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The questions of approximate solution of unstable problems for evolutionary second
order equations are discussed in this paper. The classical Cauchy problem for elliptic

type nqnnhnn is a significant avnmn]p of euch problem. Incorrectness of thic pnroblem
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(the Hadamard example) is due to 1nstab111ty of the solution towards small perturbations
of the initial conditions.

The extension problem of the solutions of well-posed elliptic problems beyond the
calculation region boundary is also discussed. The stability of corresponding difference
schemes is investigated by basing on general theory of p-stability. The principle of the
regularization of three-layer difference schemes is developed for the unstable problems.
It is shown that the regularized difference schemes correspond to some modification of
guasi-inversion method.

1. Introduction

Inverse problems for the mathematical physics equations, which are ill-posed in the
classical sense, are of great importance in terms of applications.?? In particular,
inverse problems of heat transfer may be mentioned.?? In the geophysical survey
(gravitational, magnetometric and electric prospecting) one of the major problems
is continuation of potential fields.5%:! It leads to approximate solution of ill-posed
problems for elliptic equation. As is well known® the Cauchy problem is ill-posed for
elliptic equations. We may also note the extension of well-posed elliptic boundary
value solutions into the region adjacent to the boundary. This problem is reduced to
the one with initial conditions. When considering the stationary inverse boundary
value problem of heat conduction we obtain such unstable problems.2

The pI‘Omei"flS under consideration belor ng to a class of conditionall Iy W 'cu-pOSt“:d
problems. If a class of acceptable solutions is narrowly drawn {to distinguish a class
of correctness) the solution becomes continuously depending on initial conditions.
These problems are solved approximately by the regularization methods.

The approximate solution methods for ill-posed evolutionary problems may be

divided into two categories. In the first one, perturbations are applied to the initiall
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conditions which are given with a certain error. The second category of the methods
for obtaining stable solutions of ill-posed problems for partial differential equations
is concerned with perturbation of the equations (the method of quasi-inversion!?).

The methods with perturbation of initial conditions are widely used for the
extremal formulation of a problem.? In the problems of optimal control, where
the systems are described by the partial differential equations,'® the regularization
method of Tikhonov is employed.???® The class of approximate solution methods
also includes the methods with non-local perturbation of initial conditions. In this
case tflr'i_e regularization effect results from binding the solutions on initial and final
times together. The regularization of ill-posed evolutionary problems based on
non-local perturbation of initial conditions was proposed in Ref. 1. Some questions
on this approach towards numerical solution of the Cauchy problem for elliptic
equations were discussed in Ref. 27. Equivalence of the extremal formulations for
ill-phsed evolutionary problem and non-local problem is worth noticing (see, for
example; Ref. 26). o X

The quasi-inversion method!? is based on a perturbation of the given equation,
when the problem becomes well-posed for the perturbed equations. Here the per-
turbation parameter acts as a regularization parameter. In Ref. 12 the Cauchy
‘problem for elliptic.equations was considered in a common irfegular region. By
restricting ourselves by cylindrical regions, we may construct modifications of the
quasi-inversion method, which are similar to those available for the problems with
inverse time for parabolic equations (see, for example, Refs. 7, 12 and 21). Based
on cobrdinate trahsformation, common calculation regions may be transformed to
the cylindrical calculation region. Such transformation was, in fact, performed in
Ref. 23.

These methods, as opposed to the methods with perturbation of initial con-
ditions or usual modifications of gquasi-inversion method for the elliptic Cauchy
pro'bl'*é'iﬁ"ﬁw,il?2 allow construction of the most efficient computational algorithms. In-
correct-problem is solved sequentially by passing from one time layer to the next
one. In this manner, specific features of a given evolutionary problem can be most
fully taken into account.

We may follow two different directions in solving approximately the applied
ill-posed problems. In the first one, we construct a corresponding regularization
problem for the given continuous unstable problem and then pass to the discrete
problem. An alternative is connected with constructing discrete analogs of the un-
stable problem with subsequent regularization. For example, for well-posed prob-
lems of mathematical physics the theory of stability of difference schemes!®° is
constructed independently of a continuous problem.

This paper is part of our studies in constructing diff

= ARAL2 RS LaduL AR =

erence schemes
ble problems by basing on the regularization concept of difference schemes.!® In
Ref. 20 the regularization of difference schemes was made for ill-posed evolutionary;
first order equations on an example of the inverse time problem for a parabolic equask: :
tion. The appropriate p-stable two-layer difference schemes were constructed.’ ]':I;é‘i:%
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analogous results have been obtained for three-layer difference schemes as applicable
to unstable problems of evolutionary second order equations.

2. Incorrect Problems for Evolutionary Second Order Equations
2.1. The Cauchy problem for elliptic equations

We considered the Cauchy problem for elliptic equations as an important class of
unstable problem of extending the solution of a well-posed boundary value problem
into the adjacent region. These problems are very important in the applications
such as geophysical prospecting. Extension of the solution of the elliptic boundary
value problem may be easily reduced to the Cauchy problem. The reduction of the
Cauchy problem to that of the extension?® may also prove useful.

We consider first the Cauchy problem for an elliptic second order equation. Let
us note by (2 a restricted region of the m-dimensional space R™ with the smooth
enough boundary 9. In R™ X {—o00 < t < o0} we considered the limited cylinder

QUO,7T)={(z,t)lxeQ, 0<t<T}, T>0,
where « = (z3, €3, ..., ‘7".'")’ with the side surface
r0,7)={(z,t)|lx €30, 0<t<T}.

For z € ' we determine the uniformly elliptic self-adjoint operator

with sufficieritly smooth coefficients a;;(z) = a;:(z), z € .
We considered the ill-posed Cauchy problem for the elliptic second order equa-
tions. Let u(z,t) satisfy the equation

— —Lu=0, (z,t)eQ0,T). (2.2)
For simplicity, we réstrict our consideration with the boundary conditions
u(z,t) =0, -(x,t) e (0, 7). | (2.3)
Two initial conditions are given for ¢ = 0. Let

uz,0) =wu(z), ze€l, (2.4)

%(m,ﬂ):ﬂ, T €. | (2.8) .:r9
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The formulated problem (2.1)—(2.5) is the first example of ill-posed evolutlonary
probiems.

2.2. The extension problem

As the second example of ill-posed problems for elliptic equation (2.2) we consider
the extension of the Dirichlet problem solution in the half-band

Q(—00, 0) = {(z,t)|]z € R, —oc0 < t < 0}.

Let u(z,t) be determined by the solution of the equation

=7 ~Lu=0, () € Q(~0,0), (2.6)
which ﬁ completed by the boundary conditions of the first kind
u(z,t) =0, (z,f)€(—o0,0), (2.7)
u(z, —00) =0, z€Q, (2.8)
u(z,0) =up(z) €9, (2.9)

where I'(—co, 0) is analogous to I'(0, T'), the side surface Q(—o0, 0).

The extension problem is posed in the following way. The solution of the Dmch-
let problem (2.6)—(2.9) is extended into the adjacent region Q(0,T), i.e., the region
Q(—00, T) we consider the problem for the equation

‘;; —Lu=0, (z,8)€Q(—o0, T) (2.10)
with the boundary conditions
u(z,t) =0, (z,t)el(—00, T). - {211

The conditions (2.8) and (2.9) formulated above are used in the variable ¢.
The extension problem (2.8)—(2.11) is reduced to the Cauchy problem if we take

G abqullb bhab U.y DUIVIU.B the Ulllb}.‘l}.C!: P.I.Ublcl.l.l \2 6} \2 9) WwWE ﬁlld tho ful.l.bt.l.u].].

e (z,0) =9¢(z), ze€. | (2.12)

After thls we may consider the Cauchy problem (2.2)-(2. 4) (2.12) in the region
Q(0,T). |

2.3. The solution instability

The Cauchy problem (2.2)-(2.5) and the extension problem (2.8)—(2.11) belong to am
class of ill-posed problems of mathematical physics. Like in the retrospective inversé
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problem for the parabolic equation®® the incorrectness is due to the instability of
the solution towards small perturbations of the initial conditions (the function ¢(z)
in (2.4) and (2.9)). The following Hadamard example® is well known for the Cauchy
problem. :

Let n = 1 and consider the equation

u  0%u
523'1'5:;2-—0, O0<zr<a, O0<t<T (2.13)
with the boundary conditions
u(0,t) =0, ufae,t)=0. (2.14)

The initial condition (2.4) is taken in the form

2\ T
u(z,0) = k"(;) sin (ﬂ'k E)’ 0<z<a, (2.15)

while (2.5) yields
Er;‘,-t-:,-(:::,o,)=0, 0<z<a. (2.16)

When s > 0 in the norm H = L2(0,a) we have
lu(z, O)% = f W2(z,0)dz = k-2 — 0
0

as k -— oo, i.e., the initial condition is arbitrary small. The exact solution of the
problem (2.13)-(2.16) has the form

eyt =4 2) Vo (5e)sm (=), (217

O<z<a, 0<t<T.

From the representation (2.17) it follows that

[lu(z, )i = k‘sch(n'gt) ~+ 0O

as k — o0o. Hence, the perturbations in the initial condition, no matter how small
they are, infinitely grow when ¢ > 0. An analogous example may also be given for
extension problem (2.8)—(2.11).

2.4. Conditional stability

To solve the unstable problems (2.2)- (2.5) and (2.8)-(2.11) approximately we single
out a class of a priori restrictions imposed upon the solution which is stable in initial
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data. We shall consider the restricted solution. For example, for the extension
problem (2.8)—(2.11) let

llw(z, t))| < M =const, —oco<it<T. | (2.18)

Let us note by Wi(z) and A, &k = 1, 2, ... the eigenfunction and eigenvalues
of the operator L respectively, defined by (2.1) on the set of functions satisfying
the boundary conditions (2.3); 0 < A; < Az < ... (Ref. 11). Then obtaining the
solution of the problem (2.8)—(2.11) we derive the representation

u(z,t) = 3 exp(Ay/t) (o, Wie)Wi(z). (2.19)

k=1
For the square norm from (2.19) we obtain

oo

lJu(z, )} = Z(uo, W) 204D ((ug, Wi) exp(\/2T)) /T . (2.20)
k=1 .

By basing on the Gelder inequality'® from (2.20) we get

\{l—t/T}

oo oo t/T
" P < ( D (w0, Wa)? ( D _(uo, Wi) exp(xt”T)z) -
k=1 k=1

/

From this inequality we have the estimate
llu(z, )| < fulz, O |lu(z, T) Y7 . (2:21)

From (2.18) and (2.21) we obtain the continuous dependence in space Lo(D) for
the solution wu(z,t) of the extension problem for the elliptic equation (2.8)—(2.11)
on the initial condition in the class of functions uniformly bounded in ¢ € (—o00, T.

2.5. Differential difference problem

To solve the unstable problem (2.2)-(2.5) approximately we shall use different meth-
ods. we introduce the grid wy, in the domain €2. Without loss of generality, we shall
assume that the grid wy, is uniform along each direction. The grid step in z; is h;,
wherei=1,2,...,m. :

We approximate the operator L, defined by (2.1) with involvement of (2.3), by
corresponding grid operator .A. A specific choice of A is carried out by basing on
the difference scheme theory,'® the finite elements method.® Let us only note the
most important properties of the operator A, which must be preserved in passing
from the differential to grid operator. On the grid w;, we determine the space of

orid functinone H — Fofnn ) with tha ecalar nradiiet
6&‘.“ ALALIV/ VAL 22T AL JJ‘ \wn’j WY AUWILL Vil LI LUVALRL P.I.Uuu\lu

@2) = > y(@)z(z)hih2...~m.
TEW

The operator A is self-adjoint and positively defined in H.
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Now we transfer from the problem (2.2)-(2.5) to the following differential dif-
ference problem. We have to find the solution of the equation

d?v
—_— - = : 2.22
7> Av =0, (2.22)
completed by the initial conditions
v(z,0) = up(z), € wp, (2.23)
d ‘ '
E%(a:, 0)=0, z€wh. (2.24)

For obtaining the difference solution of the problem (2.22)—(2.24) we introduce the
grid in time
={tjt=nr, n=0,1,...,N, Nr=T},

where 7 > 0 is the grid step.

3. The p-Stability of Three-Layer Difference Schemes

3.1. The stability of three-layer difference schemes

The general theory of difference scheme stability'®:1? is based on presenting differ-

ence schemes in the canonical form. For the three-layer difference schemes this form
is

— Yp— 2 -
Byn+1 YUn 1+72Ryn+1 yn+yn 1+Ayn=¢n,

0 ~2
LT T

n=12, ... (3.1)

for given yo(z) = uo(z), 11(z), T € wy. In (3.1) the operators 4, B and R generally
depend on h;, i =1, 2,..., m, T and t. For the test problems under consideration,
similar to (2.1)—(2.5), we assume that the difference operators A, B and R are
stationary (do not depend on t). By basing on general theory of the difference
scheme stability*® the results were generalized in different aspects (stability towards
the right-hand side, the difference schemes with nonself-adjoint operators, non-
stationary operators, stability in simpler norms, etc.). Here we shall study only the
stability of difference schemes in initial data; therefore in (3.1) ¢, = 0.

For well-posed evolutmnary problems an usual condition of stability in space
Hp in initial conditions is

0N 9 9\
. \d.k}

We have to use more complicated norms when investigating the stability of three-
layer difference schemes. This question was thoroughly discussed in Ref. 19, where

most important norms were considered.
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For each n =1, 2, ... we shall determine vector

1
Y* = {5 (yn + yn-—l)a Yn — yn—l} .

A direct sum of the spaces H is designated by H%: H? = H @ H. For the vectors
Y = {y', ¥*} the summation and multiplication in H? are carried out coordinate
by coordinate, while the scalar product

(¥,V) = (', o) + (3 v%).
For the difference scheme (3.1) with R = R*, A = A* > 0, 4R— A > 0 we determine
the norm in H by the expression ||Y™||p = ((DY™, Y™))'/2, where

1
(PY™, Y7) = 7 llyn + Yn-alli + ln ~ Yn-allp_ (3.3)

1 4>
74’

while the norm in H 4 is determined according to (3.2). Our study is based on the
general results of the stability theory for three-layer difference schemes.!®19

Theorem 0 (basic).!” Let the operators A and R in (3.1) be stationary (inde-
pendent of n), self-adjoint and positive (A = A* > 0, R = R* > 0). Then the
conditions

&=%w+3ﬂ;0 (3.4)
R-7450 . (3.5)

are necessary and sufficient for the stability of the scheme (3.1) in H3, i.e., the
bound [[Y" o < [Y™||p is fulfilled.

This result is final and cannot be improved since we deal with the necessary and
sufficient conditions.

3.2. The p-stability

In the difference schemes for ill-posed problems like (2.2)-(2.5) the stability con-
dition ||Y**!||p < ||Y™|lp does not fit and must be replaced by the p-stability
condition. It is due to the fact that the solution (its norm) to the inverse problem
grows (see representation of (2.19)). On the grid level it shows up in the differential
difference problem (2.22)—(2.24) where the operator A is positively defined.
Allowing a growth of the solution to (2.22)—(2.24) we shall use the p-stability
difference schemes. The three-layer difference scheme (3.1) is called p-stable!® if

Y™+ o < plIY"llp, (3.6)

where p > 0 is any number. Allowing a limited growth of the solution we may put

p =exp(cT),
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or
p=1l+er,

where the positive constant ¢ does not depend on the grid (on 7 and h) For this
p the stability éstimate of the difference solution in the initial data may be denved
from (3.6) in the form

Y™+ llp < exp (ctnts) Yl - B CXY

General conditions for the p-stability of three-layer difference schemes were ob-
tained in Ref. 17 and discussed in detail in Ref. 19. :
A specific nature of the difference schemes for ill-posed problems is seen in the
stability condition (3.6) where p > 1.
Theorem 1. Let the operators A, R and B in (3.1) be stationary (independent of
Y oA anlf .m—l-.,“ it ’T‘ Toan i€
i'lz}' [eAURE] Gli"ClvUJU Als. 11C31 11
2
2T

for the p-stability in H? with p > 0 it is necessary and sufficient to satisfy the
conditions . |

lBr(P+)R>0 (3.8)

A1

s B+ (-1 R+pA20, (3.9)
pF =1 '
5—B+(p+1)°R-pA20, (3.10)
2 .
Ztlp i -1)R>0. (3.11)
2T

In this case the operator of the norm D is given by the expression

2 2

11t1 1
DY? Y™ = — |~Yn + Yn— ~Yn — YUn— ;
( ) 4‘py + Yn—1 ;:;+Iﬂyn Yn—1 .
where .
. =1 2
A=-2T B+ (p—1)*R+ pA,
~ - p2—1
4R— A= B+ (p+1)2 - pA.

We note that for the p-stability of the three-layer scheme (3.1) with p > 1 the
condition A > 0 is not necessary (in the case of (2.22)—(2.24) we have A < 0).

4. Regularization of Three-Layer Difference Schemes
4.1. Regularization of the explicit scheme

We shall apply the regularization principle!® first to well-posed evolutionary prob- |
lems for the second order equations. Discussing the results for well-posed problems
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in parallel with those for ill-posed problems allows a more profound understanding

of difference methods for unstable evolutionary problems. On the other hand, such

a parallel consideration demonstrates power and generality of the unified mathe-

matical tool used in the stability theory. Moreover, the new difference schemes

proposed may prove to be of individual interest for well-posed problems. '
We consider the differential difference problem (see (2.22)—(2.24)):

d?v

p7l + Av =0, (4.1)
v(x,0) = ug(zx), (4.2)
P |

E";-(w,())zo, T € wh. (4.3)

For the problem (4.1)-(4.3) we write down the usual explicit symmetrical dif-
ference scheme

Yn+1 — 2Yn + Yn—1
72
This scheme (see, for example, Refs. 18 and 19) is stable for sufficiently small steps
in time. Reslly, the scheme (4.4) may be written in the canonical form (3.1) with

+Ayxy =0, n=0,1,.... (4.4)

1
B=0, E=3E, A=A | (4.5)
By owing to A < [lA||E the condition (3.5) yields
2 2
E~%A>(ww4f%)A>a

This inequality is satisfied if 72 < 4l 4|71, i.e., when 7 < 7o = O(h), which is the
Courant conditions.

By using the regularization principle we shall correct the scheme (4.4) and con-
struct absolutely stable difference scheme.

Now we shall note the regularization grid operator by R = R* > 0 and let
o > (0 be the regularization parameter (the perturbation parameter). By analogy
with Ref. 16 the regularization scheme for (4.4) is written in the form

-2 _
(E+QR) Yn+1 Yn + Yn—1

> + Ay, = 0. (4.6)

We use two choices of the regularizator: R = A and R = .4%. Let’s prove the
following statement.

Theorem 2. The difference scheme (4.6) with A = .4* > 0 is absolutely stable for
the choice of the regularizator R = A if

o> /4 AT, (47) )

and for the choice R = A? if a > 74/64.
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The proof is based on checking the necessary and sufficient conditions (3.4) and
(3.5). In our case the inequality (3.4) is always satisfied since for the scheme (4.6)
we have B = 0. To check the condition (3.5) we should take into account that

R=1"*E+aR), A=A. (4.8)

-y

Proceeding from (3.5) we obtain
L
(JAI"t +a)A > T A.

If the regularization parameter « is chosen in a,ccorda.nce with (4.7) this inequality
will be satisfied.

For the regularizator R = A? and (2.8) the inequality (3.5) is transformed in
the following form:

27 214 A

THR~1/4A) = E+ oA’ —~12/4 A
= (a'?A - 2 /(8aM*)E)? + (1 — 7*/(64a))E > 0

From this it follows that when R = A2 and & > 71/64 the regularization difference
scheme (4.6) is absolutely stable.

For the scheme (4.6) the choice @ = a72, 01 = 03 = 0 at R = A corresponds
to the usual scheme®1? with the weights

--yn+1 — 2Yn + Yn-1
T2
+ A(01¥n+1 + (1 — 01 — 02)yn + 02Yn—1) = 0.

An analysis of such regularization schemes was made in Ref. 16. If is worth to
consider separately the regularization scheme (3.6), (3.8) with the regularizator
R = A% |

4.2. Factorization schemes

By analogy with the above case for the parabolic equation®® we may construct
efficient difference schemes by solving approximately the multidimensional problems
(2.2)-(2.5). We shall consider only some simplest results obtained in this field. The
difference schemes of total approximation, the split schemes are discussed in detail
from different point of view in Refs. 15, 18 and 19. Here we show the possibility
of constructing the factorization difference schemes by basing the regularization
principle.

We consider the case when the grid operator A may be presented as a a sum of
the commutative operators

14 ' :
A= A, Ap=A;>0,
k=1
AcAs = AsAr, k,8=1,2,...,p. (4.9)
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Theorem 3. The factorization difference scheme (3.1) with

p
B=0, R=J[(E+oRy), A=A, (4.10)
k=1 ‘

where A satisfies the conditions (4.9) is stable at Ry = Ag if a > 72/4 — || A|~!
while at Ry = AZ it is stable if a > pr*/64.
Choosing the operator R in accordance with (4.9) and (4.10) we have for Ry, =

A that
’ p

H[(E+eadr) > E+aA.
k=1
Hence, similar to Theorem 2, the factorization scheme (3.1), (4.9) and (4.10) is

stable if (4.7} is satisfied.

Tr +hn rocs TP — A2 tlhin thnmenmn 2o s wr rigiemer $ha 3
il 1ne Case g = Ay WIE 1Ne0IeInl 18 Pprovea Dy using wne i

P ' P P 2
H(E+a¢4i) 2..E+_t:1.fz.,4,2c > E+ E(ZA;;)
k=1 k=1 P
—E+ %A2. (4.11)

By involving Theorem 2 we obtain that for o > p72/64 the factorization scheme
(3.1), (3.9) and (4.10) is stable.

Based on the regularization principle we may also obtain other efficient schemes
for solving the differential difference problem (4.1)—(4.3). In particular (see Refs. 15,
18 and 19), it concerns the case when the operator is split into two (p = 2).

5. Regularization of Three-Layer Difference Schemes
for Unstable Problems

5.1. Regularization of the explicit scheme for unstable problems

We shall turn now to ill-posed problems with initial date for the elliptic second
order equation. Let w(z,?) be defined from Eq. (2.2) completed by the conditions
(2.3)—(2.5). We see our task in constructing the p-stable difference scheme by basing
on the regularization principle and in extending the results obtained for well-posed
problems for evolutionary second order equations onto ill-posed problems.

We first consider the explicit symmetric difference scheme

Yni41 — zyn + Yn-1
2 — Ay, =0, n=0,1,.... (5.1)
[y o} IR, IR . Ji T YNSRI, Mg JF I NNy T 1) My P I jSUVRIY & > Tt [ WS B
1lie sciete (J.1) Hidy DE WIILLCH 1l LIe CallOnlcal 1Ormn {J.1} wiin
1 .
B=0, R==E, A=-A, (5.2)
.7-2
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Theorem 4. The explicit scheme (5.1) is p-stable with

- p=exp (l4]72r). (5.3)

The proof is based on checking the p-stability conditions for the scheme (5.1).
For the three-layer difference scheme (‘7 ﬂ they have the form (‘2 Rl ('% 'H\ When

B>0,A<0,R>0and p>1the mequa.htles (3.8), (3. 10) and (3 11) for all
T > ( are obviously satisfied. The inequality (3.9) with involvement of (5.2) may
be transform into

(p—1E—-12pA2 ((p— 1) AT = r20) A 2 0

Let us prove the following auxiliary results.

Lemma. The inequality
| (=1 x-7°p>0

for positive x, 7 and p > 1 is satisfied when
p 2 exp(x/?7).

This inequality will be fulﬁlled for p > po2, where

1 1 1/2
p2=1+3 2x 7+ ("2 (1 + 4T2X”1) '

By virtue of

1, .\ 1 a2 1
(1+ZTX ) <1+§.TX ,

1
31 -3/2
8X

1 1
<14 TX—1/2 + '2'(TX_1/2)2 + E(TX_1/2)3

1
pr<1+7(x )2 +rioxt 4T

< exp(x_lfzfr) )

Thus the lemma has been proved.
In our case x = || A}{~! and therefore for p we obtain the estimate (5.3) for the
explicit scheme (5.1). :
Taking into account the restrictness of operator A (we have ||A]l = O(h

we may suggest that the orid step in space restricts the solution erowth. i.e. acts

o LaliZu Y NAdataiu O~ e WDUneps W jor LA AT UL U ViLY WAL VIS A WY bily Ay TR

—2) 18,19

as the regularization parameter). Passage from the continuous problem to the
discrete one may, in principle, be considered as a method of combating the instability
and the resulting regularization algorithm is a possible approach to obtaining the

approximate solution of unstable evolutionary problem. :
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Introducing explicitly the regularization additions to grid operators of the dif-
ference scheme offers great potentialities. By analogy with the well-posed problem
(see (4.8)), we write down the regularization scheme in the canonical form (3.1)
with

B=0, R=;12-(E+a'R), A=—A. (5.4)

Theorem 5. The regularization scheme (3.1) and (5.4) is stable at R = A4 with

p=exp(a™'r), (5.5)
while at R = A2 with
p=exp(2~ 2 V4), (5.6)

Again the proof is based on checking the satisfaction conditions for the inequality
(3.9) which for (5.4) takes the form

(p—1*(E+aR)—1°pA>0. (5.7)
At R = A, by analogy with Theorem 4 (x = a + |lA||~"), we obtain
p = exp ((a-+ A7) /27)

By making p cruder we obtain the estimate (5.5).
At R = A? the inequality (5.7) may be transformed into:

o

2 2 2
2__ TP a_ {24 TP _-1p2
E+aA (r—1) A (a A 20p—1)° 15t E)

T4p2
1— ——L 1 =0.
+( -1 )E 0

The above inequality will be satisfied for given p if the regularization parameter

4 2
p
a>4(,\_1\4' (5’8)
)

Now let us estimate p for a given « from the inequality (5.8). The latter may be

rewritten as
(p—1)%222 —72p > 0.

. 1 2 - - . N -
= 2¢!/?) this inequality is satisfied for p defined
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proceeding from additional considerations involving specific features of an applied
problem and available computational resources.

5.2. Factorization schemes

By analogy with the direct problem we consider regularized factorization schemes.
We assign the operators of the difference scheme (3.1) in the form

p
B=0, R=][(E+aR:), A=-A, (5.9)
k=1

Theorem 6. The factorization scheme (3.1), (4.9) and (5.9) is p-stable at Ry = A
with o

~1/2

p = expla” /1),

while at Ry = .Ai with
1/49—1/2 —1/4
p = exp (p*/*2 2" 4r)
The:proof is quite analogous to that of Theorem 5 with involvement (4.11). It is
only necessary to note that again we restricted our consideration with simplest fac-
torization scheme with sclf-adjoint and commutative operators Ax, k=1, 2, ..., p.

5.3. Perburliat.ion of other operators .

LA wng iy w Fhionar A3 3
The regularization theory of differcnce schemes is based

grid operators A, B and R. The reg;ula,rlzatlon effect may b achleved ot only
by means of perturbation upon the grid operator R. For example, instead of the
explicit;schemie. (5,1) we consider the regularization scheme where the operator A
is perturbed. Let

C — 2 n—
e Yn+1 :lzn + Yn—1 — Ay + Ry = 0 (5.10)

+hL
on e p

and R = A2
Theorem 7. The regularization scheme (5.10) is p-stable at R = A% with

p=exp(2 'a"?7), | (5.11)

for any, 7 if af|A|| < L, and for 7 < (2/(JAll(e] Al - 1)) if allAlf > 1.
In the explicit scheme (5.10) the restriction on the time step follows from the
necessxty of satisfactmn of the %ﬁcquahtzy {3.10). For the scheme (5. 10)- we have:

"""""

B=0, R=zE, A=-A+ ad?. (6.12) ;
T
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The estimate (5.11) for p we obtain from the inequality (3.9). By involving
(5.12) we obtain from (3.9)

This inequa.lity' is satisfied for
(p—1)*4a 770> 0.
Hence, by virtue of the lemma we obtain the estimate (5.11) for p.

Taking into account (3.9) we have

1)? —1)2 4
(o+1p_ -y, &
TE T T

4
> ﬁpE+pA—pa.A2.
With involvement of this inequality and inequalities E > {|A}|~1.4, A% < {|A]| A the

relation (3.10) may be transformed into

1)2-

> % (—2—2E+A—aA2)
T
2
> 2 (—2 AL +1— auAn)A >0.

The last inequality is satisfied for all 7 if a|A}| < 1. However, if af|A]| > 1 all the
above restrictions upon the time step will take place.

Let us present the results about the absolute p-stability of the combined regu-
larized difference scheme ' |

Yni+1 — 2?jn + Yn-1
72 :
n=12,..., " (5.13)

[ .
W+

which was obtained by perturbation of operator R and operator A. We restrict
our consideration with a particular case of fixed constrain between perturbation
parameters o; and as.

Theorem 8. The regularization scheme (5.13) at oy = Qa2 [Aand Ry = Re = A?
p-stable for any T > 0 with

p= exp(2'“1a;1/2'r) . (5.14)
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In the case of the scheme (5.13) at Ry = R2 = A? we have
B=0, R= Tie (E+ 0 A2), A=—A+agd. (5.15)

We first check the satisfaction of inequality (3.10) for any p and a; = az72/4. With
involvement of (5.15) and the positively of operator A we immediately obtain

2
———-—(p;!_—l) (E + a1 A?) + pA — pop A

1/2 4 ,-1/2)2
_>p((‘° nal o) N az)A2>o

T2

This inequality is fulfilled for the chosen a; and axs.
To estimate p we substitute (5.15) into (3.9)

_12 .
(e 12) (E + a1 A%) — pA -+ pas A
2 _ 132

=a2

4
2
— /u1/2 p+ 1 A _ u._1/2 ___p__ E\
~\7 ? p+17)
(o — 1)2
E>0.
+ ( 72 p+ 1)2
This inequality is satisfied for
p—1 ~1/2 P |
> _— : 5.16
- Qg o+ 1 ( )

This inequality (4.16) allows us to obtain

p=2l4+— 1 a—I/ 2.
2
Hence, we obtain the estimate (5.14) for p.

We note also that it is possible to construct regularization difference schemes by
using the perturbation of operator B in the difference scheme (3.1) when solving
the Ili-posed problem by means of the explicit scheme (5.1). The corresponding
difference scheme may be written in the canonical form (3.1) with the operators

B =aR, R=£§E, "A=—A. (5.17)

For example, we shall prove the following statement.

Theorem 9. The difference scheme (5.17) is p-stable at R = A with

p = exp(a™l7). (5.18)
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Indeed, with such a choice of operators A, B and R the inequalities (3.8), (3.10) -«
and (3.11) are obviously satisfied, while the inequality (3.9) with involvement of
(5.17) is transformed into

pP—1 2
5 B+ (p—1)*R+pA
2
_p-1 _ 2?____
== aA+(p—1) p pA

2
-1
— >0.
>( 5 @ p)A,O

The last inequality is satisfied for p > pa, where

72\ 1/2
+i{l+—
o
r 172 1
| < 1+-&-+§a—2— < exp(a '7).
We obtain from this the estimate (5.18) for p.
Theorems 7-9 illustrate the possibilities for obtaining the p—etable difference

schemes under the perturbation of different grid operators in canonical form (3.1).

Rl

P2 =

6. Three-Layer Regularization Schemes and the Quasi-Inversion Method
6.1. Basic variant of the quasi-inversion method

The regularization difference schemes given above are obtained on the basis of the
regularization principle which is formulated irrespective of a specific continuous
problem under consideration. Regularization of difference schemes is based on per-
turbation of grid operators. If ill-posed problems are solved ‘approximately the
regularization principle of difference schemes may be considered as a method of
quasi-inversion for a discrete problem. The perturbation of difference scheme oper-
ators on a continuous level corresponds to a perturbation of the original differential
equation. Therefore, such regularization difference schemes for ill-posed Cauchy
problems may sometimes be interpreted as difference schemes of the quasi-inversion
method.

For each variant of regulap-zn ion of unstable schemes we write down a cor-

R MU AT Ak WAL AARRS LTSI <1 AAaUT s

responding variant of quasi-inversion method. In this context the regularization
schemes may be considered as difference schemes of quasi-inversion method.

For the Cauchy problem (2.1)-(2.5) we shall use the quasi-inversion method
variant based on obtaining the solution of the equation

82 UI\; — — P [N P s o
= — Lta +al’u =0, (z,t) € Q(0T) (6.1)
to determine u,{z,t). This variant corresponds to the quasi-inversion method mod-

ification for a retrospective inverse problem for the parabolic equation consxdered
in the book.!?
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For the selution of the problem (6.1}, (2.3)-(2.5) we have the estimate

Jua(z, 01 < ex0 (32722 fua(a, 0 (62

which prorvid'es the ‘sta‘bility of the solution in initial data.
M. a~l< £, 1.1, {9 A .. o &) B 1 H .
iQ DUJ.VG l.o.l.lB PlUU.lt:H.l \U .I.], \4 "i:] abiti (4 vJ} uuuu—.:uk,d.u_y WEC USC LT ULIICLC

scheme Wlth the welghts

3}n~}~1 — 2yn + Yn-1

2
-
— A(01Yni1 + (1 — 01 — 02)yn + 02Yn—1)
s aA*(03ynt1 + (1 — 03 — 04)Yn + Oayn-1) = 0. (6.3)
The scheme (6:3) coincides with the regularization scheme (5.13) at o, = 02 = 0,
—_ Ve — ToT 2, — v ana ’D _ ’D,. — /12 Tha valne n {ecee (5 14VY avartly
Ud Uq, U-J_ Vs u’ ug LA Culdinvg \’1 LA - A ERAN V(All LY R I-’ \L)’\l\.ﬂ \U LT)} UA'—W"I—J

6.2. Other variants of the quasi-inversion method

Another variant of the quas:—mversmn ‘method?* is based on obtaining the solution .
of the equation '
8%u 0%u, '

Bt; — Lugy + aL Bt; =0, (z,t)€Q0,T). (6.4)
The corresponding estimate of stability for the problem (6.4), (2.4) and (2.5) has
the form

la: (A vl g =\
I o\ L U it \V.vj

The three-layer difference scheme with weights for Eq. (6.4) has the form

-2 —
(E+aA)yn+1 in‘{'yn 1

— Alo1yns1 + (1 — 01 — 02)yn + 02Yyn—1) =0. (6.6)

The scheme (6.6) coincides with regularization scheme (3.1) and (5.4) at 0y =02 =0
and the choice R = A, while the value p (see (5.5)) agrees well with the estimate
(6.5).

The variant of quasi-inversion method, which corresponds to the regularization
scheme (3.1} and (5.4) at the choice R = .42 is based on solving the equation

8%, u,
ot? a2
For the solution of problem (6.7), (2.4) and (2.5) we have the estimate

- Lug + eL? =0, (z,1)€Q(0,T). (6.7)

lua(z, Ol < exp(27 20~ 4t)|[uqs(z, 0.

A similar estimate is obtained for the solution of the difference problem (see (5.6)).
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