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Domain Decomposition Methods 
for Parabolic Problems

A.A.SAMARSKII P.N.VABISHCHEVICH 2

I N T R O D U C T I O N

Parallel algorithms for multidimensional problems in mathematical physics are 
designed now on the basis of domain decomposition methods. The original problem 
is divided into a set of subproblems. Either problem is solved on its own processor 
(its own elementary computer) and in its own subdomain. The scope for such an 
approach with an approximate solution of non-stationary problems of mathematical 
physics is discussed. The main attention is paid for noniterative variants of the domain 
decomposition method with various of interchanging boundary conditions.

The present investigation is directed to a review and analysis of works on methods of 
domain decomposition for parabolic initial-boundary value problems. In constructing 
domain decomposition methods for time-dependent problems there are employed the 
following approaches.

•  The first [Kuz88, Tal94] is based on using classic implicit schemes and 
involves domain decomposition methods in order to solve an elliptic grid 
problem at new time level.

•  In the second approach peculiarities of transient problems are taken into 
account in more details. The corresponding region-additive schemes are 
investigated in various variants in works [Dry90, Lae90, Lae92, SV96,
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SV95b, Vab89, Vab94b].
•  There are [DD92] constructed decomposition schemes with a special ap­

proximation of exchange boundary conditions (inhomogeneous schemes).
•  Parallel variants of standard splitting schemes (for example, [JSS87]): 

schemes of alternating directions, factorized schemes, local one­
dimensional schemes of component-wise splitting) are being designed.

The main attention is paid to iterative-free variants of a decomposition method, i.e. 
regional-additive schemes. These algorithms adequately account for a specific character 
of non-stationary problems when the transition to a new time level is connected with 
the solution of a set of separate problems in subdomains. Theoretical analysis of 
domain decomposition schemes is done with the use of standard and new splitting 
schemes [Abr90, Vab94a].The study is based on the modern theory of stability and 
convergence of operation-difference splitting schemes [Sam89, SG73, SV95a],

M O D E L  P R O B L E M

A two-dimensional rectangular domain 0  with parallel to coordinates sides is 
considered. The solution of the parabolic equations is sought in the domain 0:

Ou v—̂ 3 , 3 , 3u
—  ~ У 2 ~ — (ka (x) - — ) = f ( x ) ,  г =  *1,12 e f i ,  t >  0. (1)
a t  O X a  O x aOL — \

Equation (1) is supplemented by the homogeneous boundary condition (the Dirichlet 
problem)

u ( x , i ) =  0, x £ dfl, i > 0 (2)

and the initial condition
u ( x , 0) =  u q ( x ) ,  x £ 0 . (3)

Let us introduce in the domain 0  the uniform grid x a with the uniform spacing
ha , a  =  1,2. Let w  be the set of the internal points. An approach to more common 
problems in context of this paper is of editing character. Let us define on the set of 
functions у £ H  such as y{x) = 0, x w,  a difference operator A:

A y = ^ A a , (4)
a=l

A a =  - { a a {x)yw)x , ш £ ш.

Here the standard index-free notation of the difference scheme theory [Sam89]- 
[SV95a] is used, for example:

w(x) — w(x — h) w(x  +  A) — w(x)
wx =  wx =  —i------- 1-------

h h

al(x)  =  0, b{k\{x) +  k \{x \  — h\,  X2 )),
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а2(ш) =  0, 5(А-2(ш) +  А-2(ш 1, ш2 — Л2)).

Let us introduce a scalar product and a norm in the Hilbert space H  as follows

(y-,v) = X ) yvhlh2< IMI =
x£w

Note, that in H  operator A  is self-adjoint and positive definite [Sam89]-[SV95a], i.e. 
A  =  A* > 0.

From equations (l)-(3) for the given y(x,  0), x £ w  we pass to the following equation

dy
—  +  A y  =  0, x £ w.  (5)

For the last equation difference schemes of domain decomposition schemes are 
constructed. Numerical implementation of these schemes is based on the solution of 
problems in separate subdomains of the calculation domain 0  at every time-level.

D O M A I N  D E C O M P O S I T I O N

Let domain 0  consists from m  separate subdomains:

0  =  Oi U 0 2 U ... U Op.

Designing of regional-additive difference schemes is based on a special additive 
representation of A  operator of considered equation (5) and on the application of 
one or another splitting schemes. The choice of a splitting operator and a splitting 
scheme corresponds to the choice of a definite scheme of computations in separate 
subdomains. In particular, to the choice of interchange boundary conditions on the 
boundary of sub-domains.

Let m a be the subsets of points w,  lying in subdomains Qa , a  =  1,2, Let us 
construct the decomposition difference schemes similar to presented in [Lae90] on the 
basis of the unit splitting for domain 0 . Let us define the following functions

f \ Г 0? ж £ Qa , , „ ̂«4
*“(*) = ( 0, , ra, .  a = 1-2’ №

where
p

5 ~2xa(x) = l , X £ 0 . (7)
£K = 1

We shall consider the class of decomposition schemes, where for the operator A  the 
following additive representation takes place:

A = J 2 A a, (8)
£K = 1

where operators A a , a  =  1 , 2 are associated with isolated subdomains and
also with splitting (6),(7) and with the solution of the individual subproblems in
subdomains Qa , a  =  1, 2,
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The simplest difference decomposition scheme is defined via the definition of 
operators A a , a  =  1, 2, ...,p in the following way [Vab89, Vab94b]:

Aa = XaA, a  = 1,2, ...,p. (9)

The following presentation for the decomposition operators can be used:

A a = A x a , a  = 1 , 2  (10)

Clearly, that for such splitting operator A  is not selfadjoint, i ,e.Aa ф A*a , a  =
1 , 2 , . . . , p .

It is naturally to use in this case the symmetrical splitting (7),(8) (see, for example, 
[Dry90, Lae90], where

2

A ay =  -  x<Ew,  a  = 1 ,2 , . . . , p. (11)
ек=1

Grid operators A a , a  =  1 ,2 ,... ,p. are approximated via difference degenerating 
elliptic operators

where coefficients a“ are defined as aP. W ith expressions (7),(8),(11) we obtain 
A a = A*a > 0, a  =  1,2, ...,p.

R E G I O N - A D D I T I V E  S C H E M E S

At first, simplest case of decomposition of domain 0  by means of the straight lines x\  =  
const will be demonstrated. In this case while constructing of the difference schemes 
we can be oriented to the usage of the difference splitting schemes with p =  2, where 
Oj and O2 are defined as a combination of corresponding subdomains. When splitting 
into two operators, classical alternating direction schemes would be appropriate for 
transition from the previous time level to the next one.

Unconditionally stable difference schemes for the solution of equation (6) with 
the corresponding initial condition are easily constructed via splitting (7),(8) with 
selfadjoint and positive definite operators A a , a  = 1,2 (with decomposition operator 
(11)). The accuracy problem of the approximate solution, its dependence on the width 
of subdomain overlapping and also on functions x'a(x ),a  =  1,2 is of special interest. 
Usage of the schemes with the asymmetric decomposition operators requires individual 
investigation.

Let us select among the unconditionally steady factorized schemes the scheme of 
the stabilizing correction similar to the classical Douglas-Rechford scheme. Let у11 be 
the difference solution at the time moment t n =  пт, where r  >  0 is the time-step. 
The transition from the previous time-level to the next one is performed in accordance 
with the following expressions

n  + l / 2  _  n

------------ — +  A iyn+1/2 +  A 2yn = 0,
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,.n+1 _  n+1/2
------------------ +  A 2(yn+1 -  у11) =  0. (12)

T

For the difference decomposition scheme (8),(12) with the selection of operators 
A a , a  = 1 , 2  according to (9), (10) and (11) the following estimate of stability in 
respect to the initial data  is valid:

\\(Е + тЛ2)уп+1\\в  < \\(Е + тА2)у° \\d ,

where D  =  A, A  -1 and E  respectively.
Investigation of convergence of decomposition method leads to the following 

estimates

\\(E + T A 2) z n+1\\D < M ( ( l  +  ||X2|U ) r + |A |2). (13)

Moreover, accuracy of decomposition schemes depends on the width of subdomains 
overlapping Oi and O2 (see term at Цх'гЦд *n estimate (13)).

While constructing difference schemes for the parallel computer we should be 
oriented to the decomposition with minimum overlapping of domains, i.e. on the 
minimization of exchange between individual processors. At minimal overlapping of 
subdomains (width of subdomains overlapping equals to 0(|A |)) we have from the 
estimate (13) that the convergence rate is 0{\h\~1/ 2T +  |A|2)-

Under a more general domain decomposition grid operator A  in equation (5) has 
the form (8) with a number of operators p >  2. For such problems difference schemes 
of summarized approximation [Sam89, SV95a] have some advantages. Investigation of 
difference schemes of summarized approximation shows that these schemes have low 
accuracy of spatial approximation.

For instance, for the following fully implicit scheme of multicomponent splitting

, . n + a / p  _  n  +  ( a - l ) / p

- ------------- -------------+ A ayn+a/p = 0, a = 1,2, . . . ,p (14)
r

the error estimate has the form

p

||z"+11 <  M (( 1 +  \\D Xa\\)T +  |A|2). (15)
£K = 1

As for parallel implementation, additive-averaged schemes of domain decomposition 
[18] should be mentioned separately. For example, the implicit scheme has the following 
form (compare with (14))

у П + а / р  _  у П

+  XaA yn+alp = 0, а = 1 ,2 ,. . . ,р,

Р

у П + 1  —  _  у П + а / р

ТI а=1
and for the error we have estimate (15).

The principal moment here is concerned with the possibility to calculate yn+a/p; a  = 
1,2, ...,p independently (asynchronously).
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To construct parallel numerical methods, it seems to be more suitable to use 
vector additive difference schemes with full approximation, besides these numerical 
schemes are unconditionally stable at any p [Abr90, Vab94a], Let’s define vector 
Y  =  г/i, г/2, •••, yP, the following set of equations for calculation of each component 
of this vector should be solved:

+ =  0> (16)
(3=1

Уа(0) =  2/o j a  = 1 ,2 , . . . , p. (17)

From equations (16),(17) it follows that ya (t) =  y(t), then arbitrary component of 
vector Y( t )  may be chosen as a solution of the main problem for equation (5).

The following scheme is an example of unconditionally stable schemes for a set of 
equations (16), (17)

, ,n + 1  _  n  _p

(E + <ттАа) Уа Ja + £  Aptfp = 0,
T (3=1

a  =  1,2, . . . ,p

for case и > p / ‘2. Realization of this scheme is connected with the inversion of operators 
E  +  (ттАа , a  =  1,2, . . . ,p at every time-level in just the same way as in case with 
general (scalar) difference additive schemes. These schemes may be considered like 
difference schemes with weights where the weight и  is larger than unit (er> 1).

For the accuracy of these vector schemes of domain decomposition there are the same 
estimates [SV95b] as for standard schemes of summarized approximation. However, 
for this class of schemes it is easv to construct schemes with the second order in time.
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