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Introduction

In the last decades the study of nonlinear dissipative media has aroused great interest. When
analysing these media investigators noticed a reduction of the number of the degrees of freedom
effectively describing the system. In some cases several degrees of freedom can be singled out which
determine the dynamics of the process, the remaining ones adjusting to them. They are often called
order parameters. Their existence is very important. In investigating dissipative systems one or a whole
hierarchy of simplified models is expected to be built. Their analysis is believed to lead to the
understanding of many complex nonlinear phenomena.

In this connection the study of the simplest (often called basic) nonlinear models acquires special
significance. This approach provided an opportunity to find a number of regularities; it also led to the
emergence of new ideas and concepts (such as solitons, strange attractors, dissipative structures) and
brought about the discovery of some new phenomena.

Reducing the number of degrees of freedom means that self-organization occurs in the system. In
other words, the system acquires properties which none of its subsystems possess. The whole assumes
qualities which none of its parts possess.

To place special emphasis on this fact, the theory of self-organization is often called synergetics (or
the theory of joint action). This term was introduced by H. Haken [13]. He gives the following
explanation: “I have called this discipline ‘synergetics’. What we investigate is the joint action of many
subsystems (mostly of the same or of a few different kinds) so as to produce structure and functioning
on a macroscopic scale. On the other hand, many different disciplines cooperate here to find general
principles governing self-organizing systems’ [13].

The formation of structures closely connected with dissipative processes (often called dissipative
structures) proved to be a common feature of different nonlinear systems. The term ‘“‘dissipative
structure” was introduced by the Belgian scientist I. Prigogine. The work of the scientists belonging to
the Brussels school, of which he is the head, helped to bring out the connection among the formation of
structure, phenomenological models and the basic concepts of nonequilibrium thermodynamics. They
played an important role in both the theoretical and experimental investigation of order in open
systems.

Here is how G. Nicolis and I. Prigogine characterize a new concept appearing in the natural sciences:
“... both remoteness from equilibrium and nonlinearity may cause the emergence of order in the
system.

The connection among order, stability and dissipation is highly nontrivial. To bring out this
connection we shall call ordered configurations, appearing apart from the stability area, dissipative
structures. . . These structures can exist far from the equilibrium position by the expenditure of large
fluxes of energy and substance. Dissipative structures themselves are a striking example, illustrating the
property of nonequilibrium to be a source of order” [3].

Order formation in open nonlinear systems seems, on the face of it, paradoxical. In equilibrium
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systems dissipative processes eliminate order, and thermodynamic equilibrium is established. In
nonlinear open systems dissipation comes out in a new quality. Its joint action with other processes
leads to pattern formation, which determines their type, shape, dimensions.

In recent years the investigation of open nonlinear systems has resulted in a number of important
achievements. Analysis of comparatively simple mathematical models, such as the “‘reaction-diffusion
systems”, the Lorenz equations, one-dimensional maps [x,,, = f(x,, A)] has given rise to new ideas and
brought to life a number of mathematical theories. It stands to reason that deep analysis of a concrete
situation should not be replaced by simplified models, ideas and concepts of synergetics. However,
these concepts can determine the direction of investigation which, in many cases, proves very
important. The rapid growth of the number of investigations using the methods and concepts of
dissipative structure theory and the appearance of many interesting experimental works devoted to
self-organization testify to this. It can be exemplified by the findings in the investigation of the
transition-to-turbulence scenarios and the analysis of small-mode chaos in hydrodynamic systems [27],
the study of oscillatory chemical reactions [28], and behaviour of active biological media, as well as the
dynamics of morphogenetic processes [3, 8], along with a number of other studies.

To solve many concrete problems in plasma physics, microelectronics, hydrodynamics, chemical
kinetics, astrophysics and in many other fields, it turned out to be necessary to answer a number of
general questions. What are the mechanisms of the formation of spatial-temporal order in nonlinear
media? Can simple structures be united into complex ones? What are the organization laws of the
structures formed? How does the transition from the simplest ordered regimes to the complex stochastic
ones go? Are there any effective methods of controlling processes in dissipative systems?

The attempts to answer these questions helped to single out some features typical of various
nonlinear media. Let us consider some of them. As a rule, a whole class of initial data may evolve to
the same asymptotic regime. In other words, the details of the initial data are “forgotten”. This makes it
possible to raise the question of the direction of the processes, of their “aims”.

The second law of thermodynamics gives the answer to this question for closed systems. The same
answer holds true for a number of nonlinear media. In due course they generate spatially homogeneous
stationary distributions. For the models describing them one can plot, by analogy with ordinary
differential equations, a Lyapunov function that will define the direction of the processes [29, 30].

However, analysis of many mathematical models shows that the described situation is rather an
exception than a rule. The asymptotic regime usually has a more complicated nature. Its mathematical
image is a limit set, which attracts the trajectories in the phase space of the system. It is often called an
“attractor”.

In Hamiltonian systems, where energy is conserved, the situation can be quite different; when the
values of the energy and other integrals (determined by the initial data) are only slightly different, the
solutions do not tend to each other [4]. The fact that the initial data are “forgotten” simplifies the
investigation of open dissipative systems to a large extent. The system is expected to consist of a finite
number of various structures, and comparatively simple mathematical tools may be used to cope with
them.

The investigations showed that, in many cases, the asymptotic regimes in nonlinear dissipative media
have an invariant-group structure. In the simplest situations they may be self-similar solutions,
stationary solutions, running and standing waves. Two- and three-frequency regimes may often be
observed as well. Modern methods of invariant-group analysis provide the possibility to find a complete
set of self-similar solutions of the equations under study [68]. For a large class of stochastic regimes
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scale invariance is typical [12]. The attractor proves to be similar to itself on different spatial scales.
Invariant solutions, more often than not, prove to be the limit of a large class of other solutions rather
than an exception or particular case. Thus, depending on the initial data, in comparatively simple
dissipative systems there can be a transition to solutions of qualitatively different types, stationary,
periodical, multi-frequency and stochastic. Such behaviour has been described in a number of
experimental works. For example, it has been noted in ref. [32] that more than 100 different asymptotic
regimes have been registered for certain parameter values in Couette—Taylor flow (the flow of a fluid
between two rotating cylinders). This means that in one and the same open dissipative system the
course of the processes and their “aims” can be different. ]

The existence of several attractors is closely connected with new possibilities of controlling the
processes in nonlinear media. In actual fact, in phase space boundaries can be found that divide the
domain of attraction of different attractors. Even a slight change of the initial data near these
boundaries can lead to qualitatively different behaviour at a developed stage.

This is a common feature of many open nonlinear systems. In most of them there exists a certain
range of parameters or a stage, where the system is especially sensitive to effects coherent with its
intrinsic properties. (In a number of works this is called resonance excitation of the system.)

We shall see further that the amplitude and duration of these effects are very often less important
than their correspondence to the properties of the medium (in the simplest cases it can be a certain
profile of the initial data or a certain type of symmetry). Resonance effects can significantly change the
course of the process. The study of the intrinsic properties of nonlinear media and the laws of
dissipative structure organization is expected to give new instruments for dealing with complicated
systems.

Computers play a significant role in the investigation of dissipative structures and self-organization
phenomena. Most nonlinear mathematical models can only be analysed by combining analytical
methods with computer calculations. This combination today is often called a numerical experiment.
The study of its results can lead to the appearance of new concepts and notions and, in some cases, to
the possibility to predict new phenomena.

If in previous years the problems of synergetics centred around stationary dissipative structures, in
recent years investigators have been able to make a step further in understanding the nature of complex
spatial and temporal order. This is the subject matter of this survey.

It has been shown that there exists a close connection between the formation of complex temporal
order and the emergence of chaos in nonlinear systems. The analysis of stochastic behaviour, in many
cases, does not require taking into account a great number of degrees of freedom. It can be well
understood in the framework of simplified models with the interaction of several variables taken into
consideration. This is why the approach suggested by synergetics, which is connected with the
construction of a hierarchy of simplified models, proves very effective here. In a number of cases, their
investigation provides an opportunity to find both qualitative and universal quantitative regularities,
typical of many nonlinear systems.

Twenty years ago R. Feynman pointed to the analysis of processes in nonlinear media and the
development of a qualitative theory of nonlinear partial differential equations as one of the key
problems. Recent years have become a landmark in this direction. In the last years several detailed
surveys have come to light devoted to the transition to turbulence in hydrodynamic systems. Therefore,
we shall centre on other works which study complex spatial and temporal order, and above all systems
of the reaction-diffusion type, as well as some other models. We are going to analyse a number of
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mathematical results concerning complex spatial and temporal order and to present a number of
physical situations in which these results can be effectively used. We consider the hierarchy of simplified
models, arising in the theory of reaction—diffusion systems.

The bibliography to this survey does not pretend to be complete. It, mainly, contains either the
works where these or other results are presented in a more complete and easier form, or original works,
in which one can find important details concerning the problems discussed.

1. Self-organization and stationary dissipative structures

Reaction—diffusion systems reflecting many general properties of nonlinear media, have become an
important class of mathematical models. A model of this kind appears to have been used for the first
time ever by A. Turing in a mathematical simulation of morphogenesis [1]. His work, published more
than 35 years ago, brought to light results which determined the development of the whole direction in
science.

A. Turing put forward a hypothesis which furnished an explanation for the appearance of
morphological and physiological differences in cells in the course of the development of organisms. He
assumed that pattern formation in initially homogeneous tissue could be caused by diffusion processes
and simple chemical reactions. The latter could be described by systems of ordinary differential
equations.

If diffusion processes are taken into account we obtain a system of parabolic equations

u,=Du,+Qu),

where u is a vector, Q a vector function, D a diagonal matrix. If @ is a linear function and t— =, then
||ul| ~e* (i.e., either ||u||—0, or |ju||— ). To be able to describe the formation of structure, the
function Q(#) must be nonlinear. Its nonlinearity may be connected either with the law of mass action
[in this case Q(u) includes products of concentrations], or with other factors.

The formation of stationary dissipative structures can be exemplified by several mathematical models
in biology.

1.1. Dissipative structures and simulation of morphogenesis

One of the most important problems facing biology today is the investigation of processes controlling
the development of organs, i.e. mechanisms of their development in a certain succession and mutual
relationship. Sometimes this problem is called the problem of morphogenesis.

Modern biology gives rather a good picture of how genetic information is transferred from one
generation to another, and how it is recoded in each cell, thus ensuring the synthesis of enzymes.
(Enzymes are organic catalysts of a protein nature produced by living cells to regulate the velocity of
practically all biochemical reactions.) However, this knowledge alone does not give an answer to the
following question: What causes a cell to differentiate, both morphologically and physiologically, in
different organs, and how do these differentiated cells appear? (or: how does the process of cell
differentiation go?). In other words, the questions to be answered are as follows:

(1) How is the amount of enzyme, synthesized in a cell, regulated?

(2) Why does this or another enzyme appear at a certain stage of development of an organism?
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(3) Why do different types of cells of a multi-cellular organism produce their own protein complexes
though they all contain the same genetic information? [2].

A. Turing assumed that the “information” necessary for cell differentiation results from a collective
process, of which chemical reactions are the key element. His reasoning was as follows. Let substance X
stimulate the development of cells (it is called an “activator’”) and substance Y inhibit it (it is called an
inhibitor). An account of the reactions of X and Y would lead to a system of ordinary differential
equations. However, special attention should be paid to the spatial distributions X(x, t), Y(x, ¢), which
are largely affected by diffusion processes. That is why, to model this phenomenon, it is natural to use
reaction—diffusion systems. Analysing a one-dimensional problem and assuming that at the boundaries
no-flow conditions are specified, we obtain the problem

X,=DX,+0,(X,Y,)), Y,=D,Y, +0,(X,Y, ),

a=x<bh, 0<i<m,

(1.1)
X(x,0)= X,(x), ¥(x,0)= ¥,(x),

X,(a,0)=X,(b,1)= Y,(a,1)= Y,(b,1) =0,

where D, and D, are the diffusion coefficients for X and Y, which remain constant. The nonlinear

right-hand sides, describing chemical reactions, depend on A. The latter contains the characteristics of

the tissue, which changes in the course of the development. The initial data X,(x), Y,(x) are assumed to

be close to being spatially homogeneous, but they contain small random disturbances. These equations

turned out to describe spontaneous order formation, diffusion processes playing a crucial role here.
In fact, assume that in a concentrated system

dX/dt=Q,(X,Y,)), dY/dt=0,(X,Y,A),
(1.2)
X0)=X,, Y0)=Y,, 0<t<ow.

(X, Y), for A = A,, is a stable singular point. Then after simple calculations one can see that for certain
relations between the diffusion coefficients D, D, and the derivatives Q, 5, Q,y, Q,x, O,y at the point
(X, Y, Ay), the stationary solution of the system of equations (1.1) will be unstable with respect to small
disturbances of the type ¢'*<". Diffusion processes have a destabilizing role here. This phenomenon was
called a Turing instability.

The latter proved to be characteristic of a large class of models in physics, chemistry, biology and
other fields. One of the best known models is the Brusselator, which under certain circumstances
describes the following reaction schemes:

k k
AeX., B+XoY+D, 2X+YS 3x X=E.

k_, k_y k_ k_y
Nonlinear sources obey the formula

Q,=A-(B+1)X+XY, Q,=BX-X%, (1.3)
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where B is usually a parameter. One usually studies the behaviour of the solutions at large characteristic
time scales. The typical behaviour of the Turing system, as well as that of the Brusselator and many
other models, is as follows. For A < A,, the functions X(x, t), Y(x, ¢) tend to a spatially homogeneous
stable solution (X, Y). This solution is often called a thermodynamic branch. For A > A, things go quite
differently. Though the initial data are nearly homogeneous, disturbances grow, and a new pattern, a
spatially heterogeneous stationary distribution of concentrations, arises in the medium.

The value of A, can be determined by a standard linear analysis, whlch shows that, for A> A, the
solution (X, Y) becomes unstable with regard to small disturbances ~¢'“<* [1]. The profiles of stationary
solutions for A= A, can be determined if a more complex nonlinear analysis is conducted using
asymptotic methods and the theory of bifurcations [3, 13]. For A > A, calculations must be made.

Figure 1.1 shows a typical behaviour of the amplitudes of stationary structures for A = A,. At the
point A, the system acquires two more stationary solutions, and branching, or bifurcation, can be
observed. For A= A, it may be determined by small external effects, or fluctuations, whether one
branch or the other is taken.

The latter gain strength, which leads to macroscopic order formation in nonlinear systems, as is
noted in ref. [3]. This behaviour appears to be typical of many nonlinear systems. There can be several
ways of development of these systems, and bifurcation points can affect their evolution. A typical form
of a stationary solution in the Brusselator can be observed in fig. 1.2. In this model a whole class of
initial data end up in one established solution. This “forgetting” of the initial data is characteristic of
open dissipative systems. One can observe it in the Turing system and in many other reaction—diffusion
systems used to describe morphogenesis mathematically [5-8, 15].

The pattern formation process in one-dimensional and many-dimensional systems has been studied in
detail for the model suggested by A. Gierer and M. Meinhardt, in which

Q,=p+ kXYY -pX, Q,=cX’-vY, (1.4)

where p, k, u, c, v are constants. The behaviour of the solutions of the above problem (1, 1), (1, 4) fits
the data obtained in the course of other observations and experiments. For example, if a part of the
dissipative structure is “removed” (i.e., we assume that at t=¢,, X=X, Y=Y in the interval
0< L, <x<I), awave of “self-regeneration” arises and the pattern formation recommences. It would
be natural to compare this wave to the regeneration process.

X0}

0 0.2 0.4 0.6 0.8 1.0 T

A, A Fig —+2—Example—of-a—stationary—dissipative—strueture—n—the-Brus-
selator. Computation parameters: A =2; B=4.6; /=1; D, =0.0016;
Fig. 1.1 D, =0.008.
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The predictions of models (1.1) and (1.4) have been compared to the morphogenesis of the simplest
multi-cellular organisms [5-8]. Many-dimensional generalizations of the system make it possible to
describe the growth of leaves on the stems of plants. Depending on the model parameters their position
is different [7].

To describe morphogenesis in terms of mathematics is a difficult task. Various methods of
investigation and new mathematical theories have to be applied, depending on what properties of this
phenomenon are thought to prevail. We want to draw attention to several directions developed in
recent years.

In a number of cases the activator-inhibitor interaction turned out to be less significant than
mechanical strains of the tissue and substances affecting them, which, in fact, proved to be most
important. The understanding of this brought about the appearance of mechanical models of mor-
phogenesis. In the simplest cases they can be reduced to a system of a parabolic and an elliptical
equation [5,74]. A more complex model taking into account the changes in cell concentrations, the
concentration of the cell matrix and its shifts was built in ref. [9]:

h = Dlnxx - Danxxx - a[n(p + alpxx)x])( - [nut]x + rn(l - n) 5
”1u"1f + I'Lluxx + T[n(p + Bpxx)]x - sup = 0 »
pt + (put x = 0 .

Analysis shows that this model can describe a large set of dissipative structures of different types.

In reaction—diffusion systems the length of the interval is important. The number of structures and
their configuration can be changed by altering the parameter / (e.g. by arbitrarily increasing it). But in
nature any growth has its limits. The dimensions of a growing organism are determined by inner causes
and not by external ones. This is why one of the approaches to the modelling of morphogenesis uses
equations describing local processes [23]. Intrinsic properties of nonlinear media and not marginal
conditions determine dissipative structures in this case. Examples of these systems will be considered in
the next chapter.

All models mentioned can be seen as a development of Turing’s idea: nonlinear media were
investigated in all cases and the processes taking place in them were described by partial differential
equations. However, alternative approaches are also possible.

R. Thom presented his model of morphogenesis in a book that has received wide acclaim [10]. The
development of an organism goes through a number of qualitative jumps (e.g. those connected with the
loss of different symmetries). An effective description of such transitions in systems depending on
several parameters can only be given for a comparatively simple class of objects which is considered by
catastrophe theory,

¥=-9dU(x, A)/ox,

where x and A are vectors here. Unlike Turing’s approach, information about the spatial structure of an
object cannot be obtained here. However, in some cases it is possible to find out how its qualitative
properties change with the change of parameters.

Another approach, suggested by G. Neiman, is connected with the transition to a discrete
description. It turned out that the simplest discrete media (cellular automata) can be effectively used to
produce development and self-reproduction patterns. Each cell is connected with its nearest neighbour
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cells. Though its behaviour is determined by simple rules, the evolution of large configurations of cells
may be very interesting and diverse. Some examples of such media will be considered in chapter 11.

The models suggested at present appear to be rather far from reality quantitatively. Nevertheless,
their construction and investigation were very helpful. They resulted in some general concepts
concerning the formation of order in nonlinear media.

1.2. Self-organization

Partial differential equations are the main tool used in the investigation of nonlinear media. Formally
they describe systems with an infinite number of degrees of freedom. However, different degrees of
freedom play different roles. In a nonlinear dissipative system a finite, and sometimes even small,
number of variables can be singled out, the remaining variables “adjusting” to them. These variables
are often called order parameters.

Their introduction can be explained by a simple example. Take the function u(x), defined in the
interval from 0 to /. It may be expanded in a Fourier series and the amplitude of each harmonic can be
found. Let the function u(x) have a complex form (see fig. 1.3a). No order or regularity is observed in
its behaviour. The amplitudes of many harmonics a, are close to each other. On the contrary, the
behaviour of the smooth functions in fig. 1.3b is very simple and regularity can easily be observed: it is
close to periodical. To show its profile it is sufficient to state the amplitudes for some of the harmonics.

wim r
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If the number of harmonics with large amplitudes is decreasing, a certain order establishes in the system

and self-organization occurs.
Let us see how the amplitudes of the Fourier coefficients of the solutions of the simplest linear and

nonlinear equations change with time.
The problem of a linear equation for the thermal conductivity,

T,=aT,, , 0=x=<I,
(1.5)

T(r,0)=T,(x), T,(0,1)=T,(1,1)=0,

can be reduced to an infinite system of ordinary differential equations, the function T being expanded
into a Fourier series,

T(x,t)= i; C,(t) cos(mmx/l) ,

which is inserted in eq. (1.5). The problem being linear, all the equations in the system will be
independent,

dC,/dt=—a(mn/l)’C,, n=0,1,2,..., C,(0)=C". (1.6)

Suppose, we want to solve problem (1.5) for £ > ¢, and obtain an answer with a rather high accuracy
e. See fig. 1.4, which shows how the amplitudes of the first few harmonics change with time. The larger
the number of the harmonic, the faster its amplitude decreases. To obtain an answer with an accuracy
£=0.001 for t>¢, (see fig. 1.4), we must solve the first five equations in (1.6); for ¢ > ¢, solving three

Cult)
10

G
084
064 (s

4

0+

12 16 ts 20 ¢

Fig. 1.4. Typical picture of the variation of the function C,(¢) for the linear thermal conductivity equation.
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equations is enough, and for ¢> ¢, only two. It is a remarkable fact that, beginning from a certain
moment, it is sufficient to solve a few equations instead of solving the infinite system (1.6). Stating the
accuracy and the time for which we want to obtain the answer, simplified the problem considerably.

The same approach has been developed by H. Haken to investigate nonlinear dissipative systems
[13, 14]. Suppose we know the partial differential equations describing this system. In complete analogy
to the derivation of (1.6) from the equation for the thermal conductivity, we can deduce an infinite
system of equations

dc, /dt=£,(C, C,,..)~%,C,, m=0,1,2,..., (1.7)

where the C,, are Fourier coefficients, vy,C, are determined by diffusion (or another dissipative
process), 0<y, <y, <--+ <y, <. fo, fi»- - ., f, are nonlinear functions, which may depend on the
amplitudes of all harmonics. The system (1.7) is much more complex than (1.6), all its equations being
coupled. However, let us consider computer obtained functions C,,(¢) for a nonlinear equation. As an
example we shall consider the following equation:

u,=ku_ + Qu), (1.8)

where Q(u) = u — 2u’ (this type of equation is employed in some mathematical models in biology [37]).
One can see the same regularity here which holds for the linear equation (fig. 1.5): the amplitudes of
harmonics with a larger number decrease faster, and beginning from a certain moment they can be
neglected. Having this in mind, an approximate method of system analysis can be developed.

Let us first consider the simple equation

dC,/dt=-v,C, + F(t). (1.9)

If F(t) =0, then the solution is C,, = C_ ¢ ™"
If the characteristic time of variation of the function is 8 and 7, =1/y, <4, and we take special
interest in processes with characteristic times much longer than 7, , then the variation of the amplitude

Cn“—) cd

4

2

€
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C,, can be described by the algebraic equation
—y,C, + F(f)=0 (1.10)

instead of a differential equation. (Analysis of the exact solution of eq. (1.9) brings us to the same
conclusion.) The fundamental assumption that > 1/v,, is referred to as the “adiabatic approximation”.

Assume that the inequalities v, <, ., <7,., < hold. It means that the processes described by
the first m + 1 equations go much slower than the remaining ones. Besides, if the adiabatic approxima-
tion can be used for the function f, we obtain a system of m + 1 differential equations and a hierarchy
of algebraic equations,

dC, /dt=f,(C,, C,,...)=v,C,, n=01,..,,m,

(1.11)
C,=f,(Cp, Cp,. . My,, p=m+lm+2,. ..,
which describe the processes with characteristic times 7> 1/y,,.

Suppose we have been able to express C,,. ,, C,,.,,, and the amplitudes of the other modes, in terms
of C,,C,,...,C,, from the hierarchy of algebraic equations (or we know that C,,,, C,,, and the
other modes are much smaller than the first m); then the purpose has been achieved: stating the
accuracy and characteristic time we come to the (m + 1) differential equations

dC,/dt=¢,(Cy, Cpy. .., C)=%,Cyr n=0,1,...m, (1.12)

the latter being simpler than the initial system. This approach turned out to be helpful when
investigating a number of problems in laser physics and in solving many other problems [13-16].
The reasoning presented above is heuristic. However, in some cases this procedure can be given a
rigorous basis. The Tikhonov theorem is one of the main results here [17, 18].
Let us consider the set of differential equations

dz d
pEreyn, Lfeyn, 2=, y0)=), (1.13)

where z and F are M-dimensional vector functions, y and f m-dimensional vector functions, u >0 is a
small parameter. (This is the situation we encounter, if we take the first equations from the infinite
system (1.7), supposing that the influence of the other harmonics is very small.)

Assuming that in (1.13) u =0, we obtain a system of equations [an analog of (1.11)], the order of
which is lower than that of the original system,

F(z,y,t)=0, dy/dt=f(z, y,1). (1.14)

These problems are called singular-disturbed (as distinct from regular-disturbed, in which, if u =0, the
order does not decrease). To solve (1.13), it is necessary to express Z from the equation F(z, y, t) =0
and to substitute the solution z = ¢(y, t) (because the problem is nonlinear, there can be more than
one) in the second equation (1.13) and to solve the system obtained,

dy/dt=fle(y,1), 3, 1), §(0)=)". (1.15)
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Our assumption is that in some domain of variable space the equation F(z, y, t) =0 has a continuous
isolated solution ¢(y, ) and that (1.15) has a single solution.
Along with the system (1.13) let us consider the adjoint system

dz/dr = F(3, y, 1), (1.16)

in which y and ¢ are parameters. It is clear that 2= ¢(y, f) is an isolated stationary point of the system
(1.16). Suppose this point is asymptotically Lyapunov stable in the domain (y, £) under study [i.e., for
each ¢>0, there is a &(¢) which, when [|Z(0)— ¢(y, t)|| <8(e), obeys the conditions |Z(7)-
o(y, )| < e if 7=0 and Z(r)— ¢(y, t) as 7—=]. Let us also assume that z(r)— ¢(y’, 0) [that means
that z° belongs to the domain of attraction of the stationary point Z = ¢(y°, 0)].

If these requirements are fulfilled (as well as some technical conditions, concerning the smoothness
of the right-hand sides and their domain of definition), according to Tikhonov’s theorem a value of u,
can be found for which the problem (1.13) has a single solution z(t, u), y(t, ) for 0<p =, and
0=t=T,; it satisfies the limit equations

lin}) y(t, w)=y(t) for0=t=T,

: (1.17)
lin}) 2(t, p)=2(t) = o(y(2),t) for0<t=<T.

n—

(They are analogs of eqgs. (1.11), (1.12) for the finite-dimensional case.) The Tikhonov theorem does
not deal with the behaviour of the solutions of the studied system as t— .

It would also be helpful to know how many equations from the infinite-dimensional system (1.7)
should be left to effectively describe the processes in nonlinear media. This is especially important for
the analysis of stochastic regimes. In recent years a number of works have been published which make
it possible to give an answer to this question for a certain class of hydrodynamic problems [13].

The physical meaning of the results mentioned above is simple: modes with longer characteristic
times are order parameters in these systems. Slow orders “subordinate” the fast ones. The amplitudes
of the first Fourier harmonics act as order parameters here. Substantiation of this approach is very close
to a problem emerging in the theory of numerical methods — how close to each other are the solutions
of the initial infinite-dimensional problem and the solutions of the finite-dimensional system obtained by
treating the initial equation with the Galerkin method [20].

No less interesting are other phenomena, in which self-organization occurs and dissipative structures
emerge. In the 70s investigators of plasma physics focussed their attention on superfast regimes, which
enabled them in many cases to use one group of processes and ignore others [21]. It brought about the
appearance of a large class of mathematical models where order parameters could be independent of
Fourier harmonics and are defined by the fastest processes in the system.

As a simple example of a model of this kind we can treat the nonlinear equation for the thermal
conductivity with a bulk source [22-24]

T,=(k(T)T,), +Q(T), -w<x<w, KT),Q(T)>0, T(x,0)=Ty(x), (1.18)

where T is the temperature of the medium, its combustion simulating the source Q(T'). For the sake of
simplicity we assume that both the source and the thermal conductivity are power functions of the
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temperature,
KT)=k,I°, Q(T)=¢q,T%, Kk, q, 8,0>0. (1.19)
Equation (1.18) has a self-similar solution,

T=g)f(§), &=xle(1), (1.20)

where g(¢) characterizes the amplitude of the solution, ¢(¢) is its half-width and f its form. It is natural
to treat it as a dissipative structure which, unlike patterns in the Turing model and many other models,
is nonstationary.

Suppose the initial profile evolves into a self-similar solution [in some cases strict results can be
obtained, as far as the evolution to a solution of the type (1.20) is concerned]. To describe this process
the method of averaging can be applied [23, 25]. In fact, substituting formula (1.20) into eq. (1.18) one
can find expressions for g(¢) and ¢(¢), as well as obtain a boundary value problem for the function f( £).
But we can go another way. After inserting (1.20) into eq. (1.18) one can integrate eq. (1.18) over x,
then multiply it by T and integrate again over x. One can see that a dynamic system is obtained,

g=qolc—alg” — kg e ™",
(1.21)

1

¢=—qolc—2a]lg’ o+ k,bg’0 ",

where

a=ff‘*(§)df/_£ A&,

-0

b=zf f"(f)[f;(f)]zdé/j SOLS

c=zf f””(§)d§/j £(8) de,

and the initial temperature profile acts as f.

Analysis shows that the model (1.21) describes solutions with one maximum of the initial system
well, providing an opportunity to predict an interesting effect. There exist such parameter values and
initial data g, ¢ [and T,(x)] for which the amplitude decreases, and the half-width grows (g—0,
¢ — ). However, perturbations can push the system into another regime, which has no solution at all
times (g—®, ¢ —0, for t—¢; <, so that max, T(x, £)— =, if - { <). Fluctuations turn out to
play a fundamental role here as well. Acting as order parameters in formula (1.18), the functions g and
¢ characterize here the fastest variables. The existence of order parameters in nonlinear dissipative
systems is very important. In a number of cases a hierarchy of simplified models can be built with their
help, which to a great extent simplifies the analysis of the systems under study.
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2. Complex spatial order in nonstationary processes
2.1. Model of thermal structures

It is natural to begin studying nonlinear dissipative media with the simplest models. It turns out that
many paradoxical properties of nonstationary structures, typical for nonlinear systems, can be investi-
gated by means of a single nonlinear parabolic equation, i.e. with the aid of a model that is simpler than
the one considered by A. Turing,

u, = (kou,), + Qu) . (2.1)

It seems that a parabolic equation with a nonlinear source was first studied in a publication by
Kolmogorov, Petrovsky and Piskunov [37]. They investigated the Cauchy problem, where the source
satisfied the conditions

Q) eC'0,1], QO0)=0(1)=0, Qw>0,0<u<l; Q'(0)>0.

Subsequently this equation was used to describe epidemics, the motion of excitations in a nerve fibre,
and the propagation of flames in a combustible medium [38]. A set of running waves was constructed,
i.e., solutions of the form u = f(x — ct) were obtained for various values of c; also the comparison
theorem was proved: if u, (x, t) and u,(x, t) are two solutions of eq. (2.1) with initial data u,(x, 0) and
u,(x,0), respectively, and if u,(x, 0) > u,(x, 0) for all x, then u (x, ) > u,(x, t) for 0 <t <. (For the
linear equation of heat conduction without a source the comparison theorem is proved in standard
textbooks of mathematical physics [39]; in a rather simple manner it is generalized to the case when
QO(u) is a sink, Q(u) <0, to which the problem is reduced in ref. [37].) Kolmogorov et al. [37] could
prove that for t— « the solutions of eq. (2.1) are determined by one of the constructed particular
solutions, i.e., the solution with the minimal wave propagation velocity c,

c=0/kpa, a=0Q'0).

If the initial data are even, two waves arise, right- and left-running waves.

Obtaining a self-similar solution for t— o leads to a reduction of the number of degrees of freedom,
i.e. self-organization occurs in the system. The class of sources Q(u) for which analogous behaviour is
observed can be made larger [38].

Besides, the behaviour of the solutions was investigated in detail in the first and second boundary
value problems for eq. (2.1) for +— . In the case of bounded sources Q(u) stationary solutions were
obtained. For these solutions a criterion of stability was analytically determined [29]. From this criterion
it follows in particular that in the second boundary value problem the stationary solution with at least
one extremum at an internal point of the interval is Lyapunov unstable provided there are no flows at
the boundaries. Hence, complex dissipative structures such as in reaction—diffusion systems are
impossible here.

The asymptotic behaviour of solutions for t— o« is usually investigated in the cases when the slowest
processes are of main interest. However, lately nonstationary processes with the smallest characteristic
times have attracted growing attention of specialists in plasma physics, chemical kinetics and biology
[23]. These processes are idealized as regimes with peaking, for which one of the values under
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investigation grows infinitely over a finite time, called the time of peaking. Below, it will be denoted by
t,. The equations in which regimes with peaking are possible represent a simplified model of certain
stages of processes [23].

For example, in a publication dealing with evolution theory it is stated that natural selection of
features giving dominance in the course of evolution has as a result that . . . the process itself runs with
a rate increasing to a certain limit since in the natural selection more perfect forms arising faster than
others triumph” [40].

The simplest differential equation in which such regimes are possible has the form

-]

_ du °
O(u), Q() =C<®», (2.2)

The last inequality describes a necessary and sufficient condition for the existence of a regime with
peaking in such a system. It is called the Osgood criterion [41]. For example, if Q(u) = u”, then

u~@t— 0" = u(0)'PI(B-1),

i.e., the time of existence of the solution depends on the initial data. The question about the existence
of regimes with peaking was also studied for many systems of ordinary differential equations [41].

It is interesting to see how the opinion about such regimes has changed. Even recently the
nonexistence of a solution for all times (0 < ¢ <o) has been considered as an indication that the model
is incorrect and not applicable for a description of real processes. Now growing attention is attached to
phenomena in which the instability develops in a finite time (this does not happen in linear systems). As
examples we can mention the following cases: the classical problem about the cumulation of shock
waves to the centre, which was studied by Guderley [42]; some models of turbulent flows where
equations with negative viscosity appear [43]; questions connected with effects of nonstationary
boundary regimes upon nonlinear media [24]; plasma physics problems, in particular collapse of
Langmuir waves [44]; and many other systems [45].

Let us consider again the equation of nonlinear heat conduction,

T,=((T)T,), +0(T), —o<x<w, T(x,0)=T,(x), (2.3)

where T(x, t) is interpreted as the temperature of the medium, the combustion of which simulates the
bulk source Q(T).

In the linear equation of heat conduction without a source (as well as with a linear source or sink), in
the case of finite initial data [T,(x) =0 outside a certain domain G] the temperature proves to be
different from zero through the entire space for ¢ > 0: thermal perturbations in such a model propagate
with an infinite velocity. Quite different behaviour is observed in systems where the thermal conductivi-
ty is nonlinear and

Ty

f k(w)u' du <. (2.4)
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With finite initial data and in the absence of a source the velocity of the thermal wave front in such
media proves to be finite [46)].

The basic qualitative effects in the system (2.3) can be revealed by investigating the equation with
power functions k(T) and Q(T) [21-24],

KT)=k,T7,  Q(T)=q,T".

Let B=0c+1, B>1. A typical evolution of the solution of problem (2.3) is shown in fig. 2.1. The
maximum temperature first decreases (the time ¢,) and then increases (f,,¢,). As follows from
inequality (2.4), at each instant of time the heat is concentrated in a bounded spatial domain. At the
moment ¢, the front reaches some points A and B (see fig. 2.1) after which it stops. The heat turns out
to be localised in a bounded domain, whose size is designated by L;. After this the half-width of the
heated domain remains constant while the amplitude (maximum temperature) increases. The tempera-
ture increase occurs in a regime with peaking (the temperature maximum goes to infinity in a finite time
t). The result of the calculation appears to be paradoxical: despite an infinite increase of the
temperature and dissipative processes the heat proves to be localized in a bounded domain (note that in
this case the law of variation of the half-width and the amplitude of the temperature profile agree well
with the solutions of the averaged system [23]).

A large number of works performed in recent years have shown that localization phenomena are a
common feature of many nonlinear media. This may be due to the action of specific boundary regimes
[47], or the presence of sinks [48, 49]. In a nonlinear medium a certain configuration of initial data [50]
may cause a localization of heat in a finite time.

Let us vary the amplitude and half-width of the initial distribution. Calculations show that this leads
to a change in #;; however, the size of the localization domain [for a wide class of T,(x)] and the shape
of the temperature profile (as t— ) remain the same. Here we are faced with the phenomenon that the
details of the initial data are forgotten. The fact that the distribution, the half-width of which does not
change, maintains its form shows that the combustion in a domain of length L, occurs self-consistently:
the law for the temperature increase at each point proves to be the same up to a factor.

Let us turn our attention to the decisive role of dissipative processes in such systems. We assume that
k,=0. Then according to eq. (2.2) at each point of space, where T,(x) # 0, the combustion runs with
its own value of ¢,. If k,# 0, in the whole domain the combustion runs with the same time of peaking.
Therefore, it is natural to consider the order arising in such a medium and developing in a regime with
peaking as a nonstationary dissipative structure. (In this connection in some publications the model
(2.3) is called a model of thermal structures [23, 24].)
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Fig. 2.1. Formation of a dissipative heat structure with a constant half-width (the S-regime): ¢, = 0.0; £, =19.59; t, =73.03; 1, = 74.95.
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Maintenance of the shape of the profile for t— ¢, allows us to assume that at a developed stage we
obtain a self-similar solution of the form

T(x, 1) =g(Of(¢), &=xle(1). (2.5)

By substituting (2.5) into problem (2.3) we can obtain the changes for the amplitude g(t) and the
half-width ¢(¢),

g)=A,(1-t/t) "D oty = Ay(1 - /)T EToTDAETD (2.6)
Here A, and A, are constants, which are determined by the parameters B, o, k,, q,- Now we have a

nonlinear boundary value problem for the function f(¢), which defines the shape of the dissipative
structure,

1 - 1
G A e £ T .7
f§|§=0=0’ fvfg,§=g¢=07 f'§=g¢=0- (2.8)

The condition at ¢ = 0 allows one to distinguish only symmetric solutions, which are obtained for t— .
The two other conditions allow one to distinguish localized solutions. For problem (2.7), conditions
(2.8) lead to an analytical solution describing a localized structure if 8 = o + 1,

f(€) =[cos’*(w¢/L) 2o + o (o +2) ']V, (2.9)
where
- 27” Ve TIVETT, (2.10)

is the length of the localization domain. The structure and the value of L, coincide with the calculated
ones. Formulae (2.9), (2.10) enable us to construct many other solutions of (2.7), (2.8). If two similar
initial profiles leading to the appearance of localized structures are given at a distance larger than L.,
they have no influence on each other (see fig. 2.2a). If one of the profiles is smaller in amplitude it
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Fig. 2.2. (a) Effect of heat localization. Two heat structures in a nonlinear medium develop independently: £, =0.0; £,=3.56x107; t,=
3.93x107%; ¢, =3.99x 107%; £, = 4.00 X 10> (b) Structure develops with a minimal time of peaking. The rest of the profile “dies down” for t— ¢,;
t,=0.0; 1,=0.147; t,=0.220; 1, = 0.245.
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simply “stops” when ¢t— ¢;, while the other one grows infinitely (see fig. 2.2b). This is a typical picture
for regimes with peaking. Therefore in the nonlinear medium described by (2.3) we should consider
only the fastest processes with minimal times of peaking.

So far we have assumed that 8= ¢ + 1. Let us find out what occurs when the parameters of the
nonlinear medium B and o are varied. From (2.6) it follows that for 8> o +1 we have ¢(t)—0 as
t—t, and @(t)— as t—t;, if B<o+1. In the first case the half-width of the temperature
distribution must decrease, and we are faced with the LS-regime with peaking (fig. 2.3a). In the second
case it grows infinitely, and we have the HS-regime (fig. 2.3b). When 8 = o + 1 the half-width remains
constant [22-24] (S-regime).

For the nonlinear problem (2.3) the superposition principle is not valid. In fact, if we multiply the
initial data by some factor this will lead to a process running at a quite different rate and with a
different time of peaking rather than to multiplication of the solution by a constant. Here we cannot
construct a general solution from the known set of particular solutions. So what is the value of the
self-similar solution obtained?

The answer follows from the calculations given in ref. [23] and some rigorous statements made in ref.
[24]): any distribution for t— 1, gives one or several self-similar solutions. Although there is no
superposition principle, we know which structures arise at the stage of intense combustion. This is a
profound and interesting fact.

One of the traditional methods of analysing linear problems of mathematical physics is connected
with separation of variables and subsequent determination of a set of particular solutions. To do this we
should find eigenfunctions of the problem under investigation (which are also some self-similar
solutions). These essentially depend on the region in which the equation is solved as well as on the
boundary conditions. Then by using the same set of particular solutions a general solution is constructed
[39].

On the face of it, in the question under discussion the situation proves to be similar: the nonlinear
problem (2.3) admits a generalized separation of variables (2.5). Determining the profile of a
self-similar solution leads to the nonlinear eigenvalue problem (2.7), (2.8). (For given ¢, the eigenvalue
is £,. The similarity transformation allows us to determine profiles of f( £) for other ¢ as well. In recent
years similar problems have arisen in many fields [51].)

In this connection solutions of equations which describe configurations of nonstationary structures
are called the eigenfunctions of the nonlinear medium [52,53]. Unlike the usual eigenfunctions they
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Fig. 2.3. (a) Appearance of a heat structure with decreasing half-width (LS-regime with peaking): £, =0.0; 1,=2.15x107%; £,=2.38x 107
t,=2.44x 107" (b) Heat waves of growing amplitude (HS-regime with peaking): t, =0.0; 1, =0.69; t, = 0.875.
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describe localized processes and do not depend on boundary conditions. [For example, formula (2.9)
can determine the solution of a large class of various boundary value problems for eq. (2.3), in which
the length of the domain L > L..] We may say that they describe intrinsic properties of a nonlinear
medium. It is no small wonder that great attention has been attached to the study of these functions
[23, 24, 54]. Let us note several results of importance.

The solution (2.9), (2.10) proves to be very simple: the temperature profile which it describes has a
single maximum. (We shall say that it determines a simple structure.) The question is: Can complex
structures that have more than one maximum and keep their form exist in the nonlinear media which
are described by eq. (2.3)? The physical idea appears to be rather simple. Let two structures exist in the
medium and each of them have a localization domain L,. If the distance between them exceeds L, they
do not influence each other. If the distance is much shorter than L, they quickly degenerate into a
simple structure. In the intermediate case the maxima move to the symmetry axis for a long time;
however, the form of the profile changes little. This allows us to speak about the interaction of heat
structures.

An example of such an interaction is shown in fig. 2.4. It is seen that four local temperature maxima
move to the centre when ¢— ¢;. The spatial symmetry of the initial data plays an important role in the
interaction. In ref. [55] the interaction of structures in the multi-dimensional case was studied by
numerical methods, and the following example was considered.
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Fig. 2.4. Interaction of four heat structures.
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Take initial data of the form
_ 2
To(r) = max {A; exp[—a,(r — a,)']}, (2.11)

where r and a, are two-dimensional vectors. Letn =3, A, = A, = A,, @, = a, = a, and the vectors a, be
chosen so that at one time they form an equilateral triangle (|a, — a,| = |a, — a,| = |a, — a,| = a) and at
another time an isosceles triangle with apex of 120° (|a, — a,| = |a, — a,| = a, B =4.0; 0 =2.0; k, = 1.0;
qo =5.25; a =2.08; A=1.3; a =2.5). More energy concentrates in a smaller volume in the first case
than in the second case. In spite of this f, >, , i.e., the symmetric configuration exists longer. Various
stages of the interaction of the structures can be approximately described, and it can be shown that
similar laws are typical for the three-dimensional case.

Profiles of the form (2.11) change their form when ¢— ¢, (therefore, they are sometimes called
quasi-structures). The laws of structure interactions revealed in calculations allow one to assume the
existence of complex structures. They are determined by solutions of eq. (2.7) (or a multi-dimensional
analog) with several maxima or by the so-called higher eigenfunctions of a nonlinear medium.

In refs. [23, 52, 53] such functions were investigated in the one-dimensional case. They exist in the
LS-regime when B> o + 1. The solution of the self-similar problem does not have a finite front. So
since we are interested in localized solutions it is natural to require, instead of conditions (2.8), that the
temperature and the flux should to go to zero as x — o,

ofldE] .y =0, fF—0, f—0. (2.12)

£ Eo

Hence, it follows that

f—') Ci§—2(47+1)/([3—0'—1) ] (2-13)

g

When solving the nonlinear problem (2.7), (2.8) we must determine £, (¢, can be put equal to unity),
while here C; must be determined.

The solutions of (2.7), (2.12) constructed numerically allow us to establish an interesting law
[52, 53]. Two different parts can be distinguished in the solution. In one of them the solution represents
small oscillations about f = 1 [In the original equation the solution f =1 corresponds to a homogeneous
background T(x, t) ~ (1 — t/t,)"'"™®; therefore it is sometimes called homothermal.] In the other part
fast convergence to the asymptotic form (2.13) occurs. This is seen in fig. 2.5, where a whole set of
eigenfunctions is shown for a nonlinear medium which is described by eq. (2.3) with power non-
linearities with 8 =3.18; 0 =2.0; q,=1; k,=1.

Such a behaviour of solutions enabled us to estimate the number N of eigenfunctions of a nonlinear
‘medium by analysing the problem linearized about f=1 [52],

Nz[a-[{a]a”]], a=(B-1)(B-0c-1)7", (2.14)

and to obtain some rigorous results [56].

It turns out that the solutions of the linearized problem can be connected to asymptotic forms for
£— o; the connection point should be chosen so that the natural conditions of smoothness be fulfilled.
Calculations showed that the functions thus constructed are very close to the solutions obtained
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Fig. 2.5. Eigenfunctions of a nonlinear medium.

numerically [57, 58]. So this method allowed us to obtain good approximate solutions (approximations)
of the original nonlinear problem (2.7), (2.12). Such approximations were used to construct new
numerical algorithms for iteration procedures and the Newton method [5§].

On the other hand, these algorithms enabled us to make progress in constructing multi-dimensional
eigenfunctions of a nonlinear medium. A two-dimensional analog of problem (2.3), in which the term
(k(T)T,), is replaced by the operator div(k(T)grad T), admits a self-similar solution of the form
T(r, t) = g(1)f(r/&(t), 6), where r and @ are polar coordinates. The two-dimensional function f, which
determines the complex structure, satisfies the nonlinear elliptic equation
1 4y - B-—o-1 ¢ «9(y”("+1)) + yB/(a+1) _ y”(ﬁl) =0,
ot1 2(B - 1), d¢ (B-1)¢

YO<C, y 20, W20, y=f"""8).

(2.15)

Standard numerical techniques allow us to construct only the simplest centro-symmetric solutions
f(€)=1(|£€|). Acting by analogy with the one-dimensional case we should search for a boundary on
which the solution of the linearised problem can be connected to asymptotic solutions for |£|— . So a
problem with a free boundary arises, whose solution involves great difficulties.
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An interesting approach was proposed in refs. [57-59]. When investigating open nonlinear systems
described by nonlinear parabolic equations, one frequently manages to distinguish a set of order
parameters to which all the other degrees of freedom would “tune in”. Let us find the order parameters
which characterize the function f. We assume that it transforms into itself when we rotate over an angle
27/n. We expand f in a Fourier series in an angular variable. It is clear that a certain row will contain
only the harmonics with numbers 0, n, 2n, . ... Let us assume that only the first harmonics of this row
are essential. This enables us to reduce considerably the number of degrees of freedom. But the
connection conditions cannot be satisfied on a continuous curve. It is natural to demand that they must
be satisfied on several rays within the sector 27/n. Such an approach yields a whole hierarchy of
simplified finite-dimensional models. They allow the prediction of configurations of higher eigenfunc-
tions in a region of nonmonotonicity and give good initial approximations necessary for the numerical
construction of such solutions.

In refs. [58, 59] such approximations were widely used and a large class of higher eigenfunctions of
nonlinear media was constructed. Projections of some such functions are shown in fig. 2.6. From fig. 2.7
an idea can be obtained about a set of eigenfunctions which were predicted using an approximate
analysis and then constructed numerically for a nonlinear medium. The result is very interesting.
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Fig. 2.6. Projections of several eigenfunctions of a nonlinear medium.
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Fig. 2.7. Collection of eigenfunctions predicted by means of an approximate analysis and then constructed numerically.

Besides the simplest configurations consisting of similar quasi-structures there are many other forms.
Maxima can have different amplitudes and be located in several layers. The temperature minima prove
to be somehow consistent with the maxima. We recall that all these structures describe combustion
waves converging to the centre with increasing amplitude.

Thus, in a very simple nonlinear medium a complex organization can exist. There are a finite number
of configurations in it, which maintain their forms during evolution. They can be interpreted as several
simple structures with different maxima that are combined into a complex structure (see fig. 2.6). The
laws for such combinations determine higher eigenfunctions of a nonlinear medium. A more complex
order cannot be achieved in the medium with given values of 8 and o {23, 58].

Formulation of initial data can be considered as a method of influencing the nonlinear medium.
[They can be generated by means of other processes which are not taken into account by the model
(2.3).] In the general case one or several simple structures are formed rapidly, each of them localized in
a domain G, . If the initial data are set in accordance with higher eigenfunctions of the nonlinear
medium the processes run in a larger domain, the arising heat wave converges to the centre and
maintains its shape. In that case the processes behave quite differently as compared with the general
case. Such a method of influencing nonlinear media has been called resonant excitation of a nonlinear
system [23,52]. Let us point out that for a configuration of initial profiles, their agreement with the
eigenfunctions of the nonlinear medium rather than the amplitude are most important here.

Analysis of the eigenfunctions of various nonlinear media appears to be essential for the investiga-
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tion of many systems in physics, biology and ecology. When executing control of many systems we
cannot impose required behaviour upon them. In this case it would be very alluring to use resonant
excitation, phenomena of self-organization, and to lean efficiently upon intrinsic properties of the
system. This is particularly expedient in the cases when we cannot apply the cut-and-try method.

It should be said that until now the model of heat structures is one of the few systems for which the
laws of organization of the dissipative structures are established. A search for similar laws was carried
out in a number of other models as well. In some cases it was successful. It is difficult to outline even
the main results obtained recently in the investigations of the model (2.3) and its generalizations.
Therefore we shall describe only some of the most important trends of these investigations.

The first one is connected with a generalization of model (2.3) to more complex media and
application of it to various physical problems. It was shown that localization and regimes with peaking
are typical for systems whose parameters explicitly depend on the spatial coordinates. Cases were
considered, when the density and the nonlinear source were power functions of the coordinate r
[r=@"+y)"?or r=(x*+ y* + z°)""*] [60]. Localized structures developing in a regime with peaking
arise here also. (They can, for example, represent localized cylindrical or spherical layers.) In some of
these cases we can construct the eigenfunctions of the nonlinear medium for both the one-dimensional
and two-dimensional problems [57-59].

Similar results were also obtained for a system of two quasi-linear parabolic-like equations with bulk
sources,

ut = (klualux)x + qluﬁlvy2 ’
v, = (k,v™0,), + q2u71UB2 ) (2.16)

q1’Q2>0§ 01’02>0; ﬂ1932,711YZ>0‘

Here we also have the LS, S and HS regimes with peaking. For the LS regime the higher eigenfunctions
were constructed. It is interesting that eq. (2.16) and eq. (2.3) obey the same law: in the nonmonotonic
range they agree well with the solutions of the linearized problem [61, 62].

At the same time, for r— ¢, the behaviour of the system (2.16) is far from being always determined
by self-similar solutions. The following simple argument demonstrates this. Let us consider a spatially
homogeneous solution (#, = v, =0). Then we can verify that eqgs. (2.16) have the integral

g ua, — qu¥a,=C, o=y, +1-8,, a,=y+1-8,. (2.17)

The value of the constant is determined by the initial data. Then it is clear that for a, <0, @, <0 a
regime with peaking occurs in the first component (¢ — =, t— t,) when C >0, in the second component
when C <0, and in both components when C = 0. It is natural that the self-similar solution describing a
regime with peaking in both components (even the one which determines a simple structure) is
unstable. It is this picture that was observed in calculations carried out in ref. [61]. In model (2.3)
regimes with peaking exist when B > 1, and localized structures exist when 8 = ¢ + 1. It is a rather stiff
requirement for many real models. However, such regimes are possible in systems where the source of
the component u does not depend on the component itself. An example is the following set of
equations:
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U, = ko(uu,), + ggow
v, = ko(wv, ), + gouw , (2.18)
w, = ky(ww_), + qouv .

We can verify that the solution (2.5), (2.9) satisfies this problem with u = v = w. It is this solution that
was obtained for — ¢, in calculations carried out for (2.18).

In many models of plasma physics the thermal conductivity depends on the temperature as a power
function [63]. Therefore model (2.3) was efficiently used to solve a number of physical problems
[23, 64]. Using localized processes in the §-pinch problem allows a reduction of heat losses from butt
ends, which may lead to smaller dimensions of laboratory installations [65].

We note that LS regimes with peaking can exist in media with a constant thermal conductivity too.
Due to this fact egs. (2.3) can be used as a simplified model to describe the initial stage of many
processes. For example, in ref. [66] such an approach gave an explanation for the effective reduction of
the half-width of the temperature profile which was observed in oxidation of some metals by air under
laser radiation.

This view on localized processes developing in a regime with peaking proved very useful to solve
many other problems in physics and gas dynamics. Those problems are discussed in detail in ref. [67]
and in ref. [293].

The analysis of the model of heat structures became much simpler due to a known self-similar
solution. The question arises: How wide is the class of thermal conductivity coefficients and sources for
which such solutions exist? The question was settled in a number of works where the methods of
invariant-group analysis were used. (A detailed reference list of these works can be found in the review
[54].) In these studies the groups of transformations admitted by (2.3), i.e., those that introduce no
changes in the equation, were obtained for arbitrary k(T') and Q(T). Along with the groups of point
transformations ,

t*=ft,x,T;a,,...,a,),
x*=g(tx,T;a,...,a,), (2.19)
T*=hn(t,x, T;a,,...,a,),

> r

where a, are the parameters of an r-parametric Lie group [68], the Lie~Bécklund groups were
considered. Besides dependent and independent variables these groups contain all derivatives up to
infinite order. They are given by the transformations

x*=x+&t,x, T,T,,T,,...)a+o(a),

t=t+n9(t,x, T,T,,T,,...)a+o(a), (2.20)

T*=T+U(t,x,T,T,T,,...)a+o(a),

where T, = 9'T/dx", and a is the group parameter [69]. It turns out that the set of k(T’) and Q(T) for
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which the self-similar solutions exist is far from being exhausted by the power and exponent functions;
it proves to be much wider. In this case one has succeeded not only in solving the problem of

invariant-group classification but also in obtaining many particular solutions of physical interest.
For example, the equation

u=Wu,), + W), + ', ,>0,0,>0,>1, (2.21)
which describes heat propagation through an anisotropic medium, has a self-similar solution of the form

u(x, y, 1)=(t,— )" P(€,7),

_ +1-8)/(28-2 - (o, +1-B)/(28-2)
E=x(t;— )RV g = (e - )@ :

(2.22)

From the above formula an unexpected result follows: the heat in such a medium can be localized in
one direction [£(#) < C for t— t,] and propagate infinitely along the other direction [7(#) — « for t— ).
With o, = 0, = o eq. (2.21) has another paradoxical solution [54] (x =7 cos ¢, y =rsin ¢),

u(t, r, )= (t,— )" "Pi(R, @),
(2.23)
R=r(t;— #7072 - =g —cyln(t;— 1),

in which local maxima must move along a logarithmic spiral that twists out (<o +1) or in
(B>a+1) for t—1,. So far the eigenfunctions of a nonlinear medium of this type [#(R, @) with
¢, # 0] have not been constructed; nevertheless the mere possibility of the existence of such solutions
seems very interesting.

Recently a mathematical theory has been developed due to which the self-similar solutions have
proved to be even more useful for an analysis of nonstationary dissipative structures [24]. The theory is
based on the idea to compare different solutions of nonlinear parabolic equations. Let us consider fig.
2.1. It is seen that first the amplitude of the solution decreases but then the temperature begins to
increase at every point of the profile. The distributions for which u,(x,0)>0 for all x were called
critical. We can verify that in many problems of type (2.3) critical initial data lead to critical solutions
for t>0.

It turns out that a large class of comparison theorems can be proved for different critical solutions.
For example, if two solutions T'"(x, t) and T”(x, {) in problem (2.3) are critical and T'"(x, 0) >
T®(x,0), then T (x, £)> T®(x, t). This gives, in particular, information about the evolution of the
profile T(x, t) if the self-similar solution T‘"(x, ¢) is known.

Different solutions of different equations (not only of the same equation) can be compared, which is
especially important in applications where k(T) and Q(T) may have rather complex forms. Such an
approach is called operator comparison [71, 72]. For example, the solutions of the equations

u:l') = k(V)(u(V), |Vu(V)I)Au(V) + Q(V)(u(v)’ IVu(V)D , v=1,2,

can be compared if the inequalities
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k2(p, )= k"(p, q), k(p, 90%(p, 9)=k?(p, 990" (p, 9),
u(x, 0)>u®(x,0)

are satisfied.

A new approach was proposed in refs. [71, 72] for investigating the asymptotic stage of processes
(the so-called method of approximate self-similar solutions). It turns out that for t— ¢, different
equations (2.3), including those which have no self-similar solutions, behave in the same way. Their
solutions converge to the solutions of some degenerate basic equations which can have such solutions.
Depending on the value of the limit

b= lim [k(u)/k'(W)]',

the basic solutions will be different. For example, when b, —®, such an approximate self-similar
solution, to which the solution of (2.3) converges for t— ¢,, satisfies the first-order Hamilton—Jacobi-
type equation [71]

k(v
o= 20 [+ 0
At present some strict results have been obtained as to the localization of solutions, evaluation of the
peaking time, and stability of the first eigenfunctions of nonlinear media [54].

Thus, in the model of heat structures the self-similar solutions act as degenerate solutions which are
not special. They describe the asymptotic behaviour of processes in a wide class of nonlinear media;
they are an efficient tool for theoretical analysis and they determine the laws according to which simple
structures can combine into the complex ones.

2.2. Dissipative structures in media with trigger properties

The model of heat structures as well as other models involving a single parabolic equation lack two
important features which are typical for many nonlinear media. Due to the maximum principle, new
extrema cannot appear in such systems and, hence, no new structures can emerge. Besides, only simple
structures are stable in the media considered; to create complex order the initial data must be given in a
special form.

Describing complex stable structures and their generation requires transition to a system of
equations. In some cases one has been able to find out how complex structures can be constructed from
simple ones, how order arises in such media, or how the course of the processes changes when one goes
from one-dimensional to multi-dimensional models. All these questions have been studied for systems
with trigger properties [73]. We shall discuss some of the results obtained.

Let us consider a system that for D, = D, =0 (no diffusion) can exist in two stable states, (i, 0,)
and (#,,v,), and in one unstable state (0,0). Such systems are called bistable or trigger systems.
Trigger systems with diffusion appear in chemical kinetics, nonlinear optics, and in the simulation of
morphogenesis [74].

For simplicity we consider the model
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=0 DG aly) (e +oo,
u(x,0)=uy(x), v(x,0)=vy(x), 0=x=I, (2.24)
u (0,)=ul,t)=v,(0,)=v,(,1)=0.

Here u and v are assumed to be deviations from equilibrium of some matter concentrations. It is clear
that u and v can be positive or negative. We shall assume that the eigenvalues of the matrix A are
complex conjugate with positive real part. [This is a sufficient condition for instability of the zero
solution of problem (2.24).] The matrix B is negative definite, which is a sufficient condition in order
that the solution be bounded for 0<f< . Problem (2.24) is invariant under the transformation
{u,v}—{-u, —v} since the nght -hand sides of the equations contain only odd powers of these
functions; therefore u,=—u,=-u*, v,=-v,=-v* [Q(u;, v;)=0; i=1, 2; j=1, 2]. We shall
consider such values of D, D, and [ for which the Turing 1nstab111ty does not occur.

As initial data we first consider “the step distributions” i, = u*, v, =v* for0<x=<gand u= —u*,
v=—v*for a < x =/ In calculations quick convergence to the stationary solution shown in fig. 2.8 can
be observed. There is a transition region to the left of which we have one stable background (u*, v*)
and to the right of which the other one (—u*, —v*). Such a solution is called an elementary structure (its
meaning will be explained below). We may vary the length / and the parameter a in a wide range; it
hardly affects the appearing elementary structure.

Let us note that in the model of heat structures we could have strict localization, T(x, t) =0 beyond
G, for 0<1<t,. Here we have effective localization: we can give a small value of ¢ and indicate the
region G, outside which

max [(u—u*)+ (@ -v*)]<e or max [(w+u*) +@w+v*)]<e.

Unlike the model of heat structures, here localization is connected with sinks rather than sources. (In
the vicinity of each of the stable backgrounds the function Q,(u,v) and Q,(u, v) behave as sinks.)
Besides, if structures emerge in a trigger medium they will later be time independent.

Since the elementary structures are localized, more complex structures can be built from them by
giving several “steps” as initial data. Calculations show that they really can be constructed if the
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Fig. 2.8. Example of an elementary structure in a trigger medium.
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distances between steps are not too small (L >, where [ is determined by the properties of the
nonlinear medium). An example of the solution appearing in this case is shown in fig. 2.9. All other
structures in this medium consist of many elementary structures with different distances between them.
The connection method, which has proved very useful in the model of heat structures, in this case also
yields good results, i.e. approximate solutions corresponding to elementary structures [59].

One of the most interesting properties of a nonlinear medium is the possibility for dissipative
structures to be born and completed by themselves. In order to create complex order it is quite
unnecessary to put it in from outside, “to force” it onto the nonlinear medium by giving the required
number of steps. Let us see what happens to a small perturbation put against the unstable background.
Figure 2.10 illustrates this kind of calculation. It is seen that structures successively appear in
neighbouring regions. In the calculations the region where dissipative structures appear has a distinct,
observable boundary. This allows one to talk about the wave nature of the process and to identify the
boundary with a front of a propagating wave.

Such a behaviour is typical for many other two-component systems when in the beginning there are
small perturbations near the thermodynamic branch which has lost its stability. For example, this is
typical for the best known two-component system, the Brussels model, which describes a certain class of
chemical reactions in open systems [3],

Q,=A—(B+l)u+uzv, Q,=Bu-uv,

or the Gierer—Meinhardt model, which arises in the mathematical description of morphogenetic
processes,

Q1=p+ku2/v—uu, Q2=cu2-vv.

Here A, B, p, k, u, c and v are constants describing the model parameters.

Trigger media of the above type have an interesting feature: the dissipative structures in the
one-dimensional and multi-dimensional systems differ qualitatively. In the multi-dimensional case a
large set of localized nonstationary structures appears; the time of their existence is finite.

We shall consider a two-dimensional analog of eq. (2.24), in which D,u , and D,v,, are replaced,
respectively, by div(D, grad u) and div(D, grad v) in a square with side /, provided there are no flows at
the boundary. Let us put a square with side / in the right bottom corner as initial data. Within the

square u = u*, v = v*, while in the remaining region u = —u*, v = —v*. The quantity / is chosen so that
ulx)
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Fig. 2.9. Example of a complex stationary structure.
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in the one-dimensional case when u,(x) = u*, vy(x) =v* (0=x=<1), uy(x)=—u*, v,(x)=-v* (I=<
x = 1), stationary structures should appear. A transition region develops over a time 7, whose structure
remains constant for different points of the boundary in spite of the fact that the curvature of the
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4

contour, I3, enveloping the region G,, where u(x, y) >0, varies from point to point.

The region G, slowly symmetrizes, tending to a circle whose radius decreases with time. Increasing /
does not, in fact, change the process; convergence to the stationary solution does not occur for any /.
The transition region, the independence from initial data, the efficient localization, and the long
existence times, which can exceed 7 by a few orders of magnitude, allow us to consider this process to

be the evolution of a nonstationary dissipative structure.

configurations slowly decrease (t,, t, f in fig. 2.11).

In the two-dimensional case an initial small perturbation against an unstable background leads, as in
the one-dimensional case, to the successive emergence of structures (t,, t,, ¢, in fig. 2.11). But here,
having once emerged the structures are slowly reconstructed. The radii of the structures with circular
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Fig. 2.11. Appearance of structures and their subsequent decay in a two-dimensional problem. Computational parameters are the same as in fig.
2.10.

On the face of things it seems that in the two-dimensional case trigger media have no stationary
time-independent structures. However, this is not so. Such solutions can be constructed from symmetry
considerations. Indeed, the equation does not change when x is replaced by —x, y by —y, and u, v by
—u, —v. We shall denote the region where u <0 with black, and where u > 0 with white. The evolution
of one structure with circular configuration will look like the reduction of a black circle against a white
background or a white circle against a black background.

Now we shall put “black” and “white” into similar conditions, for example, as is shown in the right
half of fig. 2.12a. If the black squares began reducing it would mean violation of the symmetry between
black and white, which exists in eq. (2.24). Calculations show that in that case a stationary structure
called a “cross” appears (fig. 2.12a, left). The resonant excitation in such a medium is determined by
the symmetry; unlike the model of heat structures the specific form of the initial data proves
unimportant here.

It is interesting that the connection method enables us to construct an approximate solution
corresponding to this structure with high accuracy [59]. By using this method other stationary
configurations can be built too (for example, “windmill” and “parquet”, figs. 2.12b and c).

We have considered cases in which the simplest “colour” symmetry (between ‘“‘black” and “‘white”")
plays an important role. In some works which deal with other types of colour symmetry the
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Fig. 2.12. Examples of two-dimensional stationary structures in a trigger medium.

mathematical theory is developed [75]. These ideas may prove useful in analysing partial differential
equations, specifically, reaction—diffusion-type systems.

Thus, the laws of the organization of structures in the trigger media considered prove to be linked
with localized processes and symmetry.

We have discussed two types of nonstationary dissipative structures, each of which may have
complex spatial order. In both cases we managed to find out how the complex structures could be built
from the simpler ones. At the present time this line of investigation is developing rapidly. And here a
new approch to the problem, viz. studying the internal properties of a nonlinear medium and the laws
of the organization of dissipative structures, and searching for efficient ways to influence the processes
under investigation, may prove as important as specific mathematical and physical results.

3. Hierarchy of simplified models

In the last decade dozens of different models of the reaction—diffusion-type have been proposed to
describe specific systems in chemical kinetics, plasma physics, ecology and many other fields. They have
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been analysed by many authors, who considered specific functions Q,(X, Y, A) and Q,(X, Y, A) of
different kinds. Therefore the following questions arise: Are there common features in the behaviour of
the solutions of system (1.1) with different right-hand sides? Can we classify two-component systems by
some features? Classification of the systems and distinguishing common features would let us pass from
the study of specific models of a particular form to the development of the theory. This would help, in
turn, to simplify the analysis of each specific problem.

Computer simulation is a basic tool used to investigate reaction—diffusion systems. Given specific
functions Q,(X, Y, A) and Q,(X, Y, A), the coefficients D, and D,, the initial data and the boundary
conditions, one can observe the evolution of one solution over a certain time interval. However,
watching the behaviour of a solution we often cannot observe any law or understand how it operates.

We can speak about understanding when we learn how to predict the behaviour of a solution and its
qualitative peculiarities for different parameter values without solving the equation again and again. It
would be fine if we could predict also the basic quantitative characteristics by using explicit formulas or
simpler models. There may be several simplified models that differ in complexity, in the way they are
obtained and in their range of applicability. If we had a sufficiently complete set of approximate models
we could treat complex phenomena described by eq. (1.1) using the notions and categories which we
encountered while investigating simpler problems. The development of simplified models, the establish-
ment of their relationships, applicability ranges and properties are usually called the construction of a
hierarchy of models.

Constructing a hierarchy of simplified models proves very important for the study of many nonlinear
dissipative systems. As an illustration we refer to Rayleigh-Bénard convection [76, 77], some problems
in nonlinear optics [78], and investigations of terrestrial and solar dynamos [79,80]. It becomes
necessary in cases when the capabilities of modern computers do not yet allow us to solve directly the
arising equations (for example, in simulating complex hydro- and magnetohydrodynamic flows, or
many-dimensional reaction—diffusion systems with many characteristic times).

In the study of open nonlinear systems, several ranges of the external parameter A can be
conditionally distinguished.

I. Small values of A. In this range of parameter values the arising structures have small amplitudes
and occur in the vicinity of the thermodynamic branch. As a small parameter here we can consider
e~ (A—A,), where A, is the point of loss of stability of the thermodynamic branch.

II. Intermediate values of A. The amplitude of the arising solutions is not small, but the number of
degrees of freedom that effectively determine the process dynamics is not large.

III. Large values of A. In this range of parameter values complex regimes may arise, whose
description involves many spatial and temporal harmonics. Such is, for example, multi-mode developed
turbulence.

The first range of parameter values has been most thoroughly studied, and basic concepts as well as
efficient mathematical models developed. Let us briefly describe some approaches proposed in this
connection.

3.1. Universal description in the vicinity of the thermodynamic branch

One of the most efficient tools for analysing nonlinear systems is the theory of bifurcations. The
problem of beam bending is classical in bifurcation theory; it was posed as early as last century.

Imagine a beam of rectangular cross section with load P acting on it from above (fig. 3.1). With
increasing load the beam gets shorter and thicker, its axis remaining straight. At some critical value P_,
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however, the picture qualitatively changes: the beam will lose its rectilinear configuration and bend to
the right or left. When P < P_ the beam has only one equilibrium configuration, when P> P, it has
three: the rectilinear configuration, which becomes unstable, and two stable configurations (one
corresponding to bending to the right, the other to the left). If we draw the deflection A of the beam
axis depending on the value of P the picture will be as in fig. 3.2. Stable equilibrium states in this figure
as well as in others below in this chapter are denoted by a solid line and unstable states by dashed lines.
When P = P_ the number of equilibrium states and their stability change. The change in the number
and stability of solutions is called branching or bifurcation of solutions. It is a typical nonlinear
phenomenon. In the problem of beam bending the classical linear theory of elasticity gives only the
rectilinear equilibrium state. The loss of stability of a beam and some other nonlinear models of
elasticity theory are discussed in detail in ref. [51].

The problem of the loss of the beam stability was treated by Euler, Bernoulli and Lagrange. The
term “bifurcation” was first introduced by C. Jacobi in 1884. But the meaning of bifurcation theory was
only fully realized by the outstanding French mathematician Henri Poincaré at the end of last century.

Let the solution of a nonlinear problem be known for A = A;; then we may try to find the solution for
A, + AA, where AA is small. Our analysis becomes local - instead of searching for a general solution we
restrict ourselves to what happens with a specific solution in the vicinity of one value of the parameter.
It is natural first of all to choose values of the parameter at which the behaviour of the system changes
qualitatively, i.e., the points of bifurcation. It is the most important task to establish all the basic types
of bifurcation in various problems. Poincaré believed that the solution of this extensive and complex
problem would help in investigations of many specific nonlinear phenomena.

The research programme proposed by Poincaré was extended in the theory of normal forms of
differential equations [81], in the theory of catastrophes, where the equilibrium states of dynamic
systems described by a potential function are studied [10, 82], and in some other developing fields of
mathematics. ’

We consider the simplest types of bifurcations typical for reaction—diffusion systems. Let us consider
a chemical reaction where the variation of concentration of an ingredient, dx/dt, depends on the
concentration x and on external effects which are described by A. This yields the ordinary differential
equation

dx/dt= F(x, A). (3.1)

The solutions of this equation behave in a simple manner. When t— o« the function x(¢) tends to a
constant value x (we shall assume that the equation has no infinite solutions).
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There may be several such x: x, x,, x;, etc. it is clear that
F(%, 1) =0. (3.2)

Depending on the initial data x(0) the solution tends to one x,. Therefore, we have only to solve eq.
(3.2) and find its roots as functions of A.

We assume that some solution of eq. (3.2) is known. In order to obtain a solution for the value of
A=A, +AA, AA<1, we may use the Taylor formula

IF(E, A IF(E, A
F(E +Ax, Ay +AA) = F(%, A,) + —%xu) Ax + (;‘A ) 5\
1 CZF(f, M) o PFE A 5°F(E, Ay) )
+2 P (Ax) +2_W AxAA+_——M2—(AA) +G(,33)

where G is the residue of the series, containing the terms proportional to (Ax)’, (Ax)” AA, Ax (AA),
(AA)®, etc.; its specific form is of no importance to us. Since we are interested in the equilibrium states,
F(x + Ax, A, + AA) =0. But then for Ax— 0, AA— 0, we obtain

_OFE A / IF(E, &)

Ax= A ax

(3.4)

From this formula it follows that if dF(x, A,)/dx is different from zero, a new equilibrium state can be
approximately determined (fig. 3.3). As follows from formula (3.3), such a state will be unique, i.e.,
bifurcation does not occur at the point A, x.

It may happen, however, that JF(x, A,)/dx =0, and then we should take into account the next
terms. If 9°F(x, A))/9x” #0, then instead of (3.4) we have

Ax = t((—Z) PE%A—O) A)«/i(i’/\—(]) - =*Vc, AA. (3.5)

The picture is different here (fig. 3.4): when A > A, two solutions appear, when A < A, there is none (if
c, is assumed to be positive). The problem about the beam load illustrates such a behaviour. Let the
beam be not ideally straight in the initial state but a little bent to one side. Then the load function of
maximal bending shown in fig. 3.2 will change and take the form given in fig. 3.5.

X
X / A _—/'
Id Ia \\ ,—__-
\\\‘ ..
ald
Ao A Ao A R, P

Fig. 3.3 Fig. 3.4 Fig. 3.5
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If the beam is in a stable state (on the lower branch of the bifurcation diagram in fig. 3.5) and the
load slowly decreases, then for a certain value of P a jump into another equilibrium state will occur (on
the upper branch). This phenomenon, called a “flop™, is used in engineering [83]. The change of the
form of the bifurcation diagram, for example, for a small violation of symmetry of the system under
investigation, is analysed in one of the sections of bifurcation theory, the theory of imperfections [84].

If 9°F(%, A,)/dx* and GF(X, A,)/6A are zero, the next terms (3°F(%, A))/oA>)(ANY,, (6°F(x, Ay)/
dx dA) Ax A, etc. should be taken into account.

If even one of the second derivatives is not zero, the typical bifurcation will be as those shown in fig.
3.6. We have already seen the picture of fig. 3.6a in the problem of beam bending. Figure 3.6b
corresponds to a bifurcation which can conditionally be called “stability exchange”. The equilibrium
states become stable at a point Ay, x if located on one branch, and unstable if located on the other
branch. The bifurcation shown in fig. 3.6c¢ is called subcritical (in contrast to ‘“‘supercritical” bifurcation,
shown in fig. 3.6a). Its specific feature is that the solutions appearing as a result of branching exist in the
same range of parameter values (A < A,) where the initial stable branch is located. Analysis shows that
in this case they are unstable. As the parameter A increases the stable equilibrium state simply
disappears, and the solution of eq. (3.1) goes to the other region in x. The pictures in fig. 3.6 and the
corresponding bifurcations occur for most stationary dissipative structures.

More complex types of bifurcations can be obtained if the next coefficients in the Taylor series are
assumed to be zero. However, the more conditions are imposed on these coefficients, the more
degenerate and atypical such bifurcations prove to be. They are essential only in families of
mathematical models that depend on several parameters or in systems that have a number of
symmetries.

In eq. (3.1) bifurcations mean the appearance or disappearance of stationary solutions. In the system
of two ordinary differential equations

dX/dt=F(X,Y, ), dY/di=F,(X,Y,)), (3.6)

bifurcation may result in the appearance of periodic regimes. An example of such a process is shown in
fig. 3.7, where typical phase trajectories are presented (projections of the solution X(¢), Y(¢) on the
{X, Y} plane). '

From the point (0, 0), which is a stable focus (fig. 3.7a) for A < A, a limit cycle originates for A > A,.
This cycle determines a stable periodic solution, and all the trajectories in its vicinity tend to it. (In this
case all the trajectories except (0, 0).)

By using methods of the theory of normal forms [81, 85] we may show that in the vicinity of the point
(0, 0) all systems (3.6) in which such a bifurcation occurs can be reduced to the form

X X - e X -
\\ 4 >~

N ’ ~

AN 7 Ay
Inr—_—g' ID* /,\ -IO ———ﬁ-—- -

/

a b c
X, Y Xo A A A
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dWide = AW - (1 +ic,)|W|*'W ,

where A,=0, W=u+iv, if we make a change of variables. In polar coordinates u = rcos ¢,
v =rsin ¢, we have

. 3 .
F=Ar—r, e=CcC,.

When A is positive the focus loses its stability and a limit cycle appears with a radius varying as VA.
The bifurcation in which a limit cycle is created was discovered by A.A. Andronov in 1931 and later
it was intensively used for the mathematical modelling of systems in radioengineering, and for
constructing the theory of oscillations [86]. Hopf carried out an analysis of this bifurcation for
multi-dimensional dynamical systems, therefore it is often called a Hopf bifurcation.

We have discussed branching in the simplest systems. But as early as the beginning of this century
A.M. Lyapunov and E. Schmidt developed methods to study partial differential equations by using
bifurcation theory. A typical situation can be described as follows. When there is a unique stable
stationary solution, its stability in the linear approximation is determined by the set of eigenvalues p,
that describe the behaviour of solutions of linearized problems. When A <A, the real parts of all
eigenvalues are negative. When A=A, we have p eigenvalues with Re », =0, (i=1,..., p). For
example, in the case of the Hopf bifurcation u, =iw, p, = —iw.

Lyapunov and Schmidt proposed to split the equation under investigation into two: one equation in a
finite-dimensional subspace with dimensionality p, the other in its infinite-dimensional complement.
Then we have a system of p equations with p unknowns (the so-called branch equation). For many
problems we can show that when A > A, the properties of the solutions of the original equation are
determined by the properties of the branch equation [51, 84, 87]. In this case all information about the
number of branch solutions and their stability is contained in a finite-dimensional problem. An
infinite-dimensional nonlinear system in the vicinity of a bifurcation point behaves as a finite-
dimensional system.

This approach proved very useful for solving many applied problems. Many hydrodynamic systems
were studied with its aid. Some of them are discussed in detail in ref. [88]. The Hopf bifurcation enables
us to explain many important phenomena in hydrodynamics, chemistry and biology [89]. Its specific
features in reaction—diffusion systems and, in particular, in the Brusselator model are discussed in ref.
[90]. The use of methods of bifurcation theory to investigate two-dimensional dissipative structures will
be considered in chapter 10.

In spite of the simplicity of many branch equations, cumbersome calculations and even the use of
numerical methods are required to determine the coefficients and to study the stability of branch
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solutions. The more complex the solution X undergoing bifurcation proves to be, the more severe
technical difficulties are involved in using these methods.

In the seventies in the study of hydrodynamic systems and reaction-diffusion models, some physical
phenomena initiated a class of problems which were beyond the scope of the traditional methods of
bifurcation theory and required a different approach. Let us imagine that a Turing bifurcation occurs in
a nonlinear system, and that for A > A, the system becomes unstable against small perturbations of the
form W(X, T) e™=", where W(X, T) describes a slow spatial-temporal modulation, X and T are “slow”
spatial and temporal variables. In studying such systems it seems expedient to go over to simpler
equations to describe variations of W(X, T).

This approach is associated with multi-scale expansions and widely used in the theory of nonlinear
waves. Applying it we can describe different wave processes with the same equations. As examples we
can give the parabolic equation extensively used in nonlinear optics [91] or the cubic Schrddinger
equation used to describe waves in deep water and in many other cases [92].

Newell and Whitehead [93] used multi-scale expansions to describe Rayleigh-Bénard convection in a
fluid layer of thickness d heated from below. (This system is very frequently discussed in connection
with synergetic problems [3, 13].) As an original physical model the hydrodynamic equations in the
Boussinesq approximation are considered. The state in which a fluid is at rest, for R = R_, proves to be
unstable against perturbations of the form

w~e**sin(rz/d), k'=x(2d%),
where o is the vertical velocity component (directed along the z axis). Assuming
w=(W(X, Y, T)e*  + WXX, Y, T) e **)sin(wz/d)

for R> R_ and writing down the corresponding expressions for the pressure, temperature and the other
velocity components, we obtain for W the following equation:

21 ‘jﬂ—‘f ~8(n-V, W= (3a’y - WW*W , (3.7)
where X = ex, Y=¢y, T=¢", p is the Prandtl number, y is a constant, n is a unit vector along the
critical mode. The small parameter ¢ describes the deviation of R from R_. It is shown in ref. [93] that
eq. (3.7) lets us explain a number of experimental results and describe efficiently many phenomena
which were beyond the scope of traditional methods. Such an approach was used in 1975 by Y.
Kuramoto and T. Tsuzuki [94] to analyse reaction—diffusion systems.

It is convenient to distinguish two classes of systems. If the length scale is not large, [(A — A,) <177,
standard methods of bifurcation theory can be efficiently used. With large length scales [(A — A,) > [77],
as in the convection problem, it is expedient to pass to slow variables. It is natural to consider two
cases: the Turing bifurcation when the linearized problem has zero eigenvalue for A = A, and the Hopf
bifurcation when a pair of complex-conjugate values *iw, appears.

In both cases the equation proposed in ref. [94] has the form

W, = (21 +ic)W + (1+ic,)W,, — (1 +ic))|W['W . (3.8)
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Here W=u +iv; ¢, ¢, and c, are real constants. In refs. [94, 95] an algorithm is given to determine the
values of the constants using the coefficients D, and D,, the functions Q,(X, Y, A) and Q,(X, Y, A) and
their derivatives. The + sign on the right-hand side of (3.8) corresponds to the parameter range A > A,,
the — sign to A <A,.

Let us explain the meaning of the variables W, R and T. The possibility of passing from (1.1) to (3.8)
is connected with the existence of the small parameter & ~ (A — A,)"' In ref. [94] it is shown that in this
case the solution of (1.1) should be looked for in the form

(5)-(5) o r(2) e e

where {X,,Y,} is the thermodynamic branch, W depends on the slow variables R = sx, T = ¢’t;
f=e"" if stationary solutions appear, and f =" in the Hopf bifurcation case. In other words, R and
T are slow variables, which determine the time and space modulations of the simplest solutions f, whose
configurations follow from the linear analysis. Below the independent variables in (3.8) will be
designated by x and ¢.

The function W(x, ) describes the deviation of the solutions of egs. (1.1) from {X,, Y,}. Therefore,
eq. (3.8) describes only the cases when the solutions remain in the vicinity of the thermodynamic
branch for t— ». The equation does not describe degenerate cases when more than two eigenvalues of
the linearized problem cross the imaginary axis.

The investigation of eq. (3.8) proves to be closely associated with the problem of a classification of
two-component systems. Let the qualitative features of its solutions (type of asymptotic behaviour,
symmetry, etc.) be known for any values of ¢, c,, ¢, and the length scale /. Then all systems of the form
(1.1) for which solutions of (3.8) behave similarly, can be combined in the same class. Such an
approach would be more useful if we could propose efficient approximate and qualitative methods for
analysing different types of solutions.

Equation (3.8) is of great interest for the simulation of wind waves in water [96] and ion-acoustic
waves in a plasma [97]. Similar problems were considered when studying the stability of Poisseuille flow
[98] and in nonlinear optics [99]. This equation arises in many cases when finite-amplitude perturbations
in a nonequilibrium system are investigated for small supercritical values.

In the literature eq. (3.8) is given different names. It is referred to as the A—w system in refs. [100,
101], while it is called the Kuramoto-Tsuzuki equation in refs. [102, 103] and the generalized
time-dependent Ginzburg-Landau equation in refs. [94, 104].

Meanwhile quite specific equations in the theory of phase transitions of the second kind, which do
not coincide with (3.8), are usually meant when the Ginzburg-Landau equation and the time-
dependent Ginzburg-Landau equation are considered [105]. At the same time an extensive class of
equations including (3.8), equations with a quadratic nonlinearity and many other systems, are called
the generalized Ginzburg-Landau equations in the books by H. Haken [13, 14]. Therefore, thinking of
the use of (3.8) to analyse reaction—diffusion systems we shall call it the Kuramoto—Tsuzuki equation.

Let us dwell on some specific features of eq. (3.8). In the second boundary value problem, provided
flows are absent at the boundaries, or in the problem with periodic boundary conditions,
Ja [W(x, 1)|* dx—> 0 if the Kuramoto-Tsuzuki equation is chosen with the — sign. (We can verify this by
multiplying it by W* and integrating over the entire domain.) Therefore, we shall assume that the sign
is plus.
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By the change of variable W= W, exp(ic,t) we may easily verify that without loss of generality we
can put c,=0. Below we shall assume that such a replacement has been made. By writing down eq.
(3.8) in the variables p and ¢ (u = p cos ¢, v = p sin ¢),

p.=p- p3 + Pex ™ p(P)zc _zclpx(px T PP, s

p(Pt = _C2p3 + 2px‘Px + pq;xx + clpxx - clpq’i 2

we can verify the following statement. Let {p(x, 1), ¢(x,t)} be a solution of (3.8). Then
{p(x, 1), —o(x, 1)} will be a solution if ¢, and ¢, are replaced by —c,, —c,. This means that it is
sufficient to consider the parameter region c; =0.

The simplest solutions of (3.8) are the zero solution (always unstable in the linear approximation)
and the spatially homogeneous solution

W=exp(—ic,t +ia), (3.9

where « is a real constant. It is stable against small perturbations of the form exp(ikx) provided that
[94]

(A + Dk +2K°(1 + ¢,¢c,) >0, (3.10)

i.e., it is stable for all k when 1+ c,c,>0.

It can be proven that in the second boundary value problem for 0 < ¢ < the solution is bounded in
norm L, (i.e. the quantity W/, = {fq [4’(x, £) + v*(x, )] dx}""* is bounded) provided the flows at the
boundaries are absent. It is shown in ref. [106] that if the norm does not decrease in L, the solution is
bounded in norm C (the quantity max, ., (|u(x, t)| + |v(x, £)]), 0 <t <, is bounded).

The Kuramoto-Tsuzuki equation is a complex mathematical object. It can have several types of
self-similar solutions, and describe two-frequency and stochastic regimes. At the present time it can be
considered as one of the most important model equations in the theory of open nonlinear systems. Its
investigation helps us to understand the properties of nonlinear media and some physical phenomena.
Later we shall discuss in more detail the methods of analyzing this equation and some results of this
analysis.

Above we have discussed methods for investigating nonlinear media when A is close to A, and the
amplitudes of the branch solutions are small. As A increases the amplitudes are no longer small, but
even then we can sometimes describe processes in distributed systems by simplified finite-dimensional
systems. Most results here were obtained with the use of the Galerkin method. It was assumed that in
the solution only some harmonics (a finite number) are important, and instead of the original partial
differential equations a system of ordinary differential equations that connects their amplitudes was
considered [107].

In other cases a transition to a finite-dimensional system can be made if the original equation is
assumed to be a small perturbation of nonlinear equations whose solutions are known. Usually, these
are fully integrable systems which have soliton solutions.

We may expect that as A increases the complexity of the solution will grow. In the simplest cases
when we consider only the behaviour of specific types of systems in time the Feigenbaum theory of
universality allows a prediction of the behaviour of the solution after an infinite number of bifurcations
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[33]. (Below we shall discuss some results of this theory.) However, an efficient description of nonlinear
systems in which the number of temporal and spatial modes characterizing the process dynamics
increases as A grows is an open question as yet. An interesting approach to this problem is proposed in
ref. [78].

3.2. A hierarchy of simplified models for the Kuramoto—-Tsuzuki equation

Reaction—-diffusion systems were investigated using different simplified models. Each of them can be
applied to a certain range of parameter values and proves to be simpler than the original set of
equations. Let us consider a few simplified models arising when nonlinear media in the vicinity of the
bifurcation point are described. Note that there is a relationship between these models.

Mathematical models of many specific physical, chemical and biological systems are nonlinear
parabolic equations of the form

u, D, 0 \/u Qi(Uys sty Ay s Ay)
(; ):( )( ) +] . (3.11)
uy/e \0  Dy/\un/x \Qn(uy, ... Uy, Aoy A)

Considering the processes with the longest characteristic times we can distinguish the order
parameters that determine the behaviour of the remaining functions describing the state of system.
Methods for distinguishing these parameters were discussed in chapter 1.

In some cases the evolution of the order parameters is described by a system of two nonlinear partial
differential equations depending on a single parameter A. Their behaviour is typically as follows [3, 13].
When A< A, there is a stable stationary spatially homogeneous solution, called the thermodynamic
branch. For A=A, the thermodynamic branch becomes unstable against small perturbations f~
exp(ik x) or f~exp(iw,t) .

If the system is sufficiently large it is convenient to consider eq. (3.8) for a variable W which

describes the slow spatial-temporal modulation of the function f, whose form follows from the linear
analysis [94]. At the present time it seems that the second boundary value problem,

W =W+(1+ic)W, —(1+ic,)|W'W, 0=x<l, 0<t<w,
(3.12)
W.(0,)=W/(,1)=0, W(x, 0) = W,(x),

has been studied in most detail.
If the length / in (3.12) is not large, the Fourier coefficients of the solutions quickly decrease with
increasing number. In the simplest case only the zeroth and first harmonics prove to be essential.
We assume that in the solution under investigation there are only two modes,

W=u+iv=(x,+1iy,) + (x, +iy,) cos kx , (3.13)

where k is chosen so that the boundary conditions of problem (3.12) be satisfied, i.e., k= 7/l
corresponds to the first harmonic. We substitute (3.13) into (3.12) and ignore all the terms with
cos(wmx/l), m>1, by assuming they are negligibly small. This leads to a closed system of ordinary
differential equations,
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X=X~ (%o~ CzYo)(P(Z) + Pf/z) —s(x; —¢4)
Yo=Y~ (Coxy + YO)(P?) + Pf/z) = s(cx; +y,),
(3.14)

Xy =x—(x; - cz.V1)(P(2) + 3P?/4) = 25(xy — €,¥0) — kz(xl — Y1)
Y=y~ (ex, + Y1)(P3 + 39?/4) = 2s(coxg +yo) — kz(clxx +9),

where pl=x2+y2, pi=x>+y>, s=x.x,+y,y, It can be simplified even more if we pass to the
variables p,, p;, ¢y, ¢, by the formulas x, = p, cos ¢,, ¥, = p, sin ¢, x, = p, c0s ¢,, y, = p, sin ¢;, and
then to £, n, 0 [£=pl, n=pl, 0=2(g, — ¢,)]. As a result we have three equations,

E=2£—28(£+m)— £n(cos 8+ c,sin 0) ,

7 =2n-2n(2¢ +3n/4) — 2&n(cos 8 — c, sin §) — 2k™y

0 =c,(2¢6 —n/2) +sin 0 (2£ + 1) + ¢, cos B (2& —n) +2¢,k, (3.15)
k=mll.
The relationship between ¢, 7, 8 and ¢, is determined by the equation
%= ~c,(£+m)+0.59(sin 6 — ¢, cos 0). (3.16)

The ability to go over to the system of equations (3.15) is due to the fact that eq. (3.12) has a
symmetry. If W(x, ¢t) is a solution, the function W(x, f) ', & = const., is also a solution. In egs. (3.15) ¢
and 7 describe the square amplitudes of the zeroth and first harmonics, 6 is the phase difference
between them.

The simplest solutions of egs. (3.15) are the stable singular points (£—>const., n— const.,
§— const., — ). In order to find the coordinates of a singular point (£, n, 8), we should put £, 7, 6
equal to zero and solve the three algebraic equations obtained. Explicit expressions are given in refs.
[103, 108] for the singular points and the straight lines for which £ =0 or n =0. It is also shown that the
coordinates of the other points are determined by a fourth-order algebraic equation. It may also be
considered as a simplified model for problem (3.12).

To study systems of three ordinary differential equations, specifically the system of equations (3.15),
it is very useful to investigate a class of two-dimensional mappings or mappings of the plane.

Let us consider, for example, a system of three ordinary differential equations relating the functions
x(t), y(t) and z(t). We shall give initial data lying in one plane z = z;,. From each such point we draw a
phase trajectory and see where it crosses again the chosen plane (fig. 3.8). The coordinates of the
crossing point (x,, y,, z,) depend on the initial data (x,, y,, z,), i.€.,

x, = f(xq, Yo) » ¥y = 8(xq5 Yo) - (3.17)

The functions f and g determine a mapping of the plane z = z,,, which is usually called a Poincaré map.
As a rule, it is sufficient to consider not the entire plane z = z, but only a small part which contains an
attractor.
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The mapping (3.17) generated by a system of differential equations usually enables us to investigate
the most important properties of the system. But it may turn out that the interval which contains
elements of the sequence {y, } is much shorter than that with elements of the sequence {x,}. (Or there
are other variables x’, y' for which this condition is satisfied.) Then the one-dimensional mapping

X, = Flx,), (3.18)

i.e. the into mapping of the interval, proves to be a useful simplified model.

A mapping of the form (3.18) may appear not only as a result of analysing a simplified two-mode
system but sometimes directly in the course of studying problem (3.12).

In fact, let us expand its solution into a Fourier series

W(x,t)= }w_: [a,(t) +ib,,(t)] cos(rmx/l) .

We consider the function &(r) =[a’(t) + b(t)]'’%, pick out the local maxima &, §,,.. ., ¢£,, ... and
construct the function ¢, .,(&,). In some cases {£,, &,,,} do not fill randomly the whole region;
instead they very accurately fall on a single continuous curve ¢, ., = F(§,,). Such curves usually appear
in a whole range of parameters c,. Therefore, we can consider a family of mappings (3.18) as a
simplified model of the distributed system.

Let there exist a steady state regime such that £, — const. for n—>, n=1,2,.... Then the single
point (£, ¢) on the curve F corresponds to this regime. If £(¢) is periodic and has p local maxima in a
period, then p points on the curve F correspond to it. If £(¢), and this means W(x, t) as well, is
aperiodic, the points may fill the entire curve or a few segments of it.

The approach of picking out the local maxima and constructing the function ¢, ,,(,,) was proposed
by E. Lorenz [76] and was efficiently used to study several systems of ordinary differential equations.

For most nonlinear partial differential equations it proves useful to analyse self-similar solutions.
These cases include running waves, whose properties are discussed for the Kuramoto-Tsuzuki equation
in refs. [100, 101], and solutions of the form

W(x, t) = R(x) expliwt + ia(x)] .

This solution was obtained in ref. [109] using invariant-group analysis of eq. (3.8). Below we shall see
that in a certain range of parameter values it proves to be stable and determines the asymptotic
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behaviour of the system when t— . In this case equations for the functions R(x) and a(x) (or the
functions that describe other self-similar solutions) can be considered as a simplified model.

In many cases multi-dimensionality is a necessary factor for understanding various nonlinear
phenomena, but it complicates the problem immensely. So to study some phenomena we should
consider two-dimensional analogs of eq. (3.12). Such problems arise when we study water waves caused
by wind, or simulate morphogenesis and surface reactions. The simplest two-dimensional generalization
of (3.12) is the equation

W,=W+(1+ic, (W, + W, ) — (1 +ic,)|W|*'W . (3.19)
It has two-dimensional self-similar solutions of the form
W(x, y, t) = R(x, y) expliwt +ia(x, y)] . (3.20)

In the two-dimensional case the Kuramoto-Tsuzuki equation has solutions which are now called
spiral waves. They are described by formula (3.20) provided R(x, y)= R(r), a(x, y)= S(r) + me
(m=1,2,...), x=rcos ¢, y=rsin ¢. Their name is understood from fig. 3.9, where a typical picture
of the solution with m =1 is shown at time ¢'. In the dashed region u(x, y, t') >0, in the blank region
u(x, y, t')<0.

If m>1 the spiral wave is called multi-armed. Spiral waves can be observed experimentally, in
particular in the Belousov—Zhabotinsky reaction [110]. It is important that the existence of spiral waves
is not connected with a specific form of the equations — it is a general feature of many open nonlinear
systems. Some biologists think that the appearance of spiral waves can explain many biological
phenomena, for example, arrhythmia of the heart muscle [111].

The method of multi-scale expansions used to obtain eq. (3.8) was successfully applied to the
investigation of convective instabilities in a fluid [93], the analysis of plasma physics problems [112], and
in the theory of nonlinear waves [113]. It was also used to analyse eq. (3.8). By assuming that the

Fig. 3.9
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solution of the equation is close to being spatially homogeneous we obtain the equation [114, 115]
v, = vhv — uV’Vv - Av(W), (3.21)

which is usually called the Kuramoto—Stvashmsku equation. Here v is the gradient of the phase W,
v=1+c,c,, A=2(c, - ¢,), o =(1+¢})/2. An analytic solution of the Kuramoto-Sivashinskii equa-
tion of the running wave type was obtained in ref. [116]. The problem of the instability of the wavefront
in active media was formulated in ref. [118] for the two-dimensional case. Using the method of
multi-scale expansions leads in this case to eq. (3.8). In such an approach v is connected with the local
phase velocity of the running wave.

When » >0 the properties of eq. (3.21) resemble those of the Burgers equation [42]. When v <0 eq.
(3.21) may seem to have complex aperiodic solutions [115]. Indeed, when the term uV>V?v is absent
solutions can exist for a limited time. By using the Hopf-Cole replacement [42] when v <0 we reduce
(3.21) to the linear heat conduction equation with a negative coefficient k. Equation (3.21) is of interest
as one of the simplest model equations which can describe chaotic processes in the one-dimensional
case. Numerical results including complex aperiodic solutions were described in ref. [115]. In ref. [117]
a priori estlmates of solutions of the boundary value problem (u, =u, =0 for x=0 and x = 1 with
u(x,0) = u’(x), 0=t <o) were obtained; also existence and uniqueness theorems were proved, and
difference schemes for this equation were considered.

At the same time the calculations show that in many ranges of parameter values the solution W(x, ¢)
of eq. (3.8) is essentially inhomogeneous in space. Therefore the range of applicability of (3.21) is much
smaller than that of the original equation, as was noted in refs. [104, 118].

System of N partial

differential equations (3.11)
depending on a number
of parameters

Equation (3.19) describing
two-dimensional dissipative
systems

Equation for two-dimensional.
self-similar solutions
of type (3.20)

System of two partial
differential equations (1.1)
depending on one parameter

Kuramoto-Tsuzuki equation
(3.8) valid near a bifurcation
point

= =
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Two-dimensional Algebraic equation for
maps (3.17) singular points of system (3.15)
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Considering the behaviour of two-component systems in the vicinity of a bifurcation point, we have
presented a few simplified models. The properties of some models will be discussed below. We illustrate
the connections between these models in a diagram (Scheme 1). We shall see that an analysis of any
model requires using a computer and various mathematical methods. There are several levels in the
hierarchy of models shown in the diagram. The study of the models at any level has not yet been
accomplished. There are still problems at each level that require further investigation.

3.3. Other lines of investigation

Besides the simplified models described above and constructed for an analysis of reaction—diffusion
systems, some generalizations of the Kuramoto-Tsuzuki equation were proposed. It turned out that a
similar approach can be used to investigate certain hydrodynamic systems. Let us discuss some lines of
investigation in this connection.

One of the generalizations of the Kuramoto-Tsuzuki equation appears when the next terms in the
expansions with respect to a small parameter for reaction—diffusion systems in the vicinity of the
thermodynamic branch are taken into account. Let the nonlinear sources in such a system depend on
two parameters A and p. We write eq. (3.8) in the form

W = dOWxx + (al + aZlW|2)W .

Let Re a, <0 for u < u,, and Re a, >0 for u > w,. In the second case the Kuramoto-Tsuzuki equation
cannot be used: if we vary A the solution discontinuously changes by a finite amount. The FitzHugh-
Nagumo model [119] and other models where threshold effects are important give us examples of such
behaviour. To describe these effects the authors of ref. [120] propose to take into account the next
terms in the expansion and to use the equation

Wr = dOWxx + (al + a2|W|2 - a3|W|4)W ’ (322)

where d,, a,, a,, a, are complex constants. The possibility to use this equation is connected with the
existence of another small parameter, ~(x — u,)"'>. Therefore eq. (3.22) does not have the generality
of (3.8) and its range of applicability is much smaller.

When we go from the original system (1.1) to (3.8) it is essential that the problem is one-
dimensional: the form of the function f can be uniquely determined from the linearized equation. In the
multi-dimensional case the situation is more complex - the linearized problem can have several
solutions; their number greatly depends on the geometry.

The equations describing two-component systems for the Turing bifurcation were considered in ref.
[121] in the two- and three-dimensional formulations. For regions of different geometries they may
represent systems containing more than two equations. It would be very useful to analyse them in
detail.

In the classical theory of bifurcations and in the theory of normal forms there are standard and
strictly justified procedures that allow one to go to the asymptotic local description in typical cases
[81, 85]. In the theory of reaction—diffusion systems a strict procedure to go from the boundary value
problem for eq. (1.1) to that for the Kuramoto-Tsuzuki equation has not yet been developed up to
now. At present, however, studies have been initiated where this question is considered for systems
with a small diffusion coefficient,
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u=eDu +(A,+eA)u+ Fu), 0<e<l,

u,(0,n=u(1,6=0, u(x,0)=u’(x),

where u is an m-dimensional vector, D is a positive definite matrix, A, has eigenvalues with zero real
parts and no eigenvalues with positive real parts, F(u) is a nonlinear function. Under these conditions
the asymptotic analysis may lead to both the Kuramoto-Tsuzuki equation and its more complex analogs
[122].

A similar approach associated with constructing a hierarchy of simplified models has been intensively
developed recently in connection with investigations of convective instability. In these investigations
systems can be considered whose lengths and widths are much longer than the characteristic sizes of
cells or convective shafts. A direct numerical simulation of such instabilities requires solving the
hydrodynamic problem in a large domain, which includes a large amount of computation. At the same
time, solving the equations arising in an analysis of the system in the vicinity of the thermodynamic
branch is much simpler. In this case one usually obtains boundary value problems for a system of two
parabolic equations in a two-dimensional region.

In such a description frequently equations arise which are more complex than (3.8); they contain
fourth derivatives [93],

i &
X V27 9Y?

Various physical factors may complicate the equations obtained by asymptotic methods [123]. Different
methods to describe the convective instability in a simplified form and the topologic features of the
arising flows are discussed in ref. [77]. Numerical solutions of the resulting equations usually give a
picture that is in good agreement with experimental results [124].

2
WT=W+< )W—|W|2W.

4. One-dimensional maps

One of the simplest models that allows an investigation of complex temporal order and stochastic
regimes in nonlinear media is the map of an interval onto itself or, as it is usually called, the
one-dimensional map.

The study of one-dimensional maps led to the introduction of new notions applicable to an extensive
class of dissipative systems and the discovery of some new phenomena; as a result some fundamental
questions could be answered. How does the transition from the simplest ordered to stochastic regimes
proceed? In what manner do the domains where order or chaos is observed, alternate in parameter
space? How does order become complicated with a varying parameter? What are the basic types of
stochastic regimes in such systems and how can they be described?

Let us note the paradoxicality of these questions. Indeed, a one-dimensional map is a determinate
system. Nevertheless, it describes processes that may have some stochastic properties.

To fix the ideas we consider the simplest model that leads to one-dimensional maps. Let us be
interested in the variation of the population of some animals in a certain region. We count them once a
year and obtain a number x. From these data we construct the sequence x,,x,,...,x,,... (n=1
corresponds to the first count). For brevity we designate it by {x,}. It seems that there is a law for these
numbers. It is natural to expect that the population in a given year, x,,,, depends on the number of
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animals that lived the previous year, i.e. the value of x,. Thus, in the simplest case

X, =flx,, A). (4.1)

Here f is a continuous function, A is a parameter, which depends on the specific problem under
consideration. We usually use a function f of the form Ax, (N - x,),

X, =Ax,(N-x,), 0=x,=N. (4.2)

The above formula shows that the population quickly grows so long as it is small (x, < N) and starts
diminishing when there are too many animals. It is convenient to make the change of variables x, = x'N
and A = A'/N. Then formula (4.2) becomes

x,’,+1=)t’x,’,(1-x,’,), 0_<.x:,51. (43)
Below we shall omit the primes.

Now we are interested in the question: What will happen with different kinds of animals over a
sufficiently long time? To answer this question within our simplest model it is sufficient to determine the
form of the sequence {x,}, n— o, for different A. The maps of the form (4.1) are used for the
phenomenological description of many other events.

4.1. Transition to chaos. The Feigenbaum scenario

For small values of A (0 < A <1) we have x, — 0 with n— o regardless of the choice of x,. In this and
other cases it is convenient to describe the behaviour of the sequence graphically.

Let us draw the plot y = f(x) for a chosen A and the straight line y = x in fig. 4.1. We take x, on the
abscissa, draw a vertical up to the intersection with the curve y = f(x) at point A, then draw a horizontal
from A until it intersects the curve y = x (point B). Now we draw again a vertical to the intersection
with the x-axis. It is easy to see that x, = f(x,). Taking now the point x, as a starting point and
repeating the same operations we obtain x., then x,, etc. From fig. 4.1 it is seen that x,— 0 when
n— .

From formula (4.3) it follows that the function f(x) maps the interval [0, 1] onto [0, A/4]. If A =4, all
values of x, are on [0, 1] provided that 0 <x, <1. This is why formula (4.3) is said to give maps of an
interval into itself.

Now let A be slightly more than 1. The sequence {x,} behaves differently (fig. 4.2) and tends to a
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constant value x* > 0. As applied to the original biological problem, it means that the population of a
given species becomes stable after several years and stops changing with time.
The value of x* can be obtained from the equation

x*=f(x*, A). (4.4)

All the points satisfying this equation are called the fixed points of the map, since x, = x* for all n if
x,=x* If A<1, the quadratic equation x* = Ax*(1 —x*) has one nonnegative root x*=0. If A>1
there are two nonnegative roots: x* =0 and x* = (A —1)/A. When A =1 the fixed point x = 0 loses its
stability, and the newly appeared point becomes stable.

It is easy to determine if the fixed point x* of the map f(x) is stable. Let x, = x* + Ax,, where Ax,, is
a small number. If the point is stable the value of |Ax,| must decrease with increasing n. We rewrite
formula (4.1) in the form

x*+Ax,,, =f(x*+Ax,)=f(x*)+ %ﬁ:) Ax, +0(Ax2).

In the analysis of the stability of singular points of ordinary differential equations it is shown that in the
nondegenerate case the linear terms dominate the situation (the first method of Lyapunov stability
theory). Using analogous arguments here we can verify that the stability of x* is determined by the
behaviour of the map

df(x*)
Ax,,, = o Ax, . (4.5)
In order that Ax, — 0 for n—  the inequality
|df(x*)/dx| <1 (4.6)

should be satisfied. It is the sufficient condition for stability of the point x*. (If the opposite inequality is
satisfied we may infer that x* is unstable. If the derivative is equal to unity we should consider the next
terms in the Taylor series.)

Let us further increase A. The behaviour of the system changes again: Starting from sufficiently large
n in the sequence {x,} two numbers a, and a, will be alternating. (Speaking more exactly, the sequence
{x,} is composed so that x,,.,— a,, x,,—> a, for n— =.) We shall say that in this case the map (4.3)
has a stable cycle of period 2, which will be designated by S°. Figure 4.3 shows S>

The transition from the fixed point (we may consider it as a cycle S') to the cycle S* occurred as a
result of bifurcation, which is called a period-doubling bifurcation. The point x* did not disappear but
the value of df(x*)/dx became smaller than —1.

As A increases further the sequence {x,} changes again. The cycle S* arises: x,,— a,, X,,,, = 45,
Xgiy™> O3, X4y 3> 4y, fOr n—> and a, = f(a,), a, = f(a,), a, = f(a;), a, = f(a,) (see fig. 4.4).

Still increasing A we may observe the cycles S° S'¢, §* etc. Every time S’ loses stability, a
period-doubling bifurcation takes place, and the cycle $2*"" becomes stable. Finally, at a certain value
of A (sometimes denoted by A,) formula (4.3) yields an aperiodic sequence {x,}.
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The observed picture turns out to be very interesting. First, there is very complex behaviour in the
remarkably simple model (4.1). Second, a large number of bifurcations leading to a more complex
solution can be discovered. It is much more difficult to do this in more complex models. Third, when
0< A< A, only cycles of period 2” are stable. It would be interesting to see why this is so and to study
the behaviour of the model in more detail.

Besides the map (4.1) it is convenient to consider the map

X = f(f))=f7(x,). (4.7)

In this chapter f"(x) will always correspond to the nth iteration of the function f, f"(x) = f(f- - (x)) (n
times). In our case the form of the function f*(x) is shown in ﬁgs 4.5 and 4.6. The first figure
corresponds to the stable fixed point, the second to the stable cycle S* The plot of f*(x) mtersects the
stralght line y=x at all fixed points of the map and also at points belonging to cycles S [because

= f(a,) = f(f(a,)), a, = f(a,) = f( f(a,))]. By increasing the parameter A we stretch the function f*(x)
along the y-axis, and if at some A the lines y = x and y = f*(x) intersect at one point (see fig. 4.5), then
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two new intersection pomts may appear as A increases (see fig. 4.6). These points will determine the
cycle S% The transition $' — S in the map f(x) will be due to the fact that in the map f>(x) one of the
fixed points loses its stability, and two new stable fixed points appear in its neighbourhood. The
bifurcation diagram here proves to be like that shown in fig. 3.6a. By considering the functions f*(x),
f¥(x) etc. we can see how the next doublings occur. In each of these cases one group of points loses its
stability and two other stable groups of points appear, and as a result the cycle period doubles.

Acting in the same way as in the case of a fixed point, we can show that the stability of the cycle S¥
with elements x,,...,x, will be determined by the formula |df"(x,)/dx|<1, k=1,..., p. By
differentiating this formula we can easily verify that it is equivalent to the inequality

EANNCCATIS

Cdx dx (4.8)

From the formula for |df*/dx| it follows that the value of |df?/dx| will be the same at all points of the
cycle S”.

It turns out that by the example of model (4.3) we can understand not only the qualitative but also
the quantitative laws of the transition to chaos. In order to observe them we shall draw the plot x(A).
We shall put Xpp Xg5e x, belonging to the stable cycle along the x-axis, and the parameter values
along the A-axis. Two pomts on the same vertical line will correspond to cycle S four points to cycle S*,
etc. We denote the parameter values where doubhngs occur by A,, A,, A,, ..., and the values for
which x=1/2 is an element of cycles S S S° etc. by A, A, A,,.. (these cycles are called
superstable). Let us also 1ntroduce the quantities d,, d,, ..., d,, the dlstances between x =1/2 and the
closest element of the cycle S at A = A . All these notations are shown in fig. 4.7. Computatlons show
that the numerical values of A, and A with large n behave like a geometrical progression with
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denominator § =4.6692016. ... In other words,

A=A, o (4.9)

The ratio d,/d, ., also has a limit equal to «, where a =2.5029078. . ..

Instead of (4.3) we may consider some other family of symmetric functions that have one maximum
on [0,1], are close to a quadratic parabola near its apex, and in which an infinite cascade of
period-doubling bifurcations occurs with varying A. It turns out that in any such model the numbers «
and & are the same. Moreover, regardless of the form of f(x), the limit

lim (= a)f*((x = 0.5)/(-a)", A,)
exists and is the same. It is called the universal function g (x).

These remarkable laws were established and explained by M. Feigenbaum in 1978 [33, 126, 127]. He
proposed the functional equations to determine a, 6 and g,(x). Due to the universal nature of a,  and
g,(x) and other similar functions, this theory is called the universality theory.

In this theory the renorm-group method is applied. It is widely used in quantum field theory and
statistical physics. With this approach the constant « can be determined from an equation that has a
graphic geometric meaning.

Let us compare figs. 4.3 and 4.8. An element of the curve f*(x) located within the left square is very
much like the arc of the function f'(x) located in the square in fig. 4.3. In fact, they differ only by a
scale and the orientation of the axes. Calculations show that the same law holds for the functions £,
n>1, when A= A,. The larger the n, the more accurately it is satisfied. From these considerations it
follows that

g(x) = —ag(glx/a)) =(Tg)(x) , (4.10)

which allows us to determine both the function g(x) and the value of a. The function g is determined on
[-1,1]; it is assumed to have only one maximum at x = 0 and to be symmetric, g(x) = g(—x). Near the
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maximum g(x) must be close to a quadratic parabola, and g(0)=1. T is called the doubling
transformation [128, 131].

In the universality theory the space of maps of the interval [—1, 1] into itself is considered so that
f(x) € C*[~1, 1], where x =0 is a maximum of f(0) =1. This space is invariant with respect to the
transformation 7.

The Feigenbaum equation (4.10) determines the fixed point of the doubling transformation. The
spectrum DT( g) of the linearized transformation at the point g lies within a unit circle except for the
eigenvalue § =4.6992. .., which determines the Feigenbaum constant. This eigenvalue corresponds to
the one-dimensional unstable separatrix I"“(g), which consists of the maps moving away from g(x)
under the effect of the transformation T (fig. 4.9). Along other directions, belonging to the stable
separatrix I"°(g), the maps tend to this point.

Let us denote the surface in the functional space on which the first period-doubling bifurcation
occurs by 3,. We also write

5=T75, ..., 5, =T'S_,.

At the intersection of the surface 3, the kth period doubling occurs: the stable cycle of period 2* arises
from the stable cycle of period 2*~",

The surfaces 3, prove to converge to I"*(g), and for large k the distances between 3, ,, and I'*(g)
are & times shorter than those between 3, and I'°(g). Therefore, the bifurcation values of the
parameters for any family of maps f(x, A) form a geometric progression.

Some rigorous results of the universality theory and references to the original works can be found in
detail in the book [131] and the review [128]. The proofs available are mainly based on numerical
results. By using a computer the Feigenbaum equation is solved, and the constants a and & are
determined. For these problems different techniques can be employed [127, 129]. The universality
theory can be applied in the case when the apex is smooth but not quadratic. However, a and 8 prove
to be different [127].

An interesting object is the limit set arising after an infinite cascade of period-doubling bifurcations
(A=A,). It is called the Feigenbaum attractor and has a complex structure, which repeats itself on
smaller scales. In particular, there are an infinite number of unstable cycles of the type S*° coexisting

5 fxp) T

Fig. 4.9
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with the Feigenbaum attractor. The structure and ergodic properties of limit sets of one-dimensional
maps at A = A, are discussed in detail in ref. [128]. In the neighbourhood of the point A the attractors
have a typical power spectrum from which we can see that this scenario of the transition to chaos is
implemented [131].

In many dissipative systems as well as in some nonlinear media the transition to chaos occurs
according to the Feigenbaum scenario [35, 36, 103]. Therefore, it is particularly interesting to generalize
the results of the umversahty theory to maps of higher dimensions. For example, two-dimensional
transformations R* — R? were studied in ref. [131]. They are close to the map F,

f(:)-(5 7).

y
where g is the universal function which is a solution of eq. (4.10),
g(x)=1-1.52763x" +0.104 815 x* — 0.026 705 7 x°* +

Every one-parameter family of maps R*— R” which passes sufficiently near F will exhibit an infinite
sequence of period-doubling bifurcations at values A,. The A, will have a limit A_ and |A, — A_| ~ const.
8"

Thus, the transition from the simplest ordered to aperiodic regimes according to the Feigenbaum
scenario is connected with an infinite cascade of period-doubling bifurcations. The bifurcation points are
located according to a geometric progression with denominator 8. Here chaos (aperiodic sequence at
A,) acts as a limit of supercomplex temporal order.

4.2. Intermittency

The transition to chaos can occur differently even in very simple physical systems. For example, in
hydrodynamics the following phenomenon has been described. If flow is observed for a sufficiently long
time without a change in its parameters, it may be seen that in ordered laminar flow suddenly vortices
appear whose behaviour seems to be random. Then the picture of the flow again becomes simple and
regular before the next vortices appear. This phenomenon is called intermittency. Regular regimes
alternate with islands of chaos.

The simplest model that provided an explanation for this phenomenon was proposed by Manneville
and Pomeau in 1980 [130]. It can be illustrated by an example of a family of one-dimensional maps
(4.3).

For a certain value of A (A 3.83) the stable cycle S’ abruptly appears from chaos. In order to
understand the situation we consider the one-dimensional map £(x, A) = f(f(f(x, X)) before the cycle
appears A< A (see fig. 4.10a), and after that, A > A (see fig. 4.10b). As the parameter A increases, the
curve f’(x, A) becomes steeper, and new pomts of intersection with the straight line y=x appear
These points are denoted by M, ,;and N, , , in fig. 4.10b. They are all fixed points of the map £3(x, A).
The derivative of f>(x, A) at the points Ml, M,, N, [see formula (4.8)] is the same and its absolute
value does not exceed 1. It is these points that determme the stable cycle S°. The slopes at the points
N,, N,, M, are also the same but their absolute value is larger than 1. In the map f they correspond to
an unstable cycle S* which appears simultaneously with the stable one (see fig. 4.11).
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The simultaneous appearance of stable and unstable singular points is called a tangent bifurcation. It
is due to the fact that at the bifurcation point the curve f(x) is tangent to the diagonal y = x.
Accordmgly, the derivative df/dx at this point is equal to unity.

We give an initial value x, and see how the map f~ behaves when A > A and when A < A. (In other
words, we observe every third element of the sequence {x,}.) Computations show that in the first case
after a long transient process the points are attracted to the cycle S°. In the second case slow motion to
the point M can be observed first, but then the elements of the sequence quickly diverge from this
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Fig. 4.11. The function f° on a larger scale. (b) A =3.830; the point M, corresponds to the stable cycle S° and the point N, to the unstable cycle. (a)

A=3.825; the cycle S’ has not yet appeared.
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point. Subsequently they start approaching it again. Such a behaviour for a map with a sharp apex is
illustrated in fig. 4.12. It is seen that intervals of motion to the point M, when the solution looks
regular, alternate with quick chaotic rejections. We have intermittency in this very simple model.

We may estimate how the duration of “the laminar phase” depends on the parameter A. Let the
tangent bifurcation occur for A =0. From fig. 4.11 it is clear that for the interval of interest the map
£3(x) [or g(x) in fig. 4.12] can be approximated by the map

Xy =X, taxi—A. (4.11)
Since x,,, — x, <1 for A—0, formula (4.11) can be approximated by the differential equation
dr/dr=ax’-\. (4.12)

By integrating it we can verify that the time At (and thus the number of iterations) in which the
trajectory x(7) is near zero, is proportional to A% It is this law which can be observed in
computations. Transition to chaos connected with intermittency is observed in many concentrated

systems and seems to be typical for a large class of nonlinear media too.

4.3. Attractors of one-dimensional maps

Considering one-dimensional maps we have not specified so far with what initial data some or other
stationary regimes are obtained. At the same time it seems natural that in many cases the choice of
initial data may determine the behaviour of the system when n— . We shall discuss this in detail.

An intuitive idea about the stationary regime may be associated with the notion of an attracting set
ot attractor [290]. An attractor is the closed set A which is invariant under the map f [ f(A) = A] and has
the domain of attraction U, (U, D A) of all the points that go into A [i.e. A=N_, f*(U,)]. Sometimes
the definition of an attractor includes the property of indecomposability: the set A cannot be divided
into some closed invariant nonintersecting sets. B

We shall give examples of attractors. Let the map (4.3) have a stable fixed point x* for A = A (for
example, A =2). It is an attractor. Indeed, f(x*) = x*, and we can see that there is a sufficiently small
neighbourhood of the point x* from where all points tend to x*. At the same time we cannot say that
iterations of all points tend to x* [f"(0)=0,n=1,2,...].

, an

05k
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Xn

Fig. 4.12



T.S. Akhromeyeva et al., Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media 247

The stable cycle S" must be another example. We may expect that generally a one-dimensional map
has several attractors which are obtained depending on the initial data. This question was studied in
detail for the class of so-called S-unimodal maps [131, 135], which can be obtained, in particular, after a
transformation of variables in the family (4.3). The map f of the interval [-1, 1] into itself is unimodal
if

(1) fis continuous,

(2) f0)=1,

(3) fis strictly decreasmg on [0, 1] and strictly increasing on [—1, 0].

We shall call f C'-unimodal, if in addition

(4) fis once continuously differentiable, and f'(x) #0 if x #0.

The Schwartzian derivative of f is defined by the formula

0 3 (WY
S0 =) ‘i(ﬁﬁ) '

Then f is called S-unimodal if
(1) fis C'-unimodal,
(2) fEC,
(3) $f(x)<0 for all x€[—1,1]; at x =0 we allow the value — for Sf(x),
(4) fmaps j(f)=[f(1), 1] into itself,
(5) 1"(0)<0.

The following theorems are valid.

Theorem I. If f is S-unimodal, then it has at most one stable periodic orbit, plus possibly a stable
fixed point in the interval [—1, f(1)].

Theorem I1. If f is S-unimodal and has a stable periodic orbit, then the measure of those points
which do not converge to it is zero.

Theorem II1. 1f f is S-unimodal and has a stable periodic orbit, then the initial point x, =0 will be
attracted to it.

The last theorem provides a method to construct maps that have no stable cycles - to do this we
should see that one of the iterations of zero comes at an unstable point or into an unstable cycle.

The simplest example of such a function was glven by S. Ulam and J. von Neumann in 1947. This is
the function f(x) =1-2x*: f(0) =1, f*(0)= -1, f*(0)= -1 (k >2) but f'(-1)=4.

Iterations of this map exhibit an example of chaotic behaviour. We consider it in more detail. We can
verify that the change of variables

4 .
== [arcsin V(x +1)/2] -1
reduces the map to the form

yn+1=1—2|yn|' (4‘13)

We investigate the properties of the sequence {y,} by using very simple considerations. Let y, have k
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digits after the decimal point (the (k + 1)st, (k +2)nd and all later digits are zero). Then we may verify
by using (4.13) that y,, y, and all the other elements of the sequence {y,} will have the same number
or less digits. However, there are at most N, = 10 numbers with k digits and the rest zeros. Hence,
after some N < N, elements the same numbers will appear in the sequence {y,}. Similar arguments can
be used if y, is a rational number, y, =p/q, —1=y, =1, p and q integers. All these cycles will be
unstable since |df/dy| =2>1 at each point of the interval, and the product

dfiy) . )

= ">
dy dy 2">1

for any cycle S” [see formula (4.8)]. The opposite statement is also valid: if the map (4.13) has a cycle,
all its elements and their pre-images are rational numbers. (It is easy to prove this statement by using a
reductio ad absurdum.)

We obtained an interesting qualitative conclusion: any rational number gives a cycle, any irrational
number an aperiodic trajectory. While all rational numbers lying in the interval [—1,1] can be
numbered (they form a countable set), the irrational numbers cannot. We can construct a system of
intervals that will have as small a total length as desired and contain all rational numbers. The
coordinate of a point taken at random will nearly always prove to be irrational and determine chaos. (If
in analysing the map (4.13) we used only numerical results we would have come to the opposite
conclusion: cycles would always be observed since all initial values of y, are stored in a computer with a
finite number of decimal digits.)

How can we describe aperiodic trajectories of the map (4.13)? It is natural to act in the same way as
in investigations of random processes: determine with what probability the elements of {y, } come into
the neighbourhood of the point y. The measure » on [—1, 1] will be called the invariant measure for the
map (4.1) if for every measurable subset E of the interval [—1, 1], »(E) = »(f~'(E)). We assume that
v([-1,1]) =1. Let , and g, be two measures on [—1, 1]. It is said that u, is absolutely continuous with
respect to u, if for any subset A from u,(A)=0 it follows that u,(A)=0. When the measure » is
absolutely continuous with respect to the Lebesgue measure the measure density p(x) = dv/dx [v(dx) =
p(x) dx] is definite and belongs to the space L,.

For many maps we may prove the following statement. If we give a measure u and calculate its n
iterations, the sequence (1/n)Zi_r~"' f*(u) converges to the invariant measure that describes an
attractor of this map [131, 133].

Let us present some examples. The cycles S? correspond to measures for which p(x)=
(1/p) Lf., 8(x — x,) represents p 8-functions. For the map (4.13) p(x) =1/2. For the transformation
f(x)=1-2x", p(x) has the following peculiarities: p(x) = (#V 1— x?)" (see fig. 4.13a); p(x) can be a
linear function [see fig. 4.13b, f(x)=1-2V|x], p(x) = (1 - x)/2).

) Jd) J
c
a5t 20t
o5t
0l@ olb . 0
-0 ov 0 X —U 00 0 x —o% q 0 x
Jix)=1-2? J1-2viEi Sic)r-viEa/(t+ix-0/9

Fig. 4.13. Examples of invariant measures of one-dimensional maps. The map in (c) is given by formula (4.15).
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There are other attractors of one-dimensional maps which stand between stable cycles and stochastic
regimes, and for which the points {x,} come into the neighbourhood of every point of the interval.
They are called noisy cycles or semi-periodic trajectories. In this case p(x) is concentrated on p “islands”
(fig. 4.13c). Such attractors will be denoted by x”. The order of going around the islands proves to be
strictly fixed; therefore we can exactly predict in the limit of which of the islands the element x, occurs
for any n. (This makes noisy cycles resemble cycles.) However, as the position of typical points within
each island changes in a random way they are more like stochastic regimes.*

For some classes of one-dimensional maps we can prove the existence of an absolutely continuous
(with respect to the Lebesgue measure) invariant measure. Among them are, in particular, the
everywhere stretching maps [131, 133], for which

|df/dx|=c, >1.

An idea of the invariant measure may be obtained by considering a histogram of the sequence {x,}
constructed on a computer. We divide the interval [—1,1] into equal segments of length &, each
segment being compared with a number n,. First n, =0 for all i. The value of n, increases by one if
element x, comes into the ith interval. Then n, is divided by the total length of the sample N. In many
cases

p(x) = ll_l)l‘(l) }]1_120 n,/N .
However, large samples are required to obtain p(x) with a sufficiently high accuracy.

We may act differently. Using the definition of invariant measure an equation is derived to determine
p(x). It is called the Perron—Frobenius equation,

_ p(Y)
P0= 2 TFOT (414

where the summation is over all pre-images of the point x. The solution of this equation for one map
arising in the theory of numbers was already known to Gauss. In most cases, however, analytical
solutions cannot be obtained. Here various numerical methods may be used [134].

The opposite problem is also of interest: given an invariant measure (statistical characteristic) the
map f (system dynamics) must be determined. For example, it turns out that there are an infinite variety
of unimodal maps that generate the measure of density ~¢™*'*" (with given o) on the interval [-1, 1].
The method to solve the inverse problem and the conditions for which there is a unique solution are
discussed in ref. [134].

Let us discuss the question of the stability of iterations of one-dimensional maps. We consider the
iterations of the point x; and the neighbouring point x; = x; + Ax. Using the same arguments as we
used for the cycle S” and letting Ax tend to zero we may verify that the stability of the trajectory
{x,}={x,, f(x)), f(x,), ...} is determined by
9f"(x,)

Ix

b

AMx)) = lim % log'

*) In this case as well as in the case of the Feigenbaum attractor the set U in the definition of the attractor is determined in a specific way [142].
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where A(x,) is called the Lyapunov exponent. In many cases we may prove that almost all points x,
yield the same values of A [131].

If A <0 the trajectory {x,} is stable, and all adjacent trajectories tend to it. If A > 0 the paths of two
neighbouring points exponentially diverge. This property is often called a sensitive dependence on initial
conditions. If this sensitive dependence is exhibited in a system we cannot, in fact, forecast its behaviour
in the future.

As applied to model (4.1) this means the following. If x, and x; are sufficiently close, the first terms
of the sequences {x,} and {x.} will be close as well, but starting from a certain number N the terms will
be quite different. We can conclude that chaos, which, in fact, does not allow us to predict the time
evolution of a system, may be described by the very simple explicit formula (4.1).

Let us note that in real systems our knowledge of initial conditions is always inaccurate, even if only
slightly. Therefore, the behaviour of a system sensitive to initial conditions proves to be unpredictable.
In 1963 E. Lorenz suggested that this circumstance might be closely associated with the weather
forecast problem [76]. Even recently specialists believed that advances in computer technology would
lead to the appearance of correct long-term weather forecasts (even if for two-week periods). This,
however, has not happened. It seems that the equations describing the atmospheric state are sensitive
to initial conditions.

4.4. Metastable chaos, crises

When simulating various phenomena one may encounter one-dimensional maps with sharp apexes,
several maxima or sometimes maps that are not continuous [103, 137, 150]. In order to simulate such
situations one should study maps which are not S-unimodal; they may have several attractors.

As a simple example we consider the family of one-dimensional maps

fe, A =1-|x = A]"Y 1+ (x = A)7]. (4.15)

For A, <A< A, (A, =0.432 and A, = 0.448) the map has a stable cycle S2 It coexists with the noisy cycle
x* on the 1nterval A <A<A, ()\ ~(.445). When A = A, the region of attraction of the cycle s’
discontinuously decreases and a stochastic attractor appears.

In order to explain this picture it is convenient to pass to the map g =f" Let us consider a square
with sides j, constructed as shown in fig. 4.14. For illustrative purposes we have shown several iterations
of the point x,. Let the point x, be inside the square and A > A, (fig. 4.14b). It is seen that the function g
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defines a map of interval j onto itself; therefore all iterations (images) of x, will be inside the square.
Since |[dg/dx|> 1 inside j, there are no stable cycles and fixed points in it, and the images of the points
inside it behave in a stochastic way. (In fig. 4.14 only one segment of the function g is shown for
illustration. If we consider the whole interval (0, 1) it may be verified that for A = A, four segments
appear simultaneously, each of which goes into itself, i.e. the noisy cycle x* arises.)

For A > A,, a stable singular point (x* in fig. 4.15) may exist in the map g along with a stochastic
attractor. For the map g this point corresponds to an element of the stable cycle S* (in figs. 4.14 and
415 w=A).

Quite a different picture is observed for A< A;. In this case the segment j does not go into itself.
Images of the point x, leave the square through a small segment near its lower left corner (fig. 4.14a).
The smaller the value of A — A, the longer time the images of x, spend within the square. Thus, if x, is
in the interval j a chaotic regime will be observed for a long time. However, the life time of this regime
is limited. When n— o (or when t—  in systems with continuous time) convergence to a stable point
or cycle occurs. In case the transient process connected with chaotic oscillations can be arbitrarily long
if A— A,, J. Yorke and E. Yorke [136] called this interesting phenomenon metastable chaos. It was
discovered in the Lorenz system, which was proposed as a simplified model of the Bénard instability. It
is possible that metastable chaos and the appearance of stochastic regimes described above may be
observed in some nonlinear media too.

The example considered lets us introduce another important notion associated with the analysis of
nonlinear systems. For A > A, there are a stochastic attractor and an unstable fixed point (fig. 4.14); at
A=A, they collide and as a result, the stochastic attractor disappears. “The collision” between an
attractor and an unstable fixed point or cycle is called an attractor crisis [138, 139, 212].

Crises are typical for a large class of nonlinear systems [139]; they are connected with fast qualitative
variations of chaotic regimes. We can distinguish boundary crises, which usually lead to the sudden
disappearance of a chaotic attractor (an example of such a crisis has been discussed above), and internal
crises. As a result of an internal crisis the size and attraction regions of the stochastic attractor suddenly
vary. It can be observed even in the simplest S-unimodal maps [138].

The scenario of the transition to chaos in maps with several extrema may be quite different from the
traditional picture. For example, in ref. [147] it is shown that a cascade of the period-doubling
bifurcations in odd maps has an interesting peculiarity. Here the bifurcation points may not tend to a
geometric progression as n— .,

Maps with a sharp apex may have complex properties. In ref. [148] the family of maps (4.15) was
considered. In this case it is convenient to denote cycles by the indices m and n: S{, ,, (m + n = p); they
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show how many elements lie to the right and left of the apex (x = u). Computations show that there
may be a large class of transitions in which the topology of stable cycles changes, S, ,,—S¢,., . ;)
Such transitions may be accompanied by cascades of bifurcations, crises, appearance of chaotic regimes.

In experiments we usually deal with determinate processes which are affected by a small-amplitude

noise. In the simplest case the situation is described by the map

X, = flx,) + &, (4.16)

where ¢, is a small random function. It is shown in refs. [128, 149] that despite the noise effects many
phenomena predicted by the theory of one-dimensional maps are typical for systems of the form (4.16).

4.5. Categories of cycles

Computations show that a “window structure” is typical for the map (4.3). As the parameter A
increases (A > A,), both chaotic regimes and stable cycles of any period can be observed. The question
arises: What rules determine the order of appearance of cycles as the parameter changes?

Considering the Feigenbaum scenario it can be verified that along with the stable cycle $** there are
unstable cycles of periods S ,S% ..., S! for the same value of the parameter. Then it is important
to find out under what conditions cycles of different periods can coexist.

The above questions were settled for a large class of one-dimensional maps [131, 141, 142, 143]. Let
us pay attention to some results obtained in this field.

We shall say that there is an order relation, m > n, between the integers m and n if from the
existence of the cycle S™ it follows that there is also a cycle S" for the same map. The Soviet
mathematician A.N. Sharkovskii proved in 1964 that with the above relation the cycles of continuous
maps are ordered in the following way:

3>5>7>->3:2>5:2>7-2>--->3.22>5.22>7.22>...>2>22>2>1. (4.17)

The last relation in this series means that if there is a cycle S* then there is a fixed point (cycle S'). It
can easily be proved. Since there is a cycle S° values a, and a, can be found such that a, = f(a,),
a,=f(a,), a,>a,. Now we consider the function g=x — f(x) at the points a, and a,: g(a,)=
a, - fa,)=a,—a,<0 and g(a,) = a, — a, >0. Since f(x), and hence g(x), are continuous there is a
point a* where g(a*) =0, i.e., f(a*) = a*. The other relations cannot be proved so easily.

To judge from (4.17), the cycle S’ is most complex. The American mathematicians T. Li and J.
Yorke proved the following theorem. If for a continuous map F points a, b, ¢, d, such that b = F(a),
c¢=F(b), d=F(c), and d =a<b<c can be found, then this map has cycles of any period and an
infinite set of aperiodic trajectories [140].

In the Sharkovskii theorem any continuous maps and all cycles regardless of their stability are
considered. In many cases, however, stable cycles are the main interest. It turns out that for families of
smooth maps, continuous together with their first derivative, the window structure does not depend on
the specific form of the function f(x, A). As the parameter A changes the cycles appear in a certain order
[131, 143].

We shall assume that the functions f(x, A) are given on the interval [—1, 1] and have a maximum at
x = 0. Let the elements of the cycles S” be numbered in increasing order: x, <x, <---<x,. Beside the
period of the cycle we introduce two other characteristics. The first one determines the order in which
the elements of the cycle are visited. For example, for the cycle S* there are two possibilities, shown in
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Fig. 4.16

fig. 4.16. The picture in fig. 4.16a corresponds to f(x,) = x,, f(x;) = x,, f(x,) = x,, f(x,) = x,, i.e. 1324,
In the second case the visiting order is: 1234 (fig. 4.16b).

The sign of the elements of the cycle is also of importance. According to the sign we construct a
sequence of symbols R, L and C. We have R if f(x) >0, C if f(x) =0 and L if f(x) <0. For example, the
sequence RLRL means that x, >0, f(x,) <0, f*(x,) >0, f(x,) <0. Such a sequence can be constructed
for any initial point x,. Generally speaking, it is infinite and called an itinerary of this point. But if
convergence to a stable cycle occurs in {x,}, a certain combination of elements in the itinerary repeats
itself.

Now let us look at table 4.1 which contains information on the stable cycles whose period does not
exceed six. The left column shows the cycle period, the middle one indicates the order in which the
points are visited, while the right column gives the itinerary. We can prove that in one-parametric
families of C'-unimodal maps the stable cycles are encountered in the order shown in the table. Jumps
are impossible in this list.

For example, if we have found that at A = A, there is a stable cycle S* with itinerary RLRL and at A,
the cycle S* with RLR, then necessarily A, and A,, A, <A, <A, < A,, can be found such that at A, the
cycle S is stable with itinerary RLRRRL and at A, the cycle S’ is stable with itinerary RLRRR. The
order in which the elements of the cycle are visited (if they are numbered in increasing order) will be
exactly as indicated in the second column. ‘

From the table it follows that all intermediate cycles will be encountered between two different
cycles. They may be encountered not once but several times. For the map (4.3) the cycles are
encountered only once as A increases.

The sequence in which the cycles appear is called the U (universal) sequence. An algorithm to
determine it and proofs of the corresponding statements are considered in refs. [143, 131].

This result is very important. It proves that there is a deep intrinsic connection between the
characteristics of one-dimensional maps and the itineraries of different points. If we study the itineraries
for different initial data x,, it will turn out that nearly all of them coincide provided there is some order
(a stable cycle) in the system. And vice versa, if there is chaos almost all itineraries are different. The

Table 4.1
Period Order of points Itinerary
2 12 RR
4 1324 RLRL
6 143526 RLRRRL
5 13425 RLRRR
3 123 RLR
6 135246 RLLRLL
5 12435 RLLRL
6 124536 RLLRRR
4 1234 RLLR
6 123546 RLLLRL
5 12345 RLLLR
6 123456 RLLLLR
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properties of sequences of several symbols are closely associated with the properties of one-dimensional
maps. The theory that studies these properties is called symbolic dynamics. 1t is useful for analysing
different nonlinear models. In particular, its methods were extensively used to obtain table 4.1.

The classification of stable cycles is used to analyse many nonlinear dissipative systems. Let us give
two examples. A theorem proved by M. Jakobson [145] states that the set of parameters for which the
iterations of the map x,., = Ax, (1 - x,) determine aperiodic trajectories, has a positive Lebesgue
measure. In ref. [146] numerical results are given which allow us to determine this measure. Then, by
following from the U-sequence the superstable cycles and the windows of periodicity where these cycles
are located, can be obtained. Information about the itineraries of the cycles proved very useful. (Every
element x, in symmetric maps with one maximum has two pre-images x,_, and x,_,: f(x,_|)=
f(x_,)=x,. However, knowing its itinerary we can compute not only direct but inverse iterations too.
This proved essential in the construction of numerical methods.)

The total size of all “windows” whose dimensions exceed ¢ is denoted by h(e). Computation shows
that

u(e) =1~ h(e)= u(0) + Ae®,
1(0)=0.89795+0.0005, B =0.45+0.04.

It was suggested that B is universal and does not depend on the specific family [146].

In refs. [28, 144] results of experimental studies of the Belousov-Zhabotinsky reaction in a flow
reactor with mixing are discussed. (Mixing is introduced so that diffusion effects can be ignored.) It
turns out that the maxima in one of the variables which describe the reaction, often generate
one-dimensional maps x,,, = f(x,) of the form shown in fig. 4.17. When the control parameter (the
flow velocity of the reagents) increases, the amplitude of the map monotonically increases. Transition to
chaos occurs according to the Feigenbaum scenario, and then the stable cycles predicted by the
classification are observed (see table 4.1).

In some cases every cycle is encountered only once. However, adding Fe as an ingredient (even in
concentrations not more than thousandths of a percent) changes the system dynamics. Some cycles from
the table are encountered not in a single but in three intervals of the parameter [144]. The sequence of
stable cycles may be an indicator to show how the concentrations of some reagents vary.

M Net

Mn
Fig. 4.17.
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5. Two-dimensional maps and dissipative systems

One-dimensional maps describing complex ordering and stochastic regimes are irreversible. At least
two pre-images y = f(a) = f(b) correspond to some values of y. Therefore, we cannot reconstruct the
previous values x,, X_;, X_,, . . . , from a given value of x,. Most mathematical models used in science
have quite different properties. From a set of variables x(t") describing the phenomenon under study at
a given time we may predict the future, x(t' + T), and reconstruct the past, x(t' — T).

Hamiltonian systems are invariant under the replacement t— —¢, and the processes they describe
turn out to be reversible. However, in dissipative systems we usually can reconstruct the values of
x(¢' — T) from x(¢') (at least for a finite interval t<T).

Two-dimensional maps,

xn+1=f(xn’ yn)’ yn+1=g(x,., y,,), (5.1)

are the simplest dynamic systems which may have the reversibility property and describe complex
stochastic processes. An analysis of the system (5.1) as well as one-dimensional maps allows us to find
new scenarios for the transition to chaos, and to discover some interesting phenomena typical for many
nonlinear dissipative systems. From the study of such maps mathematical theories could be constructed
for a direct investigation of differential equations appearing in various physical problems. These
approaches sometimes help to find out to what extent the objects under study are stochastic, and to
obtain some rigorous assertions about their properties.

In this chapter we shall discuss some two-dimensional maps which have proved useful for under-
standing chaotic regimes in nonlinear media.

5.1. Characteristics of chaotic regimes. Hyperbolicity

One of the simplest and most important maps describing chaotic regimes is determined by the
formulae

xn+1=(2xn+yn) m0d277' > yn+1=(xn+yn) m0d27T, (52)

or

(rer)=[a(};)] moazs.

n

Since the residue from division by 2+ enters into x,_,, and y, ,, it is natural to consider this map as
defined on a torus. It is convenient to present the torus as a rectangle whose opposite sides are
identified. That is, (0,a) and (27, a), 0<a =<2, as well as (b,0) and (b,27), O0<b =<2, are
supposed to be the same point.

Let us see what will happen with a figure given on the torus after the use of the map (5.2) (see fig.
5.1). It can be seen that after the first iteration, different parts of the figure turn out to be expanded and
shifted in a complicated way. We may expect that after a great number of iterations the “black™ parts
will be uniformly spread all over the torus. Note that the determinant A of the matrix in (5.2) is equal
to unity, therefore the area of the figure does not change in the course of the iterations.
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.®

From fig. 5.1 it is seen that a pre-image of any set is also situated on the torus while the map (5.2) is
reversible. (We can determine uniquely the pre-image from the points of the image.) For brevity we
shall denote it by A.

Depending on the initial point, trajectories of the map (5.2) may be both periodic and aperiodic. A
cycle of the map (5.1) is called a set of points (x, y,),...,(x,,y,) such that x ., = f(x,, y,),
Yue1=8p ¥,)s 1=n=p =1, x,=f(x,, y,), y, =8(x,, ¥,)-

It is easy to verify that all points (x, y) whose coordinates are both a product of 7 and a rational
number, determine the cycles of the map. It is clear that their number is countable. We may also verify
that all the points whose coordinates cannot be presented in the above form, determine aperiodic
trajectories (in this connection the cycle A resembles the cycles of the map x,,, =1-2|x,|).

The matrix A of the map has eigenvalues A, , = (3= V5)/2, A, > 1> A,, and eigenvectors e, e,. The
map A carries into itself the family of straight lines parallel to the eigenvector e,. The distance between
two nearby points lying on such a straight line becomes A, times as large after each iteration (fig. 5.2).
These straight lines determine the family of everywhere dense windings of the torus, which is
transformed by the map into itself. Such a family is called an expanding foliation of the map A. The
family of straight lines parallel to the vector e, determines a contracting foliation.

The map (5.2) has many remarkable properties. In the beginning of the sixties the Anosov theorem
was proved, which states that the map A is structurally stable. (That is, a small change of the dynamic
system does not affect the qualitative behaviour of the system. A detailed discussion of the structural
stability may be found in the book [85].) In particular, any map which is sufficiently near A has a
countable set of cycles and an infinite number of aperiodic trajectories. Therefore, it may be expected
that such systems as well as their multi-dimensional analogs will have complex aperiodic trajectories.
When generalizing the representations on the map A it is natural to introduce the notions of U-systems

Fig. 5.1
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(Anosov diffeomorphisms) and of hyperbolic systems, which represent a large class of mathematical
objects, the ergodic properties of which can be studied in detail [151].

Before we discuss these objects let us consider, following refs. [152, 153], what can be a criterion for
stochasticity in dynamic systems, or by what features we can judge the extent of stochasticity of a
solution.

1. In many cases the typical behaviour of trajectories is the main interest. So we shall assume that
there is a set of similar systems which differ only in initial data. In this case the initial data are chosen in
phase space with probability P,, dPy(x)/dx = p(x). (The introduction of P, may be considered as a
manifestation of a random mechanism operating at the initial time.) The simplest stochastic property is
the existence of an invariant distribution of probabilities P(x) in the phase space of the system. An
invariant distribution P(x) means that for any function f the integral

1) = | fix) dP) 53)

is independent of time. Suppose the trajectory visits some fractions of phase space rarely, and others
frequently. In order to calculate average time-independent values of a function f we should take into
account the relation between the probabilities of hitting different points of phase space. This gives the
information necessary for averaging.

The Krylov-Bogolubov theorem proves that in the case of a continuous map and a compact phase
space there is at least one invariant measure. Even in the simplest cases many invariant measures may
exist. For example, in the map x,,, =1~ 2|x,| all distributions of the form

P=

~ |-

Zc‘i(x—x,. , i=1,...,r,

i=1

where x, are elements of the cycle S’, and the distribution P(x) =1/2 are invariant. However, when
considering strange attractors in dissipative dynamic systems we may distinguish the measures which are
most important for studying typical solutions which are, in a certain sense, stable. It turns out that in
some cases we may, first, give an arbitrary initial measure P,(x), then watch its evolution in time and
verify that

im [ fCp(x, ) dr = [ fx) 4P (5.4

In this case P(x) determines the probability with which a typical trajectory hits different points of phase
space. Sometimes the existence of the limit (5.4) can be proved [154, 155].

2. The average values that characterize the dynamic system may be calculated by averaging over the
invariant measure (the set of trajectories) or over time if only one trajectory is considered. When both
average values coincide it is said that the system

tim 1. | fex(0) a1 = | fx) 4B 53)

is ergodic. [This equality is fulfilled with probability 1 in the measure P(x).]
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The system may have a continuous invariant measure and be ergodic but behave in a rather regular
manner. For example, like the map of a circle onto itself,

6.,=0,ta, (5.6)

where a /27 is an irrational number.

Here the invariant measure is equal to 1/27, the map is ergodic, but the distance between any two
trajectories does not change (if 8, —6=a we have 6, —60,=a for any n). Stronger criteria of
stochasticity must take into account how different trajectories behave with respect to each other.

3. A map T acting on sets M and having an invariant measure P(x) is called mixing if for any f,
g§€L,

lim f AT (x))g(x)dP = f fdp f gdP. (5.7

M

The meaning of this definition becomes clearer if we consider the transformation A of the torus [see
formula (5.2)]. In this case the invariant measure has a constant density. We denote the set on which A
acts by S, and two arbitrary domains by F and G. Then it follows from relation (5.7) that

. mes(A"F)NG mesG
lim = .
n—e mes F mes S

This means that an arbitrary set will be uniformly smeared all over the torus after a sufficiently large
number of iterations. The “black* parts (see fig. 5.1) turn out to be mixed with the white ones. (The
proof may be found in ref. [85].) The definition is naturally generalized for the case of continuous time.
From the mixing property the ergodic property follows.

It is rather difficult to verify relation (5.7) in real systems. Therefore, in order to establish the mixing
property the self-correlation functions b(t),

b(6) = | FrO)x0)) 4P) ~ [ fix() 4P [ f(x(0)) 4P

are usually considered. In ergodic systems it is convenient to replace the measure-averaged value by the
time-averaged value for a typical trajectory,

()= lim & [ fixte+ ) dr — (1im 3 [ fixiear) 58)

If a dynamic system has the mixing property, b(¢)— 0 for t— o, which shows that the process under
study is stochastic [152]. In physics it is known as the property of decomposition of temporal
correlations [156]. (Specifically, the map (5.6) does not have the mixing property.)

The law of creasing b(¢) and the spectral characteristics of dynamic systems are closely connected.
We present b(¢) in integral form,
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©

b(t) = f e“'a(w) do . (5.9)

—00

The spectrum of ergodic motion without mixing is discrete,
a(w)=2, a,8(0 — w,) ; (5.10)
k

with mixing it is continuous [156].

4. It is natural to expect that many properties of independent stochastic quantities will be typical for
dynamic systems with chaotic behaviour. One of them is the central limit theorem. We introduce the
quantity

T”Z{% f (t)) di - f £x) dﬁ(x)} . (5.11)

The quantity in the braces usually decreases as T~ ''>. Therefore by analogy with probability theory it
may be expected that for 7— o the quantity (5.11) must obey a Gaussian probability distribution.
From a physical point of view, this means that the integral [, f(x(¢)) dt is near a sum of poorly
dependent terms.

5. One of the strongest stochastic properties is the exponential decrease of correlations,

b(t)—>exp(—h,t) forlarget, h,=1/7,. (5.12)

In this case the function a(w) [see formula (5.9)] is analytic. The time 7, is often called the time of
correlation decomposition or the correlation radius.

For the investigation of the map (5.2) the existence of contracting and expanding foliations is
important. In the neighbourhood of each trajectory there are infinitely many nearby trajectories, some
of them tending to it for #—  and the others for t— —. It turns out that, if all the trajectories of a
dynamic system are thus arranged, we may study the global properties of the system using the local
properties of the trajectories. Such an approch is developed in hyperbolic theory. Let us discuss some of
its results.

The hyperbolicity property naturally generalizes the properties of the map (5.2) to multi-dimensional
maps with more complex phase spaces.

Let us consider a dynamic system with discrete time in the phase space M. (In the map (5. 2) itisa
torus.) We denote a trajectory by {S°(x)}, and the space tangent at a point x by T, (fig. 5.3). (If there

T:t (x) i

Fig. 5.3



260 T.S. Akhromeyeva et al., Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media

are a point x € M and infinitely many nearby points x' € M, all possible vectors x’ — x make up the
tangent space T,.) According to ref. [151] the trajectory {S'(x)} is called uniformly fully hyperbolic if
the space Ty, can be decomposed into a direct sum of subspaces,

To, = E(S'(x))® E*(S'(x)) .
In this case these subspaces are T-invariant,
dS” ES'(x) = EX($""(x)),  dST E*(S'(0) = E(S7(x),
and there are constant numbers 0 <A <1< u such that for all ¢ and 7 >0,
ldS7v]|= CA"Jlo]l,  vEEX(S'(x),
ldS7v]|= 7w fjoll, ve E(S'()),
¥(§'(x)) = const. ,

where y(S'(x)) is the angle between the subspaces E*(S'(x)) and E"(S'(x)) (fig. 5.4). By ||dS™v|| we
mean the distance between the trajectory originating at the point S°(x) and an infinitely nearby
trajectory leaving the point $°(x) + v at time . In order to determine dS’v, in systems with continuous
time x = X(x), the equation of variations v = X (x)v is solved on the interval 0 <¢< 7, and in systems
with discrete time x,,, = f(x,), the map v, ., = f.(x,)v, is considered (X, = dX/dx, f, = df/dx, where f,
X, x are vectors).

A dynamic system is called a U-system or an Anosov diffeomorphism if each trajectory in it is
uniform and completely hyperbolic, while the constants C, A and u = A~' may be chosen the same for
all points.

Anosov diffeomorphisms like the map (5.2) are structurally stable. There are not so many problems
where they arise in pure form. One of them is the problem of motion along geodesic trajectories on
surfaces of a constant negative curvature [151].

Hyperbolic trajectories are typical for an interesting class of dynamic systems called billiards. A
billiard is a system corresponding to the inertial motion of a material point within a domain with a

£ 4 $) E4s )

¥ (55 w)

zr(Sh(Tx))

st st
E°(S (=) $9%%, Ef(.i't'z(x))

Tst(x) Tsu‘l

<)

Fig. 5.4
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piecewise smooth boundary and with elastic reflection from the boundary. If the domain is bounded by
smooth concave curves, and the curvature is positive for each regular point of the boundary, the billiard
is called dispersing and represents an analog of smooth hyperbolic systems. Billiards appear in problems
of acoustics, radiophysics, and quantum mechanics. Their chaotic behaviour usually can be studied in
detail [157].

It is very interesting that for the analysis of strange attractors in dissipative systems we may use
results of hyperbolic theory.

An attractor of a dynamic system is called Ayperbolic if it consists entirely of trajectories satisfying
the condition of uniform complete hyperbolicity with the same constants C and A.

Hyperbolic systems have good stochastic properties. Specifically, the map T is mixing with respect to
the probability distribution P if the attractor satisfies the hyperbolicity conditions (under some
additional restrictions [154, 155]). In this case for any initial distribution P, with density p,, which is
concentrated in the vicinity of the attractor W, the iterations T"P, converge to P. It is clear, however,
that using the definition of hyperbolicity we can investigate the properties of a rather narrow class of
dynamic systems. In ref. [152] the conditions for hyperbolicity were given, which can be verified in
many cases with the aid of a computer. In the literature they are usually called the Sinai criterion. It
may be used to analyse mathematical models of different phenomena for which chaotic regimes are
typical.

Let us present this criterion according to ref. [152] for systems with discrete time. Along with the
map T at the point x we shall consider its Jacobi matrix d7(x) = df/dx [the map T transforms the
N-dimensional vector x into the N-dimensional vector f(x)]. A vector e is called expanding if
||dT(x)e|| > ||e]|. The collection of all expanding vectors at a given point x forms a cone of expanding
vectors. Reversing the sign of the inequality we obtain a definition of a contracting vector and a cone of
contracting vectors. For N =2 these definitions would be sufficient. In the multi-dimensional case we
have to define yet expanding and contracting subspaces, L™ and L%, or subspaces consisting of
expanding and contracting vectors.

Let us assume now that for a pair of integers k and /, k + / = N, and a constant A (1 < A <) an open
set £“(x) of k-dimensional expanding subspaces L™ and an open set #®(x) of contracting
I-dimensional subspaces L®/(x) are given at each point x in a domain Q containing the attractor
(TQ C Q) (see fig. 5.5). Then

(1) [dTx)LY(x)C LY(Tx), ie. for any L™ € £“(x) the image (dT)L™ = L™ € £¥(Tx);
moreover, any vector e € L™ € £“)(x) obeys the inequality

ldT(x)el| = Alle]l ;

(2) dT(Tx))"'£(Tx) C £¥(x), i.e. for any L € £¥(Tx) the image (dT)'L® = LY € £9(x);
moreover, any vector e € L® € #®(Tx) obeys the inequality

IET) ™ (Tx)e]| = Alle]l .

These conditions may be explained by means of fig. 5.5 (N =2).

The first condition means that the operator carries the expanding vectors into the cone in which there
are expanding vectors on the next iteration. The second condition is obtained if the cone of expanding
vectors is replaced by the cone of contracting vectors, and T by T,
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It the case of the two-dimensional maps (5.1) these conditions are simplified and may be explicitly
expressed through derivatives of f and g [158],

lafioxl <1, |(aglay)y 'l <1;

G) 5 el <C- L= 1)
1 0G0 GG

where “h(x’ }’)" =max(x,y)EQ |h(x’ Y)l

The hyperbolicity criterion was used in such a form, for example, in ref. [158] to investigate the
Lorenz model and in ref. [159] to study the strange attractor in a system of differential equations
connected with reaction-diffusion-type equations.

Invariant sets in hyperbolic systems may have a complex structure and unusual properties. As an
example we may consider an invariant set of the map called the Smale horseshoe.

Let T be a map of a fraction of the plane into itself, for which the square S with vertices ABCD
transforms into the curvilinear figure A'B’C'D’ shown in fig. 5.6. For purposes of illustration we
describe this in two stages. First the square is contracted in one direction and expanded in the other. At
the second stage the strip obtained is folded in the form of a horseshoe. It is clear what the structure of
the set T*(S)N S will be. Instead of each strip, two strips with a smaller width will appear. They are
shown by the shaded area in fig. 5.7. At the next iteration, each of the strips will be split into two until
there are 2" strips at the nth step. Hence, the limit set lim,_ ., T"(S)N S will have a structure that
repeats itself on small scales. Such sets are called Cantor sets. They are typical for attractors of many
systems showing chaotic behaviour. Below we shall consider in more detail examples of such systems,
properties of Canor sets and their quantitative characteristics.

) ; (5.13)

ag
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We propose a simple symbolic description of iterations of different points on the square. We denote
the two strips appearing at the first step by V, and V,. Then at the second step the strips V,, and V,, will
appear from the first strip, and V,, and V,, from the second strip, etc. With every point remaining
within the square § we associate an infinite sequence of 1 and 2 according to the following rule. If the
image of the point at the first step falls in the strip V;, the first entry in this sequence will be 1; if it falls
in V, it will be 2. Let at the kth step the point fall in the strip V, , ., . The image of this strip consists of
two parts, left and right. If the (k + 1)th iteration of the point falls in the left-hand part then we put 1 in
the (k + 1)th position in the sequence; if it falls in the right-hand part we write 2. Each iteration of the
map T is equivalent to a shift by an element to the right. In the limit set lim,_, T"(S) N § all the points
with the same y-coordinate are described by the same sequence of 1 and 2. Different sequences
correspond to points with different values of y (fig. 5.7). Indeed, the strip V,, for example, obtains only
points with ordinate 0=y <1/2, the strip V, those with ordinate 1/2<y <1. Since at each step the
map T expands the pre-image along the y-axis, at a certain step the points y' — y” come into different
strips for an arbitrary small initial distance along the y-axis between these points.

This symbolic description of iterations of the map T proves to be exactly the same as in the random
process of coin tossing. We consider an infinite series of tossings. If head shows up for the nth time
there will be 1 in the nth position in the sequence, if tail shows up we write 2. One tossing is equivalent
to a shift by one element of the sequence. Thus, there is a one-to-one correspondence between the
y-coordinate of a point in the limit set lim,_,, 7"(S) N S and an infinite series of coin tossings. This is a
very important fact. It testifies to a deep connection between deterministic invertible dynamic systems
and traditional objects of probability theory. Such an approach of associating different trajectories with
symbolic descriptions is called symbolic dynamics and has proved very fruitful. Methods of symbolic
dynamics helped to investigate chaotic regimes in some interesting dynamic systems [152, 160, 161]. In
order to construct an 1nvanant set we shall act in the following way.

Let us note that SN 77'(S) consists of two horizontal strips, S N T7%(S) of four strlps etc. (fig.
5.8). They may be numbered as before by a sequence of 1 and 2. We consider the set T~'(S) N SN
7(S) (fig. 5.9), it represents four squares. (After applying T or T ' these squares are iterated
into themselves.) The set T %(S)N T '(S)NSN T(S)N T*(S) represents 16 squares. The set
N, __, T"(S) = A is invariant. For a symbolic description of trajectories of points in the set A we should
consider a sequence of 1 and 2 which is infinite in both directions. It may be proved that there is a
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one-to-one correspondence between points (x, y) €A and the set of in both directions infinite
sequences of two symbols [160, 161]. Iteration of the map leads to a shift by one element to the right.

Suppose that in the sequence {a,}, —©<i<® (a,=1 or 2) there is a periodically recurring group of
numbers. Watching the trajectory of the point of the square which corresponds to the sequence, we may
verify that it belongs to a cycle of the map T. By considering aperiodic sequences {a,} we can construct
an infinite set of aperiodic trajectories of different types.

A similar approach based on the construction of a symbolic sequence may be developed by analysing
the so-called baker transformation, which is widely used as a simple efficient model in the theory of
dynamic systems [162] and in thermodynamics [292]. A generalized baker transformation is determined
by the formula

xn+1=/\axn’ yn+1=yn/a’ yn<a’
(5.14)
xn+l=%+Abxn’ yn+l=(yn—a)/(l_a)’ y,,>a-

The effect of this map upon the unit square is shown in fig. 5.10. The baker transformation has a
sensitive dependence on initial conditions and the mixing property. In ref. [162] different quantitative
characteristics of the map (5.14) are considered in detail.

Under the hyperbolicity condition the existence of contracting and expanding directions which cross
at a nonzero angle at each point is important. However, in many dynamic systems describing chaotic
regimes this condition is not satisfied. An example is the Hénon map,

Kpo =Vatl-ax,,  y,. =bx,, (5.15)

which is shown in fig. 5.11. In ref. [163] Hénon gave numerical results showing that the attractor has a
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Cantor structure along one direction. The map (5.15) is a complex object. The resuits in ref. [164],
where the stability domains of the cycles S” (n < 6) are studied in the parameter plane (a, b), testify to
this fact.

An analysis of one-dimensional maps shows that in many cases it is easier to study the stochastic
properties of maps with sharp rather than smooth vertexes. We may expect that the situation will be
analogous in the two-dimensional case. This is indeed so. For the attractor of the map

xn+]=1_yn-a'xn|7 Yn+1=bxn’

called the Lozi attractor, the existence of an invariant measure was proved, the hyperbolicity of the

attractor was verified and its mixing property was demonstrated in a certain range of parameters [166,
167].

5.2. Breakdown of invariant tori. The Ruelle—Takens scenario

Before extensive investigations of stochastic regimes began it was assumed that turbulence in
hydrodynamics appears as a result of bifurcations. This is now called the Hopf-Landau scenario [168,
169].

We shall assume that the phenomenon is described by a finite-dimensional dynamic system. (This
seems natural since we may assume that the effect of higher spatial harmonics will not be strong due to
viscosity.) Let laminar flow correspond to a singular point of this system. We change one of the flow
parameters A (for example, the Reynolds number). At a certain value of A the singular point loses its
stability, a Hopf bifurcation occurs and a limit cycle develops. As a result of the next Hopf bifurcation
an invariant torus appears (fig. 5.12). Two independent frequencies may be distinguished in such a
solution. Indeed, let us go over to the system of coordinates R, ¢, 6 shown in fig. 5.13. In these
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variables the simplest spiral wound about the torus is described by the formulas R =R, ¢ = w,t + ¢,
6 = 6, + w,t, where R, ¢,, 6,, »,, », are constants. If the ratio ,/w, is irrational the solution will be
aperiodic and the trajectory will uniformly cover the torus surface.

The next Hopf bifurcation will lead to the appearance of an invariant torus of higher dimension. In
this case the solution may resemble a spiral that winds with frequency w, about the spiral which
appeared after the previous bifurcation. The trajectory that appears after many Hopf bifurcations in the
Hopf-Landau scenario is considered to be the turbulent regime.

Modern experimental technology permits us to see whether a multi-frequency regime can be
observed in real systems and how many different frequencies exist in this regime [27, 32]. Usually we
cannot observe flow with more than three independent frequencies. It is natural to expect that a
different scenario must exist, in which Hopf bifurcations play an essential role (in contrast to the
Feigenbaum and Pomeau—Manneville scenarios discussed earlier).

Such a scenario was proposed in 1971 by D. Ruelle and F. Takens [170]. Let a system of equations
describe the simplest three-frequency regime ¢, = w,t, ¢, = w,t, ¢, = w,t, where ¢, are the angles in the
corresponding space, n =1, 2, 3, and let f(g,) = f(¢, + 27), where f is any of the functions entering in
these equations. Ruelle and Takens proved that when an arbitrary small change is introduced into the
right-hand side of the system of equations, then the solution will qualitatively change. Instead of the
three-frequency regime a strange attractor will appear, and the behaviour of the solution will become
chaotic. The set of such deformations changing the type of solutions proves to be rather extensive.
Thus, the scenario may be as follows: two Hopf bifurcations and chaos developing after the third
bifurcation.

The question how the chaotic regime arises from the invariant torus has proved complex and has
been intensively investigated recently [171, 211]. The main object of these investigations are two-
dimensional maps. Many established laws have proved universal, independent of the specific form and
dimension of the system. In ref. [171] the transition to chaos was studied for the map

Xust =Vns Y =ay,(1-x,). (5.16)
It may be written in the form

Xpi2 T axn+l(1 - xn) .
It appears as a natural generalization of model (4.2). In the whole range of the parameter a a point on
the (x, y)-plane lies on a smooth closed curve I"as n— . The same situation is typical for invariant tori
in dynamic systems with continuous time (the curve I acts as the cross section of the torus and the
Poincaré plane). In the case of a periodic solution there are a finite number of points on this curve (fig.
5.14); if the solution is aperiodic, the points will cover the whole contour.

In both cases the contour is an invariant set, and the behaviour of trajectories on it (and this means
the behaviour of trajectories in the two-dimensional map for n— ) is defined by the map of a circle
into itself,

6,.,=F@8,), F@ +27)=F@8,)+2x. (5.17)

Let us consider some properties of the model. The limit
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Fig. 5.14

F'(8,) -6,

p(6,) = Lim 2an

(5.18)
is called the winding number at a given point 6,. Let p(6,) = P/Q, where P and Q are integers. Then a
certain point @ returns to the initial position after Q iterations and P rotations about the contour (fig.
5.14). For illustration the points F "(0) and F"*'(9) are connected by thin lines.

Maps of the type (5.17) appear in connection with the analysis of differential equations on a torus,
which is of interest in some problems of celestial mechanics and in the study of other Hamiltonian
systems. They were investigated by Poincaré (1885) and Denjoy (1932). Specifically, it was shown that
the limit in the definition of the winding number exists and does not depend on the initial point. It is
rational if and only if the map F? has a fixed point for a certain gq.

A circle map with F'(6)>0, which keeps its orientation, is structurally stable if and only if the
winding number is rational and all the cycles are nondegenerate (i.e., the eigenvalue of the derivative of
the map F? at the points of the cycle of period g is not 1). The structurally stable diffeomorphisms*’
form an open everywhere dense set in the space C? of all twice differentiable orientation-preserving
maps of a circle. This means, in particular, that near any transformation of this class there is a map with
a cycle.

As the simplest transformation of a circle we consider a rotatlon by a constant angle, eq. (5.6). It
turns out that any orientation-preserving transformation F of class C* with an irrational winding number
w is topologically equivalent to a rotation of the circle by an angle 27 [eq. (5.6)]. (Proofs can be found
in ref. [85].)

In spite of the structural stability of circle maps with cycles, the measure of the set of parameter
values for which the winding number p is irrational may be rather large. This is shown by the family of
maps

6,,,=6,+tatesing,, a€[0,27], 0=e<l. (5.19)
The division of the parameter plane into regions where p is rational (shaded) and irrational (unshaded)
is schematically shown in fig. 5.15. A “fongue” bounded by a pair of smooth curves emerges from each

point on the a-axis such that a = 7 - p/q. (Only some of such “tongues” are shown in the figure.) As ¢

*) A diffeomorphism is a one-to-one differentiable map with return map being one-to-one and differentiable.
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increases the tongues grow thinner. Despite the fact that the rational numbers represent a dense set on
the interval, the measure of the set of points (a, €) for which p is rational is small in the region
0=e=¢), 0= a =27 compared with the measure of the entire region. Thus, a map that is randomly
taken from the family (5.19) has an irrational winding number with an overwhelming probability. The
same result is valid if, instead of sin 6, any analytic function 6 is considered.

The analysis of such families is closely associated with the Kolmogorov- Arnold—Moser theory, which
considers the breakdown of n-dimensional invariant tori under small perturbations. The results of this
theory played an important role in the analysis of many Hamiltonian systems and in some problems of
statistical physics [156, 172, 173, 291].

Let us note two important facts. First, for each value of the parameter the number p is unique and
independent of the initial point. Second, the properties of the one-parameter family of maps (5.19)
prove to be simpler and more understandable than those of the one-parametric families that correspond
to various curves in the parameter plane (o, ¢).

As a consequence of these facts, in ref. [171] maps of the form (5.16) are also considered as an
element of the two-parameter family

xn+l=yn+bxn ’ yn+1=ayn(1—xn)‘ (520)
Suppose the map (5.20) is written in polar coordinates,
(rn+1’0n+l)=F(rn’0n)' (521)

Let it map the domain B (1<r<2) onto itself (fig. 5.16), and let arg(r, 6) =4, arg F(r, 0 + 2m) =
2w+ arg F(r, 8), for all (r, §) € B. The winding number p(, §) is given by the formula

Fig. 5.16
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arg F'(r,0)— 6

p(r,0)=lim —————.

(5.22)

Using numerical techniques, in ref. [171] boundaries of the regions in the (a, b)-plane are
constructed where the cycles are stable with a given winding number P/Q (analogs of the tongues or, as
they are called, the resonant “horns” in fig. 5.15). It turns out that there are parts of the plane where
the cycles are stable with different winding numbers. (For different initial data we obtain different
cycles.) Hence, the invariant torus is broken down. In other words, there is no transformation of
coordinates with which the figure emerging in the Poincaré plane could be reduced to a circle. (If there
were a contour topologically equivalent to a circle, the winding number would be unique.)

To investigate Hamiltonian systems the criterion of resonance overlap is used in many physical
problems [174]. It states that stochasticity may arise in a region where at least two “tongues” overlap. A
similar situation is typical for the map (5.16).

First, it is natural to understand in what cases the winding number is unique and when there are
several values. Sufficient conditions for this were obtained in ref. [171]. Before discussing these results
we introduce some definitions.

Let a compact invariant set containing all the points z € A =N, ., F*(B) divide the region into two
parts—an internal, B,, and an external part B, (fig. 5.16). A fixed point z of the map F is called a saddle
if the Jacobian matrix DF(z) has one eigenvalue |A,| <1 and the other eigenvalue |A,| > 1. The points z
of a cycle of period g are called periodic saddle points if the same inequalities are satisfied for the
eigenvalues of the matrix DF?. Let z be a fixed point of F; then the sets

Wiz, F)={x: F'(x)> zasn—>+»}, W%z, F)={x: F'(x)>z as n—> —x} ,

will be called the stable and unstable manifolds of the point z, respectively. Note that these manifolds
may behave in a different way from integral curves of differential equations: they may intersect without
coinciding entirely.

In ref. [171] two theorems are proved.

Theorem 1. Suppose that the map F satisfies the following conditions.

(@) There exists a periodic saddle point y € A with positive eigenvalues.

(b) W*(y, F)N A ={y}, where q is the period of y.

(c) One branch of W*(y, F?) intersects only B;, while the other branch intersects only B, (fig. 5.16).
Then p(z) = p(y) for all z € B.

Theorem 2. Let y € A be a periodic point of period g and winding number p/q, where p and g are
relatively prime. Suppose that W*(y, F?) intersects W*(F*(y), F?) transversely (at a nonzero angle) for
some 0 < k <gq. Then there exists a nondegenerate interval I containing p/q such that for every a € I
there is z € A with p(z) = a. Furthermore, there exist points for which the winding number is not
defined.

Figure 5.17 shows the saddles marked by asterisks and several iterations of a point x, near

y' = F¥(y). For the iterations of such points we may construct the symbolic dynamics, which allows us
to prove the theorem.
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Fig. 5.17 Fig. 5.18

The definition of a stable and unstable manifold naturally is generalized to the case of a cycle Y of
: -1 n
period g (Y={y, F(y),..., F"(y)}, Fi(y)=y, F'(y)#y for 0<n<gq):

WY, F) = {x: d(F'(x), Y)—>0 as n— +} ,
WY, F)={x: d(F"(x), Y)—>0 as n—> —x} .
A point x € B is called homoclinic to Y if

XEWNY, F)NW*Y,F)-Y.

The conditions of the second theorem imply that there is a homoclinic point.

In this and many other problems, where the maps arising are invertible, the existence of a homoclinic
point proves important. We may verify that the existence of one homoclinic point implies that there are
infinitely many of them. Indeed, due to the invariancy of W*(z, F) and W"(z, F) we have F*(x)€
W*(z, F) and F(x) € W'(z, F) for all k. Hence, they are all homoclinic points.

By assuming that the points x, F(x), ..., F™(x) form a cycle we obtain a contradiction to the fact
that F*(x) € W*(z, F), which implies that F*(x) must tend to z as k—> ®. Therefore, from the existence
of one nondegenerate homoclinic point (i.e., a point in which W* and W" intersect, and are not
tangent) it follows that there is a very complex set called a homoclinic structure. Due to the infinite
number of intersection points it cannot be drawn; however, some idea of it can be obtained from fig.
5.18.

A homoclinic structure was first discovered by Poincaré when he investigated the classical three-body
problem. The existence of such structures is connected with the appearance of stochastic regimes [156,
161, 173]. In the analysis of maps resulting in these structures, a set appears which is affected by the
map in a way similar to the Smale horseshoe. From this the existence of invariant Cantor sets follows,
and they may be studied using the apparatus of hyperbolic theory. It may be said that the iterations of F
behave as a random sequence of coin tossings. References to original studies dealing with this problem
may be found in refs. [151, 175].

Thus, if the transition to chaos occurs according to the Ruelle-Takens scenario, frequency locking
may take place after two Hopf bifurcations and an invariant torus may be generated. In this case a cycle
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appears, and the conditions of theorem 1 are usually satisfied. Then a complex reconstruction of the
invariant set occurs, and as a result homoclinic points appear (the conditions of theorem 2 are satisfied).
Hysteresis is observed in the system—for different initial data cycles with different winding numbers
and chaotic regimes develop.

It is interesting to know what happens with the invariant set A when the parameters change and how
it loses its smoothness. These questions were considered in refs. [151, 174, 177]. Possible versions of the
reconstruction of A and the development of homoclinic points are graphically shown in refs. [176, 211].

Let us note the difference between the scenario under discussion and those considered earlier. In the
earlier cases, in order to determine the type of attractor it was sufficient to consider iterations of a
randomly taken point (or several points). Here the situation is different and much more complex. When
considering the sequence {x,} we may expect that under a change of parameters the sequence “singular
point— cycle — 2-torus— cycle— chaos” will be discovered. However, in order to understand the
mechanism of torus breakdown, a mathematical model of the phenomenon should be constructed. Then
we should carefully investigate it: study a two-parameter family of dynamic systems, construct stable
and unstable manifolds, find homoclinic points. As a result, performing numerical experiments appears
to be a rather complex task.

We discussed the appearance of chaos as a result of the breakdown of invariant tori. However, in the
two-parameter families of two-dimensional maps other scenarios are also possible when an aperiodic
regime (in this case trajectories with an irrational value of p) is preceded by a sequence of cycles.
Moreover, for this sequence some universal laws valid for different families and invariant tori have been
established [176, 178, 179].

The two-dimensional map

(0n+1> _ T(e")5(0"+0+ brn—(k/21r)sin27r0n)

r ’, br, — (k/21) sin 26, (5.23)

n+1

with a constant Jacobian equal to b is a convenient model for studying such behaviour. For b =1 the
map conserves its area; it is widely used in analysing Hamiltonian systems. In the other limit (b = 0) it
transforms into the one-dimensional map

6,..=f6,)=0,+ 02— (k/27)sin2m6, . (5.24)
When 0< k<1, fand f " are invertible and analytic. For k =1, f " exists; however, it has a singularity

' and, hence, is non-differentiable at §=0. If k> 1, f ! does not exist.
In this case the winding number is determined by the formula

o(k, @)= lim 5 (£'(6) - 0).

We choose an irrational number 0 < p <1. It is convenient to choose a number which can be presented
most simply in the form of a continued fraction. For example, the golden mean is given by
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Then we construct a sequence of rational numbers p, = P,/Q; such that lim,_ p, = p,
p=(1)=1/1, p,={(11)=1/2, p,={111)=2/3, p,=(111---1)=F/F,,,

where the F, are the Fibonacci numbers determined by the relation F,,, = F,+ F,_;, F;=0, F, =1. In
this case

lim Pici — Pi ——
i i Pig

Here ! = p. Suppose that K is fixed and determine a sequence of the {2 values in the map (5.24) such
that

fe0)y=P, forN=2a0,.

This implies that the point = 0 in the map belongs to the cycle of period Q, and winding number p;. In
ref. [178] the suggestion was made that there is a unique limit point

lim 0,(K) = %K), p(K, AK))=5.
Let

&(K) = [ _(K) - (K)/[(K) - 2., (K)].
The computations carried out in ref. [179] show that

lim8(K)=-1"*, 0=K<1;
’ (5.25)
lim8,(K)=-17"=8, K=1, y=2.16443%0.00002.

By analogy with the Feigenbaum theory it is natural to consider the distance between the point § =0
and nearby elements of the cycle (modulo 1) with period Q,. It has the form

d; =fQH(O) —-P_,.
Let a,(K)=d,_,/d,. The computations show that
lima(K)=-1"", 0=K<1;

(5.26)
lime,(K)=—1*=a, K=1, x=0.52687=0.00002.

i—x

By analogy with the theory of one-dimensional maps we may expect that application of the
renorm-group approach to this system will enable us to find universal functions and relations (analogs of



T.S. Akhromeyeva et al., Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media 273

the Feigenbaum equation). By these x and y may be found. Such a theory was constructed in refs. [176,
178].

In refs. [176, 179] the important question is discussed as to how the experiment should be formulated
and its results processed in order to detect the phenomena predicted by the theory. As an illustration of
such an experimental study we may cite the work of ref. [180], which deals with Rayleigh-Bénard
convection in mercury. The parameters are chosen so that the winding numbers of the observed cycles
lie in the vicinity of the golden or silver mean, p = (V5—-1)/2=(111---Yorp=V2-1=(222---).

The questions connected with the breakdown of invariant tori are now of great interest. Let us
consider a few directions of investigations. One of them is connected with investigations of the
Ruelle-Takens scenario in various mathematical models, for example, in systems with symmetry. In
ref. [181] the map

Xy =1-AX,+D(y,~x,), Yy=1-Ay.+D(x,~y,)

was studied. A complex sequence of cycles and invariant tori was discovered. It turned out that the
values of A, at which cycles of length Q, =8n—1 appeared, converged to A, as n—>x and
A,— A, ~ Cn™’. Complex sequences of cycles and invariant tori were discovered in some problems of
radiophysics too [182, 183].

The other direction is concerned with an analysis of global properties of maps in which the
Ruelle-Takens scenario is implemented. For example, if we construct p as a function of (2 for the map
(5.24), its behaviour proves to be very complex. Each “resonant horn” (fig. 5.15) with p = P/Q has a
step in the plot. Between every two steps P/Q and P'/Q’ there is a step (P + P')/(Q + Q'), and so on
ad infinitum. The plot which appears (and other curves of this type) is usually called a “dewvil’s
staircase”. It appears that a renorm-group theory [184] may be constructed in order to predict with what
probability a random value of the parameter {2 yields a cycle (or with what probability we may get on
the steps of the devil’s staircase).

Now studies are available where the developed ideas have been generalized onto tori of higher
dimensions [185]. In some cases an analysis of two-dimensional maps allows us to predict new
phenomena typical for many nonlinear dissipative systems. Among them are crises of attractors.
Besides internal and boundary crises there exist cyclic crises. These are simultaneous collisions of
several co-existing attractors with boundaries which separate their domains of attraction [186]. After the
crisis (A> A*) the points in phase space visit one by one all the attractors that existed for A <A*.
However, the time they spend at each attractor proves to be stochastic.

In a certain range of parameters the map

xn+l=4Axn(1—xn)+’y‘xnyn ’ yn+l=4Ayn(1—yn)+‘yxnyn ? (5'27)

may have three attractors. The attraction domain of each has a complex geometry. In phase space a
“parquet” appears [186]. It seems that the “‘parquet” structure exists down to infinitely small scales.
The boundary of the attraction domain may be smooth for A < A, and becomes a complicated jagged
curve repeating itself on small scales [187]. They are called metamorphoses in ref. [187], where such
reconstructions are studied. Analogous phenomena may possibly be present in various systems of
differential equations too.
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6. Quantitative characteristics of chaos

When studying chaotic regimes in nonlinear media a number of interesting questions arise. Let us
assume that the phenomenon under investigation is well described by a map (in one, two or more
dimensions) with chaotic regimes. How can we compare theory and experiment in this case? Let the
map be sensitive to the initial conditions and let two nearby trajectories be quickly diverging. Then we
may expect that the disagreement between the trajectory of the map and the experimental data will
grow in time. In this case, the nature of the phenomena under investigation rather than faults in the
model is the cause of disagreement.

When physical theories are verified usually a small number of measured values (frequencies, lengths,
times, etc.) or quantities averaged over a long time interval are compared. However, there is a large
class of problems where not only specific numerical values at a given time and at a given point or
quantities averaged over long time intervals are of interest but the dynamics of the process must be
studied. For example, such are the problems associated with forecasts of the behaviour of nonlinear
systems (e.g. the weather forecast). In this case the model efficiency should be judged by determining
how accurately and over how long a time the model gives a forecast of the system behaviour rather than
how well it can calculate values averaged over long intervals.

In such problems we often should compare not trajectories of two systems (a model and an object)
for the same times but some more complex characteristics that determine intrinsic properties of the
processes. Usually this requires the development of new algorithms for data processing and extensive
use of computers.

There is another important aspect. Processes in nonlinear media are described by infinite-dimension-
al systems; therefore it is important to understand how many and which variables should be measured,
how often the measurements should be made, and in which way they should be processed.

In many physical problems there is a single most important scale of measurement. However,
considering the Feigenbaum attractor, or a series of two-dimensional maps, we see quite a different
picture - the appearance of a complex structure that repeats itself on smaller and smaller scales. It is
this picture that is typical for many stochastic regimes. We must know how this structure should be
described.

The investigations undertaken in recent years, analysing these questions have led to the discovery of
some interesting physical effects, and new insight into some phenomena has been gained as a result. Let
us consider them in more detail.

6.1. Fractals and complex ordering

At the end of the last and the beginning of the present century examples of sets with a complex
structure were very popular in connection with the problem of the rigorous justification of mathematical
analysis. They drew the attention of outstanding mathematicians such as Weierstrass, Hermite, Cantor
and Peano. An example of a continuous, nowhere differentiable function constructed by Weierstrass
has determined for many years the direction of a number of investigations in the field of functional
analysis and has led to higher standards of rigour of mathematical arguments.

One of the best known sets of such a type was constructed by G. Cantor [189]. We take a unit
segment [0, 1], divide it into three parts and eliminate the middle [an open interval (1/3, 2/3)]. Each of
the two remaining segments is divided again into three equal parts and the middle is rejected (fig. 6.1).
We repeat the procedure infinitely many times. The residual set C has many remarkable properties.
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Fig. 6.1 Fig. 6.2

This closed set is perfect (i.e. each point C is a limit point of the set). It is easy to verify (arguing by
reductio ad absurdum) that it does not contain a single interval. At the same time the set C proves to be
uncountable, i.e., there is no algorithm that allows us to number all its points. It has zero measure. This
can be verified by caculating the length of the rejected intervals,

pr(-pp+(-pfp+ =y =1 (P=113).

It is interesting that the residual measure is zero for any 0 < p <1. However, for different values of p
these sets will be quite different, and hence other qualitative characteristics not coinciding with the
usual measure are needed.

Another interesting object arising in the analysis of nonlinear systems is connected with the Cantor
set and its generalizations. It is a continuous monotonic function whose derivative is zero almost
everywhere (in the literature it is often called the “devil’s staircase”; fig. 6.2). Here also a third part of
each remaining interval is eliminated in each step. At the first step all the points of the interval
[1/3,2/3] are given the value 1/2, at the second step the value 1/4 is given to all the points from the
interval [1/9,2/9] and the value 3/4 to the points from [7/9, 8/9], etc. The “devil’s staircase” appears
after an infinite number of steps.

Along with the set C some other, similar sets are also called Cantor sets. Some of them may have a
positive measure despite the fact that they do not contain a single interval. We may construct them in
the following way [189]. We take an arbitrary number a, 0 < a <1. At the first step we remove from
the segment [0, 1] all the points of the open interval with length a/2 and centred about the potnt 1/2.
From the two remaining closed intervals [0,1/2 — a/4] and [1/2+ a/4, 1] we remove middle open
intervals of length a/8. From the four remaining intervals we remove the middle open intervals of
length a/32. After an infinite number of steps the measure of the removed open intervals will be equal
to @(1/2+1/4+1/8+ ---) and the measure of the remaining Cantor set will be 1 a.

Another remarkable example showing that the usual topological idea about dimensions may
sometimes prove ineffective was proposed by the Italian mathematician G. Peano in 1890. He
constructed a curve which filled a unit square (the curve may cross some points of the square several
times). A method to construct this curve is shown in fig. 6.3. In spite of the fact that the topological
dimension of the curve is one, in a certain sense it is close to a two-dimensional figure — the square.

In all these examples the set proves to be self-similar - it is invariant to variation of scale and has a
complex inner structure (such objects may be considered as an example of supercomplex organization).
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It looks the same at both smaller and larger scales. The invariance is connected with a certain
symmetry. Objects with such properties have been called fractals [12].

Fractals may be constructed using either simple deterministic rules or probability algorithms. The
obtained sets prove to be self-similar in the statistical sense. They are of interest in many physical
problems. To characterize fractals a large class of so-called fractal dimensions is used. The first
dimension of this kind seems to have been introduced by Hausdorff in 1919. Let the set under
investigation be contained in a p-dimensional Euclidean space. We consider its covering by p-
dimensional spheres of radii ¢, < ¢ and determine /,(¢) as

I(e)=inf X e, (6.1)
where the infimum is taken over all possible coverings such that &, <e. Let
l,= lim 1,(¢). (6.2)

We have [, = 0 for large values of d and [, = « for small values. Hausdorff showed that there is a critical
value d,, for which the value of , is finite*). It is called the Hausdorff dimension of the set. For simple
geometric objects the Hausdorff dimension coincides with the topological one (for a line segment
dy =1, for a square d; =2, for a cube d,; = 3). However, for the Cantor set the Hausdorff dimension is
fractional. When the Cantor set is constructed, 2" segments of length (1/3)" appear at each step;
therefore

lim (1/3)%"-2"=C, dy=In2/In3. (6.3)
[When p #1/3 we obtain d,; =1In2/In(2/(1 - p)).]
At the beginning of this century J. Perrin suggested that fractal sets and nowhere differentiable

functions would be useful in many physical problems, specifically those dealing with Brownian motion.
Nevertheless, until recently such geometrical objects have not been in wide use. The situation has

*) Strictly speaking d,, = inf {d: I, = 0} = sup {d: [, = =}.
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changed drastically with the appearance of the book by B. Mandelbrot [12], where it is shown that
fractal sets allow us to explain (and, in some cases, predict) experimental results obtained in various
fields of physics. Generalization of some earlier known results, discussion of adequate mathematical
means, suggestion of new possible applications, and graphic examples presented in the book allow us to
form a new view of fractals as a promising field of investigations in science.

An unexpected example of fractals is the coast line of many islands. When the coast length L is
measured a complex jagged line is replaced by a broken line which consists of segments with length
larger than . It has been proved that for Great Britain the value of L depends on & as a power law,
L(g)~ C/&*, where d = 1.3, for 10km < & <1000 km, which is a typical feature of a fractal curve. In a
certain range of parameters the power law determines the coast length of many other islands, the length
of some rivers, or the path length traversed by a particle in Brownian motion.

Many paradoxes connected with the distribution of stellar matter may be explained if we assume this
matter to form fractal clusters. Great potentialities of using fractals in cosmology, turbulence theory,
chemical kinetics, or the physics of polymers have been indicated in some recent publications [12, 190].
Fractal structures known as percolation clusters arise when fluid passes through solid bodies, or in the
growth of certain crystals [191, 192].

At the same time other important progress has been achieved recently. Some authors have
investigated a mechanism for the appearance of such structures in various physical problems, and a
series of experiments have been carried out where spatial ordering of this type has been analysed. The
formation of a complex spatial structure may be explained by means of rather simple mechanisms. One
of them is diffusion-limited aggregation [192]. Let us imagine particles performing random wanderings;
the particles may settle down on a surface. Once they stick to the surface they remain there and change
its shape. It is clear that the probability of running into a hill on the surface is higher than that of getting
into a hole. This is why the hills begin to grow, and a growth instability arises. Starting from a certain
size, on each of them branches appear and as a result a fractal structure forms (fig. 6.4).

Another mechanism of fractal formation may be due to the combined effect of diffusion and an
electrical field. It offers an explanation for the appearance of a complex structure in the electrochemical
sedimentation of zinc. In this case the total current going to the cathode determines the probability for
a particle to be absorbed. The lesser the curvature of the electrode surface, the higher the field
strength; ions sedimentate quicker and growth occurs [193]. Thus, nonequilibrium irreversible growth
may lead to the formation of fractals.

It is interesting that in spite of the relative simplicity of models of fractal growth they predict the
Hausdorff dimension of the arising structures well enough. This is due to the fact that the fractal
dimension is an average characteristic of a set; it reflects only the basic features and does not account
for many details.

Above we have considered several examples of sets with a fractal (sometimes called Cantor)
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Fig. 6.4
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structure. Such sets turn out to arise when one analyses many systems in which stochastic regimes or
complex temporal order occur. In this case the concept of fractal dimension proves very useful for
distinguishing the order parameters and constructing a hierarchy of simplified models. Let us discuss the
main quantitative characteristics of these systems.

6.2. Dimensions of strange attractors

According to ref. [162] it is convenient to distinguish two large classes of dimensions: metric and
probabilistic. The former characterizes sets as geometric objects which are determined by their metric
properties. (In ref. [12] it is called the fractal dimension.) The probabilistic dimension (or dimension of
the natural measure) takes into account with what probability a typical trajectory of a dynamic system
visits different parts of an attractor.

The above mentioned Hausdorff dimension and the capacity of a set, d_ (also called the limit capacity
[194]) are metric dimensions. The capacity is determined by the value of the limit

d = liné log N(&)/log(1/¢), (6.4)

where N(e) denotes the minimal number of balls of radius ¢ needed to cover the set in p-dimensional
space. It may be said that the value of d_ determines how much information is needed to specify the
location of the set to accuracy e.

Since the set of all possible covers in the calculation of d; [see (6.1) and (6.2)] turns out to be wider
than that in the calculation of d_, we have

d = dy. (6.5)

Considering the upper and lower limits in formula (6.4) we may introduce, respectively, the upper and
lower capacity [151].

We may imagine a situation when rarely visited points make an appreciable contribution to d, or d,
(examples of simple two-dimensional maps have been constructed, where all happens exactly in this way
[162]). In this case it is useful to take into consideration how often the point that determines the state of
the dynamic system appears in different parts of the attractor. This probability is given by the natural
measure.

It may be determined in the following way [151, 152]. For each ball C containing points of the
attractor and for each point x of the domain of attraction we define u(x, C) as the fraction of time the
trajectory originating in x spends in C. (Averaging over an infinite interval of time is assumed.) If
almost every such point x gives the same value of n(x, C) we designate it by u(C) and call y the natural
measure of the attractor.

The natural measure allows defining some probabilistic dimensions. One of them is the information
dimension, which is given by

d, = lim I(z) /log(1/e) (6.6)

where

N(e)

I(¢) = inf > p;log(1/p,) .
i=1
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Here p, = u(C,), C, is a cube of side e. (Some authors consider a covering with balls of radii not
exceeding €. They introduce the upper and lower information dimensions d; and d;, and take the upper
and lower limits in formula (6.6) [151].) The quantity d, is sometimes called the Renyi dimension. If all
the cubes are visited with equal probability, I(¢) = log N(¢) and d, = d,; if the probabilities are not
equal, /(¢) <log N(¢) and

d.=d,. (6.7)

We may determine probabilistic dimensions by assuming that only a fraction of the attractor visited
most frequently is covered. For example, the 6-capacity is determined by the limit [162]

d.(0)= lina log N(e, 8)/log(1/¢), (6.8)

where N(e, 8) is the minimum number of cubes of side € necessary to cover at least a fraction 8 of the
natural measure of the attractor. The quantities

‘—1L(:u') = Iﬁmlog N(£7 0)/108(1/8) ’
g—1 e—0

_ (6.9)
d, () = lim lim log N(e, 6)/log(1/¢)

8—1 ¢—0

are called, respectively, the lower and upper Ledrappier capacities of the measure u [151].
So far all the introduced dimensions have defined sets as a whole. In some cases, however, it is
convenient to consider the dimension in the vicinity of a given point,

d,(x)= ll_r)l(l) log u(B,(x))/log € . (6.10)

Beyond the above mentioned fractal dimensions there are many others. Meanwhile, in ref. [162] the
suggestion is made that for typical attractors the value of different metric dimensions proves to be the
same. According to this suggestion the values of all probabilistic dimensions will also be equal. There
are several rigorous statements that establish relationships between different dimensions.

Let u be the probability measure on the compact metric space X. We assume that for almost any
point with respect to the measure u

d,(x)=a (6.11)
(i.e., the measure u of the set of points, where «a is different, is zero). Then we may prove [151] that

d(W=d(p)=d=d=a. (6.12)

Computation of the above mentioned dimensions of strange attractors is connected with serious
difficulties. It requires an immense memory or a large number of operations For example, computing
the Hausdorff dimension directly cannot be done presently because it requires minimization of the sum
%, &% in all possible covers. To determine the §-capacity we need special covers where the trajectory
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must spend a strictly determined portion of time. On the other hand, to compute the limit entering the
definition of the pointwise dimension we need a minimal memory, but the trajectory of the dynamic
system should be observed over times T > 7~ ¢ ?, where 7 is the time of return into the sphere B, (x),
which may be very large even for small p. Computing the capacity and the information dimension
proves more feasible. Below we shall consider some algorithms for their computation.

Some authors note the following difficulties arising in direct computations of the fractal dimensions.

1. An immense memory or a large amount of computation are required.

2. The number of significant digits in the value of d depends on the length of the sample N according
to a logarithmic law.

3. Large samples are necessary, N >1/min, p,, where p, is the probability of finding a point in the
ith cube (in computations of metric dimensions).

Let us note the essential difference between fractals characterizing spatial ordering (numerous
examples of which are given in the book by B. Mandelbrot) and the sets arising in investigations of
temporal ordering, the strange attractors. In the first case the fractals are determined in a space of low
dimension, and their fractional part is rather large. It allows considering small samples, and in some
cases avoiding computations.

As a typical example of such a situation we consider the calculation of the capacity of the Cantor set
(p=1/3 in formula (6.3), d,=1n2/In3=0.6309) [195]. We plot log, ¢ (¢ is the length of the sides of
the cube) along the abscissa and log,N (the number of cubes necessary to cover the set) along the
ordinate. If N ~ &, the points in this plot will lie on a straight line, whose slope determines the value of
d.. (The points belonging to the Cantor set are given by the sequence a, =0, a,,, = a, +2/ 3**! where
i=1,...,2% k=0,1,2,... [196].) Figure 6.5 shows log,N(¢) versus log,(¢) for samples of different

L 14

-00ga€

Fig. 6.5



T.S. Akhromeyeva et al., Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media 281

lengths. It is seen that the slope of the straight line can be determined rather accurately even for small
samples. In fact, d =0.642+0.036 for N =300, and d_=0.6717 £ 0.026 for N = 500. Increasing N
leads to a growth of the linear part of the curve and a higher accuracy of d, (d, = 0.631 =0.006 for
N =200000).

When we study strange attrdctors it turns out that the fractional part of a dimension is usually small.
(This is typical for the Lorenz system and other systems of three ordinary differential equations.)
Therefore the dimension has to be determined rather accurately. On the other hand, investigating the
processes in nonlinear media or analysing experimental data we often have to consider attractors
embedded in a space of high dimension, which leads to serious difficulties [196]. (When d is computed
directly the memory size is proportional to £%.)

All this requires the development of alternative approaches to estimating fractal dimensions. Two of
them are of most interest. The first one is connected with the calculation of the dynamic characteristics
of systems under investigation (specifically, the Lyapunov exponents) that enable us to estimate the
dimension [197]. The second approach introduces new fractal dimensions which are more feasible for
numerical analysis, and then a relationship between these and the actual fractal dimension can be
established [198].

We consider the first approach in more detail. Let ¢'(x,), ¢'(x, + Ax) be two nearby trajectories of a
dynamic system, which originate from the points x, and x, + Ax (fig. 6.6). The Lyapunov exponent

x(x,, @) is
|
X(xg, @) = }Lrg d(légt_{() n In d(¢)/d(0) . (6.13)
It may be shown that this definition is equivalent to

.1 ‘
X%, @) =lim = In |y (@)]|/[| ]|, (6.14)

where y'(w) is the solution of the equation linearized in the vicinity of the trajectory ¢'(x,) (the
so-called equation of variations), @ is an arbitrary vector directed from x, to x,+Ax. In a p-
dimensional dynamic system the Lyapunov exponents x(x,, @) have the form of a finite set of values
Ay Ay ooy A, (further we shall assume that A, = A, =---= ).

If the attractor is a singular point z then y(x, @) are determined by the eigenvalues of the matrix of
the system of equations linearized in the vicinity of the point z. (When all the eigenvalues are real the
Lyapunov exponents coincide with them, A, <0, k=1,..., p.) In the case of a stable limit cycle
A<0,k=2,...,p.

\ft(lo’dx) d{.’[}

(o)
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dio)
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Fig. 6.6
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The Lyapunov exponents characterize the rate at which nearby trajectories diverge. They are very
important characteristics of a dynamic system. In many problems their values are the same for any
initial x,. The existence of positive Lyapunov exponents testifies that the system is sensitive to initial
conditions and has a stochastic behaviour. We note that in a p-dimensional dynamic system with
continuous time, all of whose solutions are limited, one of the Lyapunov exponents is zero (if the
attractor is not a stable point). The sum of all Lyapunov exponents must be negative (otherwise there
would be no trajectories tending to ¢(¢) when t— ®, which means that ¢(t) would not belong to the
attractor).

Some results concerning the Lyapunov exponents were obtained by Lyapunov and Perron. However,
their wide use for the analysis of nonlinear systems began after V. Oseledec has proved his multiplicative
ergodic theorem, which provided a theoretical basis [199]. The following statement is a particular case of
it [153].

Let x,,, = Tx, be a dynamic system (here x is a vector) with phase space M and invariant measure
u. Let G(x) be a measurable function with values in the space of square matrices of order m (m=1),
G =G(x) - G(T" 'x), and let max[0, In ||G(x)|[] EL". Then

(1) there exists an invariant set I, u(I') =1, such that for all x € I' the limit

A= lim (GG

exists, and A, is a symmetric nonnegative definite matrix of order m; the positive root is taken,
* denotes the conjugate matrix;

(2) if exp AV <exp AP < <exp A® (xET) is the ordered set of different eigenvalues of the
matrix A, and E®, E®, ... EY is the corresponding set of eigensubspaces, while m'” =dim E”,
1<r=s, the functions x— s(x), x—> A", x> m? (1=<r=s) are measurable and invariant under T;

(3) if x €T, then for any vector u € R™, u #0, the limit
1 (n)
lim = In||G"ul|,
n—* p
exists and is equal to one of the A, 1=<r=s, where r is uniquely determined from

ueEVQEP®---®E", ugEVOEP®---OE"

where & denotes the direct sum.

(By measurable functions we mean functions which are finite almost everywhere and representable
as the limit of a converging sequence of real bounded functions.)

Hence, in order to calculate the Lyapunov exponents of the map T we should take its Jacobian
J(x) = dT(x)/dx, calculate the matrix J =[J(x,)  J(x,_,) - J(x,)], which will play the part of the
matrix G in the theorem stated above. Then we take the conjugate matrix (G"™)*, consider the limit
A, =lim,__ [(G™)*G]"*", and determine the eigenvalues of the matrix 4, .

In many cases it is necessary to calculate the Lyapunov exponents in dynamic systems with
continuous time. For this class of problems, fast and efficient algorithms have been constructed [197].

If we act in accordance with the definition of the Lyapunov exponents and take two different nearby
trajectories, the distance between them will increase due to divergence and the double limit in (6.13)
cannot be determined.
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Therefore, besides the initial equation
i = f(x) (6.15)
it is convenient to solve the problem of variations
W= A(x)w, (6.16)

where A is the matrix of the linearized system, A = df/dx. It guarantees that all the time we shall be
considering trajectories infinitely close to the integral curve under investigation. If x is a p-dimensional
vector we shall solve simultaneously p systems of equations of variations such that their initial vectors
Wi, ..., w are linearly independent. Moving along the trajectory we shall compute simultaneously the
volumes of parallelepipeds formed by the vectors w,(¢) [for w,(¢) it will simply be the length of the

segment || w,(0)|[]; wy(2), w,(£); .. .5 wy(0), wy(t), ..., w,(2):
lim % I VOl [w, (1), .., w (D] = A+ + A, (6.17)

where k < p, Vol* is the k-dimensional volume. (We recall that A, = A, == A,)

Two problems arise when this procedure is implemented. The first one is connected with the fact that
|w,(£)|| = as t— o for almost all initial vectors because of the positive exponent. The second problem
is due to a variation in the direction of the vectors w, (). When t— o these vectors tend to w,(¢), where
w,(t) corresponds to the maximal Lyapunov exponent. As a consequence the angles between the
vectors w,(t) tend to zero, which does not permit calculating the corresponding k-dimensional volume
with sufficient accuracy (fig. 6.7).

In order to overcome the first difficulty we may renormalize the vectors w,(¢) over an interval AT
(for example, make them unitary), calculate the value of A,, ..., A, in this interval and then average
these values along the entire trajectory. If we orthogonalize the vectors w,(t) simultaneously with
renormalizing the second difficulty will also be overcome.

This algorithm, proposed in ref. [197], is now widely used when dynamic systems are analysed. Since
the amount of computation in this method is directly proportional to the dimension of the dynamic
system, in some cases we can manage computing about 20 Lyapunov exponents. In ref. [201] a routine
is presented where this algorithm is implemented for the simplest cases.

The Lyapunov exponents determine the dynamic properties of the system, such as the above
discussed fractal dimensions — the geometric parameters of the sets under investigation. Therefore, it is

Fig. 6.7
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interesting to find the relationships between those quantities. One of these relationships was established
by Kaplan and Yorke [200].

For its justification the following arguments are used [162]. Let a two-dimensional map have
Lyapunov exponents A, >0, A, <0 or Lyapunov numbers x, > 1> x, (the Lyapunov number y = exp A)
for almost all points. We are interested to know the capacity of the strange attractor in this case. We
shall cover the attractor with N(¢) squares of side ¢ and integrate the map q times. Now we consider an
image of one of the squares (fig. 6.8). It may be expected [see formula (6.17)] that the area of the figure
obtained after q iterations will be equal to (, - x,)%”. We now take smaller squares of side y?¢ that
have an area y2%¢”. In order to cover the image of the original square after g iterations, about (x/x, )’
small squares will be required. If we assume that most original squares covering the attractor behave in
such a way the total number of the squares in the finer graining may be estimated as

N(x3e)=(x/x2)'N(e) .

By assuming a power law dependence N(g) = k(1/¢)%, we have
k(1ix3e) = k(xalx,)*(1/e)
After going to the limit we obtain an expression for the capacity,
d.=1-A/A,. (6.18)

Generalizing these arguments to the maps of higher dimension resuits in the formula

At A+t A
+ 1 2 k’
;tk+1

where k is the largest value for which A, + A, +---+ A, >0. If A, <0 we define d, =0. The quantity
d, , which is the lower estimate of the fractal dimension, is usually called the Lyapunov dimension.

The Lyapunov exponents are averaged characteristics of a dynamic system, therefore the most often
visited domains of attractors must make the largest contributions to A, ..., A,. So in ref. [162] the
suggestion was made that for a typical attractor the probabilistic dimensions d, are equal to d, . The
numerical results obtained for a series of attractors confirm this relation.

The Lyapunov exponents allow us to estimate another important characteristic of dynamic systems —
the topological entropy. The topological entropy A(T) of the map T may be determined in the following

d, =k

(6.19)
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way [151]. We fix n >0 and introduce the distance p,(x, y) in the phase space X as
p,(x, y) = max p(T'(x), T'(y).

For £¢>0 we denote the minimum number of spheres of radius ¢ in the metric p,, which are
necessary to cover X, by N(n, T, €). Then
1 T log N(n, T,
W(T) = lim Fim M(_n__s) ﬁmﬁ_mo_g(%ﬁ_

20 n->x £—0 n—e

The quantity #(T) for maps of the class C': M— M, may be estimated as

k(x)

W)= [ 2 aWAE i), (6.20

where A,(x) = - = A (x)=0=A,,,(x)=--= 2 (x), p=dim M, are the Lyapunov exponents at the
point x, and g,(x) are their multiplicities. For smoother maps with nonzero exponents inequality (6.20)
transforms into an equality [151]. The relation becomes even simpler if A,(x) happens to be the same for
almost all points x. Then A(T) is simply equal to the sum of the positive Lyapunov exponents.

In ref. [289] it was shown that for sufficiently smooth two-dimensional maps with A, >0> A, the
suggestion that d; coincides with other probabilistic dimensions proves to be true. It was shown that in
this case

1
o 108 p(Blx, £)) _
£—0 lOg £

1 1
= h,i(T)()\1 A2> , (6.21)
and hence, the §-dimension, the upper and lower Ledrappier dimensions, ¢; (1) and ¢, (u), as well as
the upper and lower capacities coincide and are equal to each other. Since the topological entropy
h,(T) here is A, @ is determined by the Kaplan-Yorke formula.

Calculation of the Lyapunov exponents and estimates of the fractal dimension with their use prove to
be very efficient if the finite-dimensional dynamic system of equations that describe the process under
investigation and the equations of variations are known. However, in many cases (in particular, when
experimental data are analysed) this is not so, and other approaches are needed. One of them is
connected with the introduction of new probabilistic dimensions. Grassberger and Procaccia [198]
introduced the so-called correlation exponent, which proved very useful for studying stochastic regimes
in nonlinear media. In order to calculate this exponent we have to find the distances p(x;, x;) between
all points of the set in p-dimensional space, and then determine the function C(¢) =lim,,_,, (1/N%) X
{the number of distances p(x;, x;) less than &}.

The correlation exponent is

v= liH(l) [In C(¢)/In €] . (6.22)
In most cases the correlation exponent is close to the information dimension but its calculation is much

simpler. It requires a small memory and about N°p operations. (Below we shall discuss algorithms that
allow us to decrease the number of operations.) Calculating » with a given accuracy requires much
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smaller samples than the other dimensions discussed above. This can be illustrated in the following way.
To calculate the capacity and the information dimension N coordinates of attractor points are processed
statistically, and to calculate », N” distances are treated, which enhances the accuracy for a fixed length
of sample. In the cases when increasing the length of the sample in the course of a physical or numerical
experiment requires too much effort the above considerations prove very important.

In ref. [198] arguments are given to show that

v=d,=d_. (6.23)

For a certain class of fractals these relations can be justified rigorously, and equations to determine v,
d,, d. can be obtained [202]. These fractals have the following hierarchical structure.

The zeroth level. On the coarsest scale there are N points in the volume /.

The first level. On a finer scale these points get into one of the cubes of side (I,/s,)* (there are M,
such cubes), one of side (/,/s,)? (M, cubes), . . ., (I,/s,)* (there are M, cubes), see fig. 6.9. The fraction
of points getting into the cube of side /,/s, is denoted by p,.

The (n + 1)st level. Each of the cells that existed at the nth level is replaced by the configuration of
cells that existed at the first level (fig. 6.9).

The simplest example of such fractals is the Cantor set. From the above given definition it follows
that

M-

Mp, =1. (6.24)

1

a

It may be shown that the capacity and the correlation exponent may be determined from the
relations

D Ms %=1, 2 Mpis.=1. (6.25)
a= a=1

In ref. [202] an infinite number of various generalized dimensions were introduced. They may be
determined by using one of the formulas
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or

log | d B_(x))*
P S - TR O TEAC) (626)
q—1 0 log ¢
where p; is the probability of hitting the ith cube of side € by a point of the set, the summation is over
all the cubes, u(B,(x)) is the probability of hitting the sphere of radius & with its centre at the point x (it
appears also in the definition of the pointwise dimension). The values of D are defined for any g >0,
and D, > D, if ¢ <q'. However, in some cases they coincide with the known dimensions [202],
ll{i_r)r(l)Dq=dc, ‘lli_r)x}Dq=dI, D, ,=v.
Thus, calculating the Lyapunov dimension, the correlation exponent, and other dimensions we
determine the quantitative characteristics of a large class of fractals. And here the important question

arises: Is the temporal dynamics observed in real physical systems determined by a strange attractor of
low dimension, stochastic fluctuations or is it a nonstationary transient process? Let us discuss this.

6.3. Determining the fractal dimension from measurements

Suppose we have a device to measure one of the characteristics of a system under investigation at
different times at intervals At. The measurements yield a bounded sequence {a,}, 0=<i <.

It is interesting to know whether, on the basis of this sequence, we are dealing with a complex
deterministic process which is described by a smooth differential equation x = X(x) in the phase space
R" or with a stochastic function. The answer was obtained by F. Takens [194, 203].

According to ref. [203] the measurements may be described by a smooth deterministic model if there
are a smooth differential equation x = X(x) on the phase space R" with a smooth function X and a
smooth function f: R"— R such that

(i) for each observed sequence A = {a,}, 0=<i<, of experimental data there is a point x, ER"
such that a, = f[x(i At)], where x(¢) is the solution of the differential equation x = X{(x) with x(0) = x,;

(i) for each initial point x, € R", the solution x(t), x(0) = x,, for >0 is bounded.

If for some sequence A = {a,;} we can construct the functions f, X and the integral curve x,(f) we say
that the results of the above experiment may be explained with the aid of a smooth deterministic model.

In order to formulate the criterion of Takens we introduce several definitions. Let A= {a,},
0= i<, be a bounded sequence of real numbers (experimental data). For £ >0 and n €N, where N is
the set of integers, we define the set €, , CN as follows: 0€ €, ,; for i >0, i € €, , if and only if for all
0=j<iwithj€ €, we have

max{|a, - ajl’ la,,, — aj+1|’ o @, — aj+n,} =€.

The number of elements of €, , is denoted by C, ,(A). Since the sequence A is bounded, C, (A) is
finite.

In ref. [203] the following statements were formulated. The experimental results determined by the
sequence A may be explained by a smooth deterministic model if the expression

InC, (A)

e (6.27)
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is uniformly bounded as (n —In g)— . But if this limit is unbounded the sequence A cannot be
explained by a smooth deterministic model.

In the criterion of Takens the infinite sequence A is employed. In fact, experiment gives a finite
number of measurements, and we have to deal with the function C, , ,.(A), where m is the sample
length, rather than with C, ,(A). The quantity In ¢ is also bounded (for example, by the finite accuracy
of measurements); the boundedness of the limit can be checked only for a finite number n. However, if
by using a computer we can verify that, as m and n increase while ¢ decreases, the limits do not, in fact,
change, it may be assumed that the physical system is well described by a finite-dimensional
deterministic model. (A somewhat different algorithm is usually used; it will be considered later on.)

It is important that the existence of deterministic chaos in a nonlinear medium can be established by
measuring any of the dynamic variables at one point for almost any interval Af in which measurements
are made. This conclusion is based on the result by Takens, who showed that, for a compact manifold
M of dimension p, a diffeomorphism g: M— M and a smooth function f: M— R, the map &, (x)=
(f(x), f(g(x)), ..., f(g*"(x))) is generally an embedding. (That is, the operator @ is a continuous,
one-to-one map of M into R***', m>p.)

As g in the system of equations x = X(x) we may consider the operator of displacement along a
trajectory in the time At; as the function f we may take one of the dynamic variables £(¢) (i.e. one of
the coordinates of the vector x). In this case the map @ is determined by the values £&(s Atr),

§=0,1,...,2m. Hence, the fractal dimension of the limit set can be determined by a discrete
collection &(t;) (where f,—): £,,...,¢,. With these data we can construct a collection of m-
dimensional vectors

gk = (fk, Eivts s §k+m—1) (6'28)

for m =1, 2 etc. and determine the dimension (usually the correlation exponent ») of the set {{, } in the
m-dimensional phase space. If the dimension of the attractor M is finite and equal to p it may be
expected that for m >2p + 1 the values obtained will be independent of m.

This means that there is a collection of 2p + 1 order parameters, to which all the degrees of freedom
of the system “adjust”. Such a behaviour is typical for many mathematical models studied by
synergetics [3, 13], including non-linear systems with an infinite number of degrees of freedom, which
are described by partial differential equations. Sets that consist of vectors of the form (6.28) are usually
called sets in {-space while their construction is called the reconstruction of the attractor.

Analysing sets in {-space allows us to propose a number of algorithms for computing the fractal
dimension, which are more efficient than those developed in ref. [198], where the attractors are
investigated in the usual phase space (X-space).

As is mentioned above, using the standard algorithm of computing the correlation exponent v
requires storing N vectors (Np numbers) and ~N’p operations to compute the function C(¢) [see
formula (6.22)].

Meanwhile, computation of the correlation integral C(¢) for the set in {-space requires storage of N
words and ~N’ + Np operations. In fact,

172

P80 6= 2 (&= &nal)'|
k=1,...,.N-p—-1, m=1,...,N-p—-1, m-—k=const., (6.29)
p2(§k+l’£m+l)=p2(£k’gm)+(§k+p_§m+p)2_(§k_gm)z'
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Formula (6.29) determines the so-called “sliding sum” algorithm [195] and enables us to compute
p ({kH, ¢, ..) by adding to and subtracting from p ’(&,, £,) one term regardless of the dimension of
the space.

More efficient algorithms may be proposed for computing capacity and 1nformat10n entropy. They
require a storage of less than 4N and a number of operations less than N’ [195]. The idea of such
algorithms is connected with the ordering of {-vectors by the first component, due to which the number
of required comparisons can be decreased.

Besides, preliminary ordering allows us to construct algorithms for computing the correlation
exponent in which the number of operations does not depend on the sample length N. They may be
very helpful when the samples are large, N> (/, /amm) where /; is the characteristic length of the
attractor, d is the dimension of the attractor, and ¢, is the mmlmal distance between vectors {, and ¢,
that can be measured with confidence.

In recent years algorithms have been developed to estimate the Lyapunov exponents from ex-

perimental data a; [201, 204]. To do this, an arbitrary p-dimensional vector {, =(a,, . - ., a;.,_;) i
constructed and nearby {-vectors gml, ey {mx are searched for,

Iyl =l =&l <e, 1=iss.
Then images of these vectors, {, .,, ..., &, ., are considered in r steps.

Due to the close proximity of these vectors we may consider that there is a linear operator B,(r) such
that

zi=Bij(r)yj7 ziEgmi+r“§k+r’ 1517151)

This operator transforms the sphere with the vectors y, into an ellipsoid containing the vectors z,. The
semi-axes of this ellipsoid are determined by the eigenvalues of the linearized problem.

After this, calculating the Lyapunov exponents is reduced to determining the operator B and its
eigenvalues with a set of vectors y; and z;. Then new vectors ¢, are chosen, and the same procedure is
repeated. Finally, the eigenvalues obtained are averaged over the trajectory of the dynamic system.

It is not difficult to find the maximum Lyapunov exponent. Algorithms that give a set of positive
exponents are discussed in ref. [201]; there one may also find a bibliography of previous publications. In
ref. [204] a technique is proposed for constructing and analysing the operator B to find then the
complete set of Lyapunov exponents. From the tests given in ref. [243] it follows that the approach may
be useful for a restricted class of problems.

6.4. Experimental study of few-mode chaos

Analysis of the general properties of dynamic systems enabled us to suggest that complex stochastic
regimes in non-linear media are usually associated with complex interactions of several variables (i.e.
with a strange attractor of low dimension) rather than with the excitation of an infinite number of
harmonics as was earlier supposed [76, 170]. It should be stressed that this suggestion is of a general
nature and refers not only to the transition from laminar to turbulent flows in hydrodynamics but to
stochastic regimes in oscillatory reactions, to some systems in nonlinear optics, and to many other
phenomena as well. Algorithms developed lately for analysing fractals, and strange attractors allow
experimental tests of this suggestion.
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One of the systems where the transition from the ordered laminar regime to chaotic turbulence can
be observed is Taylor-Couette flow. This is fluid flow between two coaxial cylinders of length L, whose
radii are, respectively, a and b. The external cylinder rotates with an angular velocity {2, and the
internal one with £2,. The Reynolds number in this problem is given by the formula Re = 2,a(b — a)» ™"
for £, =0 (v is the kinetic viscosity).

When the Reynolds numbers are small the fluid flow is laminar and may be described by an explicit
expression. Then, as the rotational speed (2, increases dissipative structures (so-called Taylor vortices)
emerge. Increasing {2, further, the Taylor vortices lose their stability, and the fluid motion becomes
periodic (an analog of the limit cycle). At even larger Reynolds numbers a two-frequency regime
appears (similar to the invariant torus), and then the motion becomes turbulent. Thus, the transition to
chaos observed in the experiment at certain values of Q,, a, b, L, v occurs according to the
Ruelle-Takens scenario [205].

In order to analyse this flow an effective experimental technique involving laser Doppler spec-
trometry was proposed. By measuring the Doppler shift of the laser beam propagating through the fluid
we may measure one of the velocity components at a given point. Successive measurements of this
component yield the set a,, . . ., a,. In ref. [27] more than 32 000 points were statistically processed. By
considering the variable a(t) we may distinguish the average time T over which this variable takes the
same value a (da/d¢>0). In dynamic systems it is the average time of return to the Poincaré plane. In
the experiment a time interval of about 3007 (300 orbits) was chosen to cover approximately 100 points
along the orbit (A¢~107°T). From these data the correlation exponent and the positive Lyapunov
exponents were computed, and the topological entropy was independently calculated. With these values
the dimension of the attractor in the system under investigation was then estimated. It turned out that
as the Reynolds number grew (Re >Re_) the dimension of the attractor increased; however, in the
interval Re, =Re=<1.3Re,_ it did not exceed 5.4.

Thus, it was shown with confidence that in this infinite-dimensional system few-mode chaos exists.
The suggestion that there exists a strange attractor of low dimension which describes this flow, proved
valid. This important experimental result testifies that such phenomena may be described, in principle,
by a relatively small number of ordinary differential equations. There are similar relationships for fluid
flow between rotating spheres [206]. Such a system is interesting in terms of atmospheric physics
problems.

Another example of a transition from dissipative structures to turbulent regimes is Rayleigh-Bénard
convection in a fluid layer heated from below [207]. The corresponding experiment included 15000
measurements made over intervals At (7/At~2-10) and the correlation exponent was determined.
First, the dimension p of the {-vectors was given and the correlation exponent was calculated. Then the
value of p increased until » stopped changing. Note that some authors did not perform computations for
all N? distances but for the distances from n, points to the remaining points of the set (in ref. [207]
n, =100, in ref. [208] n, =15). This approach does not have a sufficiently rigorous justification;
however, it is widely used in physical experiments because it manages with much smaller amounts of
computation. Experimental studies of the Rayleigh—-Bénard instability showed that in many convective
flows the turbulent regime was defined by a strange attractor of low dimension (2.5 < v < 6). Increasing
the Reynolds number and passing to the systems where other complicated factors needed to be taken
into account usually led to a growth in the dimension [207].

In the above mentioned works the fluid motion was considered in a bounded volume. Therefore, it is
natural to expect that due to viscosity the motion will be damped on small scales, and the attractor will
prove to be finite dimensional. In view of this, it is of particular interest to study experimentally
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stochastic flows where the fluid motion occurs in an unbounded domain. As examples the motion of a
periodically excited isothermal jet [209] and “submerged spray” type flow were considered. In these
studies the correlation exponents were computed and the behaviour of the system depending on the
spatial coordinate was examined. It turned out that in these cases the motion was also determined by a
strange attractor of low dimension.

The results of physical and numerical experiments where few-mode chaos has been investigated
allow a new insight into the phenomenon of turbulence, and a new understanding of the role played by
fractals and strange attractors in science. At the same time, many methodological problems are still to
be solved. Test computations show that with bounded samplings the ratio At/T is an important
parameter. The choice of the linear portion of the curve of In C versus In ¢ is also of importance.
Solving these questions of technique would allow enhanced accuracies in determining the fractal
dimension, help in studying few-mode chaos, and extend the class of systems where such effects might
be discovered.

7. Transition to chaos and differential equations

In the last century mathematical models were constructed with main attention paid to Hamiltonian
systems typical of celestial mechanics problems. However, in the thirties of this century a large class of
problems appeared in connection with investigations of dissipative systems. Their appearance was due
to the rapid development of radio physics and the theory of oscillations. The system of two ordinary
differential equations that depend on a parameter,

dX/dt=P(X,Y, %), dY/dt=0Q(X,Y, 1), (7.1)

proved to be an efficient model which could explain many phenomena observed.

The class of nonlinear functions P and Q may be very extensive; however, it is natural to use such P
and Q for simulating real systems that the solution would not change qualitatively under small
perturbations of these functions. It is these we should consider in the first place. The mathematical
formulation of such representations was given by A.L. Andronov and L.S. Pontryagin, leading to the
concept of crudeness or structural stability of a system [86].

This concept is common for many sections of mathematics, and it may be explained by a simple
example of a family of functions that depend on one parameter,

F(x,£)=0. (7.2)

For illustration we consider two different functions (fig. 7.1a,b). It is easy to see that the number of
zeroes of the first function will not change under small deformations of the curve. In the second case
things are different. The equation F(x) =0 has two solutions, F(x) + &£ = 0 has one solution (fig. 7.1c),
and F(x) — ¢ =0 three solutions, however small we choose the positive number . It is natural to
consider the system described by (7.2) with the function of fig. 7.1b as noncrude. The two other
functions F describe crude systems. Crude cases are sometimes called the cases of a general position.

Considering a specific model we may always assume that it is crude. But if we are interested in a
whole family of models depending on a parameter A, noncrude situations will sometimes be en-
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countered too. For example, when the parameter ¢ changes we transfer from one crude system (see fig.
7.1a) to another (see fig. 7.1c) through a noncrude system (see fig. 7.1b).

The notion of crudeness can be clarified. It is natural to require that differential equations close to
the one given be reduced to it as a result of a change of variable. In such a definition, however, the
derivative on the right-hand side at the singular point proves to be invariant. Therefore, the systems
x =ax and X = (a + €)x cannot be considered close. In order to avoid this a more general definition
based on topological representations is introduced. It requires that a continuous one-to-one correspond-
ence should exist between the phase curves of the first and the second system [85, 175].

We can give examples of crude dynamic systems on two-dimensional surfaces. Among them are
equations whose attractor is a singular point if an eigenvalue of the linearized equations at this point is
not zero. For example, such is the stable focus (see fig. 7.2a) or the node (fig. 7.2b). If the eigenvalue is
zero a small change in the parameter alters the number of points or their stability.

The Poincaré map of the limit cycle in crude systems has no eigenvalue whose absolute value is equal
to unity. Noncrude systems are those of the form of (7.1) in which there are homoclinic (fig. 7.3a) or
heteroclinic (fig. 7.3b) trajectories.

It was proved that egs. (7.1) determine structure-stable systems if they have a finite number of
nondegenerate singular points and cycles and have no homoclinic and heteroclinic trajectories.

It has been proved that structurally stable systems of the form of (7.1) form an open, everywhere
dense set in the space of all such systems [85].

This important result agrees with the intuitive idea that in the space of parameters crude systems
must exist as close as desired to noncrude ones. By considering crude systems in detail we may
understand all the basic types of qualitative behaviour of the models (7.1).

The question arises: Can analogous results be obtained for systems of higher dimension? In
generalizing the crudeness conditions an important class of crude multi-dimensional systems (the
Morse—Smale systems) was introduced. In the equations that determine them all the solutions tend to

a\}/x>>\x O
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periodic trajectories or singular points for both — o« and t— —o. There are a finite number of periodic
trajectories and fixed points, all of them hyperbolic, their stable and unstable manifolds intersecting
only transversally (at a nonzero angle). (A point is called hyperbolic when the real parts of all
eigenvalues A, of the linearized system of equations are different from zero. A cycle is called hyperbolic
if its Poincaré map does not have A, with |A,|=1.)

Fundamental results dealing with the propertles of dynamic systems in the multi- dlmensmnal case
were obtained by S. Smale. They are discussed in detail in the reviews [175, 213].

It has turned out that not all crude systems are Morse—Smale systems. For example, U-systems are
structurally stable but have an infinite number of closed trajectories. (Simple examples of U-systems are
given in chapter 5.) Besides, Smale constructed an example of a dynamic system in the vicinity of which
there are no crude systems.

Such a behaviour is due to the existence of chaotic regimes and the appearance of complex invariant
sets (such as in the Smale horseshoe).

These results show that the problem of a complete topological classification of differential equations
of rather high dimension cannot be solved.

However, studying chaotic regimes in dynamic systems with continuous time appears to be very
interesting. The analysis proves rather complex and requires extensive numerical experiments. This is
why the investigated systems with chaotic behaviour are not great in number. Nevertheless, some
interesting phenomena have been discovered, new approaches and methods of investigation developed,
and important concepts applicable to many models created. Let us consider some of them.

7.1. The Lorenz system. Homoclinic explosion

The Lorenz system is a system of ordinary differential equations which appears to have aroused
much interest in recent years. The methods of the qualitative theory of ordinary differential equations,
topology, hyperbolic theory and other sections of mathematics have been widely used for its analysis.
Due to this approaches and ideas useful for studying strange attractors in other dynamic systems have
been extended. An extensive bibliography of works dealing with the Lorenz system may be found in the
book [137] and the review [214].

The system was proposed as a simplified model for describing Bénard convection in a fluid layer
heated from below. In this problem the fluid motion depends on two dimensionless parameters. The
first parameter is the Rayleigh number

R=agd’ AT/,
where « is the volume expansion coefficient of the fluid, g is the free-fall acceleration, d is the fluid

layer thickness, AT is the temperature difference between the lower and upper layers of the fluid, v is
the viscosity, and « is the heat conductivity coefficient. The second parameter is the Prandtl number,

Pr=v/x.
The equations describing the fluid motion have an equilibrium solution when the fluid is at rest, and

its temperature varies linearly with depth. Rayleigh discovered that when R > R_ =277"4 the solution
is unstable and convection develops.



294 T.S. Akhromeyeva et al., Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media

In the simplest case, using the Galerkin method we can obtain a system of three ordinary differential
equations [76],

X=-0X+0Y, Y=-XZ+rX-Y, Z=XY-bZ, (7.3)

where r = R/R_, b =8/3. The attractors on the line o = 10 were investigated in most detail.
The system (7.3) is dissipative. The volume V of the small domain of phase space where each point
moves according to (7.3) varies by the law
: X oY  oZ
V=0V, Q_ﬁ(+ﬁ+ﬁf_(a+b+l)‘ (7.4)
It is invariant under the transformation X— -X, Y- -Y, Z—> Z.
When r <1 the coordinate origin is globally attracting: X— 0, Y—0, Z— 0. There is no convection.
For r=1 the linearized problem that determines the stability of the point (0,0,0) has a zero
eigenvalue. Bifurcation occurs, and as a result the point (0, 0, 0) loses its stability and two symmetric
equilibrium states appear,

X==Vb(r-1), Y==\/b(r-1), Z=r-1.

An example of such a bifurcation is shown in fig. 3.6a. As r increases a pair of complex-conjugate
eigenvalues of the stable equilibrium states appears.

When r>1 the origin of coordinates is a saddle which has two stable directions and one unstable
direction. Trajectories entering it near zero belong to a certain surface — the stable manifold. Two
symmetric trajectories — the unstable manifolds of zero — come out of it. Then they spiral about the
stable points (fig. 7.4a).

As the parameter r increases the turns of the spirals become larger and larger, and when

=r'=13.926 a pair of trajectories (called homoclinic) appears. The points move along them tending
towards the origin for both t— « and t— — (fig. 7.4b).

The appearance of such trajectories proves to be very important. In order to determine how their
appearance changes the dynamics of the system it is convenient to consider a small box near zero and
two tubes round the unstable manifolds of zero.

According to ref. [137] we may explain what happens with the aid of several diagrams. We consider a
small rectangle ABCD on the top face of the box. Points A and D belong to the stable manifold of the
origin, and the trajectories crossing AD tend to it when t— . Hence, the integral curves going through
ABCD will cross the side face of the box within the triangle MNP (figs. 7.5, 7.6).

a b

Fig. 7.4 Fig. 7.5
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There are no singular points on the trajectory going along the tube from the side to the top face of
the box. Therefore the triangle MNP will not be “strongly deformed”. After the first return of the
trajectories onto the plane of the top face the image of the rectangle ABCD is the triangle RB'C’ (fig.
7.6), where R is the point of intersection of the right-hand unstable manifold with this plane. Since
there is a homoclinic trajectory at »=r’, R hits exactly the line AD (fig. 7.6b). The images of the
rectangles ABCD and ADEF, which change depending on the parameter r, are shown in fig. 7.6. The
Lorenz system determines a two-dimensional map of the top face of the box into itself.

When r > r' there is an extension along the horizontal direction and compression along the vertical
direction. Due to this behaviour the concepts of hyperbolic theory could be used to investigate the
Lorenz model [158, 214]. Since the rectangles stretch and fold in a certain way we may expect that this
two-dimensional map will behave like the Smale horseshoe and generate complex invariant sets for
r>r'.

In fact, we choose four small symmetric squares 1, 2, 3, 4 in the rectangle FBCE and see how they
will intersect their images ¥(1), ¥(2), ¥(3) and ¥(4). A schematic view is shown in fig. 7.7a. We
exclude from our considerations all the points whose iterations do not get into these squares. Then the
trajectory of each remaining point may be described by the sequence of four symbols 1, 2, 3, 4. The
rules for combining these symbols so that they should correspond to the trajectory of some point may
be presented in the schematic form shown in fig. 7.7b.

It is clear that here, as in the Smale horseshoe, an infinite set of periodic trajectories and an
uncountable infinity of various aperiodic trajectories may be constructed. This phenomenon occurring
immediately after the appearance of a homoclinic trajectory was called the homoclinic explosion.

Homoclinic explosions in other systems with symmetry may differ from that discussed above (they
can be imagined if before the explosion the triangle C'B'R does not get into ABCD but into ADEF).
In dynamic systems a complex sequence of homoclinic explosions may occur [137].
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The phenomena typical for the Lorenz model, for r > r’, are intrinsic to many nonlinear equations.
In fact, the behaviour of trajectories in a small box around the origin agrees with the behaviour of
solutions of the system linearized about zero (which is determined by the eigenvalues and eigenvectors
of the matrix obtained). This important circumstance can be used to analyse the solutions near
homoclinic trajectories [215, 216]. In order that the picture be qualitatively like the one in the Lorenz
system at the first homoclinic explosion it is sufficient that the three ordinary differential equations have
the same symmetry and the eigenvalues of the matrix of the linearized system of equations near the
origin be real and satisfy the inequalities —A, > A, > —A,, where A, is the eigenvalue corresponding to
the eigenvector lying on the symmetry axis [137)].

The invariant sets which appear are not attractors for r = r’ as in the Smale horseshoe case. In fact, it
is seen from fig. 7.6 that the rectangle ABCD does not transform into itself — after each iteration some
trajectories leave it. However, there is a value of r" for which the triangles C'B'R and E'F'L are
entirely within ABCD. For r = r" a strange attractor emerges.

If r—r" (r <r") metastable chaos is observed. Nearly all the trajectories from ABCD behave in a
complex aperiodic way but then tend towards one of the stable points.

For r=r" the singular points lose their stability due to an inverse Hopf bifurcation, and the
asymptotic behaviour of almost all trajectories is determined by the strange attractor. In this region of
parameters it is often called the standard Lorenz attractor.

The existence of homoclinic trajectories proves to be important not only for analysis of the Lorenz
model and other systems with symmetry but for the study of a large class of other equations.

L.P. Shil'nikov [216] considered dynamic systems of the form

Xx=px—wy+P(x,y,z), y=ox+py+0Qx,y,2), Z=Az+R(x,y,2), (7.5)

where P, O, R are functions that are equal to zero together with their first derivatives at the point
(0,0,0). It was assumed that the singular point at the origin was a saddle focus p <0, A>0 and also
A> —p (see fig. 7.8). If one of the trajectories [} starting from the saddle focus returns to it as t— ® we
may prove that in any vicinity of [, there are an infinite number of periodic trajectories. This statement
is called the Shil’nikov theorem.

Moreover, the two-dimensional maps generated by these equations have complex invariant sets. A
bibliography of works dealing with an analysis of various physical phenomena that lead to egs. (7.5)
may be found in the book [161].

7.2. Complication of attractors in the dynamic system (3.15)

Let us see how the solutions become complicated with varying the parameters of a dynamic system.
According to refs. [103, 108, 159, 217] we consider the system of equations (3.15). Unlike the Lorenz

Fig. 7.8
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system, it is not invariant under a change of sign of the variables. We may expect that its behaviour will
be simpler and more typical.
From the first two equations it follows that

26+0=202¢+n)— Q€+ )’ —nY2-2k"n—4&n(1+ cos 0) <2(2¢ +m) — (26 +n)°.
From the last inequality it follows that 2¢ + 7 <z, where z(¢) is the solution of the equation
7=2z-72", z(0)=2£0)+n(0)=0.

Since z(¢) is bounded and £ =0, n=0, the functions &(t) or n(t) are also bounded.

An important characteristic of the dynamic system is the quantity 2 which determines the rate of
change of a small volume moving along the trajectories, V= V. This parameter describes the
dissipative properties of the system and shows how quickly its solutions converge to the attractor. In
this case

Y I S,
74t

7,4+

———

g1 | L \ . \ A . .

Fig. 7.9. Patterns of singular points for different values of c,. The solid line marks stable singular points, the dashed line unstable points. The axis
po =0 is unstable.
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When k < V2, in phase space a region appears where 2 > 0. No stable points and to stable limit cycles
can lie in this region. However, the attractors which we shall consider below are entirely outside this
region. .

The simplest solutions of eqs. (3.15) may be obtained by putting £ =0, % =0. One of them is the
invariant straight line

£=0, n=0, 6=2ck’+const.,

as well as the singular points or invariant straight lines
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E=1, n=0.
The invariant straight line 8 = 6(¢) exists if the inequality
2,4 2
cik’ +2c,0k"—1>0 (7.7)

is fulfilled [217]. A pair of singular points £ =1, n =0 (the saddle and the stable node) arises on the
curve c2k* + 2c,c,k* ~ 1=0. The node loses its stability on the line

(E+ 1)k +2k°(1 + ¢,c,) =0. (7.8)

Another family of particular solutions may be obtained by assuming ¢ = 0.
By assuming £, 7, 6 to be equal to zero we may obtain the equation that determines the coordinates
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of singular points (£, 1, 9). After changes of variables and algebraic transformations it is reduced to the
fourth-order equation [103, 108]

y+by +ey+d=0, (7.9)

The coefficients b, ¢, d depend on c,, c,, k in a rather complex way. Instead of using the explicit
expressions it is convenient to solve eq. (7.9) numerically. Figure 7.9 gives a graphic illustration of the
occurrence of equilibrium states. We decrease the parameter c, for fixed c,. The change of p, = ¢''* for
all the singular points ¢ >0, n>0 and £ =1, n =0 obtained in calculations is shown in the figure for
various values of c¢,. The values of the parameter ¢, for which the number of singular points and their
stability change are denoted by A, B,, B,, B;, C.

First there is only one singular stable point £ =1, 7 =0 in the system. At point A a bifurcation of
“the stability exchange” type, as in fig. 3.6b, occurs. To the left of point A only one solution is shown in
fig. 7.9, since the second solution has 7 <0 and corresponds to complex values of p,.

A pair of equilibrium states appears at points B, and B, and disappears at point B,. We saw this type
of bifurcation when considering the bending of an asymmetric beam (fig. 3.4).

At point C a bifurcation of the origin of the limit cycle occurs, and due to this a periodic solution
appears in the system of equations (3.15). Here we encounter the same simple bifurcations in different
combinations.

From fig. 7.9 it is seen that there are two stable singular points simultaneously here and there.
Depending on the initial data £(0), n(0), 8(0) the solution tends towards one of them. There are
regions without stable points, and the attractor in the system must be different.

We fix the parameter ¢, =3 and see what will happen with the solution as ¢, decreases (fig. 7.10).
First, there is a stable singular point (c, = —3.10), then the limit cycle (c, = —3.15) appears. The cycles
in the system of equations (3.15) may be different. It is convenient to distinguish them by the number
of revolutions n which they perform around a central region. From formulae (3.15) it is seen that if the
functions ¢ and 7 periodically vary with period T, then cos 6, sin 6 and 8 will have the same period. In
this time the phase 6 increases by 27m (m =0, *1, £2,...): 8(t + T) — 6(t) = 27rm. In the simplest
case (m = 0) the cycles correspond to closed curves in ¢, 1, 6 space (fig. 7.11a). If m >0 the functions

(1), n(z), 6(t) determine spirals (fig. 7.11b). The cycle described by m and n will be denoted by S,

At the time of the Hopf bifurcation the limit cycle S, appears, and as the parameter c, decreases 1t
goes over into S}. With decreasing c, the amplitude of the stable cycle S; grows. As the transition point
cy is approached the cycle comes closer to the saddles £ =1, n =0 (fig. 7.10). After the transition,
¢, <c%, the cycle moves away from them. At ¢, = c3 the cycle goes across two singular points. It is
natural to expect that in this case T(cz)—+ ® as ¢, 3.

Then the perlod doubling bifurcations S7, — S as well as the transitions S, —S” ., occur. Later on
chaotic regimes arise (fig. 7.10, ¢, = —4.5). As C, decreases the attractor of the system becomes simpler.
Here inverse period-doubling bifurcations may occur [217, 218].

As was shown in ref. [218], for k =1 the system of equations (3.15) is well described by families of
one-dimensional maps in a certain range of parameters. An example of such a family will be given
below. It is an interesting and profound fact. It speaks in favour of many simplified models.

Combining numerical and analytical methods allows us to obtain a chart of attractors which shows
the type of solution of the system of equations (3.15) for different values of ¢, and c, (fig. 7.12). The
parameter k is everywhere assumed to be equal to unity.

In a large region of parameters above the line ABC the stable singular point is § =1, n=0. It
adjoins to a region with other singular points whose appearance was noted above. In many cases, for
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t— o the asymptotic behaviour of the system of equations (3.15) is determined by a simple cycle $' or a
double cycle S>. The stability regions of more complex cycles and the regions with as many as two
attractors are narrow and not shown in fig. 7.12. The chart of attractors gives a classification of solutions
of the system of equations (3.15) for k =1 by their behaviour for — . The picture obtained is rather
simple.
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Fig. 7.12. Types of attractors for the system of equations (3.15) for k = 1; 1: solution ¢ =1, n = 0; 2: singular point with £ >0, > 0; 3: simple cycle
§'; 4: cycle §%; 5: more complex solutions; 6: the line where the transition S;— S; occurs; QNP is the Hopf bifurcation line. The picture is obtained
by numerical solution of egs. (3.15). A step A, = 1.0 is taken in ¢, and k, = 0.5 in ¢,. Between the domains the step was decreased to 0.1. Initial data
in the problem with parameters {c,, ¢, — h,} below the line ABC was the point belonging to the attractor of the system of equations (3.15) for
values of {c,, ¢c,}. Computations began at ¢, =0.
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7.3. Strange attractor in the dynamic system (3.15)

We consider one aperiodic solution of the system of equations (3.15) in detail. For this example it is
convenient to see how the investigation methods discussed above may be used to study strange
attractors of specific ordinary differential equations.

At the present time the number of strange attractors studied in detail is not very large. Therefore,
the ideas about systems where dynamic chaos is possible may prove useful for constructing models of
various physical phenomena.

In the further discussion we shall pay attention mainly to the attractor of egs. (3.15) with ¢, =7,
c,=—6, k =1. Its projection on the (£, n)-plane is shown in fig. 7.13. It is entirely in the region where
the system is dissipative. It is seen that the trajectory may come into the vicinity of saddles § =1, n =0
and hence, it may stay there for a long time. The mean time T of one revolution about the central
region is approximately equal to 1.63, and the mean value of (2 is —4.189. Hence, the phase volume will
decrease by a factor 900 per revolution.

We consider successive intersections of the trajectory with the plane 6 = const. Since £, 1, 6 depend
only on cos 6 and sin 6 (6 is a cyclic coordinate) it is necessary to consider the intersections with all the
planes 6 = const. + 2n, n =0, =1, +2, . .. . The intersection of the attractor with the plane 6 =2zn is
the simplest. Now we shall discuss some of its properties.

The system of equations (3.15) uniquely determines the map of this plane into itself (the Poincaré

map),

&=0&.m), m =8 ). (7.10)

Here ¢, and 7, are the coordinates of the point of the first intersection of the trajectory with initial data
{&,, Mo, 0} with the plane 6 =0 (8 =2mn). We shall consider only the intersections for which 8 >0. In
the (¢, n)-plane we may distinguish a region which iterates into itself under the map (7.10). It contains
the attractor.
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To investigate the Poincaré map it is natural to go over to new coordinates, one of which, x, is close
to the stretching direction, while the other, y, is orthogonal to it,

x=[3(£-0.45)—-7(n-0.38)]/V38,  y=[1(¢&—-0.46)+3(n—0.38)]/V38.

The region ABCD that iterates into itself and its image A'B’C’'D’ are shown in the new coordinates
in fig. 7.14. (We note that figs. 7.14 are strongly stretched along y.) In these coordinates the image of a
rectangle is a complex curvilinear figure that consists of two parts. The region APQD is mapped into
the lower part. The corresponding trajectories get a phase increment A@ = +24 per revolution. The
upper part of the curvilinear figure is the image of BPQC. For the trajectories originating here the
phase increment is zero. The segment PQ is entirely mapped onto the point R. We note an analogy
between this map and the Smale horseshoe.

The functions f and g that determine the Poincaré map in the new coordinates x, y,

X, =%, ¥o) s ¥1= 805 ¥o) 5 (7.11)

are shown in fig. 7.15. These functions are continuous but their derivatives have a discontinuity on the
line PQ. On this line the value of f is equal to the x-coordinate of the point R (fig. 7.14); the
y-coordinate of this point determines the value of g on the line PQ. The partial derivatives of f and g
increase infinitely in the vicinity of the line PQ.

The section of the attractor corresponding to a chaotic regime must have a complex inner structure.
The calculations carried out for several models allowed us to reveal this structure. This can also be done
for the system under investigation.
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Let us turn to fig. 7.16. Here, the points of intersection of the plane 6 = 0 with one of the trajectories
are shown on different scales. An enlarged view of the rectangle marked in fig. 7.16a is given in fig.
7.16b. In its turn the rectangle marked in fig. 7.16b is presented on an enlarged scale in fig. 7.16c. The
section of the attractor in the upper figure consists of two lines. By the 500-fold increase of resolution
each line splits into two. (Note that the distance between lines is very small and does not exceed
4x107".) We may expect that this process occurs also on smaller characteristic distances. That is, the
attractor along one of the directions has a Cantor structure.

Figure 7.17 shows x, ., versus x,. On the scale of the figure the points are located on a continuous
unique curve F. We note that |dF/dx|>1 everywhere except for one portion on the left end of the
segment. The one-dimensional map x,,, = F(x,) may be considered as a simplified model for the
problem (3.15). For its analysis many results obtained in the theory of maps of an interval into itself
may be used.

Figure 7.13 shows that the projections of different turns of the trajectory onto the (¢, n)-plane are
qualitatively the same. However, observing their variations in (¢, 7, 8)-space we can distinguish two
different types of turns. In one type the phase changes by 27 when the trajectory returns to the plane



T.S. Akhromeyeva et al., Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media

R
. A
y“d’ % 5
\"' . A
‘ : (;’
/
0 i) o7 702 T
. i
\.z, !/' ;3
-4 y B
R ,8 o
-2 1 a -
.
y403 04525 Qi550 ~ Qss7g
4] =
.", g
. ;l".
- b
o A N
y-40°
#1 - L 4394-
-
-4,396 - L
-" :...
-1,398- %
.48.
1,400 -
402
c &
04552 Q4553 Q1554 T
Fig. 7.16

305

6=2mn,n=0,x1,%2 ...; in the other it does not change. In the one-dimensional map (fig. 7.17)
the first type corresponds to the left arm of the curve, the second type to the right arm. If the time of
each revolution were bounded from above the functions f and g in the map (7.11) would be continuous
and differentiable, and the phase increment A could not suffer a discontinuity. In this case this is not
so. We may suggest that this is due to the effect of a certain singular point of the dynamic system (3.15)
in whose vicinity the time of revolution may increase infinitely.

An analysis of the behaviour of the trajectories in the vicinity of singular points allows us to
understand the specific features of one- and two-dimensional maps arising in this problem. An
important property of the system (3.15) is that the plane » = 0 is an invariant manifold: if 7(0) = 0 then
7(t) =0 too. In this plane there are two singular points A and B with £° + 5 0. By considering the
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dynamic system linearized in the vicinities of these points we may determine eigenvalues and
eigenvectors of the arising matrix. From the analysis it follows that the points A and B are saddles, each
having one unstable direction. The line ¢ =1, =0, 6 = 6(¢) that connects these points is an integral
curve of the system (3.15) for all values of the parameters. The approximate positions of the singular
points A and B as well as the eigenvectors of the corresponding matrix are shown in fig. 7.18. The
eigenvectors are numbered so that A, <A, < A;, A; <A; < A;. The surface M is a stable two-dimensional
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manifold of the point A. The straight line ¢ = 1, =0 is an unstable manifold of the point A. The plane
n =0 is a stable manifold of B. The unstable manifold of B intersects the plane 8 = 27 at the point R.

Following fig. 7.18 we may present the integral curve originating near the surface M (above it) in the
following way. At first the point on the trajectory near M moves towards the point A and further along
the line £ =1, n =0 towards the saddle B. Then it moves along the arc BR and intersects the plane
6 =2 at a point Q in the vicinity of the point R. This is curve I in fig. 7.18. Note that the trajectory
cannot go out from B downward into the region 7 <0 because then it would have to intersect the plane
1 =0, which consists entirely of integral curves.

Now let the trajectory start below the surface M (curve II in fig. 7.18). In this case the point moves
over M but near A it turns left. It comes to the saddle B’ and then gets onto the plane 8 = 0 along the
curve B'R'". In the first case the phase changed by 2, in the second case it did not change. The phase
increment on the next turn depends on the mutual positions of the manifold M and the points Q and Q'

The arc B'R’ is obtained from BR by a shift in 8 of 2#. Therefore, points R and R’ have the same
coordinates ¢ and 7. The points Q and Q' lying in their vicinities are also close in ¢ and 7. This explains
the continuous form of f and g in the map (7.11).

The surface M intersects the plane 6 =0 along a line TS. An image of the whole line is the point R
(or R’). Formally the Poincaré map is not defined on TS because the trajectories go across two singular
points, which requires an infinite time. However, its definition can be completed by continuity. The line
PQ in fig. 7.14 is a portion of the arc TS.

From the qualitative picture described it is clear that as the initial point in the plane 6 = 27n comes
closer to the line TS the time of revolution will grow infinitely. Analysing the trajectories close to the
singular points enables us to determine the function T(e), where T is the time of return onto the
Poincaré plane and ¢ is the distance from the initial point to the surface M (the stable manifold of the
saddle A). Such an analysis also allows us to calculate the exponent a determining the peculiarities of
the arising two- and one-dimensional maps.

In order to obtain this information we should study the behaviour of the trajectories in the vicinity of
the points A and B (within the spheres S, and S; of small radius r in fig. 7.18). The problem is
simplified by the fact that for small r (though greatly exceeding £) we may consider a linearized system
instead of the initial problem. In refs. [159, 217] such an investigation was carried out, and it was shown
that

1 ( |/\1|> 1
=—(1+—-)In-.
T(e) A31 X In -

Thus the function 7(¢) has a logarithmic singularity. The calculations performed confirm it. In the
vicinity of the line PQ (see fig. 7.14) the functions f and g may be represented in the form

xn+1 =f(xn’ yn) =ﬁ) + A(xn’ yrz)[xn - fO(yn)]a ’
(1.12)
Yor1 =8(x,, ¥,) =8 + B(x,, y,)x, = %o(¥,)]",

where

a =min{| A A /A5, | Ay /A + [ A A 7A5A5)
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Forc,=7,c,= —6, k=1 we have « =1/2. The value of a near the singularity for f(x, y) with y =0
was obtained to be equal to about 0.51, which testifies to the good agreement between the numerical
results and the analytical estimates. From formula (7.12) an important qualitative conclusion follows.
For ¢, > ¢, with

_ (2 +1)k* +6k*+8
C, = — s
g 2¢,k*

the vertex of the arising one-dimensional map must be smooth, a >1; for ¢, <¢,, it is sharp. As we
could see when discussing one-dimensional maps, this may lead to quite different scenarios for the
transition to chaos. It also agrees with numerical results.

As has been mentioned above the projection of the trajectories onto the (£, n)-plane does not give a
complete idea of the geometry of the attractor in three-dimensional space. A portion of the integral
curve of the system (3.15) is drawn in the coordinates x' = £ cos 8, y' = ¢ sin 6, z' = in fig. 7.19. It is
put on a certain surface because the fine structure of the attractor cannot be seen on the scale of the
figure. The surface consists of two parts which are connected in the upper region; the point starts
moving towards the saddle A, then it moves to the right or left depending on the initial data. Having
gone past the saddle B it gets again into the upper part of the attractor. The right band stretches and
changes its orientation. The left part of the surface also stretches but does not change orientation.

Hence, it is clear that the attractor in this space may be represented as a Mobius band (the right
part) that is attached to the usual ring (the left part). Performing a turn along the right part of the
attractor the trajectory increases its phase by 27, and when moving along the left part it keeps its phase
constant,

Such a behaviour allows a symbolic description of the trajectory by comparing it to an infinite
sequence of symbols R and L. At the nth place there will be R if the trajectory moves along the right
part at the nth turn and L if along the left part. It appears that the topological methods that have been
developed for studying the Lorenz attractor [137] may be used here too.
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Now let us consider the qualitative characteristics of the attractor discussed. We shall observe the
values of the £-coordinate at successive intersections of the trajectory with the plane 8 =2mn. We
construct a histogram from the sequence {¢,} and normalize it so that the area below the curve is equal
to unity. The calculations show that the curve becomes smoother and then constant as the sample
length increases. The histogram constructed from N = 20 480 points is shown in fig. 7.20. The number N
depends on the interval £ chosen along ¢. The smaller the interval, the larger N for which the histogram
in fact stops changing. The same p(¢) was obtained for other initial data. This fact suggests that in
three-dimensional phase space also there is an invariant measure which defines the statistical properties
of all trajectories converging to the strange attractor.

A typical property of strange attractors is the sensitive dependence on initial conditions. The
existence of positive Lyapunov exponents in the solution under investigation testifies to this property.

The attractor of the system of equations (3.15) studied in this case (¢, =7, ¢,=—6, k=1) is
described by the following exponents: A, = +0.234, A, = —4.423, A, is close to zero within the accuracy
of the computations. These values of A, were obtained in the computations for different initial
conditions. Summing the exponents gives a mean value of £, A, + A, + A, = (J€/0€ + dnlon + 30/30),
which determines the rate of variation of the phase volume.

An important characteristic of the attractor is its dimension. By knowing the Lyapunov exponents
and using the Kaplan-Yorke formula we can estimate the probability dimension of the attractor
(dimension of the natural measure) [102]. In this case

D=2+ (A, + A,)/|A)| =2.05 . (7.13)

Since the value of D has a small fractional part it is natural to expect that the behaviour of trajectories
on the attractor is described to high accuracy by a one-dimensional map. This agrees with the numerical
results in fig. 7.17.

Knowing the trajectory of the system, we may estimate the probability dimension if we compute the
correlation exponent. Appropriate results are given in fig. 7.21. For the calculations a fourth-order
Runge—-Kutta method with step 7 =0.01 was used. The values of ¢ were taken as the coordinate in
{-space with step Ar=0.25. A sample length N =15000 was considered. Best results were achieved
when the attractor was put in ten-dimensional space. The brackets in the plot mark the part closest to

gut ) gue 950 952 g5k as56 §

Fig. 7.20
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linear. The calculated value of » =2.035+0.019 agrees with the estimate obtained by the Kaplan—
Yorke formula (7.13).

Let us stress that here the range of scales over which similarity can be observed is much smaller than
in the case of one- and two-dimensional maps. This is also typical for other systems of differential
equations.

Another quantitative characteristic of a strange attractor is the self-correlation function

b(1) = <§(T()fz(;;+; ’_”ééf)(?)z . {a) = tim = Oj a(w) dx

When b(t)— 0, t— = there is mixing in the system, and it shows that the process under consideration is
stochastic. The exponential decrease of correlations proves to be a most prominent stochastic property
[152].

Computing b(¢) requires determining average values over large portions of the trajectory. In ref.
[159] the length of such a portion was estimated, and the function b(f) was given for this attractor.
However, we may act differently: go over to a discrete analog of the distribution function B, (k), where
N is the sample length. Again we consider the sequence {£,}, where £, is the coordinate of the nth
intersection of the trajectory and the plane 8 =2mm, and the corresponding auto-correlation function
B, (k). Figure 7.22 shows the plots of By(k) and its logarithm. It is seen that on this interval | B, (k)|
(N =19456) decreases faster than const. X exp(— Ak), where A =0.0675.

In this case an important question is the relationship between N and the number of terms in By (k)
which can be computed rather accurately. It may be shown that the sums

1 ¥ 1 9. .
L=5 2 &bus L= 2 6118,
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prove to be associated with each other (here f is a continuous function with a single extremum). The
sum [, approximates the integral

fmax

1= | e omeras,

§min

in which the integrand quickly oscillates. The function f*(£) = f(f(: - - f(£))) has 2°* extrema, where
0<p <1, p =const. This follows from the form of f. For numerical integration it is natural to require
that there be at least s points for each extremum, so that N = s-27*. Hence, the number of correct
values depends on the sample length according to the logarithmic law

koo = Il) log,(N/s), s=4-6.

For N =19 x 2" the maximum k is of order 30.

The attractor considered corresponds to one point in the three-dimensional space of the parameters
¢, ¢,, k. The questions arise: Is it typical, and will chaotic regimes be observed for nearby parameter
values? In order to answer these questions it is convenient to consider the family of maps M, ,, = f(M,)
along a line. For M, we take the nth local maximum of the quantity py(t) = £'/*(¢). The maps arising on
the line ¢, =5 are shown in fig. 7.23. It is seen that they are close to one dimensional, have a sharp
vertex and contain noisy cycles of the type x> It may be expected that due to the sharp vertex chaotic
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attractors will exist on the whole interval of c,, and the largest Lyapunov exponent in this interval will
be positive. The calculations confirm this premise. In fig. 7.24 it is shown how the Lyapunov exponent
changes along the line ¢, =7 (for —6.4<c,<-5.2, A, =0.2).

Moreover, it can be verified that the two-dimensional maps generated by the system of equations
(3.15) for ¢, =7, ¢, = —5.25 and k =1 satisfy the hyperbolicity conditions. We shall again consider the
Poincaré section in the plane 6 =27n. It is convenient to introduce new coordinates by directing one of
the axes along the singularity (an analog of the line PQ in fig. 7.14). These coordinates are
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x= ﬁ [£cos(B~7y)+nsin(B—y)]-11.241/V 389

y= gni_y [£cos B+msin B—11.89/V389],

tgy=13, tgB=10/17, 7y, BE[0, w/2].

Near the singularity of the two-dimensional map we can verify the inequalities (5.13) analytically
when we know the exponent « [see formula (7.12)]. Beyond it (x < 0.054, x =0.056) calculations let us
estimate the norms of the functions appearing in relations (5.13) as

(aflox)"]|.=0.902<1; |ldg/ay|l.=1.15088x107><1;
(aflox) " (6g/ox)||, =7.43121 X 107 <0.0744; || 8flay]|, =2.41656 x 10~ < 0.242 ,

Substituting these values into inequalities (5.13) we may verify that they are all satisfied. Thus, in the
analysis of the stochastic properties of this attractor many results of the hyperbolic theory can be used.

7.4. Strange attractors in higher-dimensional systems

Studying systems of three ordinary differential equations shows that they represent complex
mathematical objects. They may show several scenarios of the transition to chaos as well as hysteresis,
intermittency, attractor crises, metastable chaos, and many phenomena studied by means of one- and
two-dimensional maps. However, to investigate some phenomena more complex systems have to be
used as simplified models.

Let us give two typical examples. One measures an average magnetic field if one deals with
large-scale long-time characteristics of solar activity. It is connected, in particular, with the changing
number of solar spots, which have regularly been observed since 1750 (fig. 7.25). It is known that the
average magnetic field varies with a basic period of 22 years. A special analysis shows that the field is
modulated by oscillations with a characteristic period of 57 years [220]. The variation of the number of
spots found by Wolf, W(¢), or the total area is shown in fig. 7.25. It is seen that here at least a
two-frequency regime is observed. There is every reason to believe that oscillations exist with a period
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Fig. 7.26

of order 360 years [221]. Besides, a global reduction of the solar activity (the Maunder minimum) is
observed.

Such a complex temporal behaviour suggests that the oscillations observed have a stochastic nature
and there is a strange attractor in the dynamic system that determines the solar activity [222].

Following refs. [223, 224] we shall approximately consider a convective shell of the Sun as a plane
layer of thickness 4. Let the z coordinate be perpendicular to the layer while the x and y coordinates lie
in it. The divergenceless magnetic field can be described by two scalar functions: the y-components of
the vector potential and magnetic induction,



T.S. Akhromeyeva et al., Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media 315
B =curl(A(x, z, t)e,) + B(x, z, t)e, .

The dynamo equations are a parabolic system for A and B with sources that are proportional to these
components and are determined by the gradient of the angular velocity of the plasma rotation and the
mean helicity - the quantity connected with the mirror symmetry of turbulent motions due to the effects
of Coriolis forces and inhomogeneity. Taking into account the effect of the magnetic field on the
helicity, the equations may be written in dimensionless form as

dA/dt=(a+ C)B + AA,
dBlot=D 3Aldx + AB , (7.14)
dClot=-vC+ pAB - q(a + C)B?,

where C is the helicity variation caused by the magnetic field.

The parameter D is proportional to the product of the sources, i.e. the characteristic values of the
angular velocity and the mean helicity, and inversely proportional to the square of the coefficient of
turbulent diffusion. It is the major parameter to determine bifurcations of the system (7.14). The other
parameters can be fixed from theoretical or phenomenological estimates.

By averaging the system (7.14) over z and involving only one harmonic in x we can obtain a system
of seven differential equations that connect three complex functions a, b, ¢ and one real one, c, [225],

i=-cga+(a+c)b+4ib*c, b=-b+iDa,
¢, = —uC, + p Re(ab*) — g[(a + c,)bb* + § Re(b’c*)], (7.15)
¢ =—wc+ pab — g[(a + c,)b* + bb*c].

For »,> v we may consider the system of three complex equations

i=-ga+tab+ch*/2, b=-b+iDa,
(7.16)
¢=—vc + pab — g(ab® + cbb*).

We emphasize that even for a qualitative description of the observations systems of more than three
real equations should be considered. The existence of two frequencies in the picture of the observed
solar activity gives reason to believe that the solution is located in the vicinity of the torus. Meanwhile
an invariant torus is usually observed in systems with at least four degrees of freedom.

Attractors becoming more complex as D increases in a system with only square terms g =0 are
considered in ref. [225] for p = —1. Dynamo models that lead to such equations are discussed in ref.
[226].

It was shown that as D increases the point (0, 0,0, 0, 0, 0) loses its stability, and a Hopf bifurcation
occurs. If D increases further the amplitude of the limit cycle grows and then a second Hopf bifurcation
(D=D,=<5.0) occurs. A second frequency w, appears, and an invariant torus arises. Then as D
increases still further, a three-frequency regime is observed in the computations. The situation differs
from the Ruelle-Takens scenario due to the system’s symmetry.
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In fact, egs. (7.16) can be simplified by going over to the variables
i i 2i 2
a=pe’, b=pxe’, c=ye™, &=p°, (7.17)

where p and 6 are real functions, and x and y are complex functions. It may be shown that the equations
for ¢, x and y do not depend on 6, which allows us to go over from (7.16) to a system of five real
equations. Singular points in this system correspond to points or cycles in (7.16), cycles to 2-tori, 2-tori
to 3-tori.

Then chaotic regimes appear. A typical form of trajectories of the system (7.16) is shown in fig. 7.26.

An analysis of the systems of equations (7.15) and (7.16) showed that they can describe three-
frequency, two-frequency or stochastic regimes. In any case a typical picture arises, and two basic
frequencies can easily be distinguished. Many stochastic solutions have the following property: a
trajectory may exist near the origin for a long time. Hence, the system (7.15) satisfies the requirements
necessary for a qualitative description of the phenomenon of the deep minima in the solar activity.

If we assume that the model (7.16) accurately describes the basic qualitative properties of the activity
modulation it may be concluded that phenomena such as the Maunder minima must be observed
further on.

Following eqs. (7.14) and assuming that the basic source of the generation of the magnetic field is
inhomogeneous rotation, we can obtain other finite-dimensional models of the solar dynamo [228]. In
the simplest case they reduce to complex generalizations of the Lorenz equations,

i=oy-—ox, y=Rx—x*2—y, Z=xy—-vz.

The quantity R here is proportional to D. Complex ordered and chaotic regimes in such a system were
considered in refs. [228]. In some cases as R increases, the Ruelle-Takens scenario is implemented here
too. Complex Lorenz equations may arise in many other physical problems [229].

Another example occurs in the theory of oscillatory reactions. After experimental investigations
were introduced [230, 231} the simulations of such phenomena began [232]. It turns out that the
mechanisms of the Belousov-Zhabotinsky, Briggs-Raucher and other reactions are rather complex.
These reactions may run in many stages with tens of substances involved. In spite of an improvement in
the experimental apparatus we can usually observe only a few degrees of freedom that characterize the
system [28].

However, it has been shown that these problems may be successfully solved for some biological
systems [233]. This lets us distinguish the most important from a variety of reactions to simulate
oscillations and to determine the coefficients in the appropriate equations. Unlike the models of
oscillatory reactions which are characterized by power nonlinearities, in these models sources of the
form f(x) = ax/(1 + bx) arise.

Although the dimension of the arising models is rather large (usually more than 10), they may be
used successfully for a description of the picture observed in experiments. It has proved that for the
models obtained an extensive class of stochastic regimes is typical [233].

8. From finite-dimensional systems to nonlinear media

We have discussed above some finite-dimensional dynamical systems. There are different types of
attracting sets in them — cycles, fixed points, invariant tori, strange attractors. In this connection some
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questions arise: Do these attractors have analogs in the partial differential equations which describe
nonlinear media? What is the applicability region for few-mode systems, which often represent
simplified models for the problems of partial differential equations? Is there quantitative or qualitative
agreement between their solutions?

The rigorous results available in this field deal with two limiting cases. In the first case, using
bifurcation theory it is shown that the existence and stability of solutions of partial differential equations
of a certain type can be established by analysing a finite-dimensional system. The small parameter here
is the deviation from the bifurcation point. Searching for the coefficients of the emerging system
appears to be a rather complex problem [84, 89]. Using another approach it can be shown that when
N =z N the solutions of the initial partial differential equations and N ordinary differential equations
obtained by the Galerkin method are close to each other in a certain norm. The value of N in such
estimates turns out to be usually rather large [234].

From the physical point of view a quite different situation is often of interest. The simplest model
(with p ordinary differential equations, p < N) is favoured which could be used to predict the behaviour
of the solutions for different types of initial data in a certain range of parameters. (The Lorenz system is
a typical example.) The use of such models is usually based on various physical considerations and
numerical results. It is important that an increase in the number of harmonics in a finite-dimensional
system would not lead to a qualitative change in its behaviour.

Unfortunately, the Lorenz system and many other simplified models emerging in hydrodynamic
problems do not possess this property [235]. An analysis of reaction—diffusion systems, however, shows
that the picture may be quite different here ~ there may not only be qualitative but also quantitative
agreement between the solutions of the initial problem and the simplest few-mode system. An example
of such a problem, which will be considered below in detail, is the behaviour of solutions of the
Kuramoto-Tsuzuki equation in the case of small spatial domains. This example will let us determine
what regimes in nonlinear media can correspond to various types of attractor of the simplified model,
and what its applicability region is; moreover, some general questions will be considered.

8.1. Self-similar solutions and simple cycles

Following refs. [102, 108, 217, 236] we compare the behaviour of solutions of egs. (3.15) and of
problem (3.12) as t— «. The numerical results for the partial differential equation for / = 7 (k = 1) are
shown in fig. 8.1. As initial data we use functions without spatial symmetry,

W,(x) = ( i cos(21rmx/l)> + i( i cos((2m + 1)7rx/l)) .

m=0 m=0

In the plane of the parameters (c,, c,) it is convenient to distinguish several domains where the
solutions have similar asymptotic behaviour. Above the curve ABC [whose equation is determined by
formula (7.8)] both systems have similar properties. In the linear approximation the spatially homo-
geneous solution (3.9) is stable here. In the system of ordinary differential equations (3.15) it
corresponds to the solution with £ =1, n=0. When crossing the line ABC it loses its stability, and a
new stable singular point with £ # 1 emerges. Therefore, as t—» we have §— const., n— const. and
86— const. The functions x,, x;, ¥,, ¥, in the system (3.14) vary according to a harmonic law.

For the partial differential equation we obtain in this range of parameters also solutions with
constant values of p,,, m=0,1,2,...and ¥,, m=1,2,.... Here
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Fig. 8.1. Types of asymptotic solutions of the Kuramoto-Tsuzuki equation in the region (/= ) for t—x; 1. the spatially stable homogeneous
solution; 2: the solution whose p, does not depend on time; 3: the periodic solution in which p,(r) and p,(r) determine a simple cycle; 4: p,(¢) and
p,(¢) determine a double cycle; 5: the even solution; 6: more complex regimes. Solid lines approximately indicate the boundaries between different

types of solution.

w= 2, (a,, cos(mmx/l) +ib,, cos(wmx/l)],
" 8.1)
a,=p,c0s¢,, b, =p,sing,, ¥ =¢ —¢.

It means that a self-similar solution arises in the problem under investigation. The following lemma is
valid [103, 108].

Lemma. Let W(x, t) be a solution of problem (3.12). If and only if p,(t) = const., ¥,(f) = const.,
n=0,1,2,..., does a self-similar solution exist of the form

W= R(x) expliot +ia(x)] . (8.2)

Thus, self-similar solutions correspond to singular points of the simplified system. The typical form of
the function u(x, t) (u = Re W) in such a solution is shown in fig. 8.2. It is seen that it can describe a
rather complex process in the course of which local extrema of the functions u and v appear and
disappear periodically; nevertheless the quantity R=(u’+ v”)"’*> does not depend on time and
u(x, ) =v(x, t + 7/(2w)).
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Fig. 8.2

It is natural to compare p,(f) and p,(f), which characterize the solution of problem (3.12), with the
values of £"%(t) and n'/*(¢) in the system (3.15). A remarkable peculiarity of the model is the good
quantitative agreement between these functions. A comparison between the parameters of the
self-similar solutions and the singular points given in refs. [108, 238] shows that, in this range of
parameters, the agreement is perfect up to a few percent. The lower boundary of the domain where the
asymptotic behaviour is determined by the self-similar solution (the curve QNP in fig. 8.1) is also close
to that existing in the simplified system (the curve QNP in fig. 7.12). A Hopf bifurcation occurs on this
boundary. A limit cycle is generated in the approximate system. In the initial problem the solutions
appear with functions p,(f) and p,(¢) which change periodically.

If for different initial conditions we have the same solution for the partial differential equation, in
which |W/| periodically depends on time, such a solution is called a cycle. We distinguish the functions
po(t) and p,(¢) in the solution. Here again it is convenient to use the notation S”, where » is the number
of revolutions which are made by the projection of the solution onto the (p,, p,)-plane in a period.

We can verify the validity of the following statement [236].

Lemma. Let the solution of problem (3.12) be such that
p,(t+T)=p (), n=0,1,2,...,
Y(e+T)=¥()+2mam,, m,€{0,£1,£2,.. .},

with p,# 0 for ¢ € [0, »). Then it may be represented in the form

W(x, t) = R(x, t) exp[i(wyt + o, () + a(x, 1))], (8.3)
where
R(x,t+T)=R(x,t), w,(t+T)=w/t),

a(x,t+ T)=a(x,t)+2mp, p€{0,x1,+2 ...},  w,=const.
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Thus, the Hopf bifurcation in problem (3.12) is connected with a change from self-similar solutions
of the form (8.2) to more complex solutions of the form (8.3), which contain two, in general
independent, frequencies.

A comparison of figs. 7.12 and 8.1 shows that the solutions of the two-mode system (3.15) and the
partial differential equation behave qualitatively in the same manner as the parameters c, and c, are
varied. In both cases the parameter plane is divided into similar domains in which the solutions are of a
certain type. The domain boundaries, however, are slightly displaced, which is natural: since the
solutions bifurcate on these lines the higher harmonics affect their position.

Above the transition to complex solutions (see fig. 8.1) the amplitudes and the periods of simple
cycles in the system (3.15) and in the partial differential equation differ not more than 10~15%. Below
the domain of complex solutions the periods of cycles are close to each other although the lengths are
several times different. This difference is due to the second harmonic [217, 236].

In the simplified model (3.15) the period of simple cycles is independent of the value of the
parameter c, over a wide range of values. This proves that the same law is observed in the initial
equation. The period is close to that predicted by the simplified system. It may be suggested that a
constant period is typical for many two-component systems in the vicinity of the bifurcation point.

Various authors who are engaged in investigations of dissipative structures note that the emerging
structures do not depend on many parameters and correspond to intrinsic properties of nonlinear
systems. Their independence of the initial data (“forgetting” details of the initial data {3, 13]) or
boundary conditions (localization effects [23]) was pointed out several times. Here we see a new type of
parameter independence of a process. The parameter ¢, determines the frequency of the oscillations of
the spatially homogeneous solution (3.9). Dissipative processes make that the frequency of the
modulation of the oscillations of the entire system (which is determined by the cycle period) does not
depend on c,.

8.2. Other self-similar and spatially symmetric solutions

We have considered several domains of the parameters where the simple cycles and the singular
points of a two-mode system can be compared with the solutions of a partial differential equation.
Decreasing [ results in an improvement of the quantitative agreement between these solutions.
However, even for / = 7 there are domains of the parameters which cannot be predicted by a two-mode
system involving only the zeroth and first harmonics. They show which types of the space-time ordering
can be typical for large [ in this and other distributed systems. Let us consider one such domain.

In the system (3.12) an interesting phenomenon may be observed. From initial data of a general
form without any spatial symmetry a change to even self-similar solutions of the form (8.2) [W(x, 1) =
Wl —-x,1), py,., =0, m=0,1,2,...] occurs. The domain where this takes place lies in the interval
0<c,=12. In fig. 8.1 it is denoted as the region of even self-similar solutions. Unlike most open
nonlinear systems where a spontaneous loss of symmetry occurs [3, 13] we can observe here
spontaneous appearance of symmetry. As t— = the solution has a symmetry which is absent in the initial
data. An even solution satisfies the condition of the absence of flow at the point x = {/2. Therefore, we
can obtain it by considering the asymptotic behaviour of solutions of problem (3.12) in a region twice as
short. As t— o the nonlinear system disintegrates into two similar noninteracting subsystems. More
complex symmetric solutions corresponding to disintegration into a larger number of noninteracting
parts may prove to be stable in regions with longer lengths.

An explanation for this phenomenon, based on a more complex three-mode system (involving
variation of the zeroth, first and second harmonics) was proposed in refs. [108, 217, 238]. A typical
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picture of the variation of the parameters of the self-similar solution with increasing c, is shown in fig.
8.3. Here the step in ¢, is 0.01; ¢, = —10, /= 7. The solid lines correspond to the solutions of the
three-mode system, the markers to the solutions of the partial differential equation. It is seen that they
agree well. When ¢, = ¢; the spatially homogeneous solution loses its stability, and the self-similar
solution emerges, to become even in the interval ¢ <c, <c7. An analysis of the stability of singular
points in the three-mode system enables us to determine ] and ¢}, and their coordinates determine
po(c,) and p,(c,) in this range of parameters with a high accuracy. These results agree well with the
values obtained for the partial differential equation.

There are analogs of the attractors of a simplified finite-dimensional model in the Kuramoto-Tsuzuki
equation. The question arises: Do the unstable points and cycles have infinite-dimensional analogs? The
answer is yes. Let us give some examples.

It turns out that there are infinitely many types of solutions with a spatial symmetry regardless of the
length /. In refs. [103, 237] the conditions were formulated under which some Fourier coefficients in the
solutions of problem (3.12) are zero throughout the entire process for 0 <t <. Let us put a sequence
of integers { L} in correspondence to the initial distribution W,(x) so that if n {L} then p,(0) = 0. In
other words, {L} contains all harmonics with nonzero amplitude (maybe not only them).

The following statements are valid.

Lemma 1. If the sequence {L} is such that for any integers m& {L}, n&{L} the condition
m*n&{L} holds, then all the Fourier coefficients in the solutions of problem (3.12) with their
number n & {L} are zero for 0< t <,

Lemma II. If the sequence {L} is such that:

(1) for all m€{L}, n&{L} the condition m + n & {L} holds,

(2) for all m, n Z{L} the condition m = n & {L} holds,
then all the Fourier coefficients in the solutions of problem (3.12) with their number n & {L} are zero
for0=t<w,

A sequence of the form {0, m,2m, . ..}, where m is any natural number, satisfies the conditions of
lemma I. From this lemma it follows, in particular, that only even solutions can emerge in the evolution
of even initial data. The sequence {1,3,5,7, ...} satisfies lemma II.
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But what will happen if the initial data corresponding to different sequences { L} are put in a domain
of given length? From the linear analysis of the spatially homogeneous solution (3.9) it follows that if

(rmil)< =201+ ¢,c,) /(1 + ¢}), (8.4)

a spatially inhomogeneous solution splitting the region into m similar noninteracting parts can emerge.
If m is sufficiently large the solution will tend to the spatially homogeneous solution (3.9), preserving its
spatial symmetry, as t—>. The larger /, the more different values of m satisfy inequality (8.4), and
hence, the higher the dimension of the simplified system imitating the properties of the original
problem.

In ref. [237] examples of solutions with different spatial symmetries are numerically constructed. As
a rule, they are unstable. However, solutions corresponding to a sequence {L} converge to the same
asymptotic symmetric solution regardless of the specific form of the initial data (only the type of their
symmetry is important).

Even the simplest two-mode system (3.14) has a finite-dimensional analog of odd solutions with
{L}={1,3,5,...}. It is the solution

p=Va1-Kk)13, ¢ =w=-3c,p /14— c k>, p,=0 (k=1),

which is unstable against perturbations with p, # 0. When / < 44r-5 the values of p, and w are in good
agreement with odd solutions of the partial differential equation [239].

8.3. Space—time order without analog in a two-mode system. The problem of constructing a complete set
of self-similar solutions

Comparing figs. 7.12 and 8.1 shows that the second domain of parameters in which the solutions of
the original problem and the simplified two-mode system are qualitatively different, is that where
c,— —. In the simplified system there is a stable singular point, while in the distributed system a
simple cycle (i.e. a solution of the type (8.3) whose projection onto the (p,, p,)-plane makes one
revolution per period) is stable. Its period slows down as c, decreases and becomes constant when
¢, < —400. The cycle family in this domain of parameters is shown in fig. 8.4. Here the solutions of the
original problem and the equation

W =W+ (1+ic, )W, —ic,|W|*'W (8.5)

turn out to be close to each other. In spite of the fact that the spatially homogeneous solutions of the
latter equation increase infinitely as t— o, its analysis may prove to be useful.

Since |W|~|c,|™"'* as ¢,— — in this parameter domain, p,(t) and p,(t) are close to zero. An
analog of such a solution in the two-mode system must be near the origin of the coordinates, where the
{2 value is strictly positive [see formula (7.6)], and hence there are no stable cycles. This explains
different behaviour of the solutions of the original problem and of the simplified model.

Calculations show [103] that when ¢, =3, ¢,— —» and /=7 the first three to four Fourier
coefficients of the function W are comparable in magnitude. To describe such solutions in eq. (3.12)
one should take at least four harmonics into consideration.
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In ref. [240] a simplified two-mode system for eq. (8.5) was studied in detail. The stochastic regimes
and the ordered solutions of various types were obtained numerically. It is possible that they have
analogs in eq. (8.5). So it would be interesting to investigate this question.

We have discussed above how the solutions of problem (3.12) change for different c, and c, when the
domain length is fixed. In many cases, however, it is important to know how the solution changes with a
variation of /. Analysing such a problem for stationary dissipative structures has resulted in the
discovery of the so-called zone structure. It has been proved that as the domain length increases
structures may appear and disappear (in the last case the spatially homogeneous solution becomes
stable again) [241]. Such effects were discovered in investigations of the heterogeneous-catalytic wire
reaction model,

6,=D,0,, —gb + f(1-n)exp(8/(1+ Bs)),
n,= D,m,, —vn+ k(1 —n) exp(6/(1+ B6)) .

Here 0 characterizes the temperature, and 7 the conversion depth.

Examples in which the solutions of problem (3.12) change as [ increases were given in refs. [102,
242]. The numerical results presented in fig. 8.5 allow us to estimate the boundaries of the range in
which the two-mode system is applicable. It is shown how the parameters of self-similar solutions [p,(f)
for t— =] behave for different /. Here ¢, =2, ¢, = —1, and the / values for which the calculations were
performed are marked by the vertical dashes. When / = 7V'5/2 =5 the spatially homogeneous solution
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loses its stability, after which the asymptotic behaviour is determined by a self-similar solution of the
form (8.2). In the beginning the zeroth and first harmonics have maximal amplitudes. Here the
simplified model (3.15) describes the behaviour of the system well. Then the first harmonic decreases,
but the model (3.15) can be used by putting k =2m/l. From /=18 the number of harmonics with
comparable amplitudes quickly increases. For /~22 a complex oscillatory regime can be observed in
the system. The question about simple efficient models in this parameter domain remains open.

We have discussed above the analogs of the simplest attractors of dynamic systems in problem
(3.12). However, in dynamic systems different attractors may co-exist for the same values of the
parameters. It is natural to assume that in nonlinear media several types of ordering can simultaneously
exist as well.

One or other of them will be observed depending on the initial data. Experiments with Couette—
Taylor flow showed that more than a hundred different stable regimes may be observed for certain
parameter values. Among them are periodic and multi-frequency regimes, and a few types of chaos
[32]. Therefore, the question arises: What is the complete set of dissipative structures that are possible
in a given distributed system? To answer this question one needs to construct a whole set of solutions of
a certain type for the equations under investigation, and then “the selection rule” must be established,
i.e., the question of the stability of each solution should be settled. (The important problem which
seldom can be solved is determining the regions of attraction of different solutions.)

An example of nonlinear dissipative systems for which the above questions are settled is provided by
media described by eq. (2.1). In this case only unbounded solutions or stationary structures can exist as
t— . The stationary structures are determined by the solutions of the equation

T, +0Q(T)=0, (8.6)

which is a simple conservative dynamic system (that describes the motion of a material point in a given
potential). As we have already mentioned, the question about the stability of different solutions can
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also be settled analytically — all the solutions with several extrema at an inner point of the segment are
unstable [29].

A complete set of self-similar solutions of the form (8.2) can be constructed for the Kuramoto-
Tsuzuki equation when c, = c,. In ref. [109] it was shown that the equation for the function R(x) could
be reduced to the form (8.6), and by using elliptic integrals analytical solutions could be obtained.
However, searching for all the solutions of the boundary value problem requires special algorithms. To
solve this problem a graphical method was proposed in ref. [239]. Numerical calculations showed that
here [as in the system (2.1)] the simplest solution in which the function R(x) has a minimum number of
extrema proved to be stable [239].

It would be very important to construct numerical algorithms or approximate analytical methods to
enable one to build a full set of stationary structures in reaction—diffusion systems and all the
self-similar solutions of the Kuramoto-Tsuzuki equation in domains of a given length. However, at the
present time this problem does not seem to be solved yet.

The equations determining self-similar solutions of various partial differential equations may prove
to be rather complex and describe stochastic regimes. In this case we talk about spatial chaos in
nonlinear systems.

An example of such a chaos is given by the solutions of the Kuramoto-Sivashinskii equation (3.21)
of the form

ux, 1) =-ct+v(x).

Their configuration is determined by the equation

— — =" —

3 2
:); gi 2 y?’ —o<x<o (y=dv/dx). (8.7)
x

In ref. [243] it is shown that for small ¢* there are a periodic and an infinite set of quasi-periodic
solutions, while for large ¢ the solution is unique and has a conical form. Numerical computations for
intermediate values of ¢” suggest that below ¢’ = 1.6 for every speed ¢’ there is a continuum of odd
quasi-periodic solutions or a Cantor set of chaotic solutions wrapped by infinite sequences of conic
solutions.

Spatial chaos may arise in dissipative nonlinear media where sources and sinks are periodic functions
of a spatial coordinate, for example, in the system described by the equation

A =uA+A, — A +vsinkx. (8.8)

If v =0 such media have trigger properties, and the elementary structures are described by the formula
D(x) = +V/ tanh[(}4) 4]

A simplified finite-dimensional model may be proposed by assuming that when » # 0 the solution will

represent a set of N elementary structures interacting with each other according to a certain law. The

evolution of the system will be described by N ordinary differential equations connecting the
coordinates x,, . .., x, of the elementary structures [244].
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The existence of terms with fourth and higher derivatives may also lead to the emergence of
stationary chaotic solutions. Such solutions, for example, were discovered in the equation [244]

A=pA+A -A-A (8.9)

xxxx °

Creation of a chaotic spatial structure in many physical problems is of great interest. The classical
problem of solid state physics is the problem of electrons passing through a crystal lattice with a
periodic potential. The result of the considerations is that the electron moves like a wave whose
parameters depend on the crystal characteristics. Now let us assume that we have managed to create a
chaotic irregular lattice. The remarkable result is that in this case the electron motion is qualitatively
different. It proves to be localized in a certain domain of space. The irregularities may have very small
amplitude. It is important that they should be chaotic. This phenomenon called Anderson localization,
has very great theoretical and applicational importance [245].

Another physical problem is connected with the study of and the search for so-called *‘turbulent
crystals” [247] or quasi-crystals. The simplest example of such a crystal is a lattice at the nodes of which
atoms of several substances alternate in a chaotic manner. Examples of figures which can fill a plane in
an aperiodic way have been known in modern geometry [246]; however, crystals of such a kind have
been discovered only in recent years [248].

Ideas about chaotic spatial structures have recently been used more and more extensively in
astrophysics, the theory of elementary particles, and the theory of magnetism. Therefore we may expect
that investigations of nonlinear dissipative media where chaotic spatial structures can exist will also
experience progress.

Let us note that, when studying spatial chaos in eqgs. (8.7), (8.8) and (8.9), we meet conservative
dynamic systems [in eq. (8.8) with periodic external perturbation]. This enables us to use many results
obtained in investigations of spatial chaos in Hamiltonian systems [156]. Further investigations will
seem to allow a few basic general scenarios of the development of spatial chaos.

Now we shall turn our attention to a class of problems connected with analysing space-time order.
At the present time the studies of these problems have only begun. Analysing self-similar solutions
leads us to the necessity of studying boundary value problems for systems of ordinary differential
equations or for elliptic equations in the multi-dimensional case. However, some nonlinear equations
have particular solutions whose construction proves to be more complex. The solutions of Kuramoto-
Tsuzuki-type equations are an example. Similar problems arise in searching for breathers in systems
close to integrable, i.e., solutions which are close in form to one or several solitons whose amplitude
periodically varies with time [250].

In this chapter we have discussed the example of a change from a simple few-mode system to a
partial differential equation. The change has proved to be very efficient since the influence of the
harmonics not involved in the simplified model is weak (in our case it is connected with the small length
of the domain). The basis for the finite-dimensional model has been obtained from the solution of the
linearized problem.

However, recently some interesting problems have appeared where the change to finite-dimensional
systems is made in a different manner. In these cases nonlinear media are described by partial
differential equations which are close to fully integrable systems [35]). Equations of such a kind arise, for
example, in nonlinear optics. As the basis a set of solitons (solutions of the nonlinear equation) is used.
Finite-dimensional systems of low dimension are also very efficient here. We shall consider these
problems later on when discussing stochastic regimes in such systems.



T.S. Akhromeyeva et al., Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media 327
9. Diffusion-induced chaos and other stochastic regimes in nonlinear dissipative media

In recent years it has been shown that for many dissipative systems it is typical to have, beyond the
temporal or spatial stochasticity discussed above, a more complex spatial-temporal chaos. It has turned
out that in reaction—diffusion systems with the simplest oscillatory kinetics stochastic regimes may exist.
Since in this case a concentrated system behaves in a regular way and its complicated behaviour is
connected with the effect of the diffusion terms, the phenomenon has been called diffusion-induced
chaos. Now it arouses great interest for several reasons.

Reaction-diffusion-type models where the concentrated system shows self-oscillation (for example,
has one or more limit cycles) are widespread. They appear in the analysis of oscillation reactions, in
some ecology problems, or in physical models. In each case experiments for the investigation of
diffusion-induced chaos would be very important. They could lead to the discovery of a new class of
turbulent regimes.

The theoretical (and, possibly, experimental) study of diffusion-induced chaos appears to be simpler
and easier than an analysis of few-mode chaos in many hydrodynamic systems. In most hydrodynamics
problems multi-dimensional effects prove to be highly important. Because of this circumstance as well
as the difficulties of numerical simulation of turbulent flows an assessment of the results in this field
made ten years ago is still valid: *“. .. for the complete Navier-Stokes equations not only do we not
know a single turbulent solution but we are not even aware if one exists. What a stochastic attractor
must look like is also unclear” [251]. Even when we know that in a given experiment the turbulent flow
is determined by an attractor of low dimension it is usually impossible to construct simple finite-
dimensional models that would describe the phenomenon.

The situation proves to be different in the case of diffusion-induced chaos. It has been shown that
there are some simple and efficient dynamic systems describing spatial-temporal chaos in reaction—
diffusion-type systems. At the same time eq. (3.12), which can describe diffusion-induced chaos, is a
simplified model of some hydrodynamic systems [96, 98], and an analysis of this phenomenon may
possibly enable us to obtain some insight in hydrodynamic turbulence.

An analysis of diffusion-induced chaos proves very useful from the mathematical physics point of
view. The solutions of most partial differential evolution equations that have been studied by now
behave in a rather simple way; as t—  they converge to stationary, time-periodic or other self-similar
solutions. However, when nonlinear mathematical models, whose number quickly grows, are analysed
we frequently encounter stationary stochastic regimes. Diffusion-induced chaos is a prototype of such
regimes.

9.1. Diffusion-induced chaos in small regions

In the first numerical calculations of problems (3.8) and (3.21) (or their analogs with periodic
boundary conditions) complex aperiodic behaviour of the solutions was observed as well as in a study of
the Brusselator model. It allowed one to consider diffusion-induced chaos (or diffusion-induced
chemical turbulence) as a new type of stochasticity in chemical reactions running in distributed systems.

We distinguish two types of such regimes: phase and amplitude turbulence. If we observe the motion
of the point u(x, t), v(x, t) over the (u, v)-plane it turns out that in the first case for different x the
trajectories are close to the same limit cycle which characterizes the concentrated system. However,
their phases (the point positions on the cycle) may chaotically change when the spatial coordinate x
varies. To describe such a situation it is natural to use the Kuramoto-Sivashinskii equation (3.21).
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For amplitude turbulence the trajectories of each point u(x, t), v(x,t) over the (u, v)-plane for
different x may essentially differ and behave chaotically. In a certain range of parameters this type of
diffusion-induced chaos can be described by eq. (3.8).

Further analysis of stochastic regimes in distributed systems resulted in the formulation of several
questions.

How is the phenomenon of diffusion-induced chaos connected with strange attractors of dynamic
systems of low dimension? “An important and as yet unsettled problem is to find the connection
between diffusion-induced chaos and known types of chaos in systems with several degrees of freedom”
[104].

What is a scenario for the transition from ordered regimes to chaos when the system parameters
change?

What numerical algorithms are efficient for investigating such regimes?

It is natural to begin the discussion of these questions with the simplest case of small regions.

Earlier the simplest attractors of two-mode systems were compared with one- and two-frequency
regimes in eq. (3.12) for /=7 (k=1) (see figs. 7.12 and 8.1). Let us extend this comparison and
consider more complex solutions. According to refs. [103, 217, 253] we consider the solutions of
problem (3.12) for ¢, =5 change. We shall increase the value of ¢, by moving towards the region of
diffusion-induced chaos from below. By analogy with the two-mode system it may be expected that here
period-doubling bifurcations occur.

An ideal way to determine a scenario for the transition to chaos would be to find the whole
bifurcation diagram. However, this usually cannot be done while studying partial differential equations.
Therefore, we search for different types of ordering that are typical for one of the known scenarios of
the transition to chaos, and the simplest finite-dimensional models that describe the picture under
observation.

For ¢, =5 and ¢, = —10.0 the simple cycle S' determines the asymptotic behaviour of the solutions of
the partial differential equation. As the parameter c, increases the stable cycle S* and then S* appear
(fig. 9.1). We recall that the cycle in problem (3.12) is a solution of the form (8.3). For ¢, = —7.4 there
is a stable cycle S°, and for ¢, = —7.35 S'° appears. We shall again look for the values of local maxima of
the function p,(t). We plot the values of the nth maximum, M,, along the abscissa and of the (n + 1)st
maximum, M, , along the ordinate, where n=1,2, . ... The points (M,, M, ) lie with high accuracy
on continuous unique curves, shown in fig. 9.2. Therefore, we may use a family of one-dimensional
maps

M, ., =fM,, c,) 9.1

as a simplified model that describes the picture we observe.
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From fig. 9.2 it is seen that these one-dimensional maps have a smooth vertex, and the amplitude of
the function grows as c, increases. The family of maps (4.2) has the same properties. Transition to
chaos in (4.2) occurs as a result of a cascade of period-doubling bifurcations. Then an inverse cascade of
period-doubling bifurcations is observed which leads to a sequence of transitions y°” — x". Smoothness
of the vertex brings about the occurrence of a “window structure” —in any vicinity of chaotic regimes
there are stable cycles. After the first cascade stable cycles appear that do not belong to the type S It
may be expected that the properties of this family of maps will be close to those of the family (9.1).

The computations carried out in refs. [217, 218, 253] show that as c, increases in the partial
differential equation the noisy cycles x*, x* and y' successively appear. Due to the limited accuracy of
the computations solutions with ~3 x 10° different maxima are considered as aperiodic. The map f
[M,,, = f(M,))] for one of the solutions of the type x° is shown in fig. 9.2 (c, = —7.25). Between
aperiodic solutions stable complex cycles exist indeed; one of them is shown in fig. 9.3.

The fact that a map which is close to one-dimensional can be distinguished is suggestive of the low
dimension (of order 3 + ¢, £ <1) of the attractor in the initial problem, and it greatly simplifies our
investigation. In order to construct the function f, 100-300 elements of the sequence {M,} are
sufficient. To obtain the simplest stochastic characteristics with the same accuracy much larger samples
are needed. [For example, in this case constructing the histogram with step ~10° would require ~10
local maxima of the function p,(¢).] Using the results of the theory of one-dimensional maps we may
forecast different types of ordering and stochastic regimes in the family of maps (9.1). It is natural to
search for them in the initial problem for nearby values of the parameter. (We recall that the points of
{M,, M, } do not lie, in fact, strictly on a curve; they are located in its vicinity. Besides, the function
(9.1) is known only approximately because the sample is finite.)

So far we increased the parameter c¢,, moving towards the region of complex solutions from below.
Now we shall act differently and decrease c,, moving in from the ordered regimes above. The family of
one-dimensional maps that appear in this case is shown in fig. 9.4. We have seen that in families with a
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sharp vertex the scenario of the transition to chaos may be very complex. In our computations for
¢, = —4.1 and c, = —4.16 the respective stable cycles S' and S* were observed; however, the transition
to stochastic regimes was not studied in detail. The stochastic regimes that appear later on generate
one-dimensional maps. First the function f has one sharp maximum as in the case of a two-mode system
(see fig. 7.23).

Hyer

124

7,4




T.S. Akhromeyeva et al., Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media 331

As ¢, decreases in the simplified model (3.15) the maps remain continuous and unique, and have
only one sharp maximum. In the partial differential equation the function f behaves in a more complex
way. If we decrease c, the solution changes so that the function f will first have a minimum (c, = —5.3)
and then another sharp maximum (c, = —6.0). (A similar phenomenon was observed in some systems
of ordinary differential equations and specifically in the Lorenz system for certain values of the
parameters [137].) For c, = —6.0 the uniqueness disappears, and the solution of the partial differential
equation is still aperiodic. Then the reconstruction occurs once more, after which the function becomes
smooth and unique (fig. 9.2).

Now we consider the parameter range ¢, < 1.2 (region III in fig. 7.12). In the two-mode system we
can observe here aperiodic solutions in which the function M, (M,) does not determine one-
dimensional maps. It turns out not to be due to an increase of the dimension of the attractor. Let us
explain the situation.

When systems of N ordinary differential equations are investigated the location of the intersection
points of trajectories and a crossing surface as well as the corresponding (N — 1)-dimensional maps are
often considered [in the system (3.15) the local maxima of p, lic on the surface g, = 0]. If the surface is
chosen wrongly, some turns will not intersect it while others may intersect it several times. In this case
the properties of the map and the original equations are essentially different.

Solutions of the system (3.15) in the given parameter range have, in fact, such a form that on some
turns the function p,(f) achieves a local maximum several times. (The reason is the appearance of a
stable singular point on line EF [217].) If we take this fact into account and throw away “spare”
elements from the sequence {M,} the remaining points will determine a one-dimensional map. A
similar picture is observed in the partial differential equation.

Figure 9.5 shows a typical aperiodic solution projected onto the (p,, p,)-plane in the considered
parameter range. It is seen that on different turns py() has a different number of maxima. For some
values of the parameters the points {M,, M,,,} fill the whole parts of the plane, for example, as is
shown in fig. 9.6.
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Some other scenarios of the transition to chaos may be implemented in eq. (3.8). In ref. [242] the
Cauchy problem (—% < x <) is considered in detail for eq. (3.8) with initial data in the form

W(x,0)=1+0.2 cos(gx) 9.2)

(which is equivalent to the second boundary value problem with the condition that flow is absent on the
boundaries of the interval [0, 7/q]).

The behaviour of the solution was investigated for +— « depending on two parameters c, and ¢
(¢, = —c, =1/c,). Putting ¢, = 0.25 and decreasing q (which is equivalent to increasing the length of the
region) the authors observed the appearance of a limit cycle as a result of a Hopf bifurcation (in the
variables p,_; in the original variables a two-torus appears from the limit cycle), then the appearance of a
two-torus (a three-torus in the original variables) and a chaotic regime.

In this work the solution was processed in various ways; however, the following approach proved
most successful. The quantity |W(x,?)|” was expanded in a Fourier series, |W(x,1)|’=
L, a, (t) cos(mgx). Then the behaviour of the points A, A,, ... such that a;=0.01 and da,/dt>0
was considered on the trajectory (an analog of the Poincaré section in an infinite-dimensional system).
The point H was chosen in the (a,, a,)-plane and a reference system was introduced such that it

allowed comparison between the projections of the points A,, A,,... onto the («,, a,)-plane,
My
7,7+
r
72z
72 a7 4,
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A, A,,...,and the sequence of angles 6,,6,,. ... Then we constructed the maps
0,.. = F(6,) . (9.3)

It turned out that the function F determined a map of the circle onto itself with high accuracy.

Such maps appear in the second boundary value problem (3.12) too if we again distinguish local
maxima of p,(¢) and plot M, ., = f(M,) for sufficiently large regions [103, 217]. A typical picture in this
case is shown in fig. 9.7 (¢, =4, c,= —4, I= 7/0.51). It is natural to choose the point H within the
torus section.

In ref. [242] it is shown that the transition to chaos in a partial differential equation, as in the circle
map (5.24), is caused by the fact that for a certain value of ¢ the map (9.3) becomes noninvertible [178,
179].

Diffusion-induced chaos in eq. (3.12) was studied in detail in ref. [254]. Here initial conditions of the
form (9.2) were considered, the value of 1/c,=c,=—c,=4 was fixed and the value of g was
decreased. It was shown that in this problem bifurcations connected with the loss of symmetry or with
the interaction of symmetric solutions were important too. Such a mechanism by which complicated
solutions arise is also of importance in the two-dimensional analog of eq. (3.8) [103, 217]. Below we
shall consider it in more detail.

In ref. [254] the standard technique for computing the Lyapunov exponents [197] was employed. The
partial differential equation was replaced by a finite-dimensional system; therefore the methods
developed for ordinary differential equations could be used. It was shown that diffusion-induced chaos
in the partial differential equation in the considered range of parameters was characterized by positive
Lyapunov exponents. (Note that these computations require a high accuracy because not a single one of
the calculated positive Lyapunov exponents exceeds 0.05.) For example, for ¢ =0.95 the largest
Lyapunov exponents were A, =0.0431, A, =0.001 12, A, =0.00048, A, = —0.909, while the dimension
was d; =3.0474.

Remark. Questions dealing with computational techniques used for the investigation of diffusion-
induced chaos are important, and the basic sources of information are numerical experiments.

A purely implicit difference scheme with a second-order approximation of the boundary conditions
[255] was used in refs. [108, 217]. (In these problems the approximation of the boundary conditions
turned out to be very essential [238].) With the nonlinearity involved a simple iteration method was
applied, while the three diagonal matrix algorithm [255] was used for solving the linear system.

For the problem under investigation we usually need rather long computation times (strongly
dependent on ¢, and ¢, and quickly increasing with increasing region length), so that the system could
achieve a steady regime. The choice of steps in time and space usually requires test computations. The
Galerkin method turns out to be very efficient — a good approximation to the equation requires a small
number of harmonics. At the same time the errors introduced into the solutions by the difference and
the spectral approximations turn out to be different. (In the first case the symmetry of the solutions of
the original equation is not maintained, and this fact is very essential in an analysis of unstable spatially
symmetric solutions.)

In refs. [242, 254] a pseudospectral method based on a fast Fourier transform algorithm was used. In
the first case 64 harmonics were taken, in the second case 32. A system of ordinary differential
equations was solved by the predictor—-corrector method [20].
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9.2. Chaos in systems with transport

Let us consider one generalization of the Kuramoto-Tsuzuki equations. In refs. [256-258] a
phenomenological model of so-called “open flows” (such as flows in tubes, channels, etc.) is proposed.
It is given by the equation

‘/}1 =ay - U‘px + bl/lxx - CI‘PW’ ’ 0<x<w > w(O’ t) = E(t) ’ 'ﬁ(x, 0) = ¢0(X) ’ (94)

where &(¢) is weak random noise; a = a, +1ia,, b =b, +ib, and c = ¢, + ic, are complex coefficients,
while v is a real coefficient; all coefficients are supposed to be piecewise but may be different in
different regions.

For ¢ =0, &(t) =0 in the Cauchy problem with —o < x < the solution is determined by the explicit
formula

Y(x, t)= (ZTE;—I‘FI‘)E _[ dx’ ¢ (x") exp[—(x — vt — x")/4bt] .

From the above formula it follows that three types of behaviour of the solutions of the linear problem
are possible as t— oo,

1. a, <0. The solution here is absolutely stable; |y (x, £)]— 0, uniformly in x.

2. a, - v°b,/(4|b|*)>0. The solution is absolutely unstable, (x, {)— = at each point x.

3. a, - v’b,/(4b|*) <0, a,>0. The solution is spatially or convectively unstable.

In case 3

lim |9, )] >0, lim [y(X + vt, )] >,

for some value v’ and fixed arbitrary values of x and X.

If in problem (9.4) there is a region on the left where the solution is spatially unstable, the weak
noise is of importance. When it is absent y(x, t)— 0 as t—  at each point. In the presence of noise
right-running waves are generated whose amplitude grows with time. When the amplitude [¥(x, ¢)|
becomes sufficiently large, the nonlinearity becomes essential, and a chaotic regime develops. Numeri-
cal calculations show that in spite of the complex form and aperiodicity of the solution ail the Lyapunov
exponents may be nonpositive [258].

Describing such regimes requires the introduction of new quantitative characteristics of chaos, in
particular, the velocity-dependent Lyapunov exponents A(v', x,, x,),

, 1 L'y x, x,, 1)
MV’ %y, %) =lim ln‘l(v', X, %0017
xytu't

1/2
L', xq, Xy, t)E( f [dur(x, t)|2dx> ,

X1+U t

where d¢(x, t) is the solution of the equation that describes the evolution of a small perturbation
dy(x,0) in the region (x,, x,); it is an analog of the equation of variations.
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The calculations presented in refs. [256, 257] show that chaotic space-time regimes of different types
are possible in nonlinear dissipative media with transport (v #0). Experimental investigation of such
behaviour in open systems would be very interesting.

9.3. Few-mode chaos in a hydrodynamic problem

Above we have discussed diffusion-induced chaos that is described by the Kuramoto-Tsuzuki
equation. Such regimes seem to be typical for many reaction—diffusion-type systems and some
hydrodynamics problems. The stochastic regimes play an important role in other dissipative media too.
It appears very helpful to use the ideas developed in the study of dynamic systems of low dimension.
Consider the following example.

In the literature it has repeatedly been mentioned that the Lorenz system is not applicable to the
physical situation for whose description it was proposed because an increase in the number of
harmonics qualitatively changes the behaviour of the solutions depending on the parameter. However,
it has been shown that the same differential equations may serve as an efficient model in other
problems, in particular, in laser physics [13]. It is of interest to investigate nonlinear media and physical
systems where the properties of chaotic regimes prove to be like those in the Lorenz model, which have
been studied in detail.

One such system, called a thermosyphon, was proposed in ref. [259]. The thermosyphon is a torus
filled with an incompressible fluid and mounted in a vertical position. Gravity acts in the vertical
direction (fig. 9.8). Such systems are interesting in terms of some engineering problems arising in
energy technology.

The fluid in the thermosyphon is heated from below and cooled from above (the wall temperature
varies as T = T, + W cos ¢). The fluid density linearly depends on the temperature, the fluid velocity is
determined by the Navier-Stokes equation

Juv

3;+(v-V)v=—l Vp +[1+8(T, - T)]g + Wv,

d,
and the temperature distribution by the thermal conductivity equation

aTIdt +v-VT=xV°T.
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These equations are studied by the Galerkin method (in the simplest approximation it yields the Lorenz
system). A series of statements about the properties of the ensuing systems of equations are proved.
The calculations show that in this case increasing the number of modes does not change the scenario
of the transition to chaos. It remains the same as in the Lorenz model. The quantity W may play the
role of a control parameter.
Regardless of the number of harmonics chaotic regimes are well described by one-dimensional maps
like those in the Lorenz system.

9.4. Spatial-temporal chaos in systems close to an integrable system

Stochastic spatial-temporal regimes are typical for a number of nonlinear optics problems. A large
class of such nonlinear media is considered in the reviews [78, 260]. Their specific feature is that they
are close to a completely integrable system - the cubic Schrodinger equation. The equation itself may
be reduced to a certain linear equation by the inverse scattering method, and its solution in an
unbounded region for t— « is a set of solitons. The appearance of sources and dissipative terms in such
equations can lead to a very complex spatial-temporal behaviour of the solutions.

In accordance with ref. [78] we discuss one physical system of such a type. We consider laser beam
propagation through a ring resonator filled with matter with a nonlinear coefficient of refraction (fig.
9.9).

The electric field of an incident wave may be represented in the form

E,=A(x)e® " +ce.,
and the field in the ring resonator in the form
E = F(x, z, t) exp(ikz — iwt) + B(x, z, t) exp(—ikz ~iwt) + c.c.

Using adiabatic elimination of the atomic variables [13, 78] and asymptotic methods we may obtain an
equation for the wave amplitude B in the form

.0B 21 4B <
2154‘?—&—!‘*")'[41

3*B azB>
= + 2= |+ BLN(BB*)B=0, 9.5
é)x2 (9y2 B 1 ( ) ( )

where N(I) is a function determined by the properties of the nonlinear medium. Usually N(I) =
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—1/(1 + 2I) (saturable nonlinearity); for small I it becomes the “Kerr nonlinearity” N(I)=~1+2I. In
this case eq. (9.5) transforms to the cubic Schrodinger equation.

If the amplitude of the incident wave is independent of time, the quantity ¢ — z/c can be replaced by
an integer index n which indicates how many times the wave passed through the ring resonator. Then
we obtain the following problem:

B, (x,0)=VTA(x)+ Re**B,_,(x,¢{=2z/L=1), B,=0. (9.6)

The coefficients R and T, which are less than unity, are determined by the resonator properties, and the
coefficients B,(x, {) change, when { varies from 0 to 1, according to the equation
2iB,, +y(B,, + B,,,)+BN(B,B;)B,=0. (9.7
This problem is equivalent to the infinite-dimensional map B,(x,0)— B, ,(x,0), which indicates how
the amplitude B changes after every passage through the resonator.
In the plane wave case when there is no Laplacian in eq. (9.7) it can be solved explicitly, and the
problem is reduced to investigating a two-dimensional map of the complex plane into itself,

B,,,=a+ RexplikL +iBN(B,B*)/2|B,, B,=B,({=0).

In this map the coefficient R* <1 is responsible for the contraction of the phase volume, a for the
transport, and the exponent for rotation. It is clear that in such 2 map there may occur fixed points,
cycles, or chaotic attractors. The involvement of various instabilities leads to an increase of the
dimension of the map.

Two-dimensional maps arise also in the case when the spatial profile is close to a soliton solution,

B=G,(y, {4, y) = S(Ay, ) 10201

where S(6, A) is a real even solution of the equation
1 2
Sge =S+ F[1+N(S Ns=0,

tending to zero as #— x; A determines the soliton amplitude and width, and y the phase. It may be
expected that after each passage through the resonator the form of the solution will remain the same
while the parameters y and A change. Instead of an infinite-dimensional map it yields a two-dimensional
map (A,, ¥,)—= (A, ¥,.1)- (Its specific form is given in ref. [78].) Interesting more complex patterns
of spatial ordering are observed when the characteristics of the incident wave or the system parameters
are varied. The existence of solutions close to solitons proves very useful in these cases. It helps to
describe complex processes in nonlinear media with the aid of dynamic systems of low dimension.

Numerical experiments have shown that in ring resonators where the intensity of the incident wave A-
is constant the transition to chaos may be connected with a cascade of period-doubling bifurcations with
intermittency, or with the Ruelle-Takens scenario [261].

Complex cycles and stochastic regimes were observed also in a ring resonator with absorption [in this
case eq. (9.7) would include dissipative terms] when the amplitude of the incident wave was modulated
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Fig. 9.10

in time, A(t) = A, L, sech(t — nt,) [99]. The energy losses and the pumping in the ring resonator were
determined by the boundary conditions while the nonlinear medium could be described by integrable
equations. It is interesting, however, to consider nonlinear media which are close to completely
integrable ones and where there are dissipative processes and sources explicitly dependent on time.
Such is, for example, the sine-Gordon equation with an inducing force, and damping,

0, — ¢, tsing=¢[—ap + Csinwt], 0<e<l,
(9.8)
ex+ L, )=¢(x,1), o t=0)=¢,(x), ¢ =0)=0v,().

In ref. [262] it was discussed how a stochastic temporal regime emerged and how the spatial ordering in
the system changed as the amplitude of the inducing force I' increased. For L =24, ¢ =0.1, ea =0.04,
w = 0.87 and with increasing eI, 0 < eI’ <0.116, the solutions grew more complex in the following way.

For small values of eI' and t— the function ¢(x, t) proves to be spatially homogeneous and
periodically varying in time with the frequency of the inducing force. Then it loses its homogeneity, and
a profile arises whose typical form and location are as shown in fig. 9.10a. However, the solution still
changes with frequency .

Then, as the parameter I increases, quasi-periodic regimes appear and the amplitude of the fourth
spatial harmonic starts growing. As I increases further, temporal chaos appears, in which “turbulent
peaks” alternate with the “laminar” intervals. The amplitudes of the second and fourth harmonics
become comparable [for a certain instant of time the function ¢(x, ¢) is shown in fig. 9.10b].

In ref. [262] the Lyapunov exponents were calculated and the analogs of the Poincaré section, the
temporal spectrum of the solution and other characteristics of the stochastic solutions were constructed.
The correlation exponent in the investigated chaotic regimes changed in the interval 3.5= v <=4.5.

In the analysis of problem (9.8) the fact that the system is close to completely integrable was used.
The inverse scattering method was applied by constructing the linear equation in which the “potential”
changes while the “energy levels” A remain fixed. Here at each instant of time a similar transformation
is performed, the “potential” is constructed and the eigenvalues are determined. But they change in
time. From the function A(¢) we may judge how close the solution is to a set of solitons. It enables us to
construct simplified efficient models.

Stochastic regimes were discovered also in media described by the equation

qt + iqxx - 2l|q'2q = (81 - El'qlz)q + £3qxx - (£O/T) n;—w exp(zﬂlnt/T) .

In this case we can also construct dynamic systems of low dimension which allow us to describe chaotic
regimes [264].
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9.5. A priori estimates of the dimension of the attractor

When processes are studied in nonlinear media where stochastic regimes are observed, the
dimension of the strange attractor is usually estimated in the course of a numerical or physical
experiment. Recently, however, mathematical theories have been developed which allow a priori
estimates of the dimension of the attractor in partial differential equations. Appropriate studies are
discussed in the review [19].

We note here two important results. For the two-dimensional system of the Navier-Stokes equations
it has been shown (specifically, for zero boundary conditions) that the Hausdorff dimension of the
attractor may be estimated from above,

dim U = C(Re)* .
For the reaction—diffusion system of equations,
u,=vadu—f(x,u)+ru, ul,,=0, QCR",

where u=(u,,...,u,), f=(fi,..., f,), while the matrix a, of order m with constant coefficients, is
such that the matrix (a + a*)/2 is positive definite and its minimal eigenvalue exceeds p,, i.e.,

polu|™ = C = flx, wyu=p,|u|+C, p,>2,

and

S gy =0,

ik=10U;
it has been shown that
dimU=<CA\"?™™%, A>1,v>0. (9.9)

In the cases when the diffusion coefficient is constant the estimate (9.9) shows how the dimension of the
attractor changes as the length of the region increases.

It may be expected that theoretical investigations of diffusion-induced chaos and other stochastic
regimes in nonlinear media will be intensified in the immediate future.

10. Elementary types of ordering in two-dimensional systems

Multi-dimensional effects are essential for the investigation of many open systems and reaction-
diffusion systems have to be analysed in two-dimensional and three-dimensional domains. An idea of
the possible types of ordering in such nonlinear media is given by the two-dimensional analog of the
Kuramoto-Tsuzuki equation,

W,= W+ (1 +ic,)(W,, + W,,) = (1 +ic,)|W['W . (10.1)
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This equation is used in the theory of wind waves on water [96], for the investigation of dissipative
structures in active media and in oscillating chemical reactions [101], and in some morphogenesis
models [5]. We note that eq. (10.1) describes a narrower class of two-component systems than the
Kuramoto-Tsuzuki equation in one-dimensional problems. Since in the two-dimensional case both the
length and the direction of the wavevector are important, the number of unstable modes increases and
models, more complicated than eq. (10.1), appear [121].

In some studies major attention is paid to the Cauchy problem for this equation. An extensive list of
such publications is given in ref. [101]. Usually they deal with self-similar solutions (spiral waves, as a
rule), defined in infinite domains and having phase singularities (i.e. points where |W|—0, and the
phase ¢, W= p e, is not defined [265]).

Comparing the analytical results with numerical or physical experiments leads to a number of
problems. First, it is necessary to find out how quickly self-similar solutions can be obtained. Second,
we always have to deal with bounded domains, while the solution does not have the property of
localization.

That is why we are interested in an alternative approach — an analysis of solutions of eq. (10.1) for
small two-dimensional domains. In this case we could use the results obtained for simplified models and
one-dimensional equations. Within such an approach a more thorough analysis might be performed,
getting beyond the scope of a single class of solutions, and the main types of ordering interesting for
more complex problems could be revealed.

According to refs. [103, 217] we consider the following boundary value problem,

W,=W+(1+ic)(W, + W)= (L+ic,|W'W, O0=x<[, 0=y=I,
(10.2)
W(x, y,0)=Wy(x,y), W, (0,y,)=W( y,0)=W,(x,0,0)=W(x,1,6)=0.

We shall be interested in the behaviour of its solutions for different values of ¢, and c, in the case of
small domains. In the numerical computations given below / = 7 and the initial data are asymmetric, of
the form

4
W, =u, +iv,=0.1 2 cos(mmx/l) cos(mny/D[1 +i/(m +1)].

m,n=0

In such a formulation only the simplest symmetric solutions are essential, namely
(a) spatially homogeneous solutions

W(x, y, 1) = exp(=icyt) , (10.3)
(b) one-dimensional solutions

Wx, y, )=W(x,t) or W(x,y, t)=W(y,1),
(c) solutions symmetric with respect to one of the diagonals

Wx,y,t)=W(y,x,t) or Wx,y,t)=W(i-y,l-x,1).
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We shall discuss the following questions. Will the one-dimensional solutions of problem (10.2) be
stable against two-dimensional perturbations? Does this problem have solutions for which there is no
one-dimensional analog? In what way do the two-dimensional structures get complicated when the
parameters ¢, and c, are varied?

10.1. A simplified finite-dimensional system

The analysis of various simplified models plays an important role in investigations of one-dimensional
problems. To construct such models in two-dimensional problems it is convenient to present the
solutions in the form

©

u(x, y, t)= > a,,,(t) cos(wmx/l) cos(wny/l) ,

m,n=0

o(x, y,0)= 2 b,..(t) cos(mmx/l) cos(mwnyll) ,
0

and to write down a system of equations which connects the Fourier coefficients a,,,(f) and b, (?),

dmn = amn - (amn - Clbmn)kz(’n2 + n2) - (umn - CZUmn) ’
(10.4)

an = bmn - (clamn + bmn)kz(mz + nz) - (CZumn + vmn) ’ k = 7T/l ’
where u,, and v, are known functions of {a;} and {b,}. Below we shall use the notation p,,,:
p2,=a.,, +b’,. Simplificd models may be obtained from this infinite system by keeping a finite
number of equations. This may be done in various ways, for example, by dismissing the harmonics a,,,
and b, with m = p or n = p. The simplified system thus obtained will be called the system with N = p; it
contains 2p° equations.

We shall now consider a simplified model with N =2, which contains 8 ordinary differential
equations. We can decrease the number of equations by going over to the variables p,,, and 6, with the
aid of the formulas a,,, = p,,, €08 @,.., D,n = Pow SIN €5 0, = run — Poo- The equation for ¢, may be
solved separately. It means that the functions a,,,(t), b,,,(t) change in a more complicated way than
Pn(t) and 6,,.(¢). In particular, the singular points p,, = const., 6, = const. correspond to periodic
solutions of a,,_(¢), b,,,(?); the limit cycles correspond to two-frequency regimes. Therefore, below the
solutions of a simplified system for which p,, = const. will be called singular points, and the solutions
for which p,_,(¢) are periodic will be called limit cycles.

In the simplified model with N =2 there is an analog of the simplest symmetric solutions. The
singular point py, =1, p,,, =0, m+n#0, corresponds to the homogeneous solution (10.3). The
solutions of the simplified system for which a,,, =0, b, =0, n#0, correspond to the one-dimensional
solutions, in y, of (10.2).

The solutions of problem (10.2) that are symmetric with respect to the diagonal of the square, x =y,
may be compared with the integral curves where a,, = a,,,, b,,, = b,,.. Such solutions of the system of
ordinary differential equations are also called symmetric.

Let us see how the type of the solutions changes for the simplified system as the parameter c,
decreases. We consider the line ¢, =1.5. In the system of eight ordinary differential equations the
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homogeneous solution loses its stability, the stable singular point with p,, # 1 appears. The value of c,
at which bifurcation occurs coincides with the critical value of the parameter for the partial differential
equation. In the ensuing singular point p,,, =0 for m #0. We note that in the system another singular
point appears simultaneously for which p,,, =0 for n 0. In this case the system with N =2 becomes
simplified and transforms into the system of ordinary differential equations (3.15), considered in
chapter 7 [£ = ag, + bgg, 1= ag, + bgy, 0=2(pe0 — ¢y)].

As ¢, decreases further, the point with p,, =0 for m 0 loses its stability, and the asymptotic
behaviour is determined by the singular point with p,, #0 (see the solid lines in fig. 10.1). Then for a
certain value of c,, p,, becomes exactly equal to p,,, after which the computations converge to a
symmetric solution with a,, = a,,, by, = by.

For ¢, = —3.3 a Hopf bifurcation occurs and a symmetric limit cycle develops [p,, () = p,(¢)]. The
position of the singular point which lost its stability and examples of symmetric cycles are shown in fig.
10.2a. For ¢, = —3.7 the cycle loses its symmetry. Two projections of such a type of solution are shown
in fig. 10.2b. The sequence of bifurcations observed conditionally may be presented as shown in scheme
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Scheme 2.

2. In this sequence most bifurcations are associated with the loss or appearance of symmetry, which is
an essential difference between the two- and one-dimensional problems.

The first transition in this sequence is connected with the appearance of a singular point with p,,, =0,
m # 0. The critical value of the parameter at which this transition occurs is determined by equality (7.8)
as in the one-dimensional case. The situation, however, may be more complicated. We may verify this
by observing how the solution changes along the line ¢, = 3.0 (fig. 10.1). How the solutions defining the
asymptotic behaviour of a simplified system with N =2 become more complex is schematically shown in
scheme 3.

It is important to note that a singular point with p,, = p,, appears for a value of the parameter c,
where points with p,,, =0, m #0, may emerge. A symmetric solution is obtained for a general form of
the initial data (spontaneous appearance of symmetry). The cause of this phenomenon can be
understood using methods from bifurcation theory.

10.2. Loss of stability of a spatially homogeneous solution

We consider problem (10.2) near the critical values of the parameters for which the homogeneous
solution (10.3) loses its stability. The respective results are shown by markers in fig. 10.1. As t— » the
asymptotic behaviour is determined by solutions with p,, =const., m,n=0,1,2,.... As in the
simplified model with N =2, the solution arising is one-dimensional on the line ¢, = 1.5 and symmetric
on ¢, =3. Both the types of solution and their quantitative characteristics coincide in these two
problems.

The periodic solutions of the partial differential equation are an analog of the singular points in the
simplified model. The following lemma is valid.

Lemma. If a self-similar solution of the form
W(x, y, t) = R(x, y) expliwt +ia(x, y)] (10.5)

satisfies eq. (10.2) it has p,, =const., 6, =const., where m,n=0,1,2,... (p,, and 6, are
determined by the Fourier coefficients a,,,, b,,, as in the simplified system). The converse is also true: if
the harmonic amplitudes and the phase shifts between the harmonics are constant in a solution of
problem (10.2), it may be written in the form (10.5).

Soadl
Homogeneous ﬁ poli‘rllt with :> Symmetric ;b‘ Asymmetric

solution cycle

Prn = Pum cycle

Scheme 3.
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The self-similar solutions appearing after the loss of stability of the homogeneous solution are close
to it. Therefore, it is natural to use asymptotic methods for its analysis. We write eq. (10.2) in the
variables p and ¢:
u=pcosg, v=psing,
2
p=p=p +(py—pei+ o, —pe;) = ¢:(20.0,+ po, +2p,0,+ pe,) (10.6)
3
po,=—C,p° + (20,0, P, + 20,0, + po, )t ¢i(p,, — po +p,, — po3) .

We shall search for a solution in the form of a series in the small parameter ¢ that characterizes the
deviation of c, from the critical value ¢, at which the solution (10.3) loses its stability,

p=1+er/(x, Y)+52r2(x’ y)+€3r3(x, Y+,
p=(—C+¢et 90232 + ‘1’3‘33 o)+ eay(x, y) + 32“2(", Y+, (10.7)
c,=¢C,+wetwe + w8+, @, =const..

We substitute formulas (10.7) into egs. (10.6) and equalize terms with the same power of ¢. This yields
systems of equations for the successive determination of r,(x, y), and a,(x, y). We may show that [217]

r,=Acoskx+Bcosky, a,=-2Lr/k*+ const.

The higher-order equations are soluble if their right-hand sides are orthogonal to all nontrivial solutions
of the corresponding homogeneous equations (the Fredholm alternative).

The solubility conditions for the second- and third-order equations allow us to determine the values
of A and B. The small parameter ¢ has been determined earlier to within a factor. Further we shall

assume that £ =|c, — G,|"’> + - - - . This simplifies the relations for A and B,

A(XA’+YB*-aZ)=0, B(YA’+XB’-aZ)=0, (10.8)
where

2L* 3L sk k', lc,|
R R AR R A L
X % 2w 4 4 1+
2 4
Y=%+L2—k2+ kT, a = sign ¢, - sign(c, — ¢,) .

From formulae (10.8) it is clear that X + Y >0, Z > 0; also it may be verified that X > 0.

It is easy to find that for @ = —1 the system of equations (10.8) has only trivial solutions. It
corresponds to the parameter range where the homogeneous solution (10.3) is stable. Therefore, the
bifurcation in the system under investigation is always supercritical [84]. For & =1 the system of
equations (10.8) has nine solutions,
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(@) A=B=0,

(b) A=0, B==x(Z/X)"*,
(10.9)
() B=0, A==(Z/X)"?,

(d) if X#Y,then A’=B’=Z(X+Y).

Relations (10.9) show that in the general case (X # Y) the solutions appearing after branching will
be either one-dimensional or symmetric. This conclusion is confirmed by computations.

Bifurcation theory methods may also be used to investigate in which parameter ranges some or other
solution is stable. In refs. [103, 217] it is shown that the one-dimensional solution is stable for negative
K and the symmetric self-similar solution for positive X,

ot up e -k
T3t 2 4 T T

k=mll. (10.10)

The numerical results usually agree well with the asymptotic theory up to £° ~0.1.
10.3. Complication of the solutions of the partial differential equation

In the initial problem an elementary attractor of the system of ordinary differential equations (a
stable singular point) corresponds to a complex auto-wave process described by a self-similar solution of
the form (10.5). We note that a spiral wave is a particular case of this solution, which may be written as

W= R(r) expliot +i8(r) +imgp], x=rcos¢, y=rsing. (10.11)

Formula (10.11) coincides with (10.5) if R(x, y) = R(r), a(x, y) = S(r) + m¢. The real and imaginary
parts of the self-similar solution of problem (10.2), u(x, y, t) and v(x, y, t) periodically change in time;
however, the modulus R = (4 + v*)"/* does not depend on time. A typical form of the function R(x, y)
in a symmetric and an asymmetric solution in a square with side / = 7 is shown in fig. 10.3.

Let us see how the solutions of the partial differential equation become complicated. On the line
¢, = 1.5 the sequence is as shown in scheme 4. The first two bifurcations coincide with those in the
simplified system with N =2. The parameters of the singular point with p, , =0 for n # 0 coincide within
a few percent with the characteristics of the one-dimensional self-similar solutions. However, in
problem (10.2) the sequence of transitions is simpler on the whole: it has no analogs of symmetric
singular points and symmetric limit cycles.

On the line ¢, = 3 the sequence of bifurcations in the simplified system and the initial problem is the
same — as in scheme 3. The parameters of the self-similar solutions and the singular points here are in
good agreement (fig. 10.1).

We consider solutions of the partial differential equations for which the functions R and a are
periodic in time, p,,(t+T)=p,.®), 6,,(¢+T)=8,,0#)+27p,,, Pn, =0, =1, %2,.... Such solu-
tions are the analog of the limit cycles in the system with N =2, We note that the functions u and v are
not periodic — a stationary two-frequency regime is observed in the system. A similar situation occurred
in the simplified model too.
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Such types of two-dimensional solutions are rather complex. In order to reveal how they are
qualitatively reconstructed we should consider their projections onto some finite-dimensional spaces. In
this case the projections on the (p,, py;)-plane are most illustrative. They are shown in fig. 10.4
together with plots of the functions p,,,(f).

The projection of the solution shown in fig. 10.4a lies entirely above the diagonal p,, = p,,. During
the whole period the directions x and y are inequivalent. We shall call it a solution of type 1. The
projection of the solution shown in fig. 10.4b is a closed curve which lies on both sides of the diagonal.
This line is nearly symmetric with respect to the straight line p,, = p,,. The directions x and y
“exchange” their positions every half period, R(x, y, t + T/2) = R(y, x, t). Such solutions are of type
II.

It is important to point out that the solutions of types I and II are qualitatively different. The
transition between them superficially resembles a period-doubling bifurcation: for a small change in the
parameter ¢, the period of the solution becomes twice as large, and the function py () is near
Poolt + T/2) (fig. 10.4a,b). However, p,,(¢) and p,,(¢) behave differently: during part of the period the
function p,,(¢) in the bottom figure (solution of type II) repeats the behaviour of p,,(¢) in the upper

; . . . Asymmetric
Homogeneous One-dimensional Asymmetric silution
-simi self-similar
ohon ] lfsmlar 2 elbsimier e
solution frequencies

Scheme 4.
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figure, and in the remaining part of the period it repeats the behaviour of p,,(¢). In the vicinity of the
transition point the period of the cycle sharply increases.

In the simplified system with N =2 such transitions were not observed. Their appearance may be
explained by the concept of a finite-dimensional model. Let there exist for a certain value of the
parameter c, in the system with the sufficiently large N two stable singular points located symmetrically
with respect to the plane p,,, = p,,, and not situated in it. As c, decreases even further the amplitude of
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the oscillation increases, and the cycles approach the symmetry plane from different sides. Due to the
uniqueness of the solutions, they may touch each other, and hence the plane p,, =p,,, only at a
singular point. The period of each cycle must increase infinitely as the parameter c, reaches the value ¢}
(c, =c3). After the transition (c, <c}) the cycles become qualitatively reconstructed. While before,
being on the limit cycle, the point rotated about one equilibrium state, now it visits the neighbourhood
of each of them.

We note that when ¢, = ¢5 in the finite-dimensional system a homoclinic trajectory appears, while
the system itself has a special symmetry [if {p,,.(¢), 6,,.(t)} is a solution then {p,, (), 6,,.(1)} is a
solution too]. This suggests that in this case methods developed for analysis of the Lorenz system may
be employed [137].
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We recall that along with the solution shown in fig. 10.4b there is a symmetric solution W(x, y, t) =
W(y, x, t). Therefore, the solutions of problem (10.2) may become further complicated in the same
way in strong dependence on the symmetry. Such a mechanism, sometimes called “‘anomalous doubling
bifurcations”, is rather general and typical for many systems with symmetry [118].

Quite a different picture is observed for ¢, =3. This is due to the fact that in this case the Hopf
bifurcation results in a symmetric self-similar solution, such as occurs in the simplified system with
N =2. Figures 10.4c and 10.5 show asymmetric solutions with a periodic function R, which can neither
be referred to type I nor to type II. It is of great importance that the asymptotic behaviour of the
two-dimensional system (10.2) may be determined by analogs of limit cycles. In fact, it is a widespread
opinion that in active nonlinear media the leading centres and spiral waves are the basic forms of
ordering. In problem (10.2) they are a particular case of two-dimensional self-similar solutions in which
the variables are separated once again. In fact, in a certain range of parameters the self-similar solutions
determine the asymptotic behaviour of the process. However, in a wide range of values of ¢, ¢, and /
they are unstable; here a more complicated ordering arises. It is described by solutions with periodically
changing functions R and a. It is natural to expect that such solutions will be observed in many open
dissipative systems near the bifurcation point.

As the parameter c, decreases further the solutions of one- and two-dimensional problems become
aperiodic. In the one-dimensional case the complication on both lines ¢, =1.5 and ¢, =3 is connected
with a sequence of period-doubling bifurcations. In the two-dimensional case solutions without ordering
observed during computations are also obtained. Examples of such solutions are discussed in refs. [103,
217]. However, diffusion-induced chaos and scenarios of its appearance in two-dimensional systems
require further study.

11. New trends in the theory of dissipative structures

For the investigation of nonmlinear dissipative processes it may prove very useful to construct
simplified models of the phenomenon with the least possible number of degrees of freedom and then to
study these models in detail. The results obtained in analysing one- and two-dimensional maps, and
systems of several differential equations play an important role in the formulation of modern ideas
about the processes in nonlinear systems. They proved very helpful in an analysis of ordering in
nonlinear media.

The question arises whether at present there exist other simple models which play an important part
in the analysis of complex ordering and chaotic regimes in nonlinear media. Let us describe some of
them.

11.1. Complex ordered and stochastic regimes in discrete systems

Discrete systems are widely used for simulating processes in continuous media. To solve partial
differential equations difference schemes with derivatives replaced by finite differences are often used
(both temporal and spatial coordinates are discretized ). However, can discrete systems describe such
types of ordering which have not yet been encountered? Can they directly be used as models of some
phenomena? To answer these questions it is natural to consider the simplest case when not only the
spatial and temporal coordinates are discrete but the function itself acquires only discrete values. An
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idea of how rich and unusual the world of such systems is can be gained from the game called “Life”,
which was proposed by the mathematician John Conway from Cambridge University [266]. The name
of this game is due to the fact that it simulates the growth, decay and various changes in the population
of live organisms.

An infinite board with cells is considered. In the game played on this board the time is discrete
(t=1,2,...). A cell may be alive or dead. The change of the state of the cell at time 7 + 1 is defined by
the states of its neighbours at time ¢ (each cell has 8 neighbours, four of them share a side with it and
the other four only a corner). The rules of the game are as follows.

If a cell is dead at time ¢ it becomes alive at ¢ + 1 if and only if exactly three of its eight neighbours
were alive at .

If a cell was alive at ¢ it will be dead at time ¢ + 1 if and only if less than two or more than three of its
neighbours were alive at 1.

These rules are very simple. Having a checked sheet of paper we may watch the evolution of
elementary configurations. The behaviour of large associations over a long period may be watched by
using a computer.

As we shall verify below there is a close analogy between the processes in nonlinear dissipative
media and this discrete system. Therefore, it is natural to put the following questions. What basic types
of structures (i.e. configurations that determine the behaviour of associations over long times) may exist
in such a system? Which laws govern the organization of structures here? Can they interact and what
will this lead to?

Stationary structures, i.e. those independent of time, are the simplest. Examples of them are given in
fig. 11.1 (we draw a solid dot at the center of a live cell).

Using these stationary structures we may obtain many others. Indeed, if we have such a structure,
the configuration obtained by a rotation by 90° will also be stationary. In this figure the four
configurations in the right bottom corner show how certain structures may be made longer up to any
size. It should be stressed that these structures are localized. Being separated by two dead cells, they do
not influence each other. We may say that the stationary structures repeat themselves at each step in
time. But there are other configurations that repeat themselves in N steps. For brevity we shall call
them N-cycles.

Examples of 2-cycles are shown in fig. 11.2. Since 2-cycles are also localized, they are all presented in
the same region. During the evolution of various associations the 2-cycle shown in the second line and
called the traffic light is often encountered.

Many different periodic configurations are known [266]. Efficient algorithms, however, that would
allow the construction of configurations with a given period N seem not to have been developed as yet.
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In nonlinear dissipative media the structures are interesting not only as they are. They determine the
behaviour of the system as t— for different initial data. Is this so in the discrete system under
investigation? The answer is positive.

The system of cells described by the game “Life”” develops irreversibly. Indeed, the configuration at
time ¢ fully determines the future (states at £+ 1, t+2, etc.). But the past of the system cannot be
restored from its present. The picture here is exactly the same as in one-dimensional maps, only a given
configuration may have infinitely many pre-images. (We may use the localization property and situate a
set of localized single cells or pairs of them so that they would not influence the given configuration and
one another. It is clear that they will all disappear on the next step, by no means influencing the future
of the system.)

The evolution of randomly given initial data frequently leads to the appearance of simple localized
structures and traffic lights. However, more complex types of evolution are also possible, for example,
when cycles of large period with complex form appear in symmetric configurations (fig. 11.3).

In the Life game there are configurations which can move across a plane. One of them is a glider (fig.
11.4a, the stationary structure here is taken as a reference point). Every four steps it repeats itself,
shifting by one cell down and to the right. (It is clear that due to the symmetry there are gliders moving
along both diagonals in both directions.) Four different “phases” of the glider are shown in fig. 11.4a.

By the way, some configurations may move along a line other than a diagonal. For example, such are
the three ships shown in fig. 11.4b. (Let us note that not every configuration of such a type will be a
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“ship”.) So, we have gliders and ships. The question arises: What happens when they collide with each
other or with a stationary structure? The collisions may be of various types depending on the glider
course and its phase at the time of collision.

The collision of two gliders or of a glider with a stationary structure may lead to their “annihilation”
(fig. 11.5), or a whole set of traffic lights and stationary structures may be generated (fig. 11.6). Let us
note two laws. If symmetry has appeared in the configuration (for example, with respect to the vertical
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or horizontal axis), it will be preserved during the evolution (see steps 7, 8, 9). If the configuration
remains localized in an N X N square all of the time, it is a collection of stationary structures and cycles
whose period does not exceed 2V, Indeed, each cell may be in one of two states and in total there are
N? cells in the square; therefore for ¢ > 2” the configuration will be repeating itself.

When considering continuous media we discussed resonant excitation — initial data that resulted in a
more complex evolution of solutions than in other cases. There is an analog of such a behaviour in the
Life game. Let us note the configuration shown in fig. 11.7. Arising cells occupy a larger and larger part
of the plane, several gliders evolve and this association will develop further (fig. 11.7). No other
configuration consisting of five cells leads to such a complicated behaviour.

As a rule, the evolution of randomly taken configurations results in the appearance of a collection of
stationary structures, traffic lights, gliders. The total number of cells proves to be limited as ¢— .
However, for some initial data the situation may qualitatively change. Such a behaviour is typical for
some biological systems, in particular evolution processes. An unlikely event may qualitatively change
the behaviour of the system, leading to the appearance of new forms. This is why “cellular automata”
(the Life game belongs to this class of models) are used in ecological models, in the simulation of
morphogenesis, and in other biological problems [11].
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Fig. 11.7

The larger the area the association occupies, the more complex the behaviour it may show.
Therefore configurations infinitely growing in space are of great interest. One of them, called a
“catapult” or a “glider gun”, was proposed by R. Gosper, in 1970. It is seen that every 30 steps the
catapult repeats itself and produces a glider (fig. 11.8). The glider gun fills the space by a stream of
gliders. There is an even more complex association of cells which moves forward, leaving behind a large
collection of traffic lights and stationary structures. One of these is the “puffer train” shown in fig. 11.9.
The search for such configurations requires the application of special algorithms [267].

The above mentioned examples show that in the discrete system under discussion there is a great
number of different types of ordering, which define the asymptotic behaviour of some set of
configurations (in this sense they prove to be equivalent to attractors of dynamic systems). However, we
may prove more — in the Life game there are arbitrarily complex types of ordering, this discrete system
proves to be equivalent to a universal computer [266).

We may consider a computer as a finite set of elementary logical elements that perform the
operations ‘“‘and”, “‘or”, “not” and that are connected by wires in a certain way. A set of puises coding
a sequence of (s and 1’s are running along these wires.

The glider gun in the Life game plays the part of a generator of such pulses. The existence of a glider
in the stream may be interpreted as a one and its absence as a zero. The collision of gliders by which
they annihilate allows the construction of the element “not” by directing two streams at a right angle (if
a glider exists at a certain place in the first stream, then after the collision the glider will disappear at
this place in the other stream). Other elements are constructed in a more complex way [266].

The equivalence of the Life game to a computer has many interesting consequences. The idea
naturally arises to compare the computer in this discrete system to available computers. The considered
hypothetical computer has two important merits — it consists of simple identical elements, each of them
being connected with near neighbours only. The size of the logical elements decreases in every new
generation of computers. Constructing small elements of the type considered, for example, on the



T.S. Akhromeyeva et al., Nonstationary dissipative structures and diffusion-induced chaos in nonlinear media 355

ST VO S T S O O B 0 B A B S
e -
4 -
] . uf
o
1= & ¢ O F
. o0 L
g te0 |
T 1T 1T 1T 7 rrrrvrr 11 vorrr
U T O W T VY S W S Y L W W
. -
. s,
1 a4 Bou
- . [ [ &) -
T 'o“o' o o8 °* =
1 t=17 [
Ty 11 rrrrrrrrrrorrrri
TS WD U0 U TR S N T W T W IO B
] . -
j } ...‘ ::_
14 $ 32 sgc $ -
. o 3 |
L0
] S
h . t=30
1y e rrrrrr ot
S 0 S Y U VS 0 Y 0 A G B S G B
] ., gt o [
i LR J ..: .
4 88 g 2 %l 8 3
4 ¢ L
B .2 -
4 3 L
] r
. -
4 ® e -
. e -
"1 %2 |
-1 t=90 °
| It B S S S A U o L 4
Fig. 11.8

molecular level, is considerably simpler than traditional integral circuits. Some investigations show that
the molecules of certain compounds have the qualities required for the construction of a computer
[268].

Here two essential objections arise. On the molecular (all the more, atomic) level quantum effects
are appreciable. What restrictions do they impose on such computer systems? Of special interest are
systems characterized by a minimal level of energy dissipation (or, ideally, by dissipationless processes).
We recall that the evolution of configurations in the Life game is irreversible. Are there reversible
dissipative systems with the properties of universal computers? The latest studies have shown that both
objections may be turned down. Quantum mechanical systems with reversible properties can, in
principle, be constructed [269].

The Life game and other systems of this type, called cellular automata, allowed new insight into
many physical phenomena. (A cellular automaton is a set of identical cells, every one of which develops
according to certain rules.) Using differential equations for the description of many complex processes
involves serious difficulties; for example, some types of turbulent flows, packings of molecules
consisting of long chains (in particular, DNA molecules whose description involves self-avoiding
random walks), self-reproduction, growth and development processes typical for biological systems.
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In 1948 John von Neumann suggested that in modelling these phenomena cellular automata and
direct computer simulation are most efficient. His theory of automaton self-reproduction showed the
great potentialities of such an approach [270]. Recently it has been extended by S. Wolfram and other
authors [271, 272]. They have come to the conclusion that some real systems may be arranged in the
same way as the Life game. Depending on the initial data processes of any complexity may be
implemented in them.

Here, the concepts and ideas of algorithm theory may be employed. The behaviour of any system
can be modelled, in principle, by imitating its evolution step by step. In most cases, however, a simpler
way may be found. For example, to multiply a number by 2" on a computer it is not necessary to add it
to itself 2" times; we may simply shift its representation in the memory by » binary digits. Systems for
which such simpler algorithms exist are called computationally reversible. It is this property that helps
to distinguish a small set of order parameters in the description of the natural phenomena or to pass to
a simpler statistical description.

The hypothesis by S. Wolfram suggests that many physical systems and their models, which cannot
yet be described in a simple way, are computationally irreversible [272]. The only way to analyse such
systems is to carry out physical or numerical experiments. In ref. {273] it is shown that there is a system
of 10 nonlinear partial differential equations describing a medium which is equivalent to the Life game
or other automata of this type.
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Investigations of cellular automata lead to a paradoxical conclusion. In a medium of elementary
identical elements an ordering of any complexity may exist. The evolution of some configurations may
look like the emergence and interaction of elementary structures, and the appearance, as a result, of
more complex structures, their interaction and so on. If after a certain stage the configuration appears
to be localized in a bounded domain the development stops and a stationary regime is set up.

The Life game belongs to a more complicated class of automata. However, there are a number of
simpler automata with cells in one of k states, located along a straight line [272]. The rules determining
their evolution may be written in the form

j=r
a” =f<_2 a].a,(:_jl)) , (1L.1)

j=-r

where a,(t) is the state of the ith cell at time ¢. The set of possible rules is very wide. The basic types of
automata can be studied by considering a narrower class, the so-called legal adding automata. An
automaton is called legal if

=0, fa.,....8.,)=fG.,...,08._). (11.2)

It is adding when all a; = 1.
Using the rule that determines an automaton we may find its code by the formula

Qr+1)(k—1)
C = ZO K'f[n], (11.3)
where k is the number of states in which each cell may occur.

In an analysis of dissipative dynamic systems and asymptotic regimes in nonlinear media with
processes developing in a finite time, periodic and stochastic regimes were distinguished. Their analogs
exist among automata too. In ref. [273] four types of legal adding automata were distinguished.

1. Regardless of initial data the transition to a homogeneous state occurs in a limited number of
steps.

2. In the second class of automata the evolution leads to localized stationary configurations or
N-cycles. They are analogs of singular points or limit cycles in dynamic systems.

3. Chaotic initial configurations in automata of the third class lead to chaotic temporal behaviour.

If the initial states are localized the evolution of each cell can normally be predicted using a rather
simple algorithm. If we put the time ¢ along one axis and the state of the elements at ¢ along the other
axis, the appearing pattern can be considered as a fractal structure. Figure 11.10 shows this pattern for
two automata, whose codes are also indicated.

4. For the automata of the fourth class (to which the Life game belongs) there is no simple algorithm
that would allow a prediction of the evolution of localized initial configurations. One of the features of
such automata is the variety of behaviour for different initial states.

The results given in ref. [272] show that automata of the fourth class are encountered very seldom.
Of the legal adding automata they constitute six percent for k =2, r =2 and seven percent for k =3,
r=1. As the complexity of the automata grows (with increasing k and r) this fraction will increase.

By analogy with the analysis of fractals or strange attractors it is convenient to describe various
automata by quantitative characteristics. We shall discuss some of them in accordance with the resuits in
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Fig. 11.10

ref. [272]. Consider a sequence of X elements by assuming that each cell occurs at one of k states and
introduce the quantities

00 = 3 o2 605), (11.4

where 6(p)=1 for p>0 and 6(0)=0, p\” are the probabilities of different configurations of X
elements,

X 1 kX X X
s = -5 2 p log,p)”. (11.5)
=

We call the quantities s“’(X) and sﬁ‘) (X), respectively, the spatial set entropy and the spatial measure
entropy, and the limits

d® =;1}_I,'l sOX), dﬁ‘) =;l(1_rfl sif)(X) (11.6)

the set dimension and the measure dimension.
The nonordered initial configuration in which all possible sets of elements occur with nonzero
PR ® 1. . @ _
probability yields d’ = 1; for a homogeneous configuration d 0.
By analogy with the quantities describing the spatial behaviour of configurations we may introduce
temporal characteristics of cellular automata in the form

t 1 KL 1 1’4
()= glog 2 0061). 0T =3 3 ol ogep
1= j=
® ® ® ® (11.7)
—1; t 0 _ 1 t
d=lim sT),  d=lim 5;X(T),
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and the spatial-temporal characteristics

KXT

X 1 t,x
T )

kX7

1S5 en (t.)
ST, X)= -5 ]21 pY? log,p\™ (11.8)
= n (2.x) = I (£,x)
h= ;T}os , h,= lTI_I,IL s, (T, X).
X—>w X—ow
T/ X—>» T/ X—®
In the automaton given by the formula a!*' = F[a,_,, ..., a},,] the excitation can propagate over a

distance rT in a time 7. For longer times, however, the excitations in many automata propagate with
smaller velocities. Let || F”|| denote the maximal value of R for which the state of cell i depends only on
cells i—R,...,i+ R. Then the maximum propagation speed may be defined as

A, =EHFT||/T (A, =1). (11.9)

The relationships between the quantitative characteristics of cellular automata are discussed in ref.
[272].

For large characteristic times and steady regimes the values of the characteristics (11.4)-(11.9) prove
to be different for different classes of cellular automata.

Since any configurations in class 1 cellular automata tend to be a homogeneous state, their spatial
and temporal dimensions tend to zero. The average propagation speed A in class 2 cellular automata
vanishes over long times as the temporal dimensions for such automata also vanish, dﬁ) =h,=0. At
the same time the spatial dimensions in the case of irregular initial data will be different from zero.

For class 3 cellular automata the average propagation speed A is positive, and the state of a single cell
affects a growing number of its neighbours with time. The spatial and temporal measure entropies,
sif’(X ) and sf:)(T), are also different from zero and usually tend to constant values over long times.
The behaviour of class 4 cellular automata may be quite different for different initial data. Therefore,
the quantitative characteristics of various configurations in such automata may be just the same as in
any of the above three classes.

The behaviour of cellular automata is diverse, and their theory has been developed rapidly. This
class of mathematical objects is interesting also because they represent exactly soluble models. They
may be studied without using approximate methods (when investigated on computers) and simplified
models.

Let us note two classes of physical phenomena whose analysis is performed using cellular automata.
Experimental investigation of the Belousov—Zhabotinsky reaction shows that over certain characteristic
times several types of ordering and chaotic regimes may arise. Their study with the aid of reaction—
diffusion systems proves to be rather difficult due to the need to consider many components, incomplete
knowledge of various reaction rates and the existence of several small parameters in the resulting
equations. This led the authors of ref. [274] to the idea of using a cellular automaton as a
phenomenological model.
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As in the investigation of diffusion-induced chaos they suggested that a concentrated system shows
self-oscillatory dynamics while diffusion processes are a cause for a complex spatial-temporal be-
haviour.

We shall assume that in the one-dimensional case the system can be split into identical cells. The
state of the nth cell at time ¢ is defined by a nonnegative function A(n, t). The value of A(n,t+1) is
determined by the preceding state according to the rule

A(n, )= a[A(n +1,0)+ A(n—1,0]/2+ (1 - a)A(n, 1), A(n,t+1)=FA'(n,1)). (11.10)

The nonlinear function F(x) is given by

1, iflS5=x,
F(x)={0, if05=x<15, (11.11)
M, if x<0.5.

The coefficient 0 < a =1 characterizes the value of the diffusion coefficient. When diffusion is absent
(a =0) the system (11.10) describes an oscillatory regime. (Assuming that M > 1.5 we may verify that
the automaton (11.10) has the cycle 0— M—>1—0—---.) In ref. [274] steady regimes were consid-
ered for different M and a. It was shown that in such a system cycles of period 3, wave processes, and
complex turbulent regimes might exist. Their further analysis, and an investigation of the quantitative
characteristics of diffusion-induced chaos in this model are of great interest.

Another trend of research where cellular automata are of growing importance deals with new
methods of investigating continuous media. At the present time numerical experiments are widely used
to investigate complex multi-dimensional problems of aerodynamics and plasma physics. To solve these
problems most perfect numerical techniques and powerful computers are used. Enhancing the accuracy
of experimental installations, and optimizing aerodynamic vehicles usually involve large amounts of
computations.

One of the approaches to accelerate computations and go over to an analysis of more complex
objects is to use parallel computations. In many problems of mathematical physics it is more economic
to exploit, instead of one huge processor, a large number of simpler and cheaper processors that
operate simultaneously. If the number of such processors is sufficiently large and they perform
elementary operations the computations may be considered as the evolution of a cellular automaton.
The question arises: What automata may be used to simulate systems of nonlinear partial differential
equations (first, of all, the equations of ordinary and magneto-hydrodynamics)? Since spatial derivatives
occur in the equations the relationships among the cells/processors are also rather simple - only nearest
neighbours need to be connected. In the two-dimensional case it is convenient to fill the plane with
identical triangular, square or hexagonal cells.

As in the construction of the usual difference schemes [275] cellular automata of such a type are built
according to the momentum, energy, or angular momentum conservation laws. A sampling of particles
is introduced, each of the particles may be in one of the nodes of a square (hexagonal) lattice. It is
usually assumed that two identical particles cannot occur in a node. Then one should determine
according to which laws collisions between these particles may take place, and a method is indicated to
calculate the pressure, velocity and density in this flow by knowing the behaviour of the “lattice gas™.

Specifically, in ref. [275] it is shown that an automaton defined on a hexagonal lattice enables one to
simulate the Navier—Stokes equations and may be used for the creation of a parallel computer. In this
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publication a reference list of previous works is given. Providing the particles with a quantum of vector
potential, introducing more complex rules of particle scattering and using again hexagonal cells allows
one to employ this approach for simulating the magnetohydrodynamics equations [276].

An example of computations in the hydrodynamic case with the aid of a two-dimensional cellular
automaton consisting of 2'° cells (256 x 256) and 130 thousand particles is given in ref. [277]. Note also
the publication [278], where estimates are obtained for the parameters of cellular automaton systems.
These are necessary to calculate hydrodynamic flows for large Reynolds numbers. The conclusion
drawn by the authors turns out to be pessimistic. However, a comparison between the efficiencies of
cellular automata and the usual numerical techniques can be really made only after the construction of
dedicated computers aimed at such an approach.

One such computer, which includes 65 636 simple processor elements and has a performance of 2.5
billion operations with a floating point, has been designed by now {279]. The system has an interesting
feature, as follows. For the simulation of some partial differential equations it is sufficient that each cell
in a two-dimensional geometry is connected with six nearest neighbours. In many cases, however, many
more connections are required. In order to implement such a system and reserve a structure
appropriate for various cellular automata we should build these computers in a multi-dimensional
space. Specifically, the connections in the computer described in ref. [279] are arranged in the same way
as on a cubic lattice in 12-dimensional space (every vertex in such a cube has 12 neighbours, and in total
the cube has 4096 vertices). Computers with such a structure were designed mainly to solve problems of
artificial intelligence. They may possibly prove useful also for certain classes of hydrodynamic problems,
which can be efficiently simulated using cellular automata.

11.2. Complex ordering and chaos in spatially inhomogeneous systems

Most reaction—diffusion systems were investigated under the assumption that sources and sinks did
not explicitly depend on the spatial coordinate. Meanwhile in many physical systems this condition is
not satisfied. Spatial inhomogeneity results in many interesting effects. We shall illustrate some of them
by considering two nonlinear spatially inhomogeneous systems.

As a result of the study of the thermal effect of laser radiation upon chemically active media a new
field, “laser thermochemistry”, has emerged [280]. It has turned out that the dynamics of thermochemi-
cal processes may be extremely complex even in the case when continuous laser radiation of low power
is incident upon a medium. This is mainly due to two factors. First, the processes are not isothermal:
since the rates of chemical processes strongly depend on the temperature and the laser radiation
continuously introduces thermal energy into the system, the reaction rates may change. If the
temperature variation rate is higher than the reaction rates the process will be quite far from isothermal
(“macroscopic irregularity”). Second, it is essential when there is a feedback between the temperature
variation rate and the reaction rates. The appearance of this feedback may be due to either a heating
effect of the reactions or a change in the optical properties of the medium if the chemical composition
varies during the reaction. In the latter case the absorption characteristics also change, which influences
the amount of energy introduced into the system.

Laser thermochemistry may prove to be the field where experimental studies of nonstationary
spatially localized processes, complex time ordering, and diffusion-induced chaos will be rather simple.

One of the simplest problems of laser thermochemlstry is modelling the heating of a thermally thin
plane (h” < ar, where k is the plane thickness, 7 is the characteristic time of temperature variation, « is
the thermal conductivity) in air by laser irradiation (fig. 11.11). In some cases this process is described
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Fig. 11.11

by the following boundary value problem:

ﬂ_f (7( f?T) ~ Xyt -xlT _

&t_rﬁrrar Le q'_)(e Be 8T,

9X _ ﬁi_ -UT —xIT

ot X°© ye ™', 0<r<R, (11.12)
aT aT

.65:’=0—57r=R—0, Tt=0— O(r)’ Xt=0—X0(r).

Here r is the distance from the centre of symmetry, R is the radius of the sample, ¢ is the time, T is the
temperature, X is the oxide thickness, I is the intensity, r, is the effective radius of the radiation beam
(fig. 11.11). The radiation intensity distribution is written in Gaussian form. The third and fourth terms
in the first equation take account of the energy released by metal oxidation and of the absorption by
oxide evaporation. The last term describes the heat exchange with the ambient air. The second
equation in (11.12) describes the variation in the oxidized layer thickness due to metal oxidation and
oxide evaporation. The dimensionless constants ¢, a, B, «, 8, d, y describing the thermophysical
properties of the substance, the kinetics of the oxidized layer, the energy release and heat losses are
connected with the corresponding “dimensional” parameters by relations given in ref. [281].

If r,> R and the characteristic spatial scale of variations in the temperature T and the layer thickness
X exceeds R, the equations turn into the dynamic system

dX _d o

a7 _,, @ dx
B dte X

1+ < e—l/T_Be—x/T_aT’

/T
- e ye ™7, (11.13)

The system can have one stable point, T(t)— const., X(¢)— const. as t— ®, or trigger properties: for
some initial data T— T, X— X, as t— « while for other data T— T,, X — X, as t— . A stable limit
cycle may exist in this system as T(#)— T,(t), X(t)— X () as t—>, where T () =T (t+ 7), X () =
X (t+7) and 7 is the period of the solution. All these regimes were observed experimentally [282].

At the same time experiments show [287] that for inhomogeneous irradiation the heating dynamics
of a metal sample becomes complicated: when the beam is sharply focused, chaotic oscillations of the
temperature are observed. This explains the interest in problem (11.12).

In ref. [283] the parameters are chosen so that for large values of / in the system (11.13) there is a
stable singular point, and for intermediate values a limit cycle. For small intensities the temperature
drops and the characteristic times of the processes sharply increase. The existence of heat conduction
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leads to interactions between all these systems with different properties. This is typical for problems
with spatially inhomogeneous parameters.

Suppose we vary the intensity / and the beam radius r, so that the total radiation power P = 7ril
remains constant. Physically this means that we change the focusing of the laser beam.

First a transition process is observed. The heat sinks prove to be inessential at low temperatures, and
the properties of the system (11.12) are similar to those of the heat conduction equation with a
nonlinear source. From the theory of such equations it follows that in some cases the half-width of the
temperature profile may decrease. In ref. [66] an experiment is described where the half-width
decreases a few times. Then the restricting factors become important, and a heat wave propagates from
the centre along the radius, and behind this wave the oxide thickness increases. After this processes are
initiated with characteristic times several orders of magnitude longer.

The main types of steady regimes are shown in fig. 11.12. A fixed value of P corresponds in the
(1,1/r2)-plane to a straight line. When I is sufficiently large, stationary dissipative structures appear in
the system. Typical behaviour of 7(r) and X(r) is shown in the figure. The structures appearing are
effectively localized. In this case the localization is associated with sink effects.

Decreasing the intensity I leads to the development of a periodic oscillatory regime. Then a cascade
of period-doubling bifurcations is observed, S” — $%. Diffusion-induced chaos emerges. Here we may
also construct a family of one-dimensional maps with a smooth vertex.

Decreasing the laser beam intensity still further leads to a situation where the temperature
oscillations become more relaxing. The solution acquires new properties.

We discuss them by the example of the following calculations: /=1.8; r,=1.0; ¢ =0.1; a =9.0;
B=0; k=0.6; 6 =9.0; d=0.894; y =1.0. The variations of the temperature and the thickness of the
oxide layer with time at different points of the sample are shown in fig. 11.13. It is seen that at r = 0.03
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Fig. 11.12
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maxima of the temperature with an amplitude T, >0.9 appear with a period 7=12.5. At r=0.35
they appear with a period ~27, and at r = 0.86 with period 47. Analogously the time dependence of the
oxide thickness varies with the radius. At r =0.03 the oxide thickness varies with a period 7, at the edge
of the sample with period 47 (fig. 11.13). The observed picture significantly differs from the auto-wave
processes in systems with spatially homogeneous parameters. It is usually pointed out in the theory of
oscillations that a nonlinear dissipative system may behave as a generator [86]. Here an open
distributed system behaves as a frequency divisor as well: thermal pulses of large amplitude appear with
different frequencies at different points of the system.

From the model (11.12) it follows that by switching the laser off (I =0 for ¢ > ¢*) we may create
complex spatial distributions of the oxide thickness. Examples of such distributions and other properties
of this model are discussed in ref. [285].

The spatial dependence of the source in eqs. (11.12) is explained by the fact that a Gaussian beam
and a rather large sample are taken. Such models are also of interest when thermodiffusion processes
are analysed.

In ref. [286] a mixture of two gases contained in a thin cuvette is considered. The cuvette is
illuminated by a narrow beam of radiation, which is absorbed by the heavy component. An elementary
model of such processes includes the heat conductivity equation and the diffusion equation,

T,=T,+b[L,()e ™" —(T-T,)],

Vn,=nxx+a(2(—1-]-—,—'QTx) , a,b>0, 0<x<R,

(11.14)
L(x) =T exp[—(x - x.)’/rg],

T|{\=0 = Tn ’ nlt=0 = nO H Txlx=O,R = 0 » nx'x=0,R = 0 .
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There is a conservation law for the second equation, which is not typical for the problems considered
earlier of the theory of dissipative structures. Moreover, it may be shown that in the homogeneous
problem (I, = const.) the homogeneous solution is stable and oscillations are impossible.

Applying the averaging technique to egs. (11.14) we can obtain an approximate model ~ a system of
two ordinary differential equations where stable limit cycles may occur [286].

Numerical calculations revealed oscillations in the nearby domain of parameters in the initial
problem. The localization of oscillatory processes was demonstrated — as the length of the domain R
increased the oscillations at the boundary did not disappear, remaining at the centre. In spite of the
equality of the heat conductivity and diffusion coefficients (for » =1) the length of the localization
domain in the concentration proves to be several times as large as that in temperature. This is due to
the lack of a sink in the second equation; therefore the absorbing component from the illuminated
region concentrates in its vicinity.

Thus, the existence of distributed parameters qualitatively changes the properties of the system. We
may expect that later other interesting phenomena will be found in reaction—diffusion systems with
spatially inhomogeneous parameters.
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