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INTRODUCTION 

Standard schemes of second-order approximation with respect to the space ~r for the 
boundary value problem for the transport equation in a rectangle were considered in [1]. 
Three forms of the transport equation, namely, divergent, nondivergent, and symmetric, were. 
extracted. The stability of two- and three-layer finite-difference schemes with standard space ap- 
proximations by third-order central differences in the corresponding grid spaces were investigated 
in [2, 3] on the basis of the general stability theory of operator-difference schemes. 

In the applied mathematical modeling of problems in continuum mechanics, great attention is 
paid to the monotonicity of finite-difference approximations [2], which is related to the validity of the 
maximum principle for a finite-difference solution. The development of monotone finite-difference 
approximations is traditionally aimed at the approximation of convective terms by directed differ- 
ences. In the second part of the paper, we study the stability of schemes with directed differences 
for nonstationary transport problems with the use of convective transport operators in divergent 
and nondivergent forms. We derive a priori estimates in Banach spaces of grid functions. 

THE MAXIMUM PRINCIPLE AND a priori ESTIMATES 
FOR THE DIFFERENTIAL PROBLEM 

We restrict our consideration to the sample problem for a two-dimensional transport equation 
in a rectangle. We rewrite it in the form of the Cauchy problem for the evolution equation: 

d u / d t + ~ u = O ,  ~ =  ~(t) ,  t > 0 ,  (1) 
u(0) = u0. (2) 

We subject the velocity field v -- (Vl, v2) to the conditions 

(v.  n) = 0, x e c912, t > 0, (3) 

where n is the normal to the boundary of the domain. Under conditions (3) on the velocity field, 
no boundary conditions are needed for extracting a unique solution of problem (1), (2). We consider 
two classes of problems, in which the convective transport is written out in the nondivergent and 
divergent forms. In the first case, the convective transport operator is represented in the form 

= ~ ,  where 
2 

<u = ~ v~(x,t)Ou/Ox~. (4) 

For the divergent transport equation in (1), we have ~ = ~ ,  where 

2 

a ~axe. (5) 

The maximum principle [1] holds for transport equations in the divergent and nondivergent 
forms (4) and (5); namely, if the initial conditions are nonnegative, then the solution is nonnegative 
at any time t > 0. We also present related a priori estimates for the solution of problems (1), (2), (4) 
and (1), (2), (5). 
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For the transport equation in the divergent form (1), (5), we have the following estimate for the 
stability with respect to initial data in Ll(gt): 

Ilu(x,t)lll _< Iluo(x)lll, (6) 

where Ilglll = fn Ig(x)ldx is the norm in the space LI(~). 
The corresponding estimate in L~(f~) for the nondivergent equation (1), (4) has the form 

Ilu(x,t)ll~ ~ Iluo(x)ll~, (7) 

where  Ilgll~ = m ~ x x ~  Ig(x)l .  
When constructing discrete analogs of problems (1), (2), (4) and (1), (2), (5), we keep track 

of the validity of the maximum principle on the finite-difference level and the validity of stability 
estimates like (6) and (7). 

THE CAUCHY PROBLEM FOR A SYSTEM OF ODE 

Let us firstly consider the homogeneous system of linear ordinary first-order equations 

dw4 + ~ a4j(t)wj = O, i = 1,...  N. (8) 
dt j = l  

Setting w = w(t) = {Wl, w2,. . . ,  w~} and A = [a,j], we rewrite this system in the matrix (operator) 
f o r l I l  

dw/dt + A(t)w = 0. (9) 

We construct finite-difference schemes for the approximate solution of the Cauchy problem in which 
relation (9) is considered for t > 0 under the initial conditions 

w(0) =Uo. (10) 

We are interested in the stability of the finite-difference solution of problem (9), (10) in L~ 
and L1. For the norm of a'vector and the induced matrix norm in L~, we have [4] 

Ilwll~ = max Iw41, 
I < i < N  

I IAII~= m a x  ~ 1 % 1 .  (11) 
l < i < N  

j = l  

Likewise, in L1, we obtain 

N n 

Ilwlll = ~ Iw41 IIAII1 = max E ]a4jl. (12) 
' I~j~_N 

4=1 4=1 

Problem (9), (10) is considered under the following restriction. We assume that the diagonal 
entries of A are nonnegative and either the nonstrict diagonal dominance takes place in rows, i.e., 

N 

a4i >_ ~ la4jl, i =  l , . . . , N ,  (13) 
4# j= l  

or the nonstrict diagonal dominance takes place in columns, i.e., 

N 

a33> ~ lai31,  j - - 1 , . . . , N .  (14) 
j#i=1 

In the theory of finite-difference schemes [2, 3], stability estimates in L~ are often derived 
from the maximum principle and related comparison theorems. Here we obtain sufficient stability 
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FINITE-DIFFERENCE APPROXIMATIONS TO THE TRANSPORT EQUATION 1071 

conditions with the use of the notion of the logarithmic norm [5, 6] of an operator. This permits 
one to consider stability in L~ and L~ from a common viewpoint (see also [7, 8]). 

The logarithmic norm of a matrix A is defined as the number 

it[A] = lim lIE + 5All - 1 
5-*0+ (~ 

For the logarithmic matrix norm in L~ [coordinated with (11)] and in L1 [coordinated with (12)], 
we have the expressions (N)  

It~[A] = max aii+ ~ I%1 
I < i < N  

i # j= l  

By virtue of (13) and (14), in the Cauchy problem (9), (10) for the logarithmic norm of the 
matrix -A ,  we have 

#I-A] < 0 (15) 

in the corresponding space [namely, in Lo~ in case (13) and in L1 in case (14)]. 
Of the properties of the logarithmic norm (see [5, 9]), we note the following: 
(1) It[cA] = cIt[A], c = const >_ 0; 
(2) It[cE + A] = c + It[A], c = const; 
(3) IIAwll > max{-It[-A],-It[Al}liwll.  
Of special interest is property (3), which permits one to derive a lower bound for IIAwli readily 

evaluated on the basis of the matrix entries. This estimate can be combined with the ordinary 
upper bound for the norm of Aw: ]]Awll < IIAllllwll. 

Applying the logarithmic norm to (9), we obtain [5, 6] dilwll/dt < It[-A] ]]wit , which, together 
with property (15), implies the stability estimate 

[Iw(t)ll ___ Iluoll (16) 

for the solution of the Cauchy problem (9), (10) in L~ or L~. 

WEIGHTED SCHEMES 

Let us investigate the stability of finite-difference schemes for problem (9), (10). Let us consider 
the simplest weighted two-layer finite-difference scheme 

(Yn+l - -  Y~) / r  + A (ay~+l + (1 - a)y=) = 0, (17) 

where, for example, A = A (atn+l + (1 - a)t=), under the initial condition 

Y0 = u0. (18) 

Let us state the stability conditions for the finite-difference schemes (17), (18). Let us show 
that, for the Cauchy problem (9), (10) with matrix A satisfying condition (13) [respectively, (14)], 
the weighted finite-difference scheme (17), (18) is unconditionally stable for cr = 1 and condition- 
ally stable for 0 g a < 1 in Loo (respectively, L1) provided that 

r < ( 1 - a ) - ~  ( -  ~<~<N maxaii~-I  ] 

Furthermore, the finite-difference solution satisfies the a priori estimate 

iiyn+lii < liu011. 

It follows from (17) that (E + aTA)yn+~ = (E - (1 - a)TA)y,~, and consequently, 

II(E +,TTA)yn+lll <_ I I ( E - ( 1 - a ) r A ) y n l l .  

(19) 

(20) 

(21) 
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By virtue of the above-mentioned properties of the logarithmic norm and relation (15), for the 
left-hand side of inequality (21), we have 

II(E ~- 6TA)yn.lll ~_ - # [ - E  - aTA] IlYn+lll : (1 + ~T#[--A])IlY~*III ~-- IlYn+lll " 

For the right-hand side of (21), we obtain I I ( E -  (1 -a )TA)y~l  I < l i E -  (1 -a)TAII  IlY~II. 
Let us consider this estimate in detail for the stability analysis in L~.  The case of L1 can 

be considered in .a similar way. Taking into account relation (11) and the diagonal dominance 
condition (13), we obtain 

HE - (1 - a)TA]] = 

< 

_< 

max 1 - - ( 1 - - a ) T  aii+ ~ aij 
I_<~_<N 

i # j  ----- 1 

max I1 - (1 - a)Ta~il + (1 -- a)T ~ la~l 
l < i < N  

- - i ~ j = l  

max (11 - (1 - a)Ta~,l + (1 - a)Ta,,) < 1 
I < i < N  

for 0 < a < 1 provided that the time increment satisfies condition (19). The substitution into (21) 
yields IlYn+lll -< IlYnll, whence we immediately have the desired estimate (20) for stability with 
respect to the initial data. 

Let us apply this result to the stability analysis of finite-difference schemes for nonstationary 
transport equations in nondivergent and divergent forms. 

SCHEMES WITH DIRECTED DIFFERENCES FOR TRANSPORT EQUATIONS 

Unconditionally stable (in L~  and L1) finite-difference schemes for the transport equations in 
nondivergent and divergent forms can be constructed on the basis of the simplest approximations 
of transport operators by first-order directed differences. 

We use the following notation: g(x) = g+(x) + g_(x), g+(x) = 0.5(g(x) + Ig(x)l) > O, and 
g_(x) = 0.5(g(x) - Ig(x) l )  < O. Let us start from approximations on the basis of the definition of 
velocity fields at nodes of the grid ~. In the problems with the no-flow condition (3), approximations 
on the boundary are constructed with regard to the sign of the normal component of the velocity in 
boundary-adjacent nodes. For the finite-difference transport operator in nondivergent form, we set 

2 

e l  = Z C[a)' C[~)Y = { b(+~)Y~~ + b(-~)Yx" if ha _< xa _< l~ - ha, a = 1,2. (22) 
~=1 0 if x ~ = 0 ,  x ~ = l ~ ,  

Likewise (see [1]), for the approximation of the transport operator in the divergent form, we can 
set 

~ -  Y)x. if x ~ = 0 ,  

/b(a) = ' = + [ -  Y)xo if h ~ < x ~ < l ~ - h ~ ,  a = 1 , 2 .  (23) c2 ~ ci )y 

i f  x ~  l ~ ,  ~=1 b(+~)y)~ ~ 

In general, the finite-difference operator C2 does not approximate the differential transport operator 
in the divergent form at the boundary nodes, but the truncation error is O(Ihl) in the class of 
problems with condition (3). 

The above finite-difference operators of convective transport are approximated on the standard 
five-point "cross" stencil. Let us introduce the diagonal dominance conditions in this case. We set 

Dy = "/(x, t)y(x, t) - a l  (x, t)y (xl - hi, x2) - ~1 (x, t)y (Xl + hi, x2) 

- a2(x, t)y (Xl, x2 - h2) - ~2(x, t)y (Xl, x2 + h2), x E ~. 
(24) 

We assume that the corresponding coefficients c~1, a2, ~1, and f~2 of y(x) in (24) vanish for x r ~. 
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For the natural numbering of grid points (((il, i2), i l  = 0 , . . . ,  g l ) ,  i 2  ---- 0 , . . . ,  N2) , the diagonal 
dominance condition (13) in rows for the two-dimensional five-point operator D given by (24) has 
the form 

-y(x, t) _> I ~ ( x ,  t)l + la2(x,t) l  + I ~ ( x ,  t)l + IDa(x, t) l ,  x �9 ~ .  (25) 

The similar column diagonal dominance condition (14) acquires the form 

~(x, t )  ~_ IC~l(& + h~,x2,t)l + [D~ (Xl - hl,X2,t)[ 
+ la2 (Xl,X2 + h~,t)[ + I~,:, (x~,x2 - h2,t)[, x E & .  

(26) 

The grid operator of convective transport  in nondivergent form (22) can be rewritten in the 
form (24) with 

ak(x , t )  = b~)(x,t)/hk, /31(x,t) = -b(k)(x,t)/hk, 
"fi x, t) -- O~l(X , t) + oL2(x , t) -~-/31(x , t) Jr- fl2(x, t), 

k = 1,2, 

x E w .  

For the finite-difference operator (23), we have 

Oq(X,t) -=- b~ ) (xa -- hl, X2, t) / h i ,  o~2(x, t ) ~- b(~ ) (Xl ,X  2 - h2, t ) /h2 ,  

/~l(X, t) = -b(_ 1) (Xl -[- h~,x2, t ) /h~,  /~2(x, t) = - b ~  ) (Xl,X2 + h2, t ) /h2,  
~(x , t )  = ~ l (X, t )  + ~2(x,  t) + ~ ( x ,  t) + ~2(x, t), x �9 ~.  

Therefore, the row diagonal dominance conditions (25) are unconditionally valid for the grid op- 
erator C1 given by (22), and the column diagonal dominance conditions (26) hold for the grid 
operator 6'2 given by (23). 

Now we can state the stability conditions for the two-layer finite-difference scheme 

f§ ~ (1 .. (27) (yn+l - y n ) / r  + ca ~xVnT1] (Cryn+l -t- - -  a)y~) = 0, n = 0, 1 , . ,  a = 1,2,  Y0 = u0 

with the use of the difference transport operators (22) and (23) with directed differences. Condi- 
tions (19) on the time increment acquire the form r _< (1 - a) -1 ( m a x x ~  7(x, t)) -1. Hence if 

- 1  

- -  max (28) T _< 1 -- a = xe~ ha ' 

then the finite-difference scheme (27), (22) is stable in Lo~ (&), and its solution satisfies the a priori 
estimate 

Ily-+llloo -< Ilu0ll~, n = 0 ,1 , . . .  (29) 

The finite-difference scheme (27), (23) is also stable under the same conditions (28); moreover, 
in L1 (&), we have the stability estimate 

IIy~+~lll ~ Iluolll, n = 0 ,1 , . . .  (30) 

The estimates (29) and (30) are coordinated with the corresponding estimates [(7) and (6), respec- 
tively]. Unconditional stability takes place [see (28)] for completely implicit schemes ((r = 1). 

Note that, when using central-difference approximations for convective terms (see [1]), we cannot 
hope that  the two-layer finite-difference schemes (27) are stable in L~  (&) or L1 (&). In this case, 
we cannot ensure the diagonal dominance for any values of the grid parameters with respect to 
t ime and space. 

The estimate (30) in LI (D) is natural for the finite-difference scheme (27), (23). In this case, 
no condition is imposed on the velocity field. It is often desirable to obtain an estimate in a 
stronger norm [in L~  (&)] by imposing some constraints on the properties of the medium. In this 
case, the situation is restricted to p-stability. 
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In the case of the differential problem (1), (2) with the transport operator in the divergent 
form (5), instead of (6), we can use the ~-stability estimate 

Ilu(t)lloo < exp(.~t)Ilu011oo J-F = max [div v[. 
- -  ' x6~ 

(31) 

It can be proved by analogy with (7) with the help of the representation 

~ u  = ~lU + d ivvu .  (32) 

Such estimates were obtained in [10] for problem (1), (2), (5). Using (31), we obtain the corre- 
sponding ~-stability estimates for the finite-difference schemes (27), (23). 

We can readily see that there is no analog of (32) for the finite-difference convective transport 
operators (22) and (23). A similar analysis was performed in [1] for the approximations of convective 
transport by central differences. For example, 

: C2y Cly + ~ + y + 
2 )) 

for internal nodes. Hence the approximations (23) are not convenient for the finite-difference 
transport operator in divergent form from the viewpoint of deriving estimates in the uniform norm. 

When using first-order approximations, for transport operators, we can expect a better situ- 
ation from the viewpoint of the definition of transport coefficients on a displaced grid. For the 
nondivergent transport operator, we use the approximation 

2 
Ci-= E C~~ 

{ 2h(l) v_ ~xl + 0.5hl, x2) Yx~ 
c~i)Y : b~ ) (Xl -O.5h i ,x2 )y .~ l  + b(_ 1) (xi '~O.5hi,x2)Yxl 

2b~ ) (xl - 0.5hi, x2) y~ 

b(-2) (Xi, X2 -~- 0.5h2)Yx2 
C~2)Y = b(~ ) (xi, x2 - 0.5h2)Y22 -~- b(--2) (Xl, x2 -~- 0.5h2)Yx2 

if xl = 0, 
if h l _ < X x _ < I x - h l ,  
if Xl = 11, 

if x2 = 0, 
if h2_<x2_<12-h2,  
if x2 = l~. 

(33) 

Only a specific part of the normal velocity component is taken near the boundary; it is convenient 
to use the doubled quantity. In this case, by (3), the truncation error preserves the first order. 

For the divergent convective transport operator, we use the representation 

c~l)y = 

C2 = ~ C2 (~), (34) 
c~=i 

[ 2hl-l(b~ ) (xl + 0.5hl,x2)y(xl + hi,x2) 

+ b~)(x, + o5hl, x~)y (x~, x~)) 
h~-l(b(__ 1) (x, + 0.5hl,x2)y(xl + hi, x2) 

- b ~  ) ( x , -  0.5hi, x~) y (x,, x2)) 

+ h;1 (b~) (Xl + 0.5hi,x~)~(xi,x~) 
- b~) (xx - 0.5hi, x~) y (x, - h~, x2)) 

- 2 ~ ;  ~ (b~) (xl - 0.5h~, x~) y (Xl - h,, x~) 

+b(__ l) ( x i - 0 . 5 h l , x 2 ) y ( x l , x 2 ) )  

if xl = 0, 

if h l _ < x l _ < l l - h x ,  

if xl = 11, 
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C~2)y = 

2h~ -~ (b~) (x~, x2 + 0.5h2) y (x~, x2 + h2) 

+b~)(xl ,x2+O.hh2)y(xl ,x2)) if 

h~ -1 (5(_ 1) (xt, x2 + 0.5h2) y (xl, x2 + h2) 

- b ?  ) - 0.hh ) y (Xl, 

-~- h21(b~ ) (Xl, x2 + 0 .5h2)y  (Xl, x2) 

- b ~  ) (Xl,X 2 -O.hh2)y(x l ,x2-  h2) ) 

- 2 h 2 1  (b(~) ( x i , x  2 -0 .hh2)y(x l ,x2-h2)  
+b(J ) (x~,x2-O.hh2)y(xl,x2)) if 

X 2 ~ O, 

if h2<_x2_<12-h2,  

x2 = 12. 

In this case, we have the following finite-difference analog of (32): 

C2y = C l y  + divh b y. 

In case (33), (34), the finite-difference divergence operator is represented as 

1075 

(35) 

2 
divh b = ~ diVh b , ,  (36) 

c~=l 

{ 2hi -1 (b (1) (xl + 0.5hl,x2) - b (1) (Xl,X2)) if x 1 : 0, 
d i v h b l =  h i  1(5 ( 1 ) ( x l + 0 . 5 h ~ , x 2 ) - 5  (1) (x l -0 .5h l ,x2) )  if h ~ < X l _ < l ~ - h l ,  

-2h11(b(l)(xl ,x2)-b(1)(x1-O.5hl,x2))  if xl =/1,  

{ 2h~ -1 (b (2) (x,,x2 + 0.5h2) - b (2) (Xl,X2)) if x2 = O, 
divh b2 = h21 (b (2) (Xl, x2 -~- 0.5h2) - b (2) (Xl, x2 - 0.5h2)) if h 2 ~ x 2 _.~ 12 - h2, 

-2h~l(b(2)(x1,x2)-b(2)(x1,x2-O.5h2)) if x2=12. 

By (35), we rewrite the two-layer scheme for Eq. (1) in the form 

(Yn+~ - Yn) / r  + (C, + divh b) (ay~+~ + (1 - a)y~) = 0. (37) 

Just as in the analysis of the scheme (17), (18), we obtain [see (21)] 

II(E + aT (C1 + divh b)) Y,~+~l]o~ -< H( E - (1 - a)r (e l  + divh b)) Y~II~ �9 (38) 

When considering the left-hand side of (38), we use the inequality #o~ [-C~] < 0 and the property 
#[A + B] > # [ A ] -  # [ -B]  of the logarithmic norm. Hence 

II(E + aT (C1 + divh b)) Y~+lll ~ - # ~ [ - E  - aT(C~ + divh b)] IlY~+I]I 
>_ (1 + aT (#o~ [-CI] - #o~ [-  divh b])) [[Yn+l II ~-- (1 -- arK) IlY~+~ [[, 

where, by (31), K = maXxc~ ]divh b]. Under the above constraints (28) on the time increment, for 
the right-hand side of (38), we obtain 

I I (E -  (1 - a ) r ( C 1  + divh b))y~ll ~ l i E -  (1 - a ) r C l H  Hy~H + (1 - a ) - r  IIdivh bll ]]yn]] 

_< (1 + (1 - a)TK)Ily~ll �9 

The substitution into (38) yields the layerwise estimate (1 -aTK)llY~§ < (1 + (1 -~)~/~)Ily~ll .  
Hence the ~-stability can be estimated as 

Ily +lll  -< 0 Ily ll , n = 0,  1 , . . . ,  ( 3 9 )  

with Q = exp((1 + a)TK) under the additional [apart from (28)] constraints r _< 3/ (4aK) for the 
time increment. The estimate (39) can be treated as a finite-difference analog of the estimate (31) 
for the differential problem (1), (2), (5). 
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Using approximations of the divergent convective transport in the form (23), we can obtain the 
Q-stability estimate (39) with the constant 

K = E  max + + (b (") 
o~=l 

which substantially differs from the constant ~ of the original differential problem. Thus, the use 
of approximations (34) with the definition of transport coefficients on displaced grids is preferable 
to the approximations (23) with coefficients defined at nodes. 

MONOTONE AND CONSERVATIVE FINITE-DIFFERENCE SCHEMES 

Schemes for which the maximum principle is valid are said to be monotone. We consider homo- 
geneous two-layer finite-difference schemes that can be represented in the form 

D ( t ~ ) y ~ + l = G ( t n ) y ~ ,  n = 0 , 1 , . . .  (40) 

This scheme is monotone if for nonnegative initial conditions (Y0 _ 0), the solution is nonnegative 
for any other discrete value of time (yn >_ 0, n = 0, 1,.. .).  Let us give sufficient conditions for the 
monotonicity of the finite-difference scheme (40) on the basis of the simplest results of the theory 
of nonnegative matrices in linear algebra [4, 11]. 

We restrict our consideration to related separate properties of the matrices D (tn) and G (tn). 
If yn _> 0, then g~ = G (tn) y,~ is nonnegative provided that 'G (t~) is a nonnegative matrix, that is, 
a matrix with nonnegative entries. If g~ > 0, then the solution y~+l of the equation D (tn) Y~+I = gn 
is nonnegative provided that D (t~) is a monotone matrix. Therefore, the two-layer finite-difference 
scheme (40) is monotone if G (t~) is a nonnegative matrix and D (tn) is a monotone matrix. 

The finite-difference scheme (17) can be rewritten in the form (40) with D (t~) = E + aTA and 
G (t~) = E - (1 - a)TA. Under standard conditions imposed on the weight, namely, 0 _< a _< 1, 
G (t~) is a nonnegative matrix if all of its offdiagonal elements are nonpositive: 

a~j < 0, i # j, (41) 

and the time increment satisfies condition (19). 
We use the simplest criterion of the matrix monotonicity: a matrix with strict diagonal domi- 

nance and nonpositive offdiagonal entries is monotone. Consequently, the matrix D (t, 0 is monotone 
for any T > 0 if condition (41) is satisfied and the nonstrict diagonal dominance in rows [see (13)] 
or columns [see (14)] takes place for the matrix A. 

Therefore, under the constraints (13) [or (14)] and (41), the two-layer weighted scheme (17), 
(18) is monotone provided that the time increment satisfies condition (19). In particular, the purely 
implicit scheme (a = 1) is absolutely monotone (for any T). Note that on the basis of the logarithmic 
norm, we have proved the stability in the corresponding spaces under weaker assumptions, namely, 
without the requirement (41). This permits one to prove the monotonicity of the above-considered 
two-layer finite-difference schemes with directed differences for the transport equation in divergent 
and nondivergent forms provided that the time increment satisfies condition (28). The additional 
condition (41) that offdiagonal entries are nonpositive is necessarily satisfied for schemes with 
directed differences. 

Let us discuss the conservativeness of finite-difference schemes with directed differences for the 
transport equation (1), (5): the conservativeness of a finite-difference scheme is treated [1] in the 
sense of the layerwise relation (Yn+l, 1) = (Y0, 1), n = 0, 1 , . . . ,  and is provided by the property 

(C2y, 1) = 0  (42) 

of the finite-difference convective transport operator in divergent form. Since property (42) is valid 
for the finite-difference operator (34), it follows that the use of displaced grids for the definition 
of coefficients of the convective transport [the approximation (34)] yields a conservative scheme. 
The situation with the finite-difference operator (23), for which condition (42) fails, is more compli- 
cated. The requirement (3) preserves some freedom in the approximation of the normal transport 
component on the boundary. One of such possibilities is realized in (23). The second possibility is 
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similar to (33) and is related to doubling the convective transport  velocity on the boundary. In this 
case, instead of (23), we have 

/b(~ ) 2 ( , _  Y)x~, if x . = 0 ,  
2 /b ('~) "~ 

= = + ~ -  Y)xo if h~<_x~<_l~ ha, E ~ 
a = l  

if x ,  l , ,  

o~ = 1,2. 

Property (42) is already valid for this convective t ransport  operator; i.e., the corresponding schemes 
are conservative. 

The above analysis allows one to extract the class of basic approximations for convective 
transport  operators. Using central-difference approximations as well as directed approximations, 
one must aim the definition of convective transport  coefficients at displaced grids. This provides the 
coordination of approximations of convective transport  operators in various forms and, therefore, 
the stability of finite-difference schemes in related norms; the constants of ~-stability prove to be 
coordinated with the differential problem. In addition, finite-difference schemes are conservative 
for such approximations. 
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