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Abstract. The problem of stability of difference schemes for second-order evolution problems
is considered. Difference schemes are treated as abstract Cauchy problems for difference equations
with operator coefficients in a Banach or Hilbert space. To construct stable difference schemes
the regularization principle is employed, i.e., one starts from any simple scheme (possibly unstable)
and derives absolutely stable schemes by perturbing the operator coefficients. The main result of
this paper is the following: for the first time sufficient conditions are pointed out under which an
unstable three-level difference scheme with unbounded operator coefficients in a Banach space can
be regularized to a stable scheme. The principal stability condition is the strong P-positivity of the
unbounded operator coefficients.
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1. Introduction. Second-order differential equations with operator coefficients
are a powerful mathematical tool in the description and study of evolutionary partial
differential equations arising in various fields of applications. In the numerical solution
of evolution problems, the problem of stability of numerical methods with respect to
initial data is of great importance. Considering these methods as difference schemes
with operator coefficients provides a suitable model for stability analysis.

In this paper we consider difference schemes for the following initial value problem

du /
(1) WJrAu:O7 te(0,7], w(0)=ugy, u(0)=u,
where u : Ry — X is a vector-valued function, A is a linear, densely defined, closed
operator with domain D(A) in a Banach space X with norm || - || = || - ||lx. In
particular, (1) with the Laplace operator A = —A is the well-known wave equation.

Due to the presence of the second-order time derivative in (1), difference schemes
for the numerical solution of this problem have at least three time levels, i.e., they
involve approximate values y,, for u(t,) at three neighboring points of the time grid
Wy = {ti Zi:O71727...7t0 :Oﬂfi —ti,1 :’7'}.

There are several approaches to the study of stability of difference schemes [6,
8,9, 10, 11, 12, 14, 15, 16]. As a rule, they are based on some assumptions about
the structure of difference operators and the stability analysis is performed using the
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Fourier method or certain energy inequalities. The most general and constructive
theory of stability has been developed in [6, 9, 10, 11, 12]. In this theory a difference
scheme is presented in a canonical form with operator coefficients, and stability condi-
tions (in many cases necessary and sufficient conditions) are formulated via operator
inequalities. This theory essentially uses the techniques and tools of Hilbert spaces,
and stability estimates are given in Hilbert norms. The stability theory, together with
the regularization principle [10], provide a powerful tool to obtain stable difference
schemes. The main idea of regularization is to start from any simple scheme (even
unstable) and by perturbing its coefficients (while taking into consideration the sta-
bility conditions) obtain a stable difference scheme or a scheme with other desired
properties. All the main classes of difference schemes for the problems of mathe-
matical physics have been designed and analyzed on the basis of this approach in
[6, 9, 10, 11, 12].

Unfortunately, known stability theories do not include certain important classes
of difference schemes. For instance, there are no results concerning the stability of
three-level difference schemes with unbounded operator coefficients in a Banach space.
Such results are also important for finite difference and finite element approximations
of unbounded differential operators since the norms of these approximations tend to
infinity if the discretization parameter tends to zero.

The aim of this paper is to obtain stability results for regularized three-level differ-
ence schemes with unbounded operator coefficients in a Banach space. For example,
this class of schemes arises when approximating second-order evolution differential
equations. Note that the initial difference scheme (without regularization) can be
unstable.

We consider the following family of three-level difference schemes:

(2) (I+aA)yft,n+5Aygn+Ayn :07 n—= 1727"'7
with given o, y1, Where

_ Yn+1 = Yn ~ _ Yny1 — 2yn + Yn—1
=T 5 Yin = 5
T T

o

t,n

?

«, B are parameters, and A is a linear, densely defined, closed operator in a Banach
space X. If & = 8 = 0, then we have the explicit difference scheme for (1) which is
unstable in the case of an unbounded operator A.

The difference scheme (2) can be written down as

(o 5 ) -2 (o5 ) 4]
BT
+ {I+<a—7>A}yn107 n=12,....

In order to get an explicit formula for the solution of (3) let us consider the scalar
recurrence equation

AUyt 1 — 2bupy 4+ ctp_1 =0

with constant coefficients a, b, c. Setting u,, = r"4,, we get

~ ~ c .
Upt1 — 2—Up + —5Up—1 =0
ar ar
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and with r = Vea= 1,2 = bv/ca—! we have
ﬂn+1 — 228y, + Up—1 = 0.

This is the recurrence equation that is satisfied both by the Chebyshev polynomials
T, (z) of the first kind and by those of the second kind, U, (z) (see [13]). Since U, _;
and U,,_9 are linear independent and by definition U_,(z) = —1, U_(z) = 0, we can
write down w,, n =0,1,..., with initial values ug, u; as follows:

Uy = (Vea )" [=U,_o(z)uo + (Vea 1)U, 1 (x)uq].

Thus, denoting

i s - e Dl -2 A
sz {12 [ (- 2)4)

the solution of (3) can be obviously represented by

(4) yn = Q"(A)[-Un-2(x)y0 + @ (AUn-1()v1].

Next, we introduce two definitions which we will use in our analysis.

DEFINITION 1.1. Given a function p = p(7) and a real ¢ > 0 we say that the
scheme (2) is p-stable with respect to initial data in the domain D(A?) of the operator
A7 if there exists a constant M independent of n such that the estimate

Yo+ Y1 — Yo
(5) lynll < Mp™ (‘ — ||t Hf >
a a
holds for any yo,y1 € D(A7) with ||ull, = ||A%w]|.
Here and below we denote by M, My, ...,C,Cy, ..., ¢, cq,..., various positive con-

stants.
The strongly P-positive operators that were introduced in [4] will play a principal
role in our stability analysis. Let I' be a counterclockwise oriented path consisting of

two arcs, ' and I'_, of a parabola y? = éw , ¢g > 0 connected by a segment I', of
the line 2 = v > 0 (see Figure 1). We denote by Qp the domain lying inside of T.
Now we are in the position to give the definition of the strong P-positivity.

DEFINITION 1.2 (see [4]). We say that an operator A : D(A) € X — X is
strongly P-positive of ils spectrum Y(A) lies in the domain Qr and on T, and oulside
of I' the estimate

M
1
(6) (z—A4) lxox < T\/ﬁ

holds with a positive constant M.

Remark 1. The form of the path T' =T'(2) for a bounded z is not essential for our
analysis. What is important is the behavior of the resolvent and of ¥(A) at infinity,
i.e., that I is a parabola and the estimate (6) holds for |z| — oo.
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Fia. 1. The path T.

Ezample 1. Let us consider the one-dimensional operator A : 1,1(0,1) — L1(0,1)
with the domain D(A) = {u|u € H3(0,1)} in the Sobolev space H3(0,1) defined by

Au=—u" Yue D(A).
The eigenvalues A\, = k%72, k =1,2,..., of A lie on the real axis inside the path
F{aniim n21,
=1+, |n<1.
The Green function for the problem
(2] — Au) =/ (z) + zu(z) = —f(z), = € (0,1);u(0) =u(1) =0
is

Gl ) — 1 siny/zzsin/2(1 = §), =z <&,
© © VzEsinyz |siny/zEsinz2(1 —z), = >¢,

i.e., we have

1
a(r) = (21 — A) 1] = /O G, €) F(€)de.

In order to show that the estimate (6) holds true, it is sufficient to estimate the Green
function on the parabola z = n? & in = /0% + n%(cos ¢ & isin ¢), where

1
U sing =

772 + 17 /772 +1
Actually, we have /z = /n* + n?(cos % + isin %) = a + ib with
(ZS 772+ /774+772 . (ZS /774+772_772

COS — — Sl — —

2 V2t 2 V2

/772+ /774+772 b 774+772_772

a = =

V2 7 V2

cos ¢ =
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The following estimates hold for = < ¢ and for 5 large enough:

siny/zesiny/z(1 —€) | [sin® az + sinh? ba] 2 [sin? a(1 — €) + sinh? b(1 — €)]2

Vzsiny/z I/ + n2[sin® a + sinh? b]

C

n

<

with an absolute constant c.
The case £ < z can be considered analogously. The last estimate implies that ||(2/ —
A, < HL\/W”]U”L“ i.e., the operator A is strongly P-positive in X = L1(0,1).
The same estimates for the Green function imply the strong P-positivity of A also in
Loo(0,1).

Erample 2. This example shows that there exist important classes of the partial
differential operators which are strongly P-positive.

Let V € X C V* be a triple of Hilbert spaces and let a(., .) be a sesquilinear form
on V. Assume that

(7) la(u, v)| < Cllullv|lvlly,  [Saly, v)] < clullvllullx, vveV,
and there exist constants 6o > 0 and 6; > 0 such that
(8) Ra(u,u) > bollulli —o1llullk YueV,

where || - v, || - ||x denote the norms in V and X, respectively. The boundedness
of a(.,.) implies that one can define a bounded operator A : V — V* through the
identity

alu,v) =y+< Au,v >y, w0 €V,

where v+ < - >y denotes the duality relation between V' and its adjoint space V* of
linear functionals on V. As an example one can consider the following sesquilinear
form [1]:

alu v):/ zd: a (x)@@Jrzd:a (x)@ﬁJr a(z)uT | dx
7 2\, PR 9z Oz = PN B

with sufficiently smooth real coefficients apq(z) defined in a bounded Lipschitz domain
Q C R?, which corresponds to the elliptic partial differential operator A defined by

D(A) = {u e HX(Q) ﬁl(g)} 7

L9 du : du
Au = Z a_xp (apq(x)a—xq> + Zap(x)a—xp + al(z)u.
p,q=1 p=1

This operator, considered from Lo(Q) into Lo(€2), is unbounded. Supposing that

d
Z ApqTipTlq

p,q=1
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is positive definite and a,(z) are bounded, one can show that the inequalities (7), (8)
hold with V = H'(Q), X = L?(Q) (see [1]). For strongly elliptic operators (8) is the
well-known Garding’s inequality.

The assumptions (7), (8) guarantee that the numerical range {a(w,u)| ||u|x = 1}
of A (and the spectrum) lies inside of a parabola determined by the constants &g, 61, ¢.
Actually, if a(u, u) = £+ in, then we get

€ = Ra(u,u) > 6Ny — & > g2 — 6y,
(9) Inl = |Sa(u, u)| < cy/ Ny,

where Ny = |Jull? > ¢, ?||u||% and c. is the imbedding constant. It implies

1
€> 60, =61 =69, Ny < 6—(§+51)7
0

5
(10) o] < ey) S0
o
80,2

i.e., the numerical range (and the spectrum) lies inside of the parabola & = $§7° — 6;.
It is easy to see that the assumption & 3X(A4) > v; > 49 > 0 provides the existence of

other parabola I' = {2 = (£,1) : £ = an’ + b} with the parameters a = % >
0,b € (0,7v0) which envelop the numerical range of A (compare with [1]). The proof
of the estimate (6) is completely analogous to that in [4]. Note that the condition
8y > 0 is sufficient for R X(A) > 0.

The strongly elliptic partial differential operators with 3 »(A) > 0 are important
examples of both strongly P-positive and strongly positive operators (also sectorial
operators or infinitesimal generators of holomorphic semigroups). The framework of
the strong P-positivity is important for studying cosine families of operators related to
(1) (see, e.g., [5, 3]). It was shown in [4] that the strong positiveness of the operator A
provides some algorithmic representations of a cosine family generated by A as well as
the existence, stability, and approximation results for (1) in the case when the initial
data belong to the domain of some fractional power of the operator A. Contrary to
the known necessary and sufficient conditions under which an operator A generates a
cosine family [5, 7] our condition is easier to prove.

In the next section we will show that the strong P-positivity of the unbounded
operator A is one of the sufficient conditions for the p-stability of the regularized
scheme (2), whereas the explicit scheme (2) with o = 3 = 0 is unstable.

2. Stability of three-level difference schemes with strongly P-positive
operator coeflicients. For the sake of simplicity we set in (2)

2
-
B=r, ozfg.

In this case the scheme (2) takes the form

,7_2
(11) <I+ 714) ygtJrTAyquAy:O
or
(12) [I+7—2A]yn+1 _2yn+yn71 :07 n = 1727"'7

and the operators x, Q are given by x(A) = Q(A) = [I + 72A4] /2.
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The next theorem represents the first main result of this paper.
THEOREM 2.1. Let A be a strongly P- positive opemtor with the domain D(A) hav-

ing a spectrum Y(A) placed inside of a parabola y* Ox cp = const > 0, RY(A) > ~,

T < \/5051. Then the difference scheme (2) with 8 =7, a = %2,
spect to indtial data in D(A7) with p= (1 — %)71/2.
Proof. Using the Dunford—-Cauchy integral we represent the solution of (12) as

follows:

is p-stable with re-

(13) =5 | —Q"(2)Up—a(x(2))(z — A) " dzyy

L KO LA CET

or, in view of the elementary relations

7yo+y1+yo—y1 _ Yty Yo—y

Yo — 9 9 P Y1 = 9 9 P

we get
1
(14) =g [ HOEE = A) sl )
1= [ OGN = A e =),

where
(15) F£790) = Q@ (2 Un—1(x) — Q(2)Un—2(x)],

F7(2) = Q" (@) Ua-100 + Q) Un—2(0))-

Taking into account the form of the path T" we can transform the integrals in (14)
as follows (we use the notations z = = + iy = = +ico\/5, 2 = = — zco\/g dz =

(1 + ico/(2v/2z))dzx, dz = (1 — ico/(2y/2x))dx):
I = /f(i A)ds

= Ve -7 = 0 - ) s

T E (55— A1 — fE s _ 4115
A[n()( A = 9= A

€0

8\/§7T

1 [oVE . . - 1 [oVE . . -
-1 FE (v +iy)(y + iy — A) 1dy——/ FE(y—iy)(y — iy — A) "y
i 4 Jy
=5 | I e S [ ARG - ) - A e
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. oo 2 . o0
4 cof / Im (9 (z)(z — A) 1L _ & / FE e = Az - A) e
Y Y

42 N
. co/Z
- \/—(i) ; i — AV Ly — iy — AV Ld
to- v tiyly +iy — A (v —iy — A) " dy
0
Co\/g
(16) o [T R i)y — iy — A) My,
0

In what follows we will use the relations

Un—1(x) = Q(x)Un—2(x)

= Un—1(x) = xUn—2(x) = Th—1(x)

= 2O VDT (- VAT
Un—1(x) + Q(x)Un—2(x)

= Un—1(x) + xUn—2(x) = #

X [2x + VX2 =D+ V2 = 1" = (20 = V2 = Dix = V2 =)',
(17) Un—1(x) = xUn—2(x)| < [2()]",

no 12X VP 1 20— Vi —

|Un—1(x) + xUn—2(x)| < [2(x)]

lVx? =1
with
(18) (x) = max{|x + vx? = 1|, Ix = vx* = 1[},

where T}, (x) are Chebyshev polynomials of the first kind [13].
It follows from (14)—(18) that

lymll < C{

2

o] @ Co\/_
/ n(zr)der/ ’ D, (2y)dy
¥ |ZF|U 0

Yo+ Y1
AO'
a2

O, (2P (2 /3 —
(19)  + / (2r) 571)( F)der/ D, (2,)P(1) (21 )dy Ao YL Yo 7
¥ |ZF| 0 2
where
. x .
2r — X + e 5 Zy =y + 1y,

(20) P (2) = [Pe(2)[@(x(2))]"
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max {[2x(2) + vx*(2) — 1] [2x(2) = VX*(2) — 1}

[Vx*(2) =1

(I’(1)(Z) =
First of all we have to estimate
(21) (IO (=) = max {1+ imy/Z[ L 1 — ir 371}
Let 2 =2 +iy = pe?, 2 > 0,y € (—o0,00), p= \/gﬁyz7 cosf = %7 sinf = %; then

4= ()2 = 1 ir /3R = [ ir(a® ) e/

1/4 1/2 ...2

0 0
= Fr?+4%) sin§]2+72(x2+y2) cos” 5

0
= [LF2r(” +¢*)/*sin St 22?4+ )2
Since the angle 6 lies in the first or fourth quadrant, we have
4 y 1

sin— =

2 VTP V2 )

and

|Qi(2)|72 :1:|:\/§7'+ +72($2+y2)1/2,

We see that for z = zp

2
v/ + 7% (z? +C%$/2)1/2 >1 _r L

\/x+\/x2+c%x/2 V2

(22)  gi(2)] 2 =1%V2r

and for z = zr

2
lgs(2)| 2 = 12 vV2r =L 12 )Y 21— V2r v/
TV Y \/7+\/72+C%v/2
(&)
23 >1—7—,
(23) > 7

0 <y <epv/v/2, Tgx/i/co.

Next, we consider ®(1)(z) for z = 2p and z = z,. It is easy to see that

1 2 . 2 X
(24) @(1)(2) = ;max{‘ﬁ + o7 s ﬁ — T }7

1 2 112
. SRRDTY NS Y O
(25) m(zr) T[ 22 + 3z /2 T LY
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2
NN

Now we are in the position to estimate ||y, ||. Taking into account (19)—(25) we get

(26) ¢aﬂ%)§%[ T

1[2 }
<—|=-+T7].
T LY

coT e Yo+ Y1 — %o
97 Wl <el1= 2L G900
o wse(-G) (] )
where 0 > 0, ||u|l, = ||A%u||. The proof is complete. o
Remark 2. From the stability estimate one gets
corn (Yo + Y1 Yo+ — %o
ol £ €3 (T2, 4 R0, ) = 0 (R, 4 2, ),

i.e., the stability constant increases exponentially with respect to the length of the
time interval T' = n7.
Remark 3. The explicit scheme (2) with a = 8 =0, i.e.,

yg + Ay =0

or in the index form
72
Yn+1 — 2 |:I - 7A:| Yn + Yn—1 = 07

is unstable if A is an unbounded operator in a Banach space E.
Actually, choosing ¢y = 0 we get

72
922{1—714} Y1

Since A is unbounded there exists ygk) with ||y§k)|| = 1 such that ||({ — 72—2A)y§k)|| >k
for any arbitrarily large k. Thus, the estimate (5) cannot be valid for all 4o, y1, i.e.,
the scheme is not stable with respect to the initial data.

Note that the scheme (12) related to the differential equation (1) is of the first
order of approximation with respect to 7, whereas the unstable explicit scheme is of
the second order. The following regularized difference scheme,

2
(28) <I+ %A) Yot + Ay =0, m =12,

with given yo, y1 is a special case of (2) for 3 =0, a = %2 This scheme has the
second order of approximation with respect to 7. It can also be interpreted as the
regularized explicit scheme. The next main result of the paper deals with the stability
of this scheme.

THEOREM 2.2. Let A be strongly P-positive with a spectrum Y.(A) inside the
parabola y> = c3x/2 and B = 0, a = é, T < 2v2c5t, RU(A) > . Then the
difference scheme (2) is p-stable with respect to initial data in D(A%), ¢ > 0 with
p= 1+ 4 S)h,

Proof. In the case under consideration we have

QUA) =1, x(A)= {I+§A}l.
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Similar to the proof of Theorem 2.1 we have to estimate

RO P gy <lii7\/§\/2+§z>/<l+§z>7

VD) (= VAR
V2V ET] '

Q" (x(2))]

|Un71(X) + Un72(X)|

. 2
Assume that z = pe’® lies on the positive arc of the parabola. Then p? = 2 + %0957

cos ¢ = % >0, sing =

co

V2

: > 0. Setting 2 + éz = p1€'%1 we have

4 271/2 4 2 1/2
p1= |44 27%pcos ¢ + %} = {4+2¢2x+ TI <x2 + %x)} ,

2
2+ L-pcos . sin
R4 ¢>07 177P ]

cosfy =
p1 2p1

2
1+ V27 (pp1)'/? sin 252 + T pp,
X+ V=1 = 2
| | 1+72pcos¢+%

It is easy to see that 25 € [0, Z] and

o+ 0 1 — cos(¢ + 1)
sin—5— =/ 5

1/2
[ C 24 épCOSQS n coy/x T2 psin ¢
p Pt V2p  2p

72 2zr21Y? 2
|X+VX2—1|2{1+T{pp1—x<2+—x>+0 } + = pp1

2 4 2

™y’ lopr — (2 + ) + BE2)12
{IJFTZQCJFT}IJFT 2 4

1+7’2x+%

1 72p2
2PPL — X —
7—222—74;12 =1+ rpa(x) + 72ps ().
1+’7’ ZC+T

(29) +
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Let us estimate the functions (), po(x). We represent

(z) = 2+C% 4+22+74 2+C%
pi(z) = T 235 Tz 1 T 235
) ) 9y 1/2
)T e
where

4 2 2 4 2 1/2
Aq(z) = {1 N T <x2 + 3035)} {(xz + 3035) (4 +2r%x + vy <x2 + 30x>>}

1/2 12
2 2.2 4,2
+x<2+7—x—co7—>> Z<1+72x+%> (42)1/?

2 4

and get

= { (24 o) wrartn - (24 5o (2- 33)
(30)

’7—2 2 1/2 ’7—4 1/2 C
—? <2 — 703) } /A1($) = {2C%x (sz +7—2x+ 1)} /Al(i) < —02

Setting
4 2 2 \1/2
_ 2 T (.2, % Lf,, ¢
A2($)|:1+’7' x+4 (x +2x>} {2<x +2x> {4+
4 2 1/2 2 2
272x+%<x2+c—20x>} +x+%<x2+%x>}22x
we have

provided that

(32) 2——c>0.
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Now, it follows from (29), (30) that
2 2

coT T
33 /-1 <1 =+ 2.
(33) Ix+vx? — 1] 5

Finally, we must estimate |14 x|~/ on I', . It is easy to see that

2 2 7?2 2 2
1ol = 24+ 5z B 2+ Lx) + Tz
1+§z (1+72—2x)+§c%x -
2

74 z 74

34 1 —v]? = -
(54) X =T | = e

x2+§x
MS(x): 72 T4 9

(1+ Za)? + Tcda

Since

7—2 2 7—4 2 ?
<1 + 728) + gcox >0

4
ph(x) = {(7'2 - %c%) 2§ 2+ c%}/

provided that (30) holds true, we obtain

2
.
(35) I1—x]” > T H3(7)-

Following the idea of the proof of Theorem 2.1 and taking into account the estimates
(32)—(35) we arrive at the statement of Theorem 2.2. o

Remark 4. One can see from the conditions 7 < v/2¢y ! for the scheme (12) and
T < 2\/505 ! for the scheme (28) that the opening of the parabola determines the
upper limit of the time-step 7 for which these schemes are p-stable.

Let us consider the following inhomogeneous difference scheme:

(36) U+ ad)ypen + B4y, + Ayn = fo,  n=12.,

yo=y1 = 0.

Below we define a type of stability that plays an important role for inhomogeneous
problems.

DEFINITION 2.3. Given a function p(T) we say that the scheme (36) is p-stable
with respect to the right-hand side in D(A7) with some real o > 0 if there exists a
constant M > 0 independent of n such that the estimate

n—1

lomll < Mp™ Y 7l oo

p=0

holds for any discrete function f, € D(A7).
The solution of (36) can be represented as

el A o))
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S0 () -5

Using the inequality

Q)P (x(2)"
11 —x*(2)]
the estimates (22), (24), (25), (32), (33), (34), and following the idea of the proof of

Theorems 2.1 and 2.2 we get the following statement.
THEOREM 2.4. Under assumptions of Theorem 2.1 (o = 7—2275 = 7) or Theorem

Q" () Ui-1(x(2))] <

?

22 (=0, = 72—2) the corresponding difference schemes from the family (36) are
p-stable with respect to the right-hand side in D(A%) with p(T) = (1 — %)71/2 and

2_2
CoT

plr)=(1+ % + )2, respectively.
Erample 3. In some sense, this example shows the sharpness of our results.
Indeed, let us consider the scalar problem

d2
WngAu:O? te (0,7,

u(0) = ug, ' (0) = iV Aug,
where A = z — ico\/g can be viewed for £ — o0 as an “unbounded” strongly P-

positive operator with the spectrum inside the parabola y? = (¢ + £)?z/2 with an
arbitrarily small positive . The solution of the problem is the function

. . x
u(x,t) = exp{ i x—zcoﬁ/at ug
= exp {z’f/xz + c%% (icosg — sin %) t} uo,

x . o/ 5
>0, sing=-———-—<0.

et 22+ 3%

where

cos p =

It is easy to see that

lu(z, )] = pal, t)|uol

with
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t=0.2*sqrt(2)/cO t=1.9* sqrt(2)/cO

o 0.1 0.2 0.3 0.4 o 0.1 0.2 0.3 04

Fia. 2. Solution of scheme (28): the sufficient stability condition is fulfilled.

pa(z,t) = exp ] {fz? +c%g

7z

= exp L e
V2 °2

For the solution of the corresponding difference scheme (28) Theorem 2.2 provides
the estimate

[ym ()] = ly(z, n7)| < cp™(7)|uol

2.2
with p(7) = (1 + (COE)T + (60+Z) T
xr — o0

)%. In particular we have for a fixed ¢ = n7 and

fuoo, 0] = lim_[u(a, )] = pa(oo, t)fun),

ly(1)] < ep(7)7 |uol,

cot

where pg(00,t) = limy_, o pa(z,t) = exp N It is easy to check that

. P (co+e)T (CoJrE)QTT% {(co+£)t}
lim p(t) = lim |1+ + =exp{ ——— ;,
THOp( ) 7—0 \/5 4 P 2\/§

i.e., the parabola containing the spectrum of A defines the behavior of the difference
solution asymptotically in ¢ in exactly the same way as the exact solution.
Ezample 4. Let us consider the difference scheme (28) with A as in Example 3

for x = 10%,¢p = 10%,99 = 1,41 = 1 + 7i gc—ico\/g7 and n = 1,2,...,100. One
can see that the absolute value of the solution as function of ¢ computed by (28) is
stable when the sufficient stability condition 7 < 2v/2/¢o holds (Figure 2). The next
figure shows that the instability can occur if the condition 7 < 2v/2/¢; is violated (see
Figure 3).
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T=5*sqrt(2)/c0

18 18
I

T=7" sqrt(2)/cO

Fia. 3. Solution of scheme (28): the sufficient stability condition is violated.
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