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1. I n t r o d u c t i o n .  In mathematical  modeling of physical-chemical processes in composite bodies. 
it is often necessary to use the mathematical  models that are based on equations of different type in 
different parts of the calculation domain. A particular attention in this event is paid to the fusion 
conditions on the boundaries of subdomains. The questions of unique solvability of boundary value 
problems for equations of mixed type are intensely discussed in the literature (see, for instance, [1]). 

Concerning this class of problems, we distinguish boundary value problems for hyperbolic-para- 
bolic equations whose unique solvability in the class of weak solutions was considered in [2, 3]. In the 
present article, taking as an example the simplest one-dimensional boundary value problem, we discuss 
the questions of numerical solution of the problems. We construct a homogeneous difference scheme [4] 
that belongs to the class of schemes with variable (discontinuous) weight factors [5-7]. We distinguish 
the classes of unconditionally stable schemes and study the convergence rate of an approximate solution 
to an exact solution. 

2. S t a t e m e n t  of  t h e  P r o b l e m .  Consider thefollowinginit ial-boundary value problem of fusing 
hyperbolic and parabolic equations in the rectangle Q = QIuQ2, Q'I = {(x, t) : 0 < x < ~. 0 < t < T}. 
Q 2 = { ( x , t ) : ~ < x < l ,  0 < t  < T } :  

p l ( x ) ~ - - - - ~ x 0 ( k l ( x ) ~ x ) + f l ( x ' t ) '  (x , t )  E Q1, (2.1) 

( 
where prn(X) is a strictly positive function in Qm and 0 < cl <_ kin(x) <_ c2 (rn - 1, 2). We supplement 
these equations with the following boundary and initial conditions: 

u ( O , t ) = u ( l , t ) = O ,  t > 0 ,  (2.3) 

0U "2~ ~(~,0)  = ~0(z), 0 < z < t; ~ - ( , 0 )  = ~l(x) ,  ~ _ z < I. 

The following fusion conditions are satisfied on the interface z = ~ between the  two domains: 

(2.4) 

[ka,,l [ u ] = 0 ,  L Oxj=0 for x - - 5 ,  t > 0 ,  (2..~) 

where 

[u] = ~(r + 0, t) - ~(~ - 0, t), 
f ]r (x), k(x) = 

k2(z), ( 

0 < x < ~ ,  
~ < z < l .  
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Constructing and studying difference schemes for the fusion problem under consideration; we 
assume that the coefficients pro(x), km(X), and f m ( x , t )  (m = 1,2) have the straight line x = 
a discontinuity of the first kind and are sufficiently smooth outside the discontinuity line. Under the 
above assumptions on the input data, the questions of existence and uniqueness of a strong solution 
were studied in the articles [2,3]. Henceforth we suppose that a solution u ( x , t )  to (2.1)-(2.5) is 
piecewise smooth; i.e., it possesses all needed derivatives outside the line x = ,~ which are continuous 
and bounded, and satisfies the fusion conditions (2.5) on the straight line x = ~. We note that the 
assumption that the coefficients pm and km depend on a single variable x and that the boundary 
conditions (2.3) are homogeneous is only made to simplify exposition. 

3. Di f fe rence  schemes .  We introduce the following uniform grids of knots: 

~h = {xi = ih, i = 0 , 1 , . . . , N ;  h N  = / } ,  

W r = { t n = n r ,  n = 0 , 1 ,  . . . .  N 0 - 1 ;  v N o = T } .  

We suppose that the discontinuity point of the coefficients ~ = xp = ph E Wh, 2 _< p _< N - 2, is a knot 
of the uniform space grid. Also, we consider the following grids in the domains Q1 and Q2: 

~1  - -  tOlh X ~ r ,  t.~ = ~ 2 h  X U,'r, 

where colh = {xi = ih, i = 1 , 2 , . . . , p -  1]: and w2h = {xi = ih, i = p +  1,p + 2 , . . . , N -  1}. 
We approximate the differential problem by the three-layer difference scheme 

PlYt = ((aYe)(a~'ag)t + % ( x , t )  E wl ,  (3.1) 

~0 = Lv = 0, 

u (x ,  0) = ~0(z) ,  ut(z ,  0) = a d z ) ,  z E ,~'n, 

u ( z , 0 )  = ~0(z ) ,  u , ( x , 0 )  = a~(z) ,  

with constant weights ca,  a = 1,2. 
As in the case of the third boundary value problem 

p. 95], we approximate the fusion conditions (2.5) so as 
approximation in the space variable: 

(z, t) E w2, 

~i-h = ~h u {0} ,  

X ~ ~ 2 h ,  

(3.2) 

(3.3) 

(3.4) 

(3.5) 

for the one-dimensional heat equation [4, 
to fulfill the requirement of second-order 

Here 

h h 
(au~:) (''''~) + 7(p~u, + ~) = (~u~) ( ' ~ ' ' )  - ~(p2y~t + ~ ) ,  z = ~. 

Pk = Pk(Xi), a = k(xi-0.5), ~ -- 0.5(fi-0.5 "[- fi+0.5), 

f~o = P-{l(x)(Luo(x)  + f ( x ,O) ) ,  

~1 = Ul(Z) + 0.5~t,~-a(x)(Lu0(:~) + f(x, 0)), 

Lu = "~x \ O x ]  ' f ( x , t )  = _ f2 (x , t ) ,  ( x , t )  E Q2. 

It is convenient to write the approximate fusion conditions (3.6) as 

(3.6) 

(3.7) 

(3.s) 

0.5(pxyt + P2Yft) = ((aY~)(al'a2))~ + ~. x -- ~. (3.9) 

Observe also that the second initial condition yt(x,  0) = ii0 for the parabolic equation is derived by" 
the following arguments. Employing a three-layer scheme, we have to know one more initial condition. 
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for instance y(x.  r): therefore, it is natural to approximate this condition with accuracy O(h" + 7"2). 
The idea (see [4. p. 97]) is to search the value y ( x , r )  in the form 

y ( x ,  ~) = u0(x) + rg(x) 

and choose # so that the error y(x,  r) - u(x, r) be O(r 2 + h2). 
Insert the value ~-}]t=0 in the formula 

�9 Ot I~=o + 2 0 t  2 t=o + O(r3) 

and use the differential equation 

~ I P t - ~  = Luo + f l (x ,O),  O < x < ~. 
t=0  

Then 
= (Lu0 + fl(x,O))/p~(x). 

Hence, we obtain (3.4). 
Also, we indicate another way of specifying y(x,  r) with accuracy O(h 2 + r2). We carry out the 

first step in the domain (x, t) E COl by using the two-layer scheme 

yl _ y0 
P l - -  - ((ay~)(1/2'~ + ~0, 0 <: x < ~, (3.10) 

T 

y(x,0)  = u0(x), y(0,~) = 0, y(~p,r) = u0(~p) + r~l(~p).  (3.11) 

Observe that, for finding the second boundary condition y(xp, r) at the fusion point, we have used 
the given initial condition for the wave equation yt(x, 0) = fil in (3.5) at ~ = xp. 

For our approximation to the parabolic equation in the domain wl, the scheme (3.1), (3.10), (3.11) 
leads to a scheme with variable weight factors [5, 6]. We will discuss this question in more detail below. 
Implementation of the difference schemes is standard for Crl # 0 and bases on the sweep method (as in 
the case of nonhomogeneous boundary conditions). 

4. S tab i l i ty  of  d i f f e rence  s c h e m e s  wi th  cons tan t  weights .  To study the stability questions. 
we use the canonical form of three-layer operator difference schemes like [4] 

Dy{t + By~ + Ay = ~, O < t E wr, (4.1) 

y(0)  = y0, yt(0)  = g0, (4.2)  

where y E H, H is a real finite-dimensional Hilbert space, and A, B, D : H --. H are linear operators 
in H. 

o 

Let fl~' stand for the set of grid functions y.~ = y(xi, t") that are given on ~h and vanish on the 
boundary. For these functions, we define the operator A as follows: 

(Ay)'~ = - (ay i )x , i ,  i = 1 , 2 , . . . . N -  1, y~ = y]r = 0. (4.3) 

Introducing the vector gn (Yl, Y2, n T = "'" "Y:V-i) , we define the space H to be the set of these vectors y 
with tile inner product and the norm 

N-1 

(y, v) = (y., v.) = ~ y~v~h, IlYll = v ~ , Y ) .  (4.4) 
i=1 
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Then the operator A acts from H into H. Given D = D* > 0, we denote by HD the Hilbert space 
with the inner product (y. V)D .= (Dy. v) and the norm Ilyll~ = (Y,Y)D- 

By [4, p. 392. Theorem 6: -t. p. 399, Lemma 3], if 

(1A-~)r 2 
A * = A > 0 .  D* = D >  A, B > 0 ,  e > 0 ,  (4.5) 

- 4 

then we have the following a priori estimate for a solution to the difference scheme (4.1), (4.2): 

I[Y~+I][A ~ ~/- '---~-(tlY(O)IIA + IJYt(O)f[o + max (II~I[A-'  + [l~t,kIIA-1)) �9 
V r 05kSn 

(4.6) 

To reduce the scheme (3.1)-(3.5), (3.9) to the canonical form (4.1), (4.2), we moreover define the 
operator A by (4.3) and the operators B and D as follows: 

r 2 
D = S + -~-(al + a2)A, S = d iag{s t , s2 , . . . ,SN_l} ,  (4.7) 

0.57-pl(z), z ~ wlh, 
s(x) = 0.25rpl(x) +0.5p2(x),  x = ~, 

p2(z), z E~2h; 

B = G + ( a l - a 2 ) 7 - A ,  G = d i a g { g l , g 2 , . : . , g N _ l } ,  

pl (X) ,  X ~ ~ l h ,  

g ( x )  = 0 .5p l (X) ,  X = ~, 

0~ X E W2h. 

~u also pose the initial conditions 

(4.8) 

(4.9) 

yo(x) = uo(x), x E Wh~ (4.10) 

Then the identity 

y , ( 0 )  = 0o, Oo(x) = { r~o(z), x e ~lh, 
~I(X) ,  X e ~O~h, OJ~h = ~2h U {~}. (4.11) 

7-2 
vc- l , -~)  = v + 7-(o.1 - o.2)~ + T(o.x + o.2)~, (4.12) 

implies that  the difference scheme (3.1)-(3.5), (3.9) reduces to canonical form for three-layer operator 
difference schemes with the operators A, B, and D, the right-hand side tp, and the initial conditions 
y0 and 00 defined by the corresponding formulas (4.3)-(4.11). 

T h e o r e m  1. Suppose that the parameters of the difference scheme (4.1), (4.2), (4.7)-(4.11) 
satisfy the conditions 

l + e  
o.1 _> o.2, o.r + o.2 _> ~ (4.13) 

2 

Then the scheme (4.1), (4.2), (4.7)-(4.11) is stable with respect to initial data and the right-hand 
side; moreover, a solution to the problem satisfies estimate (4.6). 

PROOF. We have A = A* > 0, D = D* > 0, and B > 0 whenever o.1 > o'.2. Therefore, to prove 
the theorem, it suffices to validate the inequality 

1+~T2 4 ( +~ I+~) D . . . . .  4 . = S +  Crl " r '2A>O. 
2 4 - 

(4.14) 
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Once this inequality is obvious under the assumptions (4.13), the theorem is proven. 

5. D i f f e rence  s chemes  wi th  var iable  weight  factors .  We have already mentioned above that 
difference schemes with nonconstant weights for the fusion problem for equations of different types 
arise in the case of the three-layer scheme (3.l) for a parabolic equation with the initial conditions 
(3.10) and (3.11). In practice, it is the two-layer difference scheme that is usually used (in this case 
a2 = 0) for numerical approximation of a parabolic equation and the three-layer scheme is used for 
approximation of a hyperbolic equation. 

We define the variable weights al and a2 by the formulas 

if, X � 9  f O, x � 9  

~ = 0 .5(~  + ~ ) ,  x = ~, a2(x)  = / 0"5~i'  ~ = ~' 
ffl~ X �9 a,'2h ~ ff2~ X � 9  

Here a, a~, and o'~ are constants. Then we may rewrite (3.1)-(3.5), (4.10) as 

~lyt + ~.y~t = ((ay~)(~(~)'~2(~)))~ + ~,  (z ,  t) �9 w, (5.1) 

u(0, i) = y(t,  i) = 0, t ~ ~ ,  

y ( ~ , 0 )  = ~0(~) ,  -~ �9 ~h,  y~(~,0)  = ~1(~) ,  �9 �9 ~2+h, 

where w = Wh • w r  and the coefficients/~k are defined by the formulas 

(5.2) 

(.5.3) 

pl(X), 

~1(~) = 0 . sp~f f ) ,  
0, 

X E Wlh, 

X E W2h, 

(.5.4) 

0, 

~2(~) = 0 ,5p2ff) ,  
p2(~),  

X E Wlh,  

z = ~, (5.5) 

x E Cd2h, 

1 

Let f/h be the set of grid functions vi = t ' ( x i )  We study stability of the scheme along the lines of [6]. 
given on the grid wh and satisfying the condition v0 = 0. Alongside the Hilbert space H, we introduce 

rt rt T the space HI that is the set of vectors of the form vn  = ( v ' ~ , v 2 , . . .  , v N )  . We endow HI with the 
inner product 

N 
(v.,w.] = ~ v~'~:'h. (5.6) 

i=1 

Let us show that the operator A : H --+ H defined by (4.3) admits the representation A = T * T .  

Define the linear operators T : H --+ HI and T* : HI ~ H by the formulas 

( T y ) i  = ,r i = ] . , 2 , . . . ,  N ,  Y0 = YN = 0, ( 5 .7 )  

( T * v ) i  = -(vr~v)~,i, i =  1 , 2 , . . . , N -  1. (5.8) 

The operators T and T* are adjoint to each other with respect to the inner product (5.6). Indeed, 
by the summation by parts formula, for arbitrary y E H and v E H1 we have 

N N - 1 

(,,. r~)= ~ , ,~y~,ih = E -(~.)~.~y~h = (r',~,y) 
i=l i=l 

(.5.9) 
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Now. we define the operators B and D as follows: 

B = G + rT*(E1 - E2)T, (5.1o) 

G = diag{~,l, P12 . . . . .  PlN-1 }, 

D = C + 0.5r2T*(E1 + E2)T, 

C = diag{cl, c2 , . . . ,  CN-1} ,  ci ~- 0.5pl/T -'1"-/~2i. 

Ek : H1 -* H1, Ek = d iag{akl ,ak~, . . . , akN-1}.  

(5.11) 

(5.12) 

(5.13) 
It is obvious that the difference scheme (5.1)-(5.3) with the variable weight factors reduces to the 

canonical form (4.1), (4.2) with the operators A = T ' T ,  B, and D defined by (5.7)-(5.13) and with 

p'[t(Ay(a) + c2) , x E W,h, 
yt(O) 00, ~0 

�9 e 
(5.14) 

It is obvious that  the operator A is positive and self-adjoint. Since a,  a~, and a~ are positive 
constants, the operators E1 and E2 are nonnegative and D = D* > 0. By construction, B > 0 for 
El >_ E2. In order to use the a priori estihaate (4.6), we check the condition (4.5) which is sufficient 
for stability. Observe that  

D . . . . .  " = C +  T* E ~ + E ~ , -  E T > _ 0  
4 

for E1 + E2 _ 12-~E. This inequality and the condition E1 _> E2 are satisfied for ~rl(X) + a2(x) >_ 
0.5(1 + ~) and al(x) >_ (r2(x) respectively. 

T h e o r e m  2. Suppose that the parameters of the difference scheme (5.1)-(5.3) satisfy the condi- 
tions 

l + e  
> +  2(x) > 2 "' z 

Then the scheme is stable with respect to initial data and the right-hand side; moreover, a solution 
to the problem meets the estimate (4.6). 

By the embeddings [41 

Ily ]l <-  I IllYlIA, IlYlIc  IlYlIA, (5.15) 

where []g~][ = ( v ~ ,  Y~] and Ilyllc = maxxe,~h [y(x)[, (4.6) implies the corresponding a priori est imates 
in the seminorm of W~ l as well as in the uniform metric. 

6. A p p r o x i m a t i o n  e r ro r  a n d  c o n v e r g e n c e .  Consider the question of convergence of the 
difference scheme (5.1) with variable weight factors. By analog)" with [8], we state the following 
conditions to be used below. 

. .  i and (kind)" (m 1,2, v' CONDITION A. The functions ktm, kin, Pro, ftm, urn, " = = Ov/Ox) satisfy 
the Lipschitz condition in x over each subdomain Qm, ou satisfies the Lipschitz condit ion in t over Q1- 37 

~ satisfies the Lipschitz condition in t over Q2. and 

CO.XDITION B. The left and right limit values of the functions fro. f~,, .f~ (m = 1,2), u', u". 
and u'" satis~" the Lipschitz condition in t over the line x = ~ for 0 < t < T. 
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Suppose that g E H is a solution to the problem (4.1), (4.2), (5.7)-(5.13) and u(x, t) is a solution 
to the differentia[ problem (2.1)-(2.5). Write down the equation for the error z = y - tL, where 

u, = (u~, u~ . . . . .  u~._l) T. Inserting y = z + u in (4.1) and (4.2), we obtain 

Dzi t+Bz  7 +Az=~b, z(O)=O, z,(O)=v(x). (6.1) 

Here z. ~/,, v E H,  

~'i = -plut,i - p2uh,i + ((att2.)(at'a2))z,i -]- cfli, i = 1 , 2 , . . . ,  N - 1, (6.2) 

is the approximat ion error for the equations (2.1) and (2.2) and the conjugation conditions (2.5), and 

-rout + (aue)([ ~'~2) + ~, z ~ "~lh, Z2 [ 
determines the approximat ion error of the second initial condition. 

By analogy with [4, p. 421], we now transform the expression for the residual. To this end, we 
consider the equat ions (2.1) and (2.2) at t ime t = tj and integrate them with respect  to x from xi-o.s 
to xi+0.5: 

:Ci+0,5 

w~+,.5 - W,-o.5 + f~(x,t)-p~(~) ) d~ = o ,  (~ , t )  e ~Ol, 

"ri-0. 5 

0~(~ ,  t) 
W,+o.s- Wp-o.5 + / (f1(x,t)-  pt(~) = ~ ) dz 

zp-O.5 

zp+0.5 

+ f . , ( x , t )  - p2(x)  ~/~ dx  = 0, ~ = ~, (6 .4)  

Zi+0.5 

wi+0.5 - Wi-0.5 + f.~(z, t) - p2(x) ~ ) dx = O, (x, t) ~ ,;2. 
Zi-0.5 

Here W =  ku'. 
Divide each of the identities (6.4) by h and subtract  them from (6.2) to obtain  

= r]lz 2c ~1, 7"11 = (auto) (~I'a2) -- ~" = O( h2 q- r).  

Here O = v(xi-0.5, t) and 
zi+O.$ 

1 / ( COu(x,t,) 
- -pl l t t+~--  -~ f l (X, t ) - -p l - - -  ~ -  ax, ( x , t )  e t ~ l ,  

zi-O.5 

--O.O(pltttq-p2tlft)+cfl-- ~ f l (x , t ) - -p i - - - - -~"  dx 
~Cn--0.5 

~'1 : zn+0.5 

Xi+0.5 
, 1 f f . . . .  OZu(x, t )~.  

xi-0.5 
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By t, he smoothness conditions, we have 

Xi+O 5 

1 f h2~l -~ f ( x , t ) d x  = ~ + V i i ,  i + O(h2), 

~ci-O 5 

x E Wh, 

Zi+0.5 

:ri-0.5 

I / OU(X, t) 692tt'~ h2 --t 
=0"5LPl  N +P2-ff'~)z= +TP~,p+O(h2) ,  

~ , a u ( ~ , t )  
pl(x)---OT-- , (x,t) E Q1, 

p(z, t )  = , , a2 , , (~ , t )  
p~tx) o~t ~ , ( x , t )  ~ Q2. 

We can consequently rewrite the approximation error as 

h 2 
~ / ' = r / z + ~ * ,  ~ = r / l + - ~ - ( f f - - ] ' ) ,  ~*, ~ - = O ( h 2 + T ) .  

We turn to finding the order of the accuracy of the scheme. By (4..6), a solution to the problem (6.1) 
satisfies the estimate 

max Ilz,+llla < (llzt(0)ll~ + 0__.k_<, (ll~kkllA-~ + II~Pt,kllm-1)). (6.a) 

Immediate calculations yield 

Ilzt(0)ll~ -- IIv(x)ll~ --- (C~,, v) + 0.5~'2((E1 + E2)T~,,T~,). 

Since C, El,  and E2 are bounded operators, we have 

II"(x)llo _< ~0(11,,112 + r2llv~]12) 1/2 < c( h2 + r) ,  (6.6) 

where co and c are constants independent of h and 7". 
Similarly (see, for instance, [4, p. 442]), we have 

I1r < ~ 11'111 + I1r < c( h2 + r), IlCtllA-x < c( h2 + r). 

T h e o r e m  3. Suppose that Conditions A and B are satisIied in each of the subdomains Q,,, 
(m = 1,2). Then/'or 

1 + ~  
O'I(X) --> O'2(X)' O'I(X) +" O'2(X) >-- 9 - ~ '  X E t~h: 

a solution to the difference scheme (5.1)-(5.3) converges to a solution to the  differential problem 
(2.1)- (2.5); moreover, the following es t imate  holds: 

maxllz(t)ltc < c(h 2 + ~'). 
rE;at 

The proof of the theorem follows from (6.5)-(6.7) and the embedding (5.15). 
We consider some more general problems similarly. Of particular interest are difference schemes 

for multidimensional problems with curvilinear fusion lines. 
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