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Nowadays the general theory of operator-difference schemes with operators acting in
Hilbert spaces has been created for investigating the stability of the difference schemes
that approximate linear problems of mathematical physics. In most cases a priori
estimates which are uniform with respect to the ¢ norms are usually considered. In the
investigation of accuracy for evolutionary problems, special attention should be given to
estimation of the difference solution in grid analogs of integral with respect to the time
norms. In this paper a priori estimates in such norms have been obtained for two-level
operator-difference schemes. Use of that estimates is illustrated by convergence inves-
tigation for achemes with weights for parabolic equation with the solution belonging to

w2HQr).

1. Introduction

In the investigation of convergence of difference schemes, it is most important to
have the stability of approximate solution with respect to the initial data and right-
hand side. Nowadays the theory of stability {well-posedness) of operator-difference
schemes®® has been created and widely developed. In the framework of this theory
for wide class of two- and three-level difference schemes in Hilbert space, exact
{coinciding necessary and sufficient) conditions were obtained. Basic theoretical
results of stability theory can be found in Refs. 10 and 12.
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Let us emphasize the main character of the gemeral theory of stability of
operator-difference schemes. As the most important generalization of the theory we
should notice its application to ill-posed evolutionary problems!® and projection-
difference (FEM) schemes.”

It is a natural way to prove convergence of difference scheme in such norms in
consistent with smoothness class of differential problem solutions.4 %4 By virtue
of this, one should have a spectrum of estimates for difference solution. In case
of difference scheme for nonstationary boundary value problems with generalized
solutions,’ > attention should be paid to estimates of difference solution in integral
with respect to time norms.'®!® In most cases estimates, which are uniform with
respect to the time norm, in the theory of stability of difference schemes!®1? gre
made.

In this paper we demonstrate the possibility of obtaining stability conditions
in integral with respect to time norms. A prior: estimates for two-level difference
schemes written in the canonical form are obtained. The point of principle here
is the fact that the difference solution at half-integer time moments is evaluated
via linear interpolation of grid function values at the moments. Convergence of
difference schemes for parabolic equation with generalized solutions is investigated

on the basis of a priori estimates in integral with respect to time norms.®7

2. Difference-Differential Problem

Let X be a real finite-dimensional Hilbert space with scalar product (-,-) and norm
i - |I. Denote as Xg a Hilbert space of elements of X, with scalar product {-,-)g =
(G+,-) and norm || - |l = (- -)lclz. Here G = G* > 0 is a self-adjoint positive
operator in X. Let D and A be linear (e.g. difference operators in X). Consider a
difference-differential equation

D%+Au=f(t), 0<t<T. (2.1)

We suppose that operators in this equation are constant in X (D # D(#), A # A(t))
and
D=D">0, A=A">0. (2.2)

In obtaining convergence estimates for difference solution, we shall consider the
Cauchy problem for Eq. (2.1) with homogeneous initial condition

u(0)=0. (23)

Let us consider a scalar product in X between u(t) and (2.1). Integrating one by
time on the interval [0,1] and taking into account (2.2), (2.3) we get the following
a priori estimate

()i +/0 ()13 a6 Sfo £ (O 8. (2.4)
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In obtaining the a priori estimates for difference analogs of the problem (2.1)~(2.3),
the simplest estimate is usually employed

@I, < / 1£()]3- do,

which immediately follows from (2.4). In a number of cases (e.g. in investigation of
problems with generalized solutions), much more attention should be paid to the
estimate

/ lu(0)|% db < / 1£O)s do (2.5)
0 0

of problem solution in the integral with respect to the time norm.
Note that there is a positive and self-adjoint operator A~1. Thus, in partlcula.r
case, D = DA™1 = A"'D from (2.1) we obtain

d
Dd"+Au— A7), 0<t<T, (2.6)

where D = D* > 0, A= E. Applying (2.5) to the problem (2.6), (2.3), we get

t t
[ 1u@ypas < [1azso)2an. (27)
In the same way, multiplying (2.1) by du/dt, we deduce inequality
2 * || du(
lu(®)Ia + @ |, d9 < llf(i9 51 d8. (2.8)

From (2.8) we have the standard estimate for the solution of (2.1)-(2.3):

@) < /0 170)]5-. do

Besides, special attention should be paid to inequality

/

Let us present some results in obtaining the difference analogs of a priori estimates
(2.5), (2.7) and (2.9).

do < / 17 O)]- db- (29)

3. Operator-Difference Schemes
Let
wr={tn=n7, n=0,1,...,No—1, Nor=T}

be a uniform grid in time with step 7 > 0. For functions defined on w, we shall use
the following notation!®: y = y(t), 7= y(t+7), ¥ = y(t — 7) and y, = (§ — )/
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Let us define space H = H(w,; X) as a set of grid functions given on w, with values

in X and norm 2
- llse = (Z - (t)||2) :

tCw,

On grid w, let us consider two-level operator-difference scheme written in the
canonical form

By, + Ay = ¢(t), t€w,, y(0)=0, (3.10)

where operatbr B=B*>0,y=y(t) € X, ¢(t) € X. We shall study stability of
difference scheme with respect to the right-hand side.

Theorem 1. For difference scheme (3.10) with operators A= A* > 0,B=B* >0
so that

B>-A (3.11)

[

the following a priori estimate holds

Doy OIE < Y Tlle®lh- (3.12)

tCwr tCwr

where y(®9 (t) = (y(t) + y(t + 7))/2.

Proof. Let us rewrite operator Eq. (3.10) in the equivalent form
1
Gy + Ay'®® = o(t), G=B-— STA. (3.13)

Considering a scalar product in X of (3.13) by 27y(®® and taking into account
G = G* > 0, we get an energy identity

(G5,9) +27]ly % = (Gy, ) + 2r (>, ). (3.14)
Applying Cauchy’s generalized inequality to the right-hand side
27y, ) < 7lly D% + Tllelld -

and summarizing over t € w,, we get from (3.14) the required estimate. O

The estimate (3.12) is a difference analog of a priori estimate (2.5). In addition,
it was obtained for the difference solution at half-integer moments defined by
expression y(t + 7/2) = (y(¢t + 7) + y(t))/2. Note that stability in such integral
with respect to time norms was established in conditions (3.11), that are necessary
and sufficient for the stability uniform with respect to the time norms.

In more strong assumptions about difference solution in integer time moments
we can get a priori estimate of stability with respect to the right-hand side in the
integral by time norms.
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Theorem 2.2 For the difference scheme (3.10) with operators A = A* > 0,B =
B* >0 and -
Bz(1+e)§A, 0<e<?2 (3.15)

the following a priori estimate holds

> Tlv@lih < 52(2 5 2 7 lle@lia-s - (3.16)

tCwr tEw
Proof. After rewriting Eq. (3.10) in the form
(B-1A)y: + Ay = o,

let us consider its scalar product in X with 27y. From self-adjointness of the
operators B and A one can deduce that

27((B — 1Ay, §) = 7((B — TA)y,y): + 72((B — TA)ye, 1)

and get the following identity

(B§,9) + 7(A7, 7)) + T(Ay,y) + 72((B — 7A)ys, 1) = 27(,§) + (BY, y) -

Taking into account

PR 1 72
(43,9) + (A, 9) = 5 17+ yl%+ 7||yt||i ,
we call see
~ T o~ ~
1§13 +72((B — 0,574, ve) + 5 lly + 3ll4 = Iyl +27(¢, 7). (3.17)

Let us estimate the term 27(y, ). From

. 1 ~
y=§(y+y)+—7'yt,

2
it follows that

27(0,9) = T(p,y + §) + T2 (0, 1) < —~l|y +ilh+ 5 “SDHA .

T 62
2 uull + 5= lels -
2eq

So, from identity (3.17) we get

i+ (8= 4270 v )+ F0 el + 913

T(1 1
<o+ 3 (5, +3,) el (318)
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Since under the conditions €1 =1—¢/2,e9 =¢/2>0and B > ((1+¢)/2)7A

1+e 1—gg % 3 TE -
(5= 520a) o)+ 25 2y + 916 > Tl + T+ 915

TE - TE ~
=7 (ly + 3% + ~*lwald) = 7 (gl + 1g1%) »

from (3.18) we find that

TE 9 2T 2
lyw+1ll% + > (loallh + llyesallz) < llwwl® + mll%h—l .
Summarizing the last inequalities over all k = 0,1, ..., n, we get the estimate (3.16).
The proof is complete. O

Let us apply Theorem 2 to the investigation of stability with respect to the
right-hand side of the scheme with constant weights

ye + Ay = o(t), tcw,, y(0)=0. (3.19)

On the basis of identity y(°) = y + oTy, it can be rewritten in the equivalent
form
(E+orA)yy: + Ay =p(t), t€w,. (3.20)

In (3.19) we assume y(?)(t) = oy(t + 1) + (1 — o)y(t).
Multiplying A~ on both sides of Eq. (3.20), we get another canonical form of
two-level scheme:

By + Ay=3(t), tew,, y(0)=0, (3.21)

where B=A"'+0rE, A=E, 3= A ¢, B = B* > 0. Verifying the sufficient
condition (3.15) of stability with respect to the right-hand side

~ E l1+e¢ 1
Ai- A‘l——>+7<a——+—)E20
( | Al 2 7|4

B—-(1+¢)

B

brings to us the restriction on weighting parameter

>1+5 1

02 === (3.22)

It also follows from the inequality A~ > (1/|/A||)E which carried out for any
self~adjoint operator A.
Thus, we have proved the following statement.

Theorem 3. Suppose that in the scheme with weights (3.19) A = A* > 0, A # A(t)
and condition (3.22) is satisfied. Then the difference scheme is stable in H and the
following a priori estimate takes place

vl < =gy 14 el (3.23)
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Note that estimate (3.23) is a corresponding analog of the difference inequality
(2.7).
Similarly, for the difference solution at half-integer moments we can formulate

Theorem 4. Let A = A* > 0 be a constant operator in the scheme with weights
(3.19). Then in assumption

[y

1
o> -

25~ W (3.24)

the scheme is stable in H and a priori estimate

Y v < Y Tl ATl (3.25)

tCw tCws
18 valid.
Let us give now the difference analog of the estimate (2.9).

Theorem 5. For difference scheme (3.10) with operators A = A* > 0, B = B*
and

G=B—%A>O (3.26)

the following a priori estimate holds

3 rlwells < Y- Tle@) - - (3:27)

tCwr tCwr

Proof. Consider a scalar product in X of Eq. (3.13) and 27y,. From the self-
adjointness of operator A, we get an energy identity

ly(e+ )% + 279z = ly@)Ih + 27 e @) - (3.28)

Using Cauchy’s generalized inequality, we get the following estimate

27(ye, ) < Tllyell% + Tllel-s -

Substituting it into (3.23) and summarizing over all t € w,, we obtain the inequality
(3.22). The proof is complete. O

Note that in this case we only demand a non-negativity for operator A. But
restrictions on the operator B are amplified (compare with (3.11), (3.15) and (3.26)).
From the estimate (3.27) with regard to condition y(0) = 0 it is also easy to get
estimates uniform with respect to the £ norm. One should use for that the following
inequalities.

Lemma 1.0 For any function v(t) given on uniform grid

U,.={tn=n7', ’n=0,1,...,No, NOT=T}
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and vanishing at t = 0(v(0) = 0), the following a priori estimates are fulfilled
Ivllew.) < VT lvellsc s
[vllse < Tllvellse,

where

- 1/2
Iollogw,) = max[p@)], vl = (Z Tv2(t)> :

tCw,

The proof of the Lemma follows from the obvious relations

t—r 2 47

v2(t) = (Z 'rvt) < tZT'ut2 ) (3.29)
t=0 t=0

[vll3e < TllvllZ. - (3.30)

Lemma 2. Let G = G* > 0 be a self-adjoint positive operator. Then for any
function y(t) € X, t € w,, y(0) = 0 inequalities

IO < £3° 7l

=71

Y Tyl <72 rllliz

tCw, tCwr
are satisfied.

Proof. Let z = G*/2y. For the function v(t) = ||y(t)||c let us use Lemma 1 and
inequality (3.29)

t—r
v2(t) <ty Tof, (3.31)
t=0
Z Tv2(t) < T? Z TvZ . (3.32)
tEwr tEw,

In accordance with the triangle inequality
| BN 2 1
v = (I6Y?y])? = = (1281l = =I)” < =12 —2l* = ||z ]*.

Thus, vZ < ||ye||%. Substituting the last inequality into (3.31), (3.32), we get
Lemma’s statement.
Let’s apply now the formulated conditions of stability for the scheme with
weights
Dy, + Ay?) = o(t), tew,, y(0)=0, (3.33)
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that approximate Cauchy abstract problem (2.1)—(2.3). The scheme (3.33) can be
written in canonical form (3.10) with

B=D+oTA. (3.34)

By virtue of (3.11), the estimate (3.12) for the difference scheme (3.10), (3.34) will
be valid when A < AD if

o>i_ 1

- Ar’

In the same way, from (3.15), (3.34) it follows that for scheme (3.10), (3.34) the
estimate (3.16) holds whenever

N

l14¢ 1
> - —
7= 2 AT

On the basis of Theorem 5 under ordinary restriction ¢ > 1/2 from (3.27) one
can obtain the inequality

3 rlweld < Y rlle®lp-s - (3.35)

tEwr tCEw,

This estimate is a difference analog of the estimate (2.9) for the difference
problem.

On the basis of Lemma 2 from (3.35), the estimate of the solution follows in
both uniform metrics

ly@® b <T Y lle®ip-

tEwr

and integral norm by ¢

3 vy <12 S e -

tEwsr tewr

4. Convergence of Difference Schemes for Problems with Solutions in
Distributions

In the rectangle
Qr={(z,t): z€02=(0,1), 0<¢t < T}
let us consider heat transfer equation

du O%u

with homogeneous initial and boundary conditions

u(z,0) =uo(z), z€9; u0,t)=u(,t)=0, 0<t<T. (4.37)
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For functions u = u(z) defined on € let us introduce Sobolev space W (Q) with

norm

dul®

2 T
lullws @) = lullz @) + dz

sl = / w(z) de,
) Q

L2

and for functions u = u(z,t) given on Qr let us define space Wza’ﬁ (Qr) with norm

2 B 2

O%u

e

&u
ots

a
2 ey = 1120y + 3
s=1

L2(Qr) =1 L2(Qr)

T
2, gm = / ()2, it

We shall denote as W4 (2) and W21,’01(QT) subspaces of W}(Q) and W, (Qr) such
that the dense sets in them are smooth functions that equal to zero near z = 0 and
z=1

Definition 3. An element u of space W22’ o+ = WA Qr)n Wzl”ol(QT) is called a
generalized solution of the problem (4.36), (4.37) in space W22 ’I(QT) if Eq. (4.36)
is satisfied almost everywhere in Q1 and equals to ug(z) when ¢ = 0.

Further we shall use

Lemma 3.3 The problem (4.36),(4.37) is uniquely solvable in Wi'o (Qr) if f €
La(QT), uo € W5'(0,1) and the following inequality holds

lullwzr @y < Mluollwy o,y + 1flz2(@r)) »
where positive constant M does not depend on ug and f.

In the domain Qr, let us introduce uniform grids w,,
whp={z;=th, i=1,...,.N—1, Nh=1}, wpr =wp Xw,.

Below we shall use Steklov’s averaging operators.!* First let us define one-
dimensional averaging operators acting in each direction z and ¢

1 z+0,5h

Sz'l)(.'l),t) = E osh 'U(g, t) dé-’

1 t+T 1
Siv(z,t) = ;/ v(z,t')dt’ =/ v(z,t + 071)df.
¢ 0

Let us introduce an operator of repeated averaging in direction z

. 1 z+h £
Su(a,t) = o, ) dn .
z £E—h
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Using the formula of integrating by parts one can obtain the following
representation p. 57 of Ref. 14

1 27+h !/ _
S2u(z,t) = —/ (1 _lZ=ql
h z—h

For averaging operators, the following properties take place

62 au
5'2 — gy
z 3(1)2 = Uzzx , S’l:

) o(@,t)da’ = /_11(1 _1s)v(z + sh,t) ds.

= Ug,
where
u(z + h) — u(z) _u(z) —u(z —h)
_— [} ui - T .
h h
Let us approximate the problem (4.36), (4.37) by difference scheme with weights

Uy =

ye =y + S25:f,  (2,1) € Whr (4.38)
y(z,0) = S2up(z), z€wn, y0,t)=y(l,t)=0, tcw.. (4.39)

Let us define H = Lo(wp) as a grid analog of L2(Qr) with integral with respect
to time norm

1/2
[vllse = (E Tllv(t)llz) @I =Y hP (). (4.40)

tCwr TCwp

Consider a problem of convergence of difference scheme in the grid norm of H.
Denote as & = S2u an averaging of the exact solution of problem (4.36), (4.37).
Here we extend the solution by oddness over the lines ¢ =0, x = 1:

—u(—z,t), z € (—1,0],
u(z,t) = { u(z,t), z € [0,1],
-u(2—-1z,t), z€ll,2).

It is not difficult to show that
”u”W2 1 3“““%4/2211(QT)7 Qr = {(‘T?t) rrc (_1,2)7 te (O7T)} :

Hence, u(z,t) € W22’1.
We shall compare approximate solution y with the averaging u. Substituting
y = z + 4 in (4.38), we obtain the following difference equation

=2 +9(x,t), (2t)€whr, (4.41)
2(z,0)=0, z€@p, 2(0,8)=2(1,%)=0, tew,, (4.42)

where
¥ = 828,f — T + 0y (4.43)
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is the approximate error. Let us transform it to the divergent form. To this end let
us apply the operator S2S; to the differential equation. We obtain

Uy = Syuzs + S2S:f .
Let us substitute S2S;f into . Then (4.43) is transformed to
¥ =Nz, n=S8u-1a. (4.44)

Let X be a set of grid functions y(z,t) that are defined at every t € @, on @
and satisfied the condition y(0,t) = y(1,¢) = 0. For such functions let us define the
operator A:

(Ay)(z) = —Yzz, T Ewp.
Let us introduce a vector y(t) = (y(h,t),y(2h,t),...,y(1 — h,t))T and define space
X as a set of vectors with scalar product (y,v) = ) ¢, ¥(z)v(z)h and norm
llyll = (y,¥)'/2. Then the operator A acts in X,ie. A:X — X.

Properties of A are well-known.!? In particular, A is self-adjoint and positive
A = A* > 0 so that for every y,v € X on the basis of formula of summing by parts

(uzs,v) = Z uzvzh = (4, vzs)

i.e. (Ay,v) = (y, Av). Besides, it is pos1t1vely defined

(Ay,y) > 8lyll*, (4.45)
which follows from the grid analog of the Friedrichs inequality.1® In particular, from
(4.45) it follows that ||A~*|| < 1/8 since operator A~? is self-adjoint and positive.

Let us define a vector n(t) = (n(h,t),...,n(1 — h,t)), n(z,t) € x.
Thus, the problem (4.41), (4.42) for approximation error can be written in the
form of two-level operator difference scheme

z+ A2 =4y, tew,, 2(0)=0, (4.46)
where z = 2(t) = (z2(h,t),...,2(1-h,t)) € X, 2(z,t) € x. Applying now Theorem 3
to (4.46) and taking into account that ||A|| < 4/h? whenever
1+e A2
> -
7=73 4T

we get an estimate

V2
lzllsc < E\/z—__—E”T)”:}c, 0<e<2. (4.47)

It remains to estimate the error n in norm | - ||3c. We use the following

Lemma 4.13 For grid function (4.44) the following estimate holds

M Su ?u
In(z,t)] < —= [ 7 || &7 ) ) (4.48)
Vhr Ot L, 972 || L, (e)

where e = (z — h,z + h) x (t,t +7), M > 0 does not depend on 7, h and u.
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Proof. By means of transformation
s= (' —z)/h, 0= -t)/r, (@,t')ce
let us map the cell e into the domain
e={(s,0): -1<s<1,0<0<1}.
Let us denote v(s,f) = u(z + sh,t+07) and rewrite the grid function 7 in the form

n= Stu——ﬂ(”) = Stu—ﬁ——mﬁt

1

=/0 u(:c,t+07')d0—/_1(1—|s|)u(x+sh,t)ds—a7'/ (1 — |s)ue(z + sh,t) ds

-1

_ /Olv(o,())do_/_ll(l- |s|)v(s,o)ds—a/_11(1— 1s)) (/01 %ﬂdﬂ ds.

By virtue of fol do =1, f_ll(l — |s|)ds = 1, the last expression can be rewritten in
the form:

n=[ [ @D 0.0) - (6.0) + o(s.0) = u(s,0) st
_07-/1 (1 —|s])ve(s,0)ds = + Lo + I5. (4.49)

Here

L= / / (1= 8D [v(0,6) ~ (s, )] ds

I, = /01 /_11(1 — |s]) [v(s,8) — v(s,0)] dsd@,

I = —0/_11(1 _1s)) (/01 %’Qm;) ds.

Let us use the Taylor series with the remainder term in the integral form

(9”_—m£!9>_'" F™ (20) + Rmya(z),  (4.50)

f(.’II) = f(-’l:o)-i— (Z—xo)f’(x0)+...+

T

Rmss(a) = o [ @=mFm0(©) de

Zo

_ m+1  pl
- (i%ou)— /0 (1 =)™ f™*D (@0 + n(z — 2o)) dn.



1068 A. A. Samarskii, P. P. Matus & P. N. Vabishchevich

Using the expansion (4.50), we get

o ¢ 8%v
v(s,0) = v(0,0) + 5-(0,0) + (s— g)_z(g’ 6)d¢ . (4.51)
63 0 6{
Applying the Cauchy inequality and identities
1 0 1/2 L, a2
1-—|s])sds=0, / s—&)2de =—|s
[ a-is (-0 5l

Sl s ds = L
|l = =,

and relation (4.51) let us estimate

L= // (1= 1s)) (—s (00)+/0(s—£)622(—§2’0)>d§d0
<[ [a-m /so(s—s)stl/z (/_11 (azg(—fg(’)>2de)l/2dsdo
1/2 1/2
-5l (/ (%) dﬁ) <_U/ (Z2e”) dgdo}

0%y( 50)

‘ 4 R
5\/— La(8) 5\/§th

Functionals I and I3 can also be estimated by the Cauchy inequality and Taylor
expansion (4.50).

12_// 1—||)</ i) 4 )dsde
/\/'/ (1~ sl) (/ (av(s’")) dn>1/2dsd0

0%u(z, t)
Ox?

(4.52)

LQ(C) .

2 || ov 2T 6u
2= S e , (4.53)
3 ‘ 0\, 3vhr La(e)
5 1/2
I3<a/ (1-—1s)) ( (v(sn)) ) ds
ﬁ ot || Ou(z,t) (4.54)
377 L2(8) V3 VhT ot La(e)

Combining all the estimates (4.53), (4.54), we arrive at the statement of the lemma.
O
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Let us show that

82
Inlls < V2M ( >

dz?

du

2
5t +h

L2(Q7)

) . (4.55)
L2(Qr)
In fact, in accordance with the definition

t+T1
ol = [ / v?(o, 1) dao dt
from (4.48), we get

Inl? < ( /HT /:+h <@> da:dt+h4/t+T /Hh (W) de dt) .

Summarizing the last inequality over all grid nodes ws,, we obtain

2
ZZhTT] mt<2M2< )
L2(QT)

tEwr TEWH
Hence, inequality (4.55) is satisfied. Substituting now (4.55) into error estimate
(4.47), we get

o
ozx?

ou |
ot

L2(QT)

o
Oz2

ou 2
Bt +h

L2(Qr)

> . (4.56)
L2(QT)

Theorem 6. Let u(z,t) € sz”ol, f € La(Qr), uo € I/i)’gl(O, 1). If

2M
= ||y — S? < =
I2llsc = lly = Szullsc < ——5— (T

Hence, we have proved the following statement.

1 2
> +E-—h— 0<e<?2,

=Ty T

then the difference scheme with weights (4.38), (4.39) converges to the generalized
solution of problem (4.36), (4.37) and for any 7, h estimate (4.56) holds.
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