and @
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are redefined using A = aiy20u42, ® = fiy2 + ai+281+1. Equations (52),

(53) are not changed, since they do not contain y;4+1. Again we obtain a

system of the form (49)—(53). It has different coefficients C and A than

the system obtained in case a), and the right-hand sides F and & are
computed by different formulas.

Thus, one step of the process differs in the choice of a pivot element.
Notice that if the original system is not singular then, in equation (49), the
coefficients C and ¥ cannot both be zero. This guarantees the correctness of
the formulas for the coefficients a;y; and fiy;. Since all the computed a4,
are less than one in modulus, the computation of the unknowns y; on the
reverse path of the method will be stable with respect to the rounding error.

For this algorithm, the unknowns may be computed out of sequence.
This requires us to store information about the ordering of the unknowns.
This information can be stored in two integer sets 6 and «: § = {6;,1 < <
N}, & = {xi,1 <1 < N}, and the unknowns are found from the formulas
Ym = Ai41Yn +ﬂ,'+1, m = 9i+1, n = Kit1, 1=N - 1,N - 2, ,0. The sets
0 and k are constructed on the forward path of the algorithm.

The full algorithm for the non-monotonic elimination method can be
described as follows.

[1] Give initial values for C, A, F,and ®: C =¢y, A=a1, F = fo, ® = f1,
and formally set ko = 0.

[2] Sequentially for i =0,1,...,N — 1, depending on the situation, perform
the operations described in paragraphs a) or b):
a. if |C| > |bi|, then

ait1 =b;/C, Piy1=F[C, C=ciy1—Aait1, F=@+Afiy1,
Oiv1 =k, Kip1=i+1, A=aiy2, P®= fiss;
b. if |C| < |b;|, then

ai+1=C/b;, PBiy1=-F/bi, C=ciprait1 — A,
F=®—cit1fi41, Oip1=1+1, Kip1 =k,
A= aip2aiy1, P = fiyo+aiv2Biva.

Remark. For i = N — 1 it is not necessary to redefine A and ® in steps (a)

and (b).

[3] First compute the unknown y,, where n = k, using the formula y, =
F/C, and then sequentially for i = N — 1, N — 2,...,0 compute the
remaining unknowns ym = @i41Yn + Bit1, m = bip1, 1 = Kiy1.
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Notice that the algorithm presented here reduces to the usual right-
elimination algorithm if the conditions of lemma 1 are satisfied.

An elementary count of the number of arithmetic operations for the
non-monotonic elimination algorithm shows that, if step [b] is always used,
Q = 12N operations are required. This is 1.5 times more than for monotonic
elimination.

Let us now consider a sample application of the non-monotonic elimina-
tion method. Suppose we must solve the following difference problem

—Yi-1+¥i—¥Yit1=0, 1<:<N-1,

56
Yvo=1 yn=0. ( )

The problem (56) is a particular case of the system (46), in which fo = 1,
bo=an=0,co=cy=1,fN=0,ci=a;=b=1,f;=0,1<i:<N -1
If N is not divisible by 3, then the solution of problem (56) exists and has
the form (see Section 1.4.1)

y;:sin@/sin%, 0<i<N. (57)

The left and right elimination algorithms are not correct for (56), since
the computation of a3 (for right elimination) and éx_ (for left elimination)
leads to division by the zero values ¢c; —agas and cy—_g —by_26 y—1. The non-
monotonic elimination algorithm allows us to accurately obtain the solution
(57). To illustrate, we list the values of the coefficients a;, 8, and also 6; and
ki for N = 11 (Table 1).

Table 1
1

0 1| 2| 3| 4 5| 6| 7| 8 9] 10 11
a; 0 1 o| -1f 1} O -1y 1| o] -1} 1
Bi 1l 1| -1 -1} -1 1| 1} 1| -1} -1] -1
0; of 1| 3| 2| 4| 6| 5| 7| 9| 8| 10
Ki 11 2| 2 4 5| 5| 7| 8 8| 10| 11
v 1 1 o0 -1 -1} oOf 1} 1 O] -1| -1} O
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2.3 The elimination method for five-point equations

2.3.1 The monotone elimination algorithm. Above we looked at several vari-
ants of the elimination method and used them to solve three-point difference
equations. As was noted earlier, such difference equations arise when approx-
imating second-order ordinary differential equations.

There are two ways of solving boundary-value problems for higher-order
equations. The first possibility is to transform the problem to a system of first-
order differential equations and then construct the corresponding difference
scheme. In this case we obtain a boundary-value problem for a two-point
vector equation. We looked at methods for solving such difference problems
in Section 4.

The second possibility is to directly approximate the original differen-
tial problem. In this case we obtain multi-point difference equations. Most
commonly, we encounter five-point equations of the following form:

coYo — do¥1 + eolY2= fo, =0, (1)

—biyo + c1y1 — diy2 + e1y3= fi, =1, (2)

aiyi-2 — biyi—1 + ciyi — diyiy1 + eyige=fi, 2<i<N-2, (3)

aN-1YN-3 —ON-1yN-2 + eN-1yN-1 —dN-1YN= fN-1, =N -1, (4)

anyn-2 — bnyn-1 + cnyn= fn, i= N. (5)

Such systems arise when approximating boundary-value problems for fourth-

order ordinary differential equations, and also when realizing difference

schemes for equations with partial derivatives. The matrix A of the system

(1)-(5) is a square pentadiagonal matrix of size (N + 1) x (N + 1) and has
no more than 5N — 1 non-zero elements.

To solve the system (1)—(5), we use the method of Gaussian elimination.
Taking into account the structure of the system (1)-(5), it is easily seen that
the reverse path of Gauss’ method must have the form

Yi = Qip1¥it1 — Big1¥it2 + Y41, 0SSN -2, (6)
YN-1 = aNyN + N, t=N-1 (7

To realize (6), (7) it is necessary to give yn, and also to determine the coef-
ficients «;, G, v;.

We will first derive the formulas for a4, §;, and +;. Using (6), we express
Yi—1 and y;_2 in terms of y; and y; ;. We obtain

Yi-1 = aiyi — Bivip1 +7i, 1<i<N -1, (8)
Yi—z = (0iaiy — Bic1)yi — Bidi—1Yis1 + ic1yi + Yima 9)

for2<:<N-1.



2.3 The elimination method for five-point equations 91

Substituting (8) and (9) in (3), we obtain

[ei — aifi—1 + ai(aiai—y — b)|yi = [di + Bi(aici—1 — bi)lyit1 — eiyit2
+ [fi — aivi-1 — 7i(@iaioy — b)),
2<i<N-2

Comparing this expression with (6), we set that if

€i

1
ait1 = pldi + Biaicioy = b, Birr = 1o

(10)

1
Yi41 = E[f‘ — a;%i-1 — Yi(aiai—1 — b))l

where A; = ¢; — aifi-1 + ai(aiai—1 — b;), then the equations (1)-(5) will be
satisfied for 2<i < N —2.

The recurrence relation (10) connects a;41, Bi+1, and yi41 with a;, a;_1,
Bi, Bi-1, Vi, and 7;—1. Therefore, if a;, B;, and +; are given for i = 1,2, then
(10) can be used to sequentially find a;, B, and 7; for 3<i < N —1.

We now find «;, i, and «; for ¢ = 1,2. From (1) and (6) for ¢ = 0 we
obtain directly

a1 =do/co, P1=eo/co, M= fo/co. (11)
Further, substituting (8) in (2) with i = 1, we obtain
(a1 —brar)yr = (di — b1B1)y2 — e1ys + f1 + bama.
Consequently, (2) will be satisfied if we set

_di—bhp _ €1 _htbhm (12)

az = 2 = 2 = .
c1 — blal, C1 — blal, c1 —bhog

Thus, using (10)-(12), it is possible to find «;, §;, and v; for 1 <1 < N — 1.
It remains to determine an, yn and yy in (7).

To do this, we will use equations (4) and (5). Substituting (8) and (9) in
(4) with ¢ = N — 1 and comparing the resulting expression with (7), we find
that ay and vy are determined by (10) for : = N — 1. We now find yy. For
this we substitute (6) for i = N — 2 and (7) in (5). We obtain

[en —anBn-1+an(anyan—1 —bN)lyn = fN —anyN-1 —Yn(anvan_1 —bN)

or
YN =TIN+1

where 7n41 is defined by (10) for : = N.
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Gathering together the formulas derived above, we write the right-elimi-
nation algorithm for the system (1)—(5) in the following form:

1) using the formulas
1 .
aip1 = —A—_[d.' + ﬂ,-(a,'a,'_l - b,')], 1=2,3,...,N -1, (13)
1
ap = “cf, as = Z_l'(dl ~ Brbr),

1 .
Yig1 = Z‘[f:‘ —ai¥i-1 — Yi(aiai-1 — b)), i=2,3,...,N, (14)

_f _1
n=o M= Al(fl +bim),
,Bi+1 =6,‘/A,‘, i=1,2a"'5N_2, ﬂl =60/007 (15)

where
A; = ¢; — aifiy1 + ai(aiaio1 = b)), 2<i<N, Ay=c—ba, (16)

find the elimination coefficients a;, 8;, and 7;;

2) the unknowns y; are found sequentially from the formulas

Yi = Qit1¥i+1 — BirrVigz +Yit1, t=N-2,N-3,...,0.

(17)
YN-1 = ANYN + TN, YN = YN+1-

This algorithm will be called the monotone elimination algorithm.

Remark. It is not difficult to construct the left and two-sided elimination
algorithms for the system (1)—(5).

We now compute the number of arithmetic operations used by the al-
gorithm (13)—(17). To realize (13)-(17) we require: 8N — 5 additions and
subtractions, 8N — 5 multiplications, and 3N divisions. If no distinctions is
made between operations, the total number of operations for the algorithm

is Q = 19N — 10.

2.3.2 Justification of the method. The elimination algorithm (13)—~(17) con-
structed above will be called correctif, for any 2 <i < N

A; = ci — aifio1 + ai(giai—1 = b;) #0, Ar=c1—anb #0.

The following lemma gives sufficient conditions for the correctness of the
algorithm (13)-(17).
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Lemma 4. Suppose the coefficients of the system (1)-(5) satisfy the condi-
tions

la;| >0,2<i<N, [b;| >0, 1<i<N,

|di| >0,0<i<N—1, |e|>0, 0<i<N-—2,

and the conditions

lcol > |do| + [eol, lea|> [61] + |di] + [ea],
lenl > lan| + |bn ], len—1]> lan=1| + |bn=1] + |dn-1], (18)
leil > las| + [bi] + [di| + [es], 2<i< N -2,

where at least one of the inequalities (18) is strict. Then the algorithm (13)-
(17) 4s correct and, in addition,

lai] +18:i| <1, 1<i<N-1, |an|<1

Proof. Using the conditions of the lemma, from (13) and (15) we obtain

do| + leo] _

<1
lcol

lea| + |B1] =

Further, using the inequality 1 — |a;| > |81], we find that

lex = biaa| > |er| = [brflar]| 2 [b1l(1 — |a1]) + |di] + |ea]
> |b]IBa] + |da| + ler] > |dy — b1 81| + |es]| > 0.

From this and (13)—(15) it follows that

|dy — B1b1]| + |di]
|C1 "blall

leez| 4 |B2] = <1

The rest of the proof proceeds by induction. Suppose that
laict| +[Bi-1] £ 1, Jai| +18:] < 1.
We will show that this implies that

A; =ci—aifi—1 + ai(aijoioy — b)) #0, |oipr] 4+ |Bipr] £ 1.
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In fact, from (18) and (19) we obtain

1A > |eil = laillBi-1| — laillai-1]la:] — [exi]]bil
> |a;|(1 = 1Bi-1]) + 1Bl (1 — |ei|) — |eil|evi-1las] + |di] + |}
> |aillai-1| + |6l Bi] — |evillevi-1]lai| + 1di| + e:]
> |aillei-1|(1 = |el) + |di — b:Bi] + [ei]
> |aillai-1||Bi] + |di — b:iBi] + |ei]
> |d,~ + ﬂ,‘(a,'a,'_l - b,‘)l + |e,'| >0, :<N-2

(20)

From this and (13), (15) we find

|di + Bi(aioi—y — b;)| + |es]
|A]

laiga| + |Big1]| = <1, ¢i<N-2

Further, for ¢ = N — 1 we have in place of (20) the estimate
|An-1] > |an-1|len-2||Bn-1] + [bn-1|[Bn-1] + |dN-1] > O.
In addition, from this we get
|An-1]| 2 |[dn-1 + Bn-1(an—10N—_2 — bN_1)l,

and consequently,

lan| = l[dn-1+ Bn-1(an-1aN—2 —bn-1)]| £ 1.

|An-1]
It remains to prove that Ax # 0. We have

|ANn[>len|—lan||Bn-1]—|an|lan-1]lan|—|an||bN]
=len|—lan|=|bn|+|an|(1=|Bn-1])+|bn|(1=|an])—|en|lan-1llan]
2len|—lan|—lbn|+(1-lan)A—=|Bn-1)lan|+[on](1-]an]).

By the assumptions of the lemma, it is easy to show that at least one of
the inequalities |cn| > |an| + |bn|, |an| < 1 is strict. Hence it follows that
Apn # 0. The lemma is proved. 0

Remark. From the estimates |a;| + |8i| < 1 indicated in lemma 4 it follows
that formula (17) will not cause growth in the error of the computed yxn.
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2.3.3 A variant of non-monotonic elimination. We introduce here the algo-
rithm for the elimination method which would be obtained if the system
(1)-(5) were solved using Gaussian elimination with column pivoting. Such
an algorithm will be correct if the matrix A of the system (1)—~(5) is non-
singular. Since the method of constructing the algorithm is analogous to the
development in Section 2.4, we will limit ourselves here to the final form of
the algorithm.

1) Initially set: C = cg, D =do, B=b;,Q =c¢1,S=az, T =b;, R=0,
A=a3,F=f0,<I)=f1,G=f2,H=f3,a.ndset h‘,o=0, 7]0=1.

2) Sequentially for i = 0,1,..., N — 2, depending on the situation, per-
form the operations described in steps (a), (b), or (c¢):
[a] if |C| 2 |D| and |C| 2 [ei], then

ajy1=D/C Biy1 = eifc, Yit1=F/C,
C=Q-Bait1;, D=diy1-BpBiy1, F=2+ By

21
B=T - Sa;}1, Q= ciy2 — SPit1, =G - Svin )
S§= A - Rajy, T=biy3 — Rfiy1, G=H + Ryiy,
R=0, A=aiq1, H= fii4 }
f 22
biv1=Ki, Kip1=ni, Nip1=1+2; 22)
[b] if |D| > |C| and |D| > |e;|, then
@;41=C/D, Bi+1= —ei/ D, Yiq1= —F/D,
C=Qaiy1— B, D=Qfiy1+diy1, F=-Qvis, (23)
B=Ta;; — S, Q= T,Bi+1 + Ciy2, o= T’7i+1 + G,
S= Aaiy; — R, T= ABiy1 + biys, G=H — Avi41,
R=0, A=aiyq, H= fi1q }
. 24
Oiv1=1ni, Kix1= Ki, Nit1= 1+ 2; (24)
[c] if |e;] > C and |e;| > D, then
ait1 = Dfe;, Biz1 = Cle;, Yit1 = Fle;,
C=Q-dit1ait1, D=B-dit1Biy1, F=@+dit17it1, (25)
B =T -ciy20iy1, Q=S5-cit2biv1, P=G-cita7vit1,
§=A-bizaip1, T=R-biy3biy1, G=H+biisviq,
R = —aitqait, A = —ait4Bit1, H= fiyqa - a-‘+4’7-‘+1,} (26)
Oiy1 =i+2, Kit1 = 7i, Ni+1 = Ki.
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Remark. For i > N — 3 it is not necessary to carry out (22), (24), or (26),
and for i = N — 2, (21), (23), and (25) can be omitted.

3) If |C| > |D|, then

an=D/C, yw=F/C, vN41=(®+ Byn)/(Q — Bay),
On=KN_1, KN=TN-1.

If |D| > |C|, then

aN= C/D7 IN= —F/Da YN+1= (Q - Q‘YN)/(QO‘N - B),
On=1nN-1, KN= KN-1.

4) Compute the unknowns

Yn = YN+1, Ym = CNYn + YN, m=6N, n = KN,

and then sequentially for i = N — 2, N — 3,...,0 determine the remaining
unknowns

Ym = Qix1Yn — Bit1Ye + Yit1, Mm=06iy1, n=Kiy1, K= Nit1.

Let us now consider an application of the non-monotonic elimination
method. In Section 1.3.3, we solved the following boundary-value problem:

Yo—Y1+2y2=0, i=0,
Yo +y1—y2+ys=0, i=1,
Yiez — Yi—1 + 2¥i — Yit1 + Yi42=0, 2<iS N -2, (27)
YN-3 —YN—2 +yN-1 —yn =0, t=N -1,
2yn—2 —yn-1+yn =0, 1= N.

If N is even and not divisible by 3, then the system (27) has the unique
solution ) i
y;:—cos%—sin%, 0<:<N. (28)

It is not difficult to verify that the monotone elimination algorithm is not
correct for (27) since the computation of the elimination coefficients a2, B2,
and v, leads to division by zero. The non-monotonic elimination algorithm
allows us to accurately obtain the solution (28). To illustrate this algorithm,
we include here (Table 2), which gives the values of the elimination coefficients
a;, B;, and v;, and also 6;, «;, and n; for N = 10.
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Table 2

a; 1/2| 1/2|-1/2| o| o| o|-1/3|-1/3] o] 1

B; 1/2| 1/2|-1/2] 1| -1| 1|-2/3|-2/3| 1

i 1| 1| -1| —2| —2| 2|-4/3|-2/3| o] -2| 1
8 2| 3| 4| of 5| 6 71 9 8| 1

K 1l o 1| 1| 1| 1| 1| 8 1] 10

yi| —=1] -1 1 1| -1| -1 1 [ -1 -1 1

From the table it is clear that the unknowns y; are determined in the
fOHOWing order: Y105 Y15 Y8, Y9, Y7, Y65 Y55 Yo, Y4, Y3, Y2, i'e'a in non-monotonic
order.

2.4 The block-elimination method

2.4.1 Systems of vector equations. It was remarked above that one method
for solving boundary-value problems for high-order ordinary differential equa-
tions is to transform the problem to a system of first-order equations and then
to approximate this system by a difference scheme. As a result, we obtain a
two-point vector system of equations with first-order boundary conditions. In
the general case, this can be written in the following form:

P Vi1 —QiVi=Fip;, 0<:<N-1, 1)
PV = Fy, QnVNn = Fnya,

where V; is a vector of unknowns of dimension M, P;y; and @;, for 0 < <
N —1 are square M x M matrices, Py and @y are rectangular matrices of size
M; x M and M, x M, respectively. The vector F;; is of dimension M for
0<:i< N-1,and Fy and Fn41 are of dimension M; and M,, respectively.

Notice that one way to solve the indicated differential equations is to
directly approximate these equations by difference schemes. This way we ob-
tain a system of multi-point scalar equations. Methods for solving three- and
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five-point scalar equations were studied in Sections 2.1-2.3. If we approxi-
mate a high-order system of ordinary differential equations, then a system of
multi-point vector equations arises. However, as for scalar equations, vector
systems of multi-point equations can also lead to systems of the form (1).
Any method for solving (1) will correspond to some method for solving the
original multi-point system. To clarify the idea of the transformation consider
as an example the system of five-point equations examined in Section 2.3 (see
(2.3.1)~(2.3.5)). If we denote

Yi = (Y41, ¥ir Yio1,¥i-2) 7, 2<:<N -1,
Fiy1=(£:,0,0,0)7, 2<i<N-2
F2=(f0afl)Ta FN=(fN—lafN)T7

then, using the relations connecting Y;; and Y;, the system from Section 2.3
can be written in the form

Pit1Yit1 - QiYi=Fiyy, 2<i<N-2,

2
PY, =F, Qn-1Yn-1=Fn, @

where
es 0 0 O di —c¢; b; —a;
01 0O 1 0 0 0 .
Pii=llg o0 1 ofr @=|lo 1 o o] 25¢=N-2
0 0 01 0 0 -1 0
P, = 0 e —do ¢ ) _||—dnN-1 en-1 —bN-1 an-1
2 €1 —dl (4] —b1 ! N-1 CN —bN aN 0

In this case, M; = M, =2, M =4.

Ignoring the fact that multi-point vector equations can be reduced to the
form (1), and limiting ourselves by constructing a method which only solves
the system (1), we will consider separately the class of three-point vector
equations. In addition, in Section 2.5.3 we will transform (1) to a system of
three-point vector equations and obtain a method for solving (1) as a variant
of a method for solving three-point equations.

Before describing three-point equations in general form, we will look at
an example. We will show how a difference problem for the simplest elliptic
equation leads to a system of three-point equation of special form.

Suppose the rectangular grid @ = {z;; = (ih1,jh2) € G, 0 < i < M,
0<j<N,lj =Mhy,ly, = Nhy} with boundary v, is introduced into the
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rectangle G = {0 < 7, < ls, @ = 1,2,}, and that we must solve a Dirichlet
difference problem for Poisson’s equation

Yz, + Yz,2,= ——(p(:t), TE w,
_ )
y(z)=9(z), z€n,
where
Y2,z = 33 W0+1,7) — 290, 5) + y(i — 1,5)]

B

Yzrz, = h_%[y(za] + 1) - 2y(i,j) + y(iaj - 1)]’ y(i,j) = y(-'tij)-

We shall transform the scheme (3). For this we multiply (3) by (—A2) and
write out the difference derivative yz,,, at a point. For 1 <3 < N — 1 we

obtain:
for2<:<M-2

—y(6,5 — 1) + [24(3,5) = h3yz,2, (i, )] — y(i, 5 + 1) = hdp(i, );
fori=1
. .. RhE, . . .. .. 9. .
—WJ—D+Perﬁgw+Ln—%@nﬂ—w0+n=@wmx
fori=M—1
.. Y ) . .. 9. .
—y(4,5 — 1)+ [2.1/(2,1) - z?(y(z -1,j)— 2y(z,1))] —y(5,7 +1) = hyp(3,5);

where

. 1 ,
@(1,5) = ¢(1,5) + ﬁg(O,J),
1

. L1 .
P(M —1,5) = (M —1,5) + 159(M, j).
1

Besides, for j = 0, N we have

y(5,0) =9(:,0), y(N)=g(i,N), 1<i<M-1
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We now denote by Y; the vector of dimension M — 1, whose components
are the values of the grid function y(z, ) at the interior nodes in the j*! row
of the grid @:

y}=(y(lyj)’y(2’j)"'-ay(M—i’j))T’ 0<j;<N,
and by F; the vector of dimension M — 1
Fj = (h36(1,0), h30(2,5); - -, hie(M ~2,5), h3p(M — 1,5))",

F]:(g(l’j)’g(z’j)""’g(M-‘_1’j))T’ j=0’N'

We also define the square (M — 1) x (M — 1) matrix C in the following
fashion:

CV = (Av(1),Av(2),...,Av(M —1))T,
V = (v(1),v(2),...,0(M —1))T,
where the difference operator A is

Av(3) = 2v(i) — h3vz,.,(3), 1<i<M -1,
v(0) = v(M) = 0.

It is easy to see that C is a tridiagonal matrix of the form

21+a) -« o ... 0 0 0
- 214+a) —-a ... O 0 0
0 —a 2(1+a)... 0 0 0
O = i e , (4
0 0 0 21+a) -a 0
0 0 -a 2(1+a) -«
0 0 0 0 —a 2(1+a)

where o = h2/h?, and that C is diagonally dominant, since |1 + a| > |a],
a > 0, and hence non-singular.

Using the above notation, it is possible to write the above equations in
the form of a system of three-point vector equations:

Y, 1 +CY; =Y, =F;, 1<j<N-1,

_ _ (5)
Yo=F, Yn=Fn.

This is the desired three-point system of special form with constant coeffi-
cients.
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The problem (5) is a special case of the following general problem: find
the vector Y;(0 < j < N) which satisfies the following system:

CO},O—BOY'I=F0a J=03
—A;Y; 14+ CY; - BY;11=F;, 1<j<N-1, (6)
—ANYN_1 + CNYN = Fn, j=N,

where Y; and Fj; are vectors of dimension M, C; is a square M; x M; matrix,
and A4; and B; are rectangular matrices of size M; x M;_; and M; x M4,
respectively.

Systems of the form (6) are obtained from difference schemes for second-
order elliptic equations with variable coefficients in arbitrary regions of any
number of dimensions. In the two-dimensional case, as in the example ana-
lyzed above, the vector Y; is the vector of unknowns in the jt! row of the
grid @, and in the three-dimensional case, it is the vector of unknowns in the
§* layer of the grid @. In the latter case, C; is a block-tridiagonal matrix
with tridiagonal matrices on the main diagonal.

To solve the system (6), we will look at the block elimination method,
which is analogous to the elimination method for three-point scalar equations.

2.4.2 Elimination for three-point vector equations. We now construct a meth-
od for solving a system of three-point vector equations (6). This system is
related to a system of scalar three-point equations, methods for which we
studied in Section 2.1. Thus, we will seek the solution of (6) in the form

}/j=aj+lyti+l+,3j+la j=N—1,N—2,-",0, (7)

where a1 is an as yet undefined matrix of size Mj X Mj41, and Bj41 is
a vector of dimension Mj. From the formula (7) and the equations for the
system (6) for 1 <7 < N —1, recurrences relations are found for the matrices
a; and the vectors §; (as in the case of regular elimination). From (7) and
(6) for j = 0, N, the initial values for a1, #1 and Yx are found, allowing us
to begin using the recurrence relations. Here are the final formulas for the
method, which will be called the block elimination method:

aj+1=(Cj—Ajaj)‘lBj, 71=12,...,N -1, a;= Co—lBo, (8)
Bj11=(Cj—Aja;) " (Fj+4;8;),i=1,2,...,N, Br=Cy'Fy, (9)
Yi=a;+1Yj41+Bj+1, j=N-1,N-2,...,0,Yn=fBn+1. (10)

We will say that the algorithm (8)—(10) is correct if the matrices Cy and
C; — Aja; are non-singular for 1 < j < N. Before defining stability for the
algorithm (8)—(10), let us recall some results from linear algebra.

Let A be an arbitrary rectangular m x n matrix.



102 Chapter 2: The Elimination Method

Let || = ||» be a norm for the vector z in the n-dimensional space Hy.
Then the norm of A is defined by the equation

I 4= sup LA .
z#0 || [|n

Obviously, the norm of A depends both on the matrix A, and on the vector
norms introduced in H,, and H,,. For the case of the Euclidean norm in H,,
and Hp, (|| = ||2= Y, 2?), we have | A ||= /p, where p is the largest
eigenvalue in modulus of the matrix A*A.

From the definition of the norm, it clearly follows that | Az||m <||A]|||z]|n-

Further, suppose we are given matrices A and B of dimensions m X n
and n X k respectively. Introducing vector norms in H,,, Hy and H,, and
defining with their aid the norms of the matrices A, B, and AB, we obtain
the inequality || AB ||<|| A || || B |-

We will say that the algorithm is stable if || a; ||[<1for 1 < j < N (it is
assumed, in the finite-dimensional spaces Hjs to which the vectors Y; belong,
that a single type of norm has been introduced, for example Euclidean).

Lemma 5. If the matrices C; are non-singular for 0 < j < N, and Aj and
B; are non-null matrices for 1 < j < N — 1, and the conditions

| Co'Bo IS 1, | CRMAN IS L, | CT 4 |+ 11 C'Bj IS 1, 1< j S N -1,

are satisfied where at least one of the inequalities is strict, then the algorithm
(8)-(10) of the block elimination method is stable and correct.

Proof. We will give only the basic step, leaving it to the reader to complete
the proof of the lemma. The proof uses the well-known fact: if the square
matrix S satisfies || S ||< ¢ < 1, then the matrix E — S is invertible, and
1(E=8)™ [<1/(1—q).

Let us assume now that || a; ||< 1. From this and from the conditions
of the lemma, we have

| €7 Aja; |I<| €145 IS 1- || €7 B i< 1.

Since CJT'IAJ-aJ- is a square matrix, the matrices E—CJ-_IAja_,- and C;—Aja;
are invertible, and || (E — C_’-_lAjaj)_l <1/ CJ-_IBJ- || From this and (8),
we at once obtain
I aje1 IS (B - €51 Aja;)7CFB; ||
<I(E - C7' 4j0)7 || - I G5 B; I 1.

The proof is completed by induction.
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We now apply lemma, 5 to the system of the three-point vector equations
(5) obtained from the Dirichlet difference problem for Poisson’s equation in
a rectangle. The system (5) is a special case of (6), where C; = C, B; =
A;j=E,1<j<N-1,Cy=Cy =E, By = Ay = 0, and the square
matrix C is given in (4). The conditions of lemma 5 for this example take
the form || C~! ||< 0.5. For the case of the Euclidean norm we have, using
the symmetry of C,

1
” ” k |/\k( )l mink |/\k(C)|’

where Ag(C) is an eigenvalue of the matrix C. From the definition of C we
obtain that Ax(C) is an eigenvalue of the operator A defined above

Av(3) — Mev(i) = (2 — Ak)v(3) — hlvz, 2, (3) = 0,
v(0) =v(M)=0, 1<i<M—1.

If we substitute Ay = 2+ h2puy, this problem reduces to the eigenvalue differ-
ence problem considered in Section 1.5.1 for the simple difference operator:
vz, kv =0,1 <7< M -1, v(0) = v(M) = 0. Since this problem has
the solution

4 _2k7rh1
= — k=12,.... M -1
123 h%Sln 211 >0, 34 ) )

M = MA(C) = 2+ h2p; > 2. Consequently, the condition | C~! ||< 0.5
is satisfied. The algorithm (8)—(10) applied to the system (5) is correct and
stable.

We consider now the question of the storage requirements and operation
counts for the algorithm (8)-(10), assuming for simplicity that in the system
(6) all the matrices are square and of size M x M, and all the vectors Y;
and F; have dimension M. In this case, the elimination coefficients a; will
be square matrices of size M x M, and the vectors 3; will have dimension

M.

To realize (8)—(10) it is necessary to store all the matrices aj for 1 < j <
N, all the vectors §; for 1 < j < N+1, and the matrix (Cy — Ayay) ™" used
to compute By41. The vectors 3; can be stored in the positions reserved for
the vectors of unknowns Yj_;. To store all the matrices aj and the matrix
(Cn — Anan)™! it is necessary to retain M2(N + 1) elements, since in the
general case the matrices a; are full and non-symmetric. The algorithm also
requires M times as many auxiliary storage locations as there are unknowns
in the problem, that is M(N + 1).
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In the general case, the matrices C; —A;ja; are full for every j. Therefore,
inverting them requires O(M?3) arithmetic operations. Further, multiplying
(C; — Aja;)™! by the matrix B; requires not more than O(M?®) operations.
Therefore, computing aj;; from «; using (8) requires O(M3) arithmetic
operations. To compute all the aj and the matrix (Cny — Anan)™! requires
O(M?3N) operations.

If the matrix A; is full, then computing 8,41 given §; and (Cj;— Aja;)™?
requires: 2M? multiplications and 2M?% — M additions. If A; is diagonal, then
the requirements are reduced to M? + M multiplications and (2M?% — M)
additions. Consequently, to compute §; for 2 < 7 < N 4 1 requires in the
general case 2M?N multiplications and (2M? — M)N additions. Adding in
the operations required to compute 8; given Cy ! (M? multiplications and
M? — M additions), we finally obtain that M2(2N + 1) multiplications and
M?*(2N + 1) — M(N + 1) additions are used.

To find all the Y; for 0 < j < N.—1 given Yy requires M 2N multiplica-
tions and M2N additions. Thus, to compute 8; and Y; requires M%(3N + 1)
multiplications and M2(3N + 1) — M(N + 1) additions. If no distinction
is made between these operations, this constitutes @ ~ 6 M?N operations.
This is the number of arithmetic operations necessary to find the solution to
a new problem in a series. To solve the original problem (6), where it is neces-
sary to compute the elimination matrices a;, requires Q = O(M3N + M IN)
operations.

Suppose the series consists of n problems of the form (6). Then we must
perform Q, = O(M3N)+6nM?2N operations. Here the number of unknowns
in the series is equal to nM(N + 1). From this it follows that finding one
unknown requires ¢ &~ O(M?/n) + 6M arithmetic operations. Thus, as n
increases, the number of operations per unknown decreases, but it is always
greater than 6M. This distinguishes the block elimination method from the
scalar elimination method, where the number of operations per unknown is
a finite quantity which does not depend on the number of unknowns.

2.4.3 Elimination for two-point vector equations. We now consider a method
for solving two-point vector equations

Piy1Vipn —QiVi=Fiy, 0<i<N-1, (11)
PoVo = Fy, QNnVNn = Fn4a,
where V is a vector of dimension M, P;y; and @Q;, 0 <: < N —1, are square
M x M matrices, Py and Qu are rectangular matrices of size M; x M and
M, x M respectively, where M; + M, = M. The vector Fj1;,0 <1< N -1,
has dimension M, and Fy and F4, are of size M; and M, respectively.
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We first transform the system (11) to the form (6). To do this, we trans-
form the matrices in (11) to the following form:

L I T
Piri= Pll-f}ll l+1 Q Qlll le (12)
Rl N pooN LG 17 g

where P} and Qf', 0 < i < N, are matrices of size My x M;, k,l = 1,2.
Corresponding to the transformation (12), we set

v} f:
V,-=('2>, 0<:<N, F,'+1=<'2+1), 0<i:<N -1,
v

i+1 (13)

Fo=fy, Fny1=fn+1s

where v¥ and f¥ are vectors of dimension My, k = 1,2. Using (12) and (13),
we write the system (11) in the following form:

P'o} - B} = f},

11, 1 12,2 12 .2 _ gl
—Qi'v; + Qi*v} + PX vl — PR, =l

0<i<N—1, (14
—QPv} + Q%! + P vy, — Pvi, = f.'2+1a} - (14)

21,1
—QNvN + QN = ft-
We now introduce a new vector of unknowns, setting

v2

Yo =v5, Yni1=vh, Y,-+1=(Ul‘ ), 0<:<N-1,
i+1

and the matrices
Co=PFy', Bo=|P?0" |, Cny1=Q%, Ans1=[0%|Q¥ I,

P12 012IQ}1

Qq' :
A1=I— N= Aiv1 = || 5501 1<:<N-1,
gl P22 022|Q?1
pl2 |011 Q12|P11
B.-+1=] L, 0<i<N-2 c.-+1=‘ WL 0<i<N-1,
P221|021 Q?2|P12-|}1

where 0¥ is the zero matrix of size My x My, k,1=1,2.
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With these substitutions, the system (14) will have the form

C’OYO_’-BOY'1=F‘07 Z=0’
~AYi1+CYi - BYy=F, 1<i<N, (15)
—AN+1YN + COny1YN41 = Fnga, i=N+1.
Thus, the system of two-point vector equations (11) has been changed into a
system of three-point vector equations of the form (15), which can be solved

using the block elimination method constructed in Section 2.5.2. For (15),
the block elimination method has the following from:

aiy1=(Ci — Aic;) 7! B;, i=1,2,...,N, a1=Cy ' By, (16)
Biv1=(Ci — Aiai) 1 (F; + AiBi),1=1,2,...,N+1, Bi=Cy'By, (17)
Yi= ait1Yip1 + Biva, i=N,N-1,...,0,YN41= Bnt2, (18)

where the matrices a; and ay have dimensions M; x M and M x M, respec-
tively, and «; is a square M X M matrixfor2<: < N.For2<:< N +1,
the vectors §; have dimension M, and f; and fn42 have dimension M; and
M.

We will now transform the formulas (16)—(18). Taking into account the
structure of the matrices B;, we find that the matrices a; have the form

a%"ﬂ a32|021
a _” a12|011 ”’ AN41 = ol? ’ 1= '12—011 2 <1< N. (19)
AN+1 a; |

Substituting (19) in (16) and using the definition of the matrices 4;, B;, and
Ci, we obtain the formulas for computing a}? and o??

22 12 11 12 11 11— 12

o lz2 |P P!
i+1 i—1 il B 1<i<N (20)
12 - 22 21 12 21 22 —_ - )

it 21— Q0| P P;

where a}? = (P§')~! P§%. Further, writing the vector f; in the form

B2
g

and substituting this expression in (17), we obtain

Bi=F Bwr=Fan ﬂ=( ) 2<i<N41 (1)

2 12 11 12)pl11 —1 1y 11 1
i+l _ 12y — Qi219%|P; (: 1ﬂ> 1<i<N. (22
<ﬂi1+1) ‘ 321 - 211"12!})21 I+ Q 1ﬂ1 Sish,(22)
Btz =l Q% — QN a1 |7 (fhrpr + QN BL+1), (23)

where B =|| Fg' | " f5.
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We now substitute (19) and (21) in (18) and use the definition of Y;. As
a result we obtain the following formulas for computing the components of
the vector of unknowns:

v|'2—1=a:23—1vi2+/3?+1$ i=N,N—1a---31a UN =ﬂ?v+2: (24)
1

vi=al?v?+8l,, i=N,N-1,...,0.

Thus, the block elimination algorithm for systems of two-point vector
equations (11) is described by the formulas (20), (22)—(24).

Since these formulas are derived from the elimination algorithm for solv-
ing (15), to which our original two-point vector equations were transformed,
the sufficient conditions for correctness and stability for the resulting algo-
rithm are formulated in lemma 5, where it is necessary to change N to N +1,
and where C;, A;, and B; are defined above.

Using the two-way elimination algorithm for the system (15), it is pos-
sible to construct a corresponding algorithm for the original system of two-
point vector equations (11).

2.4.4 Orthogonal elimination for two-point vector equations. We shall con-
sider yet another method for solving the system of two-point equations (11),
known as the orthogonal elimination method. This method involves inverting
the matrices P; for 1 <: < N and orthogonalizing the auxiliary rectangular
matrices.

We will find the solution of the system (11) in the following form
Vi=Bifi+Yi, 0<i<N, - (25)

where, for any i, B; is a rectangular M x M, matrix, and 3; and Y; are vectors
of size M, and M respectively.

Defining By and Y, from the conditions PyBy = 0'2, PyYy = F,, where
0!2 is the zero matrix of size M; x Mj, we obtain that V; satisfies the con-
dition PyVy = Fy. We shall now find the recurrence formulas for sequentially
constructing, starting with By and Yp, the matrices B; and Y;.

We substitute (25) in (11). If P;4; is non-singular, then we have that
Biy1Biy1 +Yiq1 — P..;llQ,-B;ﬂ; = P,:Lll(Fiﬂ +QiY;), 0<i<N-1,

or

Bit1Biy1+Yiq1 — AipiBi = Xiyq, 0Zi< N -1, (26)

where A;;; = Pi;IIQ,-B,', Xiy1 = P,-;ll(F,-H + @;Y;). The matrix A;{; has
size M x M, and the vector X;4; is of size M.
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We determine B;41 and Y;4; in the following way
Aiy1 = Bi1Qit1, Yipr = Xig1 — Biy1pig, (27)

where ©,, and ;4 are an as yet undetermined square M, X M, matrix and
an Mj-vector. Substituting (27) in (26), we obtain the relation B;y1(8i41 —
Qi41Pi+1) = Biy1pit1, which becomes an identity if we set

Qit18i = Biv1 —piy1, 0<i<N -1 (28)

Thus, given non-singular matrices §2; and vectors ¢; for 1 < ¢ < N, the
formula (27) can be used to find, starting with B, and Y}, all the necessary
matrices B; and vectors Y; for 1 <i < N.

It remains to define the vectors §;. From (11) and (25) for i = N we
obtain the two relations Vy = Byfn + Yn, QN VN = Fn41 with the known
By and Y. Hence for Sy we have the equation QnBnAn = Fyy1— QnYn.
This relation can be written in the form (28)

QN+18N = BN+1 — PN+1, (29)

where n+1 = Fny1, ¢N+1 = QNYN, Qni1 = QNBN.

If the matrix £y is not singular, we can find all the 3;, 0 < : < N,
sequentially starting from B4, using the formulas (28), (29). The solution
of the system (11) can be found using (25).

Since there is an arbitrariness in the choice of the matrices 2; and the
vectors ¢, the formulas derived above describe more a principle for construct-
ing methods for solving (11), rather than a concrete algorithm. The choice of
specific Q; and ¢; gives rise to several methods for the system (11). As before,
we shall call such methods elimination methods, where on the forward path
we compute B; and Y;, and on the reverse path — §; and the solution V;.

We shall examine now one possible choice for §2; and ;. Since the for-
mulas (27) and (28) require the inverse of the matrix Q;41, it must be easy
to invert.

In the orthogonal elimination method, the matrix ;4; and the vector
@i+1 are generated by the requirements: 1) the matrix B,y is constructed
by orthonormalizing the columns of the matrix A;4;; 2) the vector ¥;;; must
be orthogonal to the columns of the matrix B;4;.

As a consequence of these requirements we have
Bi1Bit1 = E*, Bi11Yiq1 =0, (29

where B}, is the conjugate of the matrix B;i;, and E?? is the identity
matrix of size My x M,.
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We first find an expression for @;4+;. From (27) and (29') we obtain
0 = B}y Yiy1 = Bi Xiy1 — Biy 1 Binipiy1 = By Xit1 — ¢i1. Thus, the
vector ;4 is determined: p;4; = By Xiy.

We now construct the matrices ;41 and B;4;. There exist several meth-

ods for orthonormalizing the columns of the matrix A;4+;. We shall consider
the Gram-Schmidt method.

Suppose that the matrix A;;; has rank M;. We denote by ax and b
the k** columns of the matrices A;41 and Bi4; respectively, and by ( , ) the
vector inner-product. As b; we take the normed column a;

by = a1 /w1, wn =+/(a1,a1). (30)

We will find the column b; in the form

k-1
1
by = — —E nkbn |, 2< k< My, 31
¢ Wkk (ak n=lwk ) ’ ( )

where the coefficients wy are found from the orthogonality conditions for b
with by, ba, ..., bx_1, and wg is found from the condition on the norm of by:

k
Wak =(bn,ak), n=1,2,...,k—1, Wik = (ak,ak)—ngk. (32)
n=1

Because of the assumption about the rank of the matrix A;;, the columns ag
are linearly independent for 1 < k < Ms, and the ortonormalization process
can be carried out without any problems.

From (30)—(32) it follows that the matrices A;4; and B;4; are connected
by the relation A;y; = Bi+1Qi+1, where Q;4; is the square upper-triangular
matrix of size My X M, with elements war for 1 < n < My, n < k < My,
defined in (30) and (32), and wnx = 0 for k& < n.

Thus, the formulas (30)—(32) determine the matrices B;y; and Q4.
A simple computation shows that the matrices B;3; and §2;4; can be con-
structed using:M M} + 0.5(MZ — M) multiplications, M MZ — M, additions
and subtractions, M M, divisions, and M> square roots. All the indicated op-
erations must be carried out N times on the forward path of the elimination
algorithm. This requires O(M N M2) arithmetic operations and N M, square
roots.

All that remains for us to show is how to find the matrix By and the
vector Yy. We will assume that the matrices P;;; and @; are not singular for
0 < i < N — 1. In addition, assume that the matrix P}! is non-singular and
that the matrix Q@ has rank M.
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Let us construct By and Y;. Let

(BB

Ao = ” E22

()

be a rectangular matrix of size M x M, and a vector of dimension M. Since
the dimension of the square identity matrix E?2 is My x M3, the rank of A,
is equal to M;. The matrix By is constructed from Ay using the orthonormal-
ization process (30)—(32), Yy is obtained from the formula Yy = Xy — Byo,
and the orthogonality condition for the matrix By gives ¢y = BjX,y. Since

_ Pll ——1P12
By = Ay, Podo =|| B3| - P2 | ”(OE)JTO

=[l 0* I,

PyBy = 0'2. Further, we have
PyYy = PoXo — PoBopo = PoXo = Fo.

Thus, the constructed By and Y satisfy the required relations: PyBy = 02
and P, 0% = Fo.

Notice that, because of the non-singularity of P;y; and @, the rank of
the matrix A;4; is the same as the rank of B;. In addition, because of the
non-singularity of €y, the rank of By is the same as the rank of 4y and is
equal to M,. Therefore, the orthonormalization process (30)-(32) will proceed
without complications. Further, since the ranks of the matrices Qn and By
are equal to M,, the square matrix Qx4+; = @nBy will be non-singular,
which allows us to find the vector By.

Thus, the algorithm for orthogonal elimination has the following form:
[1] B:©; = A4;,1=0,1,2,...,N,

Poll)—1P012

A; =P7'Qi_1Bi-;, 1<i<N, A= H( E22 (33)

The matrices B; and §; for 0 < ¢ < N are computed from (30)—(32) and
stored. We set Qnx41 = QN Bn.

[2] Y,‘=X,'—B,'Lp,',(p;=B:X,',i=0,1,...,N,
11 —lF
X; =P ' (Fi+Qi-1Yi-1); 1<i<N, Xo=<(P°2) °). (34)

We compute and store the vectors Y; and ¢; for 0 < ¢ < N. We set
¢N+1=QNYN.
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[B] Qi41Bi = Bit1 — i+, i = N,N —1,...,0, Bny1 = Fyy1,

Vi=Bifi+Y:, 0<i<N. (35)

Remark. Since the matrices §2; are upper-triangular M2 X M, matrices for
1 <i < N, computing B; from B;41 and ;41 requires O(M2) operations.

To illustrate this algorithm, we consider an example. Suppose we must
solve the following three-point difference problem:

—Yi-1+¥ —¥i+1 =0, 1<i<N -1,

36
Yo =1, yN=0~ ( )

This problem was examined earlier in Section 2.4, where the non-monotonic
three-point elimination method was used to find its solution for N not divis-
ible by 3, namely,

We shall transform the system (36) to a system of two-point vector
equations of the form (11) by setting

V.-=(y" ) 0<i<N-1.
Yi+1

It is not difficult to see that (36) is equivalent to the following system

Visr —QVi=0, 0<:<N -2,
P Vo=1, @Qn-1VNn-1=0, (37)

where Py =|| 1[0 ||, @n-1 =]| 02 ||, @ = ll—_—g%“ The system (37) is a special
case of (11) with My =M, =1, M = 2.
To solve (37) we use the orthogonal elimination algorithm (33)—(35). For

this example, the matrices B; have dimension 2 x 1, §2; is of dimension 1 x 1,
the vectors Y; are of size 2, and the vectors §; and ¢; are of size 1.

In Table 3 are shown the matrices B; and €; and also the vectors Y;, ¢;
and B; for N = 11. Applying the orthogonal elimination method allows us to
obtain an accurate solution y; to the problem (36).



112 Chapter 2: The Elimination Method

Table 3

t |0 1 2 3 4 5|6 7 8 9 10 11
U1 V2 | H 1| V2 G VRG] VR
el 0| =F -4 1| -F |3 | -H |3 |- ¢
Bi| 1 ﬁ 0|1 ﬁ 01 ﬁ 0] 1 % 0

-1 =1 _ 1 =1
5)0|(Z)| O [E(Z)|o|(F) 6 @)(2)

V2 V2 V2 V2

1 _ 1 1 _ _1
Y1) ()]G |0 (2)]E][(H)
yil 1 1 0|-1] -1 01 1 0 1-1] -1 0

2.4.5 Elimination for three-point equations with constant coeflicients. We
now turn again to the block-elimination method for three-point equations
and consider a special case of such equations, namely:

-Y;1+CY; =Y =F;, 1<j<N-1,

38
Yo=F, Yn=Fy, (3)

where C' is a square M x M matrix, and Y; and F; are unknown and given
vectors of size M.

In Section 4.1 it was shown that systems of three-point equations of
the form (38) arise from Dirichlet difference problems for Poisson’s equation
on a rectangular grid defined in a rectangle, and where the matrix C is
symmetric and tridiagonal. Further, in Section 2.4.2 it was shown that the
block elimination method, which for (38) has the form

ajt1= (C—a_,-)_l, j=12,...,N -1, a;=0, (39)
Bi+1= aj1(Fj + B;), J=12,...,N -1, pr= Fo, (40)
Yi= aj1Yj41 + By, j=N-1,N-2,...,1, Yn=FN, (41)

is correct and stable. It was also shown there that the eigenvalues of the
matrix C are greater than 2:
hg .2 k’ﬂ'hl

Ak =M (C) =2 —{-4h—,f sin o

> 2. (42)
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Let us recall that, for the case of general three-point vector equations, the
block elimination algorithm requires O(M3N) arithmetic operations for the
computation of the matrices a;, and O(M?N) operations for the computation
of the elimination vectors 8; and the solution Y;. To store the full and,
generally speaking, non-symmetric matrices a; requires that we retain the
M?(N + 1) elements of these matrices. Are these quantities reduced if the
block elimination method is used to solve special three-point vector systems
(38) with constant coefficients?

For the above example, all the matrices a;j will be symmetric due to the
symmetry of the matrix C, but although C is tridiagonal, all the matrices
aj, j 2 2, will be full. Consequently, it is possible, taking into account the
symmetry of the matrices a;, only to decrease the volume of the intermediate
storage required, but not by more than a factor of two. The estimate for the
number of arithmetic operations is not changed.

We now construct a modification of the algorithm (39)—(41) which does
not require auxiliary storage for saving intermediate information, and which
can be realized in O(M N?) operations if we are solving the problem (38)
with a tridiagonal matrix C.

First of all we find an explicit form for the elimination matrices a; for
any j. For this we express a; in terms of the matrix C using (39). Noting
that

a1=0, a;=C"', a3=(C*-E)7C, (43)
we find the solution of the non-linear difference equation (39) in the form
aj = P (C)P;_»(C), j>2, (44)
where P;(C) is a polynomial in C of degree j. We rewrite (39) in the form
aj41(C-aj)=E, j22,
and substitute here (44). We obtain the recurrence relation
Pj(C) = CPj1(C) - P;2(C), j 22,

or upon shifting the index by 1 and using (43)

Pj41(C) =CPF;(C) - Pi1(C), j=1,

P(C)=E, P(C)=C. (45)

Thus, the formulas (45) fully determine the polynomial P;(C) for any j > 0.
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We now find the solution of (45). The corresponding algebraic polynomial
satisfies the conditions

Pjpa(t) = tPi(t) — Pi—1(t), j2>1,
P(t)=1, Pi(t)=t.

which form a Cauchy problem for a three-point difference equation with con-
stant coefficients. In Section 1.4.2, the solution P;(t) = U;(t/2) was found,
where U;(z) is the Chebyshev polynomial of the second kind of degree j

sin((j + 1) arccos z)

: » |z} <1
U;(z) = sinarccos
! sinh((j + 1) arccosh z)
. , iz
sinh arccosh z

Thus, an explicit expression for the elimination matrices a; has been found:

. (C C .
a; = J'_ll (5) Uj—2 (E) y J > 2, ap =0. (46)

This frees us from having to compute the elimination matrices a; by the for-
mula (39), which formed the bulk of the computational work in the algorithm
(39)-(41). In addition, the matrices a; need not be remembered.

We now look at the formulas (40) and (41). They involve multiplying
the matrices a;j4; by the vectors Fj + 3; and Y;1;. We will now show that
it is possible, without computing a; by the formula (46), to determine the
product of the matrix a; and a vector. For this we require lemma 6, which
we give without proof.

Lemma 6. Suppose that the polynomial f,(z) of degree n has simple roots.
The ratio of the polynomial gm(z) of degree m to the polynomial f,(z), where
n > m and there are no common roots, can be represented in the form of a
sum of n elementary fractions

n

gm(2) _ a _ gm(z1)
@ e U i)

where T 138 a root of fo(z) and f,(z) is the derivative of the polynomial fy(z).
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Using lemma 6, we find the decomposition in simple fractions of the ratio
o(z) = Uj—2(z)/Uj-1(z), j 2 2. Since the roots of U;_;(z) are

k . .
zkzcos—,w, 1=12,...,5 -1,
J

and

c_1\k—1
Ujma(en) = (-DF, 2 05a(en)] = L,

J

by lemma 6 we have the following decomposition for ¢(z):

_Upma(e) _ Rt kr)T
)= ) = ( j) ' (#7)

From (46) and (47) there follows yet another representation for the matrices
a;, which we shall also use

j—1 -1 2 krx
k 2sin”® =F .
aj = Zakj (C— 2cos -{-E) y Qkj = 7 L, j>2 (48)
k=1

Using (48), the product of the matrix a; and the vector Y can be effected by
the following algorithm: for £ = 1,2,...,5 — 1 solve the equation

(C’ — 2cos ZCJEE) Vi = ag;Y, (49)

where ai; is defined in (48), and the result a;Y is obtained by summing the
vectors V.

j-1
;Y =) Vi (50)
k=1

We remark that by (42) the matrix C'—2 cos %E is non-singular and also
tridiagonal whenever C is. In this case, each of the equations (49) is solved in
O(M) arithmetic operations using the scalar three-point elimination method
described in Section 2.1. Consequently, to solve all the problems (49) and also
to compute the sum (50) requires O(Mj) operations. Since in (40) and (41)
the product of the matrix aj and a vector is computed for j = 2,3,...,N, the
modified block elimination method (40), (41) and (49), (50) requires O(M N?)
arithmetic operations.
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Thus, the modified block elimination method constructed above allows us
to solve a Dirichlet difference problem for Poisson’s equation in a rectangle
using O(M N?) arithmetic operations. The reduction in the number of op-
erations in comparison with the original algorithm (39)-(41) is achieved by
taking into account the specifics of the problem being solved.

In the next two chapters we will look at other direct methods for solving
the indicated problem and its related difference problems which will require
even fewer operations than the method constructed here.
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Chapter 3

The Cyclic Reduction Method

In this chapter we study a method for solving special grid elliptic equations
— the cyclic reduction method. This direct method allows us to find the
solution to a Dirichlet problem for Poisson’s equation in a rectangle using
O(N?log, N) arithmetic operations, where N is the number of grid nodes in
any direction.

In Section 1 we state the boundary-value difference problems which can
be solved using the cyclic reduction method. In Section 2 the algorithm is
described for the case of a boundary-value problem of the first kind, and in
Section 3 sample applications of the method are given. In Section 4 we give
a generalization of the method for the case of general boundary conditions.

3.1 Boundary-value problems for three-point vector equatibns

3.1.1 Statement of the boundary-value problems. In Chapter 2 we constructed
the scalar and block elimination methods to solve three-point scalar and
vector equations. The block elimination method requires O(M?*N) arithmetic
operations for equations with variable coefficients, where N is the number of
equations, and M is the dimension of the vector of unknowns (the number
of unknowns in the problem is equal to M N). For special classes of vector
equations corresponding, for example, to a Dirichlet problem for Poisson’s
equation in a rectangle, a modification of the block elimination algorithm
was presented. This algorithm allows the number of operations to be reduced
to O(MN?).

This chapter is devoted to the further study of direct methods for solving
special vector equations obtained from difference schemes for the simplest el-
liptic equations. We will construct the cyclic reduction method, which enables
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us to solve the basic boundary-value problems in O(M N log, N) arithmetic
operations. If we ignore the weak logarithmic dependence on N, the number
of operations for this method is proportional to the number of unknowns
MN. The creation of this method is an essential step in the development of
both direct and iterative methods for solving grid equations.

We will formulate boundary-value problems for three-point vector equa-
tions which can be solved using the cyclic reduction method. We will consider
the following problems:

(1) A boundary-value problem of the first kind.
We must find the solution of the equation

-Y;_1+4CY; - Y1 = F; 1<j<N-1, (1)
which takes on the following values for j =0 and j = N
}’0=Fo, YN=FN- (2)

Here Y; is the §* vector of unknowns, Fj is the given right-hand side, and
C is a given square matrix.

(2) Boundary-value problems of the second and third kinds.

We seek the solution to equation (1) which satisfies the following boundary
conditions for j =0 and j = N:

(C +2aE)Y, — 2Y;= Fy, 7=0,
—2Y¥N_1 +(C + 2BE)YN= Fy, j=N, 3)

where a > 0, 8 > 0. If a = 8 = 0, the formulas (3) give boundary conditions
of the second kind. We will also consider mixed boundary conditions, for
example, a boundary condition of the first kind for j = 0, and a condition of
the second or third kind for § = N.

(3) A periodic boundary-value problem.

We must find the solution of the equation —Y;_; + CY; —Y;y; = F; which is
periodic, Yy4; = Yj. It is assumed that the right-hand side Fj} is also periodic,
Fn4j = Fj. This problem can be formulated in the following equivalent form:
find the solution of

_j—1+CY}—Y:1'+1=Fja 1S]SN—1,
Yn14CY-Yi=Fy, Yy=Y, 4)

This sort of equation arises from difference schemes for elliptic equations
in curvilinear orthogonal coordinate systems: i.e., in cylindrical, polar, and
spherical systems.
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In addition to the basic vector equation (1) containing one matrix C,
we will also consider a boundary-value problem of the first kind for the more
general equation

Yo=F, Yn=Fy
with square matrices A and B. A similar form of problem arises when solv-
ing a high-accuracy Dirichlet difference problem for Poisson’s equation in a
rectangle.

We now formulate requirements on the matrices C, A, and B which
guarantee the applicability of the cyclic reduction method for the problems
(1)~(5). For problems (1)—(4) we will assume that (CY,Y) > 2(Y,Y) for any
vector Y, and for problem (5) that (AY,Y) > 2(BY,Y) > 0. Here the usual
vector inner-product is used.

3.1.2 A boundary-value problem of the first kind. We begin our study of the
cyclic reduction method with a description of grid boundary-value problems
for elliptic equations which can be written in the form of the special vector
equations (1)-(5). Suppose that we have introduced the grid @ = {z;; =
(Zhi1,jh2) € G, 0 < i < M,0< 3 <N, hy = 11/M, hy = I/N} with
boundary v in the rectangle G = {0 < z4 < la, @ = 1,2}, and that we wish
to solve a Dirichlet difference problem for Poisson’s equation

yilll + yigzz= —(P(.'l:) T € w,
y(z)= g(z), T €7. (6)

In Section 2.4 it was shown that problem (6) can be written in the form
(1), (2) where Y; is the vector of dimension M — 1 whose components are the
values of the grid function y(%,j) = y(z:;) at the inner nodes of the j** row
of the grid @:

y}=(y(laj)’y(27j)7"'7y(M_1aj))Ta OS]SN

C is a square matrix of dimension (M — 1) X (M — 1) which corresponds to
the difference operator A, where

Ay=2y — h3yz,5,, h<e, <l —hy,
Y= 0, T1= 0, l]. (7)

The right-hand side F} is the vector of dimension M — 1 defined as follows:
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(1) forj=1,2,...,N -1

_ . . . _ T
Fj = (hg‘P(l,]), h%‘P(zaJ)a ceey hgso(M - 21]): h;so(M - 1:.7)) y (8)
where )
35(1,_]-) = So(laj) + ﬁg(oﬁj)y
1

_ . 1 .
G(M —1,5) = p(M - 1,5) + py(M,J);
1
(2) forj =0,N

Fy=(9(1,5),9(2,5),---,9(M - 1,5)T. 9)

From (7) it follows that the matrix C is a symmetric tridiagonal matrix
in this example.

We now consider a more complex difference problem which can also be
written in the form of the equations (1), (2). Suppose that it is necessary to
find the solution on the grid @ of the Poisson difference equation

Yz.2, T Yzp2, = _90(1:)7 T €w, (10)

satisfying third- or second-kind boundary conditions on the sides z; = 0 and
T = 11

2 2 _
7T Yz, +y52:2= T k1Y — ¢, '771:07 (11)
hy h1

2 2 _
— Yz, FYzpz, = K1Y — @, T1=1l, (12)
hl hl
ha<za <ly—ho

and first-kind boundary conditions on the sides z2 = 0, z2 = Iz y(z) = ¢(z),
z9 =0, I3, 0 < z; < I3. In order to be able to write this problem in the
form (1), (2) with a matrix C which does not depend on j, it is necessary to
assume that k4, = constant.

We now bring this problem into the form (1), (2). To do this we multiply
(10)-(12) by (—h3) and write out the difference derivative yz,:, at a point
for j =1,2,...,N — 1. We obtain the following equations:

(1) for: =0

. B2 R
-y(0,j—1)+2 1+h—lfc-1 y(O,J)——lyn(O,J)

- y(Oﬁj + 1) = h%@(oaj)’
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(2) fori=1,2,...,. M -1
_y(iaj - 1) + [2y(la.7) - hgyiln(iaj)] - y(i’j + 1) = hg‘P(z’]):

3) fori=M

01,5 =)+ 2 [ (14 2 ) WM, 3) + s, (0,5)
—y(M,j +1) = h@(M, j).
We denote
Y; = (y(0,5),y(1,5),---,y(M, )T, 0<j<N,
F; = (h35(0,5), h3p(1,5), ..., B3p(M — 1,5), h3a(M, 5))", (1)
Fj =(9(0,5),9(1,5),.-,9(M,5))T, j=0,N.

With this notation, the resulting equations are written in the form (1),
(2), where the square matrix C of dimension (M + 1) x (M + 1) corresponds
to the difference operator A:

h2 2h2
2 (1 + h—fﬁ—l) y— —,fyn, z1 =0,

Ay = 2y - h%yhna hy <z < I — hh (14)

h2 2h2
2 (1 + EZIC+1) y+ h_2yin Ty =1l
1 1

Here again we have come across a case where C is a tridiagonal matrix. Posing
boundary conditions of the third kind (11), (12) on the sides z; = 0,/; in place
of boundary conditions of the first kind only leads to a different definition of
the operator A — in place of (7) we have (14). The form of the equations (1)
and the boundary conditions (2) is not changed. If boundary conditions of
the first kind y(z) = g(z) is given in place of (11) for z; = 0, and as before
the condition (12) is given for z; = [;, then the resulting difference problem
also reduces to (1), (2). In this case

}’j: (y(l,j)’ y(27j)’ .. 7y(M’j))T’ 0 S]. S N’
_ . . . _ T .
Fij= (h3@(1,5), h3¢(2,5), ..., hkp(M — 1,5),R2g(M,5))", 1<j< N -1,

where )
#(L,5) = (1,5) + 139(0,5),
1
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@(M, ) is the change in the corresponding point of the right-hand side @
in (12), and the square matrix C corresponds to the difference operator A,
where

2y — h2yz,a,, hi <z <l — by,

Ay = h2 2h2
Y 2{14+ 2k41 Jy+ 2yz, o=
hy hy

(15)

and y =0 for z; =0.

If a boundary condition of the first kind is given for z; = I;, and the
boundary condition of the third kind (11) is given for ; = 0, then in (1), (2)

Y; = ((0,5),y(2,35),...,y(M -1,;)T, 0<j<N,

_ . . . _ T
Fj = (h3%(0,7), h3¢(1,5), ..., h3p(M —2,5), R3p(M — 1,5)) ",

where 1
P(M —1,5) = p(M = 1,5) + 339(M, j)
1

and the matrix C corresponds to the difference operator A, where

h2 2h2

2(1+4 2k_ - =2, =

Ay: { ( + hln 1) y h] y 1) 1.1 07 (16)
2y — h3yz,2:, hi<zi <l —hy,

andy=0forz, =1-1.

Thus, we have shown that, if a boundary condition of the first kind is
given in the direction z2, and any combination of first-, second-, or third-
kind boundary conditions is given in the direction z;, then the difference
schemes for Poisson’s equation in a rectangle can be written in the form of a
boundary-value problem of the first kind for the three-point vector equations
(1), (2). The matrix C is defined with the aid of the difference operator A
which, depending on the type of boundary condition on the sides ; = 0 and
z1 = Iy, is given by the formulas (7), (14)-(16).

3.1.3 Other boundary-value problems for difference equations. The type of
boundary conditions for equation (1) fully determines the type of boundary
conditions for the difference equation (10) on the sides of the rectangle z; =0
and 1, = l;. We have looked at the case where boundary conditions of the
first kind were given on these sides.
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We will look now at other boundary-value problems for equation (10)
which lead to the vector equations (1), (3). Suppose that we are required to
find the solution of a boundary value problem of the third kind for Poisson’s
difference equation on the rectangular grid @ defined above. The difference
scheme has the following form:

y5111+y5212 = (p(x)’ x E w, (17)
2 2 _

_yz1+yi,z, =Tk Y—9, 1= 07 (18)
h1 hl

2 2
=Yz, Y52, = TK+1Y — P, T1r=1l1, by <z <y — by,
hi hy

2 2 _
y5:11:1+_y12= T K2y —p, T2= 07 (19)
ha ha

2 2 _
yilzl“h—2yig= h—2'€+2y -@, Ta=1l, hy <z <hLi—hy. (20)

At the corners of the grid, the approximation has the special form:

2 2 2 2 _
h_l'yll +h_2y22= (—};K‘—'l + h_2n—2> Yy—p, 1= 07 T2= 0’ (21)

2 2 2 2
—yr, tyn,= (kb ko )y =@, mi=h, =0, (22
hy ¥ 1+h2y2 <h1K+1+h2f€ 1>y ¢, T1=h, z2=0 (22)

2 2 2 2
— Yz, ——Yz,= | —K_ — -, =0, = lg, 2
hlyl h2y2 (hl'i 1+h2f€+2)y ¢, 11=0, z2=1 (23)

2 2 2 2 _
_Z:yfl ‘h_2y5:2= (h_1'9+1 + EKH) y—¢, Ti=h, z=1, (24)

Here it is assumed that k4, = constant, a = 1,2.

We will show that problem (17)-(24) reduces to (1), (3). In fact, denoting
by Y; the vector of dimension M + 1

Y; = (y(0,5),y(1,5),-..,y(M,j)T, 0<j<N

and defining the right-hand side Fj for j = 1,2,..., N — 1 by the formulas
(13), we obtain from (17) and (18), as in the previous section, equation (1)
with a matrix C which corresponds to A from (14). It remains to show that the
conditions (19)—(24) can be written in the form of the boundary conditions
(3)-

We multiply (19), (21) and (22) by (—h2) and write out the difference
derivative y;, at a point. We obtain:
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(1) fore=0
h3 h3
2|{ 1+ 2k_1 ) y(0,0) — 2y, (0,0)
hl hl
+ 2hak_2y(0,0) — 2y(0,1) = h25(0,0),
(2) fori=1,2,...,M -1
[2y(i’ 0) - hgy-’i‘ﬁl(ia 0)] + 2h21€_2y(i, 0) - 2y(i’ 1) = hg@(l, O)a

(8) fori=M

h2 h2
2|14 2k41 ) y(M,0) + 2yz, (M,0)
hy hy
+ 2hyk_oy(M,0) — 2y(M, 1) = h33(M, 0).
If we denote a = hak_2, then these equations can be written in vector form
(C + 2C!E)},o —_ 2Y1 = Fo, (25)

where Fy = (h23(0,0), B35(1,0), ..., h2¢(M,0))".
Analogously, we obtain from (20), (23), and (24) the equation

—2Yn_1 + (C +2BE)Yy = Fy,

where we have denoted 8 = haris and Fy = (h3@(0,N), h3p(1,N),.. .,
hip(M,N ))T Thus, the difference scheme (17)-(24) has been reduced to
problem (1), (3).

We look now at the case where some combination of boundary conditions
is given on the sides of the rectangle G. As was remarked above, the problem
differs from (18) in the boundary conditions on the sides z; = 0 and z; = [,
but this only has an effect on the definition of the matrix C. If a boundary
condition of the first kind is given for 2 = 0, i.e., in place of (19), (21) and
(22) we have y(z) = g(z), x2 = 0, then the condition (25) must be changed
to the condition Yy = Fy, where Fy = (g(0,0),...,9(M,0))T. In this case,
the three-point vector boundary-value problem has the form

Y1+ CYj-Yjpu=F;, 1<j<N-1,
Yo :FOa (26)
—2Yn_1 4+ (C +2BE)YN = FN.

We also obtain an analogous system in the case when a boundary condition
of the first kind is given on the side 3 = I3, and a boundary condition of the
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third kind is given on the side z2 = 0. In this case the vector boundary-value
problem has the form

=Y, 1+CY;-Y;u=F;, 1<j<N-1,

27
(C+2(¥E)Y0-—2Y1 =F0, YN=FN. ( )

We looked at examples of boundary-value problems for Poisson’s differ-
ence equation in a rectangle and showed that they correspond to the vector
boundary-value problems (1), (2) or (1), (3), or (26), (27) with a correspond-
ing tridiagonal matrix C.

Difference schemes for more complex elliptic equations in both Carte-
sian and curvilinear orthogonal coordinate systems also lead to such vector
boundary-value problems. We will give some examples. In a Cartesian system,
the basic boundary-value problems for an elliptic equation are

5} Ou 0%u
P <k1("31)6—wl) + k2(1'l)a_% —g¢(z1)u=~-f(z), z€G,

T

where the coefficients deper_xd only on one variable. In this case, we can in-
troduce into the rectangle G the rectangular grid @ with uniform step k3 in
the direction z2 and arbitrary non-uniform steps in the direction z;.

In cylindrical coordinate systems, these examples are boundary-value
problems for Poisson’s equation in a finite circular cylinder or tube in the
presence of axial symmetry:

10 ou O%u
v or (5') + 52 =~ f(n2)

0<rg<r<R, O<z<l

In this case, an arbitrary non-uniform grid can be introduced in the
direction r, but a grid with constant step h; is introduced in the direction z.

If we must find the solution of Poisson’s equation on the surface of a
cylinder, i.e.,

1 8%u  &%u
R26<p2+az2 flp,2), 0<p<2r, 0<z<l

then the corresponding difference problem reduces to the periodic vector
boundary-value problem (4), where it is possible to have an arbitrary non-
uniform grid in the direction z.
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In polar coordinates, admissible examples are difference schemes for Pois-
son’s equation in a circle, a ring, and a circular or ring sector

1 a au 1 a2u
ror (rﬁr_) t a5,z = fne) (he)eG.

For the circle and the ring, the difference scheme leads to the periodic
problem (4), and for the sectors — to the problems (1), (2) or (1), (3). Here
it is possible to introduce a non-uniform grid in the direction r.

The difference scheme for Poisson’s equation on the surface of a sphere

of radius R:

1 9 (. ,0u 1 &%
R?sin6 89 (sm 955) + R? sinzea_soz =~ f(e.9)

also leads to the periodic boundary-value problem (4).

3.1.4 A high-accuracy Dirichlet difference problem. We look now at an exam-
ple of a difference scheme which leads to (5), a more general vector equation
than (1). On the rectangular grid @ = {z;; = (¢h1,jh2) € G,0<i < M,
0<j<N,hmM =1, haN = I3}, we write the Dirichlet difference problem
for the high-accuracy Poisson’s equation

hi + k3

Yziz, + Yzo2, + 12

Yz1212220 = — (%), TEw, (28)
y(z) = g(2), T €.

The solution of the difference scheme (28) with a corresponding choice
of right-hand side ¢(z) converges at rate O(h} + h3) to a sufficiently smooth
solution of the differential problem if h; # h2, and at rate O(h8) if hy = hy =
h.

We shall reduce (28) to a boundary-value problem for a vector three-
point equation

—BY;_, +AY; - BY;;; =F;, 1<j<N-1,

29
Yo=F, Yn=Fn. (29)

To do this, it is necessary to multiply (28) by (—h2), write out the difference

derivative
h? + h3
(y+ 112 2!/51::1)_
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at a point, and use the notation

}’3 = (y(]"])sy(zvj), .. ,y(M - lij))Tv

(h¢04%h¢@u) . h2p(M —2,7), k2e(M —1,7))7,

where

(1»—(1n+y(«mn+”§“hmwnﬂ,

P ~1,5) = o~ 13) + 35 (o0, + Bt Mg, 00,7

and
FJ = (g(laj),g(2,j)1'--sg(M_ lij))Ts .7= OsN

In this case, the matrices B and A correspond to the difference operators A,
and A, where

h2 4 2

My=y+ 112 2 121> hi L2 <l — by,
5h% — h?

Ay=2y — —6_—1,!:1:1, hi <z <l —hy,

and y = 0 for z; = 0 and z; = l;. These matrices are tridiagonal and, as is
easily verified, they commute.

The boundary-value problem (29) can be reduced to problem (1), (2).
To do this, each of the equations (29) must be multiplied on the left by B~!,
if the inverse of matrix B exists. We now find a sufficient condition for the
existence of B~1. Cleraly, an inverse to the matrix B exists if the system of
linear algebraic equations

BY =F (30)

has a unique solution for each right-hand side F.

Using the definition of the matrix B, (30) can be written in the form of
a difference scheme

My=y+ 12 A2y +f, hi <z <l —hy,

y(0) =y(h) =0.

(31)
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In Section 2.1 it was shown that, if the scheme (31) satisfies the sufficient
conditions for the stability of the elimination method, then the solution of
equation (31) exists and is unique for any right-hand side f, and this solution
can be found by the elimination method. Writing out the difference derivative
Yz,z, at a point, we write (31) in the form of the scalar three-point equations

—Aiyi-1 + Ciyi — Biyiq1 = F; 1<:e<M-1,
(32)
Yo = 0’ YM = 07

where B2 p2 T
+ +
Bi="pne 6h2

-1

Recall that for (31) the sufficient conditions for the stability of the elim-
ination method have the form |C;| > |A;| + |Bi|, 1 = 1,2,..., M — 1. From
these conditions we find that the matrix B has an inverse if the steps for the
grid & satisfy the relation hy < V/2h;. If this condition is satisfied, problem
(29) can be reduced to problem (1), (2) with C = B~ A.

3.2 The cyclic reduction method for a
boundary-value problem of the first kind

3.2.1 The odd-even elimination process. We move on now to a description of
the cyclic reduction method. We begin with a boundary-value problem of the
first kind for three-point vector equations

Yy +CY =Y =F, 1<j<N-1, "
Yy = Fo, Yy = Fn.

The idea behind the cyclic reduction method for solving the problem
(1) consists of sequentially eliminating from equation (1) the unknowns Y;
first with odd indices j, then with indices ; which are multiples of 2, then
4, and so forth. Each step of the elimination process reduces the number of
unknowns, and if N is a power of 2, i.e. N = 2", then at the end of the
elimination process there remains one equation, from which it is possible to
find Y/, The reverse path of the method involves sequentially finding the
unknowns Y; first with indices j divisible by N/4, then N/8, N/16, and so
forth.

Clearly, the cyclic reduction method is a modification of the Gaussian
elimination method applied to the problem (1), in which the elimination of
the unknowns is carried out in a special order. Recall that, unlike in this
method, the elimination of the unknowns is carried out in the natural order
in the block elimination method.
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Thus, suppose N = 2™, n > 0. For convenience we introduce the follow-
ing notation: C(®) = C, F'J(-O) =F;,7=1,2,...,N —1, and we write (1) in
the form

~Y+C9Y; - Y =F", 1<j<N-1,N=2",
Yo = Fo, Yy = Fn.

(1)

We look now at the first step of the elimination process. At this step, we
eliminate the unknowns Y; with odd indices j from the even-numbered equa-
tions of the system (1'). To do this, we write out three successive equations
from (1'):

—Yj_ +COY;_; —Y; = F2,
~Yj-1 + COY; ~ Y1 = F°,

Y+ COYjy ~Yiye = F,  §=2,4,6,...,N-2

We multiply the second equation on the left by C(® and add together all
three of the resulting equations. We then have

~Yj2 +CVY; ~ Yo = FY,  j=24,6,...,N -2,

(2)
K)=F0a YN"_‘FN’

where

cD =[c®)2 - 2E,
F}‘) _ F,@l n C(")F}") + p}i)l, j=24,6,...,N—2.

The system (2) only contains the unknowns Y; with even indices j, the
number of unknowns in (2) is equal to N/2 — 1, and if this system has been
solved, then the unknowns Y; with odd indices can be found using (1') from
the equations

COY; = FO 4+ Y1 + Y41, j=135,...,N—1 3)

where the right-hand side is now known.

Thus, the original problem (1') is equivalent to the system (2) and the
equations (3), where the structure of the system (2) is analogous to the
original system.
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At the second step of the elimination process, we eliminate the unknowns
with indices j divisible by 2 but not by 4 from the equations of the “reduced”
system (2) whose index is divisible by 4. By analogy with the first step, we
take three equations from the system (2):

~Y;_4+CVY;_, —Y; = FD,,
~Yjo2 + CWY; — Vo = FV,
Y+ CVY 0~ Vi = FY,,  §=4,8,12,...,N —4,

we multiply the second equation on the left by C(), and add all three equa-
tions together. As a result we obtain a system of N/4—1 equations containing
the unknowns Y; with indices divisible by 4:

_ j_4+c(2)yj_yj+4=FJ§2), j=4,812,...,N — 4,
}/0=F0a YN=FN’

the equations C(I)Y} = F}l) +Y;_2+Yj42,5 =2,6,10,..., N —2 are used to
find the unknowns with indices divisible by 2 but not by 4, and the equations
(3) are used to find the unknowns with odd indices. Here the matrix C(?)

and the right-hand sides F;z) are defined by the formulas

c® =[cW)? - 2E,
FP =FY + cCOFM +FY,,  j=4,812,... N -4

This process of elimination can be continued. At the end of the I-th step
we obtain a reduced system for the unknowns with indices divisible by 2':

Yy + 00— Y =F", j=2,2.2,3.2. . N-2,

(4)
Yy = Fo, YN = Fn,

and a group of equations

Cr Y, = FF Y 4 Y ghes + Yyygren,
j=2kF13.9k1 5.0k1 N _ k1

(%)

which we solve sequentially for ¥ = I,/ —1,...,1 to find the remaining un-
knowns. The matrices C(¥) and the right-hand sides F}k) are found using the
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recurrence formulas

oW = [cu—l)r _9E,
F® = F&0, + 0-DFrD 4 FD, (©)
j=2F2.2%k3.9F N —2F

fork=1,2,....

From (4) it follows that after the (n — 1)-st elimination step (I =n —1)
there remains one equation for Y3n-1 = Yy 5:

CONVY; = F"™D 4 Y gus + Vg = F D 4 Yo + Yy, j=2"70,
Yy = F, Yn =Fpn

with a known right-hand side. Joining this equation with (5), we discover
that all the unknowns can be found sequentially from the equations

C(k_l)y}' = Fj(k—l) -I—Yj-—2“_l + Yj+2h—l, }’}, = Fo, YN = FN,

7)
j=2k13.9k1 5. 9k-1 N _92¥1 fk=pn-1,...,1. (
Thus, the formulas (6) and (7) fully describe the cyclic reduction method.

The right-hand sides are transformed using the formulas (6), and the solution
of the original problem (1) is found from equations (7).

We call this method the cyclic (complete) reduction method since here
we sequentially reduce the number of equations in the system to the point
where there remains only one equation for Yy/;. In the method of incomplete
reduction which will be looked at in Chapter 4, only a partial reduction in
the order of the system is achieved and the “reduced” system is solved by a
special method.

3.2.2 Transformation of the right-hand side and inversion of the matrices.
Computing the right-hand side F}k) using the recurrence formulas (6) can
lead to accumulation of rounding error if the norm of the matrix C*~1) is
greater than one. In addition, the matrices C(¥) are, generally speaking, full
matrices even when the original matrix C(®) = C is tridiagonal. This essential
fact leads to an increase in the volume of computational work when F® s
computed using the formulas (6). For the examples considered in Section 3.1,
the norms of the matrices are considerably greater than one, and so the
algorithm for the method will be computationally unstable.
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In order to get around this difficulty, we will not compute the vectors
F}k); instead we will compute the vectors pfik), which are related to the F}k)
by the following relations:

k-1

F® =[] cpiP2*, ®)
=0
where we formally set
-1
[[cV=E
=0

since p( ) = F(O) = F;.

We now find recurrence relations for the pg-k). To do this, we substitute
(8) in (6). Taking into account that C(V is a non-singular matrix for any I,
from (6) we obtain

2HC(1) (k) _ HC(z) [ (k-1) | olk= Vp (k 1)+p(lizi)_l]

1=0
or
1) (k k-1 k 1 k-1
20tDp® = p 0 4 oplE 4 pS0 9)
Denoting s = 2p(k) (-k_l) we obtain from (9) that p( ) can be found

sequentially from the followmg formulas
DN <D L, P =08 (e,
j=2%2.253.25  N-25 k=1,2..,n-1, p=F,.

The recurrence relations (10) involve the addition of vectors, the multi-
plication of a vector by a scalar, and the inversion of the matrices c-1),

It remains now to eliminate F’ J( ) from the equations (7). Substituting
(8) in (7) we obtain

k—2
C(k—l)YJ_ — 9k-1 H C(l)p.(ik“l) + 1/}_21:_1 + },j+2k—1,

=0 (11)
l/E)=F10a YN:FNa

j=2k13.9k1 N_-2F1 k=nmn-1,..,1
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Here also it is necessary to invert the matrices C(*~1) but, in addition, the
operation of multiplication of a matrix by a vector appears in the right-hand
side of (11). In the algorithm examined below, a method of inverting the
matrix C*=1 is used which allows us to avoid the undesirable operation
of matrix-vector multiplication, and the realization of (11) reduces to the
inversion of matrices and the addition of vectors.

We look now at the question of inverting the matrices C(*~1) defined by
the recurrence relations (6)

2
c® = [C"‘_”] -2E, k=12,.., cO=c. (12)

From (12) it follows that C¥) is a monic polynomial of degree 2% in the
matrix C. This polynomial is a Chebyshev polynomial and can be expressed
in the following way:

c® — o, (%c) E=0,1,..., (13)

where T,,(z) is the Chebyshev polynomial of first kind of degree n (see Section
1.4.2):

cos(n arccos z), lz] <1,
Tn T) = 1 -
D7) e+ Va1 + VD), el 21
In fact, using the properties of the polynomial T,(z)
Ton(z) = 2[T,,(z)]2 -1, Ti(z) ==,

(13) follows directly from (12).
Further, using the relation

k—2
H 2Ty1(z) = Upr-1-4(),
1=0

connecting the Chebyshev polynomials of the first kind with the polynomials
of the second kind U,(z), where

sin((n + 1) arccos z)
sin(arccos )

1
Wl G Ve 1) — (z 4+ Va2 —1)~(H] g > 11,
x —

lz] <1,
Un(z) =
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it is easy to compute the product of the polynomials C(¥

k—2 1
[Ic® =Us-i, (50) : (14)

=0

k-1
Thus, an explicit expression has been obtained for C¥) and [] C®.
=0

In the following, we require lemma 6 (see Section 2.4.1). According to
lemma 6, any ratio g, ()/ fn(z) of polynomials without common roots where
n > m and where f,(z) has simple roots can be expanded in elementary
fractions in the following fashion:

n

gm(z) a o = Im(@)
falz) ,};x—x,’ RACHK

where z; are the roots of the polynomial f,(z).

We shall use lemma 6 to expand the ratios 1/Ty(z) and Un—_1(z)/Tx(z)
in elementary fractions. The roots of the polynomial T,,(z) are known:

(21-1)
2n

z; = cos , [=1,2,...,n, (15)

and at these points the polynomials U,,_(z) take on non-zero values

sin(n arccos z;) (-1)H1
U_1:I:1= " = 1=1,2,...,n.
n-1(21) sin(arccos ;) sin %ll,r’ e

Therefore, using the relation T},(z) = nU,_;(z), we obtain from lemma 6 the
following expansions:

n 1 . (21-1
1 (-1)H+1 sm-(%

To(z) = — n(z — 1) ’ (16)
Un-1(z) - 1
Ta(z) Z n(z —z;)’ (17)

=1

where z; is defined in (15). The necessary expansion has been found.

. . . -1
We obtain now an expression for the matrices [C(k“l)] and

=01 T o
[C ] gc



3.2 The cyclic reduction method ... 135

in terms of the matrix C. Taking into account the expansions for the algebraic
polynomials (16), (17), from (13) and (14) we obtain

2k—1

_ -1
[C("‘l)] ! = Z ap k-1 (C — 2cos -@l—;llE) ,
[ ck- 1)] H c® = 21:—1 E (C’ 2cos 1)7r )

These relations allow us to write in the following form both the formulas (10):

zk 1
(k = Zalk 1C1k— ( gkgi)—l +P§~i;i)_1),
P =05 () +870), (18)
0 = F,

j=2F2.2k3.2k N_-2% k=12,...,n-1,

and the formulas (11):

2&—1

¥ = X it [ + ot (e )]
=1

YO"_‘FOa YN=FN’ (19)
j=2F13.2k1 5.0k-1 N _ k-1
k=nn-1,...,1,

where we have denoted

2l -1)m
ok

(-1)H+! o (21— 17

Clk—1 = C —2cos k-1 ok

E, al,k—l = (20)

Thus, the resulting formulas (18), (19) describe the cyclic reduction
method for solving the problem (1). These formulas contain only the op-
erations of addition of vectors, multiplication of a vector by a scalar, and
inversion of matrices.
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Notice that if C is a tridiagonal matrix, then any matrix Cj -, will also
be tridiagonal. The problem of inverting such matrices was solved in Chap-
ter 2. Further, if the matrix C satisfies the condition (CY,Y) > 2(Y,Y), then
it follows from (20) that the matrices Cj ; will be positive definite and conse-

quently will have bounded inverses. Then from the expansion of [C(k"l)] -
we obtain that the matrices C(*~1) are non-singular for any ¥ > 1. Recall
that this assumption was used to obtain the formulas (10).

3.2.3 The algorithm for the method. The formulas (18), (19) obtained above
serve as a basis for the first algorithm of the method. We shall look first at
which intermediate quantities must be computed at which stage and then
remembered for subsequent use.

An analysis of the formulas (19) shows that for fixed k, the vectors pg.k_l)

with indices j = 2¥-1,3.2%1 .. N —2%¥! are used to compute Y;. Any
U

vector p;

and is only stored temporarily. Therefore the vectors pg-k) defined at the k-

th stage by (18) can be overwritten on the vectors pg-k); it is also possible

to overwrite the unknowns Y; computed using (19). The method does not
requi ili — (k)
quire any auxiliary computer storage — all the vectors p;™ can be stored

in place and then overwritten by the Y;.

with the same index j but with index ! less than k — 1 is auxiliary

We shall illustrate the organization of the computations in this algorithm
with an example. Suppose N = 16 (n = 4). In figure 1 we indicate the

sequence of computation and the storing of the vectors pgk). A shaded square

denotes that for this value of the index k, the vector p(-k)

;~ Wwith corresponding
index j is stored for later use. Correspondingly, an unshaded square denotes
that pg-k) is auxiliary and is stored only temporarily. The arrows indicate

(k-1) (%)

which vectors p; are used to compute p;.

k J 112(31415(6|718|9(10{11{12{13|14|15
(0)

0 P;
(1)
(2)

2 P;
(3)

3 P;

Figure 1.
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k J 0{1;2(3(4,5|6;7|8]9]10{11{12|13|14|15|16

Figure 2.

At the end of the forward path of the method, we will have stored the
(%),

following vectors p;™’:

0 1 0 2 0 1 0 3 0 1 0 2 0 1 0
p§ ),Pg )7p1(i )aP‘(i )7Pg ),Pg ),P'(z ),Pg ),Ps(; ),pgo),pgl),pgz),pgs),z)gﬁ,Pgs)-

They are used to compute Y; on the reverse path of the method.

In figure 2 we indicate the computation sequence for the unknowns Y;
(symbolically denoted by o). The arrows indicate which Y}’s were found at

the preceding step and which pgk_l) (symbolically denoted by m) were used
to compute Y; for a given k.

We move on now to a description of the algorithm for the cyclic reduction
method. Using (18), the forward path of the algorithm is realized as follows:

1) Initially set pg_o) =F,;j=12,...,N—1.
2) For each fixed k = 1,2,...,n — 1 and for fixed j = 2%, 2.2F ... N —2*
initially compute and store the vectors

k— k—
p= p‘(,‘_gi)—l + P§-+2}=)—1- (21)

Then for I =1,2,...,2F1 solve the equations

Clk—1v1 = ap_1. (22)
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Find pgk) by gradually accumulating and overwriting results in the place of
(k1)
p;

P =05 (o b o1 v ). (23)

Using (19), the reverse path of the method is realized as follows:

1) Initially give values for Yy and Yn: Yy = Fy, Yy = Fy.

2) For each fixed k =n,n—1,...,1 for fixed j = 2F-1, 3.2%-1 5.2k-1
N — 2k¥-1 compute and store the vectors

=Y ax-1+ Y901, Y= ng_l). (24)
Then for [ =1,2,...,2%1 solve the equations
Cri-1v1 =% + ap k1. (25)

Find the vector of unknowns Y; by gradually accumulating and over-

writing results in the place of pﬁ-k—l)

Yj=vi+va+-- 4+ vgr-1. (26)

We now calculate the number of arithmetic operations required to realize
this algorithm. Suppose that the dimension of the vector of unknowns Y; is
M, and let ¢ denote the number of operations required to solve an equation
of the form (22) or (25) for a given right-hand side. We will assume that the
quantities a;  have already been found.

We first calculate the number of operations @; for the forward path.
For fixed k and j, the computation of the vector ¢ using the formulas (21)
requires M + § operations. Therefore finding all the v; requires 25~ (M + §)

operations. The computation of pgk) using formula (23) is accomplished at a

cost of 2~ M 4+ M operations. Thus, to compute pgk) for one k and j requires
M + 2%¥-1(2M + §) operations.
Further, for each fixed k it is necessary to compute N/2¥ — 1 different

p_(’.k). Consequently, the total number of operations ¢); required to realize the
forward path is equal to

Q1= 2—: [M +(2M + §)2+1] (2—1\: - 1)

k=1
=(M +0.5))Nn — (M + §)N — M(n — 1) +§. (27)
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We calculate now the number of operations @, required on the reverse
path. For fixed k and j, the computations in the formulas (24) require M
operations, to find all the v; in (25) requires (2M + §)2*~! operations, and
to compute Y; from (26) requires (2¥~! — 1)M operations. Since the number
of different values of j for each fixed k is equal to N/2¥, Q, is equal to

n . N
Q=) [M+(2M +§2k" + (261 —1) M) oF
k=1
= (1.5M + 0.5¢)Nn.

(28)

Adding (27) and (28) and taking into account that n = log, N, we obtain
the following estimate for the number of operations for the cyclic reduction
method realized using the above algorithm

Q=Qi+Q2=(25M +)Nlog, N~ (M + N - M(n - 1) +4. (29)

From (29) it follows that, if ¢ = O(M), then @ = O(MN log, N).

3.2.4 The second algorithm of the method. The principle merit of the above
algorithm is its minimal storage requirements — it does not require auxiliary
memory for the storage of auxiliary information. The cost of this property
is an increase in the volume of computational work due to the repeated
computation of intermediate quantities. We look now at another algorithm
for the method which is characterized by a smaller volume of computational
work, but which requires auxiliary storage compared with to the total number
of unknowns in the problem.

To construct the second algorithm, we turn to the formulas (6), (7)
describing the cyclic reduction method

c® = [C(k-l)r _9E,

k k-1 - k- k-1
FJ( ) = F;_zgzl + c l)FJ( Y + F;+2"21’ (6,)
j=2k,2'2k,3'2k7"'7N—2k’ k=1’2""’n—1’
C(k"l)y’ — FJ(k—l) + }’J,_Zh_l + l/j+2k—1,
Yo=F, Yy=PFy, (7)

j=2F13.2k1 5. 061 N_92k1 k=pn-1,..1

Here, as in the first algorithm, the vectors F;k) are not directly computed,

but instead we define the vectors pg.k) and qf-k) which are related to F}k) by
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the following relations:

F](k) C(k)p(k) + q(k)

(30)
j=2F2.2F 3.2k N_2¢ k=0,1,..,n-1.

We now find recurrence relations for computing the vectors p ) and q(k).
Since we have introduced two vectors in place of the one vector F( ) , there is

() (0)

some arbitrariness in the definition of p;  and qjk) We will choose p; ' and

5-0) so that they satisfy the initial condition FJ( )= F;. To do this we set
=0 ¥=F, j=12..,N-1 (31)
Furhter, substituting (30) in (6'), we obtain

c® (k)+q(k) = o1 (k 1)+p(k D 4 ok 1)p(k 1)+ (k-1) ]

2k-1 J+2k—l
+q§k2i)1+q§':2i)-17 ]=2k’2'2k""aN_2k, k=12,...,n-1
Taking
g =2p" + ¢ + g (32)

and taking into account that C® 4 2E = [C*~1D]2, we find that

O o D 4 by QU ) (g

Here we again assume that C(¥) is a non-singular matrix for any I.
Setting s(k D= pgk) (-k_l) we obtain from (31) (33) the following
recurrence relations for computmg the vectors p ) and q
1) (k- (k- k-~ k-1
C(k 1)55‘ R q] b +p§ 21) 1+ p§'+2k)—n

(k-1)

PP = pD) 4 kD),

o = zp(k) TP U G (34)

(0) = Fj’ p_(jO) = 0’

j=2%2.2¥3.2F N2k
k=1,2,...,n—-1.
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It remains to eliminate F}(k_l) from the formulas (7'). Substituting (30)
in (7') and setting tgk_l) =Y; - pg-k—l) , we obtain the following formulas for
computing Y;:

C(k—l)t.(ik—l) = q;—k_l) + ]/J'_zk—l + }’j+2k—1,
Y ___pgk—l) +t§k—1),
Yo=F, Yn=Fy, (35)

j=2k13.9k1 5.0k-1 N _ okl

k=nn-1,...,1

Thus, we have obtained the formulas (34), (35) which form the basis for
the second algorithm for the cyclic reduction method. These formulas contain
the operations of addition of vectors and inversion of the matrices C(*~1),

We now consider the question of inverting the matrices C*~1). As was
shown above, the matrix C(*) is a polynomial of degree 2 in the matrix C
and is defined by the formula (13) for the Chebyshev polynomial of the first
kind T, (z):

c® = 2Ty, (%c) ,

where the coeflicient of highest degree is equal to one. Since the roots of
the polynomial T, (z) are known (see (15)), C(®) can be represented in the
following factored form:

ok

c® :H(C_gcos%;%E), k=0,1,....
=1 .

Using the notation (20), the matrix C*=1) can be written in the following

form:
2k— 1

c*V =[] Cik-1, Cip-1=C —2cos

=1

2l - )x

B (36)

The factorization (36) allows us to solve easily equations of the form
C*-Vy = ¢ with a given right-hand side ¢. The following algorithm solves
this problem by sequentially inverting the factors in (36):

k-1
Vg =, Cl,k—lvl=vl—-1, I=1a2a"'a2 )

where v = vy¢-1. We will use this algorithm to invert the matrices C(*~1).



142 Chapter 3: The Cyclic Reduction Method

We now describe the second algorithm for the cyclic reduction method.
The forward path of the method is realized using (34) in the following fashion:

1) Initially define ¢\”: ¢\ = Fj, j = 1,2,...,N — 1.

2) (The first step for k = 1 is carried out separately using the formulas

but taking into account the initial conditions p;o) = 0.) Solve the equations

for pg-l) and compute qgl):
Cpgl) = Q§0)’
(1) (1) (0} (0) (37)
q] =2p] +q]—l+qj+1’ j=2,4,6,...,N—2.
3) For each fixed k = 2,3,...,n — 1 compute and store the vectors

- k— - .
o = g 4 e, G=2k202k 8005 N -2k (39)

Then for fixed | = 1,2,3,...,2¥! for each j = 2%, 2.2% 3.2k . N -2k
solve the equations
Cii-1 vy) = vgl_l) (39)

with the same matrix but with different right-hand sides. As a result, the
k-1
vectors v;2 ) have been found (in the formulas (34) these vectors correspond
to sg-k_l)). The vectors pg-k) and qg-k) are computed using the formulas
k k— k-1
)
o =2 450, o (0)
j=2%2.253.2F N -2k
The reverse path of the method is realized according to (35):
1) Initially give values for Yp and Yn: Yy = Fo, YN = Fy.

2) For each fixed k = n,n —1,...,2 compute and store the vectors

v;o) — q;k_l) +}/j_2k_l + Yj+2k—l, (41)
j =2t 3.2k 5ok L N ok,

Then for fixed I = 1,2,...,2%"! for each j = 2k~1,3.2k"1 5.2k-1 N _
2k=1 golve the equations

Cz,k_1v§-1) = vgl—l). (42)
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(zk—l

As a result, the vectors v; ) have been found (in (35) they correspond to

the vectors tg-k_l)). Further, compute Y; from the formula
¥y =pt D o@D, jokol 3okl 5 k1 N okl (43)

3) The final step of the reverse path for k = 1 is accomplished by solving
the equation

CY = +Y1+ Yy, j=135..,N-1 (44)

Remark on the algorithm. All the new vectors p(k) determined using the
formulas (37) and (40) are overwritten on the p(’c 1, All the vectors v( ) in the

formulas (38), (39), (41), (42), the new vectors qg ) defined by the formulas

(37), (40), and also the solution Y; from (43) and (44) are overwritten on the

qgk -, Consequently, this algorithm requires 1.5 times as much computer

storage as the number of unknowns in the problem.

The reduction in the computational work in this algorithm is achieved by
solving a series of problems (39) and (42) for different j with identical matrices
Ci,k—1 (the full computation is only required to solve the first equation in the
series; solving each of the subsequent problems requires significantly fewer
arithmetic operations). We now count the number of operations for the second
algorithm, denoting as before by ¢ the number of operations required to solve
an equation of the form (39) or (42) for a given right-hand side, and by g the
number of operations to solve this equation with a different right-hand side
(@< 9).

The number of operations required to realize the forward path is equal

Bl (G- o9 3

k=1

to

= 0.5¢Nn + (0.5 — 1.5 + 4.5M)N — 6Mn — (¢ — 2 + 3M),
and for the reverse path

Qz=2":{3M2—Nk+[.;+(_A_’_1> ]2k 1} A42N

k=1
=0.5§Nn+(§—§+2.5M)N —§+§—3M.
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The total number of operations for the second algorithm is equal to
Q=Q:1+Q2=qNlog, N+(1.5¢—2.5§+7TM)N —6Mn—24+37—6M. (45)

From the estimate (45) it follows that, if § = O(M), then § = O(M) and
Q = O(MN log, N). Here the coefficient of the principle term MN log, N is
less than in the estimate (29), since g < q.

We now quickly examine one peculiarity of the second algorithm. In
the first algorithm the matrices C(*~1) are inverted by inverting the factors
C1,k—1 and sequentially summing the results, but in the second algorithm the
factors are sequentially inverted and the result is obtained after inverting the
last factor. From the point of view of the actual computation where rounding
errors have an effect, the order in which the factors Cj x—; are inverted is sig-
nificant in the second algorithm. We will come across an analogous situation
in Chapter 6 when we study the Chebyshev iterative method.

It is possible to recommend the following order for inverting the matrices
Ci k-1- The matrix C*-1) is placed in correspondence with the vector 8,¢-1 of
dimension 2¥~! whose components are the integers 1 through 2¥~!. Suppose

02"_1 = {62“"(1)’ 02“—1(2)a .v- 192k—'1 (zk—l )}1

i.e. the I-th element of the vector 8,:-1 is denoted by 6zx-1(!). The number
62x-1(1) determines the order for inverting the matrices Cy x—1.

The vector #,x-1 is constructed recursively. Let §, = {2,1}. Then the
process of doubling the dimension of the vector is described by the following

formulas:
O2m = {O2m(4i — 3) = 0,,(2¢ — 1),

Oym(4i —2) =0,,(21 — 1)+ m,
O2m(4i — 1) = 0 (2¢) + m,
Oam (47) = 0, (27),
1=1,2,...,m/2},
m=248,....

For example: 6,6 = {2, 10, 14, 6, 8, 16, 12, 4, 3, 11, 15, 7, 5, 13, 9, 1}
and consequently the matrix Cq 16 Will be inverted sixteenth and the matrix
C12,16 seventh.
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3.3 Sample applications of the method

3.3.1 A Dirichlet difference problem for Poisson’s equation in a rectangle.
We will now use the cyclic reduction method ¢onstructed above to find the
solution to a Dirichlet difference problem for Poisson’s equation in a rectangle.
As was shown earlier, the difference problem

Yz,1z, + yizzz = -“(,0(.'13), T € w,
y(z) = g(2), z €7,

defined on the rectangular grid @ = {z;; = (ih1,jh2),0<i < M,0< 5 < N,

hiM = l;, hyN = I3} can be described in the form of a boundary-value
problem of the first kind for the three-point vector equations

Y1 +CYj-Yju=F;, 1<j<N-1,

1
Yo=F, Yn=Fn. M

Here

Y; =(y(1,9),9(2,75),...,y(M -1,5)), O0<j<N,

is the vector of unknowns, the components of which are the values of the grid
function y(z, §) in the j-th row of the grid

Fj = (R23(1,5), h3(2,7), - .., h3p(M — 2,5), h3p(M —1,5)) ,

F;=(9(1,5),9(2,4),.-.,9(M - 1,5)), j=0,N,
where
e . 1 .
#(1,7) = ¢(1,7) + 759(0, ),
1
_ . . 1 .
P(M —1,5) = ¢(M —1,5) + 139(M, j).
1
The square matrix C corresponds to the difference operator A where

Ay =2y - hgyilzn h1 Lz1 <l — by,
Y =0, 7 =0,1,

so that
CY; = (Ay(1,5), Ay(2,3), ., Ay(M ~ 1,5)).
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The problem (1) can be solved by either of the two cyclic reduction algo-
rithms developed above. The basic step in these algorithms is the solution of
equations of the form

@=1r

C,,k_IV = F, Cl,k—l =C —2cos ok

E (2)

with a given right-hand side F. Here V is the vector of unknowns, V =
(v(1),v(2),...,v(M —1)), of dimension M —1 (for simplicity, the index of V'
and F is dropped).

Recall that the number of operations used to solve (1) using the first
algorithm is determined by the number of operations ¢ required to solve
equation (2) (see (29), Section 3.2.3); for the second algorithm, it is deter-

mined by the number of auxiliary operations g required to solve equation (2),
but with a different right-hand side (see (45), Section 3.2.4).

For this example, we derive a method for solving equation (2) and es-
timate ¢ and . From the definition of the matrix C it follows that solving
equation (2) is equivalent to solving the following difference problem:

| —
2(1—cos(—2-——2kﬂ)v—-hgv,—,ﬂ,1 = f(3), 1<i:<M-1,

v(0) =v(M) =0,

3)

where f(i) = f; is the i-th component of the vector F. Writing out the
difference derivative vz,z, at a point, we write (3) in the form of the usual
three-point difference equation for scalar unknowns v(z) = v;:

— vi—1 + av; — viy1 = bf;, 1<i<M-1,
‘UO=UM=0,

(4)

where

_ B2
a=2[1+b(l—cos-(212—kl)7r)], b=h—é.

The problem (4) is a special case of the three-point boundary-value problems
which were solved in Chapter 2. It was shown that the elimination method
was an effective method for solving problems of the form (4). We now state
the computational formulas of the elimination method for the problem (4):

a,-+1=1/(a—a,~), 1= 1,2,...,M—1, aq =0,
ﬂi+1=(bfi+ﬂi)ai+l’ i=1’2,"-,M—1’ ﬂl =0,
Vi = Qig1Vi41 + Bit1, 1=M-1,M-2,...,1, vy=0.
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From these formulas it follows that (4), and in turn (2), can be solved in
g = 7(M — 1) operations if a and b are given. In order to solve (2) with a
different right-hand side F it is not necessary to recompute the elimination
coefficients «;, and thus the auxiliary number of operations § is equal to
g = 5(M —1). These operations are expended to compute §; and to find the
solution v;. Notice that the elimination method for (4) will be stable since the
sufficient conditions for stability with respect to rounding errors are satisfied,
ie.a> 2.

Substituting ¢ in the estimate (29), Section 3.2.3 for the number of op-
erations for the first algorithm, we obtain, retaining the principal terms,
that Q) ~ 9.5MNlog, N — 8MN. For the second algorithm, we obtain
from the estimate (45), Section 3.2.4 the following estimate for the number
of operations: Q® ~ 5MN log, +5MN. Thus, for each of the algorithms
considered, the number of operations for the cyclic reduction method ap-
plied to a Dirichlet difference problem for Poisson’s equations in a rectangle
is O(MN log, N), and the second algorithm requires fewer arithmetic op-
erations. For example, if M = N = 64, we obtain Q) ~ 1.4Q® and if
M =N =128, Q) ~ 1.46Q.

We will not state the computational formulas of the algorithm for this
difference problem since at the vector level they are similar to those described
in Section 3.2.

In Section 3.1.2, various difference boundary-value problems were stated
which reduced to the problem (1). They differ from this Dirichlet boundary-
value problem on the sides of the rectangle, z; = 0 and z; = [, and produce
a different matrix C. So for the problem (10)-(12), Section 3.1.2 with second-
or third-kind boundary conditions for z; = 0, /1, the equation (2) is equivalent
to the difference problem

2(1—cos£%l-_—1)£)v—hgviﬂl=f, 1<:i<M-1,

2k
h’ (2l - )x 2r; .
2<1+h1f¢,_1—cos % v— e Vg, = f, 1=0,
h2 @l -Drm 2h2 .
2(1+—’;K/+1—COS'—2—,‘:— ’v+h—1vil=f, 1= M.

This problem in the usual three-point form is

— v + av; — viy; = bf;, 1<i<M-1,
vo = K101 + i, (5)
M = KoM -1 + 2,
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where

2 _ 2 bfo bfm

a +2h1K._1, k2 = a+2h1/c+1’ t= a+2h1/c_1’ H2 = a+2h1n+1’

K] =

and a and b are defined above.

Sincea > 2and k41 > 0,0 < k1 < 1and 0 < &2 < 1, and the elimination
method for solving (5) will also be stable, and the cyclic reduction algorithm
will in this case require O(M N log, N) arithmetic operations.

3.3.2 A high-accuracy Dirichlet difference problem. In Section 3.1.4 we trans-
formed a high-accuracy Dirichlet problem for Poisson’s equation

h? + h3
yflzl + yizzz + 1 12 2'.(/5:1:152::2 = —So(x)’ T e w’

y(z) =g(z), z€7,

to a boundary-value problem of the first kind for the unreduced three-point
vector equation

Yo=Fy, Yn=Fn.

(6)

The square matrices B and A of dimension (M — 1) x (M — 1) correspond to
the difference operators A; and A, where

h? + h3

My=y+ 112 2 Yz121s hi L2y <l — by,
5hZ — B2

Ay=2y——2—é—1yfl,1, hi<zi <lhi—hy

and y =0 for z; =0 and =, = [;.
It was shown that, if the condition hy < V2h, is satisfied, then (6) can

be reduced to the standard form
Y1 +CY-Yiuu=9;, 1<j<N-1,

(7)
Yo = @, YN = ®n,
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where C = B™'4,%; =B 'F;;,1<j<N-1land ®; = Fjfor j=0,N.In

addition, it was remarked that the matrices A and B commute.

To solve (7), we will use the first algorithm of the method. Since the
matrix Cx—1 can be written in the form

Cl,k—l =C — 2cos (21;—’:1)”147 = B! (A— 9 cos (21 ;kl)”B) ’

the formulas (18), (19), Section 3.2 which define the first algorithm take the
following form:

2k1

20— )w _
(k D Z k-1 (A 2 cos %B) B( ;k 21) 1 +P§-ﬁ_2i)_1) ’
=1

pgk)_05( (k— 1)+s(k 1)),
j=2F2.2k [ N-2F k=1,2,...,n-1,

Bp® = F;,

2k1

Y; = Z(A 2cos 1)”) B[pgk_l)

+ark-1(Yj_gr-1 + Yjae-1)]
Yo=Fy, Yn=Fy, j=251,3.2k1 N -2k
k=n,n—-1,...,1.

In order to avoid inverting the matrices to find p(0 and multiplying

gk 1 by the matrix B to compute Y;, we set p(k) Bp(k) 58 = BsP.
Then using the commutativity of the matrices A and B, and consequently of
the matrices (A — 2 cos Q'—_IM B)~! and B, the formulas written above take

(k)

the form (where the overhne on p; and §§~k) has been dropped):

2kl

21-1)m
sV = =Y - 1(A 2co; (—2—,;2' ) B((k_2i)1+P(i2i)_1),
1=1

pD =05 (3 o),

j=2F2.2F  N_-2% k=12..n-1,
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P('O)EF"

Y;= E(A 2c0s 1)" )-1 [pg."‘”

+Oll,k-lB(y}—2k—1 +Yj+2k—1)] ,
Yo=F,, Yn=Fp,
j=2ok-13.9k-1  N_2%¥1 k=pnn-—1,.,1.

The resulting formulas give rise to the following changes in the first
algorithm: formula (21) Section 3.2 changes to

k— k—
SO = B (p.(,'_z}z)—l + P§~+2i)-1) )

and in place of equation (22), we solve the equations
20— D
(A — 2cos L—Eic_)_B) v = Al k-1

with the computed ¢. Analogously, (24) is changed to

(p = B(},j_zh—l + Y;‘+2k—l), 'l/) = p‘(ik—l)

and in place of (25), we solve the equation
2l - )m
(A — 2cos -(—2k—)B> v = ¢ + Al k—1p-

Consequently, for this problem the basic step of the algorithm is the
solution of equations of the form

(A—2cos(21;—kl)7rB)V=F (8)

with a given right-hand side F'. Using the definition of the matrices A and
B with the aid of the difference operations A and A;, we obtain that (8) is
equivalent to finding the solution of the following difference problem

21-1 5h —h?  hI+h2 2l-1
2(1—cos£j—5,c—)£)v—( 26 L 16 2cos( ok )W)vmzl:f,
1<i<M-1, vo=vy=0.

(9)
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Writing out this equation at a point, we obtain a boundary-value problem
of the first kind for the scalar three-point equation

—vij—1 + avi — viy1 = bf;, 1<i<M-1,

vg=vy =0,

a=z[1+b(1_cosM)],

2k

(10)

where

- 6h?
5h% — h? 4 (h? + h2) cos KL;,})I

The difference problem (10) can be solved by the elimination method, which
will be numerically stable if the condition |a| > 2 is satisfied. We will show
that for any h; and ho this condition is satisfied. In fact, if hy and hy are
such that 11
h2 1 — cos Q——g-k—ﬁ
—= >
5 4+ cos —~—2k—

then 0 < b < oo and consequently, a > 2. Notice that if equality holds in (11)
the coefficient for vz, ,, in (9) reduces to zero, and v can be found explicitly
from (9).

If (11) is not satisfied, then

b<—6/(1—cos(21—;kl)£>,

and consequently, a < —10. The result is proved.

Thus, a high-accuracy Dirichlet difference problem can be solved by the
cyclic reduction method in O(M N log, N) arithmetic operations.

3.4 The cyclic reduction method for
other boundary-value problems

3.4.1 A boundary-value problem of the second kind. Above we studied the
use of the cyclic reduction method for a boundary-value problem of the first
kind for three-point vector equations. We will begin studying the use of the
method for more complex boundary conditions by considering a boundary-
value problem of the second kind. Suppose we must find the solution of the
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following problem:

CY,-2V1=FK, j=0,
-Y;.1 +CY; - Y41 = Fj, 1<j<N-1,
—2Yny-1+CYy=Fy, j=N, (1)
where N =2", n > 0.
The process of sequentially eliminating the unknowns in (1) is realized

in the same way as in the case of first-kind boundary conditions. Namely, for
even j we will have the equations

~Yja +CWY; - Y, =F",  j=2,46,...,N -2, (2)
and for odd j, the equations

COY =F" +Yj + Y1, §=1,3,5...,N-1, (3)
where, as before, we denote

(1) _ 70 0) (0) 4 (0 _

FV=F2 +COF" +F, ¢W=[C"?-2E,
0

c®=c, F"=F

Only the equations of the system (1) corresponding to j =0 and j = N
remain untransformed. We now eliminate from these equations the unknowns
Y; for odd j. For this we use the two neighboring equations. We write out
the equations for j =0 and j = 1:

COY, -2Y; =F, -Y,+COY,-Y,=F".

Multiply the first equation on the left by C(®), and the second by 2, and add
the two resulting equations to find

cWY, — 2Y, = F, (4)
where Fél) =C (O)Féo) + 2F1(0). Analogously we obtain the equation
—2Yn_p + COVYy = F{), (5)

where FI(VI) = 2F1(\?11 + C(O)FI(\?).
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Combining (2), (4), and (5), we obtain a “reduced” full system of equa-
tions for the unknowns with even index j, having a structure analogous to

(1):
cWY, —2Y,=FY, j=0,
- j—2+C(1)Y}—n+2=F}1)7 J=2,4,6,...,N-2,
—2Yn_p +COYy=Fy, j=N,

and a group of equations (3) for the unknowns with odd index j.

Continuing the elimination process further, after the n-th elimination
step we obtain a system for Yp and Yn:

CMY, —2Yy = F(™,  —2Yy + C™Yy = F{) (6)
and equations for determining the remaining unknowns:

C(k_l)l/j = F}k_l) +Y;‘_2k—l + }/j+2k-1, (7)
j=2k13.2F1 5.9k-1 N _2k1 k=nn-1,..,1,

where Fi(k) and C® are defined recursively for k = 1,2,...,n

F(k) C(k 1)1;1(’c 1)_*_21;'1(’1c 11)’

® _ p=1) k—1) (k=1) | p(k=1)
F” =F,’ , +CEVF] + Fy s

]=2"2-2’°3-2’°...N——2’° (8)
F(k) — 2F(k 212 ) +C(k l)F(’c 1)
c® = [c*-V)2 _2E

Thus, it is necessary to solve the system (6) and then sequentially find all
the remaining unknowns from (7).

Here, as in the second algorithm for cyclic reduction applied to a bound-
ary-value problem of the first kind, in place of the vectors F}k) we will define

the vectors p ) and q ) connected with F,-(k) by the relations

B = 00 44,

(9)
j=0,2%2.2F 3.2k N_2F N, Ek=0,1,...,n.
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From (8) we find, as before, that pgk) and qg-k) can be found for j # 0, N
from the formulas

ChDGED = kD 4 pD 4o,

p.(jk) (k 1)+s(k—l)

¢P = 2;05-") ¢ +dhon, (10)
j=2F2.2F [ N_2F k=12..,n-1,
(0)_ O =

A ] -

We will now find the formulas for pg-k) and qj-k) for j = 0, N. Substituting (9)
with j =0 in (8) for Fék), we obtain

CWpB 4 B = ck-1) [qg"‘l) + 2p§'f.i11) + C(k—l)pgk—l)] + 243D,

2k—1

Choosing q((J = 2p(k) + 2q,£,’,:11 ) and taking into account (12), Section 3.2.1,

we find an equation for pgk)

Polla 1) (k) — o= 1) (k 1)+q(k 1)+2p(k 1)

2k—-1

(k (k)

Thus, the vectors pj ) and 9

relatlons

can be found from the following recurrence

C(k_l)s(()k—l) — q((,k_l) + 2p(lc--l)

2k—1

) =pg "+, (11)
o =2 +26370, k=1,2,...,n,

V=FR, =0

(k)

The formulas for p ) and gy are obtained analogously:

C(k—l)s(k—l) (k 1) +2 %c ;Z_U

p (’c 1)+ (k— 1)’
X k-1 (12)
a =2p$v’+2q§V:22_1, k=1,2,...,n,

0
¢ =Fn, py =0.
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Thus, the formulas (10)—(12) enable us to fully determine all the necessary
vectors p\*) and q;k). We must still eliminate F;k) from (6) and (7). Substi-
tuting (95 in (7), we obtain the following formulas for computing Y;:

C(k—l)tg_k"l) — q;'k—l) + Yj_zk-l +Yj+2k—1,
_(k=1) (k1)
},J - P] + tJ ) (13)
j=2F13.9k1 5.9F1 N _ok1
k=nn-1,...,L

It remains to find ¥y and Y from (6). But it was noted earlier that, from
(11) and (12) for k = n, it follows that

o™ = 2p) 4 207D o) _ gpm) | g(n-1)

2n=-1 2n-1

i.e.

&V — o =2 (" - 1) (14)
Further, from (9) and (14) we obtain that
RV - FP =™ (57 - p) +4§” - o = (¢ +2E) (57 - ).
Taking into account formula (12), Section 3.2.1, we finally have
2
Y -F{) = [C("'”] (pf) )—ng))- (15)
We shall take advantage of this relation to find ¥; and Yy from (6). Sub-

tracting the second equation in (6) from the first, and taking into account
(15) and (12), Section 3.2.1, we obtain that

(¢ +2B) (¥ - ¥y) = [09]" (¥ - ¥n) = B ~ B
- [C(n—l)]2 (p(()n) _ pg;)) _
Considering that C(*~1) is a non-singular matrix, from this we find
Yo = Yy + o™ — o, (16)

Substituting this formula for Y; in the second equation of the system (9), we
obtain an equation for finding Yy:

B™Yy =F{ +2 (Pf)") - px)) = B™pY +¢§ +2p{",
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where B(") = C(® — 2E. Consequently, if we denote t(™ = Yy — pg\';), Yn
can be found by solving the equation

BM4(n) — qu) + 2p(()n), (YN = Pg\?) + t(")) . amn
From (16) we obtain that Yy can be found from the formula
Yo =pg” +4, (18)

where t(® is defined above.

Thus, the formulas (10)—(13), (17), and (18) define the cyclic reduction
method for solving a boundary-value problem of the second kind for the
three-point vector equations (1).

Remark. If Y} is given, i.e. in place of problem (1) we solve the problem

_Yi—1+C}/}_Yj+l=Fj’ 1SJSN_17
—2YN1+CYy=Fy, j=N,Y,=F,

then the vectors pgk) and q(()k) are not needed, and it follows from (6) and (9)
that Yy can be found by solving the equation

CONP =P 1%, (=5 +D)

Analogously, if Yy is given, then the vectors pg\’;) and q%c) are not needed, and
Yy is determined from the equations C(")t‘()n) = q((,") +2YN, Yy = pgn) + t‘()").

To complete the description of the reduction method, it is necessary to
indicate how to invert the matrices C(® and B(™ = C(™ — 2E. To invert
the matrices C(*~1) the factorization obtained above (see (36) Section 3.2)
is used

2!:—1

c*k-1) — H Cik-1, Cig-—1 =C —2cos

=1

2=

B (19)

Notice that, since the condition (CY,Y) > 2(Y,Y) is satisfied, all the
matrices C} k- are non-singular, and consequently the matrix C*-1) is non-
singular. We now look more closely at the question of inverting the matrix
B(™,
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From the definition of B(™ and the relation (12), Section 3.2.1 we obtain

B™ =™ _2F = [C» V)2 _4E = (C™"™V 4 2E)(C*™V) — 2E)
= [cDPR[c(*) — 2E] = ... = [¢(»"Dc(*=3) | cO)2(cD) - 2E)
=[ct=Dc=3)  cOPC® - 2E)(C©® +2E)
n—1 2
= {H C<’°-1>] (C — 2E)(C + 2E).
k=1

Substituting here (19), we find the following representation for the matrix:

n—12kF-1

2
1T 11 c,,k_l} (C —2E)(C +2E). (20)

k=1 l=1

B(™ —

Thus, the matrix B(™ is factored and can be inverted by sequentially
inverting the factors.

Remark 1. It is possible to obtain a more compact form for (20):

2n

B — H (C —2cos 2'{7:1 E)

=1

Remark 2. From (20) it follows that the matrix B(™ will be non-singular if
(CY,Y) > 2(Y,Y). If there exists a vector Y* # 0 for which CY* = 2Y*, then
B(™ is singular and direct application of the reduction method is impossible.
This is a consequence of the singularity of the matrix in (1) for this case.
In fact, in this case the homogeneous system (1) has the non-null solution
Y; = Y*, and therefore the system (1) is not soluble for every right-hand
side. If for a given right-hand side a solution exists, then it is not unique,
and it is only determined up to a term in Y*. One of the possible solutions is
chosen at the step where the matrix B("® is inverted. This situation occurs
when solving a Neumann problem for Poisson’s equation in a rectangle. This
question will be looked at in more detail in Chapter 12 in connection with
the solution of singular grid equations.

3.4.2 A periodic problem. Periodic three-point vector problems arise when
difference methods are used to solve elliptic equations in curvilinear orthog-
onal coordinate systems — cylindrical, polar, and spherical systems. In Sec-
tion 3.1.3, examples of differential problems were introduced whose difference
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schemes led to the following problem: find the solution of the equations

"J—I+CYJ—YJ+1=FJ’ 1<j<N-1, (21)
~Yna+CYo-Yi=F, j=0,Yyv=Y,.

The problem (21) can be solved using the cyclic reduction method also.
We now look at the first step of the elimination process. As before, we elim-
inate the unknowns Y; with odd indices from the even numbered equations
of the system (21) using the two neighboring equations. We obtain

- J'—2+C(l)]/j—y}+2=F;1)a J=24,6,...,N -2 (22)

It remains to eliminate ¥; and Yy_; from equation (21) for j = 0. For this
we write out the following three equations from the system (21):

Y+ CY - Y, = Fy, j=1,
~-Yn_14+CY, - Y1 = F, i=0,
-Yn_2+CYn_1 —Yn=Fn_,, J=N-1,

multiply the second equation on the left by C, add all three equations, and
remember that Yy = Y;. As a result we obtain the equation

Yo +CVY -V, =FY,  Yy=Y, (23)
where
FV=FO +cOFO+FQ,, ¢c®=c, F¥=F,.

Putting together (22) and (23), we obtain a full system for the unknowns Y;
with even indices, having a structure analogous to (21). The unknowns Y;
with odd indices are found from the usual equations

COY; = F +Y;_1 +Yj41, §=1,35...,N-1

The elimination process can be carried further. After the I-th step of the
process, we obtain a system for the unknowns Y; with indices divisible by 2!

Y0+ CVY; Y =FY, j=22.23.2,  N-2,
~Yy-a +COY -V =F, j=0, Yn=V,
and a group of equations

C(k-l)y} = F}k—l) + Yj_zk—l + }/}+2k—1,

k k k k-1 (24)
j=2F13.92F1 5.0k1 N2 k=11-1,...,1
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for subsequently finding the remaining unknowns. The right-hand sides F}k)
are determined recursively for k =1,2,...,n—1:

F(") F(k 1) +C(k l)F(k 1)+F(k2y,)1,
j=2F2.253.9F N2k
(25)
Fék) F(" 1)+C(k I)F(" 1)+F(" 1)
F” =F;.

At the end of the (n—1)-th step of the elimination process we obtain a system
in Yy and Yon-1 (Yn =Yp):

C Y, — 2¥ynr = FY,
(26)
—2%p + C*VYyaos = FITY,

Having solved this system, we find Yy, Yn-1 and Yy = Yp, and the remaining
unknowns can be found using (24) as the solution of the equations
C(k_l)Yj = Fj(k—l) + Y}_gk-l + Y}+2k—1,

j=2K13.9k1 5.0k1 N _92F1 k=n_1n-2...,1

(%)

Before solving (26), we find the recurrence relations for the vectors p;™ and

), which are related to F}k) by the following equation:
F® = o®p® 4 ¢ j=0,2%2.2%3.2% N -2~
Using the recurrence formulas (25) for F}k), we obtain

C(k_l)s(.k_l) = qu n +p(’i21) 1 +P§Z_—2?_1,

p‘(vk) (k 1) + S(k 1)
M =2p" + 0, + a1, (27)

j =2k, 2-2",3-2",...,N—2’°, k=1,2,...,n—1,

"=F, =0, j=12...,N-1,
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from which we find p‘(ik) and qgk) for j # 0, and also
O (k=D — glk=1) 4 plk=D) | k1)

k k— -
T

(28)
E

K (k- k-
2p0) + 4550 +qy g, k=1,2,...,n-1,

& =F, AP =0

from which we find p((,k) and q((,k).

We turn now to the solution of (26). From (27) and (28) for k =n —1
we obtain the relations

gnTD = 2pnTD 4 TP 4 gl

6"V = 25" 4 gn ) 4+ 32,

from which we find
q(()n—l) _ qg'::ll) =9 (p(()n-—l) _pg'::‘ll)) . (29)

We now subtract the second equation in (26) from the first. Using (29) and
(12) from Section 3.2.1 we obtain

(€Y 4 2B)(Ys — Yoor) = [C PP (Y = Yyoor) = {70 = FITY

gn-1
= CD(p(* Y —p(rT Dy 4 g{m D — 2T D) = (o DR (p Y — p{nT )y,
Assuming that C("~2) is a non-singular, we conclude that
Yo = Yo = 90" 45070, (30)
Substituting (30) in the first equation in (26), we obtain

(€D —2E)Y, = Fy" ™V — 25" — pnD)
= (C) —2E)pg" ™ 4 " + 2p50 0.

2n—1

Consequently, Yy can be found from the formulas

BOr=Dy(n=1) = (=D o (n=1) - p(n=1) - o(n=1) _ o,

2n-—1

Yo = pyt " 4 4v1), (31)
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and using (30) Yzn-1 can then be found from the relation
Yynr = ponit) + 407D, (32)
The remaining unknowns are found sequentially from the formulas
Yn =Y,
CE-DED =Dy L,
Y, =p§k—1) +t§k—1)’ (33)

j =2F1 3.2F1 5.0k1 N _ k1
k=n-1,n-2,...,1.

Thus, the formulas (27), (28), (31)-(33) describe the cyclic reduction method
for solving the periodic problem (21). The matrices C*=1) and B("~1) are
inverted using the factorizations (19), (20), where in (20) it is necessary to
change n to n — 1.

We now estimate the number of arithmetic operations @ required to re-
alize the cyclic reduction method for a periodic problem. As before, we denote
by ¢ the number of operations required to solve the equation Cjx—;V = F,
and by ¢ the number of auxiliary operations needed to solve the same system
but with a different right-hand side F'. The estimate is given by the formula

Q = gNlog, N + (1.5§ — 2§ + TM)N — 2§ + 27 — 14M.

A comparison of this estimate with the estimate (45) Section 3.2 obtained
in the case of a first-kind boundary-value probelm indicates that the cost of
solving a periodic problem is practically the same as the cost of solving a
boundary-value problem of the first kind.

3.4.3 A boundary-value problem of the third kind

3.4.3.1 The elimination process. We consider now the cyclic reduction method
for solving a boundary-value problem of the third kind for the three-point
vector equations

(C + 2aE)Y, —2Y; = Fy, Jj=0,
Y4 +CY;-Yiu=F;, 1<j<N-1, (34)
—2Yn-1 + (C + 2BE)Yy = Fn, j=N.

Assuming that a > 0, 8 > 0, a2+ % # 0, we introduce the following notation

c®=c, c®=c+2E, C»=C+2E, F°=F,
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using which we write (34) in the form

cVv, -2, =F®, j=o,
Yo+ COY; — Vi =F", 1<j<N-1, (3¢4)
—2Vn_1 +COVy=FP, j=N.

Suppose N = 2". The elimination process for (34') is carried out in the
same way as for the system (1), which corresponds to the case C(o) C(O) =
C® (a=p=0).

We write out the reduced system obtained at the end of the n-th step of
the elimination process

ciMy, —2vy = F™,  —2Y + C{MYy = F{V, (6")
and the group of equations

. k—
C(k 1)}/] = F]( 1) + )/j—Zk_l + }’}'_*_21:-1, (35)
j=2k13.281  N-_2F! k=nn-1,..,1

for sequentially finding the unknowns Y;. Here the right-hand sides F}k) are
determined using the recurrence relations

F® = FED, 4 o-DFED L FOY,, (36)
j=2F2.2% N -2k k=1,2,...,n—1,

F® = =D =D | gD k=1,2,...,n,  (37)

F® — ot 4 oD p¢D, k=1,2,...,n, (38)

and the matrices Cgk), Cék) and C® are found using

c® = [Cc*k-D]2 - k=1,2,...,n—1, C® =C,
c® = cte-n k- 1) 2E, k=1,2,...,n, CO =C+2E, (39
c® = ctk-0ef-Y 9 k=1,2,...,n, C¥ = C +28E.

From the system (6') we obtain equations for determining Yy and Yy. From

(39) it is possible to conclude that ka) C(k) and C® are matrix polyno-
mials of degree 2¥ in the matrix C. Consequently they commute. Therefore
from (6') we obtain the equations
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and the equivalent equations
Dy, = FrHY oWy, = F™ 4 ayy, (40")

where we have denoted

Fén+1) — C;n)Fén) + 2F1(v")’ (41)
Fl(vn+1) = 2F(") + C(n)FI(Vn)’ (42)
pntl) C(")c(”) AE = Cé")an) —4F. (43)

Thus it is possible to use the equations (40) or (40') to find ¥y and Yy. We
will use (40).

Instead of the vectors F (k) , we will determine the vectors p( ) and q(k)
which are related to FJ( ) by the following equations:

F(k) C(k) (k) + q(k) (44)

FP=cPp® 4¢P k=0,1,...,n (45)

F("+1) — D(ﬂ+l) ("+1) + (n+l)’ (46)

F(k) C(k) (k) + q(k) (47)

j=2%2.2k . N-2F £k=0,1,2,...,n—1.

We now obtain recurrence formulas for p(k) and qgk). If j #0, N then,

assuming as before the non-singularity of the matrices C(*~1), we obtain from
(36), (39), and (47) the following formulas

CUk=D =D _ (k=) p(k D 4 kD)

k-1 j42k-1)
PP = kD 1)
<k> = opD g, oD (48)

j=2F2.9k [ N-2F k=12,...,n-1,
0) _ 0) _
() Fja P§)=
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We now find formulas for pf,k) and q((,k) for k=0,1,...,n+1. Substituting
(44) and (47) in (37), and (44)—(46) in (41), we obtain for k =1,2,...,n

k) (k k
GO + 4

Z1) (k- - _ _ (49)
= D (GFDpfh=D) 4 gfh1) 4 280 4 ok

and fork=n+1

DO 1M+ = o) (CEVp +6§” +261) +245. (50)

We choose q((,k) and q((,"H) from the formulas

o®) = 9p(®) 4 9q(kD) k=1,2,...,n,

k-1

(n+1) (n+1) (n) (51)
9 =4p, " +2qy

and use the following equations which arise from (39) and (43)
ka) +92E = C(k—l)Cik-l)’ D) 4 4p = Cz(’")cl(")'

Then, if C*~1) and C§") are non-singular, (49) and (50) can be written in
the form of a single equation

C*p(Y = M Vp{ ) 4 oY 427D,

k=1,2,...,n+1.

Combining these equations with (51), we obtain the final formulas for com-

puting p((,k) and q(()k):

- - k— -
O = gV + 27D,

R A
g =2p{F) 4 2<1§f31), k=1,2,...,n, (52)
A = 4 2P,

Q(()O) = Fo, p(()O) =0.
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Analogously, using (45), (47), and the recurrence relations (38) and (39), we

() (k),

obtain the formulas for computing py’ and ¢y

Cék—l)sg\l;—l) — q%"l) + 21)55:;:),_1,

B _ k=) 4 (k=)
)

p
(A’I‘) (k) (k-1) (53)
adN +2N ok-1) k=1,2,...,n,

o =Fv, py =0

It remains to eliminate FJ-(k) from (35) and (40). Substituting (47) in (35),
and (45) and (46) in (40), we obtain the following formulas for finding Y;:

D(n+l)s("+1) — (n+1) Y, = ("+1)+s("+1) (54)
C(") (n) — q(") + 2Y0, YN p(") + S(") (55)
C(k—l)sgk—l) = q(-k—l) + Y gk + Y0k,
(k-1) (k~ 1)
Yi=p; ' +s; (56)
j=2oF1g.9k1  N_2Fl k=nn-1,...,1.

Thus, the formulas (48), (52)—(56) describe the cyclic reduction method for
the boundary-value problem of the third kind (34).

Remark 1. If equation (40') is used to find ¥; and Yy, then, introducing in
place of p{"*" and 9(()"+1) the vectors Pg’;ﬂ) and q%'h) related to F 1(vn+1) by

the equation
FI(Vn+1) - D(n+1)p$\f;+1) + q%:ﬂ),

we obtain from (38), (42), (44), and (47) the following formulas for finding

(k) and q

Cék_l)SS\l;_l) - q%"l) + 21)55:;;):_1,

(k) = (k_l)-{—s(k_l) k=1,2,...,n+1,
o =20 +2§ 3, k=12, (53)
gD — gpmtD) | gg(),

qg\(,)) = Fn, psg) =0.
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The formulas (53') replace (53). Since in this case it is not necessary to

compute the vector F("+1) or the vectors p( "+1) and q((,"+l), (52) can be
changed to:

C=D gk _ (k=1) 4 o (k1)

k-1

p{ = plkD 4 (k1)

(52)
q(()k) = 2pgk) +2q£f:3)’ k = 1,2,...,”,
q((JO) = FO,I p(()O) =0.
From (35) and (40') we obtain formulas for finding Yy and Yx:
D(n+1)3(1:;+1) — q§\7;+1)’ Y _ (n+l) + S(n+l), (55[)
cMelM = g yovy, Yo= (") +s. (54')

The remaining unknowns are found using (56). Thus, the formulas (48), (52')-
(55'), and (56) can also be used to solve (34).

Remark 2. If Yy is given, i.e. in place of (34) it is necessary to solve the
boundary-value problem

(C+2aE)Y, — 2V, = F,,  j=0,
-Y;-1+CY; - Y11 = Fj, 1<j<N-1,
Yy = Fn, j=N,

then the cyclic reduction method is described by (48), (52'), (54'), and (56).
If we are given Yy, i.e. we are solving the problem

Y1+ CY; - Y =Fj, 1<j<N-1,
—2Yn_1+(C+2BE)YYn=Fy, j=N,Y,=F,

then the method is described by (48), (53), (55), and (56).

3.4.3.2 Factoring the matrices. From (39) and (43) it follows that C(k) C, (*)
and C® are matrix polynomials of degree 2%, and D"V is a polynomlal
of degree 2"*!, in the matrix C with the coefficient of highest degree equal
to 1. Having in mind the necessity of inverting these matrices, we now factor
them. We will obtain an explicit representation of these polynomials in terms
of known polynomials, and study the roots of the indicated polynomials.
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In Section 3.2.2 it was shown that C(*¥) can be expressed in terms of the
Chebyshev polynomials of the first kind in the following way:

C(k) = 2T2k (%C) 3 k = 0, 1, ceee (57)

Further, from (39) we find

o — ¢ = ct-D [oV — ot-1] =

kﬁl ()[ (0) ()] 'ﬁ ) %)
= |c” —c®f =2a [T V.

=0 =0

Since
k-1 k-1 1 1
D _ o) = 1
g c¥ = ,11 2Ty (zc) =Up_, (20) ,

where U,(z) is the Chebyshev polynomial of the second kind, we obtain from
(58) the following representation for ka) :

c® =om,, (%c) + 2aUps_; (%c) ,  k=0,1,.... (59)

Analogously we obtain a representation for Cék):

o = o, (éc) + 28U, (%C) . k=0,1,....  (60)

Further, substituting (59) and (60) in (43), we have
1 2
D) = ¢ [Ty (EC)] —4E

1 1 1.\1?
+ 4(a + B)T (EC) Uy _4 (50) + 4ap8 [U2"-—1 (§C>] .

1 = Tp(2) = Up—a(2)(1 — 22), (62)

Since

from (61) we obtain

D("+l) = U2"—l (%C) [(02 + 4aﬂE - 4E)U2n_1 (%C)

+ 4(a + B)Tan (%c)] .
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Thus, we have obtained a representation for C(¥)| ka), Cék), and D(*+1) jp
terms of known polynomials. Since the roots of the Chebyshev polynomials
of the first and second kinds are known, from (57) and (62) we obtain

21:
c® = H (C_QCOSME) ,

k
paley 2k+1
DintD) - 2i:[1 C—2c0s °E (C? + 4aBE — 4E)Usn_, le
P 2n 12

+ 4(a + B)Tyn (%C)] :

Therefore it follows from (59), (60) that it remains for us to find the
roots of the polynomials

t t
Pm(t) = 2T, (5) +2aUm—1 (5) )
_ t t (63)
Qm(t) - 2Tm (2) + 2,5Um—l (2) ]
m=2% k=0,1,...,n—1,

which correspond to the matrix polynomials ka) and C’;k), and the roots of
the polynomial

Raraa(9)= (@ +4af = )0n-s (3) +4a+ )T (), (09

which generates the polynomial D(*+1),

This problem can be solved in two ways. The first method involves ap-
proximately finding the roots of the polynomials, the second involves trans-
forming this problem to an eigenvalue problem for some tridiagonal matrix.
We shall look in more detail at the second method.

We denote by Sk(A) the folowing k-th order determinant:

A4+2a 2 0 O 0 0 0O
1 A1 0 0 0 0 O
0 1 21 ... 00 0O
St = | e k>
0 0 0 O 1 210
0 0 0 O 01 X1
0 0 0 0 0 0 1 X
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and set S1(A) = A + 2a. From the definition and the structure of the matrix
corresponding to Sk(A), we find a recurrence relation for Sk(\):

Skr1(A) = ASk(A) — Sk—1(X), k> 2,

$(0) =250 =2, Si(A) = A+ 2a. (65)

Using the recurrence relation for the Chebyshev polynomials (see Section
1.4.2)

Tnti1(z) = 22Tp(2) — Tn-1(z), Ti(z) ==z, To(z) =1,
Unt1(z) = 22Un(x) — Up-1(z), Ui(z) =2z, Up(z)=1

and the relation (65), we obtain a representation for S,,(\) in terms of the
Chebyshev polynomials:

Sm(A) =2T, (%) + 2aUm—1 <g) , m>1.

Comparing this expression with (63) we find that the roots of the polynomial
Pp,(t) coincide with the roots of the determinant S,,(A).

The problem of finding the roots of S,,,(A) is equivalent to the problem
of finding those values of the parameter A for which the system of algebraic
equations

Yi-1 + Ay +yit1=0, 1<:i<m-—1,
(A+2a)ys +2y, =0, i =0, (66)

ym =10

has a non-null solution. We shall write (66) in another form. Using the nota-
tion for the second difference derivative

1 1
Yzz,i = E(yz,i —Yz;) = ﬁ(yi+l = 2y; + yi-1),
we rewrite (66) in the following form
yil+ﬂy=0, ISiSm—l,

2 2a _ (66")
Zyz'{__h_zy_i_,uy_o, 2—0,ym—0,

where A and p are connected by the relation A = uh? — 2. Thus, to find the
roots of the polynomial C’l(k) it is sufficient to solve the problem (66') for
m=2Fk=0,1,....
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By analogy with the above, it is possible to show that the roots of the
polynomial @, (t) are found by solving the problem

Yyzz + py =0, 1<i<m—1,
2 2 . (67)
-Eyf+h—fy+#y=0, i=m, yo =0,

where the relation A = uh? — 2 determines these roots.

To find the roots of the polynomial Rzn41(t) defined in (64), it is neces-
sary to solve the following eigenvalue problem:

Yzz +py =0, 1<i<2% -1,

2 2a .
¥ty tuy =0, =0, (68)

2 28 :
—p¥a Y tpy =0, 1=27%

and the roots are found from the equation A = ph? — 2.

Notice that the problems (66)—(68) can be solved using the QR algorithm
for the complete eigenproblem.
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Chapter 4

The Separation
of Variables Method

In this chapter we study variants of the method of separation of variables,
which we use to solve the simplest elliptic grid equations in a rectangle. In
Section 4.1 we present an algorithm for the fast Fourier transform of real
and complex functions. In Section 4.2 we consider a classical variant of the
method of separation of variables, using the Fourier transform algorithm. In
Section 4.3 we construct a combined method, including incomplete reduction
and separation of variables. We consider an application of this method to the
solution of second and fourth order boundary value difference problems for
Poisson’s equation. In Section 4.4 we describe a stable variant of the staircase
algorithm for solving systems with tridiagonal and block tridiagonal matrices,
also using the Fourier transform algorithm.

4.1 The algorithm for the discrete Fourier transform

4.1.1 Statement of the problem. One of the methods of separating variables
for finding the solution of multi-dimensional grid problems is the expansion
of the solution in a finite Fourier sum using the eigenfunctions of the corre-
sponding grid operators. The effectiveness of this method depends on how
quickly the Fourier coefficients of the given grid function can be computed
and how quickly the desired function can be regenerated from the Fourier
coefficients.

If, for example, we have defined the function f(¢) and the orthonormal
system of functions px(:), k¥ = 0,1,... N, on the grid @ = {z; = iA,0 <
i < N,hN =}, containing N + 1 nodes, and the Fourier coefficients of the
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function f(7) are computed from the formulas

N
Pk = Zf(l),uk(l)h, k=0111"'1N1 (1)
=0

then computing all the coefficients ¢ requires (N +1)(N +2) multiplications
and N(N + 1) additions.

In the general case of an arbitrary system of functions {u4(¢)} this is the
minimal number of arithmetic operations required. In a series of special cases
where the orthonormal system of functions has a special form, the number
of arithmetic operations necessary to compute sums of the form (1) can be
significantly reduced. We shall look at these cases and develop algorithms
which allow us to compute all the Fourier coefficients and regenerate the
function from the Fourier coefficients in O(N ln N) arithmetic operations.

We move on now to a description of some special cases.

Problem 1. Ezpansion in sines. Suppose that we have introduced on the
interval 0 < x <[ the uniform grid @ = {z; = jh, 0 < j < N, hN =1} with
step h. We denote by w = {z; = jh, 1 < j < N —1} the set of interior nodes
of the grid @.

Suppose that the real-valued grid function f(j) is defined on w (or f(35)
is defined on @, where f(0) = f(N) =0).

In Section 1.5 it was shown that the function f(5) can be represented in
the form of an expansion

2 = knj
f(g):—z\—rgcpksm-—N—, i=12,...,N -1, (2)

where the coefficients ¢ are determined by the formula

N-1 .
¢k=2f(j)sinm, k=1,2,...,N-1. (3)
i=1

Comparing (2) and (3) we find that the problems of computing the coefficients
¢k for the given function f(j) and regenerating this function from {¢x}
reduce to the computation of N — 1 sums of the form

N krj
ykzz_‘;ajsin—ﬁ, k=1,2,...,N-1. (4)
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The formula (4) describes a rule for transforming a grid function aj,
1 < 5 £ N — 1 defined on the grid w into the grid function y;, 1 < j <
N — 1. The algebraic interpretation of (4) is as follows: if we denote by
a = (ay,0az,...,aN-1) the vector of dimension N — 1, then (4) describes the
transformation of the vector a which results when we move from the natural
basis to the basis formed by the system of orthogonal vectors

2k = (Zk(l)’ zk(2)7 .. "zk(N - 1))’ Zk(j) = Sin%’\rr_j.

Problem 2. Ezpansion in shifted sines. Suppose that the real-valued grid
function f(j) is defined on the set w* = {z; = jh, 1 < j < N} (or on &,
where f(0) = 0). In Section 1.5 it was shown that such a function f(j) can
be represented in the form

N .
N2 . (2k —1)xj .
f(])_N;cpksln oN ) J=12,...,N, (5)

where the coefficients ¢ are determined by the formula

or = ;p,f(z)sm L L T W4 (6)
where
_J1, j#0,N,
Pi= {0.5, J=O0.N. (M)

If the function f(j) is defined on the set w™ = {z; = jh,0< j < N -1} (or
on &, where f(N) = 0), then the expansion corresponding to (5) and (6) has
the form

N .
. 2 . 2k-1)x .
f(N_J)=NZ‘kaln-(_'2W—)_]’ J=1’2""’N’ (8)
k=1
sok—]_zle_,f(N Hin S ko1a N, (9)

where the function p; is defined in (7).
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From (5), (6), (8), and (9) it follows that here the problem is to compute
sums of the form

N .
2k -1
Yk = E ajsin(—ﬁ)w—], k=1,2,...,N, (10)
Jj=1
N .
. (2k-1 .
yj = E aksm(—-w)ﬂ, i=12,...,N, (10"
k=1

Problem 3. Ezpansion in cosines. Suppose that the real-valued function f(j)
is defined on the grid @. Then for the function f(j) we have the expansion

2 & krj
fG =N’;pkcpkcos——, j=0,1,...,N, (11)
where
al kg
cpk=2pjf(j)cos—, k=0,1,...,N, (12)
j=0

and p; is defined in (7). From the formulas (11) and (12) comes the problem
of computing sums of the form

N .
knj
o =,Z=o“:‘6087, k=0,1,...,N. (13)

Problem 4. Transformation of a real-valued periodic grid function. As-
sume that on the axis —00 < z < oo the uniform grid @ = {z; = jh,
j =0,%£1,+2,..., Nh = I} with step h has been defined. Suppose that the
real-valued grid function

periodic with period N, has been defined on 2. In Section 1.5 it was shown
that the function f(j) could be represented for 0 < j < N — 1 in the form
(for even N)

N/2 . Nj2-1 ok i

. 2 2kmj . J .
f(])=]_v' ’;Pk‘Pkcos + ; Pk S N , 3J=01,...,N -1,
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where the coefficients ¢ and @ are defined by the formulas

N
¢k—§f(3)cos N k—oal"--aga (15)
N-1
Zf(])sm%" k=1,2,...,%—1, (16)

and the function pi is

1 k#0,N/2,
PE=105, k=0,N/2.

The formulas (14)-(16) lead us to the problem of computing sums of
three forms:

N/2 . N/2-1
yk=2ajcos J 4 Z Jsm k=0,1,...,N-1, (17)
=0
N-1
Yr = Za,coszxrj k=0,1,...,N/2,
j=0
- (18)
gty 2k7r]
ﬂk=za,sm N k=1,2,...,N/2-1,
J=1

where the coefficients in the sums (18) are the same.

Problem 5. Transformation of a complex periodic grid function. Suppose
that the grid function f(j), periodic with period N, is defined on the grid
) and takes on complex values. The function f(j) can be represented for
0<j <N —1in the form

£G) = Zsokexp(%”) j=01,. N-1, i=v7, (19)

where the complex coefficients ¢y are defined by the formula

ey —2kny
<pk=Zf(j)exr>< N’i), k=0,1,...,N—1. (20)

=0
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Notice that ¢¢ = ¢n and, in addition,

= 2%k
‘PN—k=Z%f(])exP( ~ z), k=0,1,...,N —1.

Therefore, the computation of the coefficients ¢} and the regeneration of the
function f(j) leads to the computation of sums of the form

N-1 2kmy
yﬁfgafexp(‘ﬁ]‘i), k=0,1,...,N -1 (21)

with complex a;.

Thus, it is necessary for us to construct algorithms which compute sums
of the form (4), (10), (13), (17), (18), and (21), and which requires less than
O(N?) arithmetic operations. It is easiest to construct the algorithm in the
case when N is a power of 2: N = 2", and we will limit ourselves to this case.

4.1.2 Expansion in sines and shifted sines. We now consider in more detail an
algorithm for computing the sums (4), assuming that N = 2", In this case
(4) has the form

2n—1 .
k
yr = Za§°)sin—21n]-, k=1,2,...,2" —1, (22)
i=1
where we have introduced the notation ago) = a;.

The idea of the method consists in first grouping together the terms
in the sum (22) having a common multiplier, and then carrying out the
multiplication. At the first stage of the algorithm, the terms with indices j
and 2" — j are grouped together for j = 1,2,...,2"~! — 1 using the relation

. k(2" —j) k-1 kmj
sin ——_—— = (=1)*"sin o (23)

We write out (22) in the form of three terms

ok XN o ki @ ok
Z a; s1n-—27-+ Z a; sm———+a2,,_1s1n—
Jj=1

2
j=2r-141
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and make the change j' = 2" —j in the second sum. Taking into account (23)
we obtain

gn-1
k
Z [(0).{.(—1)" lag(,),)_J smk2 + Sf.).l Sin?w- (24)

If we denote

NOCIOM

o) _=a” +al)_,, j=12,...,2"1 -1,
o) (0)

2n 1 = a2n 1
then from (24) we have

2n—1

1 (2k— 1)7!’] -
Yako1 = Y agd_;si sin"—— =, k=1,2,...,2"7, (25)
i=1
2n-l g krj
ye= . aVsin 2,,_1’ k=1,2,...,2°71 1. (26)
i=1

Thus as the end of the first stage we have two sums of the form (25)
and (26), each of which contains about half as many terms as the original
sum (22). Besides, the sums of the form (26) and the original sum have an
analogous structure. Therefore the grouping process described above can be
applied to (26).

At the second stage, as above, we partition the sums (26) into three
terms and use (23), with n changed to n — 1, to group the terms of the sum
(26) with indices j and 2"~ — 1 for j = 1,2,...,2""2 — 1. As the end of the
second stage, in place of (26) we obtain

2n2

2k — D)mj e
Y2(2k—1) = §?3 - Sln(——é';,:)—], k=1,2,...,2"7%,  (27)
j=
2" 21 ki
Y22 = Z (2) IHF, k=1,2,...,2n—2—1, (28)

i=1



178 Chapter 4: The Separation of Variables Method

where ) . ;
a(.)=a(.) (2")1 L
a0l = +al)l,_, i=12...,2"% -1,

(2) (1)

‘12" 2 —agn 2

Thus, the original problem (22) is equivalent to computing the sums
(25), (27), and (28). The formula (28) allows us to compute yi for k divisible
by 4, (27) for k divisible by 2 but not divisible by 4, and (25) is used to
compute y; for odd k.

Continuing the process of transforming summations, we obtain at the
end of the p** stage

= (2k - 1)my

Y2e-1(2k-1) = Zazn —st1_; 81 —2,,_7,

k=1,2,...,2 “s s=1,2,...,p,
(29)
2""P—1 k .
York = Z (P)szn—p’
=1

k=1,2,...,2"? 1,

()

where p=1,2,...,n — 1, and the coefficients a;"’ are defined recursively

-1 1
oV =™ — P,

ag’:.) pH1_j = (p n + 2’:.-:1-1_], j= 1, 2, N A e T (30)
ag-)p g}:- :)a p=12,...,n-1
Substituting p =n — 1 in (29) we find
2”1_2 (n— 1) (" 1),
j=1
- (31)
2k — 1)y -
Yae-1(2k—1) = Z a(;,,)_,+1 Sln(2?'+)l—, k=1,2,...,2""°

j=1

fors=1,2,...,n—1.

Thus, the original problem (22) reduces to the computation of the (n —
@

1)*t group of sums (31). The required transformation of the coefficients a;
is described by the formulas (30).
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The second step of the algorithm consists in transforming the sums (31)
which, after setting for each fixed s

Zﬁo)(l) = Y20-1(2k-1), k=1,2,...,2""*,

bEO)(1)= ag:)—a+1__ja J=12,...,2"7°,

l=n—s, s=12,...,n-1,

are written in the following form;

2 (2k — 1)rj
0 0 . — )
Z;c )(1)= § :bg )(l)sm-—zH_—l—, k=1’2"'-a21a (32)
J=1

wherel = 1,2,...,n—1. Here the coefficients bg-o)(l) and the functions z,(so)(l)
depend on the index [, but since here we are developing a method for com-
puting the sum (32) for fixed [, the index is everywhere dropped.

We will now concentrate on the transformation of the sum (32). We
represent it in the form of two terms, having divided the terms into those
with even and odd indices j:

(0)(1) Z b(o)(l) (2k - 1)7rj
(33)

+ 22: p® (1) sin (2k — 1)m(25 — 1)

2j—-1 2l+1

Using the equation

(2k 1)(25 —2)w (2k—1)2j7 2k—Dr . (2k—1)(25— 1)7r
21+1 +sin 21+1 =2cos 2141 s 21+1

we write out the second term in the form of two sums:

2!—1

0 . m(2k —1)(25 - 1)
E bgj)__l(l)sm S,
i=1
2 (2k — 1)rj
=__.._._. b(") 1 —72
2 cos 2:,—;11# Z 25— 1(1)sin

2i-1 .
+ Z 59 (1)sin (2k = Dm(j = 1)

25— l 2[
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1 (o) (2]0 - l)ﬂ'
= —————— | b, (1)sin"—F——

£ (8% 46, ) s DT (3

2!

Notice that the second sum in the square brackets was obtained by changing
the index j = j' + 1.
We denote
D)= 00 (1) + 50 (1), i=1,2,...,25 1 1,
bla(1)= b;m),
1 0 ) -
K0(2)= b (1), j=1,2,...,20-1

and substitute (34) in (33). We obtain the expression
2!t

20(1) = Zb(l)(z) (2k — 1)7rj+ 2“,,25(1)(1)8 (2k — 1)7rJ’

2cos 2TF =1

for k =1,2,...,2" Substituting 2/ — k + 1 for k, we obtain
2!t (2k ) .
0 1 T
() = - 3 8@ e

2!-1 .
1 W)y o (26 —1)mj
+2co @k-1= 285 (1)sin o

2141 j=1
Consequently, if we denote

21—1 .
2k -1
2P(s) = > b{)(s)sin (—y)irl, k=1,2,...,2"71 s=1,2,
i=1

then the original sum zio)(l) can be computed from the formulas

(0) (1) (1)
2 (1) =2.7(2) + z; (1),
k ( ) k ( ) 9 cos (25;11)" k ( )

0 Q 1 1) -
()k+1(1)_‘—zk)(2)+_c(';s'—'_ gz (), k=1,2,...,270

2141
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Thus, the first step gives rise to the sums z,(cl)(l) and z; )(2), each of which
contains half as many terms as the original sum z;c )(1), but which has the
same structure as z(o)(l) Thus the transformation process described above
for the original summation can be applied separately to the sums z; )( 1) and

,(‘1)(2). As a result, we obtain the sums z,(c )(s), s = 1,2,3,4, which also
preserve the structure of the original sum. Continuing the transformation
process, at the m*® stage we obtain the sums

z,(c'")(.s) Z b(m)(s) sin (2k — 1)7r],

21 m+1 (35)
k=L&“qT', s=1,2,...,2™
for each m = 0,1,...,1, where the coefficients bg.m)(.s) are defined recursively
for s =1,2,...,2™"1 by the formulas
b7 (2s = 1) =8770(0) + 700(), =122,
m=12,...,1-1,
bgn)m (23 - 1) = bg:n_v‘nlzl_l(s) m=12,..., l’ (36)
5™ (2s) = b7V (s), j=1,2,...,2™
m=1,2,...,1L

Here the sums at the m! stage are connected with the sums obtained
at the (m — 1)* stage by the following formulas:

(m-1) (m) 1 2(m)
z s)==z 28) + —————~ 2s — 1),
k() =2 (29) e ,;(,3,:"_:22 ( )
Zm-1) (s)= —z(m)(2s) + Lt z(m)(2s -1) 37)
Zgl-m+1_k41 L 2 n(2k—1) “k ’
COS Si=m¥2

k=1,2...,2™ s=1,2...,2! m=12...,1L
Substituting m = [ in (35), we obtain
D) =), s=1,2,...,2. (38)

Thus, the sums z; )(1) are computed as follows. Starting from the given

coefficients bg- ), 1 < j < 2!, the remaining coefficients bg )(s), 1<s< 2 are
computed from the formulas (36). By (38), they are used as initial data for
the recurrence relations (37). Using (37) sequentially for m = [,1—1,...,1,

we obtain as a result z; )(1) and consequently yz-1(25-1)-
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Thus, the algorithm for computing the sums (22) is described by the
formulas (30), (36), and (38).

Remark. In the recurrence relations (37) it is possible to avoid the division
by 2cos %’,’i——,,,lg by making the change

(2k 1)7r (m)

2™ (s) = sin S Wk (8)-

Here the formulas for computing wim)(s) take the form

— % 1) (m m
w{™ ™ (s) = 2 cos ———Wé, m+2) (m) (2s) + w{™ (25 — 1),

m w(2k 1 m m 39
gl m121 k+1(3)=—200 _%—Tn--f-_Z) ( )(2 )+‘w( )(23—1) (39)

k=1,2,...,2™ s=1,2,...,2", m=1[11-1,...,1,
where wll)(s) = b(’)(s), s=1,2,...,2" and

(2k LS (o)

(0)
(1) - 2l+1

(1), k=1,2,...,2" (40)

We now compute the number of arithmetic operations required to re-
alize the algorithm (30), (36)—(38). We will assume that the values of the
trigonometric functions have been previously computed.

An elementary computation shows:

[1] realizing (30) requires

='§2(2"""—1)=2-2"—2(n+1)

p=1

additions and subtractions;

[2] realizing (36) for fixed [ requires

-1
=) @™m-1-2"=(1-22"" +1
m=1
additions, and realizing (37) requires

l
- 22'2I—m.2m—1=21_21—1
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additions and 1

q;r — Z 2l—m om-1 _ 1, 21—1

m=1
multiplications. In all, the formulas (36) and (37) require for fixed !
a=a+a=061-2)-2""+1 (42)
addtions and ¢ multiplications. For all I =1,2,...,n — 1 the total is

n—1

Zq, Yo [(81-2)- 2"t +1] =gn2"—4-2"+n+4
=1

additions and

n—1
@=Ydq= Zzz“ g —ong1
=1

multiplications.

Thus, the algorithm (30), (36)—(38) is characterized by the following
estimates for the number of arithmetic operations: @+ = @1 + Q2 = (3n/2—
2)2" — n + 2 additions and Q. = (n/2 — 1)2" + 1 multiplications. If no
distinction is made between additions and multiplications, then the total
number of operations is

Q=01 +Q2+Q3; =(2log, N —3)N —log, N +3, N =2".

For comparison, we give here an estimate of the number of operations
required to compute the sums (22) directly. We will have (2" — 1)? multipli-
cations and (2" — 2)(2" — 1) additions, or in total @ = (N —1)(2N —1). For
example, if N = 128 (n = 7) we obtain @ = 1404 operations (of which 321 are
multiplications) for the constructed algorithm, and Q = 32,131 operations
(of which 15,873 are multiplications) for the direct algorithm.

Notice that using (39) and (40) in place of (37) and (38) results in the
following estimates for the number of operations: Q4 = (%n - 2) 2" —-n+2
additions and @, = $2" —1 multiplications, or in total @ = (2log, N —2)N —
log, N +1, N = 2", or slightly more than in the algorithm (30), (36)—(38).

Thus, the problem 1 stated above is solved. We now consider problem
2 involving the expansion in shifted sines. Assuming that N = 2", we write

out the sum appearing in problem 2 in the following form

2k — )xj n
Zalsm( 2n+1) , k=1,2,...,2"™ (43)
j=1
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Comparing (43) with (32) we find that computing the sums (43) in shifted
sines is the second step in the algorithm outlined above for computing the
sums (22), if we substitute ! = n in (32). Consequently, if we denote

2560)(1): vk, k=1,2,...,2%,
K1) =q;, j=12,...,2",

the formulas (36)—(38) for | = n describe the algorithm for computing the
sums (43). Substituting ! = n in the formulas (41) and (42), we obtain the
following estimates for the new algorithm: Q4 = ¢» = (2n —1)2" + 1 addi-
tions and Q, = ¢}, = 22" multiplications, or in total @ = (2log, N-1)N +1,
N = 2", Thus, the sums (43) can be computed in about the same number of
arithmetic operations as the sums (22).

Recall that the sums (43) are used to compute the Fourier coefficients
for the grid function a; defined for i = 1,2,..., N. To regenerate a function
with given Fourier coefficients, it is necessary to compute the sums

2n

. (2k—-1my .
yj=2ak81n-(—'2'r)1, _7:1,2,...,2". (43’)
k=1
Using for j # 2" relation
. (2k-Dmj 1 . (k=Vmj . kmj
sin o+l = 20052_:1_1 sin on + sin on |7
we obtain
(k—DM
P = aj sin ——— + ak sm
vi= 2cos 2"+1 [Z k Z
271 .
1 kmj .
= aio)sm—, j=1,2,...,2"1,
2c08 mtt 1oy 2"
where a( ) is computed from the formula a( ) = art+ars1,k=1,2,...,2" 1.

Compa.nng the resulting sum with (22), we find that the problem reduces to
the already solved problem 1.

To compute yy» we obtain the formula

2»—1

2"
yn = Y ae(=1)¥1 =) (azk—1 — az)-
k=1 k=1

Here the sum is computed directly.
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For this algorithm, we obtain the following estimate for the number of
operations: @ = 2N log, N —log, N.

4.1.3 Expansion in cosines. We look now at an algorithm for solving problem
3, which consists of computing the sums (13) for N = 2", We have

2" .
kx
yk=za§°)cos2—n’, k=0,1,...,2" (44)
=0
where we have introduced the notation a( ) = a;.

The principle for constructing the algorithm is exactly the same as for
the expansion in sines, and consists of two steps. In the first step, we group
together the terms of the sums with indices j and 2"—j for j = 0,1,...,2" "1 -
1, then with indices j and 2"~ ! — 3, j =0,1,...,2"2 — 1, and so forth.

At the end of the ptt stage we have

2" -1
(2k — D)my
Y2e-1(2k-1) = Z ag‘? st1_; COS Ton—st1
=0
k=1,2,...,2"°, s=1,2,...,p,
(45)
2n-?
York = Z a(p) 2n_p
7=0
k=0,1,...,2"7P
The formulas are correct for p = 1,2,...,n. The coefficients ag-p ) are defined
recursively
agp) — a(.”'l) + a(;:;ll_j,
aﬁ’i) Pl = EP Y ag‘iiill_,-,
j=0,1,...,2" P _1 (46)

(p) (r-1)

Agn-p = Qgn-p,

p=12,...,n.
Substituting s = p = n in (45), we find

Yo = af,") + a(ln), Yon = ag") - agn), Yan-1 = agn), (47)
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and the remaining y; are found from the formulas

2" 1
(2k — D)ny
Yp-i2k-1) = ) al?).. 41 CO 2,,—,+)1,
j=0

k=1,2,...,2"° s=1,2,...,n—1.
Substituting for each fixed s

25:0)(1)= Yoo-12k-1), k=1,2,...,2"7°,

BV =a) 0y, §=0,1,...,2°70 -1,
l=n—s, s=12,...,n-1

we are led to compute the following sums:

x
I

20(1) = 22 BO(1) cos (2k = mj.

ST 1,2,...,2,

7=0
1=1,2,...,n—1.

(48)

The second step of the algorithm consists of computing the sums (48).
As before, sequentially separating the terms with even and odd indices j, we

have the following recurrence relations:

1
9 cog 2k=Dx

2l-m+2

2™ D(s) = 2™ (2s) + 2 (25 - 1),

,(m) _ m) 1 2™
Zot-m41_ k+1(3) =2 (23) + 9 cos (2];_12" (23 - 1)’
2i-m+2

k=1,2...2"" s=12,...,2""' m=1,2,...

for computing

2!-m_ .
m m 2k — 1)my
,(c )(s) = Z bg- )(s) cos 2k —1)mj 21_m+)1 ,

=0
k=1,2,...,2"™ s=12,...,2™

(50)
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for m = 0,1,...,l. The coefficients bg-m)(s) are also defined recursively for
s=1,2,...,2™"1 starting with b;-o)(l), using the formulas

B™ (25 — 1) = 5750 (s) + By (9),
ji=12,...,2"™ -1, m=1,2,...,1—1,
B™2s —1)=6""(s), m=1,2,...,1, (51)
m m—1
B™ (2s) = 677 (s),
i=01,...,2"m -1, m=12,...,1L
Substituting m = [ in (50), we find the initial conditions for the relations

(49)
D) =0(s), s=1,2,...,2% (52)

Thus, the algorithm for computing the sums (44) is described by the
formulas (46), (47), (49), (51), and (52).

An elementary count of the number of arithmetic operations for this
algorithm shows: Q4+ = (3/2n—2)2"+n+2 additions and Q. = (n/2—1)2"+1
multiplications, and in total

Q=0Q4+Q.=(2log, N —3)N +log, N +3, N=2"

Notice that, as in the preceding algorithm, here it is possible to substitute
in (49)
2k — 1)

(m)(s) = sin —m 1

wi™ (s);

and then from (52) it follows that w(l)(s) = b(l)(s), s=1,2,...,2L

The recurrence relations for w! k )(s) have the form

wim-l)(s) = 2cos @k—1)r (m)(2 )+ w(m)(2s - 1),

2i-m+2
m—1 2k -1 (m m
ng_m+)1_k+1(3) = 2cos (21 m-{l ( )( ) ;c )(23 - l)a

k=12..,2""" s=12..2"" m=12,...,1L
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4.1.4 Transforming a real-valued periodic grid function. Problem 4 involving
the transformation of a real-valued periodic grid function consists of regen-
erating a function using (17) from given Fourier coefficients a; and @; and of
finding the coefficients for a given function using (18).

Suppose N = 2" and that the Fourier coefficients are given. Then it is
necessary to compute the sums

2»—1 () 2k7rJ 2n—1+1 () 2k7r]
0 Z —(0) . n
yk:jgo"f s on T st a;’sin—>r=, k=0,1,...,2" ~ 1. (53)

We now construct the corresponding algorithm. To do this, we change
the index in (53) from k to 2" — k. Taking into account the identities

22" — k)my 2km; . 212" - k)7 . 2kmj
COS(——E’;—)Q=CO —'2—’1:—], sm—(—Qn—)m:—sm—éy—,

we obtain that y; can be computed using the formulas
Yk = Gk + Y
Yarok =Yk —Yg, k=1,2,...,2" 1 -1, (54)

Yo = Yo, Yon-1 = Yan-1,

where
2"t .
Ur = Zag-o)cos;g:]—l-, k=0,1,...,2" 1 (55)
=0
PR |
V= ag-o)sin%, k=1,2,...,2"1 -1 (56)
j=1

Thus, computing the sums (53) leads to the computation of the sums (55)
and (56) and to the sequential use of the formulas (54).

Comparing the formulas (55) and (56) with the formulas (44) and (22),
we find that the sums (55) and (56) can be computed using the algorithms
in Sections 4.1.2 and 4.1.3, after having changed n ton — 1.

We now calculate the number of operations required to compute the
sums (53) by this method. From the estimates for the number of operations
found for the algorithm in Section 4.1.2, we obtain that the sums (56) can
be computed using Q4+ = (3n/4 — 7/4)2" — n + 3 additions and Q. = (n/4 —
3/4)2™ + 1 multiplications. The estimates for the algorithm in Section 4.1.3
give the following values for the sums (55): Q4+ = (3n/4 —7/4)2" +n + 1
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additions and Q. = (n/4 — 3/4)2" + 1 multiplications. Adding in here the
Q@+ = 2" —2 additions required to compute (54), we obtain for the algorithm
Q+ = (3n/2—-5/2)2"+2 additions and @, = (n/2—3/2)2"+2 multiplications,
and in total Q@ = (2log, N —4)N +4, N =2".

We turn now to the computation of the Fourier coefficients of a real-
valued periodic grid function. The problem consists of finding the sums

2" -1

Yk = ]2_: ag-o) cos %:—:l, k=0,1,...,2""1, (87)
"1 .
. 2%kw n—
Yr = j=21a§~0)81n'2—n]', k=1,2,---,2 1-1’ (58)

0) . . .
where ag. )isa given function.

The algorithm for computing (57) and (58) is related to the algorithms
in Section 4.1.2 and 4.1.3, but differs in several details. Here in the first step
we initially group together the terms of the sums (57) and (58) with indices
jand 2" 45 for j = 0,1,...,2""1 — 1, then the terms with indices j and
2"=2 4 jfor j = 0,1,...,2""2 — 1, and so forth. We will examine in more
detail the process of sequentially grouping the terms for a sample sum (57).
The transformation of the sums (58) is analogous.

Thus, we represent (57) in the following form:

IS oy 2k A= g 2knj
Yk = Z ag.)cos-—z;;—-{- Z GE)COSZ—n
j:() j=2n—l

and change the second summation, setting j = 2"~ + j'. This gives

2n—t—g .
= (0) P )] 2k _ o
Ye = JZ% [aj +(-1) ag.._1+j] cos 2=, k=0,1,...,2 1

Denoting

(1) (0) )
a:’' =a.: +a2"_l+.’

J J J (59)
M=o

; -1
a2n—1+]'"“ _a2"—1+]‘, ] ___0’1’-..,211, ——1,
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we obtain in place of (57) the following sums:

2n-1_1

2k — 1)) _
Y2k—1 = E agf.).x+j cos (—?‘_—1)'-—], k=1,2,...,2""2
=0
2»—1 1 (60)
< 2kmy
Yok = Z ag-l)cos E’g’ k=0,1,...,2" 2.
vt
Analogously in place of (58) we obtain the sums
- ! 1) : (2k— 1)7I’] n—2
Y2k—1 = Z azn-l_{_jSln?’ k=1,2,"'72 ’
i=1
iy (61)
< . 2kmj _
Yok = Z ag-l)smzn—_f, k=1,2,...,2" %21,
Jj=1

where ag-l) is defined in (59). With this the first step is completed. For the
second step, a means of transforming the sums (60) and (61) is described. As
a result of the p'* step we have

2" -1 .
2k — 1)j
Y2e-1(2k-1) = Z ag’n)..H cos (7_,)—,
j=0
k=1,2,...,2" " s=1,2,...,p,
b 9 (62)
2n—P—1 .
2kn
York = Z a-(’-P) COSs 2"_i 5
j=0
k=0,1,...,2"" P71,
where p=1,2,...,n—1 and
"1 .
_ . (2k—=1)mj
y2‘_1(2k—1) = Z ag:l)—l_‘,j Sln(_z,;%_,
Jj=1
k=1,2,...,2"*"1 s=1,2,...,p,
(63)
r 2t () 2kny
York = Z ajp sin m,
j=1

k=1,2,...,2" P71 _1,
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where p = 1,2,...,n — 2. The coefficients a'P) are found recursively from the

f]
formulas

agp)zag-”_l)-%-a(”_l) 7=0,1,...,2"? 1,

2n=P 45 (64)
-1 -—
a;‘,’.)_,H — a.(r'P ) _ agl”'_i)ﬂ, p=1,2,...,n.

Setting p=n —1 and s = p=n — 1 in (62), we obtain

o= ™ 407D o),
Ygn-1 = ag”_l) - agn—l) = agn), (65)
Yon-2 = agn—l),
and from (63) for p = n — 2 we find
Yon-2 = agn—2) - agn—z) = a:(,"_l). (66)
The remaining yx and g are found from the formulas
2n=o-1 .
2k — 1)xj
Y2e-1(2k-1) = z a;f.)-.ﬂ- cos g—E,:_—,)—,
=0
2701 .
o . k-
Yao-1(2k-1) = Z ag,.)_.ﬂ- Slni—én—_j)—l,
=1
k=1,2,...,2" ! s=1,2,...,n-2.
Here we define for fixed s:
zl(:O)(l) = Y24-1(2k-1) 51(,0)(1) = Y20-1(2k-1),

n—s— 0 8 . n—s
k=122 ¥01)=al), ., j=0,1,..,2""~1,
l=n-s5, s=12,...,n-2

This leads us to the computation of the sums
01y _ X2 4 (2k — 1)7j
22 (1) = Y b5”(1) cos T
j=0
(67)

2'—1 .
_ . (2k-)m
z,(co)(l) = Z bg-o)(l) sin 2k —1)mj o i ,

=1

k=1,2,...,27Y, 1=23,...,n—1.
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At the second stage of the algorithm, the sums (67) are computed. Here,
as in the algorithm in Section 4.1.2, these sums are transformed by separating
the terms with even and odd indices j and using the identities

(2k 1)(25 — 2)7r+,n(2k—1)2j7r_2 (2k—1)7ri(2k 1)(25-1)m

ol—m+1 STl mt1 2 mrt ST olm1 '
JCE-D@i-2r (2k=1)2jm (k—1)r  (2k—1)(2j —1)7r
ol—m+1 R L Ry s By ——T ’

for m = 1,2,.... This gives the following recurrence formulas:

L (m)
2s—1
2cos (2k — 1)w/2i-m+1 2z (28 )s

1

2" D(s) = 2™ (2s) +

,(m=1) _ (m) (m) (9, _ 1
#a-m-— k'“(s) z" (2) = 2cos (2k — 1)x/2i-m+1 2 (25 1),
(m=1), y _ (m) 1 2™
a8 =270+ 5 @k = D jai-mri e (28— 1),
68)
_(m (m 1 m (
2D () = —2™(2s) + 2™(2s — 1),

2cos (2k — 1)r/2!-m+1

k=1,2,..., 2™

bl

m=12,...,1-1

for sequentially computing the sums

2!-m_q
m m 2k — )mj
GRS @i

2!-m_q .
—(m m . 2k'—1 L) (69)
AP = Y (s sin DT

j=1

k=1,2,...,2™"1  s=1,2,...,2™

form=0,1,...,1-1.
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The coefficients bgm) (s) are also defined recursively for s = 1,2,...,

2m=1 starting with bgo)(l), using the formulas
K™ (25 — 1) = b570(s) + 070 (s), G=1,2,...,27 ™ 1,
by™ (25 — 1) = 6"V (s) — B, (), 0

5™ (2s) =6577(s), j=0,1,...,2"™ 1,
s=1,2,...,2™!" m=12,...,1-1.

Setting m = ! — 1 in (69), we obtain the initial values for the relations (68).
A7) =b0(s), H () =b{"(s), s=1,2...,2"" (7)

Thus, the algorithm for simultaneously computing the sums (57) and
(58) is described by the formulas (64)-(66), (68), (70), and (71). Notice that,
as in the algorithms in Sections 4.1.2 and 4.1.3, here in the relations (68) 1t
is possible to change

§m(5) = sin ZEZ DT ym)
(m)(s) — sin (221 1:)7" (m)( )

which allows us to avoid dividing by 2cos (2k — 1)r/2!-™+1,

An elementary count of the number of arithmetic operations for this
algorithm gives: Q4 = 3n/2-2" — 1 additions and Q. = (n/2 — 3/2)2" + 2
multiplications, and in total Q@ = (2log, N — 3/2)N + 1, N = 2",

Thus, computing the Fourier coefficients and regenerating a real-valued
periodic grid function using this algorithm requires O(N1ln N) arithmetic
operations.

4.1.5 Transforming a complex-valued periodic grid function. We look now
at problem 5 involving the computation of the Fourier coefficients and the
regeneration of a complex periodic grid function. In Section 4.1.1 it was shown
that this problem leads to the computation of the sums (21), which in the
case N = 2" have the form

2" -1
=Y (°)exp<2k’”), k=0,1,...,2" -1, (72)

j=0

where a®

5 is a complex number.
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The algorithm for computing the sums (72) is constructed in the same
way as the algorithm for computing the Fourier coefficients of a real-valued
periodic grid function. At the first stage, we group together the terms of the
sums (72) with indices j and 2”71 4 j for j = 0,1,...,2""! — 1, then the
terms with indices j and 2"~% + j for j = 0,1,...,2"72 — 1 and so forth.
Taking into account the identity ™ = (—1)¥, we obtain at the end of the
p*? step the following sums:

2" 1

2k — 1)y .
Yae-1(2k-1) = Z Qgn-e 4 ; €Xp ((7:,)—‘1) )
i=0
k=1,2,...,2""° s=1,2,...,p,
(13)
2kry .
Yark = Z agp) exp (—271%2) ,
i=0
k=0,1,...,2°77 _1,
where the coefficients ag-p ) are found from the recurrence relations (64).
Setting s = p =n in (73), we have
Yo = af,"), Ygn-1 = aﬁ"), (74)

and the remaining y; are found from the formulas

2" -1 .
2k — )y .
Y2e-1(2k—-1) = Z ag:-)—a_}.j €xp ((2T,)z) ’
=0

k=12,...,2"*% s=1,2,...,n—1.
For fixed j we make the substitutions

25‘0)(1): y21—1(2k_1), k= 1’2’“.’271—3’

K1) = ol j=0,1,...,27° — 1,
S

2n—l+J" 1
l=n-—s, 1,2,...,n—1,

which lead us to the computation of the sums

01y _ X2 4 (2k — D) !
7 (1) = > b (1) exp (—21—1> E=1,2,...,2 (75)
=0

»

forl=1,2,...,n—1.
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The second step of the algorithm, involving the computation of the sums
(75), is constructed, as before, by separating the terms with even and odd
indices § using the identities

o ((2k —1)(2 — 2)7r2,) +ex ((2k - 1)2j7ri>

9l-m+1 9l-m+1
(2k - )m (2k —1)(25 — 1)r.
= 2cos W exp ol—m+1 1].
We obtain the recurrence relations
(m-1) (m) 1 (m)
z s8)=2z 28) + ——————= 25 —1),
o (8) =2 (29) 2 cos ZET)E ( )
(m=1) [y _ (m) 1 (m)
Zpi-m i (8) = 2 (28) — 2co (22'5—13:: zp (28— 1), (76)

k=1,2,...,2"™ s=1,2,...,2™°
m=12,...,1-1

for computing the sums

2i-m_1 .
m m 2k — )7y .
6= Y §P e (),

J=0

(77)

k=1,2,...,2™ s=12,...,2™

form =0,1,...,l—1. The coefficients bg-m) are computed from the recurrence
formulas (70). It remains to indicate the initial values for (76). Setting m =
I —1in (77), we obtain

270 (s) = 807V (s) + ib{ 7V (s),

(78)
zgl-l)(s) = bf,l_l)(s) - ibgl_l)(s), s=1,2,...,2"-1

Thus, the algorithm for computing the sums (72) is described by the
formulas (64), (70), (74), (76), and (78). Notice that this algorithm does not
contain (except for the simple formula (78)) any multiplications involving
complex numbers. Therefore, it is easy to separate the real and imaginary
parts of the computed quantities in the formulas. This is useful when imple-
menting the algorithm on a computer without complex arithmetic. Further,

in (76) it is possible to make the following useful change

(2k - )m

z,(:m)(s)zsin = wscm)(s).
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We now compute the number of arithmetic operations for this algorithm.
We obtain Q4 = (3n/2 — 1/2)2" complex additions and Q. = (n/2 — 3/2)2"
products of a complex number times a real number. If we express these values
in terms of the number of operations on real numbers, we obtain @ =
(3n — 1)2" real additions and Q. = (n — 3)2" real multiplications, and in
total Q@ = (4log, N —4)N, N = 2" real operations. This estimate is twice as
large as the estimate obtained in Section 4.1.4 for the case of a real-valued
periodic grid function, which is natural considering that the complex case
involves twice as many real numbers.

With this we conclude our look at algorithms for the fast Fourier trans-
form, and move on to using them to solve elliptic grid equations.

4.2 The solution of difference problems by the Fourier method

4.2.1 Eigenvalue difference problems for the Laplace operator in a rectangle.
In Section 1.5, we looked at eigenvalue boundary-value problems for the sec-
ond difference derivative operator defined on a uniform grid on an interval. In
the two-dimensional case, the analogs of these problems are eigenvalue prob-
lems for the Laplace operator on a uniform rectangular grid in a rectangle.
We shall use the method of separation of variables for finding the eigenvalues
Ak and the eigenfunctions pi(z,j) of the Laplace difference operator

A=Ar+As, Awy=ys.e., a=1.2

Suppose that, in the rectangle G = {0 < 74 < l4, @ = 1,2}, we have defined
the uniform rectangular grid @ with steps hy and hy: ©@ = {zij = (¢hq,jh2) €
G,0<i< Ny, 0<j <Nz, hoNy = lo, @ = 1,2}. As usual, we denote by w
the interior, and by 4 the boundary, of the grid @.

The simplest eigenvalue problem for the Laplace operator in the case
of Dirichlet boundary conditions is: find those values of the parameter A for
which there exists a non-trivial solution y(z) to the following problem:

Ay(z) + Ay(z)=0, z€w,
y(z)=0, z€4. (1)

We will seek the eigenfunctions p(, ) of (1) corresponding to the eigenvalue
Ax in the form

ur(i,5) = D OuP ), k= (k1 ko). (2)

We substitute the function ui (s, ) in place of y(zi;) = y(¢,7) in (1). Since

AyG, ) = ;f?[y(i +1,7) - 296y 7) +¥G — L),
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the operator A; only acts on a grid function which depends on the argument
i. Analogously, the operator A; acts on a function which depends on the
argument j. Therefore, after substituting (2) in (1), we have

pO A6 + 1P DAL G) + Meu ()P () = 0 (3)
for1<i<N;—-1,1<j < N;-—1,and also
pP0) = pP(V) =0, pP(0) = uP(Nz) = 0. (4)

From (3) we find that

Al/"kl)(z) _Az'u"'l)(]) Ak. (5)

O X0

Since the left-hand side does not depend on j, the right-hand side does not
depend on j either. On the other hand, since the right-hand side does not
depend on 7, nor does the left. As a result, the left- and right-hand sides are
constants. We set

Al/»‘kll (') _ (1) Azlik2 (J)
L, Aa, G)
w06 ()

and add in the boundary conditions (4). As a result we obtain one-dimension-
al grid eigenvalue problems

=MD, A=A+ ()

A 4200 =0, 1<i< N -1, ;
w2 (0) = p{d(W) =0 @
and
AopD 420U =0, 1<i< Ny -1,
pe(0) = p) (N2) = 0

The solutions of the problems (7) and (8) were found earlier in Section 1.5:

(8)

/\(a) 4 | 5 kom 4 ., kamhg

h2 sin m:ﬁsm ECTREE ka=1,2,...,Ny—1,
/2 sin kymi
l‘kl)(z)_‘ le_l’ ki=1,2,...,N -1,

2) oy _ _2_ k27fj _ _
uk,(y) \/ N k2=1,2,...,Ny — 1.
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Thus, the eigenfunctions and eigenvalues for the Laplace difference operator
A in the case of Dirichlet boundary conditions have been found

sin kimt . komj
ui(i §) = p) )il () = \/_2 0y sin L,

0<i<N;, 0<j<N,, (9)

A= +a@ = Z —2— sin’

where k, =1,2,...,No, -1, a =1,2.

We will now examine the basic properties of the eigenfunctions and eigen-
values (9). We define the inner product of grid functions defined on the grid
@ in the following way

(u,v) = ) u(e)o(z)ha (1 )ha(z2),

TED

0.5hy zo=0,l,
ha($0)= {haa ha L 24 Sla"'ha-

If we denote

(u,v)g, = Z u(z)v(2)ho(za), a=1,2, (10)

To €W

where
@1 = {z1(i) = ihy, 0<i< Ni},

@z = {z2(j) = jho, 0<j < Na}
then it is clear that @ = @, X @2, and z;; = (z1(2), 2(J)), and besides,

(uvv) = ((uvv)wnl)w, = ((u,v)a,, 1)01 . (11)

Reca.ll that in Section 1.5 it was remarked that the grid functions )(z)

and py )( j) are orthonormal with respect to the inner product (10), i.e.

o o 1, ka = mﬂ’
(22),, =0nm. = { K25
Therefore from this and from (11) it follows that the system of eigen-

functions px(z, ) defined by the formulas (9) is orthonormal:

b = 1, k=m,
(ks pm) = Ek,m = 0, k#m, k=(ky,ky), m=(my,ms).
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Since the number of eigenfunctions pi(, j) = wr, k,(2, ) is equal to (N; —
1)(N2 — 1) and this coincides with the number of interior nodes of the grid @,
any grid function f(i,j) defined on w (or defined on @ and reducing to zero
on 7), can be represented in the following form:

N;—1N;-1
F6,)= Y0 D frukatt 1 (),
ki=1 ky=1 (12)
1<i<N -1, 1Lj<N, -1,
where the Fourier coeflicients fi, &, are defined in the following fashion:
N;i—1N;-1
.. 1),. 2 .
fe = fus = (frm) = 37 3 f ) Oui) (ke
kir=1,2,...,Ny—1, ky=1,2,...,N; -1

For the eigenvalues Ax we have the estimates
Amin = A+ AP < M= My + My AW AP = Ay

where

a=1
2 4 wh 1 1
— § :__ 2o —_ 4 =
Amax = p hg Ccos 2l <4 (h% + h%) .

We look now at an example of a more complex eigenvalue problem for
the Laplace difference operator. Suppose that, as before, we have Dirichlet
boundary conditions on the sides of the rectangle z; = 0 and z; = [, but
that Neumann conditions are given for z, = 0 and z5 = Iy, i.e., the following
eigenvalue problem is given:

Ay(z) + dy(z) =0, z€w; xX@,, y(z)=0, z,=0, z=1.

Here A = Ay + A,, the operator A, is defined above, and

2
_h_-yz'z’ T2 = 07
2
Ay = yizz:r;a hy < x2 <l — by, (15)

_h_zyi-n Ty =l
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Using the definition of the operators A; and A;, the problem (14) can be
written in the form:

Y212y + Y2z, T AY =0, z €0,

2
y5:11:1 + h—zytz + Ay = 0, :’52 = 07
hi <z <4 —hy,

2
Yzi2, — Eyiz + )‘y = 0, T2 = 12,
Y(0,z2) = y(h,z2) =0, 0< 22 < 1.

The solution of (14) is found by the method of separation of variables.
Substituting the grid functions p(z,j) from (2) in place of y in (14), we
obtain for u; )(z) the problem (7), and for u;; )(]) we have the following
boundary- value problem:

A AP —0, 0<j <N,
or by (15)

(2) (2),(2) :
('uk2)i:21:2+Ak2 'u'kz =0’ ]'SJ SNZ_]”

2 (@ 2) (2) :
o (W), + 22 =0, =0, (16)
2 /(@ @) ,(2) _ :

The problem (16) was also solved earlier in Section 1.5. The solution has
the form

(2) 4 k27!' _ 4 2 k27rh2 _
A) h2 sin? —=— A h2 sin 212 , ka=0,1,...,No,
2 k
—cosﬂ 1<k, <N;-—1, (17)

l Ny’
1) = 12 . :j
2
— =0,N,.
\/lzcsNz, ko =0,N,

Thus, the solution of the problem (14), (15) has been found:

m(ind)= g i) (), 0Si< Ny, 0SSN,
A—-A(l)+A(2) lsklle_l’ 0_<__k2$N2a

where )\scl) and py, )(z) are defined above, and )\( ) and Kk, )( J) are defined
in (17).



4.2 The solution of difference problems by the Fourier method 201

Eigenvalue problems for the Laplace difference operator in a rectangle
with other combinations of boundary conditions on the sides of the rectangle
G are solved analogously. The method of separation of variables allows us
to reduce them to one-dimensional problems which were solved in Section
1.5. The generalization to the multi-dimensional case is obvious. Recall that
the analytic solution in the form of sines and cosines of the corresponding
one-dimensional problems was obtained in Section 1.5, but only for boundary
conditions of first and second order, for their combinations, and also for the
case of periodic boundary-value problems. Therefore, if we are given bound-
ary conditions of these types on the sides of a rectangle (or on the boundary
of a rectangular parallelipiped in the three-dimensional case), then the eigen-
functions for the Laplace operator can be represented in the form of a product
of sines and cosines.

4.2.2 Poisson’s equation in a rectangle; expansion in a double series. We look
now at the method of separation of variables applied to the solution of a
Dirichlet difference problem for Poisson’s equation on a uniform grid in a
rectangle:

Ay=—p(z), zew, y(z)=g(z), z€7,

(18)
A=A +A2’ Aay=yiaza7 a=1,2

We first transform the problem (18) to a problem with homogeneous
boundary conditions by changing the right-hand side of the equations at the
boundary nodes. The standard way of performing this transformation consists
of transferring known quantities to the right-hand side of the equation at a
boundary node. For example, if £ = (h;, h2) € w, then Poisson’s equation at
this point can be written in the following form:

1
%] [y(0, ha) — 2y(h1, h2) + y(2h1, hs)]
1
1
+ 2 [y(h1,0) — 2y(h1, h2) + y(h1,2k2)] = —@(h1, h2).
2

Since y(0, h2) = ¢(0, h2), y(h1,0) = g(h1,0), by transferring these quantities
from the left- to the right-hand side of the equation we obtain

1 1
7z [—2y(h1,h2) +y (2h1, h2)] + 7z [—2y(h1, h2) + y(h1,2h2)]
1 2

1 1
== ‘P(hl’hZ) + ng(o’ h2) + ﬁg(hl,O) .
1 2
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By carrying out a similar transformation at each boundary point, we
obtain difference equations which do not contain the values of y(z) on v in the
left-hand side. The right-hand sides of the equations for the boundary nodes
differ from the right-hand side ¢(z). If we denote by f(z) the constructed
right-hand side, then it is defined by the formulas

£(z) = o) + é—w(x) + ;jgsoz(x), zEw, (19)

where
9(0, 232), Ty = hl’
) 2hy <z <1y — 2k,

9(11’3:2), T =12a

(=]

par(z) =

g(.’L‘l,O), T2 = h?a
p2(x) =< 0, 2hy < x93 <y — 2hy,

g(zlal2), To = 12-

The left-hand side of the transformed equations differs from the Laplace
difference operator at the boundary nodes. However, if we set y(z) = u(z),
z € w, u(z) =0, = € v, then the equations at all the nodes of the grid w can
be written identically:

Au=—f(z), z€w, u(z)=0, z€1. (20)

Since u(z) coincides with y(z) for z € w, it suffices to find the solution of
(20). .

We now find the solution of the problem (20). Since the function u(z)
reduces to zero on 7, it is possible to represent it in the form of an expansion
in the eigenfunctions u (i, j) of the Laplace operator

Ni;—-1 N2-1 ) )
.o 1)/. 2)/ -
u@ )= Y Y uk k@R (), (21)

k1=0 k7=1

which is valid for 0 <7 < Ny, 0 < j < N,. Further, the grid function f(z)
defined on w also admits the representation

N;—-1 N2-1
= Y fuks@eP0), (22)

ki=1 ko=1

for 1 <i< Ny —1,1<j < N; -1, where the Fourier coefficients fi,,

are defined in (13). Since pi(3,j) = ug)(i)ug (j) is an eigenfunction of the
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Laplace operator corresponding to the eigenvalue A, i.e.,
Ak + e =0, zew, ALY+ =,

after substituting (21) and (22) in (20) we get

N;-1 N2-1

- Y Y (0 422) ke nR@uP )

k1—1 kz"l
Ni—1 Nap-1

=—f(,5) ==Y Y furulOrd3),

ki=1 kp=1

1<i<N, -1, 1<j<N;-1.

Using the orthonormality of the eigenfunctions ui(z,j), from this we
obtain

uhk,=—(§"‘—"’—(g, 1<k <Ni—1, 1<k <N, -1
Ak, + Ak,

Substituting this expression in (21), we obtain the following representation
for the solution to problem (20):

Ni—1 N;-1
u(s,j) = ‘: ‘: Sk s G), 0<i<N, 0<j<N
)= A(l) (2) kl ukz J =t = 1y S7 S v,

ki=1 ka=1

(23)

Thus, the formulas (13) and (23) give the solution to (20). We now ana-

lyze them from a computational point of view. In order to compute the solu-

tion u(4, j) using the formulas (13) and (20), where ui(i,j) = ,uh)(z)p(z)(])

and \x = /\(1) + /\(2) are defined in (9), it is convenient to introduce three

auxiliary quantltles ©k; (1), Pk, k, and ug, (7). Then the computations can be
organized as follows:

Na—1
i = > 1, 7)sin %2 (24)
1Sk2SN2—1, 1<i<N; -1,
Ny-1
Pkiks = Z (sz( )sm (25)

1<k<N -1, 1Lk <N;—-1,
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le_l Pk k k17|’i
ug, (1) = gy Sin , (26)
k1=1 A(kl) + A(kz) Nl

1SZSN1—1, 1S’¢2SN2—1,

Np— .
w(i, j) = —— ;Y:l e, (i) sin 2T (27)
’ N1N2 Fo—1 2 N2 ’
-

1<j<Ny—1, 1<i<N; -1

We now calculate the number of arithmetic operations for the algorithm

-1
(24)-(27), assuming that the quantities (/\211) + )\g)) are given, and that
the sums (24)—(27) are computed using the algorithm for the fast Fourier
transform given in Section 4.1.2. In order to apply this algorithm, it is nec-

essary that Ny and N are powers of 2: Ny = 2", Np = 2™,

Recall that sums of the form

2" -1 .
kri
=) ajsin%, k=1,2,...,2" -1,
=1

are computed using Q4 = (3/2n — 2)2" — n + 2 additions and subtractions,
and Q, = (n/2 —1)2" + 1 multiplications, if the algorithm in Section 4.1.2 is
used.

An elementary count gives the following totals for the number of arith-
metic operations involved in computing the solution u(3, j) using the formulas

(24)-(27):

Q+ = (N1Nz — N1 — N2)[3logy (N1 N2) — 8]
+ (Nl + 2)10g2 Ng + (N2 + 2) 10g2 N1 -8

additions and subtractions, and
Q* = (N1N2 - Nl - Ng)[logz(NlNg) b 2] + N] 10g2 N2 + N2 10g2 Nl -2

multiplications. If there is no difference between arithmetic operations, and
if Ny = N, = N = 2", the total number of operations for the algorithm
(24)-(27) is

Q = (N? - 1.5N)(8log, N — 10) + 5N + 4log, N — 10.
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Thus, this method of solving problem (20) can be realized using
O(N?log, N) arithmetic operations. This type of estimate for the number
of operations was also obtained for the cyclic reduction method examined in
Chapter 3. A comparison of these estimates shows that the method of sepa-
ration of variables requires about 1.5 times as many operations as the cyclic
reduction method.

Notice that it is also possible to construct an algorithm analogous to the
one presented above for the case when a mixture of first- and second-order
boundary conditions, or a set of periodic boundary conditions, is given on
the sides of the rectangle, if the problem is not singular. All that is neces-
sary is that the corresponding eigenfunctions and eigenvalues for the type of
boundary conditions be substituted in (13) and (23), that the limits of the
summations be changed, and that the corresponding fast Fourier transform
algorithm from Section 4.1 be used to compute the summations which arise.
The estimate for the number of operations will be of the same form as for
the case of the Dirichlet problem considered above.

We described the simplest variant of the method of separation of vari-
ables. If it is necessary to solve a more general boundary-value difference
problem, for example Poisson’s equation in polar or cylindrical coordinate
systems with boundary conditions which assume the separation of variables,
then again it is possible to use the expansions (21) and (22). But in this case
at least one of the eigenfunctions ug) (?) or ug) (7) will not be sines or cosines.
This prevents us using the fast Fourier transform algorithm to compute the
necessary sums. Therefore for these problems the number of arithmetic oper-
ations will be of the same order as in the case when the sums were computed
directly without taking into account the form of the eigenfunctions ug)(z)
and p{)(5), i.e., O(N?).

Consequently, it is necessary to modify the method so that the number
of arithmetic operations will remain O(N? log, N) when one of the functions
yg)(z) or ,uﬁ)( 7) is a sine or a cosine. It is clear that this problem can be
solved by a modified method and, as is indicated below, with fewer arith-
metic operations. This method — expansion in a single series — will be
constructed in Section 4.2.3. From the computational point of view it differs
from the method constructed here in that the two sums from (24)-(27) are not
computed, but instead a series of boundary-value problems for three-point
difference equations is solved.

4.2.3 Expansion in a single series. We turn now to the problem (20):

Au=—-f(z), z€w, u(z)=0, ze€v,

28
A=A +A, Apu=uz ., a=12. (28)
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We will consider the desired function u(z;;) = u(i,j) and the given
function f(i,j) as grid functions of the argument j for fixed 7, 0 < i < Nj.
Since u(i, j) reduces to zero for j = 0 and j = Ny, and £(i, ) is given for
1 <7 £ N; — 1, they can be represented in the form of summations in the
eigenfunctions pg‘;) (7) of the difference operator A,:

Na—-1

u(i i)=Y, u(uP(), 0<j<N;, 0<i< My, (29)
k2=l

Na—1
i)=Y fu@pdG), 0<j<N -1, 1<i<N—1, (30)

k2=1

where

Hey () = \/ 26225 k19 N, -1 (31)
Ny’

We substitute the expressions (29) and (30) in (28) and take into account
the equations

Ao +20Pu®P =0, 1< <N, -1,
p2(0) = pP (V) = 0.

As a result we obtain

(32)

Ny—-1

> (M) = AQui (i) + fiu ()] 42G) = 0

ka=1
for 1 <4< N;-1,1<j < N;—1, and also ug,(0) = ug,(N;) = 0,
ky=1,2,...,N; - 1.

Hence, usmg the orthogonality of the system of eigenfunctions p; )( 7)s
we obtain a series of boundary-value problems for determining the functions

u) =1,2,...,Np - 1:

Ayug, (i) — A(z)uk;(') =—fi,(1), 1<i<N;—1,

(33)
ukz(o) = ukz(Nl) =0.
The eigenvalues /\22) for the problem (32) are known
2
A2 = 4 n? 227 ky=1,2,...,Ny—1, (34)

h2 2N,’
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and the Fourier coefficients fi,(¢) for each 1 <i < Ny —1 are computed using
the formulas

Ny-1
fa@ = (£67), = 2 hefGiZG), 1Sk<M -1 (35)

=1

Thus, the formulas (29), (31), and (33)—(35) fully describe a method for
solving problem (20). The functions fi(z) are found for 1 < i < N; — 1 using
the formulas (35), then the problems (33) are solved for 1 < k; < N; — 1 to
determine the functions uy, (i), and the desired solution u(i, ) is computed
using the formulas (29).

We look now at the algorithm which implements this method. In place of
uk,(¢) and fi,(7), it is convenient to introduce the auxiliary functions vy, (?)
and ¢, (2) using the formulas

1) = Y@, o) = Yoo ) (36)

We substitute (31) and (36) in (29), (33), and (35), take into account that
hyo Ny = l5, and write out the difference operator A; at a point. As a result
we obtain

Ny—-1 .
k (s 1 < k < N - 1,
2 J = Rh2 = 2 } (37)

‘sz(z)= ; f(%])Sln N2 ’ ].SZSNl—].,

— ok, = 1) + (24 BAD) 08, () — ks (6 + 1) = By (i), 59
ISZ_<_N1—1, vk2(0)=vk2(N1)=0, ].SszNz—l,

Ny—-1 . .
.. 2 n . komj 1L j7<Ny—1,
y»J) = ) . 39
i) = o, (SIS @)

where /\g) is defined in (34).

It is clear that the sums (37) and (39) can be computed using the discrete
fast Fourier transform algorithm described in Section 4.1.2. To solve the three-
point boundary-value problems (38) it is appropriate to use the elimination
algorithm constructed in Section 2.1. For the problem (38), the elimination
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algorithm is described by the formulas
1

Ck2 - ai’
Bit1= [hfsok,(i) + B ait1, 1<i<N—1, B1=0,
’Ukz(i)=a,‘+1’vk2(i+1)+ﬂ,‘+1, 1 SZSNI —1, vkz(Nl):'O,

Q41 = ISZSNI—]., (11=0,

(40)

where ¢x, =2+ hf)\g‘;) and k; =1,2,...,N; — 1.

We now compare the formulas (37), (39), and (40) with the formulas
(24)-(27) obtained earlier for the method involving the expansion in a double
series. Here, instead of computing two sums (25) and (26), we solve a series of
boundary-value problems (38) using the elimination method (40). Therefore,
computing the sums (37) and (39) will require approximately half as many
arithmetic operations as the algorithm (24)-(27). Clearly, the additional work
to solve the problems (38) is O(N;N;) operations, and this does not affect
the principle term in the estimate for the number of arithmetic operations
for the algorithm (37), (39), (40). We give now precise estimates for the
number of operations for this algorithm. We have (for N = 2™) Q4 =
[(8log, No — 1)N, — 2log, Nj + 1](Ny — 1) additions and subtractions, Q. =
[(log, N3 + 2)N; — 2J(Ny — 1) multiplications and Q; = (N — 1)(N, — 1)
divisions; if Ny = N, = N = 2%, then the total number of operations is equal
to

Q = (N2 — 1.5)(4log, N +2) — N + 2log, N + 2.

We considered an expansion in a single series for a Dirichlet difference
problem for Poisson’s equation. An essential fact is that the eigenfunctions
for the difference operator A, allow us to use the fast Fourier transform
algorithm to compute the corresponding sums. This will also be possible
in the case when the boundary conditions of the first kind are replaced by
conditions of the second kind, a mixture of first- and second-kind conditions,
or even periodic conditions on the sides z, = 0 and z = I, of the rectangle G.

We look now at the following example of a boundary-value problem for
Poisson’s equation:

Uz zy T Uzyz, = —‘P(x)a T Ew,
u(z)=0, =00, 0Lz, <1y,
2 2
Uz z, + h_2u22 = —Lp(:l:) - 'h_29—2(x)’ zy =0, (41)

2 2
Uzizy — h_zui’ = —p(z) - h_29+2($), T2 = Iy,

hi <z <lp—hy.
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The scheme (41) is a difference approximation for the problem

0%y 0%u

51—%-{-5‘;%'—-—90(:1:), z €@,
u(x):O, IL‘1=0,11, 0S£2S’27
Ou
5.’17_2 = _g—2(x)a T2= Oa
ﬁ—— (z) =1 0< ;<1
6z2_ g+2T), T2= iz, ASE A ERS

We write out the problem (41) in another form, introducing the notation:

2
EMZZ, Tg = 0,
Aqu = § Uz,p,, hy < zy <y — hy,
—Euz,, Ty =y,
2
E‘g—z(x), zy =0,
2
pa(z) = 0, hy < z9 <l — by,
2
E—y+2(1‘), Ty =y,
2

f(:l:) = Lp(:l:) + ‘P2(x)’ Alu =Uzz,

for hy Kz <l —hy, 0Lz < .

In the new notation, the problem (41) is written in the form

A=A +AJu=—f(z), hi<zi<h—hy, 0<zy <y,

42
u(z) =0, =z =05, 0<z <. (42)

Expanding u(¢, j) and f(7, j) in summations involving the eigenfunctions
of the operator A,, we have

N,
uGi i)=Y un@pP (), 0<j< N, 0<i< Ny,
k2=0

(43)
N,
@)=Y fu@pPG), 0<j<N;, 1<i<N -1,

ko=0
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where
1 kg us ]
=~ cos

’ k2 = 0,N27
12 2

(2)
H, (7) = .
[2 komj
o < ko < Ny —
12 Cos Nz ) 1 S k‘z S Ng 1,

is the eigenfunction of the operator A; corresponding to the eigenvalue

k .
)\(2) :2 sin® —2_%:-’ ky = 0,2..., N,. (44)

The Fourier coefficient f,(z) for each 1 <i < N; — 1 is computed using the
formulas

Ny—-1

nm»-zjMﬂummm+om4mommm+ﬂmemmﬂ

Substituting (43) in (42), we obtain the following analog to the formulas
(37)—(39) for the problem (42) under consideration:

Pk, (1) = Zp,f(z,J)cos

j=0
0<k;<N;, 1<i<N; -1,

=0k, (i = 1) + (2+ KAL) 08, 6) = v + 1) = hpaa (i),
1S1SN1—1a vk3(0)=vk2(N1)=0a OSkZSNZ’

u(i,j) = Z pkzvkz( )COS
k2—0
OS]SNZa ISZSNI_I,

where /\g';) is defined in (44), and

_f05, j=0,N,,
Pi=11, 1<j<N,—1.

We give here an estimate of the number of operations for this algorithm
when Ny = N, = N =2™ Q4 = [(3logy N2—1)N;+2log, N2 +7](Ny —1) ad-
ditions and subtractions, @, = [(log, N2 +2)N; +10](N; — 1) multiplications,
and Q; = (N 4+ 1)(N; — 1) divisions, or in total

Q= <N2—£)(4log2N+2)+17N 2log, N —18.
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Further since the eigenfunctions of the difference operator A; are not
used for the expansion in a single series, and the only requirement on A; is
that it be possible to separate variables, A; can be a more general operator
than we considered here. If we limit ourselves to second-order elliptic equa-
tions, then the most general case corresponds to a difference approximation
to the differential operator

1 8 Ou Ou
= e (Mo ) e — e

the coefficients of which depend only on z;. The boundary conditions on
the sides z; = 0 and z; = [; of the rectangle G can be any combination of
first-, second- or third-kind boundary conditions (the coefficients in a bound-
ary condition of the third kind must be constants). This allows us to solve
boundary-value problems for Poisson’s equations in cylindrical, spherical, and
polar coordinate systems.

4.3 The method of incomplete reduction

4.3.1 Combining the Fourier and reduction methods. The method constructed
in Section 4.2.3 involving an expansion in a single series allows us to compute
only two Fourier sums at a cost of O(N; N, log, N;) operations and then
solve a series of three-point boundary-value problems at a cost of O(N; N2)
operations. Clearly, further refinement of the separation of variables method
is possible by diminishing the number of terms in the computed sums while
still making it possible to use the fast Fourier transform.

We achieve this goal by combining the method involving an expansion
in a single series with the reduction method studied in Chapter 3. We first
construct this combined method for the simplest Dirichlet problem

Au = —f(:t), z €Ew, u(.’L‘) =0, z€9,

1
A=A +Ay, Agu=uz ., a=1,2 (@)

on the rectangular grid @.

To simplify the description of the method, we switch from the point
(scalar) notation of problem (1) to vector notation.

We introduce the vector of unknowns U; as follows:
. . T .
Uj = (w(1,7),u(2,5),...,u(N1 —1,5))", 0<j <Ny,
and define the right-hand side vector F; by the formula

Fj = (h2£(1,5), B2F(2,5), - B2 F (N1 = 1,7)), 1<j<N,—1.
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Then the difference problem (1) can be written (see Section 3.1) in the
form of a system of vector equations

— j_1+CUj-—Uj+1=Fj 1SjSN2—1’

2
Up =Un, =0, @

where the square tridiagonal matrix C is defined by

CU; = (28 — BA)u(L, ), .., 2F — WAy u(M; — 1,5)),
Alu = Uzy,zq, u(O,J) = U(Nl,j) =0.

Assume that N, is a power of 2 : N, = 2™, Recall that the first step in
the elimination process for the cyclic reduction method consists (see Section
2.2) in extracting from (2) a “reduced” system for the unknowns U; with
even indices j

- j-—2+C(l)Uj_Uj+2=FJ(1)a j=254565'-"N2—27

(3)
Uo=Un, =0,

and the equations
CUJ'=FJ'+UJ'_1+UJ'+1, 7=13,5,...,N; —1 (4)
for determining the unknowns with odd indices j. Here we denote

FO = Fj_1 +CFy+ Fyry, j=2,4,6,...,N;—2, (5)
cM =[C)? - 2E. - (6)
We shall look further at the system (3). We introduce the notation
. . \\T
vj = (v(1,7),v(2,5),...,v(Ny — 1,])) ,
. . \\T
®; = (hde(1,5), h3p(2,5), ..., h3p(N1 — 1,5))
and set
v; = Uz, 0<j5<N,/2, q’j=F2(JI'), 1<j<Ny/2-1,
v(0,j) =v(N1,j) =0, 0<j<No/2

This notation allows us to write the system (3) in the form

Vi1 +COV; Vi =@, j=1,2,..., My —1,

7
Vo = Vi, =0, (7)
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where 2M; = N, and by (5)
‘I>j=F2j_1+CF2j+F2j+1, j=12,...,M; — 1. (8)

Notice now that the grid function v(¢,j) is defined for 0 < ¢ < N; and
0 < j < M,, and reduces to zero for j = 0 and j = M,. The function ¢(i, j)
is defined for 1 <7 < N; —1 and 1 < j € M; — 1. Therefore these functions
can be represented in the form of a single Fourier series

Mo—1
. . . 2 .
(i)=Y vOrD3),
k=1
0<:<N;, 0Lj5<M,,

9)

M;—-1

e(ii)= Y z,(Oul0),

k2=1
ISZSNI_:l, IS]SM2_15

where the functions

uk,)()=Tsin o =Lh. M- (10)

form an orthonormal system on the grid @ in terms of the inner product

M;-1

(,0) = Y u(f)o(j)ha.

i=1

The Fourier coefficients z,(z) for the function ¢(z,j) are found from the
formulas

M,-1
2 (11)

1<k <M;—-1, 1<i<N;-1

From (9) we obtain the following expansions for the vectors V; and ®;:

M2—1

Vi= Y Yieu(j), 0<j<M,
k=1

(12)

M2—1
= Y BZ,uPG), 1<i<My -1,

k2=1
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where

Yk: = (ykz(l)a yk:(Z)’ ce ’ykz(Nl - 1))T,
Zi, = (21,(1), 21, (2), - . ., 20y (N1 — 1)) .

We substitute (12) in (7) and take into account

pe G = 1)+ +2) = 2cos—u(2)( ), 1<k <My —1.

We obtain
My—1 k M,—1
» (0(1) 2cos—E) ,#k,)(J)— > hzzk,#k,)(J),
k2=1 kz_l

from which we obtain (using the orthonormality of the system (10))
k
(c(l) - zcosML’:E) Yi, =h3Zr,, 1<ky<Mp-—1. (13)

We use the relation (6) and obtain

c® — 2COS%E [C]2—2(1+cos—1€]‘24—>E

2

kgﬂ' k
= (C—Zcos M, E) (C+2cos M, E)

Since the matrix C(1) — 2 cos(kem/M3)E is factored, we can use the following
algorithm to solve the equation (13)

ko
(C 2COS2M2 )sz—h Z,,

k (14)
C+2cos 22 E Yi,=Wy,, 1<k <M, -1,

2M,

where the auxiliary vector Wi, has components wy, (3):

sz = (wkz(l)’ wk:(z)a cee vwkz(Nl - 1))T’
wi,(0) = wi,(N7) = 0.

The required formulas have been found. Transforming (4), (8), and (14) from
vector to scalar notation, and using the relation u(z,2j) = v(z, ) arising from
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the definition of V}, we obtain the following formulas for this method:

‘P(h]) = f(212.7 - 1) +2f(212.7) + f(112.7 + 1) - thlf(l’2])’

15

for computing the function ¢(i, j); the equations

k,m . . .
2 (1 — cos El_tl—z) wi, (1) — hiAlwk,(Z) = h%zk,(z),
1<i<N; -1,

wi,(0) = wi,(N) =0, (16)

kom . . .
2 (1 + cos 2;42) Yky (8) — h3 A1y, (1) = wi, (4),
1<i<N, -1,

yk:(o) = ykz(Nl) =0,
for defining y,(z) for k2 = 1,2,..., M, — 1; and the equations

2u(i1 2.7 - 1) - thlu(iy 2.7 - 1) = h;f(z’ 2.7 - 1) + u(ia 2.7 - 2) + u(i’ 2.7)’
1<i<N -1, u(0,2j—1)=u(N,25-1)=0
(17)
for finding the solution for j = 1,2,..., M;. For the Fourier coefficients zx, ()
we have the formula (11), and from (9) we obtain

M;-1

u@2) = Y w@pP(G), 1<j<Mp—1, 1<i<Ni -1 (18)
ko=1

Thus, the formulas (10, (11), (15)-(18) fully describe the method for solving
the problem (1), a combination of the Fourier method involving the expansion
in a single series and the reduction method.

We move on now to construct the algorithm for the method. In the
formulas (9), (16), and (18) we set yi, (1) = afx,(2), wr,(t) = aw,(7),
2k, (1) = aZ, (), where a = 21/I;/N;, and in the resulting formulas we omit
the bar. This change allows us to omit the normalizing multiplier 2/+/I3 for
the eigenfunctions ug)( 7) in the sums (11) and (18). Further, the problems
(16) and (17) will be solved using the elimination method. It is easy to con-
vince oneself that here the conditions for the correctness and stability of the
usual elimination method are satisfied. Let us examine the specifics of the
problems (17). Since the coefficients of (17) do not depend on j, the elimina-
tions coefficients aj need only be computed once when solving (17) for j = 1,
and then used to solve the equations (17) for the remaining j.
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We summarize here the computational formulas. First we compute

0(4,5) =f(2,2 = 1) + f(,25 + 1)

h2 L. Kz . . .
+2 (1 + h—) £6,20) = TG - 1.20) + £+ 1,23),
IS]SM2_1a ISZSN1_17

(19)
where f(0,25) = f(N1,2j) = 0. The values of ¢(¢,5) can be overwritten on
f(3,25). The sums

Ma-1 komri
2(i)= Y ¢i,j)sin ;4’, 1<k, <My—1
i=1 ?

(20)
for 1 <¢ < N; —1 are computed using the fast Fourier transform, and 2, (7)
is overwritten on (i, k2). The elimination method
aiy1 = 1/(ck, — i),  Bir1 = [Rizx, (i) + Bi] aiya,
Z'=1,2,...,N1—1, (11=,31=0,
W, (1) = Cig1Wky(i+1) T Bit1,

i=Ny—1,N —2,...,1,

wk;(Nl) = 0’

(21)
h? hY  kym
ck, =24 22 —2-L cos =~
? h2 h2 N,
solves the first of the equations (16), and analogously the formulas
1 2

h
p— Bit1 = [',‘gwkz(z) + ﬂz] Qit1,
i=1,2,..., N -1,

Qi1 =

(23] =,Bl =07
Yk, (8) = @ig1yk, (8 + 1) + Bita, (22)
1:=N1 —l,Ng'—l,...,l,
B2 h? k
Yk, (N1) =0, ¢, =242 L 41921 cos 2%

h2 T R2TT N,

solve the second of the equations (16). Here the computations proceed se-
quentially for k; = 1,2,...,M; — 1 and the results wg,(¢) and y,(¢) are
overwritten sequentially on z,(¢).

To compute the sums

Mz_l .
C o 4 o . kzﬂ’] .
u(2,25) = — 1) sin , 1<3<M,-1
( ’ J) N2 k22=1 ykz( ) M2 J 2 )

(23)
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for 1 < i < N; — 1 we again use the fast Fourier transform. The problems
(17) are solved by the elimination method taking into account the specifics
of these equations:

aip1 = 1/(c — @),
i=1,2,...,N1—1, a1=0,

e R:, . e
Biy1 = hff(z,?y -1+ -’ﬁ-(u(z,% -2)+ u(z,2])) + Bil aiq1,
2
i=1,2,...,Ni—1, B =0,
u(i,2) — 1) = aig1u(t + 1,25 — 1) + Bita,
i=Ny—1,N;—2,...,1, u(Ny,2j—1)=0,
c=2(1+ hi/h3)
(24)

for 1 < j < Mj,. The solution u(z,j) is overwritten on f(¢,j), and conse-

quently, the algorithm does not require auxiliary storage for intermediate
information.

We now calculate the number of arithmetic operations for the algorithm
(19)-(24). The computations in the formulas (19), (21), (22), and (24) require
Q+ = (6.5N2 —9)(N; —1) additions and subtractions, Q. = (6 N, —8)(N; —1)
multiplications and Q; = (N, — 1)(N; — 1) divisions. To compute the sums
(20) and (23) we require

3 7
Qs = [('2' 10g2 N, — 5) N, —2log, N2 + 6] (N1 - 1).
additions and subtractions and
1
Q,., = [(5 10g2 N2 - 1) Ng + 1] (N1 - 1)

multiplications. If Ny = N, = N = 2", then the algorithm (19)-(24) requires
in total

Q = (N?—-2N)(2log, N +9) — 2N +2log, N + 11 (25)
arithmetic operations.

For comparison, we give here the number of operations for the method
involving the expansion in a single series (see Section 4.2.3):

Q=(N2—2N) (4log; N +2)— N +2log, N +2, (26)
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for the method involving the expansion in a double series (see Section 4.2.2):
3
Q= (N2—§N) (8log; N — 10) + 5N + 4log, N — 10, (27)

and also the number of operations for the second cyclic reduction algorithm
(see Section 3.2.4):

Q= <N2—1—51N) (5logy N +5)+ N +6log, N +5. (28)

If we compare the constants in the principal terms for the estimates
(25)-(28), we find that the combined method requires one quarter as many
operations as the method involving the expansion in a double series. This
result is valid for large N. To obtain a real comparison between these methods
for reasonable N, we give here a table of values of @ for these methods.

Table 4

Estimate
(25) (26) (27) (28)
N

32| 18,383| 21,496 29,510| 28,541
64| 83,601(104,950152,334 138,537
128 (371,515 | 485, 708 | 745, 582 | 643, 921

Thus, the combination of the Fourier and reduction methods allows us
to reduce the number of operations in comparison with the original method
involving the expansion in a single series. We can generalize this combined
method by including in it ! elimination steps from the reduction method
before carrying out the expansion in a single series. Then the method for
Section 4.2.3 can be treated as a special case of such a generalized method for
I = 0, and the method constructed in this section corresponds to I = 1. The
cyclic reduction method can be considered as this method with I = log, N,.

The data in Table 4 indicate that there is an optimal generalized method
from the point of view of operation counts for some 1 <! < log, N;. Analyz-
ing the operation counts for the method involving ! elimination steps shows
that the optimal value is I = 1 or I = 2. Here, the insignificant improvement
in the operation count for the method with ! = 2 can be lost due to the
increased complexity of the algorithm.
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4.3.2 The solution of boundary-value problems for Poisson’s equations in
a rectangle. We look now at an application of the method constructed in
Section 4.3.1 for finding the solution to boundary-value problems for Poisson’s
equation in a rectangle. Suppose that, in the region G = {0 < z4 < la,
a = 1,2}, it is necessary to find the solution to the equations

v 0%
o2 + 53 = —p(z), z€G, (29)

satisfying the following boundary conditions on the boundary I' of the rect-
angle G:

ov
5{; =K1V — g_l(.'l?g), T = 0,
ov
—5_='€+1v—9+1($2), z1=h, 0<z;<10,
1
ov (30)
dzy —g-2(z1), z2=0,
O __ (z1) zo=10l, 0<z <l
axg— g+2(T1), 2 = &2, >4 > a,

where k41 >0, k_3 2 0, k%, + k2, > 0.

We will assume that x4; and k_; are constants in the condition (30).
Under this assumption, the variables in the problem (29), (30) are separated.

On the rectangular grid @ = {zij = (th1,5h2) € G,0<i<N,0<
j < N3, haNy = la, @ = 1,2}, the problem (29)-(30) corresponds to the
difference scheme

Au=(M+AN)u=—f(z), z€w, (31)

where f(z) = ¢(z) + ¢1(z) + #2(2),

( z(u,l —k_ju), z; =0,
hy
Au =< uz,z,, hi <z <L —hy,
2
h_(uil —Kkpu), 1 =1Uh;
\ M
2
( h_zuzz, T2 = 0,
Agu = ¢ Uz,zy) hy <zy <1y —hy,
2

__uiz’ T2 = 12;

\ h2
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and the functions ¢4(z) are defined by the relation

2
7 9-o(zp), 2a =0,
‘Pa(z)= 0, ha <z2o Lly—hay, B=3-0a, a=1,2,

2
'h_g'i'd(zﬂ)’ To = lg.

In Chapter 3 it was shown that the scheme (31) has the following struc-
ture in vector form:

CUy — 2U, = Ky,
-Uj-1+CU; - Ujy1=F;, 1<j<N;—-1, (32)
—2UN2_1+CUN2 =FN2$

where

U; = (u(0,7), u(1,5),- - -, u(N1,5)) 7,
Fj = (h2£(0,5), h2F(1,5),..., B2 (N1, )T,
U;

CU; = ((2E — h2A,)u(0,5),...,(2E — h2A Yyu(M, 7)),
0<j5< N,

The vector system (32) differs from the system (2) considered earlier in
the boundary conditions and in the definition of the matrix C. Nevertheless,
constructing the analog of the method in Section 4.3.1 for the problem (32)
does not present any difficulty. Since the derivation of the basic formulas for
this method differs only in details from the development in Section 4.3.2, we
will limit ourselves to a summary of the principal intermediate and final for-
mulas. For the cyclic reduction method, the necessary formulas are described
in Section 3.4.

Thus, after one step of elimination, we will have the following problem
for the vectors V; = Uyj, 0 < j < M,, where 2M; = Ny,
CWV, — 2V, = &,
Ve +CVV; Vi1 =95, 1<j<M;—1, (33)
—2Va,—1 + COVay, = &,
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and where the right-hand side ®; = Fi;), 0 < j < M, is defined by the

formulas
CF, +2F, j=0,
®; = {F2j—1 + CFyj+ Fjp, 1<j<M; -1,
CFN2 +2FN,-1, Jj=M,.

For the vectors V; and ®; we have the expansions

M, M,
Vi= S YulG), &= MZuulG), 0<j <M,

ka=0 ka=0
where 0 for
27J
—= €08 , 1<k <M;—-1,
@), Vi M, 2 2
Ky, ()= 1 ko
E Ccos —E, kg = O,Mz.

By (33), the Fourier coefficients of the vectors V; and ®; are linked by the
relation

(C(l) — 2cos %E) Ye, = B3 Zk,, 0<ky < My,
2

and the components of the vector Z, can be expressed in terms of the com-
ponents of the vector @; in the following way

Mj,-1
Zu(i)= Y. hao(i, )ud ()
Jj=1

+0.5h2 [i(i, 042 (0) + (i, Mol (M3)] , 0 <i < My,

The unknowns U; with odd indices j are determined, as before, from the
equations (4).

In these formulas, it remains to convert to scalar notation and to the
unnormalized eigenfunctions pg‘;)( j) = cos %}21

As a result, we obtain the following formulas for solving problem (31):
for each 0 < 7 < N; we compute

2[f(ia 0) + f(l, 1)] - thlf(l’ O)a J = 0,
. f(i,2j-—1)+f(i,2j+1) .
(i 5) = +2£(i,27) — h2A1 £(i, 2), 1<i <M -1,

2(f(i, N2) + (i, N2 = 1) = B3A1£(i, N2), j = Mo,
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and solve the equations

k
4sin® 2—2N12wk,(i) — R2Aywi, (i) = Rz, (i), 0<i< N
kom . . : .
4 cos? '2272!/1:;(1) ~ hiAiyk, () = wi, (i), 0<i< N

for 0 < ky < M,, where

kymj
M’

M,
2k,(1) = Y pjep(i, §) cos

Jj=0
0<k<M;, 0Zi< N

The solution u(s, j) of problem (31) is determined from the formulas

M, .
k
u(i,2) = Y Pryyks (i) cos ;}2’, 0<j<Ms, 0Si<N,

ka=0

and from the equations

2u(i,2j — 1) — h2Aju(3, 25 — 1) = h2£(3,25 — 1) + u(3,25 — 2) + u(s,25),
1<j<M,;,, 0<i<N;.

Here we use the notation

_{1’ IS]SM2—1a
Pi=05, j=0,M,, M,=05N,,

and the operator A; is defined above. In order to find wg,(¢), y,(¢), and
u(é,2j — 1), we use here three-point equations with third-kind boundary con-
ditions, which we solve by the elimination method.

Notice that these formulas are not affected if the grid is non-uniform
in the direction z;. Only the form of the operator A; is changed: it will be
the difference analog of the second derivative and the third-kind boundary
conditions on the non-uniform grid.

It should generally be noted that it is possible to construct variants
of the separation of variables method using cyclic reduction and achieve an
operation count of O(N?2 log, N) in all but one case. The exception occurs in
the case when a third-kind boundary condition is only given on one side of
the rectangle in the direction in which the unknowns are being eliminated.
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4.3.3 A high-accuracy Dirichlet difference problem in a rectangle. We will
look now at one more sample application of the separation of variables
method. Suppose that, on the rectangular grid &, we are required to solve a
high-accuracy Dirichlet difference problem for Poisson’s equation

h% + A2

Au = (A1+A2+ A]Az)’u:—f(l‘), T Ew,

(34)
u(z) =0, z€4,
where Aqu = uz_,,, @ = 1,2. For simplicity, homogeneous boundary condi-

tions are given — a problem with non-homogeneous boundary conditions can
be reduced to (34) by changing the right-hand side at the boundary nodes.

In Section 3.1.4, we obtained a vector version of problem (34) in the
following form:

—BUj_l +AUJ‘—BUJ‘+1 =Fj, 1SjSN2_1’
Us =Un, =0, (35)

where
U; = (w(1,5),u(2,5),...,u(N1 = 1,5))7, 0<j<N,,
= (R3F(1,5),R2F(2,5),- - B2F (N1 = 1,5))T, 1<i<Np—1,

and where the matrices B and A are defined by the relations

BU,—=((E+h h2A1)u(1,]) (E+h2+h 1)u(N1——1,j))T,

9 2_p2 T
AU,-=((2E Shy 1A1>u(1,3) <2E—5h6 lAl)u(Nl—l,J))

The matrices A and B commute, i.e., AB = BA.

We now construct a combined method for separating the variables in
(34). Initially we perform one elimination step from the reduction method for
the system (35). We give here a description of this step which is independent
of the presentation in Chapter 3. We write out three consecutive equations
from the system (35) for j = 2,4,6,...,N, — 2:

—BUJ‘_2 + AUJ'_l - BU]' = Fj—l,
—BUj_l + AU' — BU]'+1 = F'
—BUJ’ +AUJ'+1 BUJ+2 ]+1)
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multiply the first and third equations on the left by B, the middle by A, and
add them. Using the commutativity of A and B we obtain

—BU;_y + (A% — 2B*)U; — B?U;42 = F\",

j=2,4,6,...,N2—2,
Uy =Un, =0,

where F}l) = B(Fj—1+ Fj+1)+AFj, j = 2,4,6,..., N2 —2. Noticing as usual

that V; = Usj, 0 < j < My, &; = F{), 1 < j < M, — 1, where 2M, = N,
we write this system in the form

_Bsz—l + (A2 - 232)‘/] - B2‘/j+1 = @1, 1 S] S M2 — 1,
Vo = Vi, =0, (36)

where
®; = B(Fyj_1+ Fajq1) + AFj, 1<j<M;—1. (37)

The remaining unknown vectors are found from the equations

AUsj_1 = F3j1 + B(Uzj—2 + Uzj), 1<j< M. (38)

As before, the “reduced” system (36) will be solved by the Fourier

method. We substitute the expansions (12) in (36), where ug‘;)( 7) is defined in
(10). As a result, we obtain the following equation for the Fourier coefficients
Y%, and Zi, of the vectors V; and ®;

<A2 — 4cos? 2’“]2\;2 32) Yi,=h2Z:,, 1<k <M;—1,  (39)

which is analogous to the equation (13), where the components of the vectors
Zy, and ®; are connected by the formula (11). To solve equation (39), it is
possible to use the algorithm

(A — cos 2’“;; B) Wi, = h2Zk,,
’ (40)

’ kom
(A+cos-2—;723) Yi,=Wi,, 1<k <M,—1.
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Thus, the method for solving problem (34) in vector form is described
by the formulas (37), (11), (40), (12), and (38). Converting to scalar notation
and to the unnormalized eigenfunctions ﬁg)( j) =sin %12-’- using the change
in notation from Section 4.3.1, we obtain the following formulas

olir§) = (E LHth AI) (G, 27 = 1) + £, 2 + 1)+ £, 24)]

—h%Alf(z',zj), 1<j<Mp—1, 1<i<N;-1, (41)
f(0,/)=0, 1<j<N;—1

for computing (%, j); the equations

. k 4 kg’ﬂ' h +h2 . .
4sin® N, wkz(z) (1 - EE sin? N mrh " ) Awi, (1) = hizk, (3),

].ngNl—]., wk,(0)=wk,(N1)=0

(42)
for computing wg,(z); and

kom 4 ko h% + B2 . .
4 cos? 2N, ykz(’) (1 - ;;5 cos? 51272 . 11—22> A1y, (2) = w, (7),

1<i<Ni—1, yg(0) =y, (N2) =0
(43)
for computing yx, (i), where 1 < k; < M3 — 1, and where
el kamy
2,(0) = Y (i,j)sin—==, 1<k, <My—1, 1<i<N -1 (44)
i=1 Mo

The solution u(z, ) to (34) is determined from the formulas

Mp—1 .
u(i, 21)—— S (i) sin 2 ’, 1<j<SMp—1, 1<i<N -1,
2 k=1
(45)
and from the equations

2 _ p2
2u(4,25 — 1) — MAlu(z 2j-1)

= hgf("’ 25 — 1) + (E h2 + h2 Al) [u(21 2.7 - 2) + u(i’zj)], (46)

1<i< Ny -1,

u(0,2j — 1) =u(Ny,2j —1) =0, 1<j< M,
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It remains for us to show that the three-point equations (42), (43),
and (46) are soluble. Then either the usual elimination method or the non-
monotonic elimination method can be used to solve them.

It is sufficient to show that the eigenvalues of the difference operator

_ (2) A +h3 2 (z) 4 . 2 hr
R=XE— ( 12 Ay )Al, A h2 sin 2N,

are non-zero for 1 < k2 < Ny —1. In fact, for 1 < ky < N, /2—1, the operator

hiR is the same as the operator for problem (42), and for k; = N3/2, it is

the same as the operator for problem (46). If N;/2+ 1 < k; < N; — 1, then
the operator h2R has the form

g ko h? + h2 g ko

2 4 12 i+ hy

h2R = 4sin? 2N2 h3 < 1 h2 n2N2 Al

The change k, = Ny — k} gives

kym h? + b3 4 Ky
2 12 2 K2
MR =4cos’ 5 N, M ( 12 K% 2N2)A"

where 1 < k}, < N; — 1, i.e., in this case the operator hiR is the same as the
operator in (43).

We now find the eigenvalues of the operator R for a fixed value of k3.
Since the eigenvalues of the operator A; for the case of boundary conditions
of the first kind are (see Section 1.5)

w_ 4ok _1
Ak, hgsm 5N’ 1=1,2,...,Ny ,

the eigenvalues A of the operator R are

h2 + h2
Akiky = AP — 1—12—2,\531),\532), 1<k <Ni—1, 1<k <N,—1.

Since we have the following estimates for the eigenvalues /\g) and /\i’?:

o 4
0<A( )<h—2, a=1,2,

it is easy to show that for any k; and k,
2 2
Q) h3 ,(2) (2) R )Y o 2 (), @
Miks = N ( ﬁAh)“ ( E’\*l)>3(’\ +27) >0,

which is what we were required to prove.
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For problem (42), it is easily seen that the sufficient condition for appli-
cability of the usual elimination method has the form

2h% - h% .2 kgﬂ
-1 _2 —~— >
14 3h2 sin N, 0 (47)

and clearly this is satisfied for any k,. For problem (43), the analogous con-

dition has the form \ ,
2h% — h kom
1 1 2 2 M2l >
+ 3h2 cos” 5 N, > 0

and this is satisfied for all k,. For problem (46), the corresponding condition

is (47) with k3 = 0.5N;. Consequently, problems (42), (43), and (46) can be
solved by the usual elimination method.

4.4 The staircase algorithm and the reduction method
for solving tridiagonal systems of equations

4.4.1 The staircase algorithm for the case of tridiagonal matrices with scalar
elements. We write a tridiagonal system in the form of a three-point bound-
ary-value difference problem:

—¥i-1+Cyi —yiz1=F;, 1<i<N -1, 45 =0, yy =0, (1)

where C is a scalar, and we assume that N = 2k + 1. If the second-order
difference equation (1) is written as a recurrence relation

Yit1 = Cyi —Yi—1 — Fy, i > 1, yo = 0, (2)
then it is not difficult to notice that all the unknowns y; can be written

recursively using (2), given the value of y;. Thus any y; can be expressed
linearly in terms of yo and y;. This allows us to write

Yi+1 = @Y1 — Bi—1Yo — pi (3)
for any ¢ > 1, with as yet undetermined coefficients a;, B, pi. If we set
ag=1, f_;1 =0, pp=0, (4)

then (3) will also be valid for ¢ = 0. Thus, the solution of (1) will be found
in the form (3) for any ¢ > 0.
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Writing (1) in the form of a recurrence relation
Yi-1 =Cyi—yit1 — Fi, 1< N—-1, yn =0 (5)
and proceeding analogously, we obtain the solution of (1) in the form
Yi-1 = EN—iYN-1 — IN—i-1YN — qN—i (6)
for any ¢ < N, if we set
§o=1,n1-1=0, ¢ =0. (7

We note that if yn_; is found, then all the y;’s can be computed recursively
using (5).

We now find y; and yn—1. To do this we determine the coefficients «;, 3;,
&, Mi, pi, ¢i- Comparing (2) and (3) for i = 1, and (5) and (6) fori = N —1,
we obtain

ar=6=C, fo=n=1,p=F, q=Fy_. (8)

We find now the recurrence formulas for determining the desired coeffi-
cients. We extract from (3) the expressions for y; and y;_;:

Yi = @j—1y1 — Bi—2¥Yo — Pi-1, Yi-1 = ¥i—2y1 — Bi—3Yo — Pi—2
and substitute in (1). We obtain
—(ai—2—Cai-1+ai)y1 +(Bi—3—CPi—2+Pi-1)yo+pi—2—Cpi—1+p; = Fi,i = 2.
For these equations to be identities for all ¢, it is sufficient to set

pi =Cpi—1 — pi—2 + Fi, 9)
a; = Ca;—1 — aj_g, Bi-1 = CPi_z2 — Bi-s, (10)

for : > 2.
Analogously, using (6) and (1), we obtain for i < N — 2 the recurrence
relations

gN-i =Cqn_i-1 —qn-i—2 + F},
En-i = CéN—ic1 — EN—i-2, IN=i—1 = CN—i—2 — IN-i-3-

Changing N — 1 to ¢, we obtain the formulas

¢i =Cqi-1 — gi—2+ Fn—i, (11)
&i=Ci—1— iz, Ni-1 = Cni—2 — 1i-3, (12)

for : > 2.
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Thus (4), (7)-(12) define the desired coefficients. Comparing (10) and
(12) with (4), (7), (8), we obtain that §; = n; = §; = a; for ¢ > 0. Thus, (3)
and (6) take the form

Yi+1 = 0Y1 — 0i—1Y0 — Pi, 120, (13)
Yi—1 = ON_iyN—-1 — AN_i—1YN —qN—i, <N (14)

where
pi =Cpi—1 —pi—2 + F;, 122, po=0, p=FH, (15)
¢i=Cqi-1 —qi2+ Fn_iy, 122, ¢=0, q=Fn_, (16)
a; = Ca;—1 — a2, 1>2, ag=1, a;=C. (17)

We now find y; and yny—;. For this we set : = kin (13), and 1 = k + 2
in (14). Since N = 2k + 1 we obtain

Yk+1 = kY1 — Qk—1Y0 — Pks Yk+1 = Ok—1YN-1 — Qk—2YN — qk—1.

Subtracting the first equation from the second, we obtain an equation relating
y1 and yn_q:

Qp_1YN-1 — OkY1 + Ak—1Y0 — Ok—2YN = Qk—1 — Pk. (18)

We obtain another equation for y; and yy_; by setting i = £ — 1 in (13) and
i =k + 1 in (14) and subtracting the second equation from the first,

—QRYN-1 + Qp—1Y1 — Ak—2Y0 + QAk—1YN = Pk—1 — G- (19)

Taking into account that yo = yy = 0, we add and subtract (18) and
(19). We obtain the equivalent system

(ak — ag—1)(yn—1+¥1) = Yo = Pk — qk—1 — Pk—1 + 4x, (20)
(ak + ap—1)(yn-1 —¥1) = Wo = k-1 — Pk — Pk-1 + G,

which we solve to find y; and yy_;:
Y= 0.5(vk — wk), YN—1 = 0.5(vk + wk), (21)

where
vk = (ag — ag—1) vy, wi = (ag + ax—1)  w. (22)
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Thus, this algorithm for solving (1) consists of using (15)-(17) to com-
pute the coefficients px—1, pr, g, qk—1, ax—1, and ag; using (22), (21) for
the values vi, wy and y;, yn—_1; (2) for the unknowns y; for j = 2,3,...,k;
and (5) for j = N —2,N —3,...,k + 1 with data yo, yv and computed y;,
yN-1. It is easy to calculate that it requires 7N — 9 arithmetic operations.
The resulting method for solving (1) is called the staircase algorithm.

We now determine when this is a valid algorithm. If o2 # a?_,, then
from (22) it follows that (1) is solvable for any right-hand side, and in this
case the formulas (22) do not involve division by zero. We note that in view
of the definition in (17), aj is an algebraic polynomial of degree k in C,
ar = Ux(£), where Ui(z) is the Chebyshev polynomial of the second kind
of degree k:

sin(k + 1) arccosz

- lz] <1,
U B sin arccos ¢
K(z) = (z + Va? - 1)"'H —(z —Vaz? - 1)’c+1
lz] > 1.

2vz2 -1 ’

From this we easily find that a? — a?_, = asx. Therefore if < is not a root
of the polynomial Uzi(z), i.e. C # 2cos BF, m an integer, then the staircase
algorithm is correct.

We turn our attention to the fact that the staircase algorithm can be
numerically unstable. In fact, if |C| > 2, then the algorithm is characterized
by error growth that is exponential in N, since among the roots of the char-
acteristic equation ¢ — Cq+ 1 = 0 corresponding to the difference equations
(2), (5), (15)-(17) is one whose modulus is greater than one.

4.4.2 The staircase algorithm for the case of a block-tridiagonal matrix. We
consider the problem (1) assuming that y; and F; are vectors of dimension M,
and C is a square matrix of size M x M. We limit ourselves to the case when
C is a tridiagonal matrix. In subsection 2, §1 of Chapter III it was shown that
the Dirichlet difference problem for Poisson’s equation on a rectangle with a
uniform grid in each direction, introduced into a rectangle, can be written as a
system of three-point vector equations (1). In this case the components of the
vector of unknowns are the values of the desired grid function corresponding
to the i-th row of the grid, the matrix C is tridiagonal, and its order M is
equal to the number of inner nodes of a row of the grid.

The staircase algorithm described above can also be used in this case.
The only difficulty that arises when solving three-point vector equations with
this algorithm is the finding of vx and wg in (22). In this case ay is a matrix
polynomial in the matrix C. Using the explicit expression for a; and taking
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into account that a; is a monic polynomial, it is possible to use the following
expressions

k
_ 20 -1)r
ak—ak_l—;l:II(C——Zcos——zk_*_l E),
X (23)
+a -—H C —2cos 2Un E
R} %k+1 )"

Using (22), (23) it is possible to construct the following algorithm to find
vg and wg, with vy and wy given by (20):

20 -1
[C — 2cos %E} v = V-1,
2n 24
[C—2cos2k+1E] w; = wi—1, (24)
1=0,1,...,k.

Since each of the systems (24) has a tridiagonal matrix (there are 2k such
systems), and can be solved, for example, by elimination in O(M) arithmetic
operations, finding vx and wy requires O(M N) operations. To compute the
vectors px—1, qk—1, Pk and ¢x using (15), (16), also requires O(M N) oper-
ations. Obviously, the number of operations required to find the vectors y;,
2 < i < N — 2 using (2), (5) is the same. Thus, to solve (1) with the special
block-tridiagonal matrices, the staircase algorithm requires the same number
of arithmetic operations as unknowns.

From (24) it follows that if the numbers 2 cos Iw", 1<!I< N -1, are not
equal to the eigenvalues of the matrix C, then (1) is soluble for any right-
hand side and the staircase algorithm is correct. If among the eigenvalues of
the matrix is a value greater than 2 in modulus, then as in the scalar case
the algorithm displays error growth exponential in N. Such error growth
is connected with the fact that the Cauchy problem (15)-(17), (2), (5) for
difference equations of second order is solved on an interval whose length
k = 0.5(N — 1) grows linearly with N.

4.4.3 Stability of the staircase algorithm. We now construct a variant of the
staircase algorithm, numerically stable in the sense that error growth is like
a power in N. We will consider problem (1), assuming initially that y;, F;
and C are scalars, |C| > 2.

We write N in the form N = 2kL + 1 where k and L are integers and
decompose (1) into L subsystems containing 2k equations

—Yaik+j—1 + CY2ik+j — Yair+j+1 = Faneqj, 1 < j < 2k, (25)
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for 1 =0,1,...,L — 1. We denote

Wal = Youk, Wal+1 = Y2uk+1, 1 =0,1,..., L. (26)

For fixed I, (25) can be written in the form of a first-order boundary-value
problem for the three-point equation

—ul 4 0ul? — ) = o0 1 <5 <2k, uf = war, ul), | = waigs, (27)
where we denote
u) = Yo, ¢ = Patkp, 05 < 2k+1. (28)
We note that by (26), (28)

ul? = w41, u§’2 = Wa4z, 0TS L -1 (29)

Consequently, if the values w,,, 0 < m < 2L + 1 are known, then u(l)

2 < j €2k —1, can be computed using the recurrence formulas

1 1 I )
u =0l —ul® ~oP 1<i<k-1,  uw=wy,  uwP=wu,
51) 1= C”u) 514)-1 9951), 2k>j2>k+2, ug’,zﬂ =w2i43, ué’,Z =woi42.

Substituting here the notation (28), we obtain recurrence formulas for
computing the desired unknowns (I =0,1,...,L —1)

’yj+1=C’yj—yj_1—Fj, 21k+1§j5(2l+1)k—1,

Yaik = w2y, Y2lk+1 = W2i415 (30)
Yi-1=Cyj —yj+1— Fj, 20+ 1Dk>j> 2 +1)k+2,
Y2(14+1)k+1 = W2143, Y2(l+1)k = W2i42.

Thus, we must find w,,, 1 < m < 2L. Analogs of (18), (19) are valid
for the system (27) for fixed I, which due to (29) have the following form
(!=0,1,...,L—1):

_ (D ( ) _
QAf—1W2] — QW41 + Af—1W242 — Qp—2W243 = ¢ — = 92141,

( ) _
—Qk—2W3] + Qk—1W2+1 — QAkW2U+2 + Ak—1W2I4+3 = Pi) 1~ 4 = 92142,

(31)
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where ag, ag—; are determined from (17), and pg), pg) - qg), q£ ) | are com-

puted, taking into account (28), according to the following formulas, analo-
gous to (15), (16) (! =0,1,...,L —1):

(I) CP(I) P_, 2 + Faik+j, 2<j<k =0, p¥ = Foups,
(I) C‘I(I) ¢ )2 + FBatk+1-j, 255 <k, =0, ¢ = Fo1yk-
(32)

Since wg = w2r4+1 = 0, (31) is a system of 2L equations in 2L unknowns.
To solve this system we multiply each pair of equations (31) on the left by
the matrix

1 [ ak—1 k-
(ai—2_a§—1) 1( ko1 ok 2),

ap_2 k)

and take into account that a_, — axax—z =1, k > 2. As a result we obtain
a system of 2L equations with a tridiagonal matrix

—war + awzry1 — bwarter = Yauqa,
—bwary1 + awzry2 — Wars = Pai42, (33)

l=0,1,...,L—'1, Wo = WaL+1 =0,

where
a = ag_1(ax — ar_z)b, b=(e}_; —al_y)7,
Y2141 = ‘p-2’-l+1 + ‘Pf;H.z, Y242 = 90;.14.1 - 902_1.;.2: (34)
o _ 9242 + 92141 Pre = g21+2 — 92141
W ag—g — ak—1)’ 2T 2 ag—g + ag-1)

We show that if |C| > 2, the matrix of the system (33) is diagonally
dominant, i.e., it satisfies the inequality [a| > 1 + |b]. In fact, from the prop-
erties of the Chebyshev polynomials Ty, (z) and U,,(z) of the first and second
kinds

Un(z) = Up_1(2) = Uzm(2), Um(z) >0, Tm(z) 2 2, 2 > 1,
Um-1(2)[Um(2) = Un-2(2)] = U2m-1(),
Unm(=2) = (=1)"Um(2), Um(2) = Tm(2) + 2Um-1(2),
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it follows that
a = 0!2k—1/012k—2,
b= l/azk_z > 0,
lal _ _lozk—1]
145 14+ azk—2

_ Uspa(x)
T 14 Ugg—a(z)
_ Tok—1(z) + 2Usk—2(z)
B 1+ Uzg—2(x)
>z>1,z=|C|/2

The required inequality is proved. Therefore to solve (33) in this case it is
possible to use the monotonic elimination method described in Section 1 of
Chapter II.

Thus, this variant of the staircase algorithm consists of the computation
for each [, 0 < | < L — 1, of the quantities pgl) and qy) according to the
recurrence formulas (32), solving the system (33), (34) with a tridiagonal
matrix, and finding of the desired unknowns y; for each [, 0 < I < L -1
using the recurrence formulas (30). Since in the case |C| > 2 the growth
of the error depends exponentially on the length of the interval on which
are solved the Cauchy problems (30), (32) for the second-order difference
equations, then choosing k¥ = O(ln N) it is possible to guarantee the power
character of the error growth as a function of the number of unknowns N.

We consider now the case when y; and F; are vectors of dimension M,
and C is a symmetric matrix whose eigenvalues ), satisfy the condition
[Aml > 2,1 £ m < M. We denote by v, = (vg),vg),...,vsnM))T the
eigenvector of the matrix C' corresponding to the eigenvalue A,, and by

V = [v1,v2,...,vr] the orthogonal matrix that reduces C to diagonal form:
VICV = A = diag{n }xd, VIV = E. For this vector case the basic

problem is the solution of the system of four-point vector equations (31).

To solve this sytem, we multiply each equation in (31) on the left by the
matrix V7T and take into account that

C A M
T _yT et _ AN A (=)
ViV =V U"(2>V_Uk(2)—ak_dlag{“" }m=1’

and use the following notation

_ A
Wn = Vibn, §n = Viga, p7 = Ui (—2'!'-) .
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As a result we obtain the system (I =0,1,...,L—1)

Gr—1W2; — GxWary1 + Gk—1War42 — Gr—2W24+3 = G2141, (35)

—Gg_gWa + Qr—1W2r41 — QW42 + Gx—_1W2143 = Jai42,

linking the vectors w,, = (w(l) “5.2), ... ,u“)S.M))T, 0 <n < 2L+1. Since &; are
diagonal matrices, (35) decouples into M subsystems of 2L equations each
for the components of the vectors @, (m =1,2,...,M):

(=) ~(-) (=), =) ~(-) (=) ,~(=) A(—)
[ )1“’21 = B w21+1+/‘k 1Wa142 = Bp_2Waiy3 = G341

- -) ,\( ) ~(=)
2 2w21)+/"k )wgzﬁzl ﬂi) 2l+2+“k 2Warts = Ga142) (36)

1=0,1,...,L—1.

Applying the transformation described for the scalar case to (36), we obtain
M systems with tridiagonal matrices (m = 1,2,..., M)

‘Agl_)‘*‘a(_)“}g ), — b 2l+2 ‘Pgl_lv

=) ~a(— =) ~(— al— (_
—b )"’31421 + af )w21+2 - w§1+)3 ‘Pszz’ (37)
1=0,1,...,L -1, ®{7) =i}, =0,

where

0 = w27 - OB, 8O = (W) - (WD)

-) . _
Pati1 = Patr1 T Pty P2142 = Porp1 — Paig2s
A(—) ~(=) ~(— A(—)
ot Go142 T o141 oo 921422 92141
2041 = 242 =
207y — w2 20ui "y + u 4]

The system (37) is diagonally dominant if |Am| > 2,1 < m < M,
therefore it is possible to use the monotonic elimination method to solve it.

Thus, for the system of three-point vector equations (1) with the afore-
mentioned assumptions on the matrix C, this variant of the staircase algo-
rithm consists of the computation for each I, 0 < [ < L — 1, of the vectors
pgl), qgl), j = k,k -1, via (32), computation of the vectors foi+1 and §ar42
using the formulas (! =0,1,...,L - 1)

M
- (
g2l+1 Z (J)ggﬁ-v ggl+2 Z (J)gzﬂ-w 1<m< M, (38)
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the solution of the systems (37) for each fixed m, 1 < m < M, computation

of the vectors wy, using the formulas (n =1,2,...,2L)
. M o
wd =Y w{v, ¢<j <M, (39)
m=1

and finding the desired vectors y; using (30) for each [, 0 <1< L — 1.

In the special case when (1) corresponds to a Dirichlet difference problem
for Poisson’s equation on a grid with M N internal nodes, we have

j 4h3
P 1<ji< M, Am =2+ 25 sin’
1

M+1

mm
<m<M,

) = g si -
vy = asin 2 +1) 1<m<

where a is the normalized multiplier, and h; and h; are the steps of the grid.
Therefore the sums in (38), (39) can be computed using the fast Fourier trans-
form, which is described in Section 1 of Chapter IV for the case M = 2" — 1.
Then the computation of all the necessary sums requires O( LM log M) opera-
tions, where L = £=1. Since the computations in (30), (32) and the solution
of all the systems (37) requires O(M N) operations, the overall number of
operations is O(MN + % log M). If M and N are of the same order, then
choosing k = O(log M) we obtain that the number of operations for the stair-
case algorithm for this example is proportional to the number of unknowns,
and moreover the rate of error growth is guaranteed.

4.4.4 The reduction method for three-point scalar equations. In a series of
cases of solving systems of linear algebraic equations with tridiagonal matri-
ces, the accuracy of the computed solution is of great significance. Analysis of
the formulas for the elimination method applied to such systems shows that
the formulas for computing the elimination coefficients can be a source of er-
rors. Below we will consider the reduction method for solving such systems,
which is free from such a deficiency.

Thus, suppose we need to solve a three-point difference problem
—a;¥i-1+ciyi —biyir1 = fi, 1SS N-1, 5 =0, yv =0, (40)

where ¢; = a; + b; + d;, a; > 0, b; > 0, d; > 0. We assume that N = 2",
The idea of the reduction method consists in the sequential elimination from
(40) of unknowns with odd numbers, then with numbers divisible by 2, and
so forth.
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We write three successive equations of the system (40) with numbers
i —1,4,7+ 1, where ¢ is an even number

—ai—1Yi—2 + (@i=1 + bi—1 + di—1)yi—1 — bi—1yi = fi-1, (41)
—a;yi—1 + (@i + bi + di)yi — biyi+1 = fi, (42)
—ait1¥i + (@i+1 + bit1 + dit1)¥it1 — bip1yit2 = fitr. (43)

Multiplying (41) by o' = a;(ai_1 +bi_1 +di_1)~1, (43) by B = bi(aisq +
bi+1 +diy1)”! and adding the resulting equations to (42), we find

—a? )y. ) +(a(1) bgl) +d,(1))y.- _ b(l)y.+2 f( )
1=2,4,6,...,N — 2, (44)
Yo = 0’ Yn = 05
where

(1) a( )a'_ b(l) _ ﬂ(l)b

dfl) = C!Sl)di—l +d; + ﬂ,(l)d.'ﬂ, f,-(l) = agl)f.'—1 +fi+ ﬂ,(l)fi-f-l.

If the unknowns with even numbers are found (they satisfy the system (44)),
then the remaining unknowns are determined using

vi = (fi + aiyi—1 + biyig1)/(ai + b; + d;), 1 =1,3,5,...,N — 1.

This elimination process can obviously be applied to (44), from which
at the second step will be eliminated the unknowns with numbers divisible
by 2, but not by 4. After the I-th step of the elimination process we obtain
the system

M

—aO; o + (@0 + 80 4+ dD)y; — D

4
i Yit2! =f.'(),
i=22.203.92 . N-2 (45)

y0=07 yN=0,
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where 0 ) _(1-1)
a;’ =a;’a;_yli,
O = gD,
9 = P10, D O,
0 = (')f('2.1)1 £9- l)+ﬂ(l)f(iz'l)“ (46)
o) = a0 [, 48050, a7

_ _ -1
B0 = 4t-» [ G+ a0 |,

i=22.203.2 . N2 I>1.

Here we used the notation a( )= a;, bso) =, dfo) =d;, f(o) = f;.

The elimination process is completed at the (n — 1)-st step, when (45)
will consist of one equation involving the unknown yx/; = yzn-1. From this
equation we find

Jpt — £ 4 alm Ty — 6Ty .
2n-1 — )
P i T o

o =y~ =0. (47)

The remaining unknowns are determined using

Y = (f.'(l) + aS')y,-_zn + bgl)yi+2')/ (aS" + bgl) + df"),

(48)
i=23.25.21 ... N2,
where l =n—-2,n—-3,...,0, yo = yv = 0. We note that (48) incorporates
(47) forl=n-1.
M

Thus, in the forward path of the reduction method we compute a;”’, b;”’,

dsl), fi(l) for ! =1,2,...,n—1 using (46), and on the reverse path we find the
desired solution using (48) for [ =n —1,n —2,...,0. Note that the method

does not require auxiliary memory, since the qua.ntltles a(l) b“) d(l) fi(l) can

be overwritten on as._zﬂl, b(l 2i-1) dEI 1), fl(l D The method requires 12N
additions, 8N multiplicatlons and 3N divisions.

The method can obviously be generalized to the case of arbitrary N, and
other types of boundary conditions.
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