УЛК 519.6

КРИТЕРИЙ АСИМПТОТИЧЕСКОЙ УСТОЙЧИВОСТИ СИММЕТРИЗУЕМЫХ РАЗНОСТНЫХ СХЕМ

А. А. САМАРСКИЙ, А. В. ГУЛИН

В работах [1-4] изучалась асимптотическая устойчивость и точность разностных схем для уравнения теплопроводности. Показано, что использование устойчивой, но не асимптотически устойчивой разностной схемы может приводить при больших временах к полному искажению решения исходной дифференциальной задачи. В настоящей работе дано определение асимптотической устойчивости как специального случая ρ -устойчивости и получены критерии асимптотической устойчивости для симметризуемых двухслойных разностных схем общего вида.

Введем основные понятия и определения. Пусть заданы семейство евклидовых пространств $\{H_h\}$, зависящее от индекса h, и сетка по времени $\{t_n=n\tau\}$, $n=0,\ 1,\ldots$, с шагом $\tau>0$. Обозначим через $A,B:H_h\Rightarrow H_h$ линейные операторы в H_h , зависящие, вообще говоря, от $h,\ \tau,\ t_n$. Двухслойная разностная схема определяется как операторно-разностное уравнение

$$B(y_{n+1}-y_n)/\tau + Ay_n = 0, \quad n = 0, 1, \ldots,$$
 (1)

где $y_n = y_{h,\tau}(t_n) \in H_h$ — искомая функция t_n со значениями в H_h , y_0 задана. В дальнейшем предполагается, что A и B не зависят от n, B^{-1} существует. Последнее предположение позволяет записать (1) в виде

$$y_{n+1} = Sy_n, \quad S = E - \tau B^{-1}A,$$
 (2)

где E — тождественный оператор, S — оператор перехода схемы (1).

Пусть в H_h введено скалярное произведение (,) и определен самосопряженный положительный оператор D. Через H_D обозначим евклидово пространство, состоящее из элементов пространства H_h и снабженное скалярным произведением $(y,v)_D=(Dy,v)$ и нормой $\|y\|_D=\sqrt{(Dy,y)}$. Для заданных D и $\rho>0$ примем следующее

Определение 1. Разностная схема (1) называется ρ -устойчивой в пространстве H_D , если для решения y_{n+1} задачи (1) при любом $y_0 \in H_h$ выполняются оценки

$$(Dy_{n+1}, y_{n+1}) \le \rho^2(Dy_n, y_n), \quad n = 0, 1, \dots$$
 (3)

Если (3) справедливо при ho=1 , то схема (1) называется устойчивой в пространстве H_D .

Обычно, когда имеется в виду устойчивость разностных схем, аппроксимирующих задачи математической физики, предполагается равномерная по τ , h, n ограниченность величины ρ^n . Для дальнейшего изложения, если это не оговаривается особо, несущественно как значение константы $\rho > 0$, так и ее зависимость или независимость от сетки. Равномерная ограниченность ρ^n , а также соответствие нормы, порожденной оператором D, некоторой норме исходного функционального пространства проверяется не в общей теории, а только в приложениях.

Основные утверждения настоящей работы относятся к разностным схемам с симметризуемым оператором перехода.

Определение 2. Разностная схема (1) называется симметризуемой, если существует обратимый оператор $K: H_h \Rightarrow H_h$ такой, что оператор $\tilde{S} = KSK^{-1}$ является самосопряженным.

Примерами симметризуемых разностных схем являются схемы, для которых выполнено хотя бы одно из условий: a) $A^* = A > 0$, $B^* = B$ ($K = A^{1/2}$); б) $A^* = A$, $B^* = B > 0$ ($K = B^{1/2}$); в) $A^* = A$, $B = E + \tau \sigma A$, $\sigma^* = \sigma$. В последнем случае можно положить K = B или K = A, если A^{-1} существует. Устойчивость симметризуемых разностных схем, удовлетворяющих условиям в), изучалась в работах [5, 6].

Все собственные значения s_k , $k=1,\ 2,\ldots,m=\dim H$, оператора перехода симметризуемой разностной схемы являются вещественными числами. Не ограничивая общности, можно считать, что

$$s_1 \ge s_2 \ge \ldots \ge s_m. \tag{4}$$

Предположим также, что $s_1 > s_m$.

 Π емма 1. Симметризуемая разностная схема ρ -устойчива в пространстве H_{K^*K} с константой $\rho = \max(|s_1|, |s_m|)$, равной спектральному радиусу оператора S.

Доказательство. Записывая уравнение (1) в виде $v_{n+1} = \tilde{S}v_n$, где $v_n = Ky_n$, и учитывая, что $\|\tilde{S}\| = \max(|s_1|,|s_m|)$, получаем оценку $\|Ky_{n+1}\| \leq \rho \|Ky_n\|$, означающую ρ -устойчивость в пространстве H_{K^*K} .

Множество устойчивых симметризуемых разностных схем выделяется требованием $\max(|s_1|,|s_m|) \leq 1$. В классе устойчивых схем естественно выделить по аналогии с [1, 3] асимптотически устойчивые схемы с помощью следующего определения.

Определение 3. Симметризуемая разностная схема (1) называется асимптотически устойчивой в пространстве H_D , если $s_1 \in (0,1)$ и она ρ -устойчива в H_D с константой $\rho = s_1$.

Критерий асимптотической устойчивости содержит

Tеорема 1. Если симметризуемая разностная схема (1) асимптотически устойчива в каком-либо пространстве H_D , то

$$|s_m| \le s_1 < 1. \tag{5}$$

Обратно, если выполнены неравенства (5), то разностная схема (1) асимптотически устойчива в пространстве H_{K^*K} .

Доказательство. Если схема ρ -устойчива в каком-либо пространстве H_D , то собственные значения s_k оператора перехода S удовлетворяют неравенствам

$$|s_k| \le \rho, \quad k = 1, 2, \dots, m. \tag{6}$$

В частности, для симметризуемой асимптотически устойчивой схемы имеем $\rho = s_1 \in (0,1)$ и из (6) при k=m следуют неравенства (5). Обратно, из требования (5) следует, что спектральный радиус оператора S равен его максимальному собственному значению s_1 . При этом второе утверждение теоремы 1 прямо следует из леммы 1.

Следствие. Для асимптотической устойчивости симметризуемой схемы в пространстве H_{K^*K} необходимо и достаточно выполнения условий (5).

Замечание. Симметризуемая устойчивая в H_{K^*K} , но не асимптотически устойчивая схема является ρ -устойчивой в H_{K^*K} с константой $\rho = |s_m| \le 1$. В этом случае $s_m < 0$.

Условия асимптотической устойчивости удобно формулировать и проверять в терминах собственных значений задачи

$$Ax = \omega Bx,\tag{7}$$

где A и B — операторы схемы (1). Собственные значения s_k оператора перехода S и собственные значения ω_k задачи (7) связаны равенствами $s_k = 1 - \omega_k \tau$, при этом в соответствии с (4) имеем $\omega_1 \leq \omega_2 \leq \ldots \leq \omega_m$, $\omega_1 < \omega_m$. Обозначим через ω_{\min} и ω_{\max} соответственно минимальное и максимальное собственные значения задачи (7). Исследование асимптотической устойчивости сводит к оценкам границ спектра задачи (7) следующая

T еорем а 2. Если симметризуемая разностная схема (1) асимптотически устойчива в каком-либо пространстве H_D , то

$$\omega_{\min} > 0, \quad (\omega_{\min} + \omega_{\max})\tau \le 2.$$
 (8)

Обратно, из условий (8) следует асимптотическая устойчивость симметризуемой схемы (1) в пространстве H_{K^*K} .

Доказательство сразу следует из теоремы 1, если заметить, что $s_1=1-\omega_{\min}\tau$, $s_m=1-\omega_{\max}\tau$, а неравенства (5) эквивалентны условиям $s_m+s_1\geq 0$, $0< s_1<1$.

В качестве примера рассмотрим схему с весами

$$(y_{n+1} - y_n)/\tau + \sigma A y_{n+1} + (1 - \sigma)A y_n = 0, \quad n = 0, 1, \dots,$$
(9)

где $\sigma = {\rm const}$, $A^* = A > 0$, A не зависит от n. Обозначим через λ_1 и λ_m соответственно минимальное и максимальное собственные значения оператора A,

$$\alpha = 1/\lambda_1 - 1/\lambda_m, \quad \beta = 1/(2(\alpha + \sqrt{\alpha^2 + \tau^2})), \quad \sigma_0 = 1/2 - 1/(\tau \lambda_m).$$
 (10)

Заметим, что в случае разностных схем, аппроксимирующих задачи математической физики, обычно имеем $\alpha = O(1)$, $\beta = O(1)$ при $\tau \Rightarrow 0$, $|h| \Rightarrow 0$.

Для схемы (9) имеем $B=E+\tau\sigma A$, оператор перехода $S=E-\tau B^{-1}A$ является самосопряженным, причем

$$s_1 = 1 - \tau \lambda_1 / (1 + \sigma \tau \lambda_1), \quad s_m = 1 - \tau \lambda_m / (1 + \sigma \tau \lambda_m). \tag{11}$$

Известно (см. [3, с. 334]), что критерием устойчивости схемы (9) является выполнение неравенства $\sigma \geq \sigma_0$. Следующая теорема показывает, что незначительное ослабление обычного требования устойчивости приводит к асимптотически устойчивым схемам. Пусть задан любой самосопряженный положительный оператор $D: H \Rightarrow H$, перестановочный с оператором A.

T е о р е м а 3. Eсли $A^* = A > 0$, то схема (9) асимптотически устойчива в пространстве H_D тогда и только тогда, когда

$$\sigma \ge \sigma_0 + \beta \tau. \tag{12}$$

Доказательство. Схема (9) симметризуема, причем в качестве оператора K можно взять оператор $D^{1/2}$, если только D перестановочен с A. Действительно, $\tilde{S} = D^{1/2}SD^{-1/2} = S = S^* = \tilde{S}^*$. Применяя к схеме (9) теорему 1 и учитывая равенства (11), приходим к условиям $|1 - \tau \lambda_m/(1 + \sigma \tau \lambda_m)| \leq 1 - \tau \lambda_1/(1 + \sigma \tau \lambda_1) < 1$, которые эквивалентны совместному выполнению трех неравенств:

$$1 + \sigma \tau \lambda_1 > 0, \quad 1 + \sigma \tau \lambda_m > 0, \tag{13}$$

$$\tau \lambda_1 / (1 + \sigma \tau \lambda_1) + \tau \lambda_m / (1 + \sigma \tau \lambda_m) \le 2. \tag{14}$$

В свою очередь неравенства (13) при $\lambda_m > \lambda_1 > 0$ эквивалентны одному неравенству

$$1 + \sigma \tau \lambda_m > 0. \tag{15}$$

Условия (14) можно записать в виде следующего неравенства:

$$\sigma^{2} + \left(\frac{1}{\tau\lambda_{1}} + \frac{1}{\tau\lambda_{m}} - 1\right)\sigma + \frac{1}{\tau^{2}\lambda_{1}\lambda_{m}} - \frac{1}{2}\left(\frac{1}{\tau\lambda_{1}} + \frac{1}{\tau\lambda_{m}}\right) \ge 0,\tag{16}$$

решая которое, получим $\sigma \leq \sigma_1$ или $\sigma \geq \sigma_2$, где $\sigma_1 = \sigma_0 - (\alpha + \sqrt{\tau^2 + \alpha^2})/(2\tau)$, $\sigma_2 = \sigma_0 + \beta \tau$. Неравенство $\sigma \leq \sigma_1$ следует отбросить, поскольку оно противоречит условию (15). В результате остается неравенство (12), из которого следует и неравенство (15).

По аналогии с [3, c. 279] можно выяснить вопрос о зависимости асимптотической точности схемы (9) от параметра σ . Теорема 3 гарантирует при условии (12) выполнение оценки

$$||y_n||_D \le s_1^n ||y_0||_D, \tag{17}$$

где множитель $s_1 \in (0,1)$ определен согласно (11). Предположим, что $\lambda_1 = O(1)$ при $\tau \Rightarrow 0$, $|h| \Rightarrow 0$. Будем говорить, что разностная схема (9) имеет k-й порядок асимптотической точности, если она асимптотически устойчива и $s_1^n = e^{-t_n\lambda_1}(1+O(\tau^k))$, k>0. Представляя s_1 в виде $s_1 = e^{-\tau\lambda_1}e^{\varphi(\mu_1)}$, где $\mu_1 = \tau\lambda_1$, $\varphi(\mu_1) = \mu_1 + \ln(s_1)$, и учитывая (11), получаем при малых μ_1 разложение

$$\varphi(\mu_1) = (\sigma - 1/2)\mu_1^2 - (\sigma^2 - \sigma + 1/3)\mu_1^3 + (\sigma^3 - 3\sigma^2/2 + \sigma - 1/4)\mu_1^4 - (\sigma^4 - 2\sigma^3 + 2\sigma^2 - \sigma + 1/5)\mu_1^5 + O(\mu_1^6).$$
(18)

Отсюда видно, что в общем случае $\varphi(\mu_1) = O(\tau^2)$ при $\tau \Rightarrow 0$ и, следовательно, схема (9) имеет первый порядок асимптотической точности при условии (12).

Если $\sigma=0,5$, то $\varphi(\mu_1)=O(\mu_1^3)$, а неравенство (12) выполнено при условии $\tau\leq 2/\sqrt{\lambda_1\lambda_m}$. В этом случае схема (9) имеет второй порядок асимптотической точности.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 93-012-00801).

Литература

- 1. Самарский А. А., Гулин А. В. Устойчивость разностных схем. М., 1973.
- 2. Самарский А. А., Гулин А. В. // Мат. сб. 1976. Т. 99(141), № 3. С. 299 330.
- 3. Самарский А. А. Теория разностных схем. М., 1989.
- 4. Самарский А. А., Гулин А. В. Численные методы. М., 1989.
- 5. Самарский А. А., Гулин А. В. // Дифференц. уравнения. 1993. Т. 29, № 7. С. 1163 1173.
- 6. Гулин А. В., Дегтярев С. Л. // Вестн. Моск. ун-та. Сер. Вычислит. математика и кибернетика. 1994. № 3. С. 23 29.

Московский государственный университет им. М. В. Ломоносова, Институт математического моделирования РАН Поступила в редакцию 22 февраля 1995 г.