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ADDITIVE DIFFERENCE SCHEMES AND ITERATION METHODS 
FOR PROBLEMS OF MATHEMATICAL PHYSICS

A . A . Sam arskii and P. N . V abishchevich  UDC 518:517.944/947

We construct additive difference schemes for first-order differential-operator equations. The exposition 
is based on the general theory of stability for operator-difference schemes in lattice Hilbert spaces. The 
main focus is on the case of additive decomposition with an arbitrary number of mutually noncommuting 
operator terms. Additive schemes for second-order evolution equations are considered in the same way. 
Bibliography: 9 titles.

1. I n t r o d u c t i o n

In finding an approximate solution o f initial-condition boundary-value problems, a great deal o f atten
tion is paid to constructing additive schemes [1, 2]. A  transition to a chain of simpler problems allows one 
to construct more economical difference schemes, separated with respect to the spatial variable. In some 
cases, it is useful to separate subproblems that have a different nature, according to the physical nature of 
the process. Recently (see, for example, [3, 4]), there has been an active discussion about regional-additive 
schemes (the region-decomposition schemes) that are aimed at the construction of computational algorithms 
for parallel computers.

Here we construct additive difference schemes for first-order differential-operator equations. The ex
position is based on the general theory of stability for operator-difference schemes in lattice Hilbert spaces 
[1]. Our main focus is on the case of additive decomposition with an arbitrary number o f mutually non
commuting operator terms. Additive schemes for second-order evolution equations are treated in the same 
way. O f special interest is the general principle of constructing schemes o f a given quality, the principle of 
difference-scheme regularization.

The theory o f iteration methods for finding an approximate solution o f problems of mathematical 
physics is interpreted as a part of the general theory o f stability o f operator-difference schemes [1]. Using 
additive schemes, one constructs new classes o f iteration methods aimed at applications in parallel com
puters. In [5], a sufficiently general class of cluster aggregating iteration methods is considered. This class 
includes, in particular, multiplicative (scalar, synchronous) and additive (parallel, asynchronous) versions 
of the Schwartz iteration method. We show that there is a close connection between the considered class 
of cluster aggregating iteration methods and componentwise decomposition schemes.

It became possible to consider new versions of multicomponent decomposition iteration methods with 
a sequential and parallel organization of the calculation process. For a multicomponent decomposition 
without the condition that the operators pairwise commute, it is possible to get a speed increase along the 
adjoint gradients.

2. A d d i t i v e  s c h e m e s

We consider the Cauchy problem for a first-order evolution equation in a lattice real Hilbert space H  
obtained after the discretization of the space, when finding a solution o f the initial-condition boundary-value
problem for a parabolic equation. We look for a function y (t ) G H  satisfying the equation

^Г +  Л y =  f ( t ) ,  0 < t < T ,  (1)

and the initial condition
y ( 0 ) = u o. (2)
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W e assume that, for the operator Л >  0, there exists the following additive representation:

p
Л =  ^ Л а ,  Ла >  0, a  =  1(1)p. (3)

a —  1

Additive difference schemes are constructed on the basis of representation (3). Here, the transition from 
one time layer tn to another one, tn+1 =  tn +  т, is related to solving the problems for separate operators Л а , 
a  =  1(1)p, in the additive decomposition (3), that is, the problem is decomposed into p subproblems.

Examples o f additive schemes are given by classical componentwise decomposition schemes (locally 
one-dimensional schemes) [1, 2]. Keeping in mind applications to modern parallel computers, special con
sideration should be paid to additive-averaging componentwise decompositions [2, 6]. Such schemes were 
constructed not only for the first-order evolution equation but for second-order equations, too [7]. Vector 
additive difference schemes are used [8, 9] for a broad class o f nonstationary problems. One can also note 
that there are new possibilities for obtaining unconditionally stable factored schemes.

3. I n t e g r a l  a p p r o x i m a t i o n  s c h e m e s

Additive difference schemes for problems with a decomposition into three or more mutually noncom
muting operators are traditionally constructed using the notion of integral approximation, a componentwise 
decomposition scheme (locally one-dimensional schemes) [1, 2]. For problem (1 )- (3 ), we have

yn+a/p _  yn+(a-1) /p , .
У ------------- +  К  (<7Уп+а/р +  (1 -  a )yn+^ / p)  =  (4)

a  =  1(1)p, n =  0,1 , . . . ,

where n
n

/ j J а '
а = 1

It is well known that the componentwise decomposition scheme (4) is unconditionally stable for a >
Keeping in mind a realization on modern parallel computers, we should mention the additive-averaging 

schemes [2, 6, 7]:

yn+ 1 _  yn
^ -------- U-  +  h«(ayZ+1 +  (1 -  tr)yn) =  / J ,  (5)

т
a  =  1(1)p, n =  0,1 , . . . ,

1 p 

P а=1

Stability conditions for such schemes are the same as in the standard componentwise decomposition 
schemes (4). A  fundamental advantage of the additive-averaging schemes (5) is connected with the fact 
that the grid functions yÔ 1, a  =  1(1)p, admit a parallel organization of calculation.

4. F a c t o r e d  s c h e m e s

For a two-component decomposition (p =  2 in representation (3 )), different versions of factored schemes 
(variable direction schemes, alternately-triangular schemes) are used [1]. Let us briefly discuss the possi
bility o f constructing multicomponent factored schemes.

The difference scheme is written in a canonical form,

yn+ 1 _  yn
B - ---------—  +  A yn =  f n , (6)

т
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with A  =  Л. For a multicomponent decomposition, the standard form of the factored scheme becomes

p
B  =  Ц ( Е  +  a r  Л а).

a=1

For a general case o f mutually noncommuting nonnegative operators Л а , a  =  1(1)p, we cannot guarantee 
that the operator B  is self-adjoint and positive.

One can use the following double multiplicative representation of the operator B:

p 1

B  =  П (E  +  a r Л а) Д (Е  +  a r Л } ), B  =  B * >  0. (7)
а=1 в=Р

Using results o f the general theory o f stability, one easily obtains that the factored scheme (6), (7) is 
unconditionally stable if a >

5. V e c t o r  a d d i t i v e  s c h e m e s

According to [8, 9], define a vector Y  =  (y1,y2, - - -  ,yp) such that each of its components is found by 
solving the system

%  +  =  f ( t ) ,  (8)
в=1

ya (0) =  uo, a  =  1(1)p.

An arbitrary component o f the vector Y ( t )  can be chosen as a solution of the initial problem (1), (2). 
Then one can construct various schemes for system (8). Let us give a representative example of a 

vector additive scheme. The scheme of complete approximation,

yn+1_  yn p
( e  +  . t t A J  ^ ^  +  £  Лда:; =  / » ,  

r  e=1

a  =  1(1)p, n =  0,1 , . . . ,  is unconditionally stable if a >  p/2. To approximate system (8), one constructs 
schemes of higher accuracy, additive schemes for second-order evolution equations, etc.

6. R e g u l a r i z e d  a d d i t i v e  s c h e m e s

To construct additive schemes, one can use a general constructive principle for regularizing difference 
schemes [1]. We give a brief illustration using the example of problem (1 )- (3 ). As a primary scheme, we 
take the simplest explicit scheme:

yn+1_  yn p
1-------- ---- +  T  K y n =  /"•

r  a=1

It can be written in canonical form (6) with the operators

p
B  =  E , A  =  У Л а ■

а=1

The additive schemes are constructed by perturbing every operator term in the additive representation (3):

p
B  =  E , A  = J ] ( E  +  a r  Л а ) -1Л а . (9)

a=1
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Scheme (6),(9) is unconditionally stable for a >  p/2 .

One can take the parallel realization of scheme (6), (9):

yn+ 1 _ yn
^ ------- y—  +  (E  +  err А а) ~ г A ayn =  f2 ,

т

a  =  l ( l )p ,  n =  0,1 , . . . ,

1 p
v"+1 = -Ev«+1’

p a=1

This gets us back to an additive-averaging scheme that now is constructed without a use o f integral ap
proximation.
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