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Abstract. Additive difference schemes are derived via a representation
of an operator of a time-dependent problem as a sum of operators with a
more simple structure. In doing so, transition to a new time level is per-
formed as a solution of a sequence of more simple problems. Such schemes
in various variants are employed for approximate solving complicated
time-dependent problems for PDEs. In the present work construction of
additive schemes is carried out for systems of parabolic and hyperbolic
equations of second order. As examples there are considered dynamic
problems of the elasticity theory for materials with variable properties,
dynamics problems for an incompressible fluid with a variable viscosity,
general 3D problems of magnetic field diffusion.

1 Introduction

Nowadays, various classes of additive difference schemes are developed by split-
ting the problem operator into certain components [L2IB[4l]5]. Classical exam-
ples of additive difference schemes are so called economical difference schemes
for multi-dimensional problems of mathematical physics. The simplest examples
of these economical schemes are the well-known alternating direction schemes,
locally-one-dimensional schemes etc. In this case we have additive difference
schemes where the splitting is done with respect to the separate directions.

Very often the components of the splitting operator are connected with de-
scription of differed components of the process under investigation. For instance,
in continuum mechanics the process of transport of a substance can be decom-
posed into transport due to medium motion and transport by means of diffusion.
To highlight such a peculiarity of the problem, this decomposition is referred to
as splitting with respect to physical processes.

Domain decomposition methods are in common use in constructing com-
putational algorithms for the solution of time-dependent problems for PDEs
on modern parallel computers [BJ6]. In this case, a particular processor solves
boundary value problem in a separate subdomain. The corresponding additive
difference schemes are referred to as regional-additive ones.

Numerical solution of systems of time-dependent PDEs is often required in
applications of mathematics to scientific, industrial and environmental problems.
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As a rule, the unknown variables are included into several equations, what makes
impossible to find one component independently from others. In this case, the
operator corresponding to the system can be split into more simple operators,
connected with separate components of the solution. Thus, the transition to a
new time level can be based on solving consecutively separate problems for each
of the component of the solution. Possibilities for constructing such additive
schemes are considered in the present work. Hydrodynamics problems for an
incompressible fluid with a variable viscosity and for diffusion of a magnetic
field are considered as typical examples.

2 Problem Formulation

Let us consider real grid functions y from a finite-dimensional real Hilbert space
H. In this space we have the dot product and norm (-,-), |yl = v (v,v),
respectively. For an operator D = D* > 0 we introduce Hp as space H with dot
product (y,w)p = (Dy,w) and norm ||y||p = /(Dy, y).

We will search solution u(t) € H of the Cauchy problem for the following
evolutionary equation of first order

Z—?—kAu:f(t), 0<t<T, (1)

Let us consider the simplest case of positive self-adjoint steady-state operator
A ie A# A(t) = A" > 0.

In a similar way, the Cauchy problem for the evolutionary equation of second
order is formulated. In this case we search u(t) € H from the equation

%+Au:f(t), 0<t<T, 3)
u(0) = ug, (4)
2 0) = wn. )

The following estimate, concerning stability of the solution with respect to the
initial data and to the RHS, is fulfilled for the above problem (II),() (it will
further serve us as a checkpoint in constructing difference schemes).

Lemma 1. The following estimate holds for problem (), (@)

[u(®)]] < [luoll +/Ol £ (s)llds-

In a similar way, it is possible to formulate a statement concerning stability of
the solution of problem(@]) - (@) with respect to the initial data and to the right
hand side.
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Lemma 2. The following estimate holds for problem (@) - ()

[u(@)] < lluolla + [[ur] +/0 1£(s)lds,

where )
du

dt

Our aim is to construct additive schemes for problems (@), @) and (3)) - (&D.
Assume that the operator A has an additive representation

()2 = ui+\

p
A=A A £ A () = (AY) >0, a=12....p. (6
a=1

Additive difference schemes are derived on the basis of representation (B), where
a transition from one time-level t", to the next one t"*! =" + 7 (here 7 > 0 —
time-increment), is connected with solving problems for the separate operators
A@ o =1,2,..., p. Thus, the initial problem is decomposed into p more simple
subproblems.

3 Some Classes of Additive Schemes

3.1 Schemes of Component-wise Splitting

Additive difference schemes for problems with splitting into three and more
operators (which are pair-wise non-commutative ones), are constructed on the
basis of the concept of the additive approximation. Schemes with component-
wise splitting (locally one-dimensional schemes) serve as a prototype in this case.
The following difference schemes are employed for problem (), (@), (6]

n+a/p _ ,n+(a—1)/p
— + A 0y (L= o)y T = fr ()

[e'R)

T

P
a=1,2,...,p, n=0,1,..., where f" = Z fo.
=1

a—

For o, > 0.5, the component-wise splitting scheme ([7)) is unconditionally
stable. Let us derive the corresponding a priori estimate for stability with respect
to the initial data and to the right hand side. A special representation is used
for the right hand sides f7, a =1,2,...,p:

o] * p [e]
fr=fr+fr a=12,..p, > fr=0. ()
a=1

Such a form of the right hand side is essential in the consideration of the prob-
lem for the error of the additive scheme. The following statement holds for the
component-wise splitting scheme.
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Theorem 1. For 0.5 < 0, < 2, a = 1,2,...,p and 7 > 0, the following
a priori estimate holds for the solution of the Cauchy problem for difference

equations (6), [8)

n /4

* P o
ly™ < Muoll + 7> (I fa I+ 7A@ D7 5|
0

k= a=1 B=a

3.2 Additively-Averaged Schemes

Additively-averaged schemes, based on component-wise splitting can be used
successfully on modern parallel computers. In this case the transition to a new
time level is performed as follows:

ynJrl _ yn 1
ot A oy o+ (L= 0u)y”) = 2 )

12
a=12...,p, n=0,1,..., y"+1:—2y2+1.
pa:l

The stability conditions for these schemes are the same as for standard
scheme of component-wise splitting. Similarly to Theorem 1, the following state-
ment can be proved.

Theorem 2. For o, > 0.5, a = 1,2,...,p and any 7 > 0, the following a
priori estimate holds for the solution of (@), (d)

n P * o
W < ol + 307 ( 5 1L+ proallA@ f4 ||) .
k=0

a=1

A potential advantage of the additively-averaged scheme (@) is connected with
the fact that it is possible to perform parallel evaluation of grid functions y?*!,
a=12..p.

3.3 Regularized Additive Schemes

It is convenient to construct additive schemes on the basis of the regulariza-
tion principle for the difference schemes. An example is the additive scheme
constructed by perturbing each separate operator in the additive representation
(©):

n+l _ . n p
v v —l—Z(E—I—aaTA(O‘))_lA(O‘)y" =f" n=01,... (10)

T
a=1

Theorem 3. For o, > p/2, a=1,2,...,p and any 7 > 0, the following a priori
estimate holds for the solution of equation (@), (I0)

n
k
ly™ 1< llwoll + D 7lLF* -

k=0
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The considered regularized scheme (I0) is closely connected with the above con-
sidered additively-averaged scheme. To illustrate this fact, let us introduce ficti-
tious grid unknowns y?*1, « = 1,2,...,p. These functions have no independent
sense and are used for auxiliary purposes. Let us rewrite the scheme (I0) as
follows:

yn+1 yn
Ja I +(E+ aTA(a))_lA(a)y" = fn,
pT
a=1,2,...,p, n=0,1,. Zy""‘l

Thus, we again obtain an addltlvely—averaged scheme, but in this case it
is constructed without using the concept of the additive approximation. This
scheme differs from the early presented scheme (@) in approximation of the right
hand sides.

3.4 Second-Order Equation

Certain problems arise in constructing operator-splitting schemes for evolution-
ary equations of second order. Let us discuss now some classes of regularized
additive schemes (so called full approximation schemes) for evolutionary equa-
tions of second order. The multiplicative regularization for the problem (B)) - (&)
results in the scheme

p

n+l _ 2y n—1
y LS (B4 or?A@) Ay — =12 (1)
a=1

T2

Theorem 4. The additive difference scheme (1) for the problem () — (@) is
unconditionally stable for oo > p/4, a =1,2,....p
The scheme (I can be implemented as follows:

+1_2y +yn 1

E 2A(@)
(E+oT ) o

LAy = Ly g2 a@y
p

a=12,...,p, n=1,2,.. Zy”“

Thus we obtain a special addltlvely averaged scheme.

4 Alternating Triangle Method

The alternating triangle method has been developed in [7] for solving the Cauchy
problem for linear ODEs with a symmetric matrix. It is based on splitting of
the equation matrix into two triangular matrices. A general description of the
alternating triangle method is presented below along with the discussion of pos-
sibilities for constructing new classes of additive alternating triangle schemes.
Namely, this class of additive schemes is convenient for solving boundary value
problems for systems of time-dependent equations of mathematical physics.
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4.1 General Description of the Alternating Triangle Method

Let us consider Cauchy problem ([]), ([2) with a time-independent self-adjoint
positive definite operator A. The alternating triangle method is defined by the
two-component additive splitting

A=AW 4 A® >0, (AD) = A®), (12)

Let (@), @) be the operator formulation of the Cauchy problem for the system
of linear ODEs of first order

dul(t) m B
dt + ;aijuj(t) = fi(t), t>0, (13)

ui(0) =ul, i=1,2,...,m. (14)

Here u = {uq,us, ... uy} stands for the vector of unknowns, f = {f1, fa,... fm}
— the specified vector of right hand sides, and A = {a;;} — the symmetric real
matrix with elements a;; = aj;, 4,5 =1,2,...,m.

Under the above conditions, the matrix A of the problem (I3]), (I4)) is consid-
ered as a self-adjoint linear operator in a finite-dimensional Hilbert (Euclidean)

space H = [y with dot product (y,v) = Zyivi and norm ||y|| = v/(y,y)-
i=1
For the elements of the matrices
Al = {aE?)}, a=1,2,

in correspondence with the decomposition ([I2)), we have

Qij, Z<J7 07 Z<J7
m_J)1 . @_)1 .
Y = 5 @i i =7, G T g it =J;
0, 1> 7, Qij, 1> .

Thus, the matrix A is decomposed into two triangular matrices.
The standard variant of the alternating triangle method employs the alter-
nating direction scheme by Peaceman-Rachford [8] for solving the problem (),

@, @2

n+1/2 _ ,n

) Y n n n

om AT Ay = g (15)
n+l _ ,n+1/2
Y Y n n n
T—’_A(l)y +1/2+A(2)y +1 = . (16)

Implementation of the above additive schemes is connected with the consecutive
inversion of the upper and the lower triangular matrices, what explains the name
"the alternating triangle method” for these additive schemes.



54 Alexander Samarskii and Petr Vabishchevich

4.2 Equations of First Order

Additive schemes of the alternating triangle method can be investigated in the
most complete way using results of the general theory of stability for operator-
difference schemes [29]. Let us rewrite the two-level factorized scheme of the
alternating triangle method in the canonical form

n+1 n

BY TV A=t cws (17)
T

B=(E+ocrAW)(E +07A®). (18)

The scheme (I7), (IX)) is equivalent to the scheme (IH), ([I6) when the weight
parameter ¢ equals one half: 0 = 0.5.

Theorem 5. Factorized scheme of alternating triangle method (I2), (I7), (I8)
s unconditionally stable for o > 0.5 in H 4. The following a priori estimate holds

n
Iy 15 < 103 + 5 Sl
k=0
The alternating triangle additive scheme for three-level operator-difference
schemes is constructed in a similar way. Schemes from this class are also con-
structed for problems with non-selfadjoint operators in the case of subordination
of the skew-symmetric part of the operator [5].

4.3 Equation of Second Order

In constructing additive schemes for the Cauchy problem for evolutionary equa-
tion of second order (B) - (@), the emphasize is on the additive alternating triangle
schemes.

For three-level schemes

n -2 n n—
pYntl yz“/ L Ay =, n=1,2,... (19)
T

with splitting (I2]), we define a factorized operator
D= (E+or?AV)(E + 072 A®), (20)

Theorem 6. Factorized scheme of alternating triangle method (I2), (I9), (Z0) is
unconditionally stable for o > 0.25.
This statement follows from the estimate

D=D*>E+or%A

and from the general results of the stability theory for three-level operator-
difference schemes [2].
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5 Hydrodynamics Problems for an Incompressible Fluid
with Variable Viscosity

In modeling flows of an inhomogeneous fluid, in particular, in solving hydrody-
namics problems with free boundaries, it is necessary to consider problems with
a variable viscosity. The primary peculiarities of such problems are connected
with the fact, that equations for the particular components of the velocity are
strongly coupled (through the principal derivatives). There is no such a coupling
in the problems with a constant viscosity. Let us recall, that in the constant
viscosity case, the (linearized) system of momentum equations can be naturally
decomposed and it is possible to solve independently equations for the velocity
components. The emphasis in the case of variable viscosity is on constructing
special additive schemes. They are based on splitting with respect to the physical
processes and take into account the peculiarities of the problems with variable
viscosity [10].

5.1 Problem Formulation

Let o be the density, p — the pressure, u — the velocity and p — the viscosity
of an incompressible fluid. The momentum equation has the form

0 (2—1: + (u- grad)u) + gradp = Divo + of, (21)

where o stands for the viscous stresses tensor and f stands for the volumetric
force (e.g., the buoyant force in free convection problems).

In the case of a Newtonian fluid, the viscous stresses tensor has the following
coordinate-wise representation:

o (9u2 4 a’LLj
9ij = H 6J:j sz '

In addition, for an incompressible fluid the continuity equation has the form

divu = 0. (22)

For simplicity, let us consider motion of a fluid with a constant density. Thus,
instead of 21]) we employ the equation

Ju n

ot
where the pressure, the tensor of viscous stresses and the force are normalized
by the density in such a way that, for instance,

i =1 (9u2 + 8uj
v 6J:j 6331 ’

where v = /g is the kinematic viscosity.

(u - grad)u + gradp’ = Divo’ + of’, (23)
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5.2 The 2D Problem

The detailed consideration will be conducted for planar-parallel flows. Let x =
(z1,22), v = (v1,v2), then equations [2), (23) in the coordinate-wise represen-
tation take the following form

o oo
ot o Pows o
0 87}1 0 8111 0 81}2
—— (90 — [ y= — 24
&’cl( 8x1)+8x2 (V8x2>+8 ( ax1>+f1(x RENCS
Ovy Ovy Ovy ~ Op'
[ TRl T
_ 0 8111 0 81}2 0 81}2
B 61‘1 (V61‘2> + 61‘1 (V6x1> + 8.132 <2 8.132) + f2(X t) (25)
81}1 61}2
= L= . 2
&nl 8962 0 ( 6)
Using the representation (24) - (28), it is more easy to see the coupling
between components v,, « = 1,2 in the right hand side of the momentum
equation.

5.3 Operator of Viscous Stresses

Let us define the standard Hilbert space H = Lo(f2) with the dot product and
norm

(u,v) = /Q w(xo(x)dx,  [lul = (u )2,

For the 2D vectors u, v we introduce the Hilbert space Ho = H & H with dot
product given by

(u,v) = (ug,v1) + (u2,v2).
On the set of vector functions v equal to zero on 942, we define the operator N,

Nv = —Divo.

In accordance with (24)), (B5), the operator A is nothing but the matrix

_ (N Nz
N = (N21 sz) ’
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where
0 ovy 0 Ovi
Nivg = —a—xl <2Va—x1> + 8—x2 < 8—x2)
- 8 81}2
Nigvg = _8—132 <V8—xl) )
Nopog = -2 (V%) ,
6.131 X9
9 (w9 (. dn
./\/227)2 a 6.131 <l/ .131) + 8.132 (21/8.132) '

It is easy to see that

(Nv,u) = (v,Nu),

i.e. operator N' = N* > 0 in Ha.

In constructing unconditionally stable difference schemes, it is necessary to
derive schemes where terms with viscous stresses are implicitly discretized. On
the other hand, the fully implicit treatment of this operator is not convenient due
to the above mentioned coupling of the velocity components. So, it is necessary
to select an operator that is close to N but is more convenient in computational
implementation. It is natural to take the following operator

_ Dll 0
2= (o),

0 ovy 0 oy
Diivi = _8—x1 (V3—x1> + 3—$2 (l/a—x2> ,

0 Qv 0 vz
D22U2 = _3—x1 (Va—x1> + 3—x2 (Va—x2> .

Dv = —div(vgradv).

where

Thus

It is easy to show that operators A/ and D are energy equivalent. Namely, the
following estimate holds

v(Dv,v) < (Nv,v) < 2v(Dv,v).

The facts that operator A is self-adjoint and positive definite in space Hz and,
moreover, it is energy equivalent to the Laplace operator demonstrate its most
important properties. Just these peculiarities will be preserved in constructing
of the discrete analogs of the differential operators.

For of the numerical implementation we will employ representation of the
operator matrix A as a sum of two operators:

N=ND 4 N (WD) = N, 27)
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Taking into account the expression for the operator N, we have

A N 0 N N1 Nip
Noy dNos |7 0 N )’

In using additive schemes calculations are connected with inversion of operators
E+4 otN(® o = 1,2 (without convective transport). Thus, we have the de-
composed system of equations with separate solution of elliptic boundary value
problems for particular components of the velocity.

In fact, we have two closely related possibilities. The first possibility is con-
nected with constructing difference schemes on the basis of regularizer D, the
second one - on using triangular splitting (27)). Viscous terms are split in both
cases.

5.4 Additive Difference Schemes
Differential equations 22)), ([Z3) can be written as a single equation

dv +VVH+PVv+Nv=F

dt
for solenoidal functions v € Hy (functions that satisfy condition (22)). Here V is
the convective transport operator, whereas P is the operator connected with the
pressure. The boundary and the initial conditions are treated in the standard
way.

Let us construct the simplest difference schemes for equation (21), based on
the uniform integration in time with increment 7 > 0. As the basis we consider
the scheme where the convective transport is taken from the previous time-
level. Let us derive regularized additive schemes. Unfortunately, the traditional
schemes of ADI-type are not possible here.

Using the regularizer D, we can employ the scheme

Vn+1 — v
+ V"V + (E + 017D) 'N(E + 017D) v +

+ (B + oprP) PV =1, (28)

T

The proposed scheme can be implemented in various ways. For example, it is
possible to introduce some auxiliary function v**t1/2, which is to be determined
from the equation

Vn+1/2 s
+V'V" + (B + 017D) *N(E + 017D) v = f,

T n

In such a way we calculate the transport due to the convection, due to viscosity
and due to volumetric forces.
The second stage is the calculation of the transport due to the pressure:

vn+1 _ Vn+1/2

+ (E + o27P) PV = 0.

T
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In fact, schemes of such a type are in common use. The primary peculiarity is
in calculation of the first stage. This complicated construction is necessary for
deriving a stable scheme. Implementation consists in double solution of elliptic
problem E+o¢17D. Such an increasing of the computational costs is not essential,
compare to the advantages of the scheme.

In a similar way we can design schemes with triangular decomposition (27).
For instance, an analog of scheme (28)) will be the following one

Vn+17_7_vn +(E+ 017'./\/(1))71 (N +V,) (E + alTJ\f(z))flvn +
+(E+ 0otP) Py, =f,. (29)

The advantage of scheme ([29) compare to scheme (28) consists in the fact, that
only one elliptic problem for evaluation of the velocity components is solved here
at each time-level (but this elliptic problem is slightly more complicated).

6 (Generalizations

In a similar way we can construct additive operator-difference schemes for solv-
ing the system of equation for the diffusion of a magnetic field. Induction of a
magnetic field is governed by the equation

0B 1
5 " rot (— rotB) =0. (30)

g

In the general 3D case it is no possible to formulate boundary value problems
for particular components of vector B. For equation (30) we can design additive
alternating triangular difference schemes.

Evolutionary equations of second order arise in considering dynamic prob-
lems of the elasticity theory. Some possibilities of designing additive operator-
difference schemes for this case are discussed in the work [I1].
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