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DIFFERENCE SCHEMES FOR THE PROBLEM OF

FUSING HYPERBOLIC AND PARABOLIC EQUATIONS?)

A. A. Samarskif, P. N. Vabishchevich, S. V. Lemeshevskii, UDC 519.63
and P. P. Matus

1. Introduction. In mathematical modeling of physical-chemical processes in composite bodies.
it is often necessary to use the mathematical models that are based on equations of different type in
different parts of the calculation domain. A particular attention in this event is paid to the fusion
conditions on the boundaries of subdomains. The questions of unique solvability of boundary value
problems for equations of mixed type are intensely discussed in the literature (see, for instance, [1}).

Concerning this class of problems, we distinguish boundary value problems for hyperbolic-para-
bolic equations whose unique solvability in the class of weak solutions was considered in [2,3]. In the
present article, taking as an example the simplest one-dimensional boundary value problem, we discuss
the questions of numerical solution of the problems. We construct a homogeneous difference scheme [4]
that belongs to the class of schemes with variable (discontinuous) weight factors [5-7]. We distinguish

the classes of unconditionally stable schemes and study the convergence rate of an approximate solution
to an exact solution.

2. Statement of the Problem. Consider the following initial-boundary value problem of fusing
hyperbolic and parabolic equations in the rectangle @ = @1UQ2, Q1 = {(z,t) : 0 <x < £ 0<t < T}
Qr={{z,t): <<, 0<t<T}

pl(a:)%—z: = 5(?; (kﬂx)%) + fi(z,t), (z,t) € @, (2.1)
2 u
(@)= (’Q(I)%;) T hzt), (2t) € Qa (2.2)

where pm(z) is a strictly positive function in Qm and 0 < ¢; < km(z) < 2 (m = 1,2). We supplement
these equations with the following boundary and initial conditions:

w(0,t) =u(l,t) =0, t>0, (2.3)
Jdu
u(z,0) = uo{z), 0 <z < a(z,ﬂ) =ui(z), E Lz <L (2.4)
The following fusion conditions are satisfied on the interface z = £ between the two domains:
[u] =0, [k%] =0 for z=¢ t20, (2.5)
Oz

where

k )
[u] = u(€ +0,t) —u(6 - 0,t), kiz)= {k,l,g; 2 i i z 1)’c
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Constructing and studying difference schemes for the fusion problem under consideration: we
assume that the coeflicients pp(r). km(z), and fm(r,t) (m = 1,2) have the straight line r = ¢
a discontinuity of the first kind and are sufficiently smooth outside the discontinuity line. Under the
above assumptions on the input data, the questions of existence and uniqueness of a strong solution
were studied in the articles [2,3]. Henceforth we suppose that a solution u(z,t) to (2.1)-(2.5) is
piecewise smooth; i.e., it possesses all needed derivatives outside the line r = £ which are continuous
and bounded, and satisfies the fusion conditions (2.5) on the straight line r = £. We note that the

assumption that the coefficients pm and k, depend on a single variable z and that the boundary
conditions (2.3) are homogeneous is only made to simplify exposition.

3. Difference schemes. We introduce the following uniform grids of knots:
Op = {zi =ih, 1=0,1,...,N; AN =1},

wr={tp=n7, n=0,1,...,Ng=1; TNy =T}.

We suppose that the discontinuity point of the coefficients ¢ = z, = ph € wp, 2 < p < N =2, is a knot
of the uniform space grid. Also, we consider the following grids in the domains @1 and Q3:

Wl =wip XWr, Wy =uwhp XWr,

where wyp, = {z;=1th, i=1,2,....p—1}and wyp = {zi =ik, i=p+1,p+2,...,N - 1}.
We approximate the differential problem by the three-layer difference scheme

prye = ((ays) D) + ¢, (2,t) €wr, (3.1)

p2yr = ((ay2)v"2) + ¢, (z,t) € wy, (3.2)

go =yn =0, (3.3)

y(z,0) = uo(m)a yi(z,0) = aO(‘t)a € w;},’ “’1_h =wp U {0}7 (3.4)
y(I,O) = UO(.’I), yt(l‘,O) = al(‘t)v TE “_"Zha (35)

with constant weights 64, a = 1,2,

As in the case of the third boundary value problem for the one-dimensional heat equation (4,

p. 93], we approximate the fusion conditions (2.5) so as to fulfill the requirement of second-order
approximation in the space variable:

(ays)772) + %’(myt +¢) = (ayz) "7 - g—(pzya +e), z=¢ (3.6)

Here -
P = pe(zi), a=k(zi—os), ¢ =0.5(fi—o5+ fi+0s), (3.1

@ = p7 ! (z)(Luo(z) + f(z,0)), (3.8)

1= u1(z) +0.57p; ! (2)(Luo(z) + f(2,0)),
— J Ju _ fl(zvt)v (x7t)€Q13
=% (kF') St = { frlz,t), (2.t) € Qa.

It is convenient to write the approximate fusion conditions (3.6) as

0.5(p1ye + p2yi) = ((ayz) ") + 9. 2 =€ (3.9)

Observe also that the second initial condition ys(«.0) = &y for the parabolic equation is derivo:;'(! by
the following arguments. Employing a three-layer scheme. we have to know one more initial condition.
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for instance y(x.7): therefore, it is natural to approximate this condition with accuracy O(h* + 72).
The idea (see [4. p. 97]) is to search the value y(r,7) in the form

y(z,7) = uo(z) + Tu(z)

and choose p so that the error y(z,7) — u(z,7) be O(r% + A?).

Insert the value %—t"- in the formula

If=0

u(z, ) —up(z) = 'r-a—u

ot

72 0%y

+253 0
— 2 0t

t=0

and use the differential equation

a_u
Pla

n =L'u,0+f1(l',0), O<Z<£

t=0

Then
p = (Lug + fi(z,0))/pr().
Hence, we obtain (3.4). ‘
Also, we indicate another way of specifying y(z, ) with accuracy O(h* + 72). We carry out the
first step in the domain (z,t) € w; by using the two-layer scheme

y'—y°
p1 = ((ayz)1/20), + 0%, 0<z <, (3.10)

T

y(:z:,O) = uo(;r:), y(O,T) =0, y(IpaT) = UO(IP) + Tﬁl(xp)' (311)

Observe that, for finding the second boundary condition y(zp, 7) at the fusion point, we have used
the given initial condition for the wave equation y:(z,0) = @; in (3.5) at € = x,.

For our approximation to the parabolic equation in the domain wy, the scheme (3.1), (3.10), (3.11)
leads to a scheme with variable weight factors [5,6]. We will discuss this question in more detail below.

Implementation of the difference schemes is standard for o; # 0 and bases on the sweep method (as in
the case of nonhomogeneous boundary conditions).

4. Stability of difference schemes with constant weights. To study the stability questions.
we use the canonical form of three-layer operator difference schemes like [4]

Dy + By; + Ay=9, 0<t€uwr, (4.1)

y(O) = Yo, yt(o) = Yo, (42)

where y € H, H is a real finite-dimensional Hilbert space, and A, B, D : H — H are linear operators
in H.

Let QF stand for the set of grid functions y* = y(zi,t") that are given on @&, and vanish on the
boundary. For these functions, we define the operator A as follows:

(Ay)? = —(ays)zin i=1,2,....N =1, yt =yt =0. (4.3)

Introducing the vector y, = (y7,y3,... .yf{v_l)T, we define the space H to be the set of these vectors y
with the inner product and the norm

N-1
(-v) = (o) = Y yFofh, Jyll = Vv, 0). (4.4)
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Then the operator A acts from H into H. Given D = D* > 0. we denote by Hp the Hilbert space
with the inner product (y.v)p = (Dy.v) and the norm ||yl{|} = (v, y)p-
By [4. p.392. Theorem 6: 4. p.399, Lemma 3], if

. . (1 +¢)r? B
A'=A>0. D =D_>_-—T—-A, B>0, >0, (4.3)

then we have the following a priori estimate for a solution to the difference scheme (4.1), (4.2):

lomsilla < /220 Ola + IO + s (loella-s + lpesllano)). (46)

To reduce the scheme (3.1)-(3.5), (3.9) to the canonical form (4.1), (4.2), we moreover define the
operator A by (4.3) and the operators B and D as follows:

2
D=S+ %(orl +02)A, S =diag{s1,s2,...,SN-1}, (4.7)
0.57p1(z), = € wia,
s(z) = { 0.257p1(z) +0.50(z), = =¢, (4.8)
)02(1:)$ T € wap;
B =G+(Ul _az)TAv G=dia‘g{glv923':-agN—l}s (49)
pl(x)7 T € Wih,
g9(z) = ¢ 0.5p(z), z=¢,
0, z € wy.
We also pose the initial conditions
yo(z) = uo(z), = € wp, (4.10)
_ _ dg(z), z € wyp, +
0) = Jo, = = . 4.11
¥:(0) = Jo, Jo(z) { i(z), zewd, MO U {¢} (4.11)
Then the identity
2
0(0192) = 4 4 7(0y — a2)vg + 12-(0’1 + o2)vgy (4.12)

implies that the difference scheme (3.1)-(3.5), (3.9) reduces to canonical form for three-layer operator
difference schemes with the operators A, B, and D, the right-hand side ¢, and the initial conditions
yo and fo defined by the corresponding formulas (4.3)-(4.11).

Theorem 1. Suppose that the parameters of the difference scheme (4.1}, (4.2), (4.7)-(4.11)
satisfy the conditions
1+¢

o202, or+o92> -5 {4.13)

Then the scheme (4.1), (4.2), (4.7)-(4.11) is stable with respect to initial data and the right-hand
side; moreover. a solution to the problem satisfies estimate (4.6).

PROOF. We have A = A* > 0, D = D* > 0, and B > 0 whenever 01 > 03. Therefore, to prove
the theorem. it suffices to validate the inequality

I+z . g\ .
D - : r3‘4=5+(01ﬁ02—lj )r’Azo. (4.14)
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Once this inequality is obvious under the assumptions (4.13), the theorem is proven.

5. Difference schemes with variable weight factors. We have already mentioned above that
difference schemes with nonconstant weights for the fusion problem for equations of different types
arise in the case of the three-layer scheme (3.1) for a parabolic equation with the initial conditions
(3.10) and (3.11). In practice, it is the two-layer difference scheme that is usually used (in this case
o2 = 0) for numerical approximation of a parabolic equation and the three-layer scheme is used for
approximation of a hyperbolic equation.

We define the variable weights o1 and ¢ by the formulas

O, T &€ Wi, Os T € wip,
o(z) = 05(c +0}), z=6  oae)= {0503 z=¢
UI) T € woph, 0"3’ T € wap.

Here o, o], and o3 are constants. Then we may rewrite {3.1)-(3.5), (4.10} as

pLye + poyi = ((ayz)(al(r)'”m))z +¢, (z,t)€w, (3.1)

y(0,{) =y(l,{) =0, tE€wr, (
y(.’L‘,O) = uﬁ(z")s T € Wh, yt(zvo) = al(z)s TE w;h’ (53)

where w = wp, X w, and the coeflicients g; are defined by the formulas

Pl(l'), Z € Wik,

pi(z) = { 0.501(§), = =¢, (5.4)
Oa T € wWop,
Oa T € Wh,

52(1) = 015P2(€), T =¢, (5.5)

P2(17), T € Wop-

1
We study stability of the scheme along the lines of [6]. Let Q, be the set of grid functions v; = v(z;)
given on the grid &, and satisfying the condition vg = 0. Alongside the Hilbert space H, we introduce

. T .
the space Hy that is the set of vectors of the form v, = (vf,v:’j, ..., UN)" . We endow Hp with the
inner product
N

(vn, wa] = Y vFwlh, (5.6)

i=1
Let us show that the operator A : H — H defined by (4.3) admits the representation A = T*T.
Define the linear operators T : H — Hy and T* : H; — H by the formulas
(Ty)i = Vaiyzi, 1=12,...,N, yo=yn =0, (5.7)

(T*v)i = ~(Vav)ei, i=1,2,...,N~1. (5.8)

The operators T and T* are adjoint to each other with respect to the inner product (5.6). Indeed.
by the summation by parts formula, for arbitrary y € H and v € H; we have

N-1

N
(v.Ty) =) vivaiyeih = Y =(Vav)rgih = (T"v.y). (5.9)
=1
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Now. we define the operators B and D as follows:

B=G+ TT‘(E] - ZQ)T, {5.10)
G = diag{p11, p12+- .- - BN -1}, (5.11)
D =C +0.57:T*(Z1 + £2)T, (5.12)

C = diag{ci,ca,...,en-1}, ¢ = 0.5p17 + pai.
Ty Hy — Hy, I =diag{or,0%2, ..., 0kN=1} (5.13)

It is obvious that the difference scheme (5.1)~(5.3) with the variable weight factors reduces to the
canonical form (4.1), (4.2) with the operators A = T*T, B, and D defined by (5.7)-(5.13) and with

pTHAYD + o), T €wn,

(5.14)
u(z), € w;;l.

y!(o) = g()v Z;_IO = {

It is obvious that the operator A is positive and self-adjoint. Since o, o}, and oj are positive
constants, the operators £ and £ are nonnegative and D = D* > 0. By construction, B > 0 for

T, > T, In order to use the a priori estimate (4.6), we check the condition (4.5) which is sufficient
for stability. Observe that

1+e¢ 1+¢

2

D -

2
PA=C+ T (21+22—

E}T>0
2 )72

for L) + L2 2 %EE. This inequality and the condition £ > X are satisfied for o1(z) + o2(z) 2
0.5(1 + ¢) and o3(z) > o2(z) respectively.

Theorem 2. Suppose that the parameters of the difference scheme (5.1)-(5.3) satisfy the condi-
tions

1
o1(z) > oa(z), o1(z) + o2(z) > —’,:5- 2 € wh.

Then the scheme is stable with respect to initial data and the right-hand side; moreover, a solution
to the problem meets the estimate (4.6).

By the embeddings (4]
L
Ve

where ||yz]| = /(vz.yz) and ||y|lc = maxzeu, |y(z)|, (4.6) implies the corresponding a priori estimates
in the seminorm of W3 as well as in the uniform metric.

el < —=lla uy||c.<.5—-—-fa_uynm (5.15)

6. Approximation error and convergence. Consider the question of convergence of the
difference scheme (5.1) with variable weight factors. By analogy with [8]. we state the following
conditions to be used below.

CoxDITION A. The functions k', k", pl., fi, u", and (kmt')" (m = 1,2, v' = 9v/dx) satisfy

m?
the Lipschitz condition in r over each subdomain Qm, %% satisfies the Lipschitz condition in ¢ over Q.

2 . . . R .
and g,{,‘ satisfies the Lipschitz condition in t over Q2.

CoxDITION B. The left and right limit values of the functions fm. fi,. fin (m = 1.2), u', u.

me J
and u”" satisfyv the Lipschitz condition in ¢ over the liner = ¢ for0 <t < T.
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Suppose that y € H is a solution to the problem (4.1), (4.2), (5.7)-(5.13) and u(x,t) is a solution
to the differential problem (2.1)-(2.3). Write down the equation for the error

z = y — u, where
up = (uf uj.....ufy_;) . Inserting y = z + u in (4.1) and (4.2), we obtain
Dz + Bzg + Az =1, (0} =0, =z(0) = v(z). (6.1)
Here z. v, v € H,
i = —pruei — povg; + ((auz) )i+ i, i=1,2,...,N -1, (6.2)

is the approximation error for the equations (2.1) and (2.2) and the conjugation conditions (2.5), and

v = —p1uy + (aui)(ZJI,GZ) +¢, T Ewy,
ﬁl(l')"‘Ut(:L',O), z Ew;hv
determines the approximation error of the second initial condition.

By analogy with [4, p.421], we now transform the expression for the residual. To this end, we

consider the equations (2.1) and (2.2) at time ¢ = ¢; and integrate them with respect to = from x;_gs
to Iiyo.s:

Zi40.5
Witos — Wisos + / (fl(fat) - Pl(l)*aﬁ(;t;t)> dz =0, (z,t)€w,
Ti-05
3
Wpsas = Wpeas+ [ (et = (a2 do
Tp—05
Zp+0.5 \
[ (0= 55 ) =0 a=t (6.4
£
Zi4+0.5 62u(z’ t)
Witas — Wies + / (fg(z,t) - pg(x)-—é-tz—) dz =0, (z,t) € wa.
Z;-05

Here W = ku'.
Divide each of the identities (6.4) by h and subtract them from (6.2) to obtain
Y =me+v1, m=/(auz)" - W =0O(h% + 7).

Here © = v(zi—g.5,t) and

4

Ti40.5
1 Ou(z,t
—piutto =4 / (fl(it,t)—m ug; )> dz, (z,t) € wi,
Zi-0.5
3
1 du(z,t
=0.5(p1ue + poug) +o — 3 / (fl(l'st) - Pl—u%—l) dz
W = < Tn-0.5
Tn40.
1 +0.5 et 8%u(z,t) s ¢
—'h 2(3:» 22 atz y T=4G,
3
Lit0.5
1 Pu(z,t
~pritig 2~ / (f'z(I-t) - P‘z—-—atT—)) dz, (r,t) € wa.
T{-0.5
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By the smoothness conditions. we have
Ti40 5
1 h? 7 2 A
i f(I~t)dI=<P+‘§‘fr‘i+O(h ), I € w,

Ti-05

4
1
'}; / plglidl‘-Fl /pg-*aﬁd:t

Ti-0.5 13

Ou(z,t d? h?
=05 (m—%-——) +p2 u) + =P, + O(R%),
=€

pi(z) 22l (5 1) e @y,
p(I,t) = 82u(tt
pa(2) 28 (2,1) € Qo

We can consequently rewrite the approximation error as

h2 ! R * *
p=n+¢’ n=m+3@-f) ¥*, vf = O(h? + 7).

We turn to finding the order of the accuracy of the scheme. By (4.6), a solution to the problem (6.1)
satisfies the estimate

lenslla < /=25 (lO)o + gma (el a-s + el ). (63)

Immediate calculations yield
Nze(0)1% = |lv(2)% = (Cv, v) + 0.572((Z1 + £2)Tw, Tv).
Since C, Ty, and ¥» are bounded operators, we have

I(@)llp < colllvll® + 72 llwe]*)/? < e(h? +7), (6.6)

where ¢y and ¢ are constants independent of & and 7.
Similarly (see, for instance, [4, p.442]), we have

aes < = (Il 5500°0) S el 7). ams < €64 7),

Theorem 3. Suppose that Conditions A and B are satisfied in each of the subdomains Qm
(m = 1,2). Then for

o1(z) 2 (), or(e) +oa() 2 S

T € wp,

a solution to the difference scheme (5.1)~(5.3) converges to a solution to the differential problem
(2.1)-(2.5); moreover, the following estimate holds:

max lz(®llc < c(h® + 7).

The proof of the theorem follows from (6.5)-(6.7) and the embedding (5.15).

We consider some more general problems similarly. Of particular interest are difference schemes
for multidimensional problems with curvilinear fusion lines.
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