УДК 519.63

РАЗНОСТНЫЕ СХЕМЫ НА АДАПТИВНЫХ СЕТКАХ ПО ВРЕМЕНИ ДЛЯ ПАРАБОЛИЧЕСКИХ УРАВНЕНИЙ С ОБОБЩЕННЫМИ РЕШЕНИЯМИ

А. А. Самарский, Б. С. Йованович, П. П. Матус, В. С. Щеглик

- 1. Введение. В настоящее время к вычислительным методам наряду с традиционными требованиями однородности и консервативности [1] предъявляют также и требование адаптивности. Использование адаптивных сеток позволяет при минимальном общем числе узлов сетки достигнуть максимально возможной точности алгоритма путем сгущения сетки в областях нерегулярностей решения. При математическом моделировании эволюционных задач с особенностями особую роль играет временной шаг τ . В явных методах выбор шага зависит главным образом от критериев устойчивости, а в неявных, безусловно устойчивых, от взаимосвязи точности и эффективности вычислительной процедуры. При использовании раздичных вычислительных методов адаптивного типа в нестационарных задачах, когда в отдельных подобластях применяются свои временные сетки, основные проблемы возникают при постановке краевых условий на внутренних границах.
- В [2, 3] для различных классов эволюционных уравнений предложены и исследованы разностные схемы на адаптивно-временных сетках. При этом показано, что данные алгоритмы безусловно устойчивы (без ограничений на соотношения между шагами τ и h) в сильных нормах (C, W_2^2). В теоретическом плане такие методы сводятся к схемам с переменными весовыми множителями (типичная ситуация для неоднородных вычислительных алгоритмов)

$$y_{\bar{t}} = (y_{\bar{x}x}) + \varphi, \quad \sigma = \sigma(x,t), \quad (x,t) \in \omega.$$
 (1.1)

В связи с этим в настоящее время несомненный интерес представляют работы по развитию общей теории устойчивости операторно-разностных схем в гильбертовых пространствах [1] на случай схем с непостоянными весами. Классической в этом смысле является работа [4]. Отметим также работы [5 — 8].

При использовании гибридных вычислительных методов на адаптивных сетках свойство консервативности обычно нарушается, что естественно является их недостатком. В [9] для параболического уравнения построены консервативные методы на адаптивных по времени сетках, которые (в отличие от (1.1)) преобразуются к дивергентному виду

$$y_{\bar{t}} = ((y_{\bar{x}})^{(\sigma)})_x + \varphi, \quad \sigma = \sigma(x, t), \quad (x, t) \in \omega.$$
 (1.2)

Отметим, что в алгоритмах типа (1.1), (1.2) $\sigma(x,t)$ — разрывная весовая функция, что, например, приводит к отсутствию в (1.2) безусловной локальной аппроксимации даже на гладких решениях исходной дифференциальной задачи. Тем не менее в [2, 3, 9] доказана безусловная сходимость разностного решения в метрике C со скоростью $O(h^2 + \tau)$ для алгоритмов типа (1.1) и $O(h^2 + \sqrt{\tau})$ для алгоритмов типа (1.2).

Так как адаптивные сетки обычно используются для дифференциальных задач с негладкими решениями, то естественно и исследование сходимости соответствующих вычислительных методов проводить на обобщенных решениях.

При понижении требований к дифференциальным свойствам искомого решения анализ сходимости разностной схемы существенно усложняется. В [10] предложен аппарат получения

таких оценок точности, в которых порядок скорости сходимости согласован с гладкостью решения исходной дифференциальной задачи $\|y-u\|_{W_2^s(\omega)} \leq M|h|^{k-s}\|u\|_{W_2^b(\Omega)}$, где $k>s\geq 0$, $\|\cdot\|_{W_2^s(\omega)}$ и $\|\cdot\|_{W_2^b(\Omega)}$ — соболевские нормы на множестве функций дискретного и непрерывного аргумента.

B [11-14] этот подход был обобщен и на разностные схемы для параболических уравнений, где доказывается сходимость приближенного решения не к точному решению u, а к некоторому его осреднению \tilde{u} по Стеклову. Аналогичные проблемы рассматривались и в работах [15—17].

Применение данного аппарата исследований непосредственно к разностным схемам с переменными и разрывными весовыми множителями (1.1) или (1.2) для параболических уравнений с обобщенными решениями не дало желаемого результата, на наш взгляд, по двум причинам: во-первых, требовались конструктивные изменения в построении самих вычислительных методов на адаптивных сетках по времени, во-вторых, часто применяемая при исследовании вопроса погрешности аппроксимации на обобщенных решениях лемма Брэмбла — Гильберта приводит иногда не только к неестественным ограничениям на шаги типа $\tau \sim h^2$, но и к завышенным требованиям на гладкость обобщенного решения.

В связи с этим в данной работе строятся и исследуются новые классы безусловно устойчивых вычислительных методов на адаптивных сетках по времени вида

$$y_{\bar{t}} = (y^{(\sigma)})_{\bar{x}x} + \varphi, \quad \sigma = \sigma(x, t), \quad (x, t) \in \omega.$$
 (1.3)

Укажем, что схемы с переменными шагами по времени вида (1.3) на основе операторов декомпозиции рассматривались в работах [18, 19].

Для разностных схем с переменными весовыми множителями получены новые априорные оценки в таких нормах, из которых следует безусловная сходимость на обобщенных решениях к осреднению точного решения ($u(x,t) \in W_2^{2,1}(Q_T)$) $z=y-S_x^2u$, S_x^2 — стекловский оператор осреднения по пространственной переменной. Нахождение соответствующих оценок для погрешности аппроксимации проводится без использования леммы Брэмбла— Гильберта.

Отметим также, что получение основной оценки устойчивости в норме $L_2(\omega_{h\tau})$ для разностных схем с переменными весовыми множителями основывается на теореме 7 из [20, гл. III, §1].

2. Дифференциальная задача. Рассмотрим в прямоугольнике $Q_T = \{(x,t): x \in \Omega = (0,1), \ 0 < t < T\}$ при некотором T > 0 одномерное уравнение теплопроводности

$$\partial u/\partial t = \partial^2 u/\partial x^2 + f(x,t), \quad (x,t) \in Q_T,$$
 (2.1)

с начальными

$$u(x,0)=u_0(x), \quad x\in\Omega, \tag{2.2}$$

и граничными условиями

$$u(0,t) = u(1,t) = 0, \quad 0 < t < T.$$
 (2.3)

Для функций u=u(x), заданных на Ω , введем соболевское пространство $W_2^1(\Omega)$ с нормой $\|u\|_{W_2^1(\Omega)}^2=\|u\|_{L_2(\Omega)}^2+\|u'\|_{L_2(\Omega)}^2, \ \|u\|_{L_2(\Omega)}^2=\int_{\Omega}u^2(x)dx;$ для функций u=u(x,t), заданных на Q_T , определим пространство $W_2^{\alpha,\beta}(Q_T)$ (α , β — целые неотрицательные числа) с нормой

$$||u||_{W_{2}^{\alpha,\beta}(Q_{T})}^{2} = ||u||_{L_{2}(Q_{T})}^{2} + \sum_{s=1}^{\alpha} ||\partial^{s}u/\partial x^{s}||_{L_{2}(Q_{T})}^{2} + \sum_{s=1}^{\beta} ||\partial^{s}u/\partial t^{s}||_{L_{2}(Q_{T})}^{2}, \quad ||u||_{L_{2}(Q_{T})}^{2} = \int_{0}^{T} ||u(x,t)||_{L_{2}(\Omega)}^{2} dt.$$

Через $\mathring{W}_{2}^{1}(\Omega)$ и $\mathring{W}_{2}^{1,0}(Q_{T})$ будем соответственно обозначать замкнутые подпространства пространств $W_{2}^{1}(\Omega)$ и $W_{2}^{1,0}(Q_{T})$, плотными множествами в которых являются гладкие функции, равные нулю вблизи x=0 и x=1 [21].

Определение 1 [21]. Под обобщенным решением задачи (2.1) — (2.3) в пространстве $W_2^{2,1}(Q_T)$ будем понимать элемент u пространства $W_{2,0}^{2,1}(Q_T) \equiv W_2^{2,1}(Q_T) \cap \mathring{W}_2^{1,0}(Q_T)$, удовлетворяющий почти всюду в Q_T уравнению (2.1) и равный $u_0(x)$ при t=0.

Имеет место

Лемма 1 [21, 22]. Задача (2.1) — (2.3) однозначно разрешима в $W_{2,0}^{2,1}(Q_T)$, если $f \in L_2(Q_T)$, $u_0 \in \mathring{W}_2^1(\Omega)$ и при этом справедливо неравенство $\|u\|_{W_2^{2,1}(Q_T)} \leq M(\|u_0\|_{W_2^1(\Omega)} + \|f\|_{L_2(Q_T)})$, в котором положительная постоянная M не зависит от u_0 и f.

3. Разностная схема. В области Q_T введем равномерные сетки узлов $\omega_{\tau}=\{t_j=j\tau, j=1, j_0,\ j_0\tau=T\},\ \omega_h=\{x_i=ih,\ i=\overline{1,N-1},\ Nh=1\},\ \omega_{h\tau}=\omega_h\times\omega_{\tau}.$ Задачу (2.1) — (2.3) аппроксимируем разностной схемой с весами вида

$$y_{\bar{t}} = (y^{(\sigma)})_{\bar{x}x} + S_x^2 S_t f, \quad (x,t) \in \omega_{h\tau}, \quad y(x,0) = S_x^2 u_0(x), \quad x \in \overline{\omega}_h, \quad y(0,t) = y(1,t) = 0, \quad t \in \omega_{\tau},$$
(3.1)

$$\text{\tiny FHE } v^{(\sigma)} = \sigma v(x,t) + (1-\sigma)v(x,t-\tau), \ \ \sigma = \sigma(x,t), \ \ \text{a} \ \ S_x^2 f(x,t) = h^{-1} \int\limits_{x-h}^{x+h} (1-|x'-x|/h) f(x',t) dx' = h^{-1} \int\limits_{x-h}^{x+h} (1-|x'-x|/h) f(x',t)$$

$$=\int\limits_{-1}^{1}(1-|s|)f(x+sh,t)ds,\;\;S_{t}f(x,t)= au^{-1}\int\limits_{t- au}^{t}f(x,t')dt'=\int\limits_{-1}^{0}f(x,t+ heta au)d heta$$
 — операторы усреднения по Стеклову, причем $S_{x}^{2}\partial^{2}u/\partial x^{2}=u_{xx},\;\;S_{t}\partial u/\partial t=u_{\overline{t}}.$

Для исследования вопроса устойчивости и сходимости разностной задачи (3.1) нам потребуются некоторые априорные оценки, которые будут получены ниже.

4. Вспомогательные результаты. Пусть X — вещественное конечномерное гильбертово пространство со скалярным произведением (\cdot,\cdot) и нормой $\|\cdot\|$, а A — постоянный линейный оператор, действующий из X в X. Для функций, заданных на ω_{τ} , будем использовать общепринятые обозначения [20]: $y=y(t), \ \check{y}=y(t-\tau), \ y_{\bar{\imath}}=(y-\check{y})/\tau$. Через X_D ($D=D^*>0$) обозначим гильбертово пространство, состоящее из элементов X, со скалярным произведением $(\cdot,\cdot)_D=(D\cdot,\cdot)$ и нормой $\|\cdot\|_D=(\cdot,\cdot)_D^{1/2}$. Для функций, определенных на ω_{τ} , введем операцию "взвешивания" $y^{(\Sigma)}=\Sigma y+(E-\Sigma)\check{y}$ с заданным оператором $\Sigma=\Sigma(t)$: $X\to X$, E — тождественный оператор. В общем случае предполагаем неперестановочность операторов A и Σ , т.е. $A\Sigma\neq\Sigma A$, а Σ удовлетворяет соотношению

$$\Sigma(t) - \Sigma(t - \tau) \le \Delta E,\tag{4.1}$$

где $\Delta = \text{const}$ не зависит от τ .

Рассмотрим на сетке ω_{τ} операторно-разностную схему вида [5, 20]

$$y_{\bar{t}} + Ay^{(\Sigma)} = \varphi(t), \quad t \in \omega_{\tau}, \quad y(0) = y_0, \tag{4.2}$$

гле $y=y(t)\in X,\ \varphi(t)\in X,\ y_0\in X$ задано.

Отметим, что в случае $\Sigma(t)=\sigma E,\ \sigma\equiv {
m const},\ {
m получаем}\ {
m корошо}\ {
m известную}\ {
m схему}\ {
m c}\ {
m весами}$

$$y_{\bar{t}} + \sigma A y + (1 - \sigma) A \check{y} = \varphi(t). \tag{4.3}$$

Для (4.3) в [1, 20] проведены достаточно полные исследования и получены многочисленные оценки устойчивости по начальным данным и правой части в различных энергетических пространствах.

Имеет место

 ${
m T}$ еорема 1 [5]. Пусть в разностной схеме (4.2) оператор $A=A^*>0$, тогда при

$$\Sigma(t) \ge \sigma_0 E, \quad \sigma_0 = 1/2 - 1/(\tau ||A||)$$
 (4.4)

справедлива априорная оценка устойчивости разностного решения по начальным данным и правой части

$$\max_{t \in \omega_{\tau}} ||y(t)|| \le ||y_0|| + \max_{t \in \omega_{\tau}} ||A^{-1}\varphi(t)|| + \sum_{t \in \omega_{\tau}} \tau ||A^{-1}\varphi_{\bar{t}}(t)||. \tag{4.5}$$

Определим пространство $H = H(\omega_{\tau}; X)$ как множество сеточных функций, заданных на ω_{τ} со значениями в X, с нормой $\|\cdot\|_{H} = \left(\sum_{t \in \omega_{\tau}} \tau \|\cdot(t)\|^{2}\right)^{1/2}$.

Теорема 2. Пусть в схеме (4.2) оператор A является положительным самосопряженным, а Σ удовлетворяет неравенству (4.1) с $\Delta \leq 1$ и, кроме того, условию $\Sigma^*(t) = \Sigma(t) \geq \sigma_{\epsilon} E$, $\sigma_{\epsilon} = (1+\epsilon)/2 - 1/(\tau \|A\|) > 0$. Тогда если имеют место неравенства

$$\Delta \leq 0, \quad \varepsilon \in (0,2)$$
 (4.6)

либо

$$\Delta \in (0,1], \quad \varepsilon \in (2\Delta/3, 2\Delta),$$
 (4.7)

то решение операторно-разностной схемы (4.2) устойчиво по начальным данным, правой части и верны априорные оценки

$$||y||_{H} \le \sqrt{2/\varepsilon}||y_0||_{R_1} + 2\sqrt{2}/(\varepsilon\sqrt{2-\varepsilon})||A^{-1}\varphi||_{H}, \quad R_1 = A^{-1} + \tau\Sigma(\tau),$$
 (4.8)

в случае (4.6) и

$$||y||_{H} \le \sqrt{2/\varepsilon}||y_{0}||_{R_{2}} + 4/\sqrt{\varepsilon(2-\varepsilon)(3\varepsilon-2)}||A^{-1}\varphi||_{H}, \quad R_{2} = A^{-1} + \tau(\Sigma(\tau) + 0.5E), \tag{4.9}$$

в случае выполнения (4.7).

 Π о казательство теоремы существенным образом опирается на доказательство теоремы 7 из [20, гл. III, §1].

Умножим уравнение (4.2) слева на оператор A^{-1} и перецишем в виде

$$(A^{-1} + \tau(\Sigma - E))y_i + y = A^{-1}\varphi. \tag{4.10}$$

Умножив (4.10) скалярно на $2\tau y$ и учитывая, что A^{-1} также является положительным и самосопряженным оператором, получаем энергетическое тождество

$$((A^{-1} + \tau \Sigma)y, y) + \tau(||y||^2 + ||\check{y}||^2) + \tau^2((A^{-1} + \tau(\Sigma - E))y_{\bar{i}}, y_{\bar{i}}) =$$

$$= ((A^{-1} + \tau \Sigma)\check{y}, \check{y}) + 2\tau(A^{-1}\varphi, y). \tag{4.11}$$

Для оценки скалярного произведения в последнем слагаемом воспользуемся представлением $y=0.5(y+\check{y})+0.5\tau y_{\bar{t}}.$ Имеем

$$2\tau(A^{-1}\varphi,y)=\tau(A^{-1}\varphi,y+\check{y})+\tau^2(A^{-1}\varphi,y_{\bar{t}})\leq$$

$$\leq (\tau \varepsilon_1/2) \|y + \check{y}\|^2 + (\tau/(2\varepsilon_1)) \|A^{-1}\varphi\|^2 + ((\tau^3 \varepsilon_2)/2) \|y_{\bar{t}}\|^2 + (\tau/(2\varepsilon_2)) \|A^{-1}\varphi\|^2. \tag{4.12}$$

Из представления $\Sigma = \mathring{\Sigma} + (\Sigma - \check{\Sigma})$ и (4.1) вытекает неравенство

$$((A^{-1} + \tau \Sigma)\check{y}, \check{y}) \le ((A^{-1} + \tau \check{\Sigma})\check{y}, \check{y}) + \tau \Delta ||\check{y}||^2. \tag{4.13}$$

Непосредственной проверкой можно убедиться в справедливости тождества $||y||^2 + ||\tilde{y}||^2 = 0.5(||y+\tilde{y}||^2 + \tau^2||y_{\tilde{t}}||^2)$. Суммируя полученные оценки (4.12), (4.13) и подставляя в (4.11), приходим к соотношению

$$||y||_{B}^{2} + \tau^{2}((B - 0.5(1 + \varepsilon_{2})\tau E)y_{\bar{t}}, y_{\bar{t}}) + 0.5\tau(1 - \varepsilon_{1})||y + \check{y}||^{2} \le$$

$$\le ||\check{y}||_{B(t-\tau)}^{2} + \tau\Delta||\check{y}||^{2} + 0.5\tau(1/\varepsilon_{1} + 1/\varepsilon_{2})||A^{-1}\varphi||^{2}, \quad B = A^{-1} + \tau\Sigma. \tag{4.14}$$

Рассмотрим два случая: $\Delta \leq 0$ и $\Delta \in (0,1]$. Пусть $\Delta \leq 0$. Тогда, выбирая $\varepsilon_1 = 1-0.5\varepsilon$, $\varepsilon_2 = 0.5\varepsilon$, будем иметь

$$\tau^{2}((B - 0.5(1 + \varepsilon_{2})\tau E)y_{\bar{t}}, y_{\bar{t}}) + 0.5\tau(1 - \varepsilon_{1})||y + \check{y}||^{2} \ge \tau(1 - \varepsilon_{1})(||y||^{2} + ||\check{y}||^{2}) +$$

$$+0.5\tau^{3}(\varepsilon - \varepsilon_{2} + \varepsilon_{1} - 1)||y_{\bar{t}}||^{2} = 0.5\tau\varepsilon(||y||^{2} + ||\check{y}||^{2}) \ge 0.5\varepsilon\tau||y||^{2}.$$

$$(4.15)$$

Подставляя (4.15) в (4.14) и суммируя по всем $t \in \omega_{\tau}$, получим

$$||y(T)||_{B(T)}^{2} + \sum_{t \in \omega_{\tau}} \tau ||y(t)||^{2} \le \frac{2}{\varepsilon} ||y_{0}||_{B(\tau)}^{2} + \frac{8}{\varepsilon^{2}(2-\varepsilon)} \sum_{t \in \omega_{\tau}} \tau ||A^{-1}\varphi(t)||^{2}. \tag{4.16}$$

Отбрасывая в левой части (4.16) положительное слагаемое $||y(T)||^2_{B(T)}$ и извлекая корень квадратный из левой и правой частей, приходим к требуемой оценке (4.8).

Перейдем к случаю $\Delta \in (0,1]$. Сначала оценим выражение

$$\tau^{2}((B-0.5(1+\varepsilon_{2})\tau E)y_{\bar{t}},y_{\bar{t}})+0.5\tau(1-\varepsilon_{1})||y+\check{y}||^{2}-\tau\Delta||\check{y}||^{2}\geq$$

$$\geq 0.5\tau^{3}(\varepsilon-\varepsilon_{2}+\varepsilon_{1}-1)||y_{\bar{t}}||^{2}+\tau(1-\varepsilon_{1})||y||^{2}+\tau(1-\varepsilon_{1}-\Delta)||\check{y}||^{2}.$$

Выберем $\varepsilon_1 = 1 - \Delta/2 - \varepsilon/4$, $\varepsilon_2 = 3\varepsilon/4 - \Delta/2$. Тогда

$$||y||_{B}^{2} + \tau \left(\frac{\Delta}{2} + \frac{\varepsilon}{4}\right) ||y||^{2} \leq ||\check{y}||_{B}^{2} + \tau \left(\frac{\Delta}{2} - \frac{\varepsilon}{4}\right) ||\check{y}||^{2} + 2\tau \left(\frac{1}{4 - 2\Delta - \varepsilon} + \frac{1}{3\varepsilon - 2\Delta}\right) ||A^{-1}\varphi||^{2}. \quad (4.17)$$

Отсюда суммированием (4.17) по всем $t \in \omega_{\tau}$ получаем

$$\frac{2\Delta + \varepsilon}{4} ||y||_{H}^{2} \leq ||y_{0}||_{B(\tau)}^{2} + \frac{\tau(2\Delta - \varepsilon)}{4} ||y_{0}||^{2} + 2\left(\frac{1}{4 - 2\Delta - \varepsilon} + \frac{1}{3\varepsilon - 2\Delta}\right) ||A^{-1}\varphi||_{H}^{2}. \tag{4.18}$$

Отбрасывая в левой части (4.18) слагаемое с множителем Δ , а в правой отрицательные слагаемые и усиливая неравенство при $\Delta=1$, приходим к неравенству

$$\frac{\varepsilon}{4}||y||_{H}^{2} \leq ||y_{0}||_{B(\tau)}^{2} + \frac{\tau}{2}||y_{0}||^{2} + \frac{4}{(2-\varepsilon)(3\varepsilon-2)}||A^{-1}\varphi||_{H}^{2},$$

из которого и следует требуемая оценка (4.9).

5. Устойчивость разностной схемы с переменными весовыми множителями. Введем пространство сеточных функций X, заданных на сетке $\overline{\omega}_h$ и равных нулю на границах x=0 и x=1. В пространстве X со скалярным произведением $(v,w)=\sum\limits_{x\in\omega_h}v(x)w(x)h$ и нормой $\|v\|_h=(v,v)^{1/2}$ определим линейный оператор

$$Av = \begin{cases} -(v_x - v/h)/h, & x = h, \\ -v_{\bar{x}x}, & x \in \omega_h \setminus \{h, 1 - h\}, \\ (v^{\bar{x}} - v/h)/h, & x = 1 - h. \end{cases}$$

Тогда разностную схему (3.1) можно переписать в операторном виде (4.2) с $\varphi = S_x^2 S_t f$, $y_0 = S_x^2 u_0$, $\Sigma v(x,t) = \sigma(x,t)v(x,t)$.

Определим $L_{2,h}(\omega_{h au})$ как сеточный аналог $L_2(Q_T)$ с нормой $\|v\|_{h au} = \left(\sum_{t\in\omega_{ au}} \tau \|v(t)\|_h^2\right)^{1/2}$.

Тогда справедлива

Теорема 3. Пусть в (3.1) $\sigma(x,t) \geq \sigma_0 = 1/2 - h^2/(4\tau)$. Тогда для разностной схемы (3.1) верна априорная оценка

$$\max_{t \in \omega_{\tau}} ||y(t)||_{h} \le ||y_{0}||_{h} + \max_{t \in \omega_{\tau}} (||A^{-1}\varphi(t)||_{h} + ||A^{-1}\varphi_{\overline{t}}(t)||_{h\tau}), \tag{5.1}$$

выражающая устойчивость по правой части и начальным данным в пространстве X.

Чтобы убедиться в правильности оценки (5.1), достаточно воспользоваться результатами теоремы 1 и учесть, что $||A|| < 4/h^2$.

Теорема 4. Пусть в (3.1) $\sigma(x,t) \geq \sigma_{\varepsilon} = (1+\varepsilon)/2 - h^2/(4\tau)$, $\sigma(x,t) - \sigma(x,t-\tau) \leq \Delta \leq 1$, $\max_{(x,t)\in\omega_{h\tau}} |\sigma(x,t)| \leq \gamma$, $\gamma > 0$ не зависит от h, τ . Тогда для разностной схемы (3.1) при выполнении условий (4.6) либо (4.7) верна оценка, выражающая устойчивость по правой части и начальным данным в пространстве H,

$$||y||_{h_{\tau}} \le M_1(||y_0||_{A^{-1},h} + ||y_0||_h) + M_2||A^{-1}\varphi||_{h_{\tau}}, \tag{5.2}$$

где $M_1 > 0$, $M_2 > 0$ не зависят от h, τ .

Утверждение теоремы 4 непосредственным образом вытекает из теоремы 2.

6. Сходимость разностных схем с непостоянными весами. Поставим вопрос о сходимости разностной схемы (3.1) в сеточной норме $L_{2,h}(\omega_{h\tau})$. Обозначим через $\bar{u}=S_x^2u$ осреднение точного решения u(x,t) задачи (2.1) — (2.3), при этом решение продолжим нечетным образом через прямые x=0 и x=1:

$$u^*(x,t) = \begin{cases} -u(-x,t), & x \in (-1,0], \\ u(x,t), & x \in (0,1), \\ -u(2-x,t), & x \in [1,2). \end{cases}$$

Нетрудно показать, что $\|u^*\|_{W_2^{2,1}(\tilde{Q}_T)}^2 = 3\|u\|_{W_2^{2,1}(Q_T)}^2$, $\tilde{Q}_T = \{(x,t): x \in (-1,2), 0 < t < T\}$. Будем сравнивать приближенное решение y с осреднением \bar{u} . Для функции $z = y - \bar{u}$ получим разностную задачу

$$z_{\bar{t}} = (z^{(\sigma)})_{\bar{x}x} + \psi(x,t), \quad (x,t) \in \omega_{h\tau}, \quad z(x,0) = 0, \quad x \in \overline{\omega}_h, \quad z(0,t) = z(1,t) = 0, \quad t \in \omega_{\tau}, \quad (6.1)$$

где $\psi(x,t)=S_x^2S_tf-\bar{u}_{\bar{t}}+(\bar{u}^{(\sigma)})_{\bar{x}x}$ есть погрешность аппроксимации. Преобразуем ее к дивергентному виду. Для этого применим оператор $S_x^2S_t$ к дифференциальному уравнению (2.1). Получим $\bar{u}_{\bar{t}}=S_tu_{\bar{x}x}+S_x^2S_tf$. Подставим отсюда $S_x^2S_tf$ в ψ . Имеем $\psi=-(S_tu-\bar{u}^{(\sigma)})_{\bar{x}x}$. Обозначим через $\eta=S_tu-\bar{u}^{(\sigma)}$ и покажем, что сеточная функция $\eta(x,t)$ удовлетворяет однородным граничным условиям. Действительно, $\eta(0,t)=\int\limits_{-1}^0 u^*(0,t+\theta\tau)d\theta-\sigma(0,t)\int\limits_{-1}^1 (1-|s|)\times$

 $\times u^*(sh,t)ds - (1-\sigma(0,t))\int\limits_{-1}^{1}(1-|s|)u^*(sh,t-\tau)ds = 0$. Здесь учтено, что интеграл от нечетной функции по интервалу, симметричному относительно начала координат, равен нулю. Аналогично показывается, что $\eta(1,t)=0$. Вследствие этого функции z и η принадлежат одному и тому же пространству сеточных функций X, введенному в п.4.

Задачу для погрешности метода (6.1) представим в операторном виде

$$z_{\overline{t}} + Az^{(\Sigma)} = A\eta, \quad t \in \omega_{\tau}, \quad z(0) = 0,$$
 (6.2)

где $z=(z_1,z_2,\ldots,z_{N-1})$. Покажем, что для $\eta(x,t)$ верна оценка

$$|\eta(x,t)| \le (M/\sqrt{h\tau})(\tau ||\partial u/\partial t||_{L_2(e)} + h^2 ||\partial^2 u/\partial x^2||_{L_2(e)}), \tag{6.3}$$

где $e=(x-h,x+h)\times (t-\tau,t),\ M>0$ не зависит от $\tau,\ h.$

Ячейку e отобразим на область $\tilde{e}=\{(s,\theta): -1 < s < 1, -1 < \theta < 0\}$ с помощью преобразования s=(x'-x)/h, $\theta=(t'-t)/\tau$, $(x',t')\in e$, обозначим через $\tilde{u}(s,\theta)=u(x+sh,t+\theta\tau)$ и представим η как сумму трех слагаемых $\eta(x,t)=\int\limits_{-1}^0 \tilde{u}(0,\theta)d\theta-\int\limits_{-1}^1 (1-|s|)\tilde{u}(s,0)ds+\theta\tau$ $+\tau(1-\sigma(x,t))\int\limits_{-1}^1 (1-|s|)\tilde{u}_t(s,0)ds=I_1+I_2+I_3, \quad I_1=\int\limits_{-1}^0\int\limits_{-1}^1 (1-|s|)(\tilde{u}(0,\theta)-\tilde{u}(s,\theta))ds\,d\theta, \quad I_2=0$ $=\int\limits_{-1}^0\int\limits_{-1}^1 (1-|s|)(\tilde{u}(s,\theta)-\tilde{u}(s,0))ds\,d\theta, \quad I_3=(1-\sigma(x,t))\int\limits_{-1}^0\int\limits_{-1}^1 (1-|s|)(\partial \tilde{u}/\partial \theta)(s,\theta)d\theta\,ds.$

Для I_1 воспользуемся разложением в ряд Тейлора с представлением остаточного члена в интегральной форме и неравенством Коши — Буняковского

$$I_{1} = \int_{-1}^{0} \int_{-1}^{1} (1 - |s|) \left(-s \frac{\partial \tilde{u}(0, \theta)}{\partial s} + \int_{s}^{0} (s - s') \frac{\partial^{2} \tilde{u}(s', \theta)}{\partial s'^{2}} ds' \right) ds d\theta \le \int_{-1}^{0} \int_{-1}^{1} \frac{(1 - |s|)|s|^{3/2}}{\sqrt{3}} \times \left(\int_{-1}^{1} \left(\frac{\partial^{2} \tilde{u}(s', \theta)}{\partial s'^{2}} \right)^{2} ds' \right)^{1/2} ds d\theta = \frac{4}{5\sqrt{3}} \left\| \frac{\partial^{2} \tilde{u}}{\partial s^{2}} \right\|_{L_{2}(\tilde{\epsilon})} = \frac{4}{5\sqrt{3}} \left\| \frac{\partial^{2} u}{\partial x^{2}} \right\|_{L_{2}(\epsilon)}.$$
(6.4)

Функционалы I_2 , I_3 оцениваются также через неравенство Коши — Буняковского .

$$I_2 = \int\limits_{-1}^0 \int\limits_{-1}^1 (1-|s|) \int\limits_0^\theta \frac{\partial \tilde{u}(s,\theta')}{\partial \theta'} d\theta' ds d\theta \leq \int\limits_{-1}^0 \sqrt{-\theta} \int\limits_{-1}^1 (1-|s|) \times$$

$$\times \left(\int_{-1}^{0} \left(\frac{\partial \tilde{u}(s, \theta')}{\partial \theta'} \right)^{2} d\theta' \right)^{1/2} ds \, d\theta = \frac{2}{3} \left\| \frac{\partial \tilde{u}}{\partial \theta} \right\|_{L_{2}(\tilde{e})} = \frac{2}{3} \left\| \frac{\tau}{\sqrt{h\tau}} \right\| \left\| \frac{\partial u}{\partial t} \right\|_{L_{2}(e)}, \tag{6.5}$$

$$I_3 \leq (1+\gamma) \int\limits_{-1}^{1} (1-|s|) \Bigl(\int\limits_{-1}^{0} \Bigl(\frac{\partial \tilde{u}(s,\theta')}{\partial \theta'} \Bigr)^2 d\theta' \Bigr)^{1/2} ds \leq \frac{\sqrt{2}(1+\gamma)}{\sqrt{3}} \left\| \frac{\partial \tilde{u}}{\partial \theta} \right\|_{L_2(\tilde{\epsilon})} = \frac{\sqrt{2}(1+\gamma)\tau}{\sqrt{3h\tau}} \left\| \frac{\partial u}{\partial t} \right\|_{L_2(\epsilon)},$$

где γ из теоремы 4.

Объединяя оценки (6.4) и (6.5), приходим к (6.3). Суммируя по всем ячейкам сетки, окончательно получаем

$$\|\eta\|_{h\tau} \le M(h^2 \|\partial^2 u/\partial x^2\|_{L_2(Q_T)} + \tau \|\partial u/\partial t\|_{L_2(Q_T)}). \tag{6.6}$$

Теорема 5. Пусть выполнены условия теоремы 4. Тогда решение разностной схемы (3.1) сходится в сеточном пространстве $L_{2,h}(\omega_{h\tau})$ к осреднению \bar{u} и имеет место оценка скорости сходимости

$$||z||_{h\tau} = ||y - S_x^2 u||_{h\tau} \le M(h^2 ||\partial^2 u/\partial x^2||_{L_2(Q_T)} + \tau ||\partial u/\partial t||_{L_2(Q_T)}). \tag{6.7}$$

Доказательство. Применяя априорную оценку (5.2) к решению задачи (6.2), получаем неравенство $||z||_{h\tau} \leq M||\eta||_{h\tau}$, подставляя в которое оценку (6.6), приходим к утверждению теоремы.

Замечание 1. Для схем с не зависящими от пространства и времени весами имеет место оценка (6.6) при $\sigma \ge \sigma_{\varepsilon} = (1+\varepsilon)/2 - h^2/(4\tau), \ 0 < \varepsilon < 2.$

Замечание 2. Мы рассмотрели сходимость разностного решения к осреднению $S_x^2 u$ только ради упрощения изложения. Использую теорию интерполяции пространств Банаха [23], можно показать, что имеет место оценка $||y-u||_{h\tau} \leq M(h^2+\tau)||u||_{W_2^{2,1}(Q_T)}$.

7. Разностные схемы на адаптивно-временной сетке. Наряду с временной сеткой ω_{τ} введем еще одну $\omega_{\tau 0}$ с шагом $\tau_0 = \tau/p$ ($p \ge 1$ — целое число) $\overline{\omega}_{\tau_0} = \{t_{\alpha} = t_{j+\alpha/p} = (j+\alpha/p)\tau$, $\alpha = \overline{0,p}, \ j = \overline{0,j_0-1}\}$. Область $Q^j = \Omega \times [t_j,t_{j+1}]$ при каждом фиксированном j представим в виде суммы $Q^j = Q^j_1 \cup Q^j_2, \quad Q^j_1 = Q^j \setminus Q^j_2, \quad Q^j_2 = \{(x,t): x_{m^j_1} < x < x_{m^j_2}, \ t \in [t_j,t_{j+1}]\}$. Множество узлов сетки $\omega_{h\tau_0} = \omega_h \times \omega_{\tau_0}$, лежащих в области Q^j_2 , будем обозначать через $\omega^j_2 = \{(x_i,t_{j+\alpha/p}): m^j_1 < i < m^j_2, \ \alpha = \overline{0,p}, \ m^j_1 \ge 1, \ m^j_2 \le N-1\}$. Тогда $\omega^j_1 = \omega_{h\tau_0} \setminus \omega^j_2$ — множество узлов сетки $\omega_{h\tau_0}$, принадлежащих области Q^j_1 . В это множество входят и внутренние граничные узлы $x_{m^j_1} = m^j_1 h, \ x_{m^j_2} = m^j_2 h$.

Будем предполагать, что решение u(x,t) в области Q_1^j является достаточно гладкой функцией, а в Q_2^j имеет особенность, движущуюся со временем. Последнее приводит к необходимости использования во время расчетов некоторого достаточно мелкого временного шага τ_0 .

Исходную дифференциальную задачу (2.1) — (2.3) на сетке $\omega_{h\tau_0}$ аппроксимируем разностной

$$y_{t,\alpha} = (y_{(\alpha)}^{(\sigma_{\alpha})})_{\bar{x}x} + \varphi(\alpha), \quad (x,t) \in \omega_{h\tau_0}, \quad \varphi(\alpha) = \frac{1}{\tau_0} \int_{t+(\alpha-1)\tau_0}^{t+\alpha\tau_0} S_x^2 f \, dt', \tag{7.1}$$

$$y(x,0) = S_x^2 u_0(x), \quad x \in \omega_h, \quad y(0,t_{j+\alpha/p}) = y(1,t_{j+\alpha/p}) = 0, \quad t \in \overline{\omega}_\tau.$$
 (7.2)

$$\sigma_{\alpha} = \begin{cases} \alpha, & 0 < x \le x_{m_1^j} + h, \ x_{m_2^j} - h \le x < 1, \\ \overline{\sigma}, & x_{m_2^j} + h < x < x_{m_2^j} - h, \end{cases}$$
 (7.3)

где $\overline{\sigma} > 0$ — произвольный числовой параметр, выбираемый из соображений устойчивости.

Построенная разностная схема относится к семейству схем с переменными весовыми множителями вида (3.1), где сеточная функция зависит σ_{α} как от номера дробного слоя $t_{j+\alpha/p}$ ($\alpha = \overline{1,p}$), так и от узла $x \in \omega_h$.

Рассмотрим вопрос об организации вычислительного процесса. Покажем, как с помощью построенной разностной схемы можно находить решение на дробных слоях лишь в области негладкого решения $\overline{\omega}_2^i$. Для этого в формуле (7.1) необходимо исключить значения приближенного решения на слое $t_{j+(\alpha-1)/p}$. Это позволяет сделать

Лемма 2. Разностная схема

$$\frac{y_{(\alpha)} - y_{(0)}}{\alpha \tau_0} + A y_{(\alpha)} = \overline{\varphi}_{(\alpha)}, \quad \overline{\varphi}_{(\alpha)} = \frac{1}{\alpha \tau_0} \int_{t}^{t + \alpha \tau_0} S_x^2 f \, dt', \tag{7.4}$$

алгебраически эквивалентна

$$y_{\bar{t},\alpha} + \alpha A y_{(\alpha)} + (1 - \alpha) A y_{(\alpha - 1)} = \varphi_{(\alpha)}. \tag{7.5}$$

Локазательство. Запишем (7.4) в виде

$$(y_{(\alpha)} - y_{(\alpha-1)})/\tau_0 + (y_{(\alpha-1)} - y_{(0)})/\tau_0 + \alpha A y_{(\alpha)} = \alpha \overline{\varphi}_{(\alpha)}. \tag{7.6}$$

Из (7.4) также следует равенство

$$(y_{(\alpha-1)}-y_{(0)})/\tau_0=-(\alpha-1)Ay_{(\alpha-1)}+(\alpha-1)\overline{\varphi}_{(\alpha-1)},$$

подставляя которое в (7.6), получаем

$$(y_{(\alpha)} - y_{(\alpha-1)})/\tau_0 + (y_{(\alpha-1)} - y_{(0)})/\tau_0 + \alpha A y_{(\alpha)} + (1-\alpha)A y_{(\alpha-1)} = \alpha \overline{\varphi}_{(\alpha)} - (\alpha-1)\overline{\varphi}_{(\alpha-1)}. \quad (7.7)$$

Оценим выражение, стоящее в правой части (7.7):

$$\alpha \overline{\varphi}_{(\alpha)} - (\alpha - 1) \overline{\varphi}_{(\alpha - 1)} = \frac{1}{\tau_0} \int_{t}^{t + \alpha \tau_0} S_x^2 f \, dt' - \frac{1}{\tau_0} \int_{t}^{t + (\alpha - 1)\tau_0} S_x^2 f \, dt' = \frac{1}{\tau_0} \int_{t + (\alpha - 1)\tau_0}^{t + \alpha \tau_0} S_x^2 f \, dt' = \varphi_{(\alpha)}.$$

Отсюда и из (7.7) следует требуемое утверждение.

В силу доказанной леммы об эквивалентности разностных схем уравнение (7.1) можно преобразовать к виду

$$(y_{(\alpha)}-y_{(0)})/(\alpha\tau_0)+Ay_{(\alpha)}=\overline{\varphi}_{(\alpha)},\ (x,t)\in\omega_1^j;\ (y_{(\alpha)}-y_{(\alpha-1)})/\tau_0+Ay_{(\alpha)}^{(\sigma_\alpha)}=\varphi_{(\alpha)},\ (x,t)\in\omega_2^j.\ (7.8)$$

Эти разностные уравнения на каждом дробном слое сводятся к системе трехточечных уравнений

$$A_{i}y_{(\alpha)i-1} - C_{i}y_{(\alpha)i} + B_{i}y_{(\alpha)i+1} = -F_{i}, \quad i = \overline{1, N-1}, \quad y_{(\alpha)0} = y_{(\alpha)N} = 0, \tag{7.9}$$

со следующими значениями коэффициентов:

$$A_{i} = \begin{cases} \alpha \tau_{0}/h^{2}, & i = \overline{1, m_{1}^{j} + 2}, i = \overline{m_{2}^{j}, N - 1}, \\ \overline{\sigma} \tau_{0}/h^{2}, & i = \overline{m_{1}^{j} + 1, m_{2}^{j} - 1}, \end{cases} B_{i} = \begin{cases} \alpha \tau_{0}/h^{2}, & i = \overline{1, m_{1}^{j}, i = \overline{m_{2}^{j} - 2, N - 1}, \\ \overline{\sigma} \tau_{0}/h^{2}, & i = \overline{m_{1}^{j} + 1, m_{2}^{j} - 3}, \end{cases}$$

$$C_{i} = \begin{cases} 1 + 2\alpha \tau_{0}/h^{2}, & i = \overline{1, m_{1}^{j} + 1, i = \overline{m_{2}^{j} - 1, N - 1}, \\ 1 + 2\overline{\sigma} \tau_{0}/h^{2}, & i = \overline{m_{1}^{j} + 2, m_{2}^{j} - 2}, \end{cases}$$

$$F_{i} = \begin{cases} y_{(0)i} + \alpha \tau_{0} \overline{\varphi}_{(\alpha)i}, & i = \overline{1, m_{1}^{j}, i = \overline{m_{2}^{j}, N - 1}, \\ y_{(\alpha)i-1} + \tau_{0}(\varphi_{(\alpha)i} + ((1 - \sigma_{\alpha})y_{(\alpha)i-1})_{\bar{x}x,i}), & i = \overline{m_{1}^{j} + 1, m_{2}^{j} - 1}. \end{cases}$$

$$(7.10)$$

Проверим условие монотонности прогонки: $D_i = C_i - A_i - B_i \ge 0$, $C_i > 0$, $A_i > 0$, $B_i > 0$. Имеем

$$D_{i} = \begin{cases} 1, & i = \overline{1, m_{1}^{j}}, i = \overline{m_{1}^{j} + 3, m_{2}^{j} - 3}, i = \overline{m_{2}^{j}, N - 1}, \\ 1 + \tau_{0}(\alpha - \overline{\sigma})/h^{2}, & i = m_{1}^{j} + 1, m_{2}^{j} - 1, \\ 1 + \tau_{0}(\overline{\sigma} - \alpha)/h^{2}, & i = m_{1}^{j} + 2, m_{2}^{j} - 2, \end{cases}$$
(7.11)

откуда видно, для того чтобы $D_i \geq 0$, необходимо потребовать $\tau_0 \leq h^2/|\overline{\sigma} - \alpha|$, что является неприемлемым. Замена переменных $v = \sigma_\alpha y_{(\alpha)}$ приводит систему алгебраических уравнений (7.9) к системе уравнений

$$h^{-2}\tau_0\sigma_{\alpha,i}v_{i-1}-(1+h^{-2}\cdot 2\tau_0\sigma_{\alpha,i})v_i+h^{-2}\tau_0\sigma_{\alpha,i}v_{i+1}=-\sigma_{\alpha,i}F_i, \quad i=\overline{1,N-1}, \quad v_0=v_N=0, \ (7.12)$$

где F_i из (7.10), а $D_i = 1$. Таким образом, для новой системы достаточное условие устойчивости метода прогонки выполнено без ограничения на шаги τ и h (схема безусловно монотонна).

Как можно заметить, в системе трехточечных уравнений (7.12) коэффициенты не зависят от сеточной функции $y_{(\alpha-1)}$ в области ω_1^j . Для нахождения решения при $\alpha < p$ только в области $\bar{\omega}_2^j$ необходимо использовать метод встречных прогонок, согласно которому, вначале определяем граничное условие $v_{m_1^j}$, а затем решение v_i при $i=\overline{m_1^j+1},\overline{m_2^j}$ находим по формулам левой прогонки и делаем обратную замену $y_{(\alpha)}=v/\sigma_\alpha$. При $\alpha=p$ решение y^{j+1} требуется вычислять уже при всех $x\in\omega_h$, что делается стандартным образом.

Нетрудно показать, что при выполнении условий $\overline{\sigma} \geq \sigma_{\varepsilon} > 0, \ 2/3 < \varepsilon < 2$, для разностной схемы (7.1), (7.2) справедливо неравенство $\sigma(x, t + \tau_0) - \sigma(x, t) \leq \Delta = 1$ и поэтому верны следующие априорные оценки, выражающие устойчивость по правой части и начальным данным:

$$||y(t)||_{h} \leq ||y_{0}||_{h} + ||A^{-1}\varphi(t)||_{h} + ||A^{-1}\varphi(0)||_{h} + ||A^{-1}\varphi_{\bar{t}}(t)||_{h\tau_{0}}, \quad (x,t) \in \omega_{h\tau_{0}},$$

$$||y||_{h\tau_{0}} \leq M_{1}(||y_{0}||_{A^{-1},h} + ||y_{0}||_{h}) + M_{2}||A^{-1}\varphi||_{h\tau_{0}},$$

которые вытекают непосредственно из теорем 3 и 4.

Аналогично устанавливается оценка для погрешности разностной схемы (7.1), (7.2) вида (6.7) с $\tau = \tau_0$.

8. Заключение. Итак, для разностных схем с переменными весовыми множителями на основе общей теории операторно-разностных схем получены согласованные с гладкостью искомого решения оценки скорости сходимости. Для этого существенно использовалось специальное представление погрешности аппроксимации в виде $\psi = A\eta$. На основе полученных результатов построены и исследованы новые классы безусловно устойчивых разностных схем на адаптивно-временных сетках для параболического уравнения с обобщенными решениями.

Отдельного рассмотрения заслуживают нестационарные задачи с переменными коэффициентами.

Авторы выражают благодарность П. Н. Вабищевичу за ряд ценных замечаний и полезные обсуждения.

Работа выполнена при финансовой поддержке Российского, Белорусского и Сербского фондов фундаментальных исследований.

Литература

- 1. Самарский А. А. Теория разностных схем. М., 1977.
- 2. Матус П. П. // Дифференц. уравнення. 1990. Т. 26, № 7. С. 1241 1254.
- 3. Матус П. П. // Журн. вычислит. математики и мат. физики. 1994. Т. 34, № 6. С. 870 885.
- 4. Самарский А. А., Гулин А. В. // Дифференц. уравнения. 1993. Т. 29, № 7. С. 1163 1173.
- 5. Вабищевич П. Н., Матус П. П. // Докл. АН Беларуси. 1993. Т. 37, № 6. С. 15 17.
- 6. Вабищевич П. Н., Матус П. П., Щеглик В. С. // Докл. АН Беларуск. 1994. Т. 38, № 3. С. 13 15.
- 7. Вабищевич П. Н., Матус П. П., Щеглик В. С. // Дифференц. уравнения. 1994. Т. 30, № 7. С. 1175—1186.
 - 8. Матус П. П., Михайлюк И. А. // Математическое моделирование. 1993. Т. 5, № 12. С. 35 60.
 - 9. Матус П. П. // Дифференц. уравнения. 1993. Т. 29, № 4. С. 700 710.
- 10. Самарский А.А., Лазаров Р.Д., Макаров В.Л. Разностные схемы для дифференциальных уравнений с обобщенными решениями. М., 1987.

- 11. Самарский А. А. // Актуальные проблемы мат. физики и вычислит. математики. М., 1984. С. 174: 183.
- 12. Лазаров Р. Д., Самарский А. А. // Журн. вычислит. математики и мат. физики. 1980. Т. 20, № 2. С. 371 387.
 - 13. Лазаров Р. Д., Макаров В. Л. // Докл. АН СССР. 1981. Т. 259, № 3. С. 282 286.
 - 14. Лазаров Р. Д. // Докл. Болг. АН. 1982. Т. 35, № 1. С. 7 10.
 - 15. Злотник А. А. // Журн. вычислит. математики и мат. физики. 1978. Т. 18, № 6. С. 1454 1465.
 - 16. Йованович Б. С. // Математички Весник. Белград. 1982. Т. 34. С. 279 292.
- 17. Иванович Л.Д., Йованович Б.С., Шили Э.Э. // Математички Весник. Белград, 1984. Т. 36. С. 206—212.
 - 18. Вабищевич П. Н., Матус П. П. // Весці АН Беларусі. Сер. фіз.-мат. навук. 1994. № 4. С. 5 11.
 - 19. Вабищевич П. Н. // Изв. вузов. Математика. 1995. № 4. С. 22 28.
 - 20. Самарский А.А., Гулин А.В. Устойчивость разностных схем. М., 1973.
 - 21. Ладыженская О.А. Краевые задачи математической физики. М., 1973.
 - 22. Михайлов В. П. Дифференциальные уравнения в частных производных. М., 1983.
 - 23. Lions J. L., Magenes E. Problèmes aux limites non homogènes et applications. Paris, 1968.

Институт математического моделирования РАН, Белградский университет, Институт математики АН Беларуси Поступила в редакцию 30 декабря 1996 г.