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Introduction

In the last decadesthe study of nonlinear dissipative media has arousedgreat interest. When
analysingthesemedia investigatorsnoticed a reduction of the numberof the degreesof freedom
effectively describingthe system. In somecasesseveraldegreesof freedomcan be singledout which
determinethe dynamicsof the process,the remainingonesadjusting to them. They are oftencalled
orderparameters.Theirexistenceis very important.In investigatingdissipativesystemsone ora whole
hierarchy of simplified models is expectedto be built. Their analysis is believed to lead to the
understandingof manycomplexnonlinearphenomena.

In this connectionthe study of the simplest (often called basic)nonlinearmodelsacquiresspecial
significance.This approachprovided an opportunityto find a numberof regularities;it also led to the
emergenceof new ideasandconcepts(suchas solitons,strangeattractors,dissipativestructures)and
brought aboutthe discoveryof somenewphenomena.

Reducingthe numberof degreesof freedommeansthat self-organizationoccurs in the system. In
otherwords, the systemacquirespropertieswhich noneof its subsystemspossess.The whole assumes
qualitieswhich none of its parts possess.

To place specialemphasison this fact, the theoryof self-organizationis oftencalledsynergetics(or
the theory of joint action). This term was introduced by H. Haken [13]. He gives the following
explanation:“I havecalledthis discipline ‘synergetics’.Whatwe investigateis the joint actionof many
subsystems(mostly of the sameor of a few different kinds) so asto producestructureand functioning
on a macroscopicscale.On the otherhand,many different disciplinescooperatehere to find general
principlesgoverning self-organizingsystems”[13].

The formation of structuresclosely connectedwith dissipative processes(often called dissipative
structures) proved to be a common feature of different nonlinear systems.The term “dissipative
structure” wasintroducedby theBelgian scientist I. Prigogine.The work of thescientistsbelongingto
theBrusselsschool,of which he is thehead,helpedto bring out theconnectionamongtheformationof
structure,phenomenologicalmodels and the basicconceptsof nonequilibrium thermodynamics.They
played an important role in both the theoretical and experimentalinvestigation of order in open
systems.

Here is how G. Nicolis and I. Prigoginecharacterizea newconceptappearingin thenaturalsciences:
“... both rer~otenessfrom equilibrium and nonlinearitymay causethe emergenceof order in the
system.

The connection among order, stability and dissipation is highly nontrivial. To bring out this
connectionwe shall call orderedconfigurations,appearingapartfrom the stability area,dissipative
structures...Thesestructurescan exist far from theequilibrium position by theexpenditureof large
fluxes of energyandsubstance.Dissipative structuresthemselvesare astrikingexample,illustrating the
propertyof nonequilibrium to be a source of order” [3].

Order formation in open nonlinear systemsseems,on the face of it, paradoxical.In equilibrium
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systemsdissipative processeseliminate order, and thermodynamic equilibrium is established.In
nonlinearopen systemsdissipationcomes out in a new quality. Its joint action with other processes
leadsto patternformation, which determinestheir type, shape,dimensions.

In recentyearsthe investigationof open nonlinearsystemshasresultedin a numberof important
achievements.Analysisof comparativelysimple mathematicalmodels,suchas the “reaction—diffusion
systems”,the Lorenzequations,one-dimensionalmaps[x~~1= f(x~,A)] hasgiven rise to new ideasand
broughtto life a numberof mathematicaltheories.It standsto reasonthat deepanalysisof a concrete
situationshould not be replacedby simplified models,ideasand conceptsof synergetics.However,
theseconceptscan determinethe direction of investigation which, in many cases, proves very
important. The rapid growth of the number of investigationsusing the methodsand conceptsof
dissipativestructuretheory and the appearanceof many interestingexperimentalworks devotedto
self-organizationtestify to this. It can be exemplified by the findings in the investigation of the
transition-to-turbulencescenariosand the analysisof small-modechaosin hydrodynamicsystems[27],
the studyof oscillatorychemicalreactions[28], andbehaviourof active biological media,aswell as the
dynamicsof morphogeneticprocesses[5, 8], along with a numberof otherstudies.

To solve many concreteproblemsin plasmaphysics, microelectronics,hydrodynamics,chemical
kinetics,astrophysicsand in many other fields, it turned out to be necessaryto answera numberof
generalquestions.What arethe mechanismsof the formation of spatial—temporalorder in nonlinear
media?Can simple structuresbe united into complex ones?What are the organizationlaws of the
structuresformed?How doesthe transitionfrom the simplestorderedregimesto the complexstochastic
onesgo? Are thereany effective methodsof controlling processesin dissipativesystems?

The attempts to answer thesequestionshelped to single out some featurestypical of various
nonlinearmedia. Let usconsidersomeof them. As a rule,a whole classof initial datamayevolve to
the sameasymptoticregime. In otherwords, the details ofthe initial data are “forgotten”. This makesit
possibleto raisethe questionof the direction of the processes,of their “aims”.

The secondlaw of thermodynamicsgives the answerto this questionfor closedsystems.The same
answerholdstruefor anumberof nonlinearmedia.In duecoursetheygeneratespatiallyhomogeneous
stationary distributions. For the models describingthem one can plot, by analogy with ordinary
differentialequations,a Lyapunovfunction that will define the direction of the processes[29, 30].

However, analysisof many mathematicalmodelsshows that the describedsituationis rather an
exceptionthana rule. The asymptoticregimeusuallyhasa morecomplicatednature. Its mathematical
imageis a limit set,which attractsthe trajectoriesin thephasespaceof thesystem.It is often called an
“attractor”.

In Hamiltoniansystems,whereenergyis conserved,the situationcan be quite different; whenthe
valuesof the energyandotherintegrals(determinedby the initial data)areonly slightly different, the
solutionsdo not tend to each other [4]. The fact that the initial data are “forgotten” simplifies the
investigationof open dissipativesystemsto a large extent.The systemis expectedto consistof a finite
numberof variousstructures,and comparativelysimple mathematicaltools may be usedto copewith
them.

Theinvestigationsshowedthat, in manycases,the asymptoticregimesin nonlineardissipativemedia
have an invariant-groupstructure. In the simplest situations they may be self-similar solutions,
stationarysolutions, running andstandingwaves. Two- and three-frequencyregimesmay often be
observedas well. Modernmethodsof invariant-groupanalysisprovidethe possibility to find a complete
set of self-similar solutionsof the equationsunder study [68]. For a large classof stochasticregimes
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scaleinvarianceis typical [12]. The attractorprovesto be similar to itself on different spatial scales.
Invariantsolutions,moreoften thannot, prove to bethe limit of a largeclassof othersolutionsrather
thanan exceptionor particular case.Thus, dependingon the initial data, in comparativelysimple
dissipative systemstherecan be a transition to solutions of qualitatively different types, stationary,
periodical, multi-frequency and stochastic. Such behaviour has been described in a number of
experimentalworks.For example,it hasbeennotedin ref. [32] that morethan100 differentasymptotic
regimeshavebeenregisteredfor certainparametervaluesin Couette—Taylorflow (the flow of a fluid
betweentwo rotating cylinders). This means that in one and the sameopen dissipative systemthe
courseof the processesandtheir “aims” can be different.

The existenceof several attractorsis closely connectedwith new possibilitiesof controlling the
processesin nonlinearmedia. In actual fact, in phasespaceboundariescan be found that divide the
domain of attraction of different attractors.Even a slight change of the initial data near these
boundariescan lead to qualitatively differentbehaviourat a developedstage.

This is a commonfeatureof manyopennonlinearsystems.In most of them thereexists a certain
rangeof parametersor a stage,wherethe systemis especiallysensitive to effects coherentwith its
intrinsic properties.(In a numberof works this is called resonanceexcitationof the system.)

We shall see further that the amplitudeanddurationof theseeffects arevery often less important
than their correspondenceto the propertiesof the medium (in the simplestcasesit can be a certain
profile of the initial dataor a certaintypeof symmetry).Resonanceeffectscan significantly changethe
courseof the process.The study of the intrinsic propertiesof nonlinear media and the laws of
dissipativestructureorganizationis expectedto give new instrumentsfor dealing with complicated
systems.

Computersplay a significant role in the investigationof dissipativestructuresand self-organization
phenomena.Most nonlinear mathematicalmodels can only be analysedby combining analytical
methodswith computercalculations.This combinationtoday is often called a numerical experiment.
The studyof its resultscan leadto the appearanceof new conceptsandnotionsand, in somecases,to
the possibility to predict new phenomena.

If in previousyearsthe problemsof synergeticscentredaroundstationarydissipativestructures,in
recentyearsinvestigatorshavebeenableto makea stepfurtherin understandingthenatureof complex
spatial andtemporalorder. This is the subjectmatter of this survey.

It hasbeenshownthat thereexists a closeconnectionbetweenthe formationof complextemporal
orderand the emergenceof chaosin nonlinearsystems.The analysisof stochasticbehaviour,in many
cases,does not require taking into account a greatnumber of degreesof freedom. It can be well
understoodin the framework of simplified modelswith the interactionof several variablestakeninto
consideration.This is why the approachsuggestedby synergetics,which is connectedwith the
constructionof a hierarchyof simplified models,provesvery effectivehere.In a numberof cases,their
investigationprovides an opportunity to find both qualitativeand universalquantitativeregularities,
typical of manynonlinearsystems.

Twenty yearsago R. Feynmanpointed to the analysis of processesin nonlinearmediaand the
developmentof a qualitative theory of nonlinear partial differential equationsas one of the key
problems.Recentyearshavebecomea landmarkin this direction. In the last yearsseveraldetailed
surveyshavecometo light devotedto the transitionto turbulencein hydrodynamicsystems.Therefore,
weshall centreon otherworkswhich studycomplexspatial andtemporalorder,andaboveall systems
of the reaction—diffusiontype, as well as someother models.We are going to analysea numberof
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mathematicalresults concerningcomplex spatial and temporal order and to presenta number of
physicalsituationsin whichtheseresultscan be effectively used.We considerthe hierarchyof simplified
models,arisingin the theory of reaction—diffusionsystems.

The bibliography to this survey does not pretendto be complete. It, mainly, containseither the
workswheretheseor otherresultsarepresentedin a morecompleteandeasierform, or originalworks,
in which one can find importantdetails concerningthe problemsdiscussed.

1. Setf-organizationandstationarydissipativestructures

Reaction—diffusionsystemsreflecting many generalpropertiesof nonlinearmedia,havebecomean
importantclassof mathematicalmodels.A modelof this kind appearsto havebeenused for the first
time everby A. Turingin a mathematicalsimulationof morphogenesis[1]. His work, publishedmore
than 35 yearsago, broughtto light resultswhichdeterminedthe developmentof the wholedirection in
science.

A. Turing put forward a hypothesis which furnished an explanation for the appearanceof
morphologicalandphysiologicaldifferencesin cells in the courseof the developmentof organisms.He
assumedthat patternformation in initially homogeneoustissuecould be causedby diffusion processes
and simple chemical reactions.The latter could be describedby systemsof ordinary differential
equations.

If diffusion processesare takeninto accountwe obtaina systemof parabolicequations

Ut = Du5~+ Q(u),

whereu is a vector, Q a vectorfunction, D adiagonalmatrix. If Q is a linear function and~ co, then

lull ~ e’~~(i.e., either lluIl—~0,or llull~~+co).To be able to describethe formation of structure,the
function Q(U) mustbe nonlinear. Its nonlinearitymaybeconnectedeitherwith the law of massaction
[in this caseQ(U) includesproductsof concentrations],or with otherfactors.

The formationof stationarydissipativestructurescan beexemplifiedby severalmathematicalmodels
in biology.

1.1. Dissipativestructuresandsimulationof morphogenesis

Oneof themost importantproblemsfacing biology todayis theinvestigationof processescontrolling
the developmentof organs,i.e. mechanismsof their developmentin a certainsuccessionandmutual
relationship.Sometimesthis problemis called the problemofmorphogenesis.

Modem biology gives rather a good picture of how genetic information is transferredfrom one
generationto another, and how it is recodedin eachcell, thus ensuringthe synthesisof enzymes.
(Enzymesareorganiccatalystsof a protein natureproducedby living cells to regulatethe velocity of
practically all biochemicalreactions.)However, this knowledgealonedoesnot give an answerto the
following question:What causesa cell to differentiate,both morphologicallyand physiologically, in
different organs, and how do these differentiated cells appear?(or: how does the processof cell
differentiationgo?). In other words, the questionsto be answeredare as follows:

(1) How is the amountof enzyme,synthesizedin a cell, regulated?
(2) Why does this or anotherenzyme appearat a certainstage of developmentof an organism?
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(3) Why do different typesof cellsof a multi-cellularorganismproducetheir own proteincomplexes
thoughthey all contain thesamegeneticinformation?[2].

A. Turing assumedthat the “information” necessaryfor cell differentiationresultsfrom a collective
process,ofwhich chemicalreactionsarethekey element.His reasoningwasasfollows. Let substanceX
stimulatethedevelopmentof cells (it is calledan “activator”) andsubstanceY inhibit it (it is calledan
inhibitor). An accountof the reactionsof X and Y would lead to a systemof ordinarydifferential
equations.However,specialattentionshouldbe paid to thespatialdistributionsX(x, t), Y(x,t), which
arelargely affectedby diffusion processes.That is why, to model this phenomenon,it is naturalto use
reaction—diffusionsystems.Analysinga one-dimensionalproblemand assumingthat attheboundaries
no-flow conditionsare specified,we obtain the problem

X~= D~X~+ Q1(X, Y, A), Y~= D2Y15 + Q2(X, Y, A),

a�xsb, 0<t<co,
(1.1)

X(x,0)=X0(x), Y(x,0)= Y0(x),

X1(a, t)=X~(b, t)= Y5(a, t) Y~(b, t)=0,

where D1 and D2 are the diffusion coefficientsfor X and Y, which remain constant.The nonlinear
right-handsides,describingchemical reactions,dependon A. The lattercontainsthecharacteristicsof
the tissue,which changesin thecourseofthedevelopment.Theinitial dataX0(x), Y0(x) areassumedto
be closeto beingspatiallyhomogeneous,but they containsmall randomdisturbances.Theseequations
turnedout to describespontaneousorder formation, diffusion processesplaying a crucial role here.

In fact, assumethat in a concentratedsystem

dXldt= Q1(X, Y, A), dY/dt= Q2(X, Y, A),
(1.2)

X(0)=X0, Y(0)=Y0, O<t<ca.

(X, Y), for A = A0, is a stablesingularpoint. Then aftersimple calculationsonecanseethat for certain
relationsbetweenthediffusion coefficientsD1, D2 and thederivativesQ ~, ~, Q2~,Q2~at thepoint
(X, Y, A0), thestationarysolutionofthe systemofequations(1.1) will be unstablewith respectto small
disturbancesof the typee’~.Diffusion processeshavea destabilizingrole here.This phenomenonwas
calleda Turing instability.

The latter provedto be characteristicof a largeclassof modelsin physics,chemistry,biology and
other fields. One of the best known models is the Brusselator, which under certain circumstances
describesthe following reactionschemes:

k3 k4

A~±X, B+X~Y+D, 2X+Y~±3X, X~E.
k_1 k_2 k_3

Nonlinearsourcesobey the formula

= A —(B+ 1)X+ X
2Y, Q

2 = BX—X
2Y, (1.3)
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where B is usually a parameter. One usually studies the behaviour of the solutions at largecharacteristic
time scales. The typical behaviour of the Turing system, as well as that of the Brusselatorand many
other models, is as follows. For A < A0, the functions X(x, t), Y(x, t) tend to a spatially homogeneous
stable solution (X, Y). This solution is oftencalleda thermodynamicbranch.For A> A0 things go quite
differently. Thoughthe initial data arenearlyhomogeneous,disturbancesgrow, anda new pattern,a
spatially heterogeneous stationarydistribution of concentrations,arisesin the medium.

The value of A0 can be determinedby a standardlinear analysis,which shows that, for A> A0, the
solution (X, Y) becomes unstable with regard to smalldisturbances—~e’~[1].The profiles of stationary
solutions for A~ A0 can be determined if a more complex nonlinear analysis is conductedusing
asymptoticmethodsand the theory of bifurcations [3,13]. For A ~‘ A0 calculationsmustbe made.

Figure 1.1 shows a typical behaviour of the amplitudesof stationarystructuresfor A ~ A0. At the
point A0 the system acquires two more stationary solutions, and branching,or bifurcation, can be
observed.For A ~ A0 it may be determined by small externaleffects, or fluctuations,whetherone
branchor the otheris taken.

The latter gain strength, which leadsto macroscopicorder formation in nonlinear systems,as is
notedin ref. [3].This behaviourappearsto be typicalof manynonlinearsystems.Therecan be several
waysof developmentof thesesystems,andbifurcationpointscanaffecttheir evolution. A typical form
of a stationarysolution in the Brusselatorcan be observedin fig. 1.2. In this model a whole classof
initial dataend up in oneestablishedsolution. This “forgetting” of the initial datais characteristicof
opendissipativesystems.Onecanobserveit in theTuring systemand in manyotherreaction—diffusion
systemsusedto describemorphogenesismathematically[5—8,15].

The patternformationprocessin one-dimensionalandmany-dimensionalsystemshasbeenstudiedin
detail for the model suggestedby A. Gierer and M. Meinhardt,in which

Q1—p+kX
2IY—~X, Q

5cX
2—vY, (1.4)

wherep, k, p., c, v areconstants.Thebehaviourof thesolutionsof theaboveproblem(1, 1), (1,4) fits
the dataobtainedin the courseof otherobservationsand experiments.For example,if a part of the
dissipative structure is “removed” (i.e., we assumethat at t = t~,X = X, Y = Y in the interval
0< L

1 <x < 1), a wave of “self-regeneration”arisesand thepatternformation recommences.It would
be natural to compare this wave to the regenerationprocess.

X(O) (:~
____ ______ :~0:2 0~4 0.6 •08 I.O~

Fig. 1.2. Example of a stationary dissipativestructurein the Brus-
selator.Computationparameters:A= 2; B= 4.6; 1=1; D1 = 0.0016;

Fig. 1.1 D,0.008.
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The predictions of models(1.1) and(1.4) havebeencomparedto themorphogenesisof thesimplest
multi-cellular organisms [5—8].Many-dimensionalgeneralizationsof the systemmake it possible to
describe the growth of leaves on the stems of plants. Depending on themodelparameterstheirposition
is different [7].

To describe morphogenesisin terms of mathematicsis a difficult task. Various methodsof
investigation and new mathematical theories have to be applied, depending on what propertiesof this
phenomenon are thought to prevail. We want to draw attention to severaldirectionsdevelopedin
recentyears.

In a number of casesthe activator—inhibitor interaction turned out to be less significant than
mechanicalstrains of the tissue and substancesaffecting them, which, in fact, proved to be most
important. The understandingof this brought about the appearanceof mechanicalmodels of mor-
phogenesis.In the simplest casesthey can be reducedto a systemof a parabolic and an elliptical
equation [5,74]. A more complex model taking into accountthechangesin cell concentrations,the
concentration of the cell matrix and its shifts was built in ref. [9]:

n1 = D1n~~— ~ — a[n(p + a’p~~)~]~— [nu~]~+ rn(1 — n)

p.1u~ + /22U1~+ r[n(p + I
3~~~)]

1— sup = 0,

p~+(pu~)~=0.

Analysis shows that this model candescribea largeset of dissipativestructures of different types.
In reaction—diffusion systemsthe length of the interval is important.The numberof structuresand

their configuration can be changedby alteringtheparameterI (e.g. by arbitrarily increasingit). But in
natureanygrowthhasits limits. The dimensionsof a growingorganismaredeterminedby innercauses
and not by externalones.This is why one of the approachesto themodellingof morphogenesisuses
equationsdescribinglocal processes[23]. Intrinsic propertiesof nonlinear media and not marginal
conditionsdeterminedissipativestructuresin this case.Examplesof thesesystemswill be consideredin
the next chapter.

All models mentionedcan be seen as a developmentof Turing’s idea: nonlinear media were
investigatedin all casesand the processestaking place in them were describedby partial differential
equations.However,alternativeapproachesarealso possible.

R. Thom presentedhis model of morphogenesisin a book that hasreceivedwide acclaim[10].The
developmentofan organismgoesthrougha numberof qualitativejumps(e.g. thoseconnectedwith the
loss of different symmetries).An effective descriptionof such transitions in systemsdependingon
severalparameterscan only begiven for a comparativelysimple classof objectswhich is consideredby
catastrophetheory,

= —ÔU(x,A)/ôx,

wherex andA arevectors here.Unlike Turing’s approach,informationaboutthespatialstructureof an
object cannotbe obtainedhere. However,in somecasesit is possibleto find out how its qualitative
propertieschangewith thechangeof parameters.

Another approach,suggestedby G. Neiman, is connectedwith the transition to a discrete
description.It turnedout that thesimplestdiscretemedia(cellularautomata)canbe effectively usedto
producedevelopmentandself-reproductionpatterns.Eachcell is connectedwith its nearestneighbour
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cells. Thoughits behaviouris determinedby simple rules,theevolutionof largeconfigurationsof cells
may be very interestingand diverse. Someexamplesof suchmediawill be consideredin chapter 11.

The modelssuggestedat presentappearto be ratherfar from reality quantitatively.Nevertheless,
their construction and investigation were very helpful. They resulted in some general concepts
concerningthe formation of order in nonlinearmedia.

1.2. Self-organization

Partialdifferential equationsarethemaintool usedin theinvestigationof nonlinearmedia.Formally
they describesystemswith an infinite numberof degreesof freedom.However, different degreesof
freedomplay different roles. In a nonlinear dissipative systema finite, and sometimeseven small,
numberof variablescan be singledout, the remainingvariables“adjusting” to them. Thesevariables
areoften calledorderparameters.

Their introduction can be explainedby a simple example.Take the function u(x), definedin the
interval from 0 to 1. It may be expandedin a Fourierseriesand theamplitudeof eachharmoniccanbe
found. Let the function u(x) haveacomplexform (seefig. 1 .3a). No orderor regularity is observedin
its behaviour.The amplitudesof many harmonicsa~are close to each other. On the contrary,the
behaviourof thesmoothfunctionsin fig. 1.3b is very simple andregularitycaneasilybe observed:it is
closeto periodical.To showits profile it is sufficientto statethe amplitudesfor someof theharmonics.

u~TJ

0.8 a

~t~)

_____________________ ITjT
Fig. 1.3
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If the number of harmonicswith largeamplitudesis decreasing,a certainorderestablishesin thesystem
and self-organizationoccurs.

Let us seehow the amplitudesof the Fouriercoefficientsof thesolutionsof thesimplestlinear and
nonlinearequationschangewith time.

The problemof a linear equationfor the thermalconductivity,

T~=aT~~,0sx�l,
(1.5)

T(x,0)= T0(x), T~(0,t) T~(I,t)=0,

canbe reducedto an infinite systemof ordinarydifferential equations,the function T beingexpanded
into a Fourierseries,

T(x, t) = ,n~0Cm(t)cos(~mxIl),

which is insertedin eq. (1.5). The problem being linear, all the equations in the system will be
independent,

dC~Idt—a(~rnIl)
2C~,n=0,1,2,..., C~(0)=C~. (1.6)

Suppose,we wantto solve problem(1.5) for t> t
1, andobtain an answerwith a ratherhigh accuracy

e. Seefig. 1.4, which showshow theamplitudesof the first few harmonicschangewith time. The larger
thenumberof theharmonic,the fasterits amplitudedecreases.To obtain an answerwith an accuracy

= 0.001 for t> t1 (see fig. 1.4),we must solvethe first five equationsin (1.6); for t> t2 solving three

C.~i.’
~0

1,2 1,6 Is

Fig. 1.4. Typical picture of the variationof the function Ck(t) for the linear thermalconductivity equation.
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equations is enough, and for t> t
3 only two. It is a remarkablefact that, beginningfrom a certain

moment, it is sufficient to solve a few equations instead of solving the infinite system (1.6). Statingthe
accuracy and the time for which we want to obtain the answer, simplified the problem considerably.

The same approach has been developed by H. Haken to investigatenonlineardissipativesystems
[13,14]. Suppose we know thepartial differential equationsdescribingthis system.In completeanalogy
to the derivationof (1.6) from the equationfor the thermalconductivity, we can deducean infinite
system of equations

dCmldt=fm(Co,Ci,.. .)~YmCm, m0,1,2,..., (1.7)

where the Cm are Fourier coefficients, 7,,,Cm are determinedby diffusion (or anotherdissipative
process),0<y1 <7., <.. <Ym < ~f0, f1,. . . , fm arenonlinearfunctions,which maydependon the
amplitudesof all harmonics.The system(1.7) is muchmorecomplexthan(1.6),all its equationsbeing
coupled.However,let us considercomputerobtainedfunctionsCm(t) for a nonlinearequation.As an
examplewe shall considerthe following equation:

u,—ku~~+Q(u), (1.8)

whereQ(u)= u — 2u
3 (this type of equation is employed in some mathematical models in biology [37]).

One can see the same regularity here which holds for the linear equation (fig. 1.5): the amplitudes of
harmonics with a larger number decrease faster, and beginningfrom a certainmoment they can be
neglected.Having this in mind, an approximatemethodof systemanalysiscan be developed.

Let us first consider the simple equation

dCm/dt= ~YmCm + F(t). (1.9)

If F(t) = 0, thenthe solution is Cm= C~,,e7”t.
If the characteristic time of variation of the function is ~ and Tm 1 ly,,, ~ & and we take special

interest in processes with characteristic times much longer than Tm~then the variation of the amplitude

C.,(t) cc

-~:~ ~
~O/6

Fig. 1.5
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Cm can be describedby the algebraicequation

ymCm~(t)0 (1.10)

instead of a differential equation.(Analysis of the exact solution of eq. (1.9) brings us to the same
conclusion.)The fundamentalassumptionthat ~~ lIy,,, is referred to as the “adiabatic approximation”.

Assume that the inequalitiesYm ~ Ym+i <Ym+2 <“~ hold. It meansthat the processesdescribedby
the first m+ I equations go much slower than the remainingones.Besides,if theadiabaticapproxima-
tion canbe usedfor the functionfm we obtain a systemof m+ 1 differential equationsanda hierarchy
of algebraicequations,

dC,,/dt—f,,(C0,C1,...)—y~C,,,n=0,1,. . ,,m, (111)

C~—f~(C0,C1,...)/y~,p=m+1,m+2,...,

which describethe processeswith characteristictimes r ~‘ 1 Iy~.
Supposewe havebeenableto expressCm+ 1’ Cm+ 2’ and theamplitudesoftheothermodes,in terms

of C0, C1,. . . , C,,,~ from the hierarchyof algebraicequations(or we know that Cm+ 1’ Cm+ 2 and the
other modes are much smaller than the first m); then the purposehas been achieved:stating the
accuracyand characteristictime we cometo the (m + 1) differential equations

dC~Idtco,,(C0,C1,... ,Cm)~YnCn, n=0,1,...m, (1.12)

the latter being simpler than the initial system. This approachturned out to be helpful when
investigatinga numberof problemsin laserphysics and in solving manyother problems[13—16].

The reasoningpresentedaboveis heuristic. However,in somecasesthis procedurecanbe given a
rigorous basis.The Tikhonov theoremis one of themain resultshere [17,18].

Let us considerthe setof differential equations

dz y 0
p. -~j=F(z,y,t), -~=f(z,y,t), z(0)=z y(O)=..v (1.13)

wherez andF areM-dimensionalvectorfunctions,y andfm-dimensionalvectorfunctions, p. >0 is a
small parameter.(This is the situationwe encounter,if we take the first equations from the infinite
system(1.7), supposing that the influence of the other harmonicsis very small.)

Assumingthat in (1.13) p. = 0, we obtain a systemof equations[ananalogof (1.11)], theorder of
which is lower than that of the original system,

F(i, j
7, t) = 0, d~7dt=f(i,~, t). (1.14)

Theseproblemsarecalledsingular-disturbed(asdistinct from regular-disturbed,in which, if p. = 0, the
orderdoesnot decrease).To solve (1.13), it is necessaryto express~from theequationF(i, ~, t) = 0
and to substitute the solution~= ~(j1, t) (becausethe problemis nonlinear,therecan be more than
one) in the secondequation(1.13) and to solve the systemobtained,

d~Idt=f(~(~, t), ~, t), ~7(0)=y°. (1.15)
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Our assumptionis that in somedomainof variable spacethe equationF(i, ~, t) = 0 hasa continuous
isolatedsolution ‘p( ~, t) and that (1.15) hasa single solution.

Along with the system(1.13) let us considerthe adjoint system

diIdT = F(~,y, t), (1.16)

in which yand t areparameters.It is clear that f = ~(y, t) is an isolatedstationary point of the system
(1.16). Supposethis point is asymptoticallyLyapunovstablein thedomain(y, t) understudy [i.e., for
each e >0, there is a ~(e) which, when 111(0) — ~(y, t)ll <ô(e), obeys the conditions llI(T) —

p(y, t)lI < e if r � 0 and l(r)—* ~(y, t) as T—~co]. Let us also assumethat l(T)—~~(y°, 0) [thatmeans
that z°belongs to the domain of attraction of the stationary point 1= p(y°,0)].

If these requirements are fulfilled (as well as some technical conditions, concerning the smoothness
of the right-hand sides andtheir domainof definition), accordingto Tikhonov’s theorema valueof p.0
can be found for which the problem(1.13) hasa single solution z(t, p.), y(t, p.) for 0< p. � p.0 and
0 � t ~ T; it satisfiesthe limit equations

lim y(t, p.)=~
T(t) for 0�ts T,

(1.17)
limz(t,p.)=~(t)=p(~i(t),t) for0<t~T.

(They areanalogsof eqs. (1.11), (1.12) for the finite-dimensionalcase.)The Tikhonov theoremdoes
not dealwith the behaviourof the solutionsof the studiedsystemas ~—* co~

It would also be helpful to know how many equations from the infinite-dimensional system (1.7)
shouldbe left to effectively describetheprocessesin nonlinearmedia.This is especiallyimportantfor
theanalysisof stochasticregimes.In recentyearsa numberof works havebeenpublishedwhich make
it possible to give an answerto this questionfor a certainclassof hydrodynamicproblems[13].

The physical meaningof the resultsmentionedabove is simple: modeswith longer characteristic
times areorderparametersin thesesystems.Slow orders“subordinate”the fast ones.The amplitudes
of the first Fourier harmonics act as order parameters here. Substantiation of this approach is very close
to a problem emerging in the theory of numerical methods — how closeto eachotherarethesolutions
of the initial infinite-dimensionalproblemand thesolutionsof thefinite-dimensionalsystemobtainedby
treatingthe initial equationwith the Galerkinmethod [20].

No less interestingare otherphenomena,in which self-organizationoccursand dissipativestructures
emerge. In the 70s investigators of plasmaphysicsfocussedtheir attentionon superfastregimes,which
enabled them in many cases to use onegroupof processesand ignoreothers[21].It brought aboutthe
appearance of a large class of mathematical modelswhere orderparameterscould be independentof
Fourier harmonics and are defined by the fastest processes in the system.

As a simple exampleof a model of this kind we can treat the nonlinearequationfor the thermal
conductivity with a bulk source [22—24]

T,=(k(T)T~)~+Q(T), —co<x<co, k(T),Q(T)>0, T(x,0)= T
0(x), (1.18)

where T is the temperature of the medium, its combustionsimulatingthesourceQ(T). For the sake of
simplicity we assume that both the source and the thermal conductivity are power functions of the
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temperature,

k(T)~k0TU, Q(T)—q0T~, k0,q0,f3,r>0. (1.19)

Equation(1.18) hasa self-similarsolution,

T=g(t)f(~), ~=x/ço(t), (1.20)

whereg(t) characterizesthe amplitudeof thesolution, ~(t) is its half-width and fits form. It is natural
to treat it as a dissipative structurewhich, unlike patternsin theTuring model and manyothermodels,
is nonstationary.

Supposethe initial profile evolvesinto a self-similar solution [in somecasesstrict results can be
obtained, as far as theevolution to a solutionof the type (1.20) is concerned].To describethis process
the method of averaging can be applied [23,25]. In fact, substituting formula (1.20) into eq. (1.18) one
canfind expressionsfor g(t)and (p(t), aswell as obtain a boundaryvalueproblemfor the functionf( ~).
But we can go anotherway. After inserting(1.20) into eq. (1.18) one canintegrateeq. (1.18) overx,
then multiply it by T and integrateagainover x. Onecan seethat a dynamic system is obtained,

g = q0[c — a]g’~— k0bg~~
2,

(1.21)
p—i u —1

~=—q
0[c—2a]g ço+k,,bgco

where

a= f f~)d~/J f(~)d~,

b=2J fU(~)[fi(~)]2d~/J f
2(~)d~,

c=2 J fs+1(~)d~/J f2(~)d~,

and the initial temperatureprofile actsasf.
Analysis shows that the model (1.21) describessolutionswith one maximumof the initial system

well, providing an opportunityto predictan interestingeffect. Thereexistsuchparametervaluesand
initial dataj, ~ [and T

0(x)] for which the amplitude decreases,and the half-width grows (g—~ 0,
—~ ce). However,perturbationscanpush the system into another regime, which has no solution at all

times (g—~oo, p—*O, for t—*t<co, so that max~T(x, t)—+oo, if t—~t~<co).Fluctuationsturn out to
playa fundamentalrole hereaswell. Acting asorderparametersin formula(1.18),the functionsg and
ip characterizeherethe fastestvariables.The existenceof order parametersin nonlineardissipative
systemsis very important.In a numberof casesa hierarchyof simplified modelscanbe built with their
help,which to a greatextentsimplifies the analysisof the systemsunderstudy.
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2. Complex spatial order in nonstationary processes

2.1. Model of thermal structures

It is naturalto beginstudyingnonlineardissipativemediawith thesimplestmodels.It turns out that
manyparadoxicalpropertiesof nonstationarystructures,typical for nonlinearsystems,canbe investi-
gatedby meansof a singlenonlinearparabolicequation,i.e.with theaid of a modelthat is simpler than
the oneconsideredby A. Turing,

u, = (k0u~)~+ Q(u). (2.1)

It seems that a parabolic equation with a nonlinear source was first studied in a publication by
Kolmogorov, Petrovskyand Piskunov [37].They investigatedthe Cauchyproblem,where the source
satisfiedthe conditions

Q(u)E C
1[0, 1], Q(0)= Q(1) = 0, Q(u)>0, 0< u < 1; Q’(O) >0.

Subsequentlythis equationwasusedto describeepidemics,the motion of excitationsin a nerve fibre,
and thepropagationof flamesin acombustiblemedium [38].A setof runningwaveswasconstructed,
i.e., solutions of the form u = f(x — Ct) were obtainedfor various values of C; also the comparison
theoremwasproved: if u

1(x, t) and u2(x,t) aretwo solutionsof eq. (2.1) with initial datau1(x,0) and
u2(x,0), respectively,and if u1(x,0)>u5(x, 0) for all x, then u1(x, t)> u2(x,t) for 0< t < co (For the
linear equationof heat conduction without a source the comparisontheorem is proved in standard
textbooksof mathematicalphysics [39];in a rathersimple mannerit is generalizedto the casewhen
Q(u) is a sink, Q(u) <0, to which the problemis reducedin ref. [37].)Kolmogorovet al. [37]could
prove that for ~ co the solutionsof eq. (2.1) are determinedby one of the constructedparticular
solutions, i.e., the solution with the minimal wave propagation velocity c,

c=2~
1k~,aQ’(O).

If the initial dataareeven,two wavesarise,right- and left-running waves.
Obtaininga self-similarsolution for t—* leadsto a reductionof thenumberof degreesof freedom,

i.e. self-organizationoccursin thesystem.The classof sourcesQ(u) for which analogousbehaviouris
observedcan be madelarger[38].

Besides,the behaviourof the solutionswas investigatedin detail in the first and secondboundary
valueproblemsfor eq. (2.1) for t—~ co~In the caseof boundedsourcesQ(u) stationary solutions were
obtained.Forthesesolutionsa criterion of stability wasanalyticallydetermined[29].Fromthis criterion
it follows in particularthat in the secondboundaryvalueproblemthestationarysolutionwith atleast
oneextremumat aninternal point of the intervalis Lyapunovunstableprovided thereareno flows at
the boundaries.Hence, complex dissipative structuressuch as in reaction—diffusionsystems are
impossible here.

The asymptoticbehaviourof solutionsfor t—~ is usually investigatedin the caseswhentheslowest
processesareof main interest. However,lately nonstationaryprocesseswith thesmallestcharacteristic
times haveattractedgrowing attention of specialistsin plasmaphysics, chemicalkineticsand biology
[23]. Theseprocessesare idealized as regimes with peaking, for which one of the values under
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investigationgrows infinitely over a finite time, calledthe time of peaking.Below, it will be denotedby
tf. The equationsin which regimeswith peaking are possiblerepresenta simplified model of certain
stagesof processes[23].

For example,in a publication dealing with evolution theory it is statedthat natural selectionof
features giving dominance in thecourseof evolutionhasasa resultthat “. . . theprocessitself runswith
a rate increasing to a certainlimit sincein the naturalselectionmoreperfectformsarisingfasterthan
otherstriumph” [40].

The simplestdifferential equationin which suchregimesarepossiblehasthe form

~=Q(u), IQU)C. (2.2)

The last inequality describesa necessaryand sufficient condition for the existenceof a regime with
peakingin sucha system. It is called the Osgoodcriterion [41].For example,if Q(u) = u~,then

u — (t~— t)1~ , t~= u(0)~’~I(f3— 1)

i.e., the time of existenceof thesolution dependson the initial data. The questionabouttheexistence
of regimeswith peakingwas also studiedfor many systemsof ordinarydifferential equations[41].

It is interesting to see how the opinion about such regimeshas changed.Even recently the
nonexistenceof a solutionfor all times (0< t < cc) hasbeenconsideredas anindication that the model
is incorrect and not applicable for a description of realprocesses.Now growingattentionis attachedto
phenomenain which the instability developsin a finite time (this doesnothappenin linear systems).As
exampleswe can mention the following cases: the classicalproblem about the cumulation of shock
waves to the centre, which was studied by Guderley [42]; some modelsof turbulent flows where
equations with negative viscosity appear[43]; questionsconnectedwith effects of nonstationary
boundary regimes upon nonlinear media [24]; plasmaphysics problems, in particular collapse of
Langmuir waves[44];andmanyothersystems[45].

Let us consideragaintheequation of nonlinearheatconduction,

1’, = (k(T)T~+ Q(T), —oc<x <cc, T(x,0) = T
0(x), (2.3)

where T(x, t) is interpretedas the temperatureof themedium, thecombustionof which simulatesthe
bulk source Q(T).

In the linear equationof heatconductionwithouta source(aswell aswith a linear sourceorsink), in
the caseof finite initial data [T0(x)= 0 outsidea certaindomain G] the temperatureprovesto be
different from zerothrough theentirespacefor t >0: thermalperturbationsin sucha modelpropagate
with aninfinite velocity. Quitedifferent behaviouris observedin systemswherethe thermalconductivi-
ty is nonlinearand

Jk(u)u1du<cc. (2.4)
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With finite initial data and in the absenceof a sourcethe velocity of the thermalwave front in such
media provesto be finite [46].

The basicqualitativeeffects in the system (2.3) can be revealedby investigatingthe equationwith
powerfunctionsk(T) and Q(T) [21—24],

k(T)=k0T°, Q(T)=q0T
0.

Let /3 cr + 1, /3 > 1. A typical evolution of the solution of problem(2.3) is shown in fig. 2.1. The
maximum temperaturefirst decreases(the time t

2) and then increases(t3, t4). As follows from
inequality (2.4),at eachinstantof time theheatis concentratedin a boundedspatial domain.At the
momentt4 the front reachessomepointsA and B (seefig. 2.1)afterwhich it stops.The heatturnsout
to be localisedin a boundeddomain, whosesize is designatedby L~.After this the half-width of the
heateddomainremainsconstantwhile theamplitude(maximumtemperature)increases.The tempera-
tureincreaseoccursin a regimewith peaking(the temperaturemaximumgoesto infinity in a finite time
ti). The result of the calculation appearsto be paradoxical: despite an infinite increase of the
temperatureanddissipativeprocessestheheatprovesto be localizedin a boundeddomain(notethat in
this casethe law of variationof thehalf-width and theamplitudeof the temperatureprofile agreewell
with thesolutionsof the averagedsystem[23]).

A large numberof works performedin recentyearshaveshownthat localizationphenomenaarea
commonfeatureof manynonlinearmedia.This maybe dueto the actionof specificboundaryregimes
[47],or thepresenceof sinks[48,49]. In a nonlinearmediumacertainconfigurationof initial data[50]
may causea localizationof heatin a finite time.

Let us vary theamplitudeandhalf-width of the initial distribution. Calculationsshow that this leads
to a changein t~however,the sizeof the localizationdomain [for a wide classof T0(x)] and theshape
of the temperatureprofile (ast—~cc) remainthesame.Herewe arefacedwith thephenomenonthatthe
details of the initial dataareforgotten.The fact that thedistribution, thehalf-width of which doesnot
change,maintainsits form shows that thecombustionin a domainof length Lf occursself-consistently:
the law for the temperatureincreaseat eachpoint provesto be thesameup to a factor.

Let us turn our attentionto the decisiverole of dissipativeprocessesin suchsystems.Weassumethat
k0 = 0. Thenaccordingto eq. (2.2) at eachpoint of space,where T0(x)~ 0, thecombustionrunswith
its own value of t~.If k0 ~ 0, in thewhole domainthecombustionrunswith thesametime of peaking.
Therefore,it is naturalto considertheorderarising in such a medium and developing in a regime with
peakingas a nonstationarydissipative structure. (In this connectionin somepublicationsthe model
(2.3) is called a modelof thermal structures [23,24].)

Fig. 2.1. Formationof a dissipativeheat structurewith a constanthalf-width (the S-regime): t1 = 0.0; t2 = 19.59; t3 = 73.03; t4 = 74.95.
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Maintenanceof the shapeof theprofile for ~ tf allows us to assumethat at a developedstagewe
obtain a self-similarsolution of the form

T(x, t) = g(t)f(~), ~ = x/ço(t). (2.5)

By substituting (2.5) into problem (2.3) we can obtain the changesfor the amplitudeg(t) and the

half-width ~‘(t),

g(t) = A1(1 — tIt~)’~, ~(t) = A2(1 — t/tf)_U_12~_1). (2.6)

Here A1 andA2 areconstants,which aredeterminedby theparameters/3, cr, k0, q0. Now we havea
nonlinear boundaryvalue problem for the function f( ~),which definesthe shapeof the dissipative
structure,

— 1 ~ /3~1 ~ ~~=(fUf\ ~ 27
($—1)t~~‘ 2($—1)t~ kJ J~)~ J

f~l1=0=0,f°f4l~4=0,fI~~=0. (2.8)

The condition at ~= 0 allows one to distinguishonly symmetricsolutions,which areobtainedfor t—~t~.

The two other conditionsallow one to distinguishlocalized solutions. For problem(2.7), conditions
(2.8) lead to an analyticalsolution describinga localizedstructureif /3 = 0 + 1,

f(~)= [cos~(ir~IL~)2(o + 1)o~1(o.+ 2)_1]1~~1), (2.9)

where

L~=~ Vr+ 1\/k01q0 (2.10)

is the lengthof the localizationdomain. The structureand thevalue of L~coincidewith thecalculated
ones.Formulae(2.9),(2.10) enableus to constructmanyothersolutionsof (2.7),(2.8). If two similar
initial profiles leading to the appearanceof localizedstructuresaregiven at a distancelargerthanL~,
they haveno influenceon eachother (see fig. 2.2a). If one of the profiles is smaller in amplitude it

8
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Fig. 2.2. (a) Effect of heat localization. Two heat structures in a nonlinear medium develop independently:t, = 0.0; t2 = 3.56 x 10_2; t, =

3.93x 10~~(4 = 3.99x iO~t, = 4.00 x 10~.(b) Structuredevelopswith aminimal time of peaking.Therestof theprofile “diesdown” for t—+ t,;
= 0.0; t, = 0.147; t3 = 0.220; t4 = 0.245.
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simply “stops” whent—* t~,while theotheronegrows infinitely (seefig. 2 .2b).This is a typical picture
for regimeswith peaking.Thereforein the nonlinearmedium describedby (2.3) we should consider
only the fastestprocesseswith minimal times of peaking.

So far we have assumedthat 13 = o + 1. Let us find out what occurswhenthe parametersof the
nonlinearmedium /3 and a- arevaried. From (2.6) it follows that for /3> a- + 1 we have tp(t) —*0 as
t—* t

1, and p(t)—*cc as t—* t~, if f3 <a- + 1. In the first case the half-width of the temperature
distributionmustdecrease,andwe arefacedwith theLS-regimewith peaking(fig. 2.3a).In thesecond
caseit grows infinitely, andwe havetheHS-regime(fig. 2.3b). When /3 = a- + 1 thehalf-width remains
constant[22—24](S-regime).

For the nonlinearproblem(2.3) thesuperpositionprinciple is not valid. In fact, if we multiply the
initial databy some factor this will lead to a processrunning at a quite different rateand with a
different time of peakingratherthan to multiplication of the solution by a constant.Herewe cannot
constructa generalsolution from the known set of particular solutions. So what is the value of the
self-similar solutionobtained?

The answerfollows from the calculationsgivenin ref. [23]andsomerigorousstatementsmadein ref.
[24]: any distribution for t —* t~gives one or severalself-similar solutions. Although there is no
superpositionprinciple, we know which structuresarise at the stageof intensecombustion.This is a
profoundand interestingfact.

Oneof the traditional methodsof analysinglinear problemsof mathematicalphysics is connected
with separationof variablesandsubsequentdeterminationof a set of particularsolutions.To do this we
should find eigenfunctionsof the problem under investigation (which are also some self-similar
solutions). Theseessentiallydependon the region in which the equationis solved as well as on the
boundaryconditions.Thenby usingthesamesetof particularsolutionsa generalsolutionis constructed
[39].

On the face of it, in the questionunderdiscussionthe situationprovesto be similar: thenonlinear
problem (2.3) admits a generalizedseparationof variables (2.5). Determining the profile of a
self-similar solution leadsto thenonlineareigenvalueproblem (2.7),(2.8). (For given tf theeigenvalue
is ~. The similarity transformationallowsus to determineprofiles of f(~)for othert~aswell. In recent
yearssimilar problemshavearisenin manyfields [51].)

In this connectionsolutionsof equationswhich describeconfigurationsof nonstationarystructures
are called the eigenfunctionsof the nonlinear medium[52,53]. Unlike the usual eigenfunctionsthey

1•

800 /3:3,10 T
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Fig. 2.3. (a) Appearanceof a heat structurewith decreasinghalf-width (L5-regimewith peaking): t, = 0.0; t2 = 2.15 x 10’; (3 = 2.38x 10~
(4 = 2.44 x 10~.(b) Heat wavesof growing amplitude (HS-regimewith peaking): t~ = 0.0; (3 = 0.69; t, = 0.875.
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describelocalized processesand do not dependon boundaryconditions. [Forexample,formula(2.9)
can determinethesolution of a largeclassof variousboundaryvalue problemsfor eq. (2.3), in which
the length of the domain L > Lf .1 We may say that they describeintrinsic propertiesof a nonlinear
medium. It is no small wonderthat greatattention hasbeenattachedto the study of thesefunctions
[23,24, 54]. Let us noteseveralresultsof importance.

The solution(2.9), (2.10)provesto bevery simple: thetemperatureprofile which it describeshasa
singlemaximum. (We shall say that it determinesa simplestructure.) The questionis: Can complex
structuresthat havemorethanone maximumand keeptheir form exist in thenonlinearmediawhich
are describedby eq. (2.3)?The physicalideaappearsto be rathersimple.Let two structuresexist in the
mediumandeachof themhavea localizationdomainL1. If thedistancebetweenthemexceedsL1 they
do not influence eachother. If the distanceis much shorterthan L1 they quickly degenerateinto a
simple structure.In the intermediatecasethe maxima move to the symmetryaxis for a long time;
however,the form of the profile changeslittle. This allows us to speakaboutthe interactionof heat
structures.

An exampleof suchan interaction is shownin fig. 2.4. It is seenthat four local temperaturemaxima
moveto thecentrewhent ~ tf. The spatial symmetryof the initial dataplaysan importantrole in the
interaction. In ref. [55] the interaction of structuresin the multi-dimensionalcasewas studied by
numericalmethods,and the following examplewasconsidered.

i ~O,0 t”S,p3~dO’ ~ ,D,94~1O2

/f
~

j3=4 ~2
K~{ c~~=5,25

Fig. 2.4. Interactionof four heat structures.
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Take initial dataof the form

T0(r)=max{A1exp[—a,(r—a,)
2]}, (2.11)

whereranda, aretwo-dimensionalvectors.Let n 3, A
1 A2 = A3,a1 = a2 = a3 and thevectorsa1 be

chosenso that at one time they form an equilateraltriangle (Ia1 — a21 = a1 — a31 = a2 — a31 = a) andat
anothertime an isoscelestrianglewith apexof 1200 (Ia1 — a21 = Ia1 — a3I = a, /3 = 4.0; a- = 2.0; k0 = 1.0;
q0 = 5.25; a = 2.08; A = 1.3; a = 2.5). More energyconcentratesin a smallervolume in the first case
thanin thesecondcase.In spiteof this t1> t1, i.e., thesymmetricconfigurationexistslonger. Various
stagesof the interactionof the structurescan be approximatelydescribed,and it can be shown that
similar laws are typical for the three-dimensionalcase.

Profiles of the form (2.11) changetheir form when t ~ tf (therefore,they are sometimescalled
quasi-structures).The laws of structureinteractionsrevealedin calculationsallow one to assumethe
existenceof complexstructures.They are determinedby solutionsof eq. (2.7) (or a multi-dimensional
analog)with severalmaximaor by theso-calledhigher eigenfunctionsof a nonlinearmedium.

In refs. [23,52, 53] suchfunctionswere investigatedin the one-dimensionalcase.Theyexistin the
LS-regimewhen f3 > a- + 1. The solution of the self-similar problemdoesnot havea finite front. So
sincewe areinterestedin localizedsolutionsit is naturalto require,insteadof conditions(2.8), that the
temperatureand the flux shouldto go to zero asx—* cc,

ôfh9~If~..o=0,f~f4-~----*0, f-~--—--*0. (2.12)

Hence,it follows that

f_—* C1~_
2( 1)/(~u1) (2.13)

Whensolving thenonlinearproblem(2.7), (2.8) wemust determine~ (tf can be put equalto unity),
while here C, must be determined.

The solutions of (2.7), (2.12) constructednumerically allow us to establishan interestinglaw
[52,53]. Two differentpartscanbe distinguishedin thesolution. In oneofthem thesolutionrepresents
smalloscillationsaboutf = 1 [In theoriginal equationthesolutionf = 1 correspondsto a homogeneous
backgroundT(x, t) —(1 — t/t

1)~’
3~ thereforeit is sometimescalledhomothermal.]In the otherpart

fast convergenceto the asymptoticform (2.13) occurs.This is seenin fig. 2.5, where a whole set of
eigenfunctionsis shown for a nonlinearmedium which is describedby eq. (2.3) with powernon-
linearitieswith /3 3.18; a- = 2.0; q

0 = 1; k0 1.
Sucha behaviourof solutionsenabledus to estimatethenumberN of eigenfunctionsof a nonlinear

mediumby analysingthe problemlinearizedaboutf= 1 [52],

N� [a — [a]a’]], a = (/3 — 1)(/3 — a- — 1)_i, (2.14)

and to obtain somerigorousresults [56].
It turns out that the solutionsof the linearizedproblemcanbe connectedto asymptoticforms for

~—t~ cc~theconnectionpoint shouldbe chosenso that thenatural conditionsof smoothnessbefulfilled.
Calculations showedthat the functions thus constructedare very close to the solutions obtained
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Fig. 2.5. Eigenfunctionsof a nonlinearmedium.

numerically[57,58]. So this methodallowedusto obtain good approximatesolutions (approximations)
of the original nonlinearproblem (2.7), (2.12). Such approximationswere used to constructnew
numericalalgorithmsfor iterationproceduresand the Newtonmethod [58].

On theotherhand,thesealgorithmsenabledusto makeprogressin constructingmulti-dimensional
eigenfunctionsof a nonlinear medium.A two-dimensionalanalogof problem(2.3), in which the term
(k(T)T~)~is replacedby the operatordiv(k(T)gradT), admits a self-similar solution of the form
T(r, t) = g(t)f(rI~(t),0), where r and 0 arepolarcoordinates.The two-dimensionalfunction f, which
determinesthe complexstructure,satisfiesthe nonlinearelliptic equation

1
1 ~ l/(u+1)~ l/(o+1)_____ — — a- — i ~ a~3) + f3I(cr+1) — ~‘ —0

y 2(f3_1)t~s 8~ -~‘ (/3—1)t1
(2.15)

y(0)<C y—*O, IVy~—*0 yusf~(~)
I—~=

Standardnumerical techniquesallow us to construct only the simplest centro-symmetricsolutions
f( ~)= f( I I). Acting by analogywith theone-dimensionalcasewe should searchfor a boundaryon
which thesolutionof the linearisedproblemcan be connectedto asymptoticsolutionsfor I I —~ cc~So a
problemwith a free boundaryarises,whosesolution involvesgreatdifficulties.
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An interestingapproachwasproposedin refs. [57—59].When investigatingopennonlinearsystems
describedby nonlinear parabolic equations,one frequently managesto distinguisha set of order
parametersto which all theotherdegreesof freedomwould “tunein”. Let us find theorderparameters
which characterizethe functionf. We assumethat it transformsinto itself whenwe rotateover an angle
2 ri/n. Weexpandfin a Fourierseriesin an angularvariable.It is clear that a certainrow will contain
only theharmonicswith numbers0, n, 2n Let us assumethat only the first harmonicsof this row
are essential.This enablesus to reduceconsiderablythe numberof degreesof freedom.But the
connectionconditionscannotbe satisfiedon a continuouscurve. It is naturalto demandthat they must
be satisfiedon severalrays within the sector 2IT/n. Such an approachyields a whole hierarchyof
simplified finite-dimensionalmodels.They allow the predictionof configurationsof higher eigenfunc-
tions in aregion of nonmonotonicityandgive good initial approximationsnecessaryfor thenumerical
constructionof suchsolutions.

In refs. [58,59] suchapproximationswere widely usedanda largeclassof higher eigenfunctionsof
nonlinearmediawasconstructed.Projectionsof somesuchfunctionsareshownin fig. 2.6. From fig. 2.7
an ideacan be obtained abouta set of eigenfunctionswhich were predictedusing an approximate
analysisand then constructednumerically for a nonlinearmedium. The result is very interesting.

Fig. 2.6. Projectionsof severaleigenfunctionsof a nonlinearmedium.
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Fig. 2.7. Collectionof eigenfunctionspredictedby meansof an approximateanalysisand thenconstructednumerically.

Besides the simplest configurations consisting of similar quasi-structures there are many other forms.
Maximacanhavedifferentamplitudesandbe locatedin severallayers.The temperatureminimaprove
to be somehowconsistentwith the maxima. We recall that all thesestructuresdescribecombustion
wavesconvergingto the centrewith increasingamplitude.

Thus, in a very simple nonlinearmediuma complexorganizationcanexist.Therearea finite number
of configurationsin it, which maintaintheir formsduringevolution. Theycan be interpretedasseveral
simple structureswith different maximathat arecombinedinto a complex structure(see fig. 2.6). The
laws for suchcombinationsdeterminehigher eigenfunctionsof a nonlinearmedium. A more complex
ordercannotbe achievedin themediumwith given valuesof /3 and a- [23,58].

Formulationof initial datacan be consideredas a methodof influencing the nonlinearmedium.
[Theycan be generatedby meansof otherprocesseswhich arenot takeninto accountby themodel
(2.3).] In thegeneralcaseoneor severalsimple structuresareformedrapidly,eachof themlocalizedin
a domain GL. If the initial dataare set in accordancewith higher eigenfunctionsof the nonlinear
medium the processesrun in a largerdomain, the arising heat wave convergesto the centre and
maintainsits shape.In that casetheprocessesbehavequite differently as comparedwith the general
case.Such a methodof influencing nonlinearmediahasbeencalled resonant excitation of a nonlinear
system[23,52]. Let us point out that for a configurationof initial profiles, their agreementwith the
eigenfunctionsof thenonlinearmediumratherthanthe amplitudeare most importanthere.

Analysis of the eigenfunctionsof various nonlinearmediaappearsto be essentialfor the investiga-
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tion of many systems in physics, biology and ecology. When executing control of many systems we
cannotimpose requiredbehaviourupon them. In this caseit would be very alluring to useresonant
excitation, phenomenaof self-organization,and to lean efficiently upon intrinsic propertiesof the
system.This is particularly expedientin the caseswhenwe cannotapply thecut-and-trymethod.

It shouldbe saidthat until nowthemodel of heatstructuresis oneof the few systemsfor which the
lawsof organizationof the dissipativestructuresareestablished.A searchfor similar lawswascarried
out in a numberof othermodelsaswell. In somecasesit wassuccessful.It is difficult to outline even
the main results obtainedrecently in the investigationsof the model (2.3) and its generalizations.
Therefore we shall describe only someof the most important trendsof theseinvestigations.

The first one is connectedwith a generalizationof model (2.3) to more complex media and
applicationof it to variousphysicalproblems.It wasshownthat localizationandregimeswith peaking
are typical for systemswhoseparametersexplicitly dependon the spatial coordinates.Caseswere
considered,when the density and the nonlinear source were power functions of the coordinate r
[r = (x2 + y2)112or r = (x2 + y2 + z2)112] [60].Localized structures developing in a regime with peaking
ariseherealso. (They can, for example,representlocalizedcylindrical or sphericallayers.)In someof
thesecaseswe canconstructtheeigenfunctionsof the nonlinearmediumfor both theone-dimensional
and two-dimensionalproblems [57—59].

Similar resultswerealso obtainedfor a systemof two quasi-linearparabolic-likeequationswith bulk
sources,

u, (k
1u°’u1)1+ q1uP1vY2,

= (k2v~~2v~)~+ q2u71v
132 ‘ (2.16)

q
1~t~2>0;a-1,a-2>0; f31,/32,’y1,y2>O.

Here we also havethe LS, SandHS regimeswith peaking.For theLS regimethehighereigenfunctions
were constructed. It is interesting that eq. (2.16) andeq. (2.3) obey thesamelaw: in thenonmonotonic
rangethey agreewell with the solutionsof the linearizedproblem[61,62].

At the sametime, for t —* t1 thebehaviourof thesystem(2.16) is far from beingalwaysdetermined
by self-similarsolutions.The following simple argumentdemonstratesthis. Let us considera spatially
homogeneoussolution(u, = = 0). Thenwe can verify that eqs. (2.16) havethe integral

— q1v~2/a2= C, a1 = y1 + 1 — ~ a2 = 72 + 1 — 1~2 (2.17)

The value of the constantis determinedby the initial data.Then it is clear that for a1 <0, a2<0 a
regimewith peakingoccursin the first component(u —* cc, t—* t~)whenC>0, in thesecondcomponent
whenC<0, and in both componentswhenC=0. It is naturalthat theself-similarsolutiondescribinga
regime with peaking in both components(even the one which determinesa simple structure) is
unstable.It is this picture that was observedin calculationscarried out in ref. [61].In model (2.3)
regimeswith peakingexist when/3 > 1, and localizedstructuresexistwhen /3 � a- + 1. It is a ratherstiff
requirementfor manyrealmodels.However,suchregimesarepossiblein systemswherethesourceof
the componentu does not dependon the componentitself. An example is the following set of
equations:
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u, = k0(uu~)~+ q0vw,

= k0(vv~+ q0Uw, (2.18)

w, = k0(ww~)1+ q0uv.

We canverify that the solution(2.5), (2.9) satisfies this problem with u = v = w. It is this solution that
wasobtainedfor t —* t~in calculations carried out for (2.18).

In manymodelsof plasmaphysicsthe thermalconductivitydependson the temperatureas a power
function [63]. Therefore model (2.3) was efficiently used to solve a numberof physical problems
[23,64]. Using localized processesin the 0-pinchproblemallows a reductionof heatlossesfrom butt
ends, which may lead to smaller dimensions of laboratory installations [65].

We notethat LS regimeswith peakingcanexist in mediawith a constantthermalconductivitytoo.
Due to this fact eqs. (2.3) can be usedas a simplified model to describethe initial stageof many
processes.For example,in ref. [66]suchan approachgaveanexplanationfor theeffectivereductionof
thehalf-width of the temperatureprofile which was observedin oxidationof somemetalsby air under
laserradiation.

This view on localized processes developing in a regime with peakingprovedvery useful to solve
manyother problemsin physics andgasdynamics.Thoseproblemsarediscussedin detail in ref. [67]
and in ref. [293].

The analysis of the model of heat structuresbecamemuch simpler due to a known self-similar
solution.The questionarises:How wide is the classof thermalconductivity coefficientsandsourcesfor
which such solutions exist? The questionwas settled in a number of works where the methodsof
invariant-groupanalysiswere used.(A detailedreferencelist of theseworks canbe foundin the review
[54].)In thesestudiesthe groupsof transformationsadmitted by (2.3), i.e., those that introduceno
changesin the equation,were obtainedfor arbitraryk(T) and Q(T). Along with the groupsof point
transformations

t*=f(t,x, T;a1,. . - ,ar),

x” = g(t, x, T; a1,. . . , ar), (2.19)

T*h(t,x, T;a1,.. .

where a,. are the parametersof an r-parametricLie group [68], the Lie—Bãcklund groups were
considered.Besidesdependentand independentvariablesthesegroupscontain all derivativesup to
infinite order. Theyare given by the transformations

= x + ~(t, x, T, T1, T2,. . .)a + o(a),

(2.20)

T* = T + U(t, x, T, T1, T2,. . .)a+ 0(a),

where T, = 9’T149x’, anda is the groupparameter[69].It turns out that the setof k(T) and Q(T) for
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which theself-similarsolutionsexist is far from beingexhaustedby thepowerand exponentfunctions;
it proves to be much wider. In this caseone has succeedednot only in solving the problem of
invariant-groupclassificationbut also in obtainingmany particularsolutionsof physicalinterest.

For example,the equation

= (U(~1u~)
1+ (u°2u~)~+ U’

3, a-
1 >0, a-2 >0, /3 > 1, (2.21)

which describes heat propagation through an anisotropic medium, has a self-similar solution of the form

1I(1—p) —u(x,y,t)=(t1—t) u(~,q),
(2.22)

= x(t1 — t)~1~’3)’(
2I32) , ~j = y(t

1 —

From the aboveformulaan unexpectedresult follows: the heatin sucha mediumcanbe localizedin
onedirection [~(t) < C for t—1. tf] andpropagateinfinitely alongtheotherdirection [~(t)—*cc for t—* tf].

With a-1 = a-2 = a- eq. (2.21) hasanotherparadoxicalsolution [54](x us r cos~,y us r sin ~),

u(t, r, ~)= (t1 — t)~’’3~u(R,113)

(2.23)
R= r(tf — t)’~

22’3~ = — c
0 ln(tf — t)

in which local maxima must move along a logarithmic spiral that twists out (/3 < a- + 1) or in
(/3 > a- + 1) for ~ tf. So far the eigenfunctionsof a nonlinearmedium of this type [ll(R, 13) with

~ 0] have not beenconstructed;neverthelessthemerepossibility of theexistenceof suchsolutions
seemsvery interesting.

Recentlya mathematicaltheory hasbeendevelopeddue to which the self-similar solutions have
provedto be evenmoreuseful for an analysisof nonstationarydissipativestructures[24].Thetheoryis
basedon the ideato comparedifferent solutionsof nonlinearparabolicequations.Let us considerfig.
2.1. It is seen that first the amplitudeof the solution decreasesbut then the temperaturebegins to
increase at every point of the profile. The distributions for which u,(x,0)> 0 for all x were called
critical. Wecan verify that in many problems of type (2.3) critical initial data lead to critical solutions
for t>0.

It turnsout that a large classof comparisontheoremscanbe proved for different critical solutions.
For example,if two solutions T”~(x, t) and T~

2~(x,t) in problem(2.3) are critical and T~(x,0)>
T~2~(x,0), then TW(x,t)> T~2~(x,t). This gives, in particular,informationabout theevolutionof the
profile T’2~(x,t) if the self-similar solution TU)(x, t) is known.

Different solutions of different equations (not only of thesameequation)canbe compared,which is
especiallyimportant in applicationswhere k(T) and Q(T) may have rathercomplexforms. Such an
approachis called operatorcomparison[71,72]. For example,the solutionsof the equations

= k°’~(u~,IVu~I)4u~”~+ Q~”~(u~”~,IVu~I), v = 1, 2,

can be comparedif the inequalities
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k’2~(p,q) � k”~(p,q), kW(p,q)Q(2)(p,q) � k~2~(p,q)Q(l)(p, q),

u~1~(x,0)> u~2~(x,0)

are satisfied.
A new approachwas proposedin refs. [71,72] for investigatingthe asymptoticstageof processes

(the so-called method of approximate self-similar solutions). It turns out that for t~~*tf different
equations(2.3), including thosewhich haveno self-similarsolutions,behavein the sameway. Their
solutionsconvergeto thesolutionsof somedegeneratebasicequationswhich canhavesuchsolutions.
Dependingon the valueof the limit

bk = lim [k(u)/k’(u)]’,

the basic solutions will be different. For example, when bk—~ cc, suchan approximateself-similar
solution, to which the solutionof (2.3) convergesfor t—~ti,, satisfiesthe first-order Hamilton—Jacobi-
type equation [71]

v~=_~4
1.IvvI2+Q(v).

At presentsomestrict resultshavebeenobtainedasto the localizationof solutions,evaluationof the
peakingtime, and stability of the first eigenfunctionsof nonlinearmedia [54].

Thus, in themodel of heatstructurestheself-similarsolutionsactasdegeneratesolutionswhich are
not special.They describethe asymptoticbehaviourof processesin a wide class of nonlinearmedia;
they arean efficient tool for theoreticalanalysisand they determinethe lawsaccordingto which simple
structurescan combineinto the complexones.

2.2. Dissipative structures in media with trigger properties

The model of heatstructuresaswell as othermodelsinvolving a single parabolicequationlack two
important featureswhich are typical for many nonlinearmedia. Due to themaximumprinciple, new
extremacannotappearin suchsystemsand,hence,no newstructurescanemerge.Besides,only simple
structuresare stablein themediaconsidered;to createcomplexorder theinitial datamustbe givenin a
specialform.

Describing complex stable structuresand their generationrequires transition to a system of
equations.In somecasesonehasbeenableto find out how complexstructurescanbeconstructedfrom
simple ones,howorderarisesin suchmedia,orhowthecourseof theprocesseschangeswhenonegoes
from one-dimensionalto multi-dimensionalmodels.All thesequestionshavebeenstudiedfor systems
with trigger properties [73].We shall discusssomeof the resultsobtained.

Let us considera systemthat for D1 = D2 = 0 (no diffusion) can exist in two stablestates,(i~~~)
and (‘~2,v2), and in one unstablestate(0,0). Such systemsare called bistable or trigger systems.
Trigger systemswith diffusion appearin chemicalkinetics, nonlinearoptics, and in the simulationof
morphogenesis[74].

For simplicity we considerthemodel
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/u\ /D1 0 ‘\/u’\ /u\ /u\ 2 2
I 1=1 JI I +AI J+B( J(u +u),
\V/t \ 0 D,/\V/x~ \V/ \t)/

u(x,0)=u0(x), v(x,0)=v0(x), 0�x�l, (2.24)

u~(0,t) = u~(l,t) = v~(0,t) = v~(l,t) = 0

Hereu andv areassumedto be deviationsfrom equilibriumof somematterconcentrations.It is clear
that u and u can be positive or negative.We shall assumethat the eigenvaluesof the matrix A are
complex conjugate with positive real part. [Thisis a sufficient condition for instability of the zero
solution of problem (2.24).] The matrix B is negative definite, which is a sufficient condition in order
that the solution be bounded for 0< t < cc Problem (2.24) is invariant under the transformation
{ u, v } —~ { — ii, — v } since the right-handsides of the equations contain only odd powers of these
functions; thereforeü~= —~ = —u~,v2 = —1J1 = ~ [Q1(ii1, i11) = 0; i = 1, 2; j 1, 2]. We shall
considersuchvaluesof D1, D2 and I for which the Turing instability doesnot occur.

As initial datawefirst consider“the stepdistributions”ü0 = u ~ = v* for 0 � x � a andu = — u
v = — v* for a ~ x � 1. In calculationsquick convergenceto the stationarysolutionshownin fig. 2.8 can
be observed.Thereis a transitionregionto the left of which we haveonestable background(u*, v*)
andto theright of which theotherone (— u~,— v*). Sucha solution is calledan elementarystructure(its
meaningwill be explainedbelow). We may vary the length I andthe parametera in a wide range;it
hardly affects the appearing elementary structure.

Let usnotethat in the modelof heatstructureswe could havestrict localization, T(x, t) us 0 beyond
GL for 0< t <ti. Here we have effectivelocalization: we can give asmall valueof e andindicatethe
region G,. outsidewhich

max[(U_u*)
2+(v — v*)2]<e or max[(u+u*)2+(v+ v*)2]<e.

x~G~ x~G~

Unlike themodel of heatstructures,herelocalizationis connectedwith sinksratherthansources.(In
the vicinity of eachof the stablebackgroundsthe function Q

1(u, v) and Q2(u,v) behaveas sinks.)
Besides,if structuresemergein a trigger mediumthey will later be time independent.

Since the elementarystructuresare localized,more complex structurescan be built from themby
giving several “steps” as initial data. Calculationsshow that they really can be constructedif the

1,0 -——fl

c~,5 I

o i 10 V(x)~o 20 ~ ~-

I ~ ‘Y(x~I~10
~45

5’ t~0G

-40 L -1,0 ‘—

Fig. 2.8. Exampleof an elementarystructurein a trigger medium.
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distancesbetweensteps are not too small (L > 1, where 1 is determinedby the propertiesof the
nonlinearmedium).An exampleof the solution appearingin this caseis shown in fig. 2.9. All other
structuresin this mediumconsistof manyelementarystructureswith different distancesbetweenthem.
The connectionmethod,which hasprovedvery useful in the model of heatstructures,in this casealso
yields good results, i.e. approximatesolutionscorrespondingto elementarystructures[59].

One of the most interestingpropertiesof a nonlinearmedium is the possibility for dissipative
structuresto be born and completedby themselves.In order to createcomplex order it is quite
unnecessaryto put it in from outside,“to force” it onto thenonlinearmediumby giving the required
numberof steps.Let us seewhat happensto a small perturbationput againstthe unstablebackground.
Figure 2.10 illustrates this kind of calculation. It is seen that structuressuccessivelyappearin
neighbouringregions. In the calculationsthe regionwheredissipative structuresappearhasa distinct,
observableboundary.This allows one to talk aboutthewavenatureof theprocessand to identify the
boundarywith a front of a propagatingwave.

Such a behaviouris typical for manyothertwo-componentsystemswhenin the beginningthereare
small perturbationsnearthe thermodynamicbranchwhich has lost its stability. For example,this is
typical for thebestknown two-componentsystem,theBrusselsmodel,which describesa certainclassof
chemical reactionsin open systems[3],

Q1=A—(B+1)u+u
2v, Q

2=Bu—u
2v,

or the Gierer—Meinhardtmodel, which arises in the mathematicaldescription of morphogenetic
processes,

Q
1=p+ku

2Iv—~tu, Q
2=cu

2—vv.

HereA, B, p, k, /2, c and ~are constantsdescribingthe model parameters.
Trigger media of the above type have an interestingfeature: the dissipative structuresin the

one-dimensionaland multi-dimensionalsystemsdiffer qualitatively. In the multi-dimensionalcasea
largesetof localized nonstationarystructuresappears;the time of their existenceis finite.

We shall considera two-dimensionalanalogof eq. (2.24), in which D
1u~~andD2v~~are replaced,

respectively,by div(D1 gradu) anddiv(D2 gradu) in a squarewith side1, providedthereareno flows at
the boundary.Let us put a squarewith side 1 in the right bottom corneras initial data.Within the
squareu = u~’,v = ~ While in the remainingregionu = —u”, v = —u’’. The quantity lis chosenso that

,LL(X)

40 ————-i 1,0

0,5 I V(x)~,o

y(x).o 0 ~ ~
-0,5 I ~ /

I I L—o \ /I -L -10

Fig. 2.9. Exampleof a complex stationarystructure.
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Fig. 2.10. Appearanceof structuresin neighbouringregions:D, = 0.18; D
2 = 0.576;A = ; B = ~

in the one-dimensionalcasewhen u0(x)= u~,v0(x)= v~(0sx~1),u0(x)= —ut, v0(x) —v~(i�
x � 1), stationarystructuresshouldappear.A transitionregiondevelopsovera time T, whosestructure
remainsconstantfor different points of the boundaryin spite of the fact that the curvatureof the
contour,F0, envelopingthe region G0, where u(x, y) >0, variesfrom point to point.

The regionG0 slowly symmetrizes,tendingto a circle whoseradiusdecreaseswith time. IncreasingI
doesnot, in fact, changetheprocess;convergenceto the stationarysolutiondoesnotoccurfor any 1.
The transition region, the independencefrom initial data, the efficient localization, and the long
existencetimes,which canexceedr by afew ordersof magnitude,allow us to considerthis processto
be the evolutionof a nonstationarydissipativestructure.

In the two-dimensionalcasean initial small perturbationagainstan unstablebackgroundleads,asin
the one-dimensionalcase,to the successiveemergenceof structures(t1, t2, t3 in fig. 2.11). But here,
havingonceemergedthe structuresareslowly reconstructed.The radii of the structureswith circular
configurationsslowly decrease(t4, t5, t6 in fig. 2.11).
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t~=6.95 t2=11.05

.3,
t4=46.05 15=86.45 t6=136.95

Fig. 2.11. Appearanceof structuresand theirsubsequentdecayin atwo-dimensionalproblem. Computationalparametersarethesameasin fig.
2.10.

On the face of things it seemsthat in the two-dimensionalcase trigger media have no stationary
time-independentstructures.However,this is not so. Suchsolutionscanbe constructedfrom symmetry
considerations.Indeed,the equationdoesnot changewhenx is replacedby —x,yby —y, and u, u by
— u, — u. We shalldenotethe regionwhereu <0with black, andwhereu >0with white. The evolution
of onestructurewith circularconfigurationwill look like the reductionof a blackcircle againsta white
backgroundor a white circle againsta blackbackground.

Now we shall put “black” and“white” into similar conditions, for example,asis shownin the right
half of fig. 2.12a. If theblacksquaresbeganreducingit would meanviolation of thesymmetrybetween
black and white, which existsin eq. (2.24). Calculationsshowthat in that casea stationary structure
calleda “cross” appears(fig. 2.12a,left). The resonantexcitationin sucha mediumis determinedby
the symmetry; unlike the model of heat structuresthe specific form of the initial data proves
unimportanthere.

It is interesting that the connectionmethod enablesus to construct an approximatesolution
correspondingto this structure with high accuracy [59]. By using this method other stationary
configurationscan be built too (for example,“windmill” and “parquet”, figs. 2.12b and c).

We haveconsideredcasesin which thesimplest“colour” symmetry(between“black” and“white”)
plays an important role. In some works which deal with other types of colour symmetry the
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Fig. 2.12. Examplesof two-dimensionalstationarystructuresin a trigger medium.

mathematicaltheory is developed[75].Theseideasmay prove useful in analysingpartial differential
equations,specifically, reaction—diffusion-typesystems.

Thus, the laws of the organizationof structuresin the triggermediaconsideredprove to be linked
with localizedprocessesand symmetry.

We have discussedtwo types of nonstationarydissipative structures,each of which may have
complexspatialorder. In both caseswe managedto find out how the complex structurescould be built
from thesimpler ones.At thepresenttime this line of investigationis developingrapidly. And herea
new approchto theproblem,viz, studyingthe internalpropertiesof a nonlinearmediumand the laws
of theorganizationof dissipativestructures,andsearchingfor efficient waysto influencethe processes
underinvestigation,may prove as important asspecificmathematicaland physicalresults.

3. Hierarchyof simplified models

In the last decadedozensof different modelsof the reaction—diffusion-typehavebeenproposedto
describespecificsystemsin chemicalkinetics,plasmaphysics,ecologyandmanyotherfields. Theyhave
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been analysedby many authors,who consideredspecific functions Q
1 (X, Y, A) and Q2(X, Y, A) of

differentkinds. Thereforethe following questionsarise:Are therecommonfeaturesin thebehaviourof
thesolutionsof system(1.1)with different right-handsides?Canwe classify two-componentsystemsby
somefeatures?Classificationof the systemsanddistinguishingcommonfeatureswould let us passfrom
thestudy of specificmodelsof a particularform to the developmentof the theory.This would help, in
turn, to simplify the analysisof eachspecificproblem.

Computersimulation is a basic tool usedto investigatereaction—diffusionsystems.Given specific
functionsQ1 (X, Y, A) and Q2(X, Y, A), the coefficientsD1 andD2, the initial dataandthe boundary
conditions, one can observethe evolution of one solution over a certain time interval. However,
watching thebehaviourof a solutionwe oftencannotobserveanylaw or understandhow it operates.

We canspeakaboutunderstandingwhenwe learnhow to predict thebehaviourof a solutionandits
qualitativepeculiaritiesfor different parametervalueswithout solvingthe equationagainandagain.It
would be fine if we could predict also thebasicquantitativecharacteristicsby using explicit formulasor
simpler models.Theremay be severalsimplified modelsthat differ in complexity, in theway they are
obtainedand in their rangeof applicability. If wehada sufficiently completesetof approximatemodels
we could treatcomplex phenomenadescribedby eq. (1.1) using the notions andcategorieswhich we
encounteredwhile investigatingsimpler problems.The developmentof simplified models,theestablish-
ment of their relationships,applicability rangesand propertiesare usuallycalledthe constructionof a
hierarchyof models.

Constructinga hierarchyof simplifiedmodelsprovesvery importantfor thestudy of manynonlinear
dissipativesystems.As an illustration we refer to Rayleigh—Bénardconvection[76,77], someproblems
in nonlinear optics [78], and investigationsof terrestrial and solar dynamos[79,80]. It becomes
necessaryin caseswhenthecapabilitiesof moderncomputersdo not yet allow us to solve directly the
arising equations(for example,in simulating complex hydro- and magnetohydrodynamicflows, or
many-dimensionalreaction—diffusionsystemswith manycharacteristictimes).

In the study of open nonlinear systems, several ranges of the external parameterA can be
conditionallydistinguished.

I. Small valuesof A. In this rangeof parametervaluesthe arisingstructureshavesmall amplitudes
and occur in the vicinity of the thermodynamicbranch.As a small parameterherewe can consider

(A — A0), whereA0 is thepoint of loss of stability of the thermodynamicbranch.
II. Intermediatevaluesof A. The amplitudeof the arisingsolutionsis not small, but thenumberof

degreesof freedomthat effectively determinetheprocessdynamicsis not large.
III. Large values of A. In this range of parametervalues complex regimesmay arise, whose

descriptioninvolvesmanyspatialand temporalharmonics.Such is, for example,multi-modedeveloped
turbulence.

The first rangeof parametervalueshasbeenmost thoroughlystudied,andbasicconceptsaswell as
efficient mathematicalmodels developed.Let us briefly describesomeapproachesproposedin this
connection.

3.1. Universal description in the vicinity ofthe thermodynamicbranch

One of the most efficient tools for analysingnonlinearsystemsis the theory of bifurcations.The
problemof beambendingis classicalin bifurcation theory;it wasposedas earlyas last century.

Imagine a beamof rectangularcrosssection with load P acting on it from above (fig. 3.1). With
increasingload thebeamgetsshorterand thicker,its axisremainingstraight.At somecritical valueP,~,
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however,the picturequalitatively changes:thebeamwill lose its rectilinearconfigurationandbendto
the right or left. When P < P,~the beamhasonly one equilibrium configuration, whenP> P,. it has
three: the rectilinear configuration, which becomesunstable,and two stableconfigurations (one
correspondingto bendingto the right, the otherto the left). If we drawthe deflectionA of thebeam
axisdependingon thevalue of P thepicturewill be asin fig. 3.2. Stableequilibrium statesin this figure
aswell asin othersbelowin this chapteraredenotedby a solid line andunstablestatesby dashedlines.
When P = P~the numberof equilibrium statesand their stability change.The changein thenumber
and stability of solutions is called branching or bifurcation of solutions. It is a typical nonlinear
phenomenon.In the problemof beambendingthe classicallinear theory of elasticity gives only the
rectilinear equilibrium state. The loss of stability of a beamand some other nonlinear models of
elasticity theory are discussedin detail in ref. [51].

The problemof the loss of the beamstabilitywas treatedby Euler, Bernoulli and Lagrange.The
term“bifurcation” wasfirst introducedby C. Jacobiin 1884. But themeaningof bifurcationtheorywas
only fully realizedby the outstandingFrenchmathematicianHenri Poincaréat theendof last century.

Let thesolutionof a nonlinearproblembe known for A = A0 thenwemay try to find thesolutionfor
+ ~A, where~Ais small. Our analysisbecomeslocal — insteadof searchingfor a generalsolutionwe

restrictourselvesto what happenswith a specificsolution in thevicinity of onevalue of theparameter.
It is natural first of all to choosevaluesof theparameterat which thebehaviourof the systemchanges
qualitatively, i.e., thepointsof bifurcation. It is themost importanttask to establishall thebasictypes
of bifurcation in various problems.Poincarébelievedthat the solution of this extensiveandcomplex
problemwould help in investigationsof many specific nonlinearphenomena.

The researchprogrammeproposedby Poincaréwas extendedin the theory of normalforms of
differential equations[81],in the theory of catastrophes,where the equilibrium statesof dynamic
systemsdescribedby a potential function are studied[10,82], and in someother developingfields of
mathematics.

We considerthesimplesttypesof bifurcationstypical for reaction—diffusionsystems.Let us consider
a chemical reaction where the variation of concentrationof an ingredient, dxldt, dependson the
concentrationx and on externaleffectswhich aredescribedby A. This yields theordinary differential
equation

dxldt=F(x,A). (3.1)

The solutionsof this equationbehavein a simple manner.When ~--* cc the functionx(t) tends to a
constantvalue~ (we shall assumethat the equationhasno infinite solutions).
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Theremay be severalsuch1: ~, x2, x3, etc. it is clear that

F(~,A)=0. (3.2)

Dependingon the initial datax(0) the solution tendsto one i,,. Therefore,we haveonly to solve eq.
(3.2) and find its rootsas functionsof A.

We assumethat somesolutionof eq. (3.2) is known. In order to obtain a solutionfor the valueof
A = A0 + AA, LtA ~ 1, we may usetheTaylor formula

- - aF(~,A0) oF(~,A0)
F(x + ~x, A0 + ~A) = F(x, A0) + a ~ + ÔÀ

+ 1 (a
2F(i; A

0) (~x)
2+2 ~2F(iA~~x ~A+ a 2F(i; A

0) (~A)2)+ G,

(3.3)

where G is the residueof the series,containingthe termsproportionalto (~x)
3,(t~x)2~A, iXx (z~A)2,

(~A)3,etc.; its specificform is of no importanceto us. Sincewe areinterestedin theequilibrium states,
F(i+~x, A

0+AA)=0. But thenfor ~x—*0,~A—*0,we obtain

AX=_a~~(~0) ~A/~(~A0). (3.4)

From this formula it follows that if aF(~,A0) lax is different from zero, a newequilibrium statecanbe
approximatelydetermined(fig. 3.3). As follows from formula (3.3),such a statewill be unique,i.e.,
bifurcationdoesnot occur at the point A0, ~.

It may happen,however, that ÔF(i, A0) lax = 0, and then we should take into accountthe next
terms.If ô~F(i,A0) lax

2~0, theninsteadof (3.4) we have

1~x= ±((_2)aF(i, A
0) ~A/ ô

2F(i, Ao))i’2 = ±~c
1z~A. (3.5)

The picture is different here (fig. 3.4): whenA> A0 two solutionsappear,whenA< A0 thereis none(if
c1 is assumedto be positive). The problemabout the beamload illustratessucha behaviour.Let the
beambe not ideally straightin the initial statebut a little bent to oneside. Thenthe loadfunctionof
maximal bendingshown in fig. 3.2 will changeand takethe form given in fig. 3.5.

X A

A A R “

Fig. 3.3 Fig. 3.4 Fig. 3.5
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If thebeamis in a stablestate(on the lowerbranchof thebifurcationdiagramin fig. 3.5) and the
load slowly decreases,thenfor a certainvalueof P a jump into anotherequilibriumstatewill occur(on
theupperbranch).This phenomenon,calleda “flop”, is usedin engineering[83].The changeof the
form of the bifurcation diagram, for example,for a small violation of symmetryof the systemunder
investigation,is analysedin one of thesectionsof bifurcation theory,the theory ofimperfections[84].

If a2F(i, A
0)lax

2 and aF(~,A
0)laA are zero, the next terms (a

2F(~,A
0)laA

2)(~A)2,(a2F(i, A
0)!

ax aA) t~x~A, etc. should be takeninto account.
If evenoneof thesecondderivativesis not zero,the typicalbifurcationwill be asthoseshownin fig.

3.6. We have already seen the picture of fig. 3.6a in the problem of beam bending. Figure 3.6b
correspondsto a bifurcation which can conditionallybe called “stability exchange”.The equilibrium
statesbecomestable at a point A0, i if locatedon one branch,and unstableif locatedon the other
branch.The bifurcationshownin fig. 3 .6c is calledsubcritical (in contrastto “supercritical” bifurcation,
shownin fig. 3.6a). Its specific featureis that thesolutionsappearingasa resultof branchingexistin the
samerangeof parametervalues(A < A0) wherethe initial stablebranchis located.Analysis showsthat
in this case they are unstable.As the parameterA increasesthe stable equilibrium statesimply
disappears,and thesolutionof eq. (3.1) goesto theotherregion in x. The picturesin fig. 3.6 andthe
correspondingbifurcationsoccur for most stationarydissipativestructures.

More complextypes of bifurcationscan be obtainedif thenext coefficientsin theTaylorseriesare
assumedto be zero. However, the more conditions are imposedon these coefficients, the more
degenerateand atypical such bifurcations prove to be. They are essentialonly in families of
mathematicalmodels that depend on several parametersor in systems that have a number of
symmetries.

In eq. (3.1) bifurcationsmeantheappearanceor disappearanceof stationarysolutions.In thesystem
of two ordinary differential equations

dXldt = F1(X, Y,A), dYldt= F2(X, Y, A), (3.6)

bifurcationmay resultin theappearanceof periodicregimes.An exampleof suchaprocessis shownin
fig. 3.7, where typical phasetrajectoriesare presented(projectionsof the solutionX(t), Y(t) on the
{X, Y} plane).

From thepoint (0,0), which is a stablefocus(fig. 3.7a)for A < A0, alimit cycle originatesfor A> A0.
This cycle determinesa stableperiodicsolution,andall the trajectoriesin its vicinity tendto it. (In this
caseall the trajectoriesexcept(0, 0).)

By usingmethodsof the theoryof normalforms[81,85] we may showthat in thevicinity of thepoint
(0,0) all systems(3.6) in which sucha bifurcation occurscan be reducedto the form

.i: -- x_
‘‘~ ,, / —

~ ,,,//c~\\ .xo)-_-_
A0 J..’ A0 A A

Fig. 3.6
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Fig. 3.7

dWldt = AW—(1 + ic2)~WJ
2W,

where A
0 = 0, W= u + iv, if we make a change of variables. In polar coordinatesu = r cos~,

v= r sin ~,we have

r=Ar—r
3, tp=c

2.

When A is positive the focus loses its stability and a limit cycle appearswith a radiusvarying as V’X.
The bifurcation in which a limit cycle is createdwasdiscoveredby A.A. Andronov in 1931 and later

it was intensively used for the mathematicalmodelling of systems in radioengineering,and for
constructing the theory of oscillations [86]. Hopf carried out an analysis of this bifurcation for
multi-dimensionaldynamicalsystems,thereforeit is often calleda Hopf bifurcation.

We havediscussedbranchingin the simplestsystems.But asearlyas thebeginningof this century
A.M. Lyapunovand E. Schmidt developedmethodsto study partial differential equationsby using
bifurcation theory. A typical situation can be describedas follows. When there is a unique stable
stationarysolution, its stability in the linear approximationis determinedby the setof eigenvalues~.

that describethe behaviourof solutionsof linearized problems. When A < A0 the real parts of all
eigenvaluesare negative. When A = A0 we have p eigenvalueswith Re p., = 0, (i = 1~... , p). For
example,in the caseof theHopf bifurcation /2i = ~ =

LyapunovandSchmidtproposedto split theequationunderinvestigationinto two: oneequationin a
finite-dimensionalsubspacewith dimensionalityp, the other in its infinite-dimensionalcomplement.
Then we havea systemof p equationswith p unknowns (the so-calledbranch equation).For many
problemswe can show that whenA> A0 the propertiesof the solutionsof the original equation are
determinedby thepropertiesof thebranchequation[51,84, 87]. In this caseall informationaboutthe
number of branch solutions and their stability is contained in a finite-dimensionalproblem. An
infinite-dimensional nonlinear system in the vicinity of a bifurcation point behaves as a finite-
dimensionalsystem.

This approachprovedvery useful for solving many applied problems.Many hydrodynamicsystems
were studiedwith its aid. Someof themarediscussedin detailin ref. [88].TheHopf bifurcationenables
us to explain manyimportant phenomenain hydrodynamics,chemistryand biology [89].Its specific
featuresin reaction—diffusionsystemsand, in particular,in theBrusselatormodel arediscussedin ref.
[90].The useof methodsof bifurcationtheoryto investigatetwo-dimensionaldissipativestructureswill
be consideredin chapter10.

In spiteof the simplicity of manybranchequations,cumbersomecalculationsandeventhe useof
numericalmethods are required to determinethe coefficients and to study the stability of branch
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solutions. The more complex the solution X undergoingbifurcation proves to be, the more severe
technicaldifficulties areinvolved in using thesemethods.

In theseventiesin thestudy of hydrodynamicsystemsandreaction—diffusionmodels,somephysical
phenomenainitiated a classof problemswhich were beyondthe scopeof the traditional methodsof
bifurcationtheoryandrequireda differentapproach.Letus imaginethata Turingbifurcationoccursin
a nonlinearsystem,and that for A> A0 thesystembecomesunstableagainstsmall perturbationsof the
form W(X, T) ehhCcx,where W(X, T) describesa slowspatial—temporalmodulation,X andT are“slow”
spatial and temporal variables. In studying such systemsit seemsexpedientto go over to simpler
equationsto describevariationsof W(X, T).

This approachis associatedwith multi-scaleexpansionsand widely usedin the theoryof nonlinear
waves. Applying it we can describedifferent waveprocesseswith thesameequations.As exampleswe
can give the parabolicequationextensivelyused in nonlinearoptics [91] or the cubic Schrodinger
equationusedto describewavesin deepwater and in manyother cases[92].

Newell andWhitehead[93]usedmulti-scaleexpansionsto describeRayleigh—Bénardconvectionin a
fluid layerof thicknessd heatedfrom below. (This system is very frequentlydiscussedin connection
with synergeticproblems[3,13].) As an original physical model the hydrodynamicequationsin the
Boussinesqapproximationareconsidered.The statein which a fluid is at rest, for R = R~,provesto be
unstableagainstperturbationsof the form

w —~e’~sin(irz!d) , k
2 = ir21(2d2)

where w is the vertical velocity component(directedalong thez axis). Assuming

w (W(X, Y, T) e~k1+ W*(X, Y, T)e~’~)sin(lTzId)

for R > R~andwriting down thecorrespondingexpressionsfor thepressure,temperatureand theother

velocity components,we obtain for W the following equation:

2 ~ ~ — 8(n ‘V )2W (3ir2~— WW*)W, (3.7)
p at

where X = cx, Y= sy, T= s2t, p is the Prandtlnumber,x is a constant,n is a unit vectoralongthe
critical mode.The small parametere describesthedeviationof R from R~.It is shownin ref. [93]that
eq. (3.7) lets us explain a numberof experimentalresultsand describeefficiently many phenomena
which were beyond the scope of traditional methods.Such an approachwas used in 1975 by Y.
KuramotoandT. Tsuzuki [94]to analysereaction—diffusionsystems.

It is convenientto distinguishtwo classesof systems.If the lengthscaleis not large,[(A — A
0) ‘~ l2],

standardmethodsof bifurcationtheorycanbe efficiently used.With largelength scales[(A — A0) ~‘ - 2~

as in the convectionproblem,it is expedientto passto slow variables. It is natural to considertwo
cases:theTuringbifurcationwhenthe linearizedproblemhaszeroeigenvaluefor A = A0, and theHopf
bifurcationwhen a pair of complex-conjugatevalues±iw0appears.

In both casesthe equationproposedin ref. [94]hasthe form

= (±1+ ic0)W + (1 + ic1)W~~— (1 + ic2)IWI
2W. (3.8)
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HereW = u + iv; c
0, c1 andc2 arerealconstants.In refs.[94,95] analgorithmis given to determinethe

valuesof theconstantsusingthecoefficientsD1 and D2, the functionsQ1 (X, Y, A) and Q2 (X, Y, A) and
their derivatives.The + sign on theright-handsideof (3.8) correspondsto theparameterrangeA> A0,
the — sign to A < A0.

Let us explainthemeaningof thevariablesW, R andT.The possibilityof passingfrom (1.1) to (3.8)
is connectedwith theexistenceof the smallparameters (A — A0)

112. In ref. [94]it is shownthat in this
casethe solutionof (1.1) shouldbe lookedfor in the form

(X\ /X\ I fe\ 1
~y)~y°)+s[W(R,T)fI

5~
1)+c.c.]+.’., e

1,e2=const.,
0

where {X0, Y0} is the thermodynamicbranch, W dependson the slow variables R= cx, T = s
2t;

f = e~’~if stationarysolutionsappear,andf = e”~°tin theHopf bifurcationcase.In otherwords, Rand
T areslow variables,which determinethe time andspacemodulationsofthesimplestsolutionsf, whose
configurations follow from the linear analysis. Below the independentvariables in (3.8) will be
designatedby x and t.

The functionW(x, t) describesthedeviationof thesolutionsofeqs.(1.1) from {X
0, Y0}. Therefore,

eq. (3.8) describesonly the caseswhen the solutions remain in the vicinity of the thermodynamic
branchfor ~ cc~The equationdoesnot describedegeneratecaseswhenmorethantwo eigenvaluesof
the linearizedproblemcrossthe imaginaryaxis.

The investigationof eq. (3.8) provesto be closelyassociatedwith theproblemof a classificationof
two-componentsystems.Let the qualitative featuresof its solutions (type of asymptoticbehaviour,
symmetry,etc.)be knownfor anyvaluesof c0, c1, c2 and the lengthscaleI. Thenall systemsof theform
(1.1) for which solutions of (3.8) behavesimilarly, can be combined in the sameclass. Such an
approachwould be moreuseful if we could proposeefficient approximateandqualitativemethodsfor
analysingdifferent typesof solutions.

Equation (3.8) is of greatinterest for the simulationof wind wavesin water [96]and ion-acoustic
wavesin a plasma[97].Similarproblemswereconsideredwhenstudyingthestability of Poisseuilleflow
[98]and in nonlinearoptics[99].This equationarisesin manycaseswhenfinite-amplitudeperturbations
in a nonequilibrium systemare investigatedfor small supercriticalvalues.

In the literatureeq. (3.8) is given different names.It is referredto asthe A—w systemin refs. [100,
101], while it is called the Kuramoto—Tsuzukiequation in refs. [102,103] and the generalized
time-dependentGinzburg—Landauequationin refs. [94,104].

Meanwhilequite specific equationsin the theory of phasetransitionsof thesecondkind, which do
not coincide with (3.8), are usually meant when the Ginzburg—Landauequation and the time-
dependentGinzburg—Landauequationare considered[105].At the sametime an extensiveclassof
equationsincluding (3.8),equationswith a quadraticnonlinearityandmanyother systems,arecalled
thegeneralizedGinzburg—Landauequationsin thebooks by H. Haken[13,14]. Therefore,thinking of
theuseof (3.8) to analysereaction—diffusionsystemswe shall call it theKuramoto—Tsuzukiequation.

Letus dwell on somespecific featuresof eq. (3.8). In thesecondboundaryvalueproblem,provided
flows are absent at the boundaries, or in the problem with periodic boundary conditions,

W(x, t) 2 dx—>0 if the Kuramoto—Tsuzukiequationis chosenwith the — sign. (We canverify this by
multiplying it by W* and integratingover theentiredomain.)Therefore,weshall assumethat the sign
is plus.
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By the changeof variable W= W~exp(ic0t) we may easilyverify that withoutloss of generalitywe
can put c0 = 0. Below we shall assumethat sucha replacementhasbeenmade.By writing down eq.
(3.8) in the variablesp and ~ (u = p cosço, v p sin ~),

= p — p
3 + p~— p~o~— 2c

1p~~o~— c1pço~,

p~ot= —c2p
3 + 2p~co~+ pçv~+ c

1p~1— C1pçp;,

we can verify the following statement. Let {p(x, t), ~(x, t)} be a solution of (3.8). Then
{p(x, t), —~t(x,t)} will be a solution if c1 and c2 are replacedby —c1, —c2. This meansthat it is
sufficient to considerthe parameterregion c1 � 0.

The simplestsolutionsof (3.8) are the zero solution (always unstablein the linear approximation)
and thespatiallyhomogeneoussolution

W= exp(—ic2t+ ia), (3.9)

where a is a realconstant.It is stableagainstsmall perturbationsof the form exp(ikx) providedthat

[94]
(c~+ 1)k

4+ 2k2(1 + c
1c2)>0, (3.10)

i.e., it is stablefor all k when 1 + c1c2>0.
It canbe proventhat in thesecondboundaryvalueproblemfor 0< t < cc thesolution is boundedin

norm L2 (i.e. thequantity IIWML2 = {j’~ [u
2(x,t) + v2(x, t)] dx}112 is bounded)providedthe flows at the

boundariesare absent.It is shown in ref. [106]that if thenorm doesnot decreasein L
2 thesolution is

boundedin norm C (the quantity max0<~<1(~u(x,t)~+ v(x, t)~),0< t<cc, is bounded).
The Kuramoto—Tsuzukiequationis a complex mathematicalobject. It can haveseveraltypes of

self-similarsolutions,anddescribetwo-frequencyandstochasticregimes.At thepresenttime it canbe
consideredasone of themost importantmodel equationsin the theoryof opennonlinearsystems.Its
investigationhelpsus to understandthe propertiesof nonlinearmediaandsomephysicalphenomena.
Later we shall discussin more detail the methodsof analyzingthis equationand someresultsof this
analysis.

Abovewe have discussedmethodsfor investigatingnonlinearmediawhen A is closeto A0 and the
amplitudesof the branchsolutionsare small. As A increasestheamplitudesare no longer small, but
eventhen we can sometimesdescribeprocessesin distributedsystemsby simplified finite-dimensional
systems.Most resultsherewere obtainedwith theuseof theGalerkinmethod.It wasassumedthat in
the solution only someharmonics(a finite number) areimportant, and insteadof the original partial
differential equationsa systemof ordinary differential equationsthat connectstheir amplitudeswas
considered[107].

In other casesa transition to a finite-dimensionalsystemcan be made if the original equation is
assumedto be a small perturbationof nonlinearequationswhosesolutionsare known. Usually, these
arefully integrablesystemswhich havesolitonsolutions.

We may expect that as A increasesthe complexity of the solution will grow. In the simplestcases
when we consideronly the behaviourof specific typesof systemsin time the Feigenbaumtheory of
universalityallows a predictionof thebehaviourof thesolutionafteraninfinite numberof bifurcations
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[33].(Below we shall discusssomeresultsof this theory.)However,anefficient descriptionof nonlinear
systemsin which the numberof temporal and spatial modes characterizingthe processdynamics
increasesasA grows is anopenquestionasyet. An interestingapproachto this problemis proposedin
ref. [78].

3.2. A hierarchy ofsimplifiedmodelsfor the Kuramoto—Tsuzukiequation

Reaction—diffusionsystemswere investigatedusing different simplified models.Eachof themcanbe
applied to a certain rangeof parametervalues and proves to be simpler than the original set of
equations.Let us considera few simplified modelsarisingwhennonlinearmediain thevicinity of the
bifurcationpoint are described.Note that thereis a relationshipbetweenthesemodels.

Mathematicalmodels of many specific physical, chemical and biological systemsare nonlinear
parabolicequationsof the form

7u1 \ D1 0 7u1 \ Q1(u1,. . . , u~,A1,. . . , Am)
- . ( ) + . (3.11)

\uNJf 0 DN \UN!XX QN(ul,. ..,uN,Al,. .. ,Am)

Considering the processeswith the longest characteristictimes we can distinguish the order
parametersthat determinethe behaviourof the remainingfunctions describingthe stateof system.
Methodsfor distinguishingtheseparameterswere discussedin chapter1.

In somecasestheevolutionof theorderparametersis describedby a systemof two nonlinearpartial
differential equationsdependingon a singleparameterA. Theirbehaviouris typically asfollows [3,13].
When A< A0 thereis a stablestationaryspatially homogeneoussolution, called the thermodynamic
branch. For A = A0 the thermodynamicbranch becomesunstableagainst small perturbationsf—
exp(ik~x)orf—~exp(iw0t).

If the system is sufficiently large it is convenientto considereq. (3.8) for a variable W which
describestheslow spatial—temporalmodulationof the function f, whoseform follows from the linear
analysis[94].At the presenttime it seemsthat the secondboundaryvalueproblem,

W~.=W+(1+ic1)W~~—(1+ic2)IWI
2W, 0�xs1, 0<t<cc,

(3.12)
W~(0,t)=W~(l,t)=0, W(x,0)=W

0(x),

hasbeenstudiedin most detail.
If the length 1 in (3.12) is not large, the Fouriercoefficientsof the solutionsquickly decreasewith

increasingnumber. In the simplestcaseonly thezerothand first harmonicsprove to be essential.
We assumethat in the solutionunderinvestigationthereare only two modes,

W=u+iv=(x0-i-iy0)+(x1-i-iy1)coskx, (3.13)

where k is chosen so that the boundaryconditions of problem (3.12) be satisfied, i.e., k = irll
correspondsto the first harmonic. We substitute (3.13) into (3.12) and ignore all the terms with
cos(irmx/l), m> 1, by assumingthey arenegligibly small. This leadsto a closedsystemof ordinary
differential equations,
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= y
0 — (c1x0 + y0)(p~+ p~l2)— s(c2x1+ y1),

(3.14)
= x~— (x1 — c2y1)(p~+ 3p~l4)— 2s(x0— c2y0)— k

2(x
1 — c1y1),

= y~ — (c2x1 + y1)(p~+ 3p~l4)— 2s(c2x0+ y0) — k
2(c

1x1+ y1),

wherep~=x~+y~,p~=x~+y~,s=x0x1+y0y1. It can be simplified even more if we passto the
variablesp0, ~ ~ by the formulas x0 = p0 cos~ y0 = p0 sin ~ x1 = p1 cos~, y1 = p1 sin ~, and
then to ~, ~, 0 [~ = p~,~ = p~,U = 2(~~— ~)]. As a resultwe havethreeequations,

= 2~— 24~+ ~) — ~fl(cos0 + c2 sin 0),

= — 2~j(2~+ 3t~l4)— 2~~(cos0 — c2 sin 0) — 2k
2sj,

(3.15)
U = c

2(2~— ,i12) + sin 0 (2~+ s~)+ c2 cosU (2~— tj) + 2c1k
2,

kirll.

The relationshipbetween~, tj, 0 and q~is determinedby the equation

= —c
2(~+ ij) + 0.5~(sin0 — c2 cos0). (3.16)

The ability to go over to the systemof equations(3.15) is due to the fact that eq. (3.12) has a
symmetry.If W(x, t) is a solution,the functionW(x, t) e’~,a = const.,is alsoa solution.In eqs.(3.15)~
and ~j describethe squareamplitudesof the zeroth and first harmonics,0 is the phase difference
betweenthem.

The simplest solutions of eqs. (3.15) are the stable singular points (~—>const.,~j—>const.,
0—+const., t—>cc). In order to find thecoordinatesof a singularpoint (~,‘ri, 0), weshouldput 4, ~, 0
equalto zero and solve the threealgebraicequationsobtained.Explicit expressionsaregiven in refs.
[103,1081 for thesingularpointsand thestraight linesfor which ~= 0 or ~ = 0. It is also shownthat the
coordinatesof the other points are determinedby a fourth-orderalgebraicequation.It may also be
consideredas a simplified model for problem(3.12).

To study systemsof threeordinarydifferential equations,specifically thesystemof equations(3.15),
it is very useful to investigatea classof two-dimensionalmappingsor mappingsof the plane.

Let us consider,for example,a systemof threeordinarydifferential equationsrelatingthe functions
x(t), y(t) and z(t). We shall give initial datalying in oneplanez = z0.From eachsuchpoint we drawa
phasetrajectoryand seewhere it crossesagain the chosenplane (fig. 3.8). The coordinatesof the
crossingpoint (x1, y1, z0) dependon the initial data(x0, y0, z0), i.e.,

x1=f(x0,y0), y1—g(x0,y0). (3.17)

The functionsf andg determinea mappingof theplanez = z0,which is usuallycalleda Poincarémap.
As a rule, it is sufficient to considernot theentireplanez = z0 but only a smallpart which containsan
attractor.
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Fig. 3.8

The mapping (3.17) generatedby a systemof differential equationsusuallyenablesus to investigate
the most importantpropertiesof the system. But it may turn out that the interval which contains
elementsof thesequence{ y,, } is muchshorterthanthat with elementsof thesequence{x~}. (Or there
are othervariablesx’, y’for which this condition is satisfied.)Thenthe one-dimensionalmapping

x,~
1 = F(x~), (3.18)

i.e. the into mappingof the interval, provesto be a useful simplified model.
A mappingof the form (3.18) may appearnot only asa resultof analysinga simplified two-mode

systembut sometimesdirectly in thecourseof studyingproblem(3.12).
In fact, let us expandits solution into a Fourier series

W(x, t) = ,,~ [am(t)+ ~bm(t)]cos(lTmxll).

We consider the function ~(t) = [a~(t)+ b~(t)]~
2,pick out the local maxima ~ ~2’~’ . ‘ ~m’’ . and

constructthe function ~m+ 1 (~m) In somecases{ ~m’ ~pn+ 1 } do not fill randomly the whole region;
insteadthey very accuratelyfall on a singlecontinuouscurve~m+ 1 = F( ~m) Suchcurvesusuallyappear
in a whole range of parametersc

2. Therefore,we can considera family of mappings(3.18) as a
simplified model of the distributedsystem.

Let thereexist a steadystateregime suchthat ~,, —> const. for n—~ cc, n = 1,2 Then thesingle
point (~,~) on thecurveF correspondsto this regime. If ~(t) is periodicandhasp local maximain a
period, then p points on the curve F correspondto it. If ~(t), and this means W(x,t) as well, is
aperiodic, the points may fill the entirecurve or a few segmentsof it.

The approachof picking out thelocal maximaandconstructingthe function~m+ 1 (~m)wasproposed
by E. Lorenz [76]andwasefficiently usedto study severalsystemsof ordinarydifferential equations.

For most nonlinearpartial differential equationsit provesuseful to analyseself-similar solutions.
Thesecasesincluderunningwaves,whosepropertiesarediscussedfor the Kuramoto—Tsuzukiequation
in refs. [100,101], and solutionsof the form

W(x, t) = R(x)exp[iwt + ia(x)].

This solutionwasobtainedin ref. [1091using invariant-groupanalysisof eq. (3.8). Below we shallsee
that in a certain range of parametervaluesit proves to be stable and determinesthe asymptotic
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behaviourof the systemwhen i—> cc~In this caseequationsfor the functionsR(x) and a(x) (or the
functionsthat describeotherself-similar solutions)can be consideredas a simplified model.

In many casesmulti-dimensionality is a necessaryfactor for understandingvarious nonlinear
phenomena,but it complicatesthe problem immensely. So to study some phenomenawe should
considertwo-dimensionalanalogsof eq. (3.12).Suchproblemsarisewhenwe studywaterwavescaused
by wind, or simulatemorphogenesisandsurfacereactions.The simplesttwo-dimensionalgeneralization
of (3.12) is the equation

W,—W+(1+ic1)(W~~+W,~)—(1+ic2)~WI
2W. (3.19)

It hastwo-dimensionalself-similar solutionsof the form

W(x,y, t) = R(x, y) exp[iwt + ia(x, y)]. (3.20)

In the two-dimensionalcase the Kuramoto—Tsuzukiequationhas solutionswhich are now called
spiral waves. They are describedby formula (3.20) provided R(x, y) = R(r), a(x, y) = S(r) + mp
(m = 1,2,. . .), x= r cos~, y = r sin ~. Theirnameis understoodfrom fig. 3.9, where a typical picture
of thesolutionwith m = 1 is shownat time t’. In the dashedregion u(x,y, t’) >0,in the blank region
u(x,y, t’) <0.

If m> 1 the spiral wave is called multi-armed. Spiral wavescan be observedexperimentally,in
particularin theBelousov—Zhabotinskyreaction[110].It is importantthat theexistenceof spiral waves
is not connectedwith a specific form of theequations— it is a generalfeatureof manyopen nonlinear
systems. Some biologists think that the appearanceof spiral waves can explain many biological
phenomena,for example,arrhythmiaof the heartmuscle [111].

The method of multi-scale expansionsused to obtain eq. (3.8) was successfullyapplied to the
investigationof convectiveinstabilitiesin a fluid [93],theanalysisof plasmaphysicsproblems[112],and
in the theory of nonlinearwaves[113].It was also usedto analyseeq. (3.8). By assumingthat the

Fig. 3.9
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solution of theequationis close to being spatially homogeneouswe obtain the equation[114,115]

= vAiv — p.V2V2v — Av(Vv), (3.21)

which is usually called the Kuramoto—Sivashinskiiequation. Here v is the gradient of the phaseW,
= 1 + c

1c2, A = 2(c1 — c2), p. = (1+ c~)l2.An analyticsolution of the Kuramoto—Sivashinskiiequa-
tion of the runningwave type wasobtainedin ref. [116].The problemof theinstability ofthewavefront
in active media was formulated in ref. [118]for the two-dimensionalcase. Using the method of
multi-scaleexpansionsleadsin this caseto eq. (3.8). In suchan approachv is connectedwith the local
phasevelocity of the runningwave.

When i >0thepropertiesof eq. (3.21)resemblethoseof theBurgersequation[42].When v <0 eq.
(3.21) may seemto havecomplex aperiodicsolutions [115].Indeed,whenthe term p.V

2V2v is absent
solutionscanexist for a limited time. By using the Hopf—Cole replacement[42]when xi <0 we reduce
(3.21)to the linear heatconductionequationwith a negativecoefficientk. Equation(3.21) is of interest
as one of the simplestmodel equationswhich can describechaoticprocessesin theone-dimensional
case.Numerical resultsincluding complexaperiodicsolutionswere describedin ref. [115].In ref. [117]
a priori estimatesof solutionsof the boundaryvalueproblem (u~= u~,= 0 for x =0 andx = 1 with
u(x,0) = u°(x),0 � t <cc) were obtained;also existenceand uniquenesstheoremswere proved,and
differenceschemesfor this equationwereconsidered.

At thesametime thecalculationsshowthat in manyrangesof parametervaluesthesolutionW(x, t)
ofeq. (3.8) is essentiallyinhomogeneousin space.Thereforetherangeof applicability of (3.21) is much
smallerthan that of the original equation,as was notedin refs. [104,118].

Systemof N partial
differential equations(3.11) Equation(3.19) describing Equationfor two-dimensional~
dependingon a number two-dimensionaldissipative ~-self-similarsolutions
of parameters systems of type (3.20)

.1 _ _
Systemof two partial Kuramoto—Tsuzukiequation Equationsfor thefunctions
differential equations(1.1) ~ (3.8) valid neara bifurcation R(x) and a(x) in a self-similar
dependingon oneparameter point solutionof the type

~ _________________________

One-dimensionalmaps(3.18) Simplified two-mode 1 Kuramoto—Sivashinskii
system(3.15) I equation(3.21)

Two-dimensional Algebraicequationfor
maps(3.17) singularpoints of system(3.15)

Scheme1.
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Consideringthebehaviourof two-componentsystemsin thevicinity of a bifurcation point, wehave
presenteda few simplified models.Thepropertiesof somemodelswill bediscussedbelow. Weillustrate
the connectionsbetweenthesemodelsin a diagram(Scheme1). We shall seethat an analysisof any
model requiresusing a computerand various mathematicalmethods.There are severallevels in the
hierarchy of models shown in the diagram. The study of the models at any level hasnot yet been
accomplished.There arestill problemsat eachlevel that require further investigation.

3.3. Other lines of investigation

Besidesthe simplified modelsdescribedaboveandconstructedfor an analysisof reaction—diffusion
systems,somegeneralizationsof the Kuramoto—Tsuzukiequationwereproposed.It turnedout that a
similar approachcanbe usedto investigatecertainhydrodynamicsystems.Let us discusssomelines of
investigationin this connection.

Oneof the generalizationsof the Kuramoto—Tsuzukiequationappearswhenthenext termsin the
expansionswith respectto a small parameterfor reaction—diffusionsystemsin the vicinity of the
thermodynamicbrancharetakeninto account.Let thenonlinearsourcesin sucha systemdependon
two parametersA and p.. We write eq. (3.8) in the form

= d0W~+ (a1 + a2~WI
2)W.

Let Rea
2 <0 for p. </20, andRea2 >0for ~ > /2o~In thesecondcasethe Kuramoto—Tsuzukiequation

cannotbe used: if we vary A the solutiondiscontinuouslychangesby afinite amount.The FitzHugh—
Nagumomodel [119]and othermodelswherethresholdeffectsareimportant give us examplesof such
behaviour.To describetheseeffects the authorsof ref. [120]proposeto take into accountthe next
termsin the expansionand to usethe equation

W~= d0W~~+ (a1 + a2jW~
2— a

3~WI
4)W, (3.22)

where d
0, a1, a2, a3 arecomplexconstants.The possibility to usethis equationis connectedwith the

existenceof anothersmall parameter,-= (p. — p.~~1 /2 Thereforeeq. (3.22) doesnot havethegenerality
of (3.8) and its rangeof applicability is much smaller.

When we go from the original system (1.1) to (3.8) it is essentialthat the problem is one-
dimensional:the form of the functionf canbeuniquely determinedfrom the linearizedequation.In the
multi-dimensionalcase the situation is more complex— the linearized problem can have several
solutions;their numbergreatlydependson the geometry.

The equationsdescribingtwo-componentsystemsfor theTuring bifurcationwere consideredin ref.
[121]in the two- and three-dimensionalformulations. For regionsof different geometriesthey may
representsystemscontainingmore than two equations.It would be very useful to analysethem in
detail.

In the classical theory of bifurcationsand in the theory of normal forms thereare standardand
strictly justified proceduresthat allow one to go to the asymptotic local descriptionin typical cases
[81,85]. In the theoryof reaction—diffusionsystemsa strict procedureto go from the boundaryvalue
problemfor eq. (1.1) to that for the Kuramoto—Tsuzukiequationhasnot yet been developedup to
now. At present,however,studies havebeen initiated where this questionis consideredfor systems
with a small diffusion coefficient,
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u1cDu~~+(A0+cA1)u+F(u),0<c~1,

u~(0,t)u~(1,t)0, u(x,0)=u°(x),

whereu is anrn-dimensionalvector,D is a positive definite matrix, A0 haseigenvalueswith zero real
partsand no eigenvalueswith positive realparts,F(u) is a nonlinearfunction. Under theseconditions
theasymptoticanalysismayleadto boththe Kuramoto—Tsuzukiequationandits morecomplexanalogs
[122].

A similar approachassociatedwith constructinga hierarchyofsimplified modelshasbeenintensively
developedrecently in connectionwith investigationsof convectiveinstability. In theseinvestigations
systemscan be consideredwhoselengthsand widths are muchlonger thanthe characteristicsizesof
cells or convective shafts. A direct numerical simulation of such instabilities requiressolving the
hydrodynamicproblemin a largedomain,which includesa large amountof computation.At thesame
time, solving the equationsarising in an analysisof the system in the vicinity of the thermodynamic
branchis muchsimpler. In this caseoneusuallyobtainsboundaryvalueproblemsfor a systemof two
parabolicequationsin a two-dimensionalregion.

In such a description frequently equationsarise which aremore complexthan (3.8); they contain
fourth derivatives[93],

= ~+ (j~- ~= ~
2W- JwVw.

Variousphysicalfactorsmay complicatetheequationsobtainedby asymptoticmethods[123].Different
methodsto describethe convectiveinstability in a simplified form and the topologic featuresof the
arising flows are discussedin ref. [77].Numerical solutionsof the resulting equationsusuallygive a
picture that is in good agreementwith experimentalresults [124].

4. One-dimensionalmaps

Oneof the simplestmodelsthat allows an investigationof complex temporalorder and stochastic
regimesin nonlinear media is the map of an interval onto itself or, as it is usually called, the
one-dimensionalmap.

The studyof one-dimensionalmapsled to the introductionof newnotions applicableto an extensive
classof dissipativesystemsand the discoveryof somenewphenomena;asa resultsomefundamental
questionscould be answered.How doesthe transitionfrom thesimplestorderedto stochasticregimes
proceed?In what mannerdo the domainswhere order or chaosis observed,alternatein parameter
space?How doesorder becomecomplicatedwith a varying parameter?What are the basic types of
stochasticregimesin suchsystemsandhow can they be described?

Let us note theparadoxicalityof thesequestions.Indeed,a one-dimensionalmap is a determinate
system.Nevertheless,it describesprocessesthat may havesomestochasticproperties.

To fix the ideas we considerthe simplestmodel that leadsto one-dimensionalmaps. Let us be
interestedin thevariationof thepopulationof someanimalsin a certainregion. We countthem oncea
year and obtain a numberx. From thesedata we constructthe sequencex

1, x2,. . . , xe,,... (n = 1
correspondsto the first count). Forbrevitywe designateit by {x~}. It seemsthat thereis a law for these
numbers.It is naturalto expect that the population in a given year,x~1,dependson thenumberof
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animalsthat lived the previousyear, i.e. the value of x,,. Thus, in the simplestcase

x,,~1=f(x~,A). (4.1)

Here f is a continuousfunction, A is a parameter,which dependson the specific problem under
consideration.We usuallyusea functionf of the form Ax~(N— x~),

x~~1=Ax~(N—x~),0�x~sN. (4.2)

The aboveformula shows that thepopulationquickly grows so long asit is small (x~4 N) and starts
diminishingwhentherearetoomanyanimals.It is convenientto makethechangeof variablesx,, = x~N
and A = A’IN. Thenformula (4.2) becomes

x~~1=A’x~(1—x~),0~x~�1. (4.3)

Below we shall omit theprimes.
Now we are interestedin the question: What will happenwith different kinds of animals over a

sufficiently long time?To answerthis questionwithin oursimplestmodelit is sufficientto determinethe
form of the sequence{x~},n—> cc, for different A. The maps of the form (4.1) are used for the
phenomenologicaldescriptionof manyother events.

4.1. Transition to chaos. TheFeigenbaumscenario

Forsmallvaluesof A (0<A < 1) we havex,, —*0 with n—~ cc regardlessof the choiceof x1. In this and
other casesit is convenientto describethebehaviourof thesequencegraphically.

Let us drawtheplot y =f(x) for a chosenA andthestraight line y = x in fig. 4.1. We takex1 on the
abscissa,drawa verticalup to theintersectionwith thecurvey = f(x) atpointA, thendrawa horizontal
from A until it intersectsthecurve y = x (point B). Now we drawagaina vertical to the intersection
with the x-axis. It is easy to see that x2 = f(x1). Taking now the point x2 as a starting point and
repeatingthe sameoperationswe obtain x3, then x4, etc. From fig. 4.1 it is seen that x,, —*0 when
y~—* cc~

Fromformula (4.3) it follows that the functionf(x) mapsthe interval [0,1] onto [0,A /41. If A ~ 4, all
valuesof x~areon [0,1] providedthat 0~ x1 ~ 1. This is why formula (4.3) is said to give mapsof an
interval into itself.

Now let A be slightly morethan 1. The sequence{x~} behavesdifferently (fig. 4.2) and tendsto a

0,4 ~,q

0,2 ~ ~ 0,2 I I

0,0 o,a; 0,9 ~ 0,6 08 0,0 0,2 0,~ 0,6 0,8 1,0 ~

Fig. 4.1 Fig. 4.2
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constantvalue x” >0. As appliedto the original biological problem,it meansthat the populationof a
given speciesbecomesstableafterseveralyearsand stopschangingwith time.

The valueof x* can be obtainedfrom the equation

x*=f(x*,A). (4.4)

All thepoints satisfyingthis equationarecalled thefixedpoints of the map, sincex~= x* for all n if
x1 = xK. If A < 1, the quadraticequationf’ = Ax*(1 — x*) hasone nonnegativeroot x* = 0. If A> 1
thereare two nonnegativeroots: x* = 0 andx” = (A — 1)lA. WhenA = 1 the fixed point x = 0 losesits
stability, and thenewly appearedpoint becomesstable.

It is easyto determineif the fixed point x’
t’ of themapf(x) is stable.Letx, = x” + ~ wherei~x~is

a small number. If thepoint is stablethevalue of I1Xx~must decreasewith increasingn. We rewrite
formula (4.1) in the form

d~1x*
x*+~x~+i=f(x*+~x~)=f(x*)+~ ‘

In theanalysisof thestability ofsingularpointsof ordinarydifferential equationsit is shownthat in the
nondegeneratecasethe linear termsdominatethe situation (the first methodof Lyapunov stability
theory). Using analogousargumentsherewe can verify that the stability of x* is determinedby the
behaviourof the map

= ~ ~ (4.5)

In order that 1Xx~—*0 for n—* cc the inequality

df(x*)ldxI <1 (4.6)

shouldbe satisfied.It is the sufficient conditionfor stabilityof thepointx*. (If theoppositeinequality is
satisfiedwe mayinfer that x* is unstable.If thederivativeis equalto unity we shouldconsiderthenext
termsin theTaylor series.)

Let us further increaseA. The behaviourof the systemchangesagain: Startingfrom sufficiently large
n in thesequence{x~} two numbersa

1 anda2 will be alternating.(Speakingmoreexactly,thesequence
{x~}is composedso that x2~~1—*a1,x2~—*a2for n—*cc.) We shall saythat in this casethemap (4.3)
hasa stablecycleof period 2, which will be designatedby ~ Figure 4.3 shows S

2.
The transition from the fixed point (we may considerit as a cycle s1) to the cycle ~2 occurredasa

resultof bifurcation,which is calleda period-doublingbifurcation. The point x* did not disappearbut
thevalue of df(x*) Idx becamesmaller than —1.

As A increasesfurther the sequence{x~} changesagain.The cycle S4 arises:x
4,,—* a1, x4,,+ 1 ~ a2,

x4~÷2—*a3,x4~~3—*a4,for ~—*co and a2=f(a1), a3=f(a2), a4—f(a3),a1—f(a4) (see fig. 4.4).
Still increasing A we may observe the cycles S

8, S~,~32 etc. Every time
52~ loses stability, a

p+i

period-doublingbifurcationtakesplace, and the cycle S becomesstable.Finally, at acertainvalue
of A (sometimesdenotedby A,0) formula (4.3) yields an aperiodicsequence{x~}.
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y ,~,=j÷’/~’ y A~3,5 /
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/ 0,8 —

0,6 7 / /

__ II 0 :: (/~_ _
0,0 0,2 Q4 ~6 0,6 0,0 0,2 0,9 0,6 0.8 i,0 ~

Fig. 4.3 Fig. 4.4

The observedpicture turns out to be very interesting.First, thereis very complexbehaviourin the
remarkablysimple model (4.1). Second,a large numberof bifurcations leading to a more complex
solution canbe discovered.It is muchmore difficult to do this in more complexmodels.Third, when
0<A < A,0 only cyclesof period 2’°arestable.It would be interestingto seewhy this is so and to study
thebehaviourof the model in more detail.

Besidesthe map (4.1) it is convenientto considerthemap

x~=f(f(x~))usf2(x~). (4.7)

In this chapterf~(x) will alwayscorrespondto the nth iteration of the functionf, f”(x) f( f. . . (x)) (n
times). In our casethe form of the function f2(x) is shown in figs. 4.5 and 4.6. The first figure
correspondsto thestablefixed point, thesecondto thestablecycle S2. Theplot of f2(x) intersectsthe
straight line y = x at all fixed points of the map and also at points belongingto cycles S2 [because
a

2 =f(a1) =f(f(a2)), a1 =f(a2) =f(f(a1))]. By increasingtheparameterA we stretchthe functionf
2(x)

alongthe y-axis, and if atsomeA the lines y = x andy = f2(x) intersectat onepoint (seefig. 4.5), then

LI / I.( ,“

0.0 0.2 0.4 0.6 0.8 I 0.0 0.2 0.4 0.6 0.8 ~

Fig. 4.5 Fig. 4.6
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two new intersectionpointsmay appearasA increases (see fig. 4.6). Thesepoints will determinethe
cycle ~ The transitionsi .> ~2 in themapf(x) will bedue to the fact that in themapf2(x) one of the
fixed points loses its stability, and two new stable fixed points appearin its neighbourhood.The
bifurcation diagramhereprovesto be like that shownin fig. 3.6a. By consideringthe functionsf4(x),
f~(x)etc. we canseehow thenext doublingsoccur. In eachof thesecasesonegroupof points losesits
stability and two other stablegroupsof pointsappear,and as a result the cycle perioddoubles.

Acting in thesameway asin thecaseof a fixed point, we canshowthat thestability of the cycle S~’
with elementsx

1,. . . , xp will be determinedby the formula df~(xk)Idx~<1, k = 1,. . . , p. By
differentiatingthis formulawe can easilyverify that it is equivalentto the inequality

df(x1)df(Xp)~<1 (4.8)

From the formula for df”I dxj it follows that the value of Idf”/dx will be the same at all pointsof the
cycle 5”.

It turns out that by theexampleof model (4.3) we canunderstandnot only thequalitativebut also
thequantitativelaws of the transitionto chaos.In order to observethem we shall drawthe plot x( A).
We shall put x1,x2,. . . , xp belongingto the stablecycle along the x-axis, andthe parametervalues
alongtheA-axis. Two pointson thesameverticalline will correspondto cycle~2 fourpoints to cycle~4,

etc. We denotethe parametervalueswhere doublingsoccur by A1, A2, A3,..., andthe values for
which x= 1/2 is an elementof cycles S

2, 54, S8 etc. by A
1, A2, A3,.. . (these cycles are called

superstable).Let us also introducethequantitiesd1, d2,... , d~,thedistancesbetweenx= 1/2 and the
closestelementof the cycle S

2 atA A~.All thesenotationsareshownin fig. 4.7. Computationsshow
that the numerical values of A~and A~with large n behavelike a geometrical progressionwith

In

&

o,q

03 I

0,2 , I .~L ,
2,88 2,96 3,04 3,~2 3,20 ~28 3,36 3,44 3,62 3,60 .6.

Fig. 4.7
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denominator6 = 4.6692016.... In otherwords,

A~~1—A0 (4.9)
A~+2—A0+1

The ratio d~Id~~1also hasa limit equalto a, where a = 2.5029078.
Insteadof (4.3) wemay considersomeotherfamily of symmetricfunctions that haveonemaximum

on [0,1], are close to a quadraticparabola near its apex, and in which an infinite cascadeof
period-doublingbifurcationsoccurswith varying A. It turnsout that in any suchmodelthe numbersa
and 6 arethe same.Moreover, regardlessof the form of f(x), the limit

lim (—a)~f
20((x— 0.5)I(—a)~,A~)

existsand is the same.It is calledthe universalfunction g
0(x).

Theseremarkablelawswereestablishedandexplainedby M. Feigenbaumin 1978 [33,126, 127]. He
proposedthe functionalequationsto determinea, 6 andg0(x). Dueto theuniversalnatureof a, 8 and
g0(x) and othersimilar functions, this theoryis calledthe universality theory.

In this theory the renorm-groupmethodis applied. It is widely usedin quantumfield theoryand
statisticalphysics.With this approachthe constanta can be determinedfrom an equationthat hasa
graphicgeometricmeaning.

Let us comparefigs. 4.3 and4.8. An elementof thecurvef
2(x) locatedwithin the left squareis very

muchlike the arcof the functionf1 (x) locatedin the squarein fig. 4.3. In fact, they differ only by a
scaleand the orientationof the axes.Calculationsshowthat the samelaw holdsfor the functionsf2
n > 1, when A = A~.The larger then, the more accuratelyit is satisfied.From theseconsiderationsit
follows that

g(x) = —ag(g(xla)) (Tg)(x), (4.10)

which allows us to determineboth the functiong(x) and thevalueof a. Thefunctiong is determinedon
[—1,1]; it is assumedto haveonly onemaximumatx = 0 and to be symmetric,g(x) = g(—x). Nearthe

9

//

Fig. 4.8
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maximum g(x) must be close to a quadratic parabola,and g(0) = 1. T is called the doubling
transformation [128,131].

In the universalitytheory thespaceof mapsof the interval [—1,1] into itself is consideredso that
f(x) EC2[—1, 1], where x = 0 is a maximumof f(0) = 1. This spaceis invariant with respectto the
transformationT.

The Feigenbaumequation(4.10) determinesthe fixed point of the doubling transformation.The
spectrumDT(g) of the linearizedtransformationat thepoint g lies within a unit circle except for the
eigenvalue8 = 4.6992. . . , which determinestheFeigenbaumconstant.This eigenvaluecorrespondsto
the one-dimensionalunstableseparatnxF”( g), which consistsof the mapsmoving away from g(x)
under the effect of the transformationT (fig. 4.9). Along other directions, belongingto the stable
separatrix15(g), themapstendto this point.

Let us denotethe surface in the functional spaceon which the first period-doublingbifurcation
occursby Z~.We also write

= T1.~
1, = T

1.~k_l

At the intersectionof the surface~ thekth perioddoublingoccurs: thestablecycle of period2” arises
from thestablecycle of period 2” -1

The surfaces~ prove to convergeto fS(g),andfor largek thedistancesbetween~~k+1 and fS(g)
are 6 times shorter than those between~ and fl( g). Therefore, the bifurcation values of the
parametersfor any family of mapsf(x, A) form a geometricprogression.

Somerigorousresultsof theuniversalitytheoryandreferencesto theoriginal works canbe foundin
detail in the book [131]and the review [128].The proofs availableare mainly basedon numerical
results. By using a computer the Feigenbaumequation is solved, and the constantsa and 8 are
determined.For theseproblemsdifferent techniquescan be employed [127,129]. The universality
theory canbe appliedin thecasewhentheapexis smoothbut not quadratic.However,a and 8 prove
to be different [127].

An interestingobject is the limit setarising afteran infinite cascadeof period-doublingbifurcations
(A = A,0). It is called the Feigenbaumattractor and hasa complex structure,which repeatsitself on
smaller scales. In particular, there are an infinite number of unstable cycles of the type

53P coexisting

(U)

~,rt~3I
Fig. 4.9
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with the Feigenbaumattractor.The structureand ergodicpropertiesof limit sets of one-dimensional
mapsat A = A,. arediscussedin detailin ref. [128].In theneighbourhoodof thepoint A,. theattractors
havea typical powerspectrumfrom which we can seethat this scenarioof the transition to chaosis
implemented[131].

In many dissipative systems as well as in some nonlinear media the transition to chaos occurs
accordingto theFeigenbaumscenario[35,36, 103]. Therefore,it is particularlyinterestingto generalize
the results of the universality theory to mapsof higher dimensions.For example,two-dimensional
transformationsR2—* ~2 werestudiedin ref. [131].They are closeto the mapF,

F(x) = (g(\/x2 - Y))

where g is the universalfunction which is a solutionof eq. (4.10),

g(x)m~1—1.52763x2+0.104815x4—0.0267057x6+~-.

Every one-parameterfamily of maps ~2 ~ ~2 which passessufficiently nearF will exhibit an infinite
sequenceof period-doublingbifurcationsatvaluesAk. The Ak will havea limit A,. and A

0 — A,. const.

Thus, the transition from the simplestorderedto aperiodicregimesaccordingto the Feigenbaum
scenariois connectedwith an infinite cascadeof period-doublingbifurcations.The bifurcationpointsare
locatedaccordingto a geometricprogressionwith denominator8. Herechaos(aperiodicsequenceat
A,,,) actsas a limit of supercomplextemporalorder.

4.2. Intermittency

The transitionto chaoscan occurdifferently evenin very simple physicalsystems.For example,in
hydrodynamicsthe following phenomenonhasbeendescribed.If flow is observedfor a sufficiently long
time without a changein its parameters,it may be seenthat in orderedlaminarflow suddenlyvortices
appear whose behaviour seems to be random. Then the picture of the flow again becomes simple and
regular before the next vortices appear. This phenomenon is called intermittency. Regularregimes
alternatewith islandsof chaos.

The simplestmodel that provided anexplanationfor this phenomenonwasproposedby Manneville
and Pomeauin 1980 [130].It can be illustratedby an exampleof a family of one-dimensionalmaps
(4.3).

For a certainvalue of A (A = 3.83) the stablecycle S
3 abruptly appearsfrom chaos. In order to

understandthesituationwe considertheone-dimensionalmapf3(x, A) = f( f( f(x, A))) before the cycle
appears,A < A (seefig. 4.lOa), andafter that, A> A (seefig. 4.lOb). As theparameterA increases,the
curve f3(x, A) becomessteeper,and new points of intersectionwith the straight line y = x appear.
Thesepointsaredenotedby M

123andN123 in fig. 4.lOb. Theyareall fixed pointsof themapf
3(x, A).

The derivativeof f3(x, A) at thepoints M
1, M2, N3 [seeformula (4.8)] is thesameand its absolute

valuedoesnot exceed1. It is thesepoints that determinethe stablecycle ~ The slopesat the points
N1, N2, M3 are also the same but their absolute value is larger than 1. In the mapf they correspondto
an unstable cycle ~3 which appearssimultaneouslywith the stableone (see fig. 4.11).
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Fig. 4.10

The simultaneousappearanceof stableandunstablesingularpoints is calleda tangentbifurcation. It
is due to the fact that at the bifurcation point the curve f(x) is tangent to the diagonal y = x.
Accordingly, the derivativedfldx at this point is equalto unity. -

We give an initial valuex1 and seehow themapf
3 behaveswhenA> A and whenA < A. (In other

words,we observeeverythird elementof thesequence{x
0}.) Computationsshowthat in the first case

aftera long transientprocessthepointsareattractedto the cycle ~ In thesecondcaseslowmotion to
the point M can be observedfirst, but thenthe elementsof the sequencequickly divergefrom this

0.:4 ~=3.825 ~ ~ ~.=3.830

::: 0.520.48 0.50 0.52 1 0.48 0.50 0.52 0.541

Fig.4.11. Thefunctionf
3on alargerscale.(b) A = 3.830; thepoint M

2 correspondsto thestablecycleS
3andthepointN

2 to theunstablecycle. (a)
A = 3.825; thecycleS

3 hasnot yet appeared.
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point. Subsequentlythey startapproachingit again.Such a behaviourfor a map with a sharpapex is
illustrated in fig. 4.12. It is seenthat intervals of motion to the point M, when the solution looks
regular,alternatewith quick chaoticrejections.We have intermittencyin this very simple model.

We may estimatehow the duration of “the laminar phase”dependson the parameterA. Let the
tangentbifurcationoccur for A = 0. From fig. 4.11 it is clear that for the interval of interest themap
f3(x) [or g(x) in fig. 4.12] can be approximatedby the map

x
0~1=; +ax~—A. (4.11)

Since x,, + 1 — x0 4 1 for A—*0, formula (4.11) can be approximatedby the differential equation

dxldr=ax
2—A. (4.12)

By integratingit we can verify that the time At (and thus the numberof iterations) in which the
trajectory x(T) is near zero, is proportional to A112 It is this law which can be observedin
computations.Transition to chaosconnectedwith intermittency is observedin many concentrated
systemsand seemsto be typical for a largeclassof nonlinearmediatoo.

4.3. Attractors of one-dimensionalmaps

Consideringone-dimensionalmapswe havenot specifiedso far with whatinitial datasomeor other
stationaryregimesare obtained.At the sametime it seemsnatural that in many casesthe choice of
initial datamay determinethe behaviourof the systemwhen n—* cc~We shall discussthis in detail.

An intuitive ideaaboutthestationaryregime maybe associatedwith thenotion of anattractingset
orattractor [290].An attractoris theclosedsetA which is invariantunderthemapf [f(A) = A] and has
thedomainof attractionU

0 (U0 D A) of all thepointsthat go into A [i.e.A fl~1f
0(U

0)]. Sometimes
the definition of an attractor includes the property of indecomposability: the set A cannot be divided
into someclosedinvariant nonintersectingsets. -

We shallgive examplesof attractors.Let the map (4.3) have a stable fixed point x” for A= A (for
example,A = 2). It is an attractor.Indeed,f(x *) = x*, and we can see that there is a sufficiently small
neighbourhood of the point x* from where all points tendto x~. At thesametime wecannotsay that
iterationsof all points tend to x* [f”(O) = 0, n = 1, 2,. .

0~g

Fig. 4.12
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The stablecycle 5” mustbeanotherexample.Wemay expectthat generallya one-dimensionalmap
has several attractors which are obtained depending on the initial data. This question was studied in
detail for the classof so-calledS-unimodalmaps[131,135], which canbe obtained,in particular,aftera
transformationof variablesin the family (4.3). Themapf of the interval [—1,1] into itself is unimodal
if

(1) f is continuous,
(2) f(0)=1,
(3) f is strictly decreasingon [0,1] and strictly increasingon [—1,0].
We shall call f C1-unimodal,if in addition
(4) f is once continuouslydifferentiable,andf’(x) ~ 0 if x ~ 0.
The Schwartzian derivative of f is definedby the formula

- f”(x) 3 (f”(x) 2f(x)_fI() 2 ~f’(x)l

Then f is calledS-unimodalif
(1) f is C’-unimodal,
(2) fEC3,
(3) Sf(x)<0 for all xE[—1, 1]; at x=0 we allow the value —cc for Sf(x),
(4) f maps j(f) = [f(1), 1] into itself,
(5) f”(O)<O.
The following theorems are valid.

TheoremI. If f is 5-unimodal,thenit hasatmost one stableperiodicorbit, plus possiblya stable
fixed point in the interval [—1,f(1)].

Theorem II. If f is S-unimodal and hasa stableperiodic orbit, then the measureof thosepoints
which do not converge to it is zero.

TheoremIII. 1ff is 5-unimodalandhasa stableperiodicorbit, thenthe initial point x
1 = 0 will be

attracted to it.

The last theorem provides a method to construct maps that have no stable cycles — to do this we
should see that one of the iterations of zero comes at an unstable point or into an unstable cycle.

The simplest example of such a function was given by S. Ulam and J. von Neumann in 1947. This is
the function f(x) = 1 — 2x

2: f(0) = 1, f2(0) = 1 fk(
0) = —1 (k >2) but f’(—l) = 4.

Iterations of this map exhibit an example of chaoticbehaviour.Weconsider it in more detail. Wecan
verify that the change of variables

y= ~-[arcsinV(x+1)/2]—1

reducesthe map to the form

y0~1 =1—21y0J. (4.13)

Weinvestigate the properties of the sequence { y,,} by using very simple considerations.Let y1 have k
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digits after the decimal point (the (k + 1 )st, (k + 2)ndand all later digits are zero). Then we may verify
by using (4.13) that y

1, y3 and all the other elements of the sequence { y,, } will havethesamenumber
or lessdigits. However,thereare at most Nk = 10k numbers with k digits and the restzeros.Hence,
after some N< Nk elementsthesamenumberswill appearin thesequence{ y0 }. Similar arguments can
be used if y1 is a rational number,y1 plq, —1~ y~ ~ 1, p and q integers.All thesecycleswill be
unstablesince dfldy I = 2> 1 at eachpoint of the interval, and the product

df(y1) ~ df(y,,) —2”>l
dy dy —

for any cycle 5” [seeformula(4.8)]. The oppositestatementis also valid: if themap(4.13)hasa cycle,
all its elements and their pre-images are rational numbers. (It is easy to prove this statement by using a
reductio ad absurdum.)

Weobtained an interestingqualitativeconclusion:any rationalnumbergives a cycle, any irrational
number an aperiodic trajectory. While all rational numbers lying in the interval [—1,1] can be
numbered (they form a countable set), the irrational numbers cannot. Wecan constructa systemof
intervals that will have as small a total length as desiredand contain all rational numbers.The
coordinate of a point taken at random will nearly always prove to be irrational and determine chaos. (If
in analysing the map (4.13) we usedonly numerical results we would havecome to the opposite
conclusion: cycles would always be observedsinceall initial valuesof y1 arestoredin a computerwith a
finite number of decimal digits.)

How canwe describeaperiodictrajectoriesof themap(4.13)?It is naturalto actin thesameway as
in investigationsof randomprocesses:determinewith what probability theelementsof { y0 } come into
theneighbourhoodof thepointy. Themeasurer’ on [—1,1] will becalled the invariant measurefor the
map(4.1) if for everymeasurablesubsetEof the interval [—1,1], v(E) = v(f’(E)). Weassume that
v([—1, 1]) = 1. Let ~ and /L2 be two measureson [—1,1]. It is said that ~ is absolutely continuous with
respect to ~2 if for any subset A from ~(A) = 0 it follows that p.~(A) = 0. When the measure v is
absolutely continuous with respectto theLebesguemeasurethe measuredensityp(x) = dvldx [i’(dx) =
p(x) dx] is definite andbelongsto the spaceL1.

For many maps we may prove the following statement.If we give a measure ~ and calculate its n
iterations, the sequence(1/n) ~~:~1 fk( ~) convergesto the invariant measurethat describesan
attractorof this map [131,133].

Let us present some examples. The cycles S” correspond to measuresfor which p(x)=
(lip) E~6(x — xk) representsp 8-functions. For the map (4.13) p(x)= 1/2. For the transformation
f(x) = 1 — 2x

2, p(x) hasthe following peculiarities:p(x) = (iA/i — x2)’ (see fig. 4.13a);p(x) canbe a
linear function [seefig. 4.13b, f(x) = 1 — 2\/[~j, p(x)= (1 — x)12].

SIX) J1X) ~fiX)

:-~“~:F~\J2:~fl\n’i
10 0,0 10 X -i0 qo iD x o,~ 0,7 ipx

L)”12X2 ,f(xj.i-2V15?

Fig. 4.13. Examplesof invariantmeasuresof one-dimensionalmaps.The map in (c) is givenby formula (4.15).



T.S. Akhromeyevaet al., Nonstationary dissipativestructuresanddiffusion-inducedchaos in nonlinear media 249

Thereare otherattractorsof one-dimensionalmapswhich standbetweenstablecyclesandstochastic
regimes,and for which the points {x~} comeinto the neighbourhoodof every point of the interval.
Theyarecallednoisycyclesor semi-periodictrajectories. In this casep(x) is concentratedon p “islands”
(fig. 4.13c). Such attractorswill be denotedby x -°. The orderof going aroundthe islandsprovesto be
strictly fixed; thereforewe canexactlypredict in the limit ofwhich of the islandstheelementx,, occurs
for any n. (This makesnoisy cyclesresemblecycles.)However,astheposition of typical pointswithin
eachislandchangesin a randomway theyaremore like stochasticregimes.*)

For someclassesof one-dimensionalmapswe can prove the existenceof an absolutelycontinuous
(with respectto the Lebesguemeasure)invariant measure.Among them are, in particular, the
everywherestretchingmaps[131,133], for which

Idfldxl�ci>l.

An ideaof the invariantmeasuremay be obtainedby consideringa histogramof thesequence{x~}
constructedon a computer.We divide the interval [—1,1] into equal segmentsof length e, each
segmentbeing comparedwith a numbern,. First n~= 0 for all i. The valueof n. increasesby one if
elementx,, comesinto the ith interval. Thenn. is divided by the total lengthof thesampleN. In many
cases

p(x)=lLrnlimn1!N.

However,large samplesare requiredto obtain p(x) with a sufficiently high accuracy.
Wemayactdifferently. Using thedefinitionof invariantmeasureanequationis derivedto determine

p(x). It is called the Perron—Frobeniusequation,

p(x)= ~ , (4.14)

yE~’(x)If (y)I
wherethe summationis over all pre-imagesof thepoint x. The solutionof this equationfor one map
arising in the theory of numberswas already known to Gauss. In most cases,however, analytical
solutionscannotbe obtained.Herevarious numericalmethodsmay be used[134].

The oppositeproblemis also of interest:given an invariant measure(statisticalcharacteristic)the
mapf (systemdynamics)mustbe determined.For example,it turns out that therearean infinite variety
of unimodalmapsthatgeneratethemeasureof density_~e_x~ (with given a) on the interval [—1,1].
The method to solve the inverseproblemand the conditions for which thereis auniquesolution are
discussedin ref. [134].

Let us discussthe questionof thestability of iterationsof one-dimensionalmaps.We considerthe
iterations of the point x1 and the neighbouringpoint x~= x1 + Ax. Using the sameargumentsas we
usedfor the cycle S” and letting Ax tend to zero we may verify that the stability of the trajectory
{x~} {x~,f(x1), f

2(x
1),. . .} is determinedby

1 ~f~(x1)A(x1)=iim—log ox

*) In this caseas well as in thecaseof theFeigenbaumattractorthesetU in thedefinitionof theattractoris determinedin aspecificway [1421.
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where A(x1) is calledthe Lyapunovexponent.In many caseswe may provethat almost all pointsx1
yield the samevaluesof A [131].

If A <0the trajectory{x~)is stable,andall adjacenttrajectoriestendto it. If A>0 thepathsof two
neighbouringpointsexponentiallydiverge.This propertyis oftencalleda sensitivedependenceon initial
conditions.If this sensitivedependenceis exhibitedin a systemwe cannot,in fact, forecastits behaviour
in the future.

As applied to model (4.1) this meansthe following. If x1 andx~aresufficiently close,the first terms
of thesequences{x~}and {x,} will be closeaswell, but startingfrom a certainnumberN the termswill
be quite different. We can conclude that chaos,which, in fact, doesnot allow us to predict the time
evolutionof a system,may be describedby thevery simple explicit formula (4.1).

Let us note that in realsystemsour knowledgeof initial conditionsis alwaysinaccurate,evenif only
slightly. Therefore,the behaviourof a systemsensitiveto initial conditionsprovesto beunpredictable.
In 1963 E. Lorenz suggestedthat this circumstancemight be closely associatedwith the weather
forecastproblem[76].Evenrecently specialistsbelievedthat advancesin computertechnologywould
lead to the appearanceof correct long-term weatherforecasts(even if for two-week periods).This,
however,hasnot happened.It seemsthat theequationsdescribingtheatmosphericstatearesensitive
to initial conditions.

4.4. Meta,stablechaos,crises

When simulatingvariousphenomenaone mayencounterone-dimensionalmapswith sharpapexes,
severalmaximaor sometimesmapsthat are not continuous[103,137, 150]. In order to simulatesuch
situationsoneshould study mapswhich are not S-unimodal;they may haveseveralattractors.

As a simple examplewe considerthe family of one-dimensionalmaps

f(x, A) = 1 — Ix — A1
1121[1 + (x — A)2] . (4.15)

ForA
1 <A < A2 (A1 = 0.432and A2 = 0.448) themaphasa stablecycle S

2. It coexistswith thenoisy cycle
x4 on the interval A

3 <A <A2 (A3 ~0.445). When A = A3 the region of attraction of the cycle ~2
discontinuouslydecreases,and a stochasticattractorappears.

In order to explainthis picture it is convenientto passto the mapg f
4. Let us considera square

with sidesj, constructedasshownin fig. 4.14.For illustrative purposeswe haveshownseveraliterations
of thepointx

1. Let thepointx1 beinsidethesquareandA> A3 (fig. 4.14b). It is seenthat thefunctiong

xn,’
a o4~&

5fb

41.1.50

44’.” x
1 o,’.’.5 X~4445O 44465

Fig. 4.14
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definesa map of intervalj onto itself; thereforeall iterations(images)of x1 will be insidethe square.
Since dg/dx~>1 insidej, thereareno stablecyclesandfixed pointsin it, andthe imagesof the points
inside it behavein a stochasticway. (In fig. 4.14 only one segmentof the function g is shown for
illustration. If we considerthe whole interval (0, 1) it may be verified that for A = A3 four segments
appearsimultaneously,eachof which goesinto itself, i.e. the noisy cycle x

4 arises.)
For A> A

3, a stablesingular point (x* in fig. 4.15)may exist in the mapg alongwith a stochastic
attractor.For the mapg this point correspondsto an elementof thestablecycle S

2 (in figs. 4.14 and
4.15 ~t=A).

Quite a different picture is observedfor A < A
3. In this casethe segmentj doesnot go into itself.

Imagesof thepoint x1 leavethe squarethrougha small segmentnearits lower left corner(fig. 4.14a).
The smallerthevalueof A — A3, the longertime the imagesof x1 spendwithin thesquare.Thus, if x1 is
in the intervalj a chaoticregimewill be observedfor a long time. However,the life time of this regime
is limited. Whenn—~ c~(or when t—* ~ in systemswith continuoustime) convergenceto astablepoint
or cycle occurs.In casethe transientprocessconnectedwith chaoticoscillationscanbe arbitrarily long
if A—~ A3, J. Yorke and E. Yorke [136]called this interestingphenomenonmetastablechaos. It was
discoveredin theLorenzsystem,which was proposedasa simplified model of theBénardinstability. It
is possible that metastablechaosand the appearanceof stochasticregimesdescribedabove may be
observedin somenonlinearmedia too.

The exampleconsideredlets us introduceanotherimportantnotion associatedwith the analysisof
nonlinearsystems.For A > A3 therearea stochasticattractorand an unstablefixed point (fig. 4.14); at
A = A3 they collide and as a result, the stochasticattractordisappears.“The collision” betweenan
attractorand an unstablefixed point or cycle is calledan attractor crisis [138,139, 212].

Crisesaretypical for a largeclassof nonlinearsystems[139];they are connectedwith fastqualitative
variations of chaotic regimes.We can distinguish boundarycrises, which usually lead to the sudden
disappearanceof achaoticattractor(anexampleof sucha crisis hasbeendiscussedabove),and internal
crises.As aresult of an internal crisis the sizeandattractionregionsof thestochasticattractorsuddenly
vary. It canbe observedevenin the simplestS-unimodalmaps[138].

The scenarioof the transitionto chaosin mapswith severalextremamaybe quite differentfrom the
traditional picture. For example, in ref. [147]it is shown that a cascadeof the period-doubling
bifurcationsin odd mapshasan interestingpeculiarity. Here thebifurcationpoints may not tendto a
geometricprogressionasn—* ~.

Maps with a sharpapexmay havecomplexproperties.In ref. [148]the family of maps (4.15) was
considered.In this caseit is convenientto denotecyclesby theindicesmandn: S~~)(m + n = p); they

49 x 1,0

Fig. 4.15
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show how manyelementslie to the right and left of theapex(x = p.). Computationsshow that there
may be a largeclassof transitionsin which the topology of stablecycleschanges,~n, n) S(m+ 1,n-1)~

Such transitionsmaybe accompaniedby cascadesofbifurcations,crises,appearanceof chaoticregimes.
In experimentswe usually dealwith determinateprocesseswhich areaffectedby a small-amplitude

noise. In the simplestcasethe situationis describedby the map

x~÷1=f(x~)+ f,,, (4.16)

where ~,, is a small randomfunction. It is shown in refs. [128,149] that despitethenoiseeffectsmany

phenomenapredictedby the theoryof one-dimensionalmapsaretypical for systemsof the form (4.16).
4.5. Categoriesofcycles

Computationsshow that a “window structure” is typical for the map (4.3). As the parameterA
increases(A> A,,~),both chaoticregimesandstablecyclesof any periodcanbe observed.The question
arises:What rules determinethe orderof appearanceof cyclesasthe parameterchanges?

ConsideringtheFeigenbaumscen,arioit canbeverified that alongwith thestablecycle ~2~0thereare
unstablecyclesof periods~ , S~-, . . . , S

1for thesamevalueof theparameter.Thenit is important
to find out underwhat conditionscyclesof different periodscan coexist.

The abovequestionsweresettledfor a largeclassof one-dimensionalmaps[131,141, 142, 143]. Let
us pay attentionto someresultsobtainedin this field.

We shall say that there is an order relation, m > n, betweenthe integersm and n if from the
existenceof the cycle Sm it follows that thereis also a cycle S” for the samemap. The Soviet
mathematicianA.N. Sharkovskiiproved in 1964 that with the aboverelation thecyclesof continuous
mapsare orderedin the following way:

3>5>7>...>3.2>5.2>7.2>...>3.22>5.22>7.22>...>23>22>2>1 (4.17)

The last relationin this seriesmeansthat if thereis a cycle S2 then thereis a fixed point (cycle ‘). It
can easily be proved. Since thereis a cycle ~2, valuesa

1 and a2 can be found suchthat a1 =

a2 =f(a1), a2> a1. Now we consider the function g = x —f(x) at the points a1 and a2: g(a1)=

a1 — f(a1) = a1 — a2 <0 and g(a2) = a2 — a1 >0. Sincef(x), and henceg(x), are continuousthereis a
point a* whereg(a*) = 0, i.e.,f(a*) = a*. The otherrelationscannotbe proved so easily.

To judge from (4.17), the cycle S
3 is most complex. The American mathematiciansT. Li and J.

Yorke provedthe following theorem.If for acontinuousmap F pointsa, b, c, d, suchthat b = F(a),
c = F(b), d = F(c), and d � a < b < c can be found, then this map hascyclesof any period and an
infinite set of aperiodictrajectories[1401.

In the Sharkovskii theorem any continuousmaps and all cycles regardlessof their stability are
considered.In manycases,however,stablecyclesarethemain interest.It turns out that for families of
smoothmaps,continuoustogetherwith their first derivative,thewindow structuredoesnot dependon
the specificform of the functionf(x, A). As theparameterA changesthecyclesappearin a certainorder
[131,143].

We shall assumethat the functionsf(x, A) aregiven on the interval [—1,1] andhavea maximumat
x = 0. Let theelementsof thecycles S” benumberedin increasingorder: x

1 <x2<~ <x,,. Besidethe
period of the cycle we introducetwo othercharacteristics.Thefirst onedeterminestheorder in which
theelementsof thecycle arevisited. For example,for thecycle S

4 therearetwo possibilities,shownin
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Fig. 4.16

fig. 4.16. The picture in fig. 4.16acorrespondstof(x1) = x3, f(x3) = x2, f(x2) = x4, f(x4) = x1, i.e. 1324.
In the secondcasethe visiting order is: 1234 (fig. 4.16b).

The sign of the elementsof the cycle is also of importance.According to the sign we constructa
sequenceof symbolsR, L andC. We haveR if f(x) >0,C if f(x) = 0 andL if f(x) <0. For example,the
sequenceRLRL meansthatx1 >0,f(x1) <0,f

2(x
1)>0, f

3(x
1) <0. Sucha sequencecanbe constructed

for any initial point x1. Generallyspeaking,it is infinite and called an itinerary of this point. But if
convergenceto a stablecycle occursin {x~}, a certaincombinationof elementsin the itinerary repeats
itself.

Now let us look at table4.1 which containsinformationon the stablecycleswhoseperiod doesnot
exceedsix. The left column shows the cycle period, themiddle one indicatesthe order in which the
points are visited, while the right column gives the itinerary. We can prove that in one-parametric
families of C

1-unimodalmapsthestablecyclesareencounteredin theordershownin the table. Jumps
are impossiblein this list.

For example,if we havefoundthat at A = A
1 thereis a stablecycle S

4 with itineraryRLRL andat A
2

the cycle S
3 with RLR, then necessarilyA

3 andA4, A1 <A3 < A~< A2, can be foundsuchthat at A3 the
cycle 56 is stablewith itineraryRLRRRL and at A4 the cycle S

5 is stablewith itineraryRLRRR. The
order in which theelementsof the cycle arevisited (if they arenumberedin increasingorder)will be
exactlyas indicatedin the secondcolumn.

From the table it follows that all intermediatecycleswill be encounteredbetweentwo different
cycles. They may be encounterednot once but severaltimes. For the map (4.3) the cycles are
encounteredonly onceas A increases.

The sequencein which the cycles appearis called the U (universal) sequence.An algorithm to
determineit and proofs of the correspondingstatementsareconsideredin refs. [143,131].

This result is very important. It proves that there is a deep intrinsic connection betweenthe
characteristicsof one-dimensionalmapsandthe itinerariesof differentpoints. If westudythe itineraries
for different initial datax

1, it will turn out that nearlyall of themcoincideprovidedthereis someorder
(a stablecycle) in the system.And vice versa,if thereis chaosalmostall itinerariesaredifferent. The

Table 4.1

Period Order of points Itinerary

2 12 RR
4 1324 RLRL
6 143526 RLRRRL
5 13425 RLRRR
3 123 RLR
6 135246 RLLRLL
5 12435 RLLRL
6 124536 RLLRRR
4 1234 RLLR
6 123546 RLLLRL
5 12345 RLLLR
6 123456 RLLLLR
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propertiesof sequencesof severalsymbolsarecloselyassociatedwith thepropertiesof one-dimensional
maps. The theory that studies thesepropertiesis calledsymbolic dynamics.It is useful for analysing
different nonlinearmodels.In particular,its methodswere extensivelyusedto obtain table 4.1.

The classificationof stablecyclesis usedto analysemanynonlineardissipativesystems.Let us give
two examples.A theoremprovedby M. Jakobson[145]statesthat thesetof parametersfor which the
iterations of the map x~~1= Ax~(1— x~)determineaperiodictrajectories,hasa positive Lebesgue
measure.In ref. [146]numericalresultsare givenwhich allow us to determinethis measure.Then,by
following from theU-sequencethesuperstablecyclesandthewindowsof periodicitywherethesecycles
arelocated,canbe obtained.Informationabouttheitinerariesof the cyclesprovedvery useful. (Every
elementx,, in symmetric maps with one maximum has two pre-imagesx~_1and x~_1:f(x~_1)=
f(x’~-1) = x~.However,knowing its itinerary we cancomputenot only direct but inverseiterationstoo.
This provedessentialin theconstructionof numericalmethods.)

The total size of all “windows” whosedimensionsexceeds is denotedby h(s). Computationshows
that

p.(s)= 1 — h(s) p.(O) + As~

p.(O) = 0.89795±0.0005, /3 = 0.45±0.04.

It was suggestedthat /3 is universaland doesnot dependon the specific family [146].
In refs. [28,144] resultsof experimentalstudies of the Belousov—Zhabotinskyreactionin a flow

reactorwith mixing are discussed.(Mixing is introducedso that diffusion effects can be ignored.)It
turns out that the maxima in one of the variables which describethe reaction,often generate
one-dimensionalmapsx~~1= f(x~)of the form shownin fig. 4.17. When the control parameter(the
flow velocity of the reagents)increases,theamplitudeof themapmonotonicallyincreases.Transitionto
chaos occurs according to the Feigenbaumscenario,and then the stable cyclespredictedby the
classificationareobserved(see table4.1).

In somecaseseverycycle is encounteredonly once. However,addingFe asan ingredient(even in
concentrationsnotmorethanthousandthsof a percent)changesthe systemdynamics.Somecyclesfrom
thetableareencounterednot in a singlebut in threeintervalsof theparameter[144].Thesequenceof
stablecyclesmay be an indicator to showhow the concentrationsof somereagentsvary.

Fig. 4.17.
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S. Two-dimensionalmapsanddissipativesystems

One-dimensionalmapsdescribingcomplexorderingand stochasticregimesare irreversible. At least
two pre-imagesy= f(a) = f(b) correspondto somevaluesof y. Therefore,we cannotreconstructthe
previousvaluesx0, x_1, x_2,. .. , from a given valueof x1. Most mathematicalmodelsusedin science
havequite different properties.From a setof variablesx(t’) describingthephenomenonunderstudy at
a given time we may predict the future,x(t’ + T), and reconstructthe past,x(t’ — T).

Hamiltonian systemsare invariant under the replacementt—* — t, and the processesthey describe
turn out to be reversible.However, in dissipative systemswe usually can reconstructthe valuesof
x(t’ — T) from x(t’) (at least for a finite interval t < T).

Two-dimensionalmaps,

x~~1=f(x~, y~) y~÷1=g(x~, y~) , (5.1)

are the simplestdynamic systemswhich may have the reversibility property and describecomplex
stochasticprocesses.An analysisof the system(5.1) as well asone-dimensionalmapsallowsus to find
newscenariosfor the transitionto chaos,and to discoversomeinterestingphenomenatypical for many
nonlineardissipativesystems.From the study of suchmapsmathematicaltheoriescould beconstructed
for a direct investigation of differential equationsappearing in various physical problems. These
approachessometimeshelp to find out to what extent the objectsunderstudy are stochastic,and to
obtain somerigorousassertionsabout their properties.

In this chapterwe shall discusssometwo-dimensionalmapswhich haveproved useful for under-
standingchaotic regimesin nonlinearmedia.

5.1. Characteristicsofchaotic regimes.Hyperbolicity

One of the simplest and most important mapsdescribingchaotic regimesis determinedby the
formulae

x~1=(2x~+y~) mod2ir, y~÷1=(x~+y~) mod2ir, (5.2)

or

(x~+i)= [A(xn)] mod2ir.

y~÷1

Since the residuefrom division by 2~entersinto x,~+ 1 andy~+ 1’ it is naturalto considerthis map as
defined on a torus. It is convenientto presentthe torus as a rectanglewhoseoppositesides are
identified. That is, (0,a) and (2w, a), 0 � a �

21T, as well as (b,0) and (b,21T), 0 s b ~ 2ir, are
supposedto be thesamepoint.

Let us seewhat will happenwith a figure givenon the torusafter theuseof themap(5.2) (seefig.
5.1). It canbe seenthat afterthe first iteration,differentpartsof the figure turn out to beexpandedand
shiftedin a complicatedway. We may expect that aftera greatnumberof iterationsthe “black” parts
will be uniformly spreadall over the torus.Note that thedeterminantA of thematrix in (5.2) is equal
to unity, therefore the areaof the figure doesnot changein the courseof the iterations.
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Fig. 5.1

From fig. 5.1 it is seenthat a pre-imageof any set is also situatedon the toruswhile themap(5.2) is
reversible. (We can determineuniquely thepre-imagefrom the points of the image.)For brevity we
shall denoteit by A.

Dependingon the initial point, trajectoriesof themap (5.2) maybe both periodic andaperiodic.A
cycle of the map (5.1) is called a set of points (x1, y1) (xv, y~)such that x~+ = f(x~,y,,),

= g(x~,yr), 1 ~ n ~p — 1, x1 =f(x~,ye), y1 = g(x~,yr).
It is easyto verify that all points (x, y) whosecoordinatesareboth a productof ir and a rational

number,determinethecyclesof themap. It is clear that their numberis countable.Wemay also verify
that all the points whosecoordinatescannotbe presentedin the aboveform, determineaperiodic
trajectories(in this connectionthe cycle A resemblesthe cyclesof the mapx~1= 1 — 21;I).

The matrix Aof themaphaseigenvaluesA12 = (3±V3)/2, A1 > 1> A2, andeigenvectorse1, e2. The
mapA carriesinto itself the family of straight linesparallelto theeigenvectore1. Thedistancebetween
two nearbypoints lying on sucha straight line becomesA1 times aslargeaftereachiteration (fig. 5.2).
These straight lines determine the family of everywhere dense windings of the torus, which is
transformedby the map into itself. Such a family is calledan expandingfoliation of the mapA. The
family of straight lines parallel to thevectore2 determinesa contractingfoliation.

The map(5.2) hasmanyremarkableproperties.In thebeginningof thesixtiestheAnosov theorem
was proved,which statesthat the mapA is structurally stable. (That is, a small changeof thedynamic
systemdoesnot affect the qualitativebehaviourof the system.A detaileddiscussionof the structural
stability may be found in the book [85].)In particular, any map which is sufficiently nearA hasa
countablesetof cyclesandan infinite numberof aperiodictrajectories.Therefore,it may be expected
that suchsystemsas well as their multi-dimensionalanalogswill havecomplex aperiodictrajectories.
Whengeneralizingthe representationson themapA it is naturalto introducethenotionsof U-systems

A52

Fig. 5.2
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(Anosovdiffeomorphisms)and of hyperbolicsystems,which representa large classof mathematical
objects,theergodicpropertiesof which can be studiedin detail [151].

Beforewe discusstheseobjectslet us consider,following refs.[152,153], whatcanbea criterion for
stochasticity in dynamic systems,or by what featureswe can judge the extentof stochasticityof a
solution.

1. In many casesthe typical behaviourof trajectoriesis themain interest.So we shall assumethat
thereis a setof similar systemswhich differ only in initial data.In this casetheinitial dataarechosenin
phasespacewith probability P0, dP0(x)/dx = p(x). (The introduction of P0 may be consideredas a
manifestationof a randommechanismoperatingat the initial time.) The simpleststochasticpropertyis
the existenceof an invariant distribution of probabilities P(x) in the phasespaceof the system.An
invariantdistribution P(x) meansthat for any functionf the integral

1(f) = f f(x(t)) dP(x) (5.3)

is independentof time. Supposethe trajectoryvisits somefractionsof phasespacerarely, andothers
frequently. In orderto calculateaveragetime-independentvaluesof a functionf we should takeinto
accountthe relationbetweenthe probabilitiesof hitting different pointsof phasespace.This gives the
informationnecessaryfor averaging.

The Krylov—Bogolubov theoremprovesthat in the caseof a continuousmap and acompactphase
spacethereis at leastoneinvariantmeasure.Evenin thesimplestcasesmanyinvariantmeasuresmay
exist.For example,in the mapx~1= 1 — 2Ix~Iall distributions of the form

P~~(x—x~), i1,...,r,r ~

where X~are elementsof the cycle 5r, and the distribution P(x) = 1/2 are invariant. However,when
consideringstrangeattractorsin dissipativedynamicsystemswe maydistinguishthemeasureswhich are
most important for studying typical solutionswhich are, in a certainsense,stable.It turnsout that in
somecaseswe may, first, give an arbitrary initial measureP0(x), thenwatchits evolution in time and
verify that

iimj f(x)p(x,t)dx=f f(x)dP(x). (5.4)

In this caseP(x)determinestheprobability with which a typical trajectoryhits differentpointsof phase
space.Sometimesthe existenceof the limit (5.4) can be proved [154, 155].

2. The averagevaluesthat characterizethedynamicsystemmay be calculatedby averagingoverthe
invariantmeasure(the setof trajectories)or over time if only one trajectoryis considered.Whenboth
averagevaluescoincide it is said that the system

~ ~[f(xt)dt=ffxd~x (5.5)

is ergodic. [Thisequalityis fulfilled with probability 1 in the measureP(x).J
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The systemmay havea continuousinvariantmeasureandbe ergodicbut behavein a ratherregular
manner.For example,like the mapof a circle onto itself,

= + a , (5.6)

wherea /2ir is an irrationalnumber.
Here the invariantmeasureis equalto 1/2ir, the mapis ergodic,but thedistancebetweenany two

trajectories does not change(if 0 — = a we have O~— = a for any n). Stronger criteria of
stochasticitymust take into accounthow different trajectoriesbehavewith respectto eachother.

3. A map T acting on sets M and having an invariantmeasureP(x) is called mixing if for any f,
gEL2

iimJ f(T~(x))g(x)d~=J f dPJg dP. (5.7)

The meaningof this definition becomesclearerif we considerthe transformationA of the torus [see
formula (5.2)]. In this casethe invariantmeasurehasa constantdensity.We denotetheseton whichA
actsby S, and two arbitrary domainsby F and G. Then it follows from relation (5.7) that

• mes(A’
2F)flG mesG

lim =
mesF mesS

This meansthat an arbitrarysetwill be uniformly smearedall over the torus aftera sufficiently large
numberof iterations.The “black” parts (see fig. 5.1) turn out to be mixed with thewhite ones.(The
proofmay be foundin ref. [851.)The definition is naturallygeneralizedfor the caseof continuoustime.
From the mixing propertytheergodicpropertyfollows.

It is ratherdifficult to verify relation(5.7) in realsystems.Therefore,in order to establishthe mixing
propertythe self-correlationfunctionsb(t),

b(t) = J f(x(t))f(x(0))d~(x)- J f(x(t)) dP(x)J f(x(0)) dP(x),

areusuallyconsidered.In ergodicsystemsit is convenientto replacethemeasure-averagedvalueby the
time-averagedvaluefor a typical trajectory,

T T

b(t) = lim J f(x(t + r))f(x(r)) dr - (lirn ~ J f(x(r)) dr)2. (5.8)

If a dynamicsystemhasthe mixing property,b(t)—~ 0 for t—~~, which shows that theprocessunder
study is stochastic [152]. In physics it is known as the property of decompositionof temporal
correlations[156]. (Specifically, themap (5.6) doesnot havethe mixing property.)

The law of creasingb(t) and thespectralcharacteristicsof dynamic systemsarecloselyconnected.
We presentb(t) in integralform,
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b(t)=J e~ta(w)dw. (5.9)

The spectrumof ergodicmotion without mixing is discrete,

a(w)=~ak8(w—wk); (5.10)

with mixing it is continuous[156].
4. It is naturalto expectthat manypropertiesof independentstochasticquantitieswill be typical for

dynamic systemswith chaotic behaviour.Oneof them is thecentral limit theorem.We introducethe
quantity

Th/2{~ff(x(t))dt_ff(x)d~(x)~. (5.11)

The quantity in the bracesusuallydecreasesas T -1/2 Thereforeby analogywith probability theoryit
may be expectedthat for T—~the quantity (5.11) must obey a Gaussianprobability distribution.
From a physicalpoint of view, this meansthat the integral J~f(x(t)) dt is near a sum of poorly
dependentterms.

5. Oneof thestrongeststochasticpropertiesis the exponentialdecreaseofcorrelations,

b(t)—~exp(—h
0t)for larget, h~= 1/re. (5.12)

In this casethe function a(w) [seeformula (5.9)] is analytic.The time r0 is often called the time of
correlation decompositionor thecorrelation radius.

For the investigationof the map (5.2) the existenceof contractingand expandingfoliations is
important.In theneighbourhoodof eachtrajectorythereareinfinitely manynearbytrajectories,some
of them tendingto it for t—~~ and theothersfor t—~—~. It turns out that, if all the trajectoriesof a
dynamic systemare thus arranged,we may study the global propertiesof the systemusing the local
propertiesofthe trajectories.Suchan approchis developedin hyperbolictheory.Let us discusssomeof
its results.

The hyperbolicitypropertynaturallygeneralizesthepropertiesof themap(5.2) to multi-dimensional
mapswith morecomplex phasespaces.

Let us considera dynamicsystemwith discretetime in thephasespaceM. (In themap (5.2) it is a
torus.)We denotea trajectoryby {S(x)}, and thespacetangentat a point x by T~(fig. 5.3). (If there

Fig. 5.3
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area point x E M and infinitely many nearbypointsx’ E M, all possiblevectorsx’ — x makeup the
tangentspaceTi.) Accordingto ref. [151]the trajectory{St(x)} is calleduniformlyfully hyperbolic if
the spaceTst(X) can be decomposedinto a direct sum of subspaces,

Ts:(X) = E5(St (x))~ E~’(St(x))

In this casethesesubspacesare T-invariant,

dST Es(Si(x))= Es(Sf~(x)), dST Eu(Si(x))= Eu(St+r(x)),

and thereareconstantnumbers0<A < 1 < p. suchthat for all t and T >0,

IIdSTvII � CAT lull , v E E’(St(x)),

lIdSTvll � ~ , v E E”(St(x)),

y(S’(x)) � const.,

where y(S’(x)) is the anglebetweenthesubspacesE’(St(x)) and E’~(St(x))(fig. 5.4). By IIdSTvII we
meanthe distancebetweenthe trajectory originating at the point S°(x)and an infinitely nearby
trajectoryleavingthepoint S°(x)+ u at time ‘r. In order to determinedSTv,in systemswith continuous
time I = X(x), the equationof variations ti = X

1 (x)v is solvedon the interval0< t < r, and in systems
with discretetimex~~1= f(x~),themapv~1= f~(x~)v~is considered(X~= OX/Ox,f~= Of/Ox,wheref,
X, x are vectors).

A dynamic system is called a U-systemor an Anosovdiffeomorphismif each trajectoryin it is
uniform andcompletelyhyperbolic,while theconstantsC, A and p. = A’ may be chosenthesamefor
all points.

Anosov diffeomorphismslike themap (5.2) arestructurallystable.Therearenot so manyproblems
where they arise in pure form. Oneof them is the problemof motion along geodesictrajectorieson
surfacesof a constantnegativecurvature[151].

Hyperbolic trajectoriesare typical for an interestingclass of dynamic systemscalled billiards. A
billiard is a systemcorrespondingto the inertial motion of a materialpoint within a domainwith a

Fig. 5.4
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piecewisesmoothboundaryandwith elasticreflectionfrom theboundary.If thedomainis boundedby
smoothconcavecurves,and thecurvatureis positive for eachregularpointof theboundary,thebilliard
is calleddispersingandrepresentsananalogof smoothhyperbolicsystems.Billiards appearin problems
of acoustics,radiophysics,and quantummechanics.Their chaoticbehaviourusuallycan be studiedin
detail [157].

It is very interestingthat for the analysisof strangeattractorsin dissipativesystemswe may use
resultsof hyperbolic theory.

An attractorof a dynamicsystemis calledhyperbolic if it consistsentirelyof trajectoriessatisfying
thecondition of uniform completehyperbolicity with thesameconstantsC and A.

Hyperbolicsystemshavegood stochasticproperties.Specifically, themapT is mixing with respectto
the probability distribution P if the attractor satisfies the hyperbolicity conditions (under some
additionalrestrictions [154,155]). In this casefor any initial distribution P0 with density p0, which is
concentratedin thevicinity of the attractorW, the iterations T~P0convergeto P. It is clear,however,
that using the definition of hyperbolicitywe caninvestigatethepropertiesof a rathernarrow classof
dynamic systems.In ref. [152]the conditions for hyperbolicity were given, which can be verified in
manycaseswith the aid of a computer.In the literature they are usually calledthe Sinai criterion. It
may be used to analysemathematicalmodelsof different phenomenafor which chaotic regimesare
typical.

Let us presentthis criterionaccordingto ref. [152]for systemswith discretetime. Along with the
map T at the point x we shall considerits Jacobimatrix d T(x) = Of/Ox [the map T transformsthe
N-dimensional vector x into the N-dimensional vector f(x)]. A vector e is called expanding if
lid T(x)eli > II eli. The collection of all expandingvectorsat agiven point x formsa coneof expanding
vectors.Reversingthe sign of the inequalitywe obtain a definition of a contractingvectoranda coneof
contractingvectors.For N = 2 thesedefinitionswould be sufficient. In the multi-dimensionalcasewe
have to define yet expandingand contracting subspaces,L ~ and L ~, or subspacesconsisting of
expandingandcontractingvectors.

Let us assumenow that for a pairof integerskand I, k+ I = N, anda constantA (1 < A <so) anopen
set ,,~(u)(x) of k-dimensional expanding subspacesL~ and an open set ~‘~(x) of contracting
1-dimensional subspacesL ~(x) are given at each point x in a domain Q containingthe attractor
(TQC Q) (see fig. 5.5). Then

(1) (dT(x)).,~’~~(x)C £~‘(Tx),i.e. for any L~E ~u)(x) the image (dT)L~= L~ E

moreover,any vectoreEL~E ,~(u)(x)obeysthe inequality

IIdT(x)eli � Afle~

(2) (dT(Tx))~~~e~(Tx)C~‘~(x), i.e. for any L~E ~s)(Tx) the image (dT)
tL~= ~ E

moreover,any vectoreE L ~ E ,,~(s)(Tx) obeysthe inequality

li(dTY1(Tx)ell � Allell

Theseconditionsmay be explainedby meansof fig. 5.5 (N = 2).
The first conditionmeansthat theoperatorcarriestheexpandingvectorsinto theconein which there

areexpandingvectorson the next iteration.The secondcondition is obtainedif theconeof expanding
vectorsis replacedby the coneof contractingvectors, and T by T
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It the caseof the two-dimensionalmaps(5.1) theseconditionsaresimplified andmay be explicitly
expressedthrough derivativesof f andg [158],

llOf/OxiI <1, ll(ogIOyY~ll<1;

(~-~i)1~! ~ <(i_ ~-~)(i_ (~))~ (5.13)

Oy Oy Ox Ox

1— (~?~~L>2~1(Og 1(Of\
1 (Og’\~ Og

\oy) Ox V \OyJ \OyJ \Oy! Ox
where llh(x, ~)II=max(XY)EQ lh(x, y)~.

The hyperbolicity criterionwas usedin sucha form, for example,in ref. [158]to investigatethe
Lorenz model and in ref. [159] to study the strangeattractorin a systemof differential equations
connectedwith reaction—diffusion-typeequations.

Invariantsets in hyperbolic systemsmay havea complex structureand unusualproperties.As an
examplewe may consideran invariant set of the map calledthe Smalehorseshoe.

Let T be a mapof a fraction of the planeinto itself, for which the squareS with verticesABCD
transformsinto the curvilinear figure A’B’C’D’ shown in fig. 5.6. For purposesof illustration we
describethis in two stages.First thesquareis contractedin onedirectionandexpandedin theother.At
thesecondstagethestrip obtainedis foldedin theform of a horseshoe.It is clearwhatthestructureof
theset T

2(S) fl S will be. Insteadof eachstrip, two strips with asmaller width will appear.Theyare
shownby theshadedareain fig. 5.7. At thenext iteration,eachof thestrips will be split into two until
thereare 2” strips at the nth step. Hence,the limit set lim~.~

0T”(S) fl S will havea structurethat
repeatsitself on small scales.Such setsare calledCantor sets.Theyare typical for attractorsof many
systemsshowingchaoticbehaviour.Below we shall considerin moredetail examplesof suchsystems,
propertiesof Canorsets and their quantitativecharacteristics.
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:L ~ II V~

Fig. 5.6 Fig. 5.7

We proposea simple symbolic descriptionof iterationsof different pointson thesquare.Wedenote
the two strips appearingat the first stepby V~and 112. Then at thesecondstepthestrips V11 and V12will
appearfrom the first strip, and V~and ~ from the secondstrip, etc. With every point remaining
within the squareS we associatean infinite sequenceof 1 and2 accordingto the following rule. If the
imageof thepoint atthe first stepfalls in thestrip ~1, the first entryin this sequencewill be 1; if it falls
in 1’~it will be 2. Let atthekth stepthepoint fall in the strip ~ .~,,. The imageof this strip consistsof
two parts,left and right. If the (k + 1)th iterationof thepoint falls in the left-handpartthenweput 1 in
the (k + 1)th position in thesequence;if it falls in the right-handpartwe write 2. Eachiterationof the
mapT is equivalentto a shift by anelementto the right. In the limit setlim~~T”(S) fl Sall thepoints
with the samey-coordinateare describedby the same sequenceof 1 and 2. Different sequences
correspondto points with different valuesof y (fig. 5.7). Indeed,thestrip V1, for example,obtainsonly
pointswith ordinate0 � y < 1 /2, the strip V2 thosewith ordinate1/2 <y � 1. Since at eachstep the
map T expandsthe pre-imagealongthey-axis,at a certainstepthe points y’ — y” comeinto different
strips for an arbitrary small initial distancealongthey-axis betweenthesepoints.

This symbolic descriptionof iterationsof themapT provesto be exactly thesameasin the random
processof coin tossing. We consideran infinite seriesof tossings.If headshows up for thenth time
therewill be 1 in thenth position in thesequence,if tail showsup we write 2. Onetossingis equivalent
to a shift by one elementof the sequence.Thus, thereis a one-to-onecorrespondencebetweenthe
y-coordinateof a point in the limit set ~ T”(S) fl S andaninfinite seriesof coin tossings.This is a
very important fact. It testifiesto a deepconnectionbetweendeterministicinvertible dynamicsystems
and traditionalobjectsof probabilitytheory. Suchan approachof associatingdifferent trajectorieswith
symbolic descriptionsis called symbolic dynamicsand hasprovedvery fruitful. Methods of symbolic
dynamicshelpedto investigatechaoticregimesin someinterestingdynamicsystems[152,160, 161]. In
order to constructan invariantsetwe shall act in the following way.

Let us note that S fl T
1(S) consistsof two horizontalstrips, S fl T2(S) of four strips, etc. (fig.

5.8). They may be numberedas beforeby a sequenceof 1 and 2. We considerthe set T~(S)fl Sfl
T(S) (fig. 5.9), it representsfour squares.(After applying T or T1 these squaresare iterated
into themselves.)The set T2(S)fl T1(S)fl S fl T(S)fl T2(S) represents16 squares. The set
fl ~ T”(S) = A is invariant.For a symbolicdescriptionof trajectoriesof pointsin thesetAweshould
considera sequenceof 1 and 2 which is infinite in both directions. It may be proved that thereis a
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one-to-one correspondencebetweenpoints (x, y) EA and the set of in both directions infinite
sequencesof two symbols [160,161]. Iteration of themap leadsto ashift by oneelementto the right.

Supposethat in thesequence{a1}, —so< i <so (aE = 1 or 2) thereis a periodically recurringgroupof
numbers.Watchingthe trajectoryofthepointof thesquarewhich correspondsto thesequence,we may
verify that it belongsto a cycleof themapT. By consideringaperiodicsequences{a1} wecanconstruct
an infinite set of aperiodictrajectoriesof different types.

A similar approachbasedon theconstructionof asymbolic sequencemaybe developedby analysing
the so-calledbaker transformation,which is widely usedas a simple efficient model in the theory of
dynamicsystems[162]and in thermodynamics[2921.A generalizedbakertransformationis determined
by the formula

xn+i=Aaxn, y~~1=y~/a, y~<a,
(5.14)

= ~ + Abxfl , y~~1= (y,, — a)/(1 — a), y~> a -

The effect of this map upon the unit squareis shown in fig. 5.10. The baker transformationhasa
sensitivedependenceon initial conditionsand the mixing property.In ref. [162]different quantitative
characteristicsof the map (5.14) are consideredin detail.

Under thehyperbolicitycondition theexistenceof contractingandexpandingdirectionswhich cross
at a nonzeroangleat eachpoint is important. However,in many dynamicsystemsdescribingchaotic
regimesthis condition is not satisfied.An example is the Hénonmap,

x~÷1=y~+1—ax~, y,,~1=bx~, (5.15)

which is shownin fig. 5.11. In ref. [163]Hénongavenumericalresultsshowingthat the attractorhasa

y__ 21

___ :11.
£ X )-a ix .A.0 ~ x

Fig. 5.10
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Cantorstructurealong one direction. The map (5.15) is a complex object. The results in ref. [164],
wherethestability domainsof thecyclesS” (n � 6) arestudiedin theparameterplane(a, b), testify to
this fact.

An analysisof one-dimensionalmapsshows that in many casesit is easierto study the stochastic
propertiesof mapswith sharpratherthan smoothvertexes.We may expect that the situationwill be
analogousin the two-dimensionalcase.This is indeedso. For the attractorof the map

= 1 — y~— afx~l ~ = bx~

called the Lozi attractor, the existenceof an invariant measurewas proved, the hyperbolicity of the
attractorwasverified and its mixing propertywas demonstratedin a certainrangeof parameters[166,
167].

5.2. Breakdownof invariant tori. TheRuelle—Takensscenario

Before extensive investigationsof stochasticregimes began it was assumedthat turbulence in
hydrodynamicsappearsas a resultof bifurcations.This is now calledthe Hopf—Landauscenario[168,
169].

We shall assumethat the phenomenonis describedby a finite-dimensionaldynamicsystem. (This
seemsnaturalsincewe mayassumethat theeffect of higherspatialharmonicswill notbe strongdue to
viscosity.) Let laminarflow correspondto a singularpoint of this system.We changeone of the flow
parametersA (for example,the Reynoldsnumber).At acertainvalue of A thesingularpoint loses its
stability, a Hopf bifurcationoccursand a limit cycle develops.As a resultof thenext Hopfbifurcation
an invariant torus appears(fig. 5.12). Two independentfrequenciesmay be distinguishedin such a

solution. Indeed, let us go over to the system of coordinatesR, ~, 0 shown in fig. 5.13. In these

.~c:1:::LQ
Fig. 5.12 Fig. 5.13
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variablesthesimplestspiral woundabout the torus is describedby the formulasR= R
0, ~ = ~ t +

0 = 00 + w2t, where R0, ~ 00, ~ areconstants.If the ratio w1 1w2 is irrational thesolution will be
aperiodicand the trajectorywill uniformly cover the torussurface.

The next Hopf bifurcationwill leadto the appearanceof an invariant torusof higherdimension.In
this case the solution may resemblea spiral that winds with frequency w3 about the spiral which
appearedafter thepreviousbifurcation.The trajectorythat appearsaftermanyHopf bifurcationsin the
Hopf—Landauscenariois consideredto be the turbulentregime.

Modern experimental technologypermits us to see whether a multi-frequency regime can be
observedin real systemsand how manydifferent frequenciesexist in this regime [27, 32]. Usually we
cannotobserveflow with more than three independentfrequencies.It is natural to expect that a
different scenariomust exist, in which Hopf bifurcations play an essentialrole (in contrastto the
FeigenbaumandPomeau—Mannevillescenariosdiscussedearlier).

Such a scenario was proposed in 1971 by D. Ruelle and F. Takens [170].Let a system of equations
describe the simplest three-frequency regime q~= w1t, ~2 = w2t, ~ = w3t, where tp~ are the angles in the
correspondingspace,n = 1, 2, 3, and let f(~,)= f(’p~+ 2i~),wheref is anyof the functionsenteringin
theseequations.RuelleandTakensproved that whenan arbitrarysmall changeis introducedinto the
right-handside of the systemof equations,thenthe solution will qualitatively change.Insteadof the
three-frequencyregimea strangeattractorwill appear,and the behaviourof thesolutionwill become
chaotic.The set of such deformationschangingthe type of solutionsprovesto be ratherextensive.
Thus, the scenariomay be as follows: two Hopf bifurcationsand chaosdevelopingafter the third
bifurcation.

The questionhow the chaotic regime arisesfrom the invariant torus hasproved complexand has
been intensively investigated recently [171, 211]. The main object of these investigations are two-
dimensional maps. Many established laws have proved universal, independent of the specific form and
dimensionof the system.In ref. [171]the transitionto chaoswas studiedfor the map

= y, , y~~1= ay~(1 — x~) . (5.16)

It may be written in the form

= ax~~1(1— x~)

It appears as a natural generalization of model (4.2). In the whole range of the parameter a a point on
the (x, y) -plane lies on a smooth closed curve F asn—~ so The samesituationis typical for invarianttori
in dynamic systemswith continuoustime (the curve F acts as the cross section of the torus and the
Poincaréplane).In the caseof a periodicsolutiontherearea finite numberof pointson this curve(fig.
5.14); if the solution is aperiodic, thepoints will cover the whole contour.

In bothcasesthecontouris aninvariant set, and thebehaviourof trajectorieson it (and this means
thebehaviourof trajectoriesin the two-dimensionalmap for n —~ so) is definedby themap of acircle
into itself,

= F(0~), F(0~ +2ir) F(0~)+2ir. (5.17)

Let us consider some properties of the model. The limit
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Fig. 5.14

= ~. F”(0
0)— 0~ (5.18)

is called the windingnumberat a given point 00. Let p(00) = P/Q, where P and Q are integers. Then a
certain point 0 returnsto the initial position afterQ iterations and P rotations about the contour (fig.
5.14). For illustration the points F”(O) and F”~

1(0)are connected by thin lines.
Maps of the type (5.17) appear in connection with the analysis of differential equations on a torus,

which is of interest in some problems of celestial mechanics and in the study of other Hamiltonian
systems. They were investigated by Poincaré (1885) and Denjoy (1932). Specifically, it was shown that
the limit in the definition of the winding number exists and does not depend on the initial point. It is
rational if and only if the map F” hasa fixed point for a certainq.

A circle map with F’(O) > 0, which keeps its orientation, is structurally stable if and only if the
winding numberis rationalandall thecyclesarenondegenerate(i.e., theeigenvalueof thederivativeof
themap F~at the pointsof the cycle of period q is not 1). The structurallystablediffeomorphisms*)
form an open everywhere dense set in the space C2 of all twice differentiable orientation-preserving
maps of a circle. This means, in particular, that near any transformation of this class there is a mapwith
a cycle.

As the simplest transformation of a circle we consider a rotation by a constant angle, eq. (5.6). It
turns out that any orientation-preserving transformation F of class C2 with an irrational winding number
p. is topologically equivalentto a rotation of the circle by an angle 2 irp. [eq.(5.6)]. (Proofs can be found
in ref. [85].)

In spite of the structural stability of circle maps with cycles, the measure of the set of parameter
values for which the winding number p is irrational may be rather large. This is shown by the family of
maps

0~~
1=9~+a+ssin0~,aE[0,2iij, 0�s<1. (5.19)

The division of the parameter plane into regions where p is rational (shaded) and irrational (unshaded)
is schematically shown in fig. 5.15. A “tongue” bounded by a pair of smooth curves emerges from each
point on the a-axis such that a = ~ p/q. (Only some of such “tongues” are shown in the figure.) As q

*) A diffeomorphismis aone-to-onedifferentiablemapwith return mapbeingone-to-oneanddifferentiable.
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increases the tongues grow thinner. Despite the fact that the rational numbers represent a dense set on
the interval, the measure of the set of points (a, e) for which p is rational is small in the region
0 ~ s � s~,0 � a ~ 21T compared with the measure of the entire region. Thus, a map that is randomly
taken from the family (5.19) has an irrational winding number with an overwhelmingprobability.The
same result is valid if, instead of sin 0, any analytic function 0 is considered.

The analysis of such families is closely associatedwith the Kolmogorov—Arnold—Mosertheory,which
considers the breakdown of n-dimensional invariant tori under small perturbations. The results of this
theory played an important role in the analysis of many Hamiltonian systems and in some problems of
statistical physics [156, 172, 173, 291].

Let us note two important facts. First, for each value of the parameter the number p is unique and
independent of the initial point. Second, the properties of the one-parameter family of maps (5.19)
prove to be simpler and more understandable than those of the one-parametric families that correspond
to various curves in the parameter plane (a, s).

As a consequence of these facts, in ref. [171]maps of the form (5.16) are also considered as an
element of the two-parameter family

x~~
1=y~+bx~, y~~1=ay~(1—x~). (5.20)

Suppose the map (5.20) is written in polar coordinates,

~ (5.21)

Let it map the domain B (1 < r <2) onto itself (fig. 5.16), and let arg(r, 0) 0, argF(r, 0 + 2ir) =

2i~+ arg F(r, 0), for all (r, 0) E B. The winding number p(r, 0) is given by the formula©
Fig. 5.16
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p(r, 0) = arg F”(r,O) —0 (5.22)

Using numerical techniques, in ref. [171]boundaries of the regions in the (a, b) -plane are
constructedwherethe cyclesarestablewith a given winding numberPIQ (analogs of the tongues or, as
they arecalled,the resonant“horns” in fig. 5.15). It turnsout that therearepartsof theplanewhere
the cyclesare stablewith different winding numbers. (For different initial data we obtain different
cycles.) Hence, the invariant torus is broken down. In other words, there is no transformationof
coordinateswith which the figure emergingin the Poincaréplanecould bereducedto a circle. (If there
were a contour topologically equivalentto a circle, the winding numberwould be unique.)

To investigateHamiltonian systemsthe criterion of resonanceoverlap is used in many physical
problems[174].It statesthat stochasticitymayarisein a regionwhereat leasttwo “tongues”overlap.A
similar situationis typical for the map (5.16).

First, it is natural to understandin what casesthe winding numberis unique andwhen thereare
severalvalues.Sufficient conditions for this were obtainedin ref. [171].Before discussingtheseresults
we introducesomedefinitions.

Let a compactinvariant setcontainingall thepointszE A = fl,,~F”(B) divide the regioninto two
parts—aninternal,B,, andan externalpartB0 (fig. 5.16). A fixed pointzofthemapF is calleda saddle
if theJacobianmatrix DF(z) hasoneeigenvalueIA1 I <1 and theothereigenvalueIA2 I > 1. The pointsz
of a cycle of period q are calledperiodic saddlepoints if the sameinequalities are satisfiedfor the
eigenvaluesof the matrix ~ Let z be a fixed point of F; thenthe sets

Ws(z,F) = {x: F”(x)—l. z asn—~+so}, W”(z, F) = {x: F”(x)—t~z as n—~_co},

will be called the stableand unstablemanifoldsof the point z, respectively.Note that thesemanifolds
may behavein a different wayfrom integralcurvesof differential equations:theymay intersectwithout
coincidingentirely.

In ref. [171]two theoremsareproved.

Theorem1. Supposethat the map F satisfiesthe following conditions.
(a) Thereexists a periodicsaddlepointy E A with positive eigenvalues.
(b) Ws(y,F~)fl A = {y}, whereq is theperiod of y.

(c) Onebranchof Ws(y,F~)intersectsonly B1, while the otherbranchintersectsonly B0 (fig. 5.16).
Thenp(z) = p(y) for all z E B.

Theorem2. Let y E A be aperiodicpoint of periodq andwinding numberp/q, wherep andq are
relativelyprime. Supposethat W”( y, F~) intersectsW’(F”’( y), F~)transversely(at a nonzeroangle)for
some0<k < q. Thenthereexistsa nondegenerateinterval I containingplq suchthat for everya E I
there is z EA with p(z) = a. Furthermore,thereexist points for which the winding numberis not
defined.

Figure 5.17 shows the saddlesmarked by asterisksand severaliterations of a point x0 near
y’ = F”( y). For the iterationsof suchpoints we may constructthesymbolic dynamics,which allows us
to prove the theorem.
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Fig. 5.17 Fig. 5.18

The definition of a stable and unstable manifold naturally is generalized to the case of a cycle Y of
period q(Yns{y,F(y),...,F(y)},F~(y)=y,Fn(y)~yforO<n<q):

Ws(Y,F) = {x: d(F”(x), Y)—~0asn—* +so},

W”(Y, F) = {x: d(F”(x), Y)—*O as n—~

A point x E B is called homoclinicto Y if

xEWs(Y,F) fl W”(Y, F) - Y.

The conditionsof the secondtheoremimply that thereis a homoclinic point.
In this and many other problems, where the maps arising are invertible,theexistenceof a homoclinic

point proves important. Wemay verify that the existence of onehomoclinicpoint implies that thereare
infinitely many of them. Indeed, due to the invariancy of W*(z, F) and W”(z, F) we have F”(x) E
Ws(z,F) and F”’(x) E W”(z, F) for all k. Hence, they are all homoclinic points.

By assuming that the points x, F(x),. . - , Fm(x) form a cycle we obtain a contradiction to the fact
that F”’(x) E Ws(Z,F), which implies that F”(x) must tend to z ask—t’ so Therefore, from the existence
of one nondegenerate homoclinic point (i.e., a point in which Ws and W” intersect, and are not
tangent) it follows that there is a very complex set called a homoclinicstructure. Due to the infinite
number of intersection points it cannot be drawn; however, some idea of it can be obtained from fig.
5.18.

A homoclinic structure was first discovered by Poincaré when he investigated the classical three-body
problem. The existence of such structures is connected with the appearance of stochastic regimes [156,
161, 173]. In the analysis of maps resulting in these structures, a set appears which is affected by the
map in a way similar to the Smale horseshoe. From this the existence of invariant Cantor sets follows,
and they may be studied using the apparatus of hyperbolic theory. It may be said that the iterations of F
behave as a random sequence of coin tossings. References to original studies dealing with this problem
may be found in refs. [151,175].

Thus, if the transition to chaosoccursaccordingto the Ruelle—Takensscenario,frequencylocking
may takeplaceaftertwo Hopfbifurcationsandaninvariant torus maybegenerated.In this casea cycle
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appears, and the conditions of theorem 1 are usually satisfied. Then a complex reconstruction of the
invariant set occurs, and as a result homoclinic points appear (the conditions of theorem 2 are satisfied).
Hysteresis is observed in the system—for different initial data cycles with different winding numbers
and chaotic regimes develop.

It is interesting to know what happens with the invariant set A when the parameters change and how
it loses its smoothness. These questions were consideredin refs. [151,174, 177]. Possible versions of the
reconstruction of A and the development of homoclinic points are graphically shown in refs. [176,211].

Let us note the difference between the scenario under discussion and those considered earlier. In the
earlier cases, in order to determine the type of attractor it was sufficient to consider iterations of a
randomly taken point (or several points). Here the situation is different and much more complex. When
considering the sequence {x~} we may expect that under a change of parameters the sequence “singular
point—~ cycle—~2-torus--* cycle —* chaos” will be discovered. However, in order to understand the
mechanism of torus breakdown, a mathematical model of the phenomenon should be constructed. Then
we should carefully investigate it: study a two-parameter family of dynamic systems, construct stable
and unstable manifolds, find homoclinic points. As a result, performing numerical experiments appears
to be a rather complex task.

Wediscussed the appearance of chaos as a result of the breakdown of invariant tori. However, in the
two-parameter families of two-dimensional maps other scenarios are also possible when an aperiodic
regime (in this case trajectories with an irrational value of p) is preceded by a sequence of cycles.
Moreover, for this sequence some universal laws valid for different families and invariant tori have been
established [176,178, 179].

The two-dimensional map

(0~÷~~~ 523
r~ I — \ rj — \ br~— (k/21T) sin 2i~0~ . )

with a constant Jacobian equal to b is a convenient model for studying such behaviour. For b = 1 the
mapconserves its area; it is widely used in analysing Hamiltonian systems. In the other limit (b = 0) it
transforms into the one-dimensional map

0,,~=f(0~)= 0~+ ~2— (k/21T)sin 2ir0~. (5.24)

When0 sk< 1, f and f ‘are invertible and analytic. For k = 1, f1 exists; however, it has a singularity
0’~and, hence,is non-differentiableat 0 = 0. If k> 1, f~does not exist.

In this case the winding number is determined by the formula

p(k,Q)=lim!(f”(O)_O).

We choosean irrationalnumber0<~5< 1. It is convenientto choosea numberwhich canbe presented

most simply in the form of a continued fraction. For example, the golden mean is given by

~= 2 =(11111...)= 11
1+ 1+ 1 +~...
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Thenwe constructa sequenceof rational numbersp, = P,IQ, suchthat lim,~p, =

p
1=~1)=1I1, p2=(11)=1

12, p
3=~l11)=

2I3, p.=(111.~1)=F/F,
1,

where the F, aretheFibonaccinumbersdetermined by the relation F,.~= F, + F~_1,F0 = 0, F1 = 1. In

this case

lim P~+i — = _l2

i—,~pi — pi—1

Here I = j.~.Suppose that K is fixed and determinea sequenceof the (1 valuesin themap (5.24) such
that

fQi(O)~.~PforQ=Q~.
This implies that thepoint 0 = 0 in the map belongs to the cycle of period Q, and winding number p,. In

ref. [178]the suggestion was made that there is a unique limit point

limu1~(K)=uI(K), p(K,fl(K))=j~.

Let

= [Q,1(K) — f2~(K)]I[12,(K) —

The computations carried out in ref. [179]show that

lirnô,(K)=—1
2, 0~K<1;

(5.25)

lim6,(K)= —l~us5,K=1, y=2.16443±0.00002.

By analogy with the Feigenbaum theory it is natural to consider the distance between the point 0 = 0

and nearbyelementsof the cycle (modulo 1) with period Q.. It hasthe form

d
1 =fQ~i(O)— p

Let a,(K)= d,1/d1. The computations show that

lima,(K)=—l
1, 0�K<1;

(5.26)
1ima~(K)=—l~’nsa,K=1, x=0.52687±0.00002.

By analogy with the theory of one-dimensional maps we may expect that application of the
renorm-group approach to this system will enable us to find universal functions and relations (analogs of



T.S. Akhromeyevaeta!., Nonstationary dissipativestructuresand diffusion-inducedchaos in nonlinear media 273

the Feigenbaum equation). By these x and y may be found. Such a theory was constructed in refs. [176,
178].

In refs. [176,179] the important question is discussed as to how the experiment should be formulated
and its results processed in order to detect the phenomena predicted by the theory. As an illustration of
such an experimental study we may cite the work of ref. [180],which deals with Rayleigh—B énard
convection in mercury. The parameters are chosen so that the winding numbers of the observed cycles
lieinthevicinityofthegoldenorsilvermean,j~=(\/~—1)/2=(111..~) or,ó=V~—1=(222~”).

The questions connected with the breakdown of invariant tori are now of great interest. Let us
consider a few directions of investigations. One of them is connected with investigations of the
Ruelle—Takens scenario in various mathematical models, for example, in systems with symmetry. In
ref. [181]the map

~ ~

was studied. A complex sequence of cycles and invariant tori was discovered. It turned out that the
values of A~at which cycles of length Q~= 8n —1 appeared,converged to A~as n—~soand
A — A~~— Cn ~. Complex sequences of cycles and invariant tori were discovered in some problems of
radiophysics too [182,183].

The other direction is concerned with an analysis of global properties of maps in which the
Ruelle—Takens scenario is implemented. For example, if we construct p as a function of 11 for the map
(5.24), its behaviour proves to be very complex. Each “resonant horn” (fig. 5.15)with p = P/Q has a
step in the plot. Between every two steps PIQ andP’/Q’ there is a step (P+ P’)I(Q + Q’), and so on
ad infinitum. The plot which appears (and other curves of this type) is usually called a “devil’s
staircase”. It appears that a renorm-group theory [184]may be constructed in order to predict with what
probability a random value of the parameter (1 yields a cycle (or with what probability we may get on
the steps of the devil’s staircase).

Nowstudies are available where the developed ideas have been generalized onto tori of higher
dimensions [185]. In some cases an analysis of two-dimensional maps allows us to predict new
phenomena typical for many nonlinear dissipative systems. Among them are crises of attractors.
Besides internal and boundary crises there exist cyclic crises. These are simultaneous collisions of
several co-existing attractors with boundaries which separate their domains of attraction [186].After the
crisis (A> A*) the points in phase space visit one by one all the attractors that existed for A< A*.
However, the time they spend at each attractor proves to be stochastic.

In a certain range of parameters the map

~ ~ (5.27)

may have three attractors. The attraction domain of each has a complex geometry. In phase space a
“parquet” appears [186].It seems that the “parquet” structure exists down to infinitely small scales.
The boundary of the attraction domain may be smooth for A < A, andbecomesa complicatedjagged
curve repeating itself on small scales [187].They are called metamorphoses in ref. [187],where such
reconstructions are studied. Analogous phenomena may possibly be present in various systems of
differential equationstoo.
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6. Quantitative characteristics of chaos

When studying chaotic regimesin nonlinearmedia a numberof interestingquestionsarise.Let us
assumethat the phenomenonunder investigation is well describedby a map (in one, two or more
dimensions)with chaotic regimes.How can we comparetheory and experimentin this case?Let the
mapbe sensitiveto the initial conditionsand let two nearbytrajectoriesbe quickly diverging.Thenwe
may expect that the disagreementbetweenthe trajectoryof the map and the experimentaldatawill
grow in time. In this case,thenatureof the phenomenaunder investigationratherthanfaults in the
model is the causeof disagreement.

Whenphysicaltheoriesareverified usuallya small numberof measuredvalues(frequencies,lengths,
times, etc.) or quantitiesaveragedover a long time interval are compared.However,thereis a large
classof problemswhere not only specific numerical values at a given time and at a given point or
quantitiesaveragedover long time intervals areof interestbut the dynamicsof the processmust be
studied.For example,such are the problemsassociatedwith forecastsof the behaviourof nonlinear
systems(e.g. theweatherforecast).In this casethemodel efficiency shouldbe judgedby determining
howaccuratelyandover how long a time themodel givesa forecastofthe systembehaviourratherthan
howwell it can calculatevaluesaveragedover long intervals.

In suchproblemswe oftenshould comparenot trajectoriesof two systems(a model andan object)
for the sametimes but somemore complex characteristicsthat determineintrinsic propertiesof the
processes.Usually this requiresthe developmentof new algorithmsfor dataprocessingand extensive
useof computers.

Thereis anotherimportantaspect.Processesin nonlinearmediaaredescribedby infinite-dimension-
al systems;thereforeit is importantto understandhow manyandwhich variablesshouldbe measured,
how often the measurementsshouldbe made,and in which way they should be processed.

In many physical problems there is a single most important scale of measurement.However,
consideringthe Feigenbaumattractor,or a seriesof two-dimensionalmaps,we seequite a different
picture — the appearanceof a complex structurethat repeatsitself on smallerand smallerscales.It is
this picture that is typical for many stochastic regimes. Wemust know how this structure should be
described.

The investigationsundertakenin recentyears,analysingthesequestionshaveled to thediscoveryof
someinterestingphysicaleffects,andnew insight into somephenomenahasbeengainedasa result.Let
us considerthem in more detail.

6.1. Fractals and complexordering

At the end of the last and thebeginning of thepresentcentury examplesof sets with a complex
structurewerevery popularin connectionwith theproblemof the rigorousjustification of mathematical
analysis. They drew the attention of outstanding mathematicians such as Weierstrass, Hermite, Cantor
and Peano.An exampleof a continuous,nowheredifferentiablefunctionconstructedby Weierstrass
hasdeterminedfor many yearsthe direction of a numberof investigationsin the field of functional
analysisand hasled to higherstandardsof rigour of mathematicalarguments.

Oneof the best known sets of such a type was constructedby G. Cantor[189].We takea unit
segment [0,1], divide it into three parts and eliminate the middle [anopen interval (1/3, 2/3)]. Each of
the two remainingsegmentsis divided again into threeequalpartsand themiddleis rejected(fig. 6.1).
We repeatthe procedureinfinitely many times. The residual setC hasmany remarkableproperties.
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Fig. 6.1 Fig. 6.2

This closedset is perfect(i.e. eachpoint C is a limit pointof theset). It is easyto verify (arguingby
reductioadabsurdum)that it doesnotcontaina singleinterval.At thesametime theset C provesto be
uncountable,i.e., thereis no algorithmthat allows us to numberall its points. It haszeromeasure.This
canbe verified by caculatingthe lengthof the rejectedintervals,

p+(1—p)p+(1—p)2p+”~=1—(1—p)~ (~=l/3).

It is interestingthat the residualmeasureis zerofor any 0<p < 1. However,for different valuesof p
thesesets will be quite different, and henceother qualitative characteristicsnot coinciding with the
usualmeasureare needed.

Anotherinterestingobject arising in theanalysisof nonlinearsystemsis connectedwith the Cantor
set and its generalizations.It is a continuousmonotonic function whose derivative is zero almost
everywhere(in the literatureit is oftencalledthe “devil’s staircase”; fig. 6.2). Herealso a third partof
each remaining interval is eliminated in each step. At the first step all the points of the interval
[1/3, 2/3] are given the value1/2, at thesecondstep thevalue 1/4 is given to all thepoints from the
interval [1/9,2/9] and thevalue3/4 to thepoints from [7/9,8/9], etc. The “devil’s staircase”appears
afteran infinite numberof steps.

Along with the setC someother,similar setsarealso calledCantorsets.Someof them mayhavea
positive measuredespitethe fact that they do not containa single interval. We may constructthemin
the following way [189].We takean arbitrarynumbera, 0< a <1. At the first step we removefrom
thesegment[0,1] all the pointsof the openintervalwith length a /2 and centredaboutthe point 1/2.
From the two remaining closedintervals [0,1/2 — a/4] and [1/2+ a/4,1] we removemiddle open
intervals of length a/8. From the four remainingintervals we removethe middle open intervals of
length a/32.After an infinite numberof stepsthemeasureof the removedopenintervalswill be equal
to a(1/2+1/4+1/8+~”)and the measureof the remainingCantorset will be 1—a.

Another remarkableexample showing that the usual topological idea about dimensionsmay
sometimesprove ineffective was proposedby the Italian mathematicianG. Peano in 1890. He
constructeda curve which filled a unit square(the curvemay crosssomepointsof the squareseveral
times). A method to constructthis curve is shownin fig. 6.3. In spiteof the fact that the topological
dimensionof the curve is one, in a certainsenseit is close to a two-dimensionalfigure — the square.

In all theseexamplesthe set proves to be self-similar — it is invariant to variation of scaleand has a
complexinnerstructure(suchobjectsmaybe consideredasan exampleof supercomplexorganization).
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It looks the same at both smaller and larger scales.The invariance is connectedwith a certain
symmetry.Objectswith suchpropertieshavebeencalledfractals [12].

Fractalsmay be constructedusing either simple deterministicrules or probability algorithms. The
obtained sets prove to be self-similar in the statistical sense.They are of interest in many physical
problems. To characterizefractals a large class of so-called fractal dimensions is used.The first
dimension of this kind seems to have been introduced by Hausdorff in 1919. Let the set under
investigation be contained in a p-dimensionalEuclideanspace. We consider its covering by p-
dimensionalspheresof radii e, < e anddetermineld(s) as

ld(s)=inf~e~, (6.1)

where the infimum is takenover all possiblecoveringssuchthat e, < e. Let

ld=limld(s). (6.2)

Wehave1d = 0 for largevaluesof d and 1d = so for small values.Hausdorffshowedthat thereis a critical
valuedH for which the value of ‘d is finite*). It is calledtheHausdorffdimensionof theset.For simple
geometricobjects the Hausdorffdimension coincides with the topological one (for a line segment
dH = 1, for a squaredH = 2, for a cubedH = 3). However,for theCantorsettheHausdorifdimensionis
fractional. When the Cantorset is constructed,2P2 segmentsof length (1/3)” appearat each step;
therefore

lim(1/3)”H”.2”=C, dH=1n2/ln3. (6.3)

[Whenp ~ 1/3 we obtain dH = In 2/ln(2/(1 — p)).]
At the beginningof this century J. Penn suggestedthat fractal setsand nowhere differentiable

functionswould beuseful in manyphysicalproblems,specifically thosedealingwith Brownianmotion.
Nevertheless,until recently suchgeometricalobjectshavenot beenin wide use. The situation has

‘.~Strictly speakingdH = inf {d: 1d =0) = sup{d: la =
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changeddrasticallywith the appearanceof the book by B. Mandelbrot [12],where it is shown that
fractal sets allow us to explain (and, in somecases,predict) experimentalresultsobtainedin various
fields of physics. Generalizationof someearlier knownresults, discussionof adequatemathematical
means,suggestionof newpossibleapplications,andgraphicexamplespresentedin thebook allow usto
form a new view of fractals as a promisingfield of investigationsin science.

An unexpectedexampleof fractals is the coast line of many islands. When the coastlength L is
measureda complexjaggedline is replacedby a broken line which consistsof segmentswith length
largerthan s. It hasbeenprovedthat for GreatBritain thevalue of L dependson e asapowerlaw,
L(e) —S C/ed,whered 1.3, for 10km< e < 1000km, which is a typical featureof a fractal curve. In a
certainrangeof parametersthepowerlaw determinesthecoastlengthof manyotherislands,the length
of somerivers, or the pathlength traversedby a particlein Brownian motion.

Many paradoxesconnectedwith thedistributionof stellarmattermay be explainedif we assumethis
matter to form fractal clusters.Greatpotentialitiesof using fractalsin cosmology,turbulencetheory,
chemicalkinetics, or the physicsof polymershavebeenindicatedin somerecentpublications[12,190].
Fractal structuresknownas percolationclustersarisewhenfluid passesthroughsolid bodies,or in the
growth of certaincrystals[191,192].

At the same time other important progresshas been achieved recently. Some authors have
investigateda mechanismfor the appearanceof such structuresin various physicalproblems,and a
seriesof experimentshavebeencarriedoutwherespatialorderingof this type hasbeenanalysed.The
formation of a complexspatialstructuremay be explainedby meansof rathersimple mechanisms.One
of them is diffusion-limitedaggregation[192].Let us imagineparticlesperformingrandomwanderings;
theparticlesmay settledown on a surface.Oncethey stick to thesurfacethey remainthereandchange
its shape.It is clear that theprobability of runninginto a hill on thesurfaceis higherthanthat ofgetting
into a hole. This is why the hills begin to grow, anda growth instability arises.Startingfrom a certain
size, on eachof thembranchesappearand asa resulta fractal structureforms(fig. 6.4).

Anothermechanismof fractal formation may be due to the combined effect of diffusion and an
electricalfield. It offersan explanationfor theappearanceof a complexstructurein theelectrochemical
sedimentationof zinc. In this casethe total currentgoingto thecathodedeterminestheprobability for
a particle to be absorbed.The lesser the curvatureof the electrodesurface,the higher the field
strength; ions sedimentatequicker andgrowth occurs [193].Thus,nonequilibrium irreversiblegrowth
may lead to the formation of fractals.

It is interestingthat in spiteof the relative simplicity of modelsof fractal growththey predict the
Hausdorff dimension of the arising structures well enough. This is due to the fact that the fractal
dimensionis an averagecharacteristicof a set; it reflectsonly thebasicfeaturesanddoesnot account
for manydetails.

Above we have considered several examples of sets with a fractal (sometimes called Cantor)

Fig. 6.4
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structure. Such sets turn out to arise when one analyses many systems in which stochastic regimes or
complex temporal order occur. In this case the concept of fractal dimension provesvery useful for
distinguishingtheorderparametersandconstructinga hierarchyof simplified models.Letus discussthe
main quantitativecharacteristicsof thesesystems.

6.2. Dimensionsofstrange attractors

According to ref. [162]it is convenientto distinguishtwo large classesof dimensions:metric and
probabilistic. The formercharacterizessets asgeometricobjectswhich aredeterminedby their metric
properties.(In ref. [12]it is calledthe fractal dimension.)The probabilisticdimension(or dimensionof
the natural measure)takesinto accountwith what probability a typical trajectoryof a dynamic system
visits different parts of an attractor.

The above mentioned Hausdorff dimension and the capacityof a set, d~(also called the limit capacity
[194])aremetric dimensions.The capacityis determinedby the value of the limit

d~= lim logN(s)/log(lls), (6.4)

where N(s) denotesthe minimal numberof balls of radius s neededto covertheset in p-dimensional
space. It may be said that thevalue of d~determineshow much informationis neededto specify the
location of the set to accuracys.

Sincethe setof all possiblecoversin thecalculationof dH [see(6.1) and (6.2)] turns out to be wider
than that in the calculationof d~,we have

dC�dH. (6.5)

Consideringtheupperand lower limits in formula(6.4) we mayintroduce,respectively,theupperand
lower capacity[151].

Wemay imagine a situationwhenrarelyvisited pointsmakeanappreciablecontributionto d~or dH
(examplesof simple two-dimensionalmapshavebeenconstructed,whereall happensexactlyin this way
[162]).In this case it is useful to take into consideration how often the point that determines the state of
thedynamicsystemappearsin different partsof the attractor.This probability is given by the natural
measure.

It may be determined in the following way [151,152]. For each ball C containing points of the
attractorandfor eachpoint x of the domainof attractionwe definep.(x, C) asthe fraction of time the
trajectoryoriginating in x spends in C. (Averaging over an infinite interval of time is assumed.) If
almosteverysuchpointx gives thesamevalueof p.(x,C) we designateit by p.(C)andcall p. thenatural
measure of the attractor.

The naturalmeasureallows definingsomeprobabilisticdimensions.Oneof themis the information
dimension,which is given by

d1=ijrnI(s)/log(1/s), (6.6)

where
N(s)

I(s) = inf ~ p, log(1/p,).
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Here P = p.(C,), C is a cube of side s. (Some authors considera coveringwith balls of radii not
exceedinge. They introduce theupperand lower informationdimensionsd1 and~, and taketheupper
and lower limits in formula(6.6) [151].)The quantity d1 is sometimes called theRenyidimension.If all
the cubesare visited with equalprobability, I(s) = log N(s) and d5 = d1 if the probabilitiesare not
equal, I(s)<logN(s) and

d~�d1. (6.7)

We may determineprobabilisticdimensionsby assumingthat only a fraction of the attractorvisited
most frequentlyis covered.For example,the 0-capacityis determinedby the limit [162]

d~(0)= lim log N(s,0)/log(1/s), (6.8)
s—sO

whereN(s,0) is the minimum number of cubes of side e necessary to cover at least a fraction 0 of the
natural measureof the attractor.The quantities

4jp.) = lim urn log N(s,0)/log(1/s),
0—si s—sO

- (6.9)
djp.) = llii~lim log N(s, 0)/log(1/e)

0—si s—’O

arecalled, respectively,the lower andupperLedrappiercapacitiesofthe measurep. [151].
So far all the introduced dimensionshave defined sets as a whole. In somecases,however,it is

convenientto considerthe dimensionin thevicinity of a given point,

d~(x)= urn log p.(B5(x))/log s. (6.10)

Beyondtheabovementionedfractal dimensionstherearemanyothers.Meanwhile,in ref. [162]the
suggestionis madethat for typical attractorsthevalueof different metric dimensionsprovesto be the
same.According to this suggestionthevaluesof all probabilisticdimensionswill also be equal.There
areseveralrigorousstatementsthat establishrelationshipsbetweendifferent dimensions.

Let p. be theprobability measureon the compactmetric spaceX. We assumethat for almostany
point with respectto the measurep.

d~(x)=a (6.11)

(i.e., the measurep. of the setof points, where a is different, is zero). Thenwe may prove [151]that

a. (6.12)

Computationof the above mentioneddimensionsof strangeattractorsis connectedwith serious
difficulties. It requiresan immensememoryor a largenumberof operations.For example,computing
theHausdorffdimensiondirectly cannotbedonepresentlybecauseit requiresminimizationof the sum

s~in all possible covers. To determine the 0-capacity we need special covers where the trajectory
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must spendastrictly determinedportionof time. On theotherhand,to computethe limit enteringthe
definition of the pointwise dimensionwe needa minimal memory,but the trajectoryof the dynamic
systemshouldbeobservedover times T ~ — s~°,where~is the time of returninto thesphereB8(x),
which may be very large even for small p. Computing the capacity and the information dimension
provesmorefeasible. Below we shall considersomealgorithmsfor their computation.

Someauthorsnote the following difficulties arisingin direct computationsof the fractal dimensions.
1. An immensememoryor a large amountof computationare required.
2. The numberof significantdigits in thevalueof d dependson thelengthof thesampleN according

to a logarithmic law.
3. Large samplesarenecessary,N> 1 1mm, p~,wherep, is theprobability of finding a point in the

ith cube(in computationsof metric dimensions).
Let us note the essentialdifference betweenfractals characterizingspatial ordering (numerous

examplesof which are given in the book by B. Mandelbrot)and thesetsarisingin investigationsof
temporalordering,thestrangeattractors.In the first casethe fractalsaredeterminedin a spaceof low
dimension,and their fractionalpart is rather large. It allows consideringsmall samples,and in some
casesavoiding computations.

As a typical exampleof sucha situationwe considerthecalculationof thecapacityof theCantorset
(p = 1/3 in formula(6.3),d5 = ln 2/ln 3 0.6309) [195].We plot log2s (s is the lengthof the sidesof
the cube) along the abscissaand log2N (the number of cubesnecessaryto cover the set) along the
ordinate.If N 5d thepoints in this plot will lie on a straightline, whoseslopedeterminesthevalueof
d~.(The pointsbelongingto theCantorset aregiven by thesequencea1 = 0, a2k~,= a, + 213k+1 where

= 1,. . - , 2k, k = 0, 1, 2,. . - [196].)Figure 6.5 shows log2N(s)versuslog2(s) for samplesof different

eoy2M.
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lengths.It is seenthat the slopeof thestraight line can bedeterminedratheraccuratelyevenfor small
samples.In fact, d~= 0.642±0.036 for N= 300, and d5 = 0.6717 ±0.026 for N 500. IncreasingN
leadsto a growth of the linear part of the curve and a higher accuracyof d~(d~= 0.631±0.006 for
N=200000).

When we study strangeattractorsit turns out that the fractionalpart of a dimensionis usually small.
(This is typical for the Lorenz system and other systems of three ordinary differential equations.)
Thereforethedimensionhasto be determinedratheraccurately.On theotherhand,investigatingthe
processes in nonlinear media or analysing experimental data we often have to consider attractors
embedded in a space of high dimension, which leads to serious difficulties [196].(When d is computed
directly the memory size is proportional to s~’.)

All this requiresthedevelopmentof alternativeapproachesto estimatingfractal dimensions.Two of
them areof most interest.The first one is connectedwith thecalculationof thedynamiccharacteristics
of systemsunderinvestigation(specifically, the Lyapunovexponents)that enableus to estimatethe
dimension[197].The secondapproachintroducesnew fractal dimensionswhich aremore feasible for
numerical analysis,and then a relationshipbetweentheseand the actual fractal dimension can be
established[198].

Weconsider the first approach in more detail. Let p”(x0), .~pt(xo+ E~x)be two nearbytrajectoriesof a
dynamic system,which originate from the pointsx0 and x0 + i~x(fig. 6.6). The Lyapunovexponent
~(x0,w) is

= t—s d(O)—sO ln d(t)/d(0). (6.13)

It may be shown that this definition is equivalent to

x(x0,w) = lim ln Iiy’(w)Ii /11wII~ (6.14)

where y’(w) is the solution of the equationlinearized in the vicinity of the trajectory ~“(x0) (the
so-called equation of variations), w is an arbitrary vector directed from x0 to x0 + z~x.In a p-
dimensionaldynamicsystemtheLyapunovexponentsx(x0,w) have the form of a finite set of values
A1, A2,. . . , A,, (further we shall assumethat A1 � A2 � . . � A,,).

If theattractoris a singularpoint z then x(x, w) aredeterminedby theeigenvaluesof thematrix of
thesystemof equationslinearizedin thevicinity of thepoint z. (Whenall theeigenvaluesarereal the
Lyapunovexponentscoincidewith them, Ak<0, k = 1,. . . , p.) In the caseof a stablelimit cycle
Ak <0, k =2, ... , p.

cL(z)

‘f’(x0)

Fig. 6.6
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The Lyapunovexponentscharacterizethe rate atwhich nearbytrajectoriesdiverge.They arevery
importantcharacteristicsof a dynamicsystem. In many problemstheir values are the same for any
initial x0. The existenceof positive Lyapunovexponentstestifiesthat the systemis sensitiveto initial
conditionsand hasa stochasticbehaviour.We note that in a p-dimensionaldynamic systemwith
continuoustime, all of whosesolutionsare limited, one of the Lyapunovexponentsis zero (if the
attractoris not astablepoint). The sumof all Lyapunovexponentsmustbe negative(otherwisethere
would be no trajectoriestendingto ço(t) when~—~ so, which meansthat ~(t) would not belongto the
attractor).

Someresultsconcerningthe Lyapunovexponentswereobtainedby LyapunovandPerron.However,
theirwide usefor the analysisof nonlinearsystemsbeganafterV. Oseledechasprovedhismultiplicative
ergodictheorem,whichprovidedatheoreticalbasis[199].The following statementis aparticularcaseof
it [153].

Let x~+ = Tx~be a dynamicsystem(herex is a vector) with phasespaceM andinvariantmeasure
p.. Let G(x) be a measurablefunction with valuesin the spaceof squarematricesof orderm (m � 1),
G~”~G(x)” G(T”

1x), andlet max[0,ln IIG(x)Il]EL1. Then
(1) thereexists an invariant setF, p.(F) = 1, such that for all xE F the limit

= lim [(G~0))*G~~)]hi25
exists, and Ax is a symmetric nonnegativedefinite matrix of order m; the positive root is taken,

* denotesthe conjugatematrix;

(2) if exp A~1~<expA~2~< . . <exp Af,’~(x EF) is the orderedset of different eigenvaluesof the
matrix A~and E~,~ . - ~ is the correspondingset of eigensubspaces,while m~ dim E~,
1 � r � s, the functionsx—~s(x), x—* ~ x—* ni~(1 � r � s) are measurableand invariant under T;

(3) if xE F, then for any vectoru E ~m, u ~ 0, the limit

lim ln lIG~uII,

exists and is equalto one of the ~ 1 � r ~ s, wherer is uniquelydeterminedfrom

uEE~E~2~~~ ugE~E~2~-.

where ~ denotesthe direct sum.
(By measurablefunctionswe meanfunctionswhich arefinite almosteverywhereandrepresentable

as the limit of a convergingsequenceof real boundedfunctions.)
Hence, in order to calculatethe Lyapunovexponentsof the map T we should take its Jacobian

J(x) = ÔT(x) /dx, calculate the matrix J~= [J(x,,)~J(x~_
1)... J(x~)],which will play the part of the

matrix G~”~in the theoremstatedabove.Thenwetakethe conjugatematrix (G~”
1)*, considerthe limit

= lim~~[(G~n))*G~n)]l’2n,and determinethe eigenvaluesof the matrix A
1.

In many casesit is necessaryto calculate the Lyapunov exponents in dynamic systemswith
continuoustime. For this classof problems,fastandefficient algorithmshavebeenconstructed[197].

If weact in accordancewith thedefinition of the Lyapunovexponentsandtaketwo differentnearby
trajectories,the distancebetweenthemwill increasedue to divergenceandthe doublelimit in (6.13)
cannotbe determined.



T.S.Akhromeyevaeta!., Nonstationarydissipativestructuresand diffusion-inducedchaosin nonlinear media 283

Therefore,besidesthe initial equation

~=f(x) (6.15)

it is convenientto solve theproblemof variations

w=A(x)w, (6.16)

whereA is the matrix of the linearizedsystem,A = af/ax. It guaranteesthat all the time we shall be
consideringtrajectoriesinfinitely closeto the integralcurveunderinvestigation.If x is a p-dimensional
vectorwe shall solvesimultaneouslyp systems of equationsof variationssuchthat their initial vectors
w1,... , wi,, arelinearly independent.Moving alongthe trajectorywe shall computesimultaneouslythe
volumes of parallelepipedsformed by the vectors w1(t) [for w1(t) it will simply be the length of the
segment IIwi(t)lI]; w1(t), w2(t); - . . ; w1(t), w2(t), - . - ,

lirn ~ lnVolk[wi(t),. . - , Wk(t)] = A1 + ... + Ak, (6.17)

where k �p, Vol” is the k-dimensionalvolume. (We recall that A1 � A2 �.. . � A,,.)
Two problemsarisewhenthis procedureis implemented.The first one is connectedwith thefactthat

lw1 (t) II —~ so ast—~ so for almostall initial vectorsbecauseof thepositive exponent.The secondproblem
is due to a variationin thedirectionof thevectorswk(t). When ~ so these vectors tend to w1 (t), where
w1 (t) corresponds to the maximal Lyapunov exponent. As a consequence the angles between the
vectorsWk (t) tend to zero, which doesnot permit calculatingthecorrespondingk-dimensionalvolume
with sufficient accuracy(fig. 6.7).

In orderto overcomethe first difficulty we may renonnalizethe vectorswk(t) over an interval i~T
(for example,makethemunitary),calculatethe valueof A1,.. ., A~in this interval and thenaverage
these values along the entire trajectory. If we orthogonalize the vectors wk(t) simultaneouslywith
renonnalizingtheseconddifficulty will also be overcome.

This algorithm, proposedin ref. [197],is nowwidely usedwhendynamicsystemsareanalysed.Since
the amountof computation in this methodis directly proportionalto the dimensionof the dynamic
system, in some cases we can manage computing about 20 Lyapunov exponents. In ref. [201]a routine
is presented where this algorithm is implemented for the simplest cases.

The Lyapunov exponentsdetermine the dynamic propertiesof the system,such as the above
discussed fractal dimensions — the geometricparametersof the setsunderinvestigation.Therefore,it is

Fig. 6.7
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interestingto find the relationshipsbetweenthosequantities.Oneof theserelationshipswasestablished
by Kaplan and Yorke [200].

For its justification the following argumentsare used [162].Let a two-dimensionalmap have
Lyapunov exponents A1 >0, A2 <0 or Lyapunovnumbersx1 > 1 > x2 (the Lyapunov number x = exp A)
for almostall points. We areinterestedto know thecapacityof thestrangeattractorin this case.We
shall cover the attractor with N(s)squaresof side s and integrate the map q times. Nowwe consider an
image of one of the squares (fig. 6.8). It may be expected [seeformula (6.17)] that the area of the figure
obtainedafterq iterationswill be equalto (x1 x2 )1l~2 Wenow take smaller squares of side x s that
have an area x 2q~2 In orderto covertheimageof theoriginal squareafterq iterations, about (x1

1x
2)‘

small squares will be required. If we assume that most original squares covering the attractor behave in
sucha way the total numberof the squaresin the finer grainingmay be estimatedas

N(~~s)(x1/x2Y’N(s).

By assuming a power law dependence N(s) k(1 /5)dc we have

k(1Ix~s)dck(~1/~2)~(l/~)dc.

After going to the limit we obtain an expressionfor the capacity,

d5 = 1 — A,1A2. (6.18)

Generalizingtheseargumentsto themapsof higherdimensionresults in the formula

A +A +---+A
dL = k + 1 2 k , (6.19)

/Lk+1

where k is the largest value for which A1 + A2 + . .. + A,,~>0. If A1 <0 we define dL = 0. The quantity
dL, which is the lower estimateof the fractal dimension,is usually called the Lyapunovdimension.

The Lyapunovexponentsareaveragedcharacteristicsof a dynamicsystem,thereforethemost often
visited domainsof attractorsmust make the largestcontributionsto A1,..., A,,. So in ref. [162]the
suggestion was made that for a typical attractor the probabilistic dimensions d~are equal to dL. The
numericalresultsobtainedfor a seriesof attractorsconfirm this relation.

The Lyapunovexponentsallow us to estimateanotherimportantcharacteristicof dynamicsystems—

the topologicalentropy.The topological entropy h(T) ofthemap Tmay be determined in the following

U I i ~ _______

Fig. 6.8
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way [151].We fix n >0 and introducethe distancep~(x,y) in thephasespaceX as

p~(x,y) = max p(T’(x), T’(y)).
O~iSn

For s>0 we denote the minimum number of spheres of radius s in the metric p~, which are
necessaryto coverX, by N(n, T, s). Then

log N(n, T, s) - - log N(n, T, s)
h(T)=limhm =limhm

s—sOn—s n s—sO n—s fl

The quantity h(T) for mapsof the classC’: M—s’M, may be estimated as

k(x)

h(T) ~ q1(x)A~(x)dp.(x), (6.20)

where A,(x) � . . � Ak(x)� 0 � Ak+i(x) � . . � A,,(x), p = dim M, are the Lyapunovexponentsat the
point x, andq,(x) aretheir multiplicities. For smoothermapswith nonzeroexponentsinequality (6.20)
transformsinto an equality[151].Therelationbecomesevensimpler if A,(x) happensto bethesamefor
almostall pointsx. Then h(T) is simply equal to the sum of the positive Lyapunov exponents.

In ref. [289] it was shown that for sufficiently smooth two-dimensional maps with A1 > 0> A2 the
suggestion that dL coincides with other probabilistic dimensions proves to be true. It was shown that in
this case

lim log p.(B(x,s)) = a = h (T)(-~-- — .-~--), (6.21)
s—sO loge “ A1 A2

andhence,the 0-dimension,theupperand lower Ledrappierdimensions,cL( p.) andQL( p.), aswell as
the upperand lower capacitiescoincide and are equalto eachother. Since the topological entropy
hM(T) here is A1, a is determinedby the Kaplan—Yorkeformula.

Calculationof theLyapunovexponentsandestimatesofthe fractaldimensionwith theiruseproveto
be very efficient if the finite-dimensionaldynamicsystemof equationsthatdescribetheprocessunder
investigationand the equationsof variationsareknown. However,in manycases(in particular,when
experimentaldata are analysed)this is not so, and other approachesare needed.Oneof them is
connectedwith the introduction of new probabilistic dimensions.Grassbergerand Procaccia[198]
introducedtheso-calledcorrelation exponent,which provedvery useful for studyingstochasticregimes
in nonlinearmedia. In orderto calculatethis exponentwe haveto find thedistancesp(x1,x1) between
all points of the set in p-dimensionalspace,and thendeterminethe function C(s)= limN~(1/N

2) x
{the numberof distancesp(x,, x

1) less than s}.
The correlationexponentis

ii = urn [lnC(s)/Ins]. (6.22)

In most casesthecorrelationexponentis closeto the informationdimensionbut its calculation is much
simpler. It requiresa small memoryandaboutN

2p operations.(Below we shall discussalgorithmsthat
allow us to decreasethe numberof operations.)Calculating i.’ with a given accuracyrequiresmuch
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smallersamplesthantheotherdimensionsdiscussedabove.This canbeillustratedin thefollowing way.
To calculatethecapacityand theinformation dimensionN coordinatesof attractorpointsareprocessed
statistically,and to calculatev, N2 distancesaretreated,which enhancestheaccuracyfor a fixed length
of sample.In the caseswhenincreasingthelengthof thesamplein thecourseof a physicalornumerical
experimentrequirestoo much effort the aboveconsiderationsprove very important.

In ref. [198]argumentsare given to show that

v�d
1�d~. (6.23)

For a certainclassof fractalstheserelationscan be justified rigorously, andequationsto determinev,
d,, d5 can be obtained[202].Thesefractalshavethe following hierarchicalstructure.

The zerothlevel. On thecoarsestscalethereare N points in the volume l~.
The first level. On a finer scalethesepointsget into one of thecubesof side (lOIs,)d (thereareM1

suchcubes),oneof side (l0/s2)” (M2 cubes),.. . , (l0Is~(thereareMr cubes),seefig. 6.9. The fraction
of points getting into the cubeof side

1O’~kis denotedby Pk

The (n + 1 )st level. Eachof thecells thatexistedat thenth level is replacedby theconfigurationof
cells that existedat the first level (fig. 6.9).

The simplestexampleof suchfractals is the Cantorset. From the abovegiven definition it follows
that

M~p~= 1. (6.24)

It may be shown that the capacity and the correlation exponentmay be determinedfrom the
relations

~i M~s~”= 1, ~ M~p~s= 1. (6.25)

In ref. [202]an infinite numberof various generalizeddimensionswere introduced.They may be
determined by using one of the formulas

1 - logE~p~
D= lirn

q q—1 s—sO logs

________________ ,ii. ~)/* ‘/16 ‘1/6

Fig. 6.9
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or

1 - logfdp.(x)p.(B5(x))~
D = lirn , (6.26)

q—1 s-sO logs

whereP1 1S theprobability of hitting the ith cubeof side s by a point of theset, thesummationis over
all thecubes,p.(B5(x)) is theprobabilityof hitting thesphereof radiusswith its centre at the point x (it
appearsalso in the definition of thepointwisedimension).The valuesof D~aredefinedfor any q >0,
and Dq > Dq~if q < q’. However,in somecasesthey coincidewith the knowndimensions[202],

limDq=dc, limDq=dj, Dq=2=P~
q—’O

Thus, calculating the Lyapunov dimension, the correlation exponent, and other dimensions we
determinethequantitativecharacteristicsof a large classof fractals.And herethe importantquestion
arises:Is the temporaldynamicsobservedin realphysicalsystemsdeterminedby a strangeattractorof
low dimension, stochasticfluctuations or is it a nonstationarytransientprocess?Let us discussthis.

6.3. Determiningthe fractal dimensionfrom measurements

Supposewe havea device to measureone of the characteristicsof a systemunderinvestigationat
different times at intervals i~t. The measurementsyield a boundedsequence{a,}, 0 ~ i <so.

It is interestingto know whether,on the basis of this sequence,we are dealing with a complex
deterministicprocesswhich is describedby a smoothdifferential equationx = X(x) in thephasespace
1W’ or with a stochasticfunction. The answerwasobtainedby F. Takens[194,203].

Accordingto ref. [203]themeasurementsmaybe describedby a smoothdeterministicmodelif there
are a smoothdifferential equationi = X(x) on the phasespace1W’ with a smoothfunction X and a
smoothfunction f: 1W’ —~ I~suchthat

(i) for each observedsequenceA = {a,}, 0 ~ i <so, of experimentaldatathereis a point ~ E 1W’
suchthat a, = f[i(i st)], wherei(t) is the solutionof thedifferential equationx = X(x) with x(0) =

(ii) for eachinitial point x0 E 1W’, the solutionx(t), x(0)= x0, for t >0 is bounded.
If for somesequenceA = {a,} wecanconstructthefunctionsf, X and the integralcurve~0(t) we say

that the resultsof theaboveexperimentmaybeexplainedwith theaid of a smoothdeterministicmodel.
In order to formulate the criterion of Takenswe introduce several definitions. Let A = {a,},

0 � i <so, be a bounded sequence of real numbers (experimental data). For e>0 and n E ~, where1~is
the setof integers,we definethe set~ C ~Jasfollows: 0 E ~ for i >0, i E ~ if andonly if for all
0~j<i withjE ~ we have

max{Ia1 — a11, 1a1+1 — a1+1I,. . . Ia1+~— a1+~I}� s.

The numberof elementsof ~ is denotedby C~5(A).Since the sequenceA is bounded, C~5(A)is
finite.

In ref. [203]the following statementswere formulated.The experimentalresultsdeterminedby the
sequence A may be explainedby a smoothdeterministicmodel if the expression

InC (A)
(6.27)n — ln s
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is uniformly bounded as (n — ln s)—*cc. But if this limit is unboundedthe sequenceA cannotbe
explainedby a smoothdeterministicmodel.

In the criterion of Takensthe infinite sequenceA is employed. In fact, experimentgives a finite
numberof measurements,and we haveto dealwith the function Cn,sm(A),where m is the sample
length, ratherthan with C~5(A).The quantity ln s is also bounded(for example,by the finite accuracy
of measurements);theboundednessof the limit canbe checkedonly for a finite numbern. However,if
by usinga computerwe canverify that, asm andn increase while s decreases,the limits do not, in fact,
change, it may be assumedthat the physical system is well describedby a finite-dimensional
deterministicmodel. (A somewhatdifferent algorithm is usually used; it will be consideredlater on.)

It is importantthat theexistenceof deterministicchaosin anonlinearmediumcanbe establishedby
measuringany of thedynamicvariablesat one point for almostany intervalAt in which measurements
are made.This conclusionis basedon the resultby Takens,who showedthat, for a compactmanifold
M of dimension p, a diffeomorphism g: M—~M and a smoothfunction f: M—* R, the map ~I~gf(X) =

(f(x), f(g(x)),. . - , f(g
2m(x))) is generally an embedding.(That is, the operatorCP is a continuous,

one-to-onemap of M into ~2m+1 m> p.)
As g in the system of equations~ = X(x) we may considerthe operatorof displacementalong a

trajectoryin the time At; asthe functionf we maytakeone of thedynamicvariables4~(t)(i.e. oneof
the coordinatesof the vector x). In this case the map ~Pis determinedby the values ~(sAt),
s = 0, 1,. . . , 2m. Hence, the fractal dimension of the limit set can be determinedby a discrete
collection ~(t

1) (where t, —* so): ~. . . , c,,. With thesedata we can construct a collection of m-
dimensional vectors

(6.28)

for m = 1, 2 etc. anddeterminethedimension(usuallythecorrelationexponentv) of the set { ~ } in the
rn-dimensionalphasespace. If the dimension of the attractorM is finite and equalto p it may be
expectedthat for m> 2p + 1 thevaluesobtainedwill be independentof m.

This meansthat thereis a collection of 2p + 1 orderparameters,to which all thedegreesof freedom
of the system “adjust”. Such a behaviour is typical for many mathematicalmodels studied by
synergetics[3,13], including non-linearsystemswith an infinite numberof degreesof freedom,which
aredescribedby partial differential equations.Setsthatconsistof vectorsof the form (6.28) areusually
called sets in i-spacewhile their constructionis called the reconstructionof theattractor.

Analysing sets in i-spaceallows us to proposea numberof algorithmsfor computing the fractal
dimension, which are more efficient than those developedin ref. [198],where the attractorsare
investigatedin the usualphasespace(X-space).

As is mentionedabove, using the standardalgorithm of computing the correlationexponent v
requiresstoring N vectors (Np numbers)and ~—N

2poperationsto computethe function C(s) [see
formula (6.22)].

Meanwhile,computationof thecorrelationintegral C(s) for the set in i-spacerequiresstorageof N
words and ~—N2+ Np operations.In fact,

Pl 1/2
2 2

P ~ (~k+i.~m+i) ,

i=0

k1,...,N—p—1, m=1,...,N—p—1, m—k=const., (6.29)

P2(~k+1’~,n+1) = P2(~k’~m) + (~k+p — ~m+p)2 — (~k— ~m)~
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Formula (6.29) determinesthe so-called“sliding sum” algorithm [195]and enablesus to compute
P2(~k+1’~m+1) by adding to and subtractingfrom P2(~k,~m) one termregardlessof thedimensionof
thespace.

More efficient algorithmsmay be proposedfor computingcapacityand information entropy.They
requirea storageof less than 4N and a numberof operationsless than N2 [195].The idea of such
algorithmsis connectedwith theorderingof C-vectorsby the first component,due to which the number
of requiredcomparisonscan be decreased.

Besides, preliminary ordering allows us to construct algorithms for computing the correlation
exponentin which the numberof operationsdoesnot dependon the samplelength N. Theymay be
very helpful when the samplesare large,N> (1

0/SmjaY’, where l~ is the characteristiclength of the
attractor,d is thedimensionof theattractor,and

5mifl is the minimal distancebetweenvectorsi,,, and~
thatcan be measuredwith confidence.

In recent years algorithms have been developedto estimatethe Lyapunovexponentsfrom ex-
perimental dataa, [201,204]. To do this, an arbitraryp-dimensionalvector ~k = (ak, - . . , ak+Pl) is
constructedand nearby C-vectors~ ~, are searchedfor,

IlY,IHIICk~m,II<5, 1~i~s.

Then imagesof thesevectors,~m
1+r’~ . ‘ Cm,+r, areconsideredin r steps.

Dueto thecloseproximity ofthesevectorswe may considerthat thereis a linear operatorB,1(r) such
that

z~= B,1(r)y1 , us ~m~+r — ~k+r 1 :Sj, i~p

This operatortransformsthespherewith thevectorsy, into an ellipsoid containingthevectorsz,. The
semi-axesof this ellipsoid are determinedby the eigenvaluesof the linearizedproblem.

After this, calculatingthe Lyapunov exponentsis reducedto determiningthe operatorB and its
eigenvalueswith a setof vectorsy, andz. Then newvectors~k arechosen,and thesameprocedureis
repeated.Finally, the eigenvaluesobtainedare averagedover the trajectoryof the dynamic system.

It is not difficult to find the maximumLyapunovexponent.Algorithms that give a set of positive
exponentsarediscussedin ref. [201];thereonemay also find a bibliographyof previouspublications.In
ref. [204]a techniqueis proposedfor constructingand analysingthe operatorB to find then the
completesetof Lyapunovexponents.From the testsgiven in ref. [243]it follows that theapproachmay
be useful for a restrictedclassof problems.

6.4. Experimentalstudy offew-modechaos

Analysis of the generalpropertiesof dynamicsystemsenabledus to suggestthat complexstochastic
regimesin non-linearmedia are usuallyassociatedwith complexinteractionsof severalvariables(i.e.
with a strangeattractorof low dimension) ratherthan with the excitation of an infinite number of
harmonicsas wasearliersupposed[76,170]. It should be stressedthat this suggestionis of a general
natureand refers not only to the transition from laminar to turbulent flows in hydrodynamicsbut to
stochasticregimesin oscillatory reactions,to some systemsin nonlinearoptics, and to many other
phenomenaas well. Algorithms developedlately for analysingfractals, and strangeattractorsallow
experimentaltestsof this suggestion.
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Oneof thesystemswherethe transitionfrom theorderedlaminarregime to chaoticturbulencecan
be observedis Taylor—Couetteflow. This is fluid flow betweentwo coaxialcylindersof length L, whose
radii are, respectively,a and b. The externalcylinder rotateswith an angularvelocity 112 and the
internalonewith 11k. The Reynoldsnumberin this problemis givenby theformulaRe= 121a(b —

for 112 = 0 (v is the kinetic viscosity).
Whenthe Reynoldsnumbersaresmall the fluid flow is laminarandmay be describedby anexplicit

expression.Then, asthe rotationalspeed1l~increases dissipative structures(so-calledTaylor vortices)
emerge.Increasing11~further, the Taylor vortices lose their stability, and the fluid motion becomes
periodic (an analogof the limit cycle). At even largerReynoldsnumbersa two-frequencyregime
appears(similar to the invarianttorus),and thenthemotion becomesturbulent.Thus, the transitionto
chaos observedin the experimentat certain values of 11~,a, b, L, t.’ occurs according to the
Ruelle—Takensscenario[205].

In order to analysethis flow an effective experimentaltechniqueinvolving laser Doppler spec-
trometrywasproposed.By measuringtheDopplershift of the laserbeampropagatingthroughthefluid
we may measureone of the velocity componentsat a given point. Successivemeasurementsof this
componentyield theseta1,. . - , a~.In ref. [27]morethan32000pointswerestatisticallyprocessed.By
consideringthevariable a(t) we may distinguishtheaveragetime T over which this variabletakesthe
samevaluec~(da/ dt> 0). In dynamicsystemsit is theaveragetime of returnto thePoincaréplane.In
theexperimenta time intervalof about300T(300orbits) waschosento coverapproximately100 points
along the orbit (At — 10

2T). From thesedatathe correlationexponentand the positive Lyapunov
exponentswerecomputed,and the topologicalentropywasindependentlycalculated.With thesevalues
thedimensionof the attractorin the systemunderinvestigationwasthenestimated.It turnedout that
as the Reynoldsnumbergrew (Re> Re~)the dimension of the attractorincreased;however, in the
intervalRe

5~Re~ 1.3 Re~it did not exceed5.4.
Thus, it was shownwith confidencethat in this infinite-dimensionalsystemfew-mode chaosexists.

The suggestionthat thereexistsa strangeattractorof low dimensionwhich describesthis flow, proved
valid. This importantexperimentalresult testifiesthat suchphenomenamay be described,in principle,
by a relatively smallnumberof ordinarydifferential equations.Therearesimilar relationshipsfor fluid
flow betweenrotating spheres[206].Such a system is interestingin terms of atmosphericphysics
problems.

Anotherexampleof a transitionfrom dissipativestructuresto turbulentregimesis Rayleigh—Bénard
convectionin a fluid layer heatedfrom below [207].The correspondingexperimentincluded 15 000
measurementsmadeover intervals At (TIAt -= 2—10) and the correlationexponentwas determined.
First, thedimensionp of the C-vectorswasgiven and thecorrelationexponentwascalculated.Thenthe
valueof p increaseduntil ii stoppedchanging.Note that someauthorsdid not performcomputationsfor
all N

2 distancesbut for the distancesfrom n
1 points to the remainingpoints of the set (in ref. [207]

= 100, in ref. [208]n1 = 15). This approachdoes not have a sufficiently rigorous justification;
however,it is widely usedin physicalexperimentsbecauseit manageswith muchsmaller amountsof
computation.Experimentalstudiesof the Rayleigh—Bénardinstability showedthat in manyconvective
flows theturbulentregimewasdefinedby a strangeattractorof low dimension(2.5 S v S 6). Increasing
theReynoldsnumberand passingto the systemswhere other complicatedfactorsneededto be taken
into accountusually led to a growth in thedimension[207].

In theabovementionedworks the fluid motion wasconsideredin a boundedvolume.Therefore,it is
naturalto expectthat due to viscositythemotionwill be dampedon small scales,and theattractorwill
prove to be finite dimensional. In view of this, it is of particular interest to study experimentally
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stochasticflows where the fluid motionoccursin an unboundeddomain. As examplesthemotion of a
periodically excitedisothermal jet [209]and“submergedspray” type flow were considered.In these
studies thecorrelationexponentswere computedand the behaviourof the systemdependingon the
spatial coordinatewasexamined.It turnedout that in thesecasesthemotion was also determinedby a
strangeattractorof low dimension.

The results of physical and numerical experimentswhere few-modechaoshas beeninvestigated
allow a new insight into thephenomenonof turbulence,anda newunderstandingof the role playedby
fractalsandstrangeattractorsin science.At thesametime, manymethodologicalproblemsarestill to
be solved. Test computationsshow that with bounded samplingsthe ratio zXt/T is an important
parameter.The choice of the linear portion of the curve of ln C versusIn s is also of importance.
Solving thesequestionsof technique would allow enhancedaccuraciesin determiningthe fractal
dimension,help in studyingfew-modechaos,andextendthe classof systemswheresucheffectsmight
be discovered.

7. Transition to chaosanddifferential equations

In the last centurymathematicalmodelswere constructedwith main attentionpaid to Hamiltonian
systemstypical of celestialmechanicsproblems.However,in the thirties of this centurya largeclassof
problemsappearedin connectionwith investigationsof dissipativesystems.Their appearancewasdue
to the rapid developmentof radiophysics and the theoryof oscillations.The systemof two ordinary
differential equationsthat dependon a parameter,

dX/dt= P(X, Y, A), dY/dt= Q(X, Y,A), (7.1)

proved to be an efficient model which could explainmany phenomenaobserved.
The classof nonlinearfunctionsP andQ maybe very extensive;however,it is natural to usesuchP

and Q for simulating real systems that the solution would not change qualitatively under small
perturbationsof thesefunctions. It is thesewe should considerin the first place. The mathematical
formulationof suchrepresentationswasgiven by A.L. Andronovand L.S. Pontryagin,leadingto the
conceptof crudenessor structuralstability of a system[86].

This concept is common for many sectionsof mathematics,and it may be explainedby a simple
exampleof a family of functionsthat dependon one parameter,

F(x,s)=0. (7.2)

For illustration we considertwo different functions (fig. 7.la,b). It is easyto seethat the numberof
zeroesof the first functionwill not changeundersmall deformationsof the curve. In the secondcase
things aredifferent. The equationF(x) = 0 hastwo solutions,F(x) + s = 0 hasonesolution(fig. 7.ic),
and F(x) — s = 0 threesolutions, howeversmall we choosethe positive number s. It is natural ta
considerthe system describedby (7.2) with the function of fig. 7. lb as noncrude.The two other
functionsF describecrudesystems.Crude casesare sometimescalled the casesof a generalposition.

Consideringa specificmodel we may always assumethat it is crude. But if we are interestedin a
whole family of models dependingon a parameterA, noncrudesituations will sometimesbe en-
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a .b

Fig. 7.1

counteredtoo. Forexample,when theparameters changeswe transferfrom onecrude system(seefig.
7.la) to another(see fig. 7.lc) through a noncrudesystem(seefig. 7.lb).

The notion of crudenesscanbe clarified. It is naturalto requirethat differentialequationscloseto
the one given be reducedto it asa resultof a changeof variable. In sucha definition, however,the
derivativeon the right-handside at the singularpoint provesto be invariant. Therefore,the systems
I = ax andx = (a + s)xcannotbe consideredclose. In order to avoid this a more generaldefinition
basedon topologicalrepresentationsis introduced.It requiresthat a continuousone-to-onecorrespond-
enceshouldexist betweenthe phasecurvesof the first and the secondsystem[85,175].

We can give examplesof crudedynamic systemson two-dimensionalsurfaces.Among them are
equationswhoseattractoris a singularpoint if an eigenvalueof the linearizedequationsat this point is
not zero. For example,such is thestablefocus(seefig. 7.2a)or thenode (fig. 7.2b).If theeigenvalueis
zero a small changein the parameteraltersthe numberof points or their stability.

The Poincarémapof the limit cycle in crudesystemshasno eigenvaluewhoseabsolutevalueis equal
to unity. Noncrudesystemsarethoseof the form of (7.1) in which thereare homoclinic (fig. 7.3a) or
heteroclinic(fig. 7.3b) trajectories.

It was proved that eqs. (7.1) determinestructure-stablesystemsif they have a finite numberof
nondegeneratesingularpoints and cyclesand have no homoclinic and heteroclinictrajectories.

It hasbeenprovedthat structurallystablesystemsof the form of (7.1) form an open,everywhere
denseset in the spaceof all suchsystems[85].

This important result agreeswith the intuitive idea that in the spaceof parameterscrudesystems
must exist as close as desiredto noncrudeones. By consideringcrude systemsin detail we may
understandall thebasic typesof qualitativebehaviourof the models(7.1).

The question arises: Can analogousresults be obtained for systems of higher dimension? In
generalizing the crudenessconditions an important class of crude multi-dimensional systems(the
Morse—Smalesystems)wasintroduced.In the equationsthat determinethem all the solutionstendto

Y Y

Fig. 7.2 Fig. 7.3
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periodictrajectoriesor singularpointsfor both ~ so and t—+ —soSTherearea finite numberof periodic
trajectoriesand fixed points, all of them hyperbolic, their stable and unstablemanifoldsintersecting
only transversally(at a nonzeroangle). (A point is called hyperbolic when the real parts of all
eigenvaluesA. of the linearizedsystemof equationsaredifferent from zero.A cycle is calledhyperbolic
if its Poincarémap doesnot haveA, with IA~I= 1.)

Fundamentalresultsdealing with the propertiesof dynamicsystemsin the multi-dimensionalcase
were obtainedby S. Smale. Theyarediscussedin detail in the reviews [175,213].

It hasturnedout that not all crudesystemsare Morse—Smalesystems.For example,U-systemsare
structurallystablebut haveaninfinite numberofclosedtrajectories.(Simple examplesof U-systemsare
given in chapter5.) Besides,Smaleconstructedan exampleof a dynamicsystemin thevicinity ofwhich
thereare no crudesystems.

Sucha behaviouris due to theexistenceof chaoticregimesand theappearanceof complexinvariant
sets(suchasin the Smalehorseshoe).

Theseresultsshowthat theproblemof a completetopologicalclassificationof differential equations
of ratherhigh dimensioncannotbe solved.

However, studying chaotic regimesin dynamic systemswith continuoustime appearsto be very
interesting.The analysisprovesrathercomplexandrequiresextensivenumericalexperiments.This is
why the investigatedsystemswith chaotic behaviourare not greatin number.Nevertheless,some
interestingphenomenahavebeendiscovered,newapproachesandmethodsof investigationdeveloped,
and important conceptsapplicableto many modelscreated.Let us considersomeof them.

7.1. TheLorenzsystem.Homoclinic explosion

The Lorenz systemis a systemof ordinary differential equationswhich appearsto havearoused
muchinterestin recentyears.The methodsof thequalitativetheoryof ordinarydifferential equations,
topology,hyperbolic theoryand othersectionsof mathematicshavebeenwidely usedfor its analysis.
Dueto this approachesand ideasuseful for studyingstrangeattractorsin otherdynamicsystemshave
beenextended.An extensivebibliographyof works dealingwith theLorenzsystemmay befoundin the
book [137]and the review [214].

The systemwas proposedas a simplified model for describingBénardconvection in a fluid layer
heatedfrom below. In this problemthe fluid motion dependson two dimensionlessparameters.The
first parameteris the Rayleigh number

R”agd3AT/VK,

wherea is the volume expansioncoefficient of the fluid, g is the free-fall acceleration,d is the fluid
layer thickness,AT is the temperaturedifferencebetweenthe lower andupperlayersof the fluid, ii is
theviscosity, and K is the heatconductivity coefficient. The secondparameteris thePrandtlnumber,

Pr= p/K.

The equationsdescribingthe fluid motion haveanequilibrium solutionwhenthe fluid is atrest, and
its temperaturevarieslinearly with depth.RayleighdiscoveredthatwhenR> R

5 = 27ir
4/4the solution

is unstableandconvectiondevelops.
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In thesimplestcase,using theGalerkinmethodwecanobtain a systemof threeordinarydifferential
equations [76],

X=—o-X+uY, Y=—XZ+rX—Y, ZXY—bZ, (7.3)

wherer = R 1R
5, b = 8 / 3. The attractorson the line a- = 10 were investigatedin most detail.

The system(7.3) is dissipative.Thevolume V of thesmall domainof phasespacewhereeachpoint
movesaccordingto (7.3) variesby the law

oX oY ôz
V=I1V, ~ (7.4)

It is invariant underthe transformationX—* — X, Y—* — Y, Z —* Z.
When r < 1 thecoordinateorigin is globally attracting:X—* 0, Y—*0, Z—*0. Thereis no convection.
For r = 1 the linearized problem that determinesthe stability of the point (0, 0, 0) has a zero

eigenvalue.Bifurcationoccurs, andas a resultthe point (0,0, 0) loses its stability and two symmetric
equilibrium statesappear,

X=±~b(r—1), y__±s/b~(r_1),Z=r—1.

An exampleof sucha bifurcation is shown in fig. 3.6a. As r increasesa pair of complex-conjugate
eigenvaluesof the stableequilibrium statesappears.

When r> 1 the origin of coordinatesis a saddlewhich hastwo stable directionsand oneunstable
direction. Trajectoriesentering it near zero belong to a certain surface— the stablemanifold. Two
symmetrictrajectories— the unstablemanifolds of zero— comeout of it. Then they spiral about the
stablepoints (fig. 7.4a).

As the parameterr increasesthe turns of the spirals become larger and larger, and when
r = r’ 13.926 a pair of trajectories(calledhomoclinic) appears.The pointsmove alongthem tending
towardsthe origin for both t—*so and ~—* —so (fig. 7.4b).

The appearanceof suchtrajectoriesprovesto be very important.In order to determinehow their
appearancechangesthe dynamicsof thesystemit is convenientto considera small box nearzero and
two tubesround theunstablemanifoldsof zero.

Accordingto ref. [137]wemay explainwhathappenswith theaid of severaldiagrams.We considera
small rectangleABCD on the top faceof thebox. PointsA andD belongto thestablemanifold of the
origin, and thetrajectoriescrossingAD tendto it when ~ so Hence,theintegralcurvesgoing through
ABCD will crossthe side faceof the box within the triangle MNP (figs. 7.5, 7.6).

a~[)b~9

Fig. 7.4 Fig. 7.5
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Fig. 7.6

Thereareno singularpointson the trajectorygoing alongthe tubefrom the side to the top face of
the box. Therefore the triangle MNP will not be “strongly deformed”. After the first return of the
trajectoriesonto theplaneof the top facethe image of the rectangleABCD is the triangleRB’C’ (fig.
7.6), where R is the point of intersectionof the right-handunstablemanifold with this plane. Since
thereis a homoclinic trajectoryat r = r’, R hits exactly the line AD (fig. 7.6b). The imagesof the
rectanglesABCD andADEF, which changedependingon theparameterr, areshownin fig. 7.6. The
Lorenzsystemdeterminesa two-dimensionalmap of the top face of the box into itself.

When r> r’ thereis an extensionalongthehorizontaldirectionand compressionalongthevertical
direction. Due to this behaviourthe conceptsof hyperbolic theory could be usedto investigatethe
Lorenzmodel [158,214]. Sincethe rectanglesstretchand fold in a certainwaywe mayexpectthat this
two-dimensionalmap will behavelike the Smale horseshoeand generatecomplex invariant sets for
r> r’.

In fact, wechoosefour small symmetricsquares1, 2, 3, 4 in the rectangleFBCE andseehow they
will intersecttheir images~fr(1), ~i(2), çli(3) and i/i(4). A schematicview is shown in fig. 7.7a. We
excludefrom our considerationsall thepointswhoseiterationsdo not get into thesesquares.Thenthe
trajectoryof eachremainingpoint may be describedby thesequenceof four symbols 1, 2, 3, 4. The
rules for combining thesesymbolsso that they shouldcorrespondto the trajectoryof somepoint may
be presentedin the schematicform shownin fig. 7.7b.

It is clear that here, as in the Smale horseshoe,an infinite set of periodic trajectoriesand an
uncountableinfinity of various aperiodictrajectoriesmay be constructed.This phenomenonoccurring
immediately after the appearanceof a homoclinic trajectorywas calledthe homoclinicexplosion.

Homoclinic explosionsin othersystemswith symmetrymay differ from that discussedabove(they
canbe imaginedif before theexplosionthe triangleC’B’R doesnot get into ABCD but into ADEF).
In dynamicsystemsa complexsequenceof homoclinic explosionsmay occur [137].
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Fig. 7.7
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The phenomenatypical for the Lorenzmodel, for r> r’, areintrinsic to manynonlinearequations.
In fact, the behaviourof trajectoriesin a small box aroundthe origin agreeswith the behaviourof
solutionsof the systemlinearizedaboutzero (which is determinedby the eigenvaluesandeigenvectors
of the matrix obtained). This important circumstancecan be used to analysethe solutions near
homoclinic trajectories[215,216]. In order that thepicturebe qualitatively like theone in theLorenz
systemat thefirst homoclinic explosionit is sufficient that the threeordinarydifferential equationshave
the samesymmetry and theeigenvaluesof the matrix of the linearizedsystemof equationsnearthe
origin be realand satisfy the inequalities— A2> A, > — A3, where A3 is theeigenvaluecorrespondingto
theeigenvectorlying on the symmetryaxis [137].

The invariantsetswhich appeararenotattractorsfor r = r’ asin the Smalehorseshoecase.In fact, it
is seenfrom fig. 7.6 that the rectangleABCD doesnot transforminto itself — aftereachiterationsome
trajectoriesleave it. However, there is a value of r” for which the trianglesC’B’R and E’F’L are
entirely within ABCD. For r = r” a strangeattractoremerges.

If r—* r” (r < r”) metastablechaosis observed.Nearly all the trajectoriesfrom ABCD behavein a
complexaperiodicway but thentend towardsone of the stablepoints.

For r = r” the singular points lose their stability due to an inverse Hopf bifurcation, and the
asymptoticbehaviourof almost all trajectoriesis determinedby thestrangeattractor.In this regionof
parametersit is often calledthestandardLorenzattractor.

The existenceof homoclinic trajectoriesprovesto be importantnot only for analysisof theLorenz
model and othersystemswith symmetrybut for the study of a large classof otherequations.

L.P. Shil’nikov [216]considereddynamic systemsof the form

I=px—wy+P(x,y,z), ~=wx+py+Q(x,y,z), i=Az+R(x,y,z), (7.5)

where P, Q, R are functions that are equalto zero togetherwith their first derivativesat the point
(0,0, 0). It was assumedthat the singularpoint at the origin was a saddlefocusp <0, A>0 and also
A> —p (seefig. 7.8). If oneofthe trajectoriesI~startingfrom thesaddlefocusreturnsto it as~—* so we
mayprovethat in any vicinity of F0 therearean infinite numberof periodictrajectories.This statement
is called theShil’nikov theorem.

Moreover, the two-dimensionalmapsgeneratedby theseequationshavecomplexinvariantsets. A
bibliographyof works dealing with an analysisof variousphysicalphenomenathat lead to eqs. (7.5)
may be foundin thebook [161].

7.2. Complicationof attractors in the dynamicsystem(3.15)

Let us seehow thesolutionsbecomecomplicatedwith varying theparametersof a dynamicsystem.

Accordingto refs.[103,108, 159, 217] weconsiderthe systemof equations(3.15). Unlike the Lorenz

Fig. 7.8
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system,it is not invariantundera changeof sign of thevariables.We may expectthat its behaviourwill
be simpler andmore typical.

From the first two equationsit follows that

2~+ ~ = 2(2k + q) — (2~+ )2 — 2/2 — 2k2~— 4~(1+ cos0) ~ 2(2~+ ~j) — (2~+ )2

From the last inequality it follows that 2~+ ~ � z, where z(t) is the solution of the equation

i=2z—z2, z(0)=2~(0)+~(0)�0.

Sincez(t) is boundedand ~� 0, ~� 0, the functions ~(t) or ‘q(t) arealso bounded.
An important characteristicof the dynamic systemis the quantity 11 which determinesthe rateof

change of a small volume moving along the trajectories, V= (1V. This parameterdescribesthe
dissipative propertiesof the systemand shows how quickly its solutionsconvergeto the attractor.In
this case
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Fig. 7.9. Patternsof singularpointsfor different valuesof c,. Thesolid line marksstablesingularpoints,thedashedline unstablepoints.The axis
p, = 0 is unstable.
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t9~ Oi~ 00

(7.6)

Whenk <V~,in phasespacea regionappearswhere11 >0. No stablepointsandto stablelimit cycles
canlie in this region. However,the attractorswhich we shall considerbelow areentirelyoutsidethis
region. -

The simplest solutionsof eqs. (3.15) may be obtainedby putting ~= 0, i~= 0. Oneof them is the
invariantstraight line

~‘rr0, ij=0, 0=2c,k2t+const.,

aswell asthe singularpoints or invariant straight lines
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~:=1, ii=0.

The invariantstraight line 0 = 0(t) exists if the inequality

c~k4+2c
1c2k

2—1>0 (7.7)

is fulfilled [217].A pair of singularpoints ~= 1, ~ = 0 (the saddleand the stablenode) ariseson the

curve c~k4+ 2c
1c2k

2— 1 = 0. The node losesits stability on the line
(c~+1)k4+2k2(1+c

1c2)=0. (7.8)

Anotherfamily ofparticularsolutionsmaybeobtainedby assuming~= 0.
By assuming~, ~, 0 to beequalto zerowe mayobtain theequationthat determinesthecoordinates

Ca’~’4.2 C2=-6.O
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Fig. 7.10(b)
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of singularpoints(~,i~,0). After changesof variablesandalgebraictransformationsit is reducedto the
fourth-orderequation [103,108]

y4+by2+cy+d=0. (7.9)

The coefficientsb, c, d dependon c,, c
2, k in a rathercomplex way. Insteadof using the explicit

expressionsit is convenientto solveeq. (7.9) numerically.Figure7.9 gives agraphicillustration of the
occurrenceof equilibrium states.We decreasetheparameterc2 for fixed c,. The changeof ~0 = 1/2 for
all the singularpoints ~>0, ~>0 and ~= 1, r~= 0 obtainedin calculationsis shown in the figure for
variousvaluesof c,. The valuesof theparameterc2 for which thenumberof singularpointsand their
stability changeare denotedby A, B,, B2, B3, C.

First thereis only one singularstablepoint ~= 1, i~= 0 in the system.At point A a bifurcationof
“the stability exchange”type,asin fig. 3.6b, occurs.To the left of point A only onesolution is shownin
fig. 7.9, since thesecondsolution has~j <0 and correspondsto complexvaluesof p1.

A pair of equilibrium statesappearsat points ~and B3 anddisappearsatpoint B2. Wesawthis type
of bifurcation whenconsideringthebendingof an asymmetricbeam(fig. 3.4).

At point C a bifurcation of the origin of the limit cycle occurs, and due to this a periodicsolution
appearsin thesystemof equations(3.15). Hereweencounterthesamesimple bifurcationsin different
combinations.

From fig. 7.9 it is seenthat there are two stablesingular points simultaneouslyhere and there.
Dependingon the initial data~(0), ~(0), 0(0) the solution tendstowardsone of them. There are
regionswithout stablepoints, and the attractorin the systemmust be different.

We fix theparameterc1 = 3 and seewhat will happenwith the solutionas c2 decreases(fig. 7.10).
First, thereis a stablesingularpoint (c2 = —3.10), thenthe limit cycle (c2 = —3.15)appears.Thecycles
in thesystemof equations(3.15) may be different. It is convenientto distinguishthemby thenumber
of revolutionsn which they performarounda centralregion. From formulae(3.15) it is seenthat if the
functions~and ij periodicallyvary with period T, thencos0, sin 0 and 0 will havethesameperiod. In
this time the phase0 increasesby 2lTm (m =0, ±1,±2,...): 0(t+ T) — 0(t)=2rrm. In the simplest
case(rn = 0) the cyclescorrespondto closedcurvesin ~, ~, 0 space(fig. 7.lla). If m >0 the functions
~(t), i7(t), 0(t) determinespirals (fig. 7.llb). The cycle describedby m andn will be denotedby S~,.

At the time of the Hopf bifurcationthe limit cycle S~appears,and astheparameterc2 decreasesit
goesoverinto S - With decreasingc2 theamplitudeof thestablecycleS~grows. As the transitionpoint
c~is approachedthe cycle comescloser to the saddles~ = 1, ~ = 0 (fig. 7.10). After the transition,
c2 < c~, the cycle movesaway from them. At c2 = c~ the cycle goesacrosstwo singular points. It is
natural to expect that in this case T(c2)—*soas c2—* c~.

Thentheperiod-doublingbifurcationsS~,—* S~,aswell asthe transitions~ ~ + occur. Lateron
chaoticregimesarise (fig. 7.10, c2 = —4.5). As c2 decreasestheattractorof thesystembecomessimpler.
Here inverseperiod-doublingbifurcationsmay occur [217,218].

As wasshownin ref. [218],for k= 1 thesystemof equations(3.15) is well describedby families of
one-dimensionalmaps in a certainrangeof parameters.An exampleof sucha family will be given
below. It is an interestingand profoundfact. It speaksin favour of many simplified models.

Combining numericaland analyticalmethodsallows us to obtain a chart of attractorswhich shows
the type of solution of the systemof equations(3.15) for different valuesof c1 and c2 (fig. 7.12). The
parameterk is everywhereassumedto be equalto unity.

In a large region of parametersabove the line ABC the stablesingularpoint is ~ = 1, i~= 0. It
adjoinsto a region with other singularpointswhoseappearancewasnoted above. In manycases,for
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Fig. 7.11

~—* so theasymptoticbehaviourof the systemofequations(3.15) is determinedby a simple cycleS1 or a
doublecycle S2. The stability regionsof more complex cycles and the regionswith as many as two
attractorsarenarrowandnot shownin fig. 7.12. The chartof attractorsgivesa classificationofsolutions
of thesystemof equations(3.15) for k= 1 by theirbehaviourfor ~ so The pictureobtainedis rather
simple.

if 2 .6 F 8 /6’ ftc,

-6~

-8

-/6’

~ØJf~2~1.f1W1UILi1F~F
Fig. 7.12. Typesof attractorsfor thesystemof equations(3.15) fork = 1; 1: solution ~= 1, ~= 0; 2: singularpointwith e >0, ~ >0;3: simplecycle
5’; 4: cycleS2 5: morecomplexsolutions;6: theline wherethetransitionS~—*5~occurs;QNPis theHopf bifurcationline. Thepictureis obtained
by numericalsolutionof eqs.(3.15). A steph, = 1.0 is takenmc,andh

2 = 0.5 in c2.Betweenthedomainsthestepwasdecreasedto 0.1. Initial data
in the problemwith parameters{c,, c2 — h2} below the line ABC wasthepoint belongingto theattractorof the systemof equations(3.15) for
values of {c,, c2}. Computationsbeganat c2 = 0.
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7.3. Strangeattractor in the dynamicsystem(3.15)

We considerone aperiodicsolution of thesystemof equations(3.15) in detail. For this exampleit is
convenient to see how the investigation methodsdiscussedabove may be used to study strange
attractorsof specificordinarydifferential equations.

At the presenttime thenumberof strangeattractorsstudiedin detail is not very large.Therefore,
the ideasaboutsystemswhere dynamicchaosis possiblemay proveuseful for constructingmodelsof
variousphysicalphenomena.

In the further discussionwe shall pay attention mainly to the attractorof eqs.(3.15) with c, = 7,
c2 = —6, k = 1. Its projectionon the(~,~)-planeis shown in fig. 7.13. It is entirelyin the regionwhere
the systemis dissipative.It is seenthat the trajectorymay comeinto thevicinity of saddles~= 1, i~= 0
and hence,it may stay therefor a long time. The meantime T of one revolution about the central
regionis approximatelyequalto 1.63,and themeanvalueof(2 is —4.189.Hence,thephasevolume will
decreaseby a factor900 per revolution.

We considersuccessiveintersectionsof the trajectorywith theplane0 = const. Since ~, i~,0 depend
only on cos0 andsin 0 (0 is a cyclic coordinate)it is necessaryto considerthe intersectionswith all the
planes0 = const.+ 2lTn, n = 0, ±1,±2 The intersectionof theattractorwith theplane0 = 2irn is
thesimplest. Now we shall discusssomeof its properties.

The systemof equations(3.15) uniquely determinesthemap of this planeinto itself (the Poincaré
map),

~=f(~m)’ ~ (7.10)

Here~ andm arethecoordinatesof thepoint ofthe first intersectionof the trajectorywith initial data
{ ~ m~0} with theplane0 = 0 (0 = 2‘irn). We shall consideronly the intersectionsfor which 0 >0. In
the(~,i~)-planewe may distinguisha regionwhich iteratesinto itself underthemap(7.10).It contains
theattractor.

- _~\

0~5 O~6

Fig. 7.13
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To investigatethePoincarémapit is naturalto go overto newcoordinates,oneof which, x, is close
to thestretchingdirection, while the other,y, is orthogonalto it,

x= [3(~—0.45)— 7(~— 0.38)]/V~, y = [7(~—0.46)+
3(’q — 0.38)]/\/3~.

The regionABCD that iteratesinto itself and its imageA’B’C’D’ areshownin thenewcoordinates
in fig. 7.14. (We notethat figs. 7.14 arestronglystretchedalongy.) In thesecoordinatestheimageof a
rectangleis a complexcurvilinear figure that consistsof two parts.The regionAPQD is mappedinto
the lower part. The correspondingtrajectoriesget a phaseincrementA0 = +21T per revolution. The
upperpart of the curvilinear figure is the image of BPQC. For the trajectoriesoriginating herethe
phaseincrementis zero. The segmentPQ is entirely mappedonto the point R. We notean analogy
betweenthis map and the Smalehorseshoe.

The functionsf andg that determinethe Poincarémap in the new coordinatesx, y,

x
1=f(x0,y0), y1=g(x0,y0), (7.11)

areshownin fig. 7.15. Thesefunctionsarecontinuousbut their derivativeshavea discontinuityon the
line P0. On this line the value of f is equal to the x-coordinateof the point R (fig. 7.14); the
y-coordinateof this point determinesthevalueof g on the line P0. The partial derivativesoff andg
increaseinfinitely in thevicinity of the line P0.

The sectionof the attractorcorrespondingto achaotic regimemusthaveacomplexinnerstructure.
The calculationscarriedout for severalmodelsallowedus to revealthis structure.This canalsobe done
for thesystemunderinvestigation.
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Let us turn to fig. 7.16. Here,thepointsof intersectionof theplane0 = 0 with oneof the trajectories
are shownon different scales.An enlargedview of the rectanglemarkedin fig. 7.16a is given in fig.
7.16b. In its turn the rectanglemarkedin fig. 7.16b is presentedon anenlargedscalein fig. 7.16c. The
sectionof theattractorin theupperfigure consistsof two lines. By the 500-fold increaseof resolution
each line splits into two. (Note that the distancebetweenlines is very small and does not exceed
4 x 10~.)We may expectthat this processoccursalso on smallercharacteristicdistances.That is, the
attractoralongone of the directionshasa Cantorstructure.

Figure 7.17 showsx~÷1versusx~.On the scaleof the figure thepoints arelocatedon a continuous
uniquecurve F. We note that IdF/dxj > 1 everywhereexcept for one portion on the left end of the
segment.The one-dimensionalmap x~+ 1 = F(x3) may be consideredas a simplified model for the
problem(3.15). For its analysismanyresultsobtainedin the theoryof mapsof an interval into itself
may be used.

Figure 7.13 showsthat theprojectionsof different turnsof the trajectoryonto the (~,~)-planeare
qualitatively the same.However, observingtheir variations in (~,~,0)-spacewe can distinguishtwo
different typesof turns. In onetype thephasechangesby

21T whenthe trajectoryreturnsto theplane
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0 = 2~n,n = 0, ±1,±2,...;in the otherit doesnot change.In the one-dimensionalmap (fig. 7.17)
the first type correspondsto the left arm of thecurve, thesecondtype to the right arm. If the time of
eachrevolutionwereboundedfrom abovethe functionsfandg in themap(7.11) would be continuous
and differentiable,and thephaseincrementL~0could not suffera discontinuity. In this casethis is not
so. Wemaysuggestthat this is due to theeffect of a certainsingularpoint of thedynamicsystem(3.15)
in whosevicinity the time of revolution may increaseinfinitely.

An analysisof the behaviour of the trajectoriesin the vicinity of singular points allows us to
understandthe specific featuresof one- and two-dimensionalmaps arising in this problem. An
importantpropertyof thesystem(3.15) is that theplane~= 0 is aninvariantmanifold: if ~(O)= 0 then
~(t) =0 too. In this planethereare two singularpoints A and B with ~2 + ~ 0. By consideringthe
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dynamic system linearized in the vicinities of thesepoints we may determine eigenvaluesand
eigenvectorsof thearisingmatrix. From theanalysisit follows that thepointsA andB aresaddles,each
havingone unstabledirection. The line ~= 1, ~= 0, 0 = 0(t) that connectsthesepoints is an integral
curveof the system(3.15) for all valuesof the parameters.The approximatepositionsof thesingular
pointsA and B as well asthe eigenvectorsof the correspondingmatrix are shown in fig. 7.18. The
eigenvectorsarenumberedso that A, <A2 < A3,A~< A~< A~.ThesurfaceM is a stabletwo-dimensional

I, ~ ft

Fig. 7.18
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manifold of thepoint A. The straightline ~= 1, ~= 0 is anunstablemanifold ofthepointA. Theplane
= 0 is astablemanifold of B. The unstablemanifold of B intersectstheplane0 = 2ir at thepoint R.
Following fig. 7.18we may presenttheintegralcurveoriginatingnearthesurfaceM (aboveit) in the

following way. At first thepoint on the trajectorynearM movestowardsthepoint A and furtheralong
the line ~= 1, i~= 0 towardsthe saddleB. Then it movesalong thearc BR and intersectstheplane
0 = 2ir at a point 0 in the vicinity of thepoint R. This is curveI in fig. 7.18. Note that the trajectory
cannotgo out from B downwardinto the region i~<0 becausethenit would haveto intersecttheplane

= 0, which consistsentirelyof integralcurves.
Now let the trajectorystartbelow thesurfaceM (curveII in fig. 7.18). In this casethepoint moves

over M but nearA it turnsleft. It comesto the saddleB’ and thengets onto theplane0 = 0 alongthe
curveB‘R’. In the first casethe phasechangedby 2 IT, in thesecondcaseit did not change.The phase
incrementon thenext turn dependson themutualpositionsofthemanifoldM and thepoints0 and0’.

The arc B ‘R’ is obtainedfrom BR by a shift in 0 of 2 IT. Therefore,points R andR’ havethe same
coordinates~and ~. The pointsQ and0’ lying in their vicinities arealso closein ~and‘q. This explains
the continuousform off andg in themap (7.11).

The surfaceM intersectstheplane 0 = 0 alonga line TS. An image of thewhole line is thepoint R
(or R’). Formally thePoincarémapis not definedon TS becausethe trajectoriesgo acrosstwo singular
points,which requiresan infinite time. However,its definitioncanbe completedby continuity. The line
P0 in fig. 7.14 is a portion of thearc TS.

From thequalitativepicture describedit is clear that asthe initial point in theplane0 = 2 irn comes
closerto the line IS the time of revolutionwill grow infinitely. Analysingthe trajectoriescloseto the
singular points enablesus to determinethe function T(e), where T is the time of return onto the
Poincaréplaneand e is thedistancefrom the initial point to thesurfaceM (the stablemanifold of the
saddleA). Such an analysisalso allows us to calculatetheexponenta determiningthepeculiaritiesof
the arisingtwo- and one-dimensionalmaps.

In order to obtainthis informationwe shouldstudy thebehaviourof the trajectoriesin thevicinity of
the points A and B (within the spheres~A and S~of small radius r in fig. 7.18). The problemis
simplified by the factthat for small r (thoughgreatlyexceedinge) we may considera linearizedsystem
insteadof the initial problem.In refs.[159,217] suchan investigationwascarriedout, andit wasshown
that

T(e)=~—(i+J~~~1)1n~.

Thus the function T(e) has a logarithmic singularity. The calculationsperformedconfirm it. In the
vicinity of the line P0 (see fig. 7.14) the functionsf andj may be representedin the form

x~1=f(x3, y~)=f0 + A(x3, y~)[x3— ~0(y)]a

(7.12)
= j(x3, y~) = g0 + B(x~, y~)[x3 — i0(y~)]°

where

a =min{~A1A~IIA3A~jA2l IA3 + A1A~IIA3A~}.
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For c1 = 7, c2 = —6, k= 1 we havea = 1/2. The valueof a nearthesingularity for f(x, y) with y= 0
was obtainedto be equalto about0.51, which testifiesto thegoodagreementbetweenthe numerical
resultsand the analyticalestimates.From formula (7.12) an important qualitativeconclusionfollows.
For c2> ~2 with

- (c~+1)k
4+6k2+8

2c,k2

thevertexof the arisingone-dimensionalmap must be smooth,a > 1; for c
2 < C2, it is sharp.As we

could seewhen discussingone-dimensionalmaps, this may lead to quite different scenariosfor the
transitionto chaos. It also agreeswith numericalresults.

As hasbeenmentionedabovetheprojectionof the trajectoriesonto the(~,‘q) -planedoesnot give a
completeidea of the geometryof the attractorin three-dimensionalspace.A portionof the integral
curve of thesystem(3.15) is drawnin thecoordinatesx’ = ~ cos0, y’ = ~ sin 0, z’ = q in fig. 7.19. It is
put on a certainsurfacebecausethe fine structureof the attractorcannotbe seenon the scaleof the
figure. The surfaceconsistsof two parts which are connectedin the upper region; the point starts
moving towardsthe saddleA, then it movesto the right or left dependingon the initial data.Having
gonepast thesaddleB it gets again into the upperpartof the attractor.The right bandstretchesand
changesits orientation.The left part of the surfacealso stretchesbut doesnot changeorientation.

Hence,it is clear that the attractorin this spacemay be representedas a Mäbius band (the right
part) that is attachedto the usual ring (the left part). Performing a turn along the right part of the
attractorthe trajectoryincreasesits phaseby

2IT, andwhenmoving alongtheleft part it keepsits phase
constant.

Such a behaviourallows a symbolic descriptionof the trajectory by comparingit to an infinite
sequenceof symbolsR andL. At the nth placetherewill be R if thetrajectorymovesalongtheright
partat thenth turn andL if alongtheleft part. It appearsthat thetopologicalmethodsthathave been
developedfor studyingthe Lorenzattractor[137]may be usedheretoo.

~\

Fig. 7.19
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Now let us considerthe qualitativecharacteristicsof the attractordiscussed.We shall observethe
valuesof the i-coordinateat successiveintersectionsof the trajectorywith the plane 0 = 2 i~n.We
constructa histogramfrom thesequence{ ~} andnormalizeit so that theareabelow thecurve is equal
to unity. The calculationsshow that the curve becomessmootherand then constantas the sample
length increases.Thehistogramconstructedfrom N= 20480points is shownin fig. 7.20. The numberN
dependson the intervalschosenalong ~. Thesmallerthe interval, thelargerN for which thehistogram
in fact stopschanging.The samep(~)was obtainedfor otherinitial data.This fact suggeststhat in
three-dimensionalphasespacealso thereis an invariantmeasurewhich definesthestatisticalproperties
of all trajectoriesconvergingto thestrangeattractor.

A typical property of strangeattractorsis the sensitive dependenceon initial conditions. The
existenceof positive Lyapunovexponentsin thesolution underinvestigationtestifies to this property.

The attractorof the systemof equations(3.15) studied in this case (c1 = 7, c2 = —6, k = 1) is
describedby the following exponents:A1 = +0.234,A3 = —4.423, A2 is closeto zerowithin theaccuracy
of the computations.These values of A1 were obtained in the computationsfor different initial
conditions.Summingtheexponentsgives a meanvalueof (2, A1 + A2 + A3 = (C9~It9~+ d~Ic9~j+ ~0I90),
which determinesthe rateof variation of thephasevolume.

An important characteristicof the attractoris its dimension.By knowing theLyapunovexponents
and using the Kaplan—Yorke formula we can estimatethe probability dimension of the attractor
(dimensionof the natural measure)[102].In this case

D=2+(A1+A2)I~A3I~2.05. (7.13)

Since thevalueof D hasa small fractionalpart it is naturalto expectthat thebehaviourof trajectories
on theattractoris describedto high accuracyby a one-dimensionalmap.This agreeswith thenumerical
results in fig. 7.17.

Knowing the trajectoryof thesystem,wemay estimatetheprobability dimensionif we computethe
correlationexponent.Appropriateresults are given in fig. 7.21. For the calculationsa fourth-order
Runge—Kuttamethodwith step r = 0.01 was used.The valuesof ~ were takenas the coordinatein
i-spacewith step i~t= 0.25. A samplelength N = 15 000 was considered.Best results were achieved
whenthe attractorwasput in ten-dimensionalspace.The bracketsin the plot mark thepart closestto

0.44 Q,46 448 q~o 02 o;sk 456 ~

Fig. 7.20
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linear. The calculatedvalue of v = 2.035±0.019 agreeswith the estimateobtained by the Kaplan—
Yorke formula (7.13).

Let us stressthat herethe rangeof scalesover which similarity canbeobservedis muchsmallerthan
in the caseof one- and two-dimensionalmaps. This is also typical for other systemsof differential
equations.

Another quantitativecharacteristicof a strangeattractoris the self-correlationfunction

b(t) = (~(r)~(r+ (a(r)) = lirn ~ Ja(x)dx.

Whenb(t)—~ 0, t —* ~ thereis mixing in thesystem,and it showsthat theprocessunderconsiderationis
stochastic.The exponentialdecreaseof correlationsprovesto be a most prominentstochasticproperty
[152].

Computingb(t) requiresdeterminingaveragevaluesover large portions of the trajectory. In ref.
[159]the length of sucha portion was estimated,and the function b(t) wasgiven for this attractor.
However,we may actdifferently: go overto a discreteanalogof thedistributionfunctionBN(k), where
N is the samplelength. Again we considerthe sequence{ ~}, where ~,,is thecoordinateof the nth
intersectionof the trajectoryandtheplane 0 = 2irm, andthecorrespondingauto-correlationfunction
BN(k). Figure 7.22 shows theplots of BN(k) and its logarithm. It is seenthat on this interval BN(k)I
(N= 19456)decreasesfaster thanconst.X exp(—Ak), whereA~0.0675.

In this caseanimportantquestionis the relationshipbetweenN and thenumberof termsin BN(k)
which can be computedratheraccurately.It may be shown that the sums

‘1 = ~ ~“~‘ ‘2 = ~ ~fk(~)
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prove to be associatedwith eachother(heref is a continuousfunctionwith a single extremum).The
sum ‘2 approximatesthe integral

rniax

1 f ~fk(~)p(e)d~

~min

in which the integrandquickly oscillates.The function fk(~)= f( f(... f( i))) has2pk extrema,where
O<p < 1, p = const. This follows from the form off. For numericalintegrationit is naturalto require
that therebe at leasts points for eachextremum,so that N = s 2k”. Hence,the numberof correct
valuesdependson the samplelength accordingto the logarithmic law

kmax= log2(NIs), s = 4—6.

For N = 19 x 210 the maximumk is of order30.
The attractorconsideredcorrespondsto onepoint in the three-dimensionalspaceof theparameters

c1, c2, k. The questionsarise: Is it typical, andwill chaoticregimesbe observedfor nearbyparameter
values?In orderto answerthesequestionsit is convenientto considerthefamily of mapsM~+ 1 = f(M~)
alonga line. ForM~we takethenth local maximumofthequantityp0(t) ~v~(t).Themapsarisingon
the line c1 = 5 areshown in fig. 7.23. It is seenthat they areclose to onedimensional,havea sharp
vertex andcontainnoisy cyclesof the typex

2. It may beexpectedthat dueto thesharpvertexchaotic
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attractorswill exist on thewhole intervalof c2, and the largestLyapunovexponentin this intervalwill
be positive. The calculationsconfirm this premise.In fig. 7.24 it is shownhow theLyapunovexponent
changesalongthe line c1 = 7 (for —6.4 ~ ~ —5.2, A1 0.2).

Moreover, it can be verified that the two-dimensionalmapsgeneratedby the systemof equations
(3.15)for c1 = 7, c2 = —5.25andk = 1 satisfy thehyperbolicity conditions.Weshall againconsiderthe
Poincarésectionin theplane0 = 2 irn. It is convenientto introducenewcoordinatesby directingoneof
the axesalong thesingularity (an analogof the line P0in fig. 7.14). Thesecoordinatesare

Re.P..L
C1~7 k’~I

0 /~TL_..~..~__4I tT. .L
S 9 tO -C2
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—~

-5

Fig. 7.24
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= —4— [~cos(f3— y) + ~sin(f3— y)] — 11.241/V~~

y=—4--[~cos$+7~sinf3--11.89IV~],

tgy=1.3, tg/3=10/17, y,f3E[O,1T12].

Near the singularity of the two-dimensionalmap we can verify the inequalities(5.13) analytically
whenwe know theexponenta [seeformula(7.12)].Beyondit (x s0.054,x � 0.056)calculationslet us
estimatethe normsof the functionsappearingin relations (5.13) as

II(ofIoxY’II~= 0.902<1; ~og/~yI~~= 1.15088x 10~<1;

~ = 7.43121x 10~<0.0744; II ôfI~y~J~= 2.41656x 10~<0.242.

Substitutingthesevaluesinto inequalities(5.13) we may verify that they are all satisfied.Thus, in the

analysisof thestochasticpropertiesof this attractormanyresultsof thehyperbolictheorycan beused.

7.4. Strangeattractors in higher-dimensionalsystems

Studying systems of three ordinary differential equationsshows that they representcomplex
mathematicalobjects.Theymay show severalscenariosof the transitionto chaosaswell ashysteresis,
intermittency,attractorcrises,metastablechaos,andmanyphenomenastudiedby meansof one- and
two-dimensionalmaps. However,to investigatesomephenomenamore complex systemshaveto be
usedassimplified models.

Let us give two typical examples. One measuresan averagemagneticfield if one deals with
large-scalelong-time characteristicsof solar activity. It is connected,in particular, with the changing
numberof solarspots,which haveregularly beenobservedsince1750 (fig. 7.25). It is known that the
averagemagneticfield varies with a basicperiod of 22 years.A specialanalysisshows that the field is
modulatedby oscillationswith acharacteristicperiodof 57 years[220].The variationof thenumberof
spots found by Wolf, W(t), or the total area is shown in fig. 7.25. It is seenthat here at least a
two-frequencyregimeis observed.Thereis everyreasonto believethat oscillationsexist with a period
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Fig. 7.25
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of order 360 years[221].Besides,a global reductionof the solar activity (the Maunderminimum) is
observed.

Sucha complextemporalbehavioursuggeststhat theoscillationsobservedhavea stochasticnature
and thereis a strangeattractorin the dynamicsystemthat determinesthesolar activity [222].

Following refs. [223,224] we shall approximatelyconsidera convectiveshell of theSun asa plane
layerof thicknessh. Let thez coordinatebe perpendicularto the layerwhile the x andycoordinateslie
in it. The divergencelessmagneticfield can be describedby two scalarfunctions:they-componentsof
thevectorpotential andmagneticinduction,
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B = curl(A(x,z, t)e~)+ B(x,z, t)e~

The dynamoequationsare a parabolicsystemfor A andB with sourcesthat areproportionalto these
componentsandare determinedby thegradientof theangularvelocity of theplasmarotationandthe
meanhelicity — thequantityconnectedwith themirror symmetryof turbulentmotionsdue to theeffects
of Coriolis forces and inhomogeneity.Taking into accountthe effect of the magneticfield on the
helicity, the equationsmay be written in dimensionlessform as

~AIdt—(a+ C)B+iiA,

~9BIôt= D ôAIüx + ~B, (7.14)

aClot=—miC+pAB—q(a+C)B2,

where C is the helicity variationcausedby the magneticfield.
The parameterD is proportionalto theproductof the sources,i.e. the characteristicvaluesof the

angularvelocity and the meanhelicity, and inverselyproportionalto the squareof the coefficient of
turbulentdiffusion. It is themajorparameterto determinebifurcationsof thesystem(7.14).Theother
parameterscan be fixed from theoreticalor phenomenologicalestimates.

By averagingthesystem(7.14) overz and involving only oneharmonicin x we canobtain a system
of sevendifferentialequationsthatconnectthreecomplexfunctionsa, b, c andonereal one,c

0 [225],

á=—oa+(a+c0)b+ ~b*c, b=—b+iDa,

= — v0c0 + p Re(ab*)— q[(a + c0)bb* + ~Re(b
2c*)], (7.15)

é= —vc+pab— q[(cx +c
0)b

2 + bb*c].

For zj~ p we may considerthe systemof threecomplexequations

á~_o.a+ab+cb*I2, b=—b+iDa,
(7.16)

é= _vc+pab_q(ab2+cbb*).

We emphasizethatevenfor a qualitativedescriptionof theobservationssystemsof morethanthree
real equationsshould be considered.The existenceof two frequenciesin thepictureof theobserved
solaractivity gives reasonto believe that thesolution is locatedin thevicinity of the torus. Meanwhile
an invariant torus is usuallyobservedin systemswith at leastfour degreesof freedom.

Attractors becomingmore complex as D increasesin a system with only squaretermsq = 0 are
consideredin ref. [225]for p = —1. Dynamomodelsthat lead to suchequationsare discussedin ref.
[226].

It wasshownthat asD increasesthe point (0,0, 0, 0, 0, 0) loses its stability, anda Hopf bifurcation
occurs.If D increasesfurther theamplitudeof the limit cyclegrows and thena secondHopf bifurcation
(D = D

2 s5.0) occurs. A secondfrequencyw2 appears,and an invariant torus arises. Then as D
increasesstill further, a three-frequencyregime is observedin thecomputations.The situation differs
from the Ruelle—Takensscenariodue to the system’ssymmetry.
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In fact, eqs. (7i6) can be simplified by going over to the variables

ape’°, b=pxe’°, c=ye2’°, ~=~2, (7.17)

wherep and 9 arereal functions,andx andy arecomplexfunctions.It maybe shownthat theequations
for ~, x and y do not dependon 8, which allows us to go over from (7.16) to a systemof five real
equations.Singularpointsin this systemcorrespondto pointsor cyclesin (7.16),cyclesto 2-tori, 2-tori
to 3-tori.

Thenchaoticregimesappear.A typical form of trajectoriesof the system(7.16) is shownin fig. 7.26.
An analysisof the systemsof equations(7.15) and (7.16) showedthat they can describethree-

frequency,two-frequencyor stochasticregimes. In any casea typical picture arises,and two basic
frequenciescan easily be distinguished.Many stochasticsolutions have the following property: a
trajectorymay exist neartheorigin for a long time. Hence,the system(7.15)satisfiesthe requirements
necessaryfor a qualitative descriptionof the phenomenonof the deepminima in the solar activity.

If we assumethat themodel (7.16) accuratelydescribesthebasicqualitativepropertiesof theactivity
modulationit may be concludedthat phenomenasuch as the Maunderminima must be observed
furtheron.

Following eqs. (7.14) andassumingthat the basicsourceof the generationof the magneticfield is
inhomogeneousrotation, we canobtain otherfinite-dimensionalmodelsof thesolar dynamo[228].In
thesimplestcasethey reduceto complex generalizationsof theLorenz equations,

xory_ux, ~=Rx_x*z_y, i=xy—vz.

The quantityR hereis proportionalto D. Complexorderedandchaoticregimesin sucha systemwere
consideredin refs. [228].In somecasesasR increases,the Ruelle—Takensscenariois implementedhere
too. Complex Lorenzequationsmay arise in many otherphysicalproblems[229].

Anotherexampleoccurs in the theory of oscillatory reactions.After experimentalinvestigations
were introduced [230,231] the simulationsof such phenomenabegan [232].It turns out that the
mechanismsof the Belousov—Zhabotinsky,Briggs—Raucherand other reactionsare rathercomplex.
Thesereactionsmay run in manystageswith tensof substancesinvolved. In spiteof an improvementin
theexperimentalapparatuswe can usuallyobserveonly a few degreesof freedomthat characterizethe
system[28].

However,it has beenshown that theseproblemsmay be successfullysolved for some biological
systems[233].This lets us distinguish the most important from a variety of reactionsto simulate
oscillations and to determinethe coefficients in the appropriateequations.Unlike the models of
oscillatory reactionswhich arecharacterizedby powernonlinearities,in thesemodelssourcesof the
form f(x) = axl(1 + bx) arise.

Although the dimensionof the arising modelsis ratherlarge(usually morethan 10), they may be
usedsuccessfullyfor a descriptionof the pictureobservedin experiments.It hasprovedthat for the
modelsobtainedan extensiveclassof stochasticregimesis typical [233].

8. From finite-dimensional systemsto nonlinear media

We havediscussedabovesomefinite-dimensionaldynamicalsystems.There aredifferent typesof
attractingsets in them— cycles, fixed points, invariant tori, strangeattractors In this connectionsome
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questionsarise:Do theseattractorshaveanalogsin the partial differential equationswhich describe
nonlinear media? What is the applicability region for few-mode systems, which often represent
simplified modelsfor the problemsof partial differential equations?Is therequantitativeor qualitative
agreementbetweentheir solutions?

The rigorous results available in this field deal with two limiting cases.In the first case,using
bifurcationtheoryit is shownthat theexistenceandstability of solutionsof partialdifferential equations
of a certaintype canbe establishedby analysinga finite-dimensionalsystem.The small parameterhere
is the deviation from the bifurcation point. Searchingfor the coefficients of the emerging system
appearsto be a rathercomplexproblem[84,89]. Using anotherapproachit canbe shownthat when
N ~ N the solutionsof the initial partial differential equationsand N ordinary differential equations
obtained by the Galerkinmethodare close to eachotherin a certainnorm. The value of N in such
estimatesturns out to be usuallyratherlarge [234].

From the physicalpoint of view a quite different situationis oftenof interest. The simplestmodel
(with p ordinarydifferential equations,p ~ N) is favouredwhich could be usedto predictthe behaviour
of thesolutionsfor different typesof initial datain a certainrangeof parameters.(The Lorenzsystemis
a typical example.)The useof suchmodels is usually basedon various physicalconsiderationsand
numericalresults.It is important that an increasein thenumberof harmonicsin a finite-dimensional
systemwould not lead to a qualitativechangein its behaviour.

Unfortunately, the Lorenz system and many other simplified models emergingin hydrodynamic
problemsdo not possessthis property[235].An analysisof reaction—diffusionsystems,however,shows
that the picture may be quite different here— theremay not only be qualitativebut also quantitative
agreementbetweenthesolutionsof the initial problemand thesimplestfew-modesystem.An example
of such a problem, which will be consideredbelow in detail, is the behaviourof solutions of the
Kuramoto—Tsuzukiequationin thecaseof small spatial domains.This examplewill let us determine
what regimesin nonlinearmediacan correspondto varioustypesof attractorof the simplified model,
andwhat its applicability region is; moreover,somegeneralquestionswill be considered.

8.1. Self-similar solutions and simple cycles

Following refs. [102,108, 217, 236] we comparethe behaviourof solutionsof eqs. (3.15) and of
problem(3.12) as i—> co~The numericalresults for thepartial differential equationfor 1 = ir (k = 1) are
shownin fig. 8.1. As initial datawe usefunctionswithout spatial symmetry,

W0(x)= (,~cos(2irmx/l))+ cos((2m+ 1)~rx1l)).

In the planeof the parameters(c1, c2) it is convenientto distinguish severaldomainswhere the
solutionshavesimilar asymptoticbehaviour.Above thecurveABC [whoseequationis determinedby
formula (7.8)] both systemshavesimilar properties.In the linear approximationthe spatially homo-
geneoussolution (3.9) is stable here. In the system of ordinary differential equations(3.15) it
correspondsto the solution with ~= 1, ~= 0. Whencrossingthe line ABC it losesits stability, and a
newstablesingularpoint with ~~ 1 emerges.Therefore,as t —~~ we have~—* const.,~—+ const. and
O—* const. The functionsx0, x1, y0, y1 in the system(3.14)vary accordingto a harmoniclaw.

For the partial differential equationwe obtain in this range of parametersalso solutions with
constantvaluesof P09~m = 0, 1,2,. -. and ~Pm,m = 1,2,... Here
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Fig. 8.i. Typesof asymptotic solutionsof the Kuramoto—Tsuzukiequationin the region (1 = ir) for t —~~ 1: the spatially stablehomogeneous
solution; 2: thesolutionwhosep, doesnot dependon time; 3: theperiodicsolutionin whichp

0(t) andp~(t)determinea simple cycle;4: p0(t)and
p1(:) determineadoublecycle; 5: theevensolution; 6: morecomplexregimes.Solid lines approximatelyindicatetheboundariesbetweendifferent

types of solution.

W= ~ [am cos(lTmxIl) + ~bmcos(irmxll)],
m=O (8.1)

am=pmcos~m,bm=Pmsinçom, ~“m~Pm ço0.

It meansthat a self-similar solution arisesin the problemunderinvestigation.The following lemmais
valid [103,108].

Lemma.Let W(x, t) be a solution of problem(3.12). If and only if p~(t)= const., ~(t) = const.,
n = 0, 1,2,. . . , doesa self-similar solution exist of the form

W=R(x)exp[iwt+ia(x)]. (8.2)

Thus,self-similarsolutionscorrespondto singularpointsof the simplified system.The typical form of
the function u(x, t) (u = Re W) in sucha solution is shown in fig. 8.2. It is seenthat it can describea
rathercomplex processin the course of which local extremaof the functions u and v appearand
disappearperiodically; neverthelessthe quantity R = (u

2 + u2)’’2 does not depend on time and
u(x, t) = v(x, t + irl(2w)).



T.S.Akhromeyevaet al., Nonstationarydissipativestructuresand diffusion-inducedchaosin nonlinear media 319

Fig. 8.2

It is naturalto comparep0(t) and p1 (t), which characterizethesolutionof problem(3.12),with the
valuesof ~“

2(t) and q”2(t) in thesystem(3.15). A remarkablepeculiarityof themodel is the good
quantitative agreementbetweenthese functions. A comparisonbetweenthe parametersof the
self-similar solutions and the singular points given in refs. [108,238] shows that, in this range of
parameters,the agreementis perfectup to a few percent.The lower boundaryof thedomainwherethe
asymptoticbehaviouris determinedby theself-similarsolution(the curveQNPin fig. 8.1) is also close
to thatexisting in the simplified system(the curveQNP in fig. 7.12). A Hopfbifurcationoccurson this
boundary.A limit cycle is generatedin the approximatesystem. In the initial problemthe solutions
appearwith functionsp

0(t) and p1(t) which changeperiodically.
If for different initial conditionswe have the samesolutionfor the partial differential equation,in

which I WI periodically dependson time, sucha solution is calleda cycle. Wedistinguishthe functions
p0(t) andp1(t) in thesolution.Hereagainit is convenientto usethenotationS

0, wheren is thenumber
of revolutionswhich are madeby the projectionof the solution onto the (p

0, p1)-planein a period.
We can verify thevalidity of the following statement[236].

Lemma.Let the solution of problem(3.12) be suchthat

p~(t+T)=p~(t),n=0,1,2,...,

!1’~(t+T)=![~(t)+2irm~, m~E{0,±1,±2,...},

with p0 ~ 0 for t E [0,co). Then it may be representedin the form

W(x, t) = R(x, t) exp[i(w0t + w1(t) + a(x, t))], (8.3)

where

R(x,t+ T)=R(x,t), w1(t+ T)’w1(t),

a(x,t+T)=a(x,t)+2irp, pE{O,±l,±2,...}, tu0=const.
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Thus, the Hopf bifurcation in problem(3.12) is connectedwith achangefrom self-similarsolutions
of the form (8.2) to more complex solutions of the form (8.3), which contain two, in general
independent,frequencies-

A comparisonof figs. 7.12 and8.1 showsthat thesolutionsof the two-modesystem(3.15) and the
partial differential equationbehavequalitatively in the samemanneras theparametersc, and c2 are
varied.In both casestheparameterplaneis divided into similar domainsin which thesolutionsareof a
certain type- The domain boundaries,however, are slightly displaced,which is natural: since the
solutionsbifurcate on theselines the higher harmonicsaffect their position.

Above the transition to complexsolutions (seefig. 8.1) the amplitudesand the periodsof simple
cyclesin the system(3.15)and in thepartial differential equationdiffer notmorethan10—15%. Below
thedomainof complexsolutions theperiodsof cyclesarecloseto eachotheralthoughthe lengthsare
severaltimes different. This differenceis due to the secondharmonic[217,236].

In the simplified model (3iS) the period of simple cycles is independentof the value of the
parameterc2 over a wide rangeof values. This provesthat the samelaw is observedin the initial
equation.The period is close to that predictedby the simplified system. It may be suggestedthat a
constantperiod is typical for manytwo-componentsystemsin the vicinity of the bifurcationpoint.

Various authorswho are engagedin investigationsof dissipative structuresnote that the emerging
structuresdo not dependon many parametersand correspondto intrinsic propertiesof nonlinear
systems. Their independenceof the initial data (“forgetting” details of the initial data [3,13]) or
boundaryconditions(localizationeffects [23])waspointedout severaltimes.Herewe seea newtypeof
parameterindependenceof a process.The parameterc2 determinesthe frequencyof the oscillationsof
the spatially homogeneoussolution (3.9). Dissipative processesmake that the frequency of the
modulationof the oscillationsof the entire system(which is determinedby the cycle period) doesnot
dependon c2.

8.2. Other self-similar and spatiallysymmetricsolutions

We haveconsideredseveraldomainsof the parameterswhere the simple cycles and the singular
points of a two-modesystemcan be comparedwith the solutionsof a partial differential equation.
DecreasingI results in an improvementof the quantitative agreementbetweenthese solutions.
However,evenfor I = ~rtherearedomainsof theparameterswhich cannotbe predictedby a two-mode
systeminvolving only thezerothandfirst harmonics.Theyshowwhich typesof thespace—timeordering
can be typical for largeI in this and otherdistributedsystems- Let us considerone suchdomain.

In the system(3.12) an interestingphenomenonmay be observed.From initial dataof a general
form without any spatial symmetrya changeto even self-similarsolutionsof the form (8.2) [W(x, t)
W(1— x, t), P2m+i = 0, m= 0, 1, 2,. . .j occurs. The domainwhere this takesplace lies in the interval
0< c1 ~ 1.2. In fig. 8.1 it is denotedas the region of evenself-similar solutions. Unlike most open
nonlinear systems where a spontaneousloss of symmetry occurs [3, 13] we can observe here
spontaneousappearanceofsymmetry- As t —~ ~ thesolutionhasa symmetrywhich is absentin theinitial
data.An evensolutionsatisfiestheconditionof theabsenceof flow at thepoint x = 112. Therefore,we
canobtain it by consideringtheasymptoticbehaviourof solutionsof problem(3.12) in a regiontwice as
short. As t—+~ the nonlinearsystem disintegratesinto two similar noninteractingsubsystems.More
complex symmetric solutionscorrespondingto disintegrationinto a largernumberof noninteracting
partsmay prove to be stable in regionswith longer lengths.

An explanationfor this phenomenon,basedon a more complex three-modesystem (involving
variation of the zeroth, first and secondharmonics)was proposedin refs. [108,217, 238]. A typical
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picture of thevariationof theparametersof theself-similarsolutionwith increasingc, is shownin fig.
8.3. Here the step in c1 is 0.01; c2 = —10, 1 = ~ The solid lines correspondto the solutionsof the
three-modesystem,themarkersto thesolutionsof thepartial differentialequation.It is seenthat they
agreewell. When c1 = c~the spatially homogeneoussolution loses its stability, and the self-similar
solution emerges,to becomeevenin the interval c’ <c1 <c7. An analysisof the stability of singular
points in the three-modesystemenablesus to determinec’,’ and c7, and their coordinatesdetermine
p0(c1) andp2(c,) in this rangeof parameterswith a high accuracy.Theseresultsagreewell with the
valuesobtained for the partial differential equation.

Thereareanalogsof the attractorsof asimplified finite-dimensionalmodel in the Kuramoto—Tsuzuki
equation.The questionarises:Do theunstablepoints andcycleshaveinfinite-dimensionalanalogs?The
answeris yes.Let us give someexamples.

It turns out that thereareinfinitely manytypesofsolutionswith a spatialsymmetryregardlessof the
length I. In refs. [103,237] theconditionswere formulatedunderwhich someFouriercoefficientsin the
solutionsof problem(3.12) arezero throughouttheentireprocessfor 0< t < ~. Let us put a sequence
of integers{ L } in correspondenceto the initial distribution W~(x)so that if n ~‘ { L } thenp,~(0) = 0. In
otherwords, { L } containsall harmonicswith nonzeroamplitude (maybenot only them).

The following statementsare valid.

LemmaI. If the sequence{ L } is such that for any integersm E { L }, n g { L } the condition
m±n~’{L} holds, then all the Fourier coefficients in the solutions of problem (3.12) with their
numbern,~’{L}are zerofor 0< t < co

LemmaII. If the sequence{L} is such that:
(1) for all m E { L }, ng’ { L } the conditionm ±ng’ { L } holds,
(2) for all m, n~’{L} thecondition m±n~’{L} holds,

then all theFouriercoefficientsin thesolutionsofproblem(3.12)with their numbern ~‘ { L } arezero
for 0�t<co.

A sequenceof the form {0, m,2m,. . . }, wherem is anynaturalnumber,satisfiesthe conditionsof
lemmaI. From this lemmait follows, in particular,that only evensolutionscanemergein theevolution
of eveninitial data. The sequence{1, 3, 5, 7,. . .} satisfieslemmaII.
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But whatwill happenif theinitial datacorrespondingto differentsequences{ L} areput in a domain

of given length?From the linear analysisof thespatially homogeneoussolution(3.9) it follows that if
(~rm/l) < —2(1 + c1c2)/(1 + c~) , (8.4)

a spatially inhomogeneoussolutionsplitting the regioninto msimilar noninteractingpartscanemerge.
If m is sufficiently largethesolutionwill tendto thespatiallyhomogeneoussolution(3.9),preservingits
spatial symmetry, as t—+ °~. The larger 1, the moredifferent valuesof m satisfy inequality (8.4), and
hence,the higher the dimension of the simplified system imitating the propertiesof the original
problem.

In ref. [237]examplesof solutionswith different spatial symmetriesarenumericallyconstructed.As
a rule, they areunstable.However,solutionscorrespondingto a sequence{L} convergeto the same
asymptoticsymmetricsolution regardlessof the specific form of the initial data(only the type of their
symmetryis important).

Even the simplest two-modesystem (3.14) hasa finite-dimensionalanalog of odd solutionswith
{L} = {1, 3,5,. . .}. It is the solution

p1~4(1—k
2)I3, ~

1=w=—3c215~I4—c1k
2, p

0O (k�1),

which is unstableagainstperturbationswith p0 ~ 0. WhenIs 4ir —5ir thevaluesof i~i~and tu arein good
agreementwith odd solutionsof the partial differential equation[239].

8.3. Space—timeorder withoutanalog in a two-modesystem.Theproblemof constructinga completeset
of self-similar solutions

Comparingfigs. 7.12 and8.1 showsthat the seconddomainof parametersin which the solutionsof
the original problem and the simplified two-mode system are qualitatively different, is that where
c2 —~ —~. In the simplified system thereis a stable singularpoint, while in the distributedsystema
simple cycle (i.e. a solution of the type (8.3) whose projection onto the (p0, p1)-planemakesone
revolution per period) is stable. Its period slows down as c2 decreasesand becomesconstantwhen
c2 S —400. The cycle family in this domainof parametersis shownin fig. 8.4. Here thesolutionsof the
original problemand the equation

W~= W + (1 + ic,)W~~— ic2IWI
2W (8.5)

turn out to be close to eachother. In spiteof the fact that thespatially homogeneoussolutionsof the
latterequationincreaseinfinitely as t—÷~, its analysismay prove to be useful.

Since WI — Ic
2L

112 as c
2—* —~ in this parameterdomain, p0(t) and p1(t) are close to zero. An

analogof sucha solution in the two-modesystemmustbe neartheorigin of thecoordinates,wherethe
11 value is strictly positive [seeformula (7.6)], and hencethere are no stablecycles. This explains
different behaviourof thesolutionsof theoriginal problemand of the simplified model.

Calculations show [103]that when c, = 3, c2 —~ —~ and I = ir the first three to four Fourier
coefficientsof the function W are comparablein magnitude.To describesuchsolutionsin eq. (3.12)
one shouldtakeat least four harmonicsinto consideration.
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In ref. [240]a simplified two-modesystemfor eq. (8.5) was studiedin detail.The stochasticregimes
and the orderedsolutionsof various types were obtained numerically. It is possiblethat they have
analogsin eq. (8.5). So it would be interestingto investigatethis question.

Wehavediscussedabovehowthesolutionsofproblem(3.12)changefor different c1 and c2 whenthe
domainlength is fixed. In manycases,however,it is importantto know howthesolutionchangeswith a
variation of I. Analysing such a problem for stationary dissipative structureshas resulted in the
discovery of the so-called zonestructure. It has been proved that as the domain length increases
structuresmay appearand disappear(in the last casethe spatially homogeneoussolution becomes
stableagain) [241].Such effectswere discoveredin investigationsof theheterogeneous-catalyticwire
reactionmodel,

0~=D1055—gO+f(1—i1)exp(0I(1+/30)),

m = — v’q + k(1 — ~)exp(0I(1+ /30)).

Here 0 characterizesthe temperature,and i~the conversiondepth.
Examplesin which the solutionsof problem(3.12) changeas I increasesweregiven in refs. [102,

242]. The numerical results presentedin fig. 8.5 allow us to estimatethe boundariesof the rangein
which the two-modesystemis applicable.It is shownhowtheparametersofself-similarsolutions[p,~(t)
for t—s-00] behavefor different 1. Herec1 = 2, c2 = —1, and the I valuesfor which thecalculationswere
performedaremarkedby theverticaldashes.When1= 5 the spatiallyhomogeneoussolution
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loses its stability, after which the asymptoticbehaviouris determinedby a self-similar solution of the
form (8.2). In the beginning the zeroth and first harmonicshave maximal amplitudes.Here the
simplified model (3.15) describesthebehaviourof thesystemwell. Thenthe first harmonicdecreases,
but the model (3.15) can be used by putting k=2ir Ii. From 1 18 the numberof harmonicswith
comparableamplitudesquickly increases.For 1 22 a complex oscillatoryregime can be observedin
the system.The questionaboutsimple efficient modelsin this parameterdomainremainsopen.

We havediscussedabove the analogsof the simplest attractorsof dynamic systemsin problem
(3.12). However, in dynamic systemsdifferent attractorsmay co-exist for the samevaluesof the
parameters.It is naturalto assumethat in nonlinearmediaseveraltypesof orderingcansimultaneously
exist aswell.

One or other of them will be observeddependingon the initial data. Experimentswith Couette—
Taylor flow showedthat more than a hundreddifferent stable regimesmay be observedfor certain
parametervalues. Among them are periodic and multi-frequencyregimes,and a few types of chaos
[32].Therefore,the questionarises:What is thecompletesetof dissipativestructuresthat arepossible
in a given distributedsystem?To answerthis questiononeneedsto constructa whole setof solutionsof
a certaintype for theequationsunderinvestigation,and then “the selectionrule” mustbeestablished,
i.e., the questionof the stability of each solution should be settled. (The importantproblem which
seldomcan be solved is determiningthe regionsof attractionof different solutions.)

An exampleof nonlineardissipativesystemsfor which theabovequestionsaresettledis providedby
mediadescribedby eq. (2.1). In this caseonly unboundedsolutionsor stationarystructurescanexist as
t—* ~. The stationarystructuresare determinedby thesolutionsof the equation

(8.6)

which is asimple conservativedynamicsystem(thatdescribesthemotion of a materialpoint in agiven
potential).As we havealreadymentioned,the questionaboutthe stability of different solutionscan
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also be settledanalytically— all thesolutionswith severalextremaatan innerpoint of the segmentare
unstable[29].

A completeset of self-similar solutionsof the form (8.2) can be constructedfor the Kuramoto—
Tsuzukiequationwhenc, = c2. In ref. [109]it was shownthat the equationfor the function R(x) could
be reducedto the form (8.6), and by using elliptic integralsanalytical solutionscould be obtained.
However,searchingfor all thesolutionsof theboundaryvalueproblemrequiresspecialalgorithms.To
solve this problema graphicalmethodwas proposedin ref. [239].Numericalcalculationsshowedthat
here[asin the system(2.1)] the simplest solution in which thefunctionR(x)hasa minimumnumberof
extremaproved to be stable [239].

It would be very important to constructnumericalalgorithmsorapproximateanalyticalmethodsto
enable one to build a full set of stationary structuresin reaction—diffusionsystemsand all the
self-similarsolutionsof the Kuramoto—Tsuzukiequationin domainsof a given length. However,at the
presenttime this problemdoesnot seemto be solvedyet.

The equationsdeterminingself-similar solutionsof variouspartial differential equationsmay prove
to be rather complex and describestochasticregimes.In this casewe talk aboutspatial chaos in
nonlinearsystems.

An exampleof sucha chaosis given by the solutionsof the Kuramoto—Sivashinskiiequation(3.21)
of the form

u(x, t) = —c
2t + u(x).

Their configurationis determinedby the equation

~ ~=c~— ~ 00<X<00 (y=dv/dx). (8.7)
dx dx 2

In ref. [243]it is shown that for small c2 there are a periodic and an infinite set of quasi-periodic
solutions,while for largec2 thesolution is uniqueand hasa conical form. Numerical computationsfor
intermediatevaluesof c2 suggestthat below c2 1.6 for every speedc2 thereis a continuumof odd
quasi-periodicsolutions or a Cantorset of chaotic solutionswrapped by infinite sequencesof conic
solutions.

Spatialchaosmay arisein dissipativenonlinearmediawheresourcesandsinksareperiodicfunctions
of a spatial coordinate,for example,in the system describedby the equation

A
0=~A+A~5—A

3+vsinkx. (8.8)

If v = 0 such mediahavetrigger properties,andthe elementarystructuresaredescribedby the formula

D(x) = ±‘./)itanh[(~js)”2x].

A simplified finite-dimensionalmodel maybe proposedby assumingthatwhen i’ ~ 0 thesolutionwill
representa setof N elementarystructuresinteractingwith eachotheraccordingto a certainlaw. The
evolution of the system will be describedby N ordinary differential equationsconnecting the
coordinates...... , XNof the elementarystructures[244].
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The existenceof terms with fourth and higher derivatives may also lead to the emergenceof
stationarychaoticsolutions.Suchsolutions,for example,were discoveredin the equation[244]

A1=,1A+A55—A
3—A~~

1~- (8.9)

Creationof a chaotic spatialstructurein many physicalproblemsis of greatinterest. The classical
problemof solid state physics is the problemof electronspassingthrough a crystal lattice with a
periodic potential. The result of the considerationsis that the electronmoves like a wave whose
parametersdependon the crystalcharacteristics.Now let us assumethat wehavemanagedto createa
chaotic irregular lattice. The remarkableresult is that in this casethe electronmotion is qualitatively
different. It provesto be localizedin a certaindomainof space.The irregularitiesmay havevery small
amplitude. It is importantthat they shouldbe chaotic.This phenomenoncalledAndersonlocalization,
hasvery greattheoreticalandapplicationalimportance[245].

Another physicalproblem is connectedwith the study of and the searchfor so-called“turbulent
crystals” [247]or quasi-crystals.Thesimplestexampleof sucha crystalis a latticeat thenodesof which
atomsof severalsubstancesalternatein a chaoticmanner.Examplesof figureswhich canfill a planein
an aperiodicway havebeenknown in moderngeometry[246];however,crystalsof sucha kind have
beendiscoveredonly in recentyears[248].

Ideas about chaotic spatial structureshave recently been used more and more extensively in
astrophysics,the theory of elementaryparticles,andthetheoryof magnetism.Thereforewe may expect
that investigationsof nonlineardissipative mediawherechaotic spatial structurescan exist will also
experienceprogress.

Let us note that, when studyingspatial chaosin eqs. (8.7), (8.8) and (8.9),we meet conservative
dynamicsystems[ineq. (8.8) with periodicexternalperturbation].This enablesus to usemanyresults
obtainedin investigationsof spatial chaosin Hamiltonian systems[156]. Further investigationswill
seemto allow a few basicgeneralscenariosof the developmentof spatial chaos.

Now we shall turn our attentionto aclassof problemsconnectedwith analysingspace—timeorder.
At the presenttime the studiesof theseproblemshaveonly begun. Analysing self-similar solutions
leads us to the necessityof studyingboundaryvalue problemsfor systemsof ordinary differential
equationsor for elliptic equationsin the multi-dimensionalcase.However,somenonlinearequations
haveparticularsolutionswhoseconstructionprovesto be morecomplex.The solutionsof Kuramoto—
Tsuzuki-typeequationsare an example. Similar problemsarise in searchingfor breathersin systems
closeto integrable,i.e., solutionswhich are close in form to one or severalsolitonswhose amplitude
periodicallyvaries with time [250].

In this chapterwe havediscussedthe example of a changefrom a simple few-mode system to a
partial differential equation. The changehas proved to be very efficient since the influenceof the
harmonicsnot involvedin the simplified model is weak (in our caseit is connectedwith the smalllength
of thedomain).The basis for the finite-dimensionalmodelhasbeenobtainedfrom the solutionof the
linearizedproblem.

However,recentlysomeinterestingproblemshaveappearedwherethe changeto finite-dimensional
systemsis made in a different manner. In these casesnonlinear media are describedby partial
differential equationswhich arecloseto fully integrablesystems[35].Equationsof sucha kind arise,for
example,in nonlinearoptics. As thebasisa set of solitons (solutionsof thenonlinearequation)is used.
Finite-dimensionalsystemsof low dimension are also very efficient here. We shall consider these
problemslater on whendiscussingstochasticregimesin suchsystems.
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9. Diffusion-inducedchaosandother stochasticregimesin nonlineardissipativemedia

In recentyearsit hasbeenshownthat for manydissipativesystemsit is typical to have,beyondthe
temporalor spatialstochasticitydiscussedabove,a morecomplexspatial—temporalchaos.It hasturned
out that in reaction—diffusionsystemswith thesimplestoscillatorykinetics stochasticregimesmayexist.
Since in this case a concentratedsystembehavesin a regularway and its complicatedbehaviour is
connectedwith the effect of the diffusion terms, the phenomenonhasbeencalled diffusion-induced
chaos. Now it arousesgreatinterestfor several reasons.

Reaction—diffusion-typemodelswhere the concentratedsystemshowsself-oscillation(for example,
hasoneor more limit cycles) arewidespread.They appearin the analysisof oscillation reactions,in
some ecology problems, or in physical models. In each caseexperimentsfor the investigationof
diffusion-inducedchaoswould be very important.They could leadto the discoveryof a new classof
turbulentregimes.

The theoretical(and,possibly,experimental)study of diffusion-inducedchaosappearsto besimpler
andeasierthanan analysisof few-modechaosin manyhydrodynamicsystems.In mosthydrodynamics
problemsmulti-dimensionaleffectsprove to be highly important.Becauseof this circumstanceas well
as the difficulties of numericalsimulation of turbulent flows an assessmentof the resultsin this field
madeten yearsago is still valid: “... for thecompleteNavier—Stokesequationsnot only do we not
know a single turbulentsolution but we are not evenawareif one exists. What a stochasticattractor
must look like is also unclear”[251].Evenwhenwe knowthat in a given experimentthe turbulentflow
is determinedby an attractorof low dimension it is usually impossibleto constructsimple finite-
dimensionalmodelsthat would describethephenomenon.

The situation provesto be different in the caseof diffusion-inducedchaos. It hasbeenshownthat
there are somesimple and efficient dynamic systemsdescribingspatial—temporalchaosin reaction—
diffusion-typesystems.At the sametime eq. (3.12),which can describediffusion-inducedchaos,is a
simplified model of somehydrodynamicsystems[96,98], and an analysisof this phenomenonmay
possiblyenableus to obtain someinsight in hydrodynamicturbulence.

An analysisof diffusion-inducedchaosprovesvery useful from the mathematicalphysics point of
view. The solutions of most partial differential evolution equationsthat havebeen studiedby now
behavein a rathersimple way; as ~—+ oo they convergeto stationary,time-periodicorotherself-similar
solutions.However,whennonlinearmathematicalmodels,whosenumberquickly grows, areanalysed
we frequently encounterstationarystochasticregimes.Diffusion-inducedchaosis a prototypeof such
regimes.

9.1. Diffusion-inducedchaosin smallregions

In the first numerical calculationsof problems(3.8) and (3.21) (or their analogswith periodic
boundaryconditions) complexaperiodicbehaviourof thesolutionswasobservedaswell asin a study of
the Brusselatormodel. It allowed one to considerdiffusion-induced chaos (or diffusion-induced
chemicalturbulence)asa newtype of stochasticityin chemicalreactionsrunning in distributedsystems.

We distinguishtwo typesof suchregimes:phaseandaTmplitudeturbulence.If we observethemotion
of the point u(i~t), u(~, t) over the (u, v)-plane it turns out that in the first casefor different ~ the
trajectoriesare close to the samelimit cycle which characterizestheconcentratedsystem.However,
their phases(the point positionson the cycle) may chaotically changewhen thespatial coordinatex
varies.To describesucha situation it is natural to use the Kuramoto—Sivashinskiiequation (3.21).



328 T.S. Akhromeyevaet al., Nonstationarydissipativestructures anddiffusion-inducedchaos in nonlinear media

For amplitude turbulencethe trajectoriesof each point u(i, t), u(~,t) over the (u, v)-planefor
different~ may essentiallydiffer andbehavechaotically. In a certainrangeof parametersthis typeof
diffusion-inducedchaoscan be describedby eq. (3.8).

Further analysisof stochasticregimesin distributedsystemsresultedin the formulation of several
questions.

How is the phenomenonof diffusion-inducedchaosconnectedwith strangeattractorsof dynamic
systemsof low dimension?“An important and as yet unsettled problemis to find the connection
betweendiffusion-inducedchaosandknowntypesof chaosin systemswith severaldegreesof freedom”
[104].

What is a scenariofor the transition from orderedregimesto chaoswhen the system parameters
change?

Whatnumericalalgorithmsareefficient for investigatingsuchregimes?
It is natural to beginthe discussionof thesequestionswith the simplestcaseof small regions.
Earlier the simplestattractorsof two-modesystemswere comparedwith one- and two-frequency

regimesin eq. (3.12) for 1 = ir (k = 1) (see figs. 7.12 and 8.1). Let us extendthis comparisonand
considermore complex solutions. According to refs. [103,217, 253] we considerthe solutionsof
problem(3.12) for c, = 5 change.We shall increasethe value of c, by moving towardsthe regionof
diffusion-inducedchaosfrom below. By analogywith the two-modesystemit maybeexpectedthat here
period-doublingbifurcationsoccur.

An ideal way to determinea scenariofor the transition to chaos would be to find the whole
bifurcationdiagram.However,thisusuallycannotbe donewhile studyingpartial differentialequations.
Therefore,wesearchfor different typesof orderingthat aretypical for one of the knownscenariosof
the transition to chaos,and the simplestfinite-dimensionalmodelsthat describethe picture under
observation.

Forc, = 5 andc2 = —10.0 thesimple cycle 5’ determinesthe asymptoticbehaviourof the solutionsof
the partial differential equation.As theparameterc2 increasesthe stablecycle S

2 andthenS4 appear
(fig. 9.1). We recall that the cycle in problem(3.12) is a solutionof theform (8.3).For c

1 = —7.4 there
is astablecycle S

8, andfor c
2 = —7.35S’

6 appears.We shall againlook for thevaluesof local maximaof
the functionp

0(t). We plot the valuesof thenth maximum,M5, alongthe abscissaand of the (n + 1)st
maximum,M5 + 1’ alongtheordinate,wheren = 1, 2 The points (Ma, M~+ 1) lie with high accuracy
on continuousuniquecurves,shown in fig. 9.2. Therefore,we may use a family of one-dimensional
maps

M~÷,=f(M~,c2) (9.1)

as a simplified modelthat describesthe picturewe observe.

F.8-

n.~r/fa, ñ:~T/f~

r218’
I I I I b,

~ ~
Fig. 9.1
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From fig. 9.2 it is seenthat theseone-dimensionalmapshavea smoothvertex,andtheamplitudeof
the function grows as c2 increases.The family of maps(4.2) hasthe sameproperties.Transition to
chaosin (4.2) occursasa resultof a cascadeof period-doublingbifurcations.Thenan inversecascadeof
period-doublingbifurcationsis observedwhich leadsto a sequenceof transitions~ —÷~ Smoothness
of thevertexbrings abouttheoccurrenceof a “window structure”— in anyvicinity of chaoticregimes
therearestablecycles.After the first cascadestablecyclesappearthat do notbelongto thetype S

2~.It
may be expectedthat the propertiesof this family of mapswill be close to thoseof the family (9.1).

The computationscarried out in refs. [217,218, 253] show that as c
2 increasesin the partial

differential equationthe noisy cyclesx
4~x2 and x1 successivelyappear.Dueto the limited accuracyof

the computationssolutions with ~—3x 102 different maxima are consideredas aperiodic. The mapf
[M~~

1=f(M~)] for one of the solutionsof the type x
2 is shown in fig. 9.2 (c

2 = —7.25). Between
aperiodicsolutionsstablecomplex cyclesexist indeed;one of them is shown in fig. 9.3.

The fact that a map which is closeto one-dimensionalcan be distinguishedis suggestiveof the low
dimension (of order 3 + e, e -~ 1) of the attractorin the initial problem,and it greatly simplifies our
investigation. In order to construct the function f, 100—300 elementsof the sequence{ M~} are
sufficient. To obtain the simplest stochasticcharacteristicswith the sameaccuracymuchlargersamples
areneeded.[Forexample,in this caseconstructingthe histogramwith step 10 ~would require-~i0

5
local maxima of the function p

0(t).] Using the resultsof the theory of one-dimensionalmapswe may
forecastdifferent types of orderingand stochasticregimesin the family of maps(9.1). It is naturalto
searchfor them in the initial problemfor nearbyvaluesof theparameter.(Werecall that thepointsof
{M~,M~~1}do not lie, in fact, strictly on a curve; theyarelocatedin its vicinity. Besides,the function
(9.1) is known only approximatelybecausethe sampleis finite.)

So far we increasedtheparameterc2, moving towardsthe regionof complexsolutions from below.
Now weshall actdifferently anddecreasec2, moving in from theorderedregimesabove.The family of
one-dimensionalmapsthat appearin this caseis shownin fig. 9.4. We haveseenthat in families with a
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sharpvertex the scenarioof the transition to chaos may be very complex. In our computationsfor
c2 = —4.1 andc2 = —4.16 the respectivestablecycles5’ and S

2 were observed;however,the transition
to stochasticregimeswas not studiedin detail. The stochasticregimesthat appearlater on generate
one-dimensionalmaps.First thefunctionf hasonesharpmaximumasin the caseof a two-modesystem
(seefig. 7.23).
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As c2 decreasesin the simplified model (3.15) the mapsremaincontinuousand unique, and have
only onesharpmaximum. In thepartial differential equationthe functionf behavesin a morecomplex
way. If we decreasec2 the solutionchangesso that the functionfwill first havea minimum (c2 —5.3)
and then anothersharpmaximum (c2 —6.0). (A similarphenomenonwasobservedin somesystems
of ordinary differential equationsand specifically in the Lorenz system for certain values of the
parameters[137].)For c2 —6.0 the uniquenessdisappears,and thesolution of thepartialdifferential
equationis still aperiodic.Thenthe reconstructionoccursoncemore,afterwhich the functionbecomes
smoothand unique(fig. 9.2).

Now we considertheparameterrangec, S 1.2 (regionIII in fig. 7.12). In the two-modesystemwe
can observe here aperiodic solutions in which the function Mn+i(Mn) does not determineone-
dimensionalmaps. It turnsout not to be due to an increaseof thedimensionof theattractor.Let us
explainthe situation.

When systemsof N ordinary differential equationsareinvestigatedthe location of the intersection
pointsof trajectoriesanda crossingsurfaceaswell asthecorresponding(N — 1)-dimensionalmapsare
oftenconsidered[in thesystem(3.15) the local maximaof p0 lie on thesurface~ = 0]. If thesurfaceis
chosenwrongly, someturns will not intersectit while othersmayintersectit severaltimes. In this case
thepropertiesof themap and theoriginal equationsareessentiallydifferent.

Solutionsof thesystem(3.15) in the givenparameterrangehave,in fact, sucha form that on some
turns the function p0(t) achievesa local maximumseveraltimes. (The reasonis the appearanceof a
stablesingular point on line EF [217].)If we take this fact into account and throw away “spare”
elementsfrom the sequence{M~)the remaining points will determinea one-dimensionalmap. A
similar picture is observedin thepartial differential equation.

Figure 9.5 shows a typical aperiodicsolution projectedonto the (p0, p, ) -planein the considered
parameterrange. It is seenthat on different turns p0(t) hasa different numberof maxima.For some
values of the parametersthe points { M~,M~+ , } fill the whole parts of the plane,for example,as is
shown in fig. 9.6.
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Someotherscenariosof the transitionto chaosmay be implementedin eq. (3.8). In ref. [242]the

Cauchyproblem(—~< x<m) is consideredin detail for eq. (3.8) with initial datain the form

W(x,0) = 1 + 0.2cos(qx) (9.2)

(which is equivalentto thesecondboundaryvalueproblemwith thecondition that flow is absenton the
boundariesof the interval [0,irlq]).

The behaviourof the solution was investigatedfor t—>°~dependingon two parametersc0 and q
(c, = — c2 = 1/c0). Putting c0 = 0.25 anddecreasingq (which is equivalentto increasingthelengthof the
region) the authorsobservedthe appearanceof a limit cycle as a resultof a Hopf bifurcation (in the
variablesp,,; in theoriginal variablesa two-torusappearsfrom thelimit cycle), thentheappearanceof a
two-torus(a three-torusin the original variables)and a chaoticregime.

In this work the solution was processedin variousways; however,the following approachproved
most successful. The quantity IW(x, t)I

2 was expanded in a Fourier series, W(x, z’)12 =

~m~Im(t)cos(mqx).Then the behaviourof the points A,, A
2,... suchthat a0 = 0.01 and dct0/dt>0

was consideredon the trajectory(an analogof thePoincarésectionin aninfinite-dimensionalsystem).
The point H was chosenin the (a,, a2)-plane and a referencesystemwas introducedsuchthat it
allowed comparisonbetweenthe projections of the points A1, A2, . . - onto the (a1, a1)-plane,

V
Fig. 9.7
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A,, A2,..., and the sequenceof angles0,, 02 Then we constructedthemaps

= F(0~). (9.3)

It turnedout that the function F determineda map of the circle onto itself with high accuracy.
Such mapsappearin the secondboundaryvalue problem (3.12) too if we againdistinguishlocal

maximaof p0(t) andplot M~+ 1 = f(M~)for sufficiently largeregions[103,217]. A typical picture in this
caseis shown in fig. 9.7 (c, = 4, c2 = —4, / = irIO.S1). It is natural to choosethepoint H within the
torus section.

In ref. [242]it is shownthat the transitionto chaosin a partial differential equation,asin the circle
map(5.24), is causedby the fact that for a certainvalue ofq themap(9.3) becomesnoninvertible[178,
179].

Diffusion-inducedchaosin eq. (3.12)wasstudiedin detailin ref. [254].Hereinitial conditionsofthe
form (9.2) were considered,the value of 1/c0 = c, = —c2= 4 was fixed and the value of q was
decreased.It wasshownthat in this problembifurcationsconnectedwith the lossof symmetryor with
the interaction of symmetricsolutionswere important too. Such a mechanismby which complicated
solutionsarise is also of importancein the two-dimensionalanalogof eq. (3.8) [103,217]. Below we
shall considerit in more detail.

In ref. [254]thestandardtechniquefor computingtheLyapunovexponents[197]wasemployed.The
partial differential equation was replaced by a finite-dimensionalsystem; therefore the methods
developedfor ordinarydifferential equationscould be used.It wasshownthat diffusion-inducedchaos
in thepartial differential equationin the consideredrangeofparameterswascharacterizedby positive
Lyapunovexponents.(Notethat thesecomputationsrequireahigh accuracybecausenot a single oneof
the calculatedpositive Lyapunov exponentsexceeds0.05.) For example, for q = 0.95 the largest
LyapunovexponentswereA, = 0.0431, A2 = 0.001 12, A3 = 0.00048, A4 = —0.909, while thedimension
was dL = 3.0474.

Remark.Questionsdealing with computationaltechniquesusedfor the investigationof diffusion-
inducedchaosare important,and the basicsourcesof information are numericalexperiments.

A purely implicit differenceschemewith a second-orderapproximationof the boundaryconditions
[255]was usedin refs. [108,217]. (In theseproblemsthe approximationof the boundaryconditions
turnedout to be very essential[238].)With the nonlinearity involved a simple iterationmethodwas
applied, while the threediagonalmatrix algorithm [255]was usedfor solving the linear system.

For the problem under investigation we usually need rather long computation times (strongly
dependenton c1 and c2 andquickly increasingwith increasingregionlength),so that the systemcould
achievea steadyregime. The choiceof stepsin time and spaceusuallyrequirestest computations.The
Galerkinmethodturnsout to bevery efficient— a good approximationto theequationrequiresa small
numberof harmonics.At the sametime theerrorsintroducedinto the solutionsby thedifferenceand
thespectralapproximationsturn out to be different. (In the first casethesymmetryof thesolutionsof
theoriginal equationis not maintained,and this fact is very essentialin an analysisof unstablespatially
symmetricsolutions.)

In refs.[242,254] a pseudospectralmethodbasedon a fastFourier transformalgorithmwasused.In
the first case64 harmonicswere taken, in the secondcase32. A systemof ordinary differential
equationswas solvedby thepredictor—correctormethod [20].
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9.2. Chaos in systemswith transport

Let us consider one generalizationof the Kuramoto—Tsuzukiequations.In refs. [256—258]a
phenomenologicalmodel of so-called“open flows” (suchasflows in tubes,channels,etc.) is proposed.
It is given by the equation

~ 0<x<cc, ~fi(0,t)=e(t), i/i(x,0)=~i0(x), (9.4)

where e(t) is weakrandomnoise; a = a, + ia2, b = b, + ib2 and c = c, + ic2 arecomplex coefficients,
while v is a real coefficient; all coefficients are supposedto be piecewisebut may be different in
different regions.

Forc =0, e(t) = 0 in theCauchyproblemwith —~ < x <c~thesolution is determinedby the explicit
formula

e 1/2 j’ dx’~(x’)exp[—(x—vt—x’)/4bt].
(2irbt) -~

From theaboveformulait follows that threetypes of behaviourof thesolutionsof the linearproblem
are possibleas t—*00.

1. a1 <0. The solutionhere is absolutelystable; Ii/i(x, t)I—* 0, uniformly in x.
2. a, — v

2b,I(41b12)>0.The solution is absolutelyunstable,4!1(x, t)—*co at eachpoint x.
3. a

1 — v
2b,/(41b12)<0, a, >0. The solution is spatially or convectivelyunstable.

In case3

~ kl’(x, t)I—*0, tim I~/s(X+Vt, t)I—.*x,

for somevalue v’ and fixed arbitrary valuesof x andX.
If in problem(9.4) thereis a region on the left wherethe solution is spatiallyunstable,theweak

noise is of importance.When it is absenti/i(x, t) —*0 ast —*00 at eachpoint. In the presenceof noise
right-running wavesare generatedwhose amplitudegrows with time. When the amplitude I çfr(x, t)(

becomessufficiently large,thenonlinearitybecomesessential,anda chaotic regimedevelops.Numeri-
cal calculationsshow that in spiteofthe complexform andaperiodicityof thesolutionall the Lyapunov
exponentsmay be nonpositive[258].

Describingsuch regimesrequiresthe introductionof new quantitativecharacteristicsof chaos,in
particular,the velocity-dependentLyapunovexponentsA(v’, x

1, x2),

/ - 1 ~(v’,x1, x2, t)A(v , x x2) lim — In , ,1 ~ t ~(v , xi, x2, 0)

x2+,,’t
1/2

~(v’,x,, x2, t) us ( f I~fr(x,t)I
2 dx) ,

xl+vt

where ,(x, t) is the solution of the equation that describesthe evolution of a small perturbation
~i(x, 0) in the region (x

1, x2); it is an analogof the equationof variations.
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The calculationspresentedin refs.[256,257] show that chaoticspace—timeregimesof differenttypes
are possiblein nonlineardissipativemedia with transport(v ~ 0). Experimentalinvestigationof such
behaviourin opensystemswould be very interesting.

9.3. Few-modechaosin a hydrodynamicproblem

Above we have discusseddiffusion-inducedchaos that is describedby the Kuramoto—Tsuzuki
equation. Such regimes seem to be typical for many reaction—diffusion-typesystems and some
hydrodynamicsproblems.The stochasticregimesplayan importantrole in otherdissipativemediatoo.
It appearsvery helpful to usethe ideasdevelopedin the studyof dynamicsystemsof low dimension.
Considerthe following example.

In the literatureit hasrepeatedlybeenmentionedthat the Lorenz systemis not applicableto the
physical situation for whose description it was proposedbecausean increase in the numberof
harmonicsqualitatively changesthebehaviourof thesolutionsdependingon theparameter.However,
it has been shown that the samedifferential equationsmay serve as an efficient model in other
problems,in particular,in laserphysics[13].It is of interestto investigatenonlinearmediaandphysical
systemswherethepropertiesof chaoticregimesproveto be like thosein theLorenzmodel, which have
beenstudied in detail.

Onesuch system,calleda thermosyphon,wasproposedin ref. [259].The thermosyphonis a torus
filled with an incompressiblefluid and mounted in a vertical position. Gravity acts in the vertical
direction (fig. 9.8). Such systemsare interesting in termsof someengineeringproblemsarising in
energytechnology.

The fluid in the thermosyphonis heatedfrom below and cooledfrom above(the wall temperature
variesas T= T0 + Wcos ~).The fluid densitylinearly dependson the temperature,the fluid velocity is
determinedby the Navier—Stokesequation

T)]g+ vV
2v,

and the temperaturedistribution by the thermalconductivityequation

ôT/ôt+v~VT=~V2T.

\\\~/~/
T

0~W
Fig. 9.8
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Theseequationsarestudiedby theGalerkinmethod(in thesimplestapproximationit yieldstheLorenz
system).A seriesof statementsabout the propertiesof the ensuingsystemsof equationsare proved.

The calculationsshowthat in this caseincreasingthenumberof modesdoesnot changethescenario
of the transition to chaos.It remainsthe sameasin the Lorenzmodel. The quantity W may play the
role of a control parameter.

Regardlessof thenumberof harmonicschaoticregimesarewell describedby one-dimensionalmaps
like thosein the Lorenzsystem.

9.4. Spatial—temporalchaosin systemsclose to an integrablesystem

Stochasticspatial—temporalregimesare typical for a numberof nonlinearopticsproblems.A large
classof suchnonlinearmediais consideredin the reviews [78,260]. Their specific featureis that they
areclose to a completelyintegrablesystem— thecubicSchrOdingerequation.The equationitself may
be reducedto a certain linear equation by the inverse scattering method, and its solution in an
unboundedregionfor t—* ~ is a setof solitons.The appearanceof sourcesanddissipativetermsin such
equationscan leadto a very complexspatial—temporalbehaviourof thesolutions.

In accordancewith ref. [78]we discussonephysicalsystemof sucha type. We considerlaserbeam
propagationthrough a ring resonatorfilled with matterwith a nonlinearcoefficientof refraction (fig.
9.9).

The electric field of an incident wave may be representedin the form

~ = A(x)e~~°’~+ c.c.

and the field in the ring resonatorin the form

E = F(x, z, t) exp(ikz — iwt) + B(x, z, t) exp(—ikz— iwt) + c.c.

Usingadiabaticelimination of theatomicvariables[13,78] andasymptoticmethodswe may obtain an

equationfor the wave amplitudeB in the form

2i + + + -~-~)+ 13L1N(BB*)B= 0, (9.5)

where N(I) is a function determinedby the propertiesof the nonlinear medium. Usually N(I) =

A~f. ~

/

Fig. 9.9
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—11(1+ 21) (saturablenonlinearity); for small I it becomesthe “Kerr nonlinearity” N(1) —1 + 21. In
this caseeq. (9.5) transformsto thecubic Schrödingerequation.

If theamplitudeof the incidentwave is independentof time, thequantity t — zic can bereplacedby
an integerindexn which indicateshow manytimes thewavepassedthroughthe ring resonator.Then
we obtain the following problem:

Bn(x,0)=~TA(x)+Re’~Bn,(x,~=z/L=1), B00. (9.6)

The coefficientsR andT, which areless thanunity, aredeterminedby theresonatorproperties,and the
coefficientsB,,(x, ~)change,when ~varies from 0 to 1, accordingto the equation

2iB,,~+ y(B,,5~+ ~ + 13N(B,,B~)B,,= 0. (9.7)

This problemis equivalentto the infinite-dimensionalmapB,,(x, 0) —* B,,+ ,(x, 0), which indicateshow
theamplitudeB changesafter everypassagethrough the resonator.

In the planewavecasewhen thereis no Laplacianin eq. (9.7) it canbe solved explicitly, and the
problemis reducedto investigatinga two-dimensionalmap of thecomplex planeinto itself,

B,,~,= a + Rexp[ikL + i/3N(B,,B~)/2]B,,, B,, us B,,(~= 0).

In this map the coefficient R
2 <1 is responsiblefor the contractionof the phasevolume, a for the

transport,and the exponentfor rotation. It is clear that in sucha map theremay occur fixed points,
cycles, or chaotic attractors. The involvement of various instabilities leads to an increaseof the
dimensionof the map.

Two-dimensionalmapsarise also in the casewhenthe spatial profile is close to a solitonsolution,

B = G
5(y, ~,A, y) = S(Ay,A) eIl1~2~1,

whereS(0,A) is a realevensolutionof theequation

S50_S+~[1+N(S2)]S=0,

tendingto zero as 0—* ~ A determinesthe soliton amplitudeand width, and y the phase.It may be
expectedthat after eachpassagethroughthe resonatorthe form of thesolution will remainthe same
while theparametersy andA change.Insteadof aninfinite-dimensionalmapit yieldsa two-dimensional
map(A,,, y,,)—* (A,,~,,~ (Its specific form is given in ref. [78].)Interestingmore complexpatterns
of spatialorderingareobservedwhenthecharacteristicsof the incidentwaveor the systemparameters
are varied. The existenceof solutionsclose to solitons provesvery useful in thesecases.It helpsto
describecomplexprocessesin nonlinearmediawith the aid of dynamic systemsof low dimension.

Numericalexperimentshaveshownthat in ring resonatorswherethe intensityof the incidentwaveA
is constantthe transitionto chaosmaybe connectedwith a cascadeof period-doublingbifurcationswith
intermittency,or with the Ruelle—Takensscenario[261].

Complexcyclesandstochasticregimeswereobservedalso in a ring resonatorwith absorption[in this
caseeq. (9.7) would includedissipativeterms]whentheamplitudeof the incidentwave wasmodulated
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Fig. 9.10

in time, A(t) = A0 E,, sech(t— nt~)[99].The energylossesand thepumpingin the ring resonatorwere
determinedby the boundaryconditions while the nonlinearmediumcould be describedby integrable
equations.It is interesting, however, to considernonlinear media which are close to completely
integrableonesand where thereare dissipative processesand sourcesexplicitly dependenton time.
Such is, for example,the sine-Gordonequationwith an inducing force, and damping,

~ 0<e41,
(9.8)

~(x+ L, t)= ~(x,t), ~i(x,t’0)= ~1~(x), ~1(x,t=0)= v1,,(x).

In ref. [262]it was discussedhow a stochastictemporalregimeemergedandhow thespatialorderingin
thesystemchangedas theamplitudeof the inducingforceF increased.For L = 24, e = 0.1, ra = 0.04,

= 0.87 andwith increasingeF, 0< eF<0.116,thesolutionsgrewmorecomplexin the following way.
For small values of eF and ~—* 00 the function ~(x, t) proves to be spatially homogeneousand

periodicallyvaryingin time with the frequencyof the inducingforce. Thenit losesits homogeneity,and
a profile ariseswhosetypical form and location are asshownin fig. 9. lOa. However,thesolutionstill
changeswith frequencytu.

Then,asthe parameterF increases,quasi-periodicregimesappearand the amplitudeof the fourth
spatial harmonicstartsgrowing. As F increasesfurther, temporalchaosappears,in which “turbulent
peaks” alternatewith the “laminar” intervals. The amplitudesof the secondand fourth harmonics
becomecomparable[fora certain instantof time the function p(x, t) is shownin fig. 9. lOb].

In ref. [262]theLyapunovexponentswere calculatedand the analogsof thePoincarésection,the
temporalspectrumof thesolutionandothercharacteristicsof thestochasticsolutionswereconstructed.
The correlationexponentin the investigatedchaoticregimeschangedin the interval 3.5 ~ ,‘ ~ 4.5.

In the analysisof problem(9.8) the factthat thesystemis closeto completelyintegrablewasused.
The inversescatteringmethodwasappliedby constructingthe linear equationin which the “potential”
changeswhile the “energylevels” A remainfixed. Hereat eachinstantof time a similar transformation
is performed,the “potential” is constructedand the eigenvaluesare determined.But they changein
time. Fromthe function A(t) we mayjudge howclosethesolution is to a setof solitons.It enablesus to
constructsimplified efficient models.

Stochasticregimeswere discoveredalso in mediadescribedby theequation

q,.+iq~~—2i~qI
2q=(r

1— r~IqI
2)q+ r

3q5~—(r0!T) ~exp(2irmntJT).

In this casewe canalso constructdynamicsystemsof low dimensionwhich allow us to describechaotic
regimes[264].
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9.5. A priori estimatesof the dimensionof the attractor

When processesare studied in nonlinear media where stochastic regimes are observed,the
dimension of the strange attractor is usually estimatedin the course of a numerical or physical
experiment.Recently, however, mathematicaltheorieshave been developedwhich allow a priori
estimatesof the dimensionof the attractorin partial differential equations.Appropriatestudiesare
discussedin the review [19].

We noteheretwo importantresults.Forthe two-dimensionalsystemof the Navier—Stokesequations
it hasbeen shown (specifically, for zero boundaryconditions) that the Hausdorifdimension of the
attractormay be estimatedfrom above,

dim U ~ C(Re)4.

For the reaction—diffusionsystemof equations,

u
1=~az1u—f(x,u)+Au,uI~=0, I1CW,

where u = (u,,. . . ,Um), f= (f1,. . - , frn)’ while thematrix a, of ordermwith constantcoefficients,is

suchthat thematrix (a + a *) /2 is positive definite and its minimal eigenvalueexceedsjs,,, i.e.,
i~oIuV°—Csf(x,u)u~s,IuI’°°+C, p0>

2,

and

i~k~°’
i,k—1

it hasbeenshownthat

dim U~CA~’2v~’2,A> 1, v>0. (9.9)

In thecaseswhenthediffusion coefficientis constanttheestimate(9.9) showshow thedimensionof the
attractorchangesasthe lengthof the regionincreases.

It may be expectedthat theoreticalinvestigationsof diffusion-inducedchaosand other stochastic
regimesin nonlinearmediawill be intensified in the immediatefuture.

10. Elementarytypes of orderingin two-dimensionalsystems

Multi-dimensionaleffects are essentialfor the investigationof many open systemsand reaction—
diffusion systemshaveto be analysedin two-dimensionaland three-dimensionaldomains.An ideaof
the possibletypes of orderingin suchnonlinearmediais given by the two-dimensionalanalogof the
Kuramoto—Tsuzukiequation,

W,= W + (1 + ic,)(W~
5+ W~,)—(1 + ic2)IWI

2W. (10.1)
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This equationis used in the theory of wind waveson water [96],for the investigationof dissipative
structuresin active media and in oscillating chemical reactions[101],and in some morphogenesis
models [5]. We note that eq. (10.1) describesa narrowerclass of two-componentsystemsthan the
Kuramoto—Tsuzukiequationin one-dimensionalproblems.Sincein the two-dimensionalcaseboth the
length andthedirectionof thewavevectorareimportant,thenumberof unstablemodesincreasesand
models,more complicatedthan eq. (10.1),appear[121].

In somestudiesmajorattentionis paid to theCauchyproblemfor this equation.An extensivelist of
suchpublicationsis given in ref. [101].Usually they dealwith self-similarsolutions(spiral waves,asa
rule), defined in infinite domainsand havingphasesingularities (i.e. points where WI —*0, and the
phase~, W= p e’~,is not defined[265]).

Comparing the analytical results with numerical or physical experimentsleads to a number of
problems.First, it is necessaryto find outhow quickly self-similarsolutionscan be obtained.Second,
we always have to deal with boundeddomains,while the solution doesnot have the property of
localization.

Thatis why we areinterestedin an alternativeapproach— an analysisof solutionsof eq. (10.1) for
small two-dimensionaldomains.In this casewe couldusethe resultsobtainedfor simplified modelsand
one-dimensionalequations.Within such an approacha more thoroughanalysismight be performed,
getting beyondthe scopeof a single classof solutions, and the main typesof orderinginterestingfor
morecomplex problemscould be revealed.

According to refs. [103,217] we considerthe following boundaryvalue problem,

W~=W+(1+ic,)(W~~+W~)—(1+ic2)IWI
2W,O~x~1,O<y<l,

(10.2)
W(x,y,O)=W

0(x,y), W~(0,y,t)W~(l,y,t)=W~(x,O,t)=W,,(x,l,t)=0.

We shall be interestedin the behaviourof its solutions for different valuesof c1 and c2 in thecaseof
small domains,In thenumericalcomputationsgiven below 1 = ir and the initial dataareasymmetric,of
the form

W0 = u0 + iv0 = 0.1 ~ cos(irmx//)cos(irny/l)[l + iI(m +1)].
on,n =0

In sucha formulation only the simplestsymmetricsolutionsareessential,namely
(a) spatially homogeneoussolutions

W(x,y, t) = exp(—ic2t), (10.3)

(b) one-dimensionalsolutions

W(x,y,t)=W(x,t) or W(x,y,t)=W(y,t),

(c) solutionssymmetricwith respectto one ofthe diagonals

W(x,y,t)=W(y,x,t) or W(x,y,t)=W(1—y,l—x,t).
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We shall discussthe following questions.Will the one-dimensionalsolutionsof problem(10.2) be
stableagainsttwo-dimensionalperturbations?Doesthis problemhavesolutionsfor which thereis no
one-dimensionalanalog?In what way do the two-dimensionalstructuresget complicatedwhen the
parametersc1 and c2 are varied?

10.1. A simplifiedfinite-dimensionalsystem

The analysisof varioussimplified modelsplays animportantrole in investigationsof one-dimensional
problems. To constructsuch models in two-dimensionalproblemsit is convenient to presentthe
solutionsin the form

u(x, y, t) = ~ am,,(t)cos(~rmx/l)cos(lTny/l),
on,n=0

v(x, y, t) = ~ bm,,(t)cos(~rmx/l)cos(irny/l),
rn,,,=0

and to write down a systemof equationswhich connectsthe Fourier coefficientsam,,(t) and brnm (t),

~~mn= am,, — (am,, — cibrnn)k
2(m2+ n2) — (Urn,, — c

2Um,,),
(10.4)

bm,, = bm,, — (c1a,,,,,+ brn,,)k
2(m2+ n2) — (c

2Um,, + Urn,,), k =

where Urn, and Urn, are known functions of {a,1} and {b11}. Below we shall use the notation Pm,,

p~,,,= a~,,,,+ b~,,,,.Simplified models may be obtained from this infinite systemby keepinga finite
numberof equations.This maybe donein variousways,for example,by dismissingtheharmonicsam,,
and brn,, with m� p orn � p. The simplified systemthusobtainedwill be calledthesystemwith N= p; it
contains2p

2 equations.
We shall now consider a simplified model with N= 2, which contains 8 ordinary differential

equations.Wecandecreasethenumberof equationsby goingover to thevariablesPm,, and 0,,,,,with the
aid of the formulasam,, = Pm,, cosc0m,,~bm, = Pm,, Sin Wmn’ 0mn = ~~mn— ~. The equationfor q.’,~maybe
solved separately.It meansthat the functionsam,,(t), brn,,(t) changein a morecomplicatedway than
Pm,,(t) and Om,,(t). In particular, the singular pointsPm,, = const., 0,,,,, = const. correspondto periodic
solutionsof am,,(t), bmn(t); the limit cyclescorrespondto two-frequencyregimes.Therefore,below the
solutionsof a simplified systemfor which Pm,, = const.will be calledsingularpoints, and thesolutions
for which Pm,,(t) areperiodicwill be called limit cycles.

In the simplified model with N = 2 there is an analogof the simplest symmetricsolutions. The
singular point p

00 = 1, Pm,, =0, m + n ~ 0, correspondsto the homogeneoussolution (10.3). The
solutionsof the simplified systemfor which am,, = 0, bm,, = 0, n ~ 0, correspondto theone-dimensional
solutions,in y, of (10.2).

The solutionsof problem(10.2)that aresymmetricwith respectto thediagonalof thesquare,x = y,
maybe comparedwith the integralcurveswheream,, = a,,,,,,bonn = b,,m~Suchsolutionsof the systemof
ordinarydifferential equationsarealso calledsymmetric.

Let us see how the type of the solutionschangesfor the simplified systemas the parameterc2
decreases.We consider the line c1 = 1.5. In the systemof eight ordinary differential equationsthe
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homogeneoussolutionlosesits stability, the stablesingularpoint with p00~ 1 appears.The valueof c2
at which bifurcationoccurscoincideswith thecritical valueof theparameterfor thepartial differential
equation.In theensuingsingularpoint Pm,, = 0 for m ~‘ 0. We notethat in thesystemanothersingular
point appearssimultaneouslyfor which Pm,, = 0 for n ~ 0. In this casethesystemwith N = 2 becomes
simplified and transformsinto the system of ordinary differential equations(3.15), consideredin
chapter7 [~= a~0+ b~0,,~ = a~,+ b~1,0=2(~~~—

As c2 decreasesfurther, the point with Pm,, = 0 for m~ 0 loses its stability, andthe asymptotic
behaviouris determinedby thesingularpoint with Pm,,~ 0 (see thesolid linesin fig. 10.1).Then for a
certainvalue of c2, p01 becomesexactly equalto p10, after which the computationsconvergeto a
symmetricsolution with a01 = a,0, b0,= b,0.

For c2 —3.3 a Hopf bifurcationoccursanda symmetriclimit cycle develops[p01(t) = p10(t)]. The
position of thesingularpoint which lost its stability andexamplesof symmetriccyclesareshownin fig.
10.2a.For c2 —3.7 the cycle losesits symmetry.Two projectionsof sucha type of solution areshown
in fig. 10.2b.The sequenceof bifurcationsobservedconditionallymaybe presentedasshownin scheme

c-~2 ~~J8 ~8t

b
a

~ ~

Fig. 10.2
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Homogeneoussolution Li Singularpoint ~..1JSingularpoint singularpoint sot~~L_J s L..J Asymmetric
1, p,,,,= 0, m + n >0 p,,,, = 0, m ~ p~,,,~0 = ~ ymmetnccycle ~ cycle

Scheme2.

2. In this sequencemostbifurcationsare associatedwith the lossorappearanceof symmetry,which is
an essentialdifferencebetweenthe two- and one-dimensionalproblems.

The first transitionin this sequenceis connectedwith theappearanceof a singularpointwith Pm,, = 0,
m~ 0. Thecritical valueof theparameteratwhich this transitionoccursis determinedby equality(7.8)
as in theone-dimensionalcase.The situation,however,maybe morecomplicated.We mayverify this
by observinghow thesolutionchangesalongthe line c, = 3.0 (fig. 10.1).How thesolutionsdefiningthe
asymptoticbehaviourof a simplified systemwith N = 2 becomemorecomplexis schematicallyshownin
scheme3.

It is important to note that a singularpoint with p0, = p10 appearsfor avalue of the parameterc2
wherepointswith Pm,, = 0, m� 0, may emerge.A symmetricsolution is obtainedfor a generalform of
the initial data (spontaneousappearanceof symmetry). The cause of this phenomenoncan be
understoodusing methodsfrom bifurcationtheory.

10.2. Lossofstability of a spatially homogeneoussolution

We considerproblem (10.2) nearthe critical valuesof the parametersfor which thehomogeneous
solution(10.3) losesits stability. The respectiveresultsareshownby markersin fig. 10.1. As ~—* 00 the
asymptotic behaviour is determinedby solutions with Pm, = const., m, n = 0, 1,2 As in the
simplified model with N= 2, thesolutionarisingis one-dimensionalon the line c1 = 1.5 and symmetric
on c1 = 3. Both the types of solution and their quantitativecharacteristicscoincide in thesetwo
problems.

The periodicsolutionsof thepartial differential equationarean analogof the singularpoints in the
simplified model. The following lemmais valid.

Lemma. If a self-similarsolution of the form

W(x,y, t) = R(x, y) exp[i~t+ ia(x, y)] (10.5)

satisfies eq. (10.2) it has Pm,, = const., 0,,,, = const., where m, n = 0, 1, 2,... (Pm,, and 0,,,,, are
determinedby theFouriercoefficientsam,,,bm,asin the simplified system).Theconverseis also true:if
the harmonicamplitudesand the phaseshifts betweenthe harmonicsare constantin a solution of
problem(10.2), it may be written in the form (10.5).

Singular I
Homogeneous point ~ ~-...._i..,, Symmetric Asymmetric

solution ~, = cycle cycle

Scheme3.
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The self-similarsolutionsappearingafter the lossof stability of thehomogeneoussolutionareclose
to it. Therefore,it is natural to useasymptoticmethodsfor its analysis. We write eq. (10.2) in the
variablesp and ~:

upcOsq~,v=psin~,

= p — p3 + (p~— pço~+ p~,— pço~)— c,(2p~q~~+ pco~~+ 2p~co~+ ~ (10.6)

pço~= —c
2p

3+ (2p~~o~+ + 2p,,ço~+ p~’~~)+ c,(p~
5— p~o~+ p~,— pd).

We shall searchfor a solution in the form of a seriesin the small parameters that characterizesthe
deviationof c2 from thecritical value~2 at which the solution (10.3) loses its stability,

p = 1 + er,(x,y) + e
2r

2(x,y) + e
3r

3(x,y) +.--,

(10.7)

c2=~2+w,s+w2s
2+w

3s+, q~,w~=const..

We substituteformulas (10.7) into eqs.(10.6) andequalizetermswith thesamepowerof s. This yields
systemsof equationsfor thesuccessivedeterminationof r,,(x, y), anda,,(x, y). Wemay show that [217]

= A coskx + B cosky, a1 = —2Lr1/k
2 + const.

The higher-orderequationsaresolubleif their right-handsidesare orthogonalto all nontrivialsolutions
of thecorrespondinghomogeneousequations(the Fredhoim alternative).

The solubility conditionsfor the secoiid-and third-orderequationsallow us to determinethevalues
of A and B. The small parametere hasbeen determinedearlier to within a factor. Furtherwe shall
assumethat e = Ic

2 — + -“. This simplifies the relationsfor A and B,

A(XA
2+ YB2—aZ)—0, B(YA2+XB2—aZ)0, (10.8)

where

~ ~= ci
3k6 2k2 4 4 1+c,

a=signc
1-sign(~2—c2).

From formulae (10.8) it is clear that X + Y> 0, Z >0; also it may be verified that X>0.
It is easy to find that for a = —1 the systemof equations(10.8) has only trivial solutions. It

correspondsto the parameterrangewhere the homogeneoussolution (10.3) is stable.Therefore,the
bifurcation in the systemunder investigation is always supercritical [84].For a = 1 the systemof
equations(10.8) hasnine solutions,
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(a) A=B=0,

(b) A = 0, B = ±(ZIX)~2,
(10.9)

(c) B = 0, A =

(d) if X ~ Y, then A2 = B2 = Z(X+ Y).

Relations(10.9) show that in thegeneralcase(X ~ Y) thesolutionsappearingafterbranchingwill
be eitherone-dimensionalor symmetric. This conclusionis confirmed by computations.

Bifurcationtheorymethodsmay alsobe usedto investigatein which parameterrangessomeor other
solution is stable.In refs. [103,217] it is shownthat theone-dimensionalsolution is stablefor negative
K and the symmetricself-similar solution for positive K,

K= — 11L2 + ~ L = —2--k2 , k= IT/l. (10.10)

The numericalresultsusuallyagreewell with the asymptotictheoryup to ~2 —~0.1.

10.3. Complicationof the solutionsofthe partial differential equation

In the initial problem an elementaryattractorof the systemof ordinary differential equations(a
stablesingularpoint) correspondsto a complexauto-waveprocessdescribedby a self-similarsolutionof
theform (10.5). Wenotethat a spiral wave is a particularcaseof this solution,which may bewritten as

W= R(r) exp[iwt + iS(r) + im(p], x r cos~, y = r sin (p. (10.11)

Formula(10.11) coincideswith (10.5) if R(x, y) = R(r), a(x, y) = S(r) + mp. The realand imaginary
parts of theself-similarsolutionof problem(10.2),u(x,y, t) andv(x, y, t) periodicallychangein time;
however,themodulusR= (u2 + U2)”2 doesnotdependon time. A typical form of the functionR(x, y)
in a symmetricand an asymmetricsolution in a squarewith side 1 = ir is shownin fig. 10.3.

Let us see how thesolutionsof the partial differential equationbecomecomplicated.On the line
c
1 = 1.5 the sequenceis asshown in scheme4. The first two bifurcationscoincidewith thosein the

simplifiedsystemwith N =2. Theparametersof thesingularpointwith Pm,, =0for n ~ 0 coincidewithin
a few percent with the characteristicsof the one-dimensionalself-similar solutions. However, in
problem (10.2) the sequenceof transitions is simpler on the whole: it hasno analogsof symmetric
singularpoints and symmetriclimit cycles.

On the line c1 = 3 the sequenceof bifurcationsin thesimplified systemandthe initial problemis the
same— asin scheme3. The parametersof theself-similarsolutionsandthesingularpointsherearein
good agreement(fig. 10.1).

We considersolutions of the partial differential equationsfor which the functions R and a are
periodic in time, Pmn(t + T) = pm,,(t), 0m,,(t+ T) = Omn(t)+

21TPm,~Pm, = 0, ±1,±2 Such solu-
tions arethe analogof thelimit cyclesin thesystemwith N = 2. We notethat the functionsu andv are
not periodic— a stationarytwo-frequencyregimeis observedin thesystem.A similar situationoccurred
in the simplified model too.
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a

e~~=3~=—2,5 ê=St

b

c,=i.5 c~=—2,3 ~=ät

Fig. 10.3

Such types of two-dimensionalsolutions are rather complex. In order to reveal how they are
qualitativelyreconstructedwe shouldconsidertheirprojectionsonto somefinite-dimensionalspaces.In
this case the projectionson the (p10,p01 )-plane are most illustrative. They are shown in fig. 10.4
togetherwith plots of the functionsPm,,(t).

The projectionof the solutionshownin fig. 10.4alies entirely abovethe diagonalp10 = p01. During
the whole period the directionsx and y are inequivalent.We shall call it a solution of type I. The
projectionof thesolutionshownin fig. 10.4b is aclosedcurvewhich lies on both sidesof thediagonal.
This line is nearly symmetric with respect to the straight line p10 = p01. The directions x and y
“exchange”their positionsevery half period,R(x, y, t + T/2) R(y, x, t). Such solutionsare of type
Ii-

lt is important to point out that the solutions of types I and II are qualitatively different. The
transitionbetweenthemsuperficiallyresemblesa period-doublingbifurcation: for a small changein the
parameterc2 the period of the solution becomestwice as large, and the function p00(t) is near
p00(t + T12) (fig. 10.4a,b).However,p01(t) andp10(t) behavedifferently: during partof theperiodthe
function p10(t) in the bottom figure (solution of type II) repeatsthe behaviourof p10(t) in the upper

Asymmetric
Homogeneous H One-thmensional H~__Asymmetnc H tr!:a

5cheme4.
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figure, and in the remainingpartof theperiodit repeatsthebehaviourof p0,(t). In thevicinity of the
transitionpoint theperiod of the cycle sharplyincreases.

In the simplified system with N = 2 suchtransitionswere not observed.Their appearancemay be
explainedby the conceptof a finite-dimensionalmodel. Let there exist for a certain value of the
parameterc2 in thesystemwith the sufficiently largeN two stablesingularpointslocatedsymmetrically
with respectto theplanePm,, = P,m andnot situatedin it. As c2 decreasesevenfurthertheamplitudeof
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the oscillation increases,and the cyclesapproachthe symmetryplanefrom different sides.Dueto the
uniquenessof the solutions, they may touch each other, and hencethe planePm,, = P,,m’ only at a
singularpoint. The periodof eachcyclemust increaseinfinitely astheparameterc2 reachesthevaluec~
(c2 = ct). After the transition (c2 < c~)the cyclesbecomequalitatively reconstructed.While before,
beingon the limit cycle, thepoint rotatedaboutoneequilibrium state,nowit visits theneighbourhood
of eachof them.

We note that when c2 = c~in the finite-dimensionalsystema homocinictrajectoryappears,while
the system itself has a specialsymmetry [if {pm,,(t), Om,,(t)} is a solution then {P,,m(t), Onm(t)} is a
solutiontoo]. This suggeststhat in this casemethodsdevelopedfor analysisof theLorenzsystemmay
be employed[137].

/,-f1ffJ __________________

___________________ tc ‘8.”/

- fi 9ff - 11, 5ff

Fig. 10.5
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We recall that alongwith the solutionshownin fig. 10.4bthereis a symmetricsolution W(x,y, t) =

W(y,x, t). Therefore,the solutionsof problem(10.2) may becomefurther complicatedin the same
wayin strongdependenceon thesymmetry. Sucha mechanism,sometimescalled “anomalousdoubling
bifurcations”, is rathergeneraland typical for manysystemswith symmetry [118].

Quite a different picture is observedfor c1 = 3. This is due to the fact that in this casethe Hopf
bifurcation results in a symmetric self-similar solution, suchas occurs in the simplified systemwith
N= 2. Figures 10.4cand 10.5 showasymmetricsolutionswith a periodicfunctionR, which canneither
be referredto type I nor to type II. It is of greatimportancethat the asymptotic behaviourof the
two-dimensionalsystem(10.2) may bedeterminedby analogsof limit cycles. In fact, it is a widespread
opinion that in active nonlinear media the leading centresand spiral waves are the basic forms of
ordering.In problem(10.2) they area particularcaseof two-dimensionalself-similarsolutionsin which
thevariablesareseparatedonceagain.In fact,in a certainrangeof parameterstheself-similarsolutions
determinethe asymptoticbehaviourof the process.However,in a wide rangeof valuesof c,, c2 and I
they are unstable;herea morecomplicatedorderingarises.It is describedby solutionswith periodically
changingfunctionsR anda. It is natural to expectthat suchsolutionswill be observedin manyopen
dissipativesystemsnearthe bifurcationpoint.

As theparameterc2 decreasesfurther the solutionsof one- and two-dimensionalproblemsbecome
aperiodic.In the one-dimensionalcasethecomplicationon both lines c1 = 1.5 and c, = 3 is connected
with a sequenceof period-doublingbifurcations.In the two-dimensionalcasesolutionswithout ordering
observedduring computationsarealso obtained.Examplesof suchsolutionsarediscussedin refs. [103,
217]. However, diffusion-inducedchaosand scenariosof its appearancein two-dimensionalsystems
requirefurther study.

11. New trendsin the theory of dissipativestructures

For the investigation of nonlinear dissipative processesit may prove very useful to construct
simplified modelsofthe phenomenonwith the leastpossiblenumberof degreesof freedomandthento
study thesemodelsin detail. The resultsobtained in analysingone- and two-dimensionalmaps,and
systemsof severaldifferential equationsplay an important role in the formulation of modernideas
about the processesin nonlinearsystems. They proved very helpful in an analysisof ordering in
nonlinearmedia.

The questionariseswhetheratpresentthereexist othersimple modelswhich play animportantpart
in the analysisof complex orderingand chaotic regimesin nonlinearmedia. Let us describesomeof
them.

11.1. Complexorderedand stochasticregimesin discretesystems

Discretesystemsare widely usedfor simulating processesin continuousmedia. To solvepartial
differential equationsdifferenceschemeswith derivativesreplacedby finite differencesare oftenused
(both temporaland spatialcoordinatesarediscretized). However,candiscretesystemsdescribesuch
typesof orderingwhich havenot yet beenencountered?Can they directly be usedasmodelsof some
phenomena?To answerthesequestionsit is natural to considerthe simplestcasewhen not only the
spatial and temporalcoordinatesare discretebut the function itself acquiresonly discretevalues.An
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ideaof how rich andunusualthe world of such systemsis can be gainedfrom the gamecalled “Life”,
whichwas proposedby the mathematicianJohnConwayfrom CambridgeUniversity [266].The name
of this gameis dueto the fact that it simulatesthe growth, decayandvariouschangesin thepopulation
of live organisms.

An infinite board with cells is considered.In the gameplayed on this boardthe time is discrete
(t = 1, 2,. - .). A cell may bealive or dead. The changeof the stateof the cell at time t + us definedby
the statesof its neighboursat time t (eachcell has8 neighbours,four of themshareaside with it and
theotherfour only a corner). The rules of the gameare asfollows.

If a cell is deadat time t it becomesalive at t + 1 if andonly if exactly threeof its eight neighbours
werealive at t.

If a cell was alive at t it will be deadat time t + 1 if andonly if lessthantwo ormorethanthreeofits
neighbourswere alive at t.

These rules are very simple. Having a checkedsheetof paperwe may watch the evolution of
elementaryconfigurations.The behaviourof largeassociationsover a long periodmaybe watchedby
using a computer.

As we shall verify below there is a close analogy betweenthe processesin nonlineardissipative
mediaand this discretesystem.Therefore,it is naturalto put thefollowing questions.Whatbasictypes
of structures(i.e. configurationsthat determinethebehaviourof associationsoverlong times) mayexist
in such a system?Which lawsgovern the organizationof structureshere?Can they interactand what
will this leadto?

Stationary structures,i.e. thoseindependentof time, arethe simplest.Examplesof themaregiven in
fig. 11_i (we draw a solid dot at the centerof a live cell).

Using thesestationarystructureswe mayobtain manyothers.Indeed,if we havesuch a structure,
the configuration obtained by a rotation by 90°will also be stationary. In this figure the four
configurationsin the right bottom cornershowhow certainstructuresmaybe madelonger up to any
size.It shouldbe stressedthat thesestructuresare localized.Beingseparatedby two deadcells, theydo
not influenceeachother. We maysay that the stationarystructuresrepeatthemselvesat eachstepin
time. But thereare other configurationsthat repeatthemselvesin N steps.For brevity we shall call
them N-cycles.

Examplesof 2-cyclesareshownin fig. 11.2. Since2-cyclesarealso localized,they areall presentedin
the sameregion.During the evolution of variousassociationsthe2-cycle shownin the secondline and
calledthe traffic light is often encountered.

Many different periodic configurationsare known [266].Efficient algorithms,however, that would
allow theconstructionof configurationswith a given period N seemnot to havebeendevelopedas yet.

11111111111
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In nonlineardissipativemediathestructuresareinterestingnot only asthey are.Theydeterminethe
behaviourof the system as ~ 00 for different initial data. Is this so in the discrete systemunder
investigation?The answeris positive.

The systemof cells describedby the game“Life” developsirreversibly. Indeed,theconfigurationat
time t fully determinesthe future (statesat t + 1, t + 2, etc.). But the pastof the systemcannotbe
restoredfrom its present.The picturehere is exactly thesameasin one-dimensionalmaps,only a given
configurationmay haveinfinitely manypre-images.(We may usethe localizationpropertyandsituatea
setof localizedsinglecellsorpairsof them so that they would not influencethe given configurationand
oneanother.It is clear that they will all disappearon thenext step,by no meansinfluencingthe future
of the system.)

The evolutionof randomlygiven initial datafrequentlyleadsto theappearanceof simple localized
structuresand traffic lights. However,morecomplextypesof evolution arealso possible,for example,
whencyclesof largeperiodwith complexform appearin symmetricconfigurations(fig. 11.3).

In theLife gamethereareconfigurationswhich canmoveacrossa plane.Oneof themis a glider (fig.
11.4a, the stationarystructurehere is takenas a referencepoint). Every four steps it repeatsitself,
shifting by onecell down and to theright. (It is clear that due to thesymmetrythereareglidersmoving
alongboth diagonalsin both directions.)Fourdifferent “phases”of theglider areshownin fig. 11 .4a.

By theway, someconfigurationsmaymovealonga line otherthana diagonal.For example,suchare
the threeships shown in fig. 11.4b. (Let us note that not everyconfigurationof sucha type will be a
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“ship”.) So, we haveglidersandships.The questionarises:Whathappenswhenthey collide with each
other or with a stationary structure?The collisions may be of various types dependingon the glider
courseandits phaseat the time of collision.

The collision of two glidersor of a glider with a stationarystructuremay leadto their “annihilation”
(fig. 11.5),or a whole setof traffic lights andstationarystructuresmay be generated(fig. 11.6).Let us
notetwo laws. If symmetryhasappearedin the configuration(for example,with respectto thevertical
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or horizontalaxis), it will be preservedduring the evolution (seesteps7, 8, 9). If the configuration
remainslocalized in an N x N squareall of thetime, it is a collection of stationarystructuresandcycles
whoseperioddoesnot exceed

2N
2• Indeed,eachcell may bein one of two statesand in total thereare

N2 cells in thesquare;thereforefor t >
2N theconfigurationwill be repeatingitself.

Whenconsideringcontinuousmediawe discussedresonantexcitation— initial datathat resultedin a
morecomplexevolutionof solutionsthanin othercases.Thereis an analogof sucha behaviourin the
Life game.Let usnotetheconfigurationshownin fig. 11.7. Arising cellsoccupya largerandlargerpart
of the plane, severalgliders evolve and this associationwill develop further (fig. 11.7). No other
configurationconsistingof five cells leadsto sucha complicatedbehaviour.

As a rule, theevolutionof randomlytakenconfigurationsresults in theappearanceof a collection of
stationary structures,traffic lights, gliders. The total numberof cells provesto be limited as t—* 00~

However,for someinitial datathesituation may qualitatively change.Such abehaviouris typical for
somebiological systems,in particularevolution processes.An unlikely eventmay qualitatively change
the behaviourof thesystem,leadingto the appearanceof newforms. This is why “cellular automata”
(the Life gamebelongsto this classof models) are usedin ecologicalmodels, in the simulationof
morphogenesis,and in otherbiological problems[11].
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The larger the area the associationoccupies,the more complex the behaviour it may show.
Therefore configurations infinitely growing in space are of great interest. One of them, called a
“catapult” or a “glider gun”, wasproposedby R. Gosper,in 1970. It is seenthat every 30 stepsthe
catapultrepeatsitself and producesa glider (fig. 11.8). The glider gun fills the spaceby a streamof
gliders.Thereis anevenmorecomplexassociationof cellswhich movesforward,leavingbehinda large
collectionof traffic lights andstationarystructures.Oneof theseis the “puffer train” shownin fig. 11.9.
The searchfor such configurationsrequiresthe applicationof specialalgorithms[267].

The abovementionedexamplesshow that in the discretesystemunderdiscussionthereis a great
number of different types of ordering, which define the asymptotic behaviour of some set of
configurations(in this sensethey proveto be equivalentto attractorsof dynamicsystems).However,we
may provemore— in theLife gametherearearbitrarilycomplextypesof ordering,this discretesystem
provesto be equivalentto a universalcomputer[266].

We may consider a computer as a finite set of elementarylogical elementsthat perform the
operations“and”, “or”, “not” andthat areconnectedby wires in a certainway. A setof pulsescoding
a sequenceof 0’s and l’s arerunning alongthesewires.

The glider gun in theLife gameplays thepart of a generatorof suchpulses.The existenceof a glider
in the streammay be interpretedas a one and its absenceasazero. The collision of glidersby which
they annihilateallows theconstructionof theelement“not” by directingtwo streamsat a right angle(if
a glider existsat a certainplace in the first stream,thenafter the collision theglider will disappearat
this placein the otherstream).Other elementsareconstructedin a morecomplexway [266].

The equivalenceof the Life game to a computerhas many interestingconsequences.The idea
naturallyarisesto comparethecomputerin this discretesystemto availablecomputers.Theconsidered
hypotheticalcomputerhastwo importantmerits— it consistsof simple identicalelements,eachof them
beingconnectedwith nearneighboursonly. The size of the logical elementsdecreasesin every new
generationof computers.Constructingsmall elementsof the type considered,for example,on the
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molecularlevel, is considerablysimpler thantraditional integralcircuits. Someinvestigationsshowthat
the moleculesof certain compoundshavethe qualities required for the constructionof a computer
[268].

Heretwo essentialobjectionsarise. On the molecular(all the more, atomic) level quantumeffects
are appreciable.Whatrestrictionsdo they imposeon suchcomputersystems?Of specialinterest are
systemscharacterizedby a minimal level of energydissipation(or, ideally, by dissipationlessprocesses).
We recall that the evolution of configurationsin the Life gameis irreversible. Are therereversible
dissipativesystemswith thepropertiesof universalcomputers?The lateststudieshaveshownthat both
objections may be turned down. Quantum mechanicalsystems with reversible propertiescan, in
principle, be constructed[269].

The Life game and other systemsof this type, called cellular automata,allowed new insight into
manyphysicalphenomena.(A cellularautomatonis aset of identicalcells,everyoneof which develops
accordingto certainrules.) Using differentialequationsfor the descriptionof manycomplexprocesses
involves serious difficulties; for example, some types of turbulent flows, packings of molecules
consistingof long chains (in particular, DNA molecules whose description involves self-avoiding
randomwalks), self-reproduction,growth and developmentprocessestypical for biological systems.
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In 1948 Johnvon Neumannsuggestedthat in modelling thesephenomenacellular automataand
direct computersimulationare most efficient. His theoryof automatonself-reproductionshowedthe
greatpotentialitiesof suchan approach[270].Recentlyit hasbeenextendedby S. Wolfram andother
authors[271,272]. Theyhavecometo the conclusionthat somerealsystemsmay be arrangedin the
sameway as the Life game. Dependingon the initial data processesof any complexity may be
implementedin them.

Here, the conceptsand ideasof algorithm theorymay be employed.The behaviourof any system
canbemodelled,in principle,by imitating its evolutionstepby step. In mostcases,however,asimpler
waymay be found.For example,to multiply anumberby 2’ on a computerit is not necessaryto add it
to itself 2’ times; wemay simply shift its representationin thememoryby n binary digits. Systemsfor
which suchsimpler algorithmsexist arecalledcomputationallyreversible.It is this propertythat helps
to distinguishasmall setof orderparametersin thedescriptionof thenaturalphenomenaor to passto
a simpler statisticaldescription.

The hypothesisby S. Wolfram suggeststhat manyphysicalsystemsandtheir models,which cannot
yet be describedin a simpleway, arecomputationallyirreversible [272].The only wayto analysesuch
systemsis to carryoutphysicalornumericalexperiments.In ref. [273]it is shownthat thereis a system
of 10 nonlinearpartial differentialequationsdescribinga mediumwhich is equivalentto theLife game
or otherautomataof this type.
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Investigationsof cellular automatalead to a paradoxicalconclusion.In a medium of elementary
identicalelementsan orderingof any complexity mayexist. The evolution of someconfigurationsmay
look like the emergenceand interactionof elementarystructures,and the appearance,as a result,of
morecomplex structures,their interactionand so on. If aftera certainstagetheconfigurationappears
to be localizedin a boundeddomainthe developmentstopsand a stationaryregime is setup.

The Life gamebelongsto a more complicatedclassof automata.However,thereare a numberof
simpler automatawith cells in oneof k states,locatedalonga straight line [272].The rules determining
their evolutionmay be written in the form

~ f(~aja~1~, (11.1)

wherea.(t) is thestateof the ith cell at time t. The setofpossiblerules is very wide. The basictypesof
automatacan be studiedby consideringa narrower class, the so-called legal adding automata. An
automatonis called legal if

f(0) = 0, f(aj_r, . . . , aj+r) =f(a,+~,. . . , aj_r) . (11.2)

It is addingwhen all = 1.
Usingthe rule that determinesan automatonwe may find its codeby the formula

(2r+1)(k—1)

Cf= ~ k’f[n], (11.3)

wherek is the numberof statesin which eachcell may occur.
In an analysis of dissipative dynamic systems and asymptotic regimes in nonlinear media with

processesdevelopingin a finite time, periodicand stochasticregimeswere distinguished.Theiranalogs
exist amongautomatatoo. In ref. [273]four types of legal adding automatawere distinguished.

1. Regardlessof initial datathe transitionto a homogeneousstateoccurs in a limited numberof
steps.

2. In the secondclass of automatathe evolution leadsto localized stationary configurationsor
N-cycles.Theyare analogsof singularpoints or limit cyclesin dynamicsystems.

3. Chaoticinitial configurationsin automataof the third class leadto chaotictemporalbehaviour.
If the initial statesarelocalized theevolution of eachcell can normally be predictedusing a rather

simple algorithm. If we put the time t alongoneaxis and the stateof theelementsat t alongtheother
axis, theappearingpatterncan be consideredasa fractalstructure.Figure 11.10 showsthis patternfor
two automata,whosecodesare also indicated.

4. For theautomataof the fourth class(to which theLife gamebelongs)thereis no simple algorithm
that would allow apredictionof theevolutionof localized initial configurations.Oneof the featuresof
suchautomatais the variety of behaviourfor different initial states.

The resultsgiven in ref. [272]show that automataof the fourth classare encounteredvery seldom.
Of the legal addingautomatathey constitutesix percentfor k = 2, r = 2 and sevenpercentfor k = 3,
r = 1. As the complexity of the automatagrows (with increasingk and r) this fraction will increase.

By analogywith the analysisof fractals or strangeattractorsit is convenientto describevarious
automataby quantitativecharacteristics.We shall discusssomeof them in accordancewith theresultsin
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ref. [272].Considera sequenceof X elementsby assumingthat eachcell occursat oneof kstatesand
introducethe quantities

5(x)(X) = ~ log~(~O(p~)), (11.4)

where 0(p) = 1 for p>0 and 0(0) = 0, p~are the probabilities of different configurations of X
elements,

kA’
s~(X)= —~ ~ p~log~p~. (11.5)

We call thequantitiess~(X)ands~(X), respectively,thespatialsetentropyandthe spatial measure

entropy,and the limits

= lim s~(X), d~= lirn s~(X) (11.6)

the set dimensionand the measuredimension.
The nonorderedinitial configuration in which all possible sets of elementsoccur with nonzero

probability yields d~= 1; for a homogeneousconfigurationd~= 0.
By analogywith the quantitiesdescribingthe spatialbehaviourof configurationswe may introduce

temporalcharacteristicsof cellular automatain the form

5(t)(T) = ~ logk(~0(p~)), s~(T)= ~ p~log~pY~

(11.7)
d1t~= lim s(t)(T) , d~’~= urn s~(T), 14

~
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and thespatial—temporalcharacteristics

kXT

5(tlx)(T X) = ~ logk(~9(pcf.x)))

kXT

S(tlx)(T X) = — ~ ~o(’t~~~~g~p(,t~X) , (11.8)

h = lirn ~ , h~= hm s~”~(T,X).

T/X—~

In the automatongiven by the formulaa71 = F[a~ r’~ . , a +r] theexcitationcan propagateover a
distancerT in a time T. For longertimes, however,theexcitationsin many automatapropagatewith
smallervelocities.Let II F~’jI denotethemaximal valueof R for which thestateof cell i dependsonly on
cells i — R,. . . ,i + R. Then themaximumpropagationspeedmay be definedas

A~=mIIFTII/T (A~�r). (11.9)

The relationshipsbetweenthe quantitativecharacteristicsof cellular automataare discussedin ref.
[272].

Forlargecharacteristictimes andsteadyregimesthevaluesofthecharacteristics(11.4)—(11.9)prove
to be different for different classesof cellular automata.

Since any configurationsin class 1 cellular automatatendto be a homogeneousstate,their spatial
and temporal dimensionstend to zero. The averagepropagationspeedA in class2 cellularautomata
vanishesover long times asthe temporaldimensionsfor suchautomataalso vanish,d~= hIL = 0. At
the sametime the spatial dimensionsin the caseof irregular initial datawill be different from zero.

Forclass3 cellularautomatatheaveragepropagationspeedA is positive,andthestateof a singlecell
affects a growing numberof its neighbourswith time. The spatial and temporalmeasureentropies,
s~(X) ands~(T), are also different from zeroand usually tendto constantvaluesover long times.
The behaviourof class4 cellularautomatamay be quite different for differentinitial data.Therefore,
the quantitativecharacteristicsof variousconfigurationsin suchautomatamay be just the sameasin
any of the abovethreeclasses.

The behaviourof cellularautomatais diverse, and their theory hasbeen developedrapidly. This
classof mathematicalobjects is interestingalso becausethey representexactly soluble models.They
may be studiedwithout using approximatemethods(when investigatedon computers)and simplified
models.

Letus notetwo classesof physicalphenomenawhoseanalysisis performedusing cellularautomata.
Experimentalinvestigationof theBelousov—Zhabotinskyreactionshowsthat over certaincharacteristic
times severaltypesof orderingand chaotic regimesmay arise.Their study with the aid of reaction—
diffusion systemsprovesto beratherdifficult dueto theneedto considermanycomponents,incomplete
knowledgeof various reactionrates and the existenceof severalsmall parametersin the resulting
equations.This led the authors of ref. [274] to the idea of using a cellular automatonas a
phenomenologicalmodel.
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As in the investigationof diffusion-inducedchaosthey suggestedthat a concentratedsystemshows
self-oscillatory dynamicswhile diffusion processesare a causefor a complex spatial—temporalbe-
haviour.

We shall assumethat in the one-dimensionalcase thesystemcan be split into identical cells. The
stateof thenth cell attime t is definedby a nonnegativefunctionA(n, t). The valueof A(n, t + 1) is
determinedby the precedingstateaccordingto the rule

A’(n, t) = a[A(n + 1, t) + A(n — 1, t)]/2 + (1 — a)A(n, t) , A(n, t + 1) = F(A’(n, t)) . (11.10)

The nonlinearfunction F(x) is given by

ri, ifl.5~x,
F(x)~~’~0,if0.5�x<l.5, (11.11)

~M, ifx<0.5.

The coefficient 0 sa s 1 characterizesthe valueof the diffusion coefficient. Whendiffusion is absent
(a= 0) thesystem(11.10)describesan oscillatoryregime. (Assumingthat M> 1.5 we may verify that
the automaton(11.10) hasthe cycle 0—~M—s’ l—~0—*~.-.)In ref. [274]steadyregimeswereconsid-
ered for different M and a. It wasshownthat in sucha systemcyclesof period3, wave processes,and
complexturbulentregimesmight exist. Their furtheranalysis,andan investigationof thequantitative
characteristicsof diffusion-inducedchaosin this model areof greatinterest.

Another trend of researchwhere cellular automataare of growing importancedeals with new
methodsof investigatingcontinuousmedia.At thepresenttime numericalexperimentsarewidely used
to investigatecomplexmulti-dimensionalproblemsof aerodynamicsandplasmaphysics.To solve these
problemsmostperfect numericaltechniquesandpowerful computersareused.Enhancingtheaccuracy
of experimentalinstallations,and optimizing aerodynamicvehiclesusually involve large amountsof
computations.

One of the approachesto acceleratecomputationsand go over to an analysisof more complex
objectsis to useparallelcomputations.In manyproblemsof mathematicalphysicsit is moreeconomic
to exploit, insteadof one huge processor,a large numberof simpler and cheaperprocessorsthat
operate simultaneously. If the number of such processorsis sufficiently large and they perform
elementaryoperationsthe computationsmay be consideredasthe evolution of a cellular automaton.
The questionarises:Whatautomatamay be usedto simulatesystemsof nonlinearpartial differential
equations(first, of all, theequationsof ordinaryandmagneto-hydrodynamics)?Sincespatial derivatives
occur in theequationsthe relationshipsamongthecells/processorsarealso rathersimple— only nearest
neighboursneedto be connected.In the two-dimensionalcaseit is convenientto fill the planewith
identical triangular,squareor hexagonalcells.

As in theconstructionof theusualdifferenceschemes[275]cellular automataof sucha type arebuilt
accordingto themomentum,energy,or angularmomentumconservationlaws. A samplingof particles
is introduced,eachof the particlesmay be in one of the nodesof a square(hexagonal)lattice. It is
usually assumedthat two identical particles cannotoccur in a node. Then one should determine
accordingto which lawscollisions betweentheseparticlesmay takeplace,anda methodis indicatedto
calculatethe pressure,velocity and densityin this flow by knowing thebehaviourof the “lattice gas”.

Specifically, in ref. [275]it is shownthat anautomatondefinedon a hexagonallattice enablesone to
simulatethe Navier—Stokesequationsandmay be usedfor the creationof aparallelcomputer.In this
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publicationa referencelist of previousworks is given. Providingtheparticleswith a quantumof vector
potential,introducing morecomplexrulesof particle scatteringandusing againhexagonalcells allows
one to employ this approachfor simulatingthe magnetohydrodynamicsequations[276].

An exampleof computationsin the hydrodynamiccasewith the aid of a two-dimensionalcellular
automatonconsistingof 216 cells (256x 256)and 130 thousandparticlesis given in ref. [277].Notealso
thepublication [278],where estimatesare obtainedfor the parametersof cellular automatonsystems.
Theseare necessaryto calculatehydrodynamic flows for large Reynolds numbers.The conclusion
drawn by theauthorsturns out to be pessimistic.However,a comparisonbetweenthe efficiencies of
cellularautomataand theusualnumericaltechniquescanbe really madeonly after theconstructionof
dedicatedcomputersaimed at suchan approach.

Onesuchcomputer,which includes65 636 simple processorelementsand hasa performanceof 2.5
billion operationswith a floating point, hasbeendesignedby now [279].The systemhasan interesting
feature,asfollows. For thesimulationof somepartial differential equationsit is sufficientthat eachcell
in a two-dimensionalgeometryis connectedwith six nearestneighbours.In manycases,however,many
more connectionsare required. In order to implement such a system and reserve a structure
appropriatefor various cellular automatawe should build thesecomputersin a multi-dimensional
space.Specifically, theconnectionsin thecomputerdescribedin ref. [279]arearrangedin thesameway
ason a cubic lattice in 12-dimensionalspace(everyvertexin suchacubehas12 neighbours,and in total
thecubehas4096 vertices).Computerswith sucha structureweredesignedmainly to solve problemsof
artificial intelligence.Theymaypossiblyproveusefulalso for certainclassesof hydrodynamicproblems,
which can be efficiently simulatedusing cellular automata.

11.2. Complexordering and chaosin spatially inhomogeneoussystems

Most reaction—diffusionsystemswere investigatedunderthe assumptionthat sourcesandsinksdid
not explicitly dependon the spatial coordinate.Meanwhilein many physicalsystemsthis condition is
not satisfied.Spatialinhomogeneityresultsin manyinterestingeffects.We shallillustrate someof them
by consideringtwo nonlinearspatiallyinhomogeneoussystems.

As a resultof the study of the thermaleffect of laserradiationuponchemicallyactivemediaa new
field, “laser thermochemistry”,hasemerged[280].It hasturnedout that thedynamicsof thermochemi-
cal processesmay beextremelycomplexevenin the casewhencontinuouslaserradiationof low power
is incident upon a medium. This is mainly due to two factors.First, theprocessesarenot isothermal:
since the rates of chemical processesstrongly dependon the temperatureand the laser radiation
continuously introduces thermal energy into the system, the reaction rates may change.If the
temperat~frevariationrateis higherthanthe reactionratesthe processwill be quite far from isothermal
(“macroscopicirregularity”). Second,it is essentialwhenthereis a feedbackbetweenthe temperature
variationrate and the reactionrates.The appearanceof this feedbackmay be due to eithera heating
effectof the reactionsor a changein theopticalpropertiesof themediumif thechemicalcomposition
variesduring thereaction.In the lattercasetheabsorptioncharacteristicsalso change,which influences
the amountof energyintroducedinto the system.

Laser thermochemistrymay prove to be the field where experimentalstudies of nonstationary
spatially localizedprocesses,complextime ordering,anddiffusion-inducedchaoswill be rathersimple.

Oneof the simplestproblemsof laserthermochemistryis modellingtheheatingof a thermallythin
plane (h2~ a’r, whereh is theplanethickness,r is thecharacteristictime of temperaturevariation,ais
the thermalconductivity)in air by laserirradiation(fig. 11.11). In somecasesthis processis described
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by the following boundaryvalue problem:

= f (r ~~)+IeT2~02+ ~ehIT_/3e_~~~T_5T,

~=~e1IT_ye_~T, 0<r<R, (11.12)

~ =-~-~=0, T~ =T
0(r), X~ =X~(r).

êr r—O dr r=R 1=0

Here r is thedistancefrom thecentreof symmetry,R is theradiusof thesample,t is the time, T is the
temperature,X is theoxide thickness,I is the intensity, r0 is theeffective radiusof the radiationbeam
(fig. 11.11).The radiationintensitydistribution is writtenin Gaussianform. The third and fourth terms
in the first equationtakeaccountof the energyreleasedby metaloxidation andof theabsorptionby
oxide evaporation.The last term describesthe heat exchangewith the ambient air. The second
equationin (11.12) describesthe variation in the oxidized layer thicknessdue to metaloxidationand
oxide evaporation.The dimensionlessconstantsc, a, /3, K, 5, d, y describingthe thermophysical
propertiesof the substance,tie kinetics of the oxidized layer, the energyreleaseand heatlossesare
connectedwith the corresponding“dimensional” parametersby relationsgiven in ref. [281].

If r0 ~ Rand thecharacteristicspatial scaleof variationsin the temperatureT andthe layerthickness
X exceedsR, the equationsturn into the dynamicsystem

dT ~ —iii KIT dX d —l/T —KIT
—/3e —ST, —j~-=~e —ye . (11.13)

The systemcanhaveonestablepoint, T(t) —* const.,X(t) —~ const.as~ 00, or triggerproperties:for
someinitial dataT—÷T1, X—~X1,as t—~cowhile for otherdataT—~~T2, X—÷X2as t—~00.A stablelimit
cycle may exist in this systemas T(t)-4 T~(t),X(t)—l~X~(t)as ~—+ 00, whereT~(t)= T~(t+ i), X~(t)=
X~(t+ fl and ~ is the period of the solution. All theseregimeswere observedexperimentally[282].

At the sametime experimentsshow[287]that for inhomogeneousirradiationtheheatingdynamics
of a metalsamplebecomescomplicated:whenthebeamis sharplyfocused,chaoticoscillationsof the
temperatureare observed.This explainsthe interestin problem(11.12).

In ref. [2831theparametersarechosenso that for large valuesof I in thesystem(11.13)thereis a
stablesingularpoint, and for intermediatevaluesa limit cycle. For small intensitiesthe temperature
dropsand thecharactenstictimes of theprocessessharplyincrease The existenceof heatconduction
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leads to interactionsbetweenall thesesystemswith different properties.This is typical for problems
with spatiallyinhomogeneousparameters.

Supposewe vary the intensity I and the beamradius r0 so that the total radiationpowerP =

remainsconstant.Physically this meansthat we changethe focusing of the laserbeam.
First a transitionprocessis observed.Theheatsinksproveto be inessentialat low temperatures,and

the propertiesof the system (11.12) are similar to those of the heatconductionequation with a
nonlinearsource.From the theoryof suchequationsit follows that in somecasesthehalf-width of the
temperatureprofile may decrease.In ref. [66] an experiment is describedwhere the half-width
decreasesa few times.Thenthe restrictingfactorsbecomeimportant,anda heatwave propagatesfrom
thecentrealongtheradius,andbehindthis wave theoxidethicknessincreases.After this processesare
initiated with characteristictimes severalordersof magnitudelonger.

The main types of steadyregimesare shown in fig. 11.12. A fixed value of P correspondsin the
(1, 1 /r~)-planeto a straight line. WhenI is sufficiently large,stationarydissipativestructuresappearin
the system.Typical behaviourof T(r) andX(r) is shown in the figure. The structuresappearingare
effectively localized. In this casethe localization is associatedwith sink effects.

Decreasingthe intensityI leadsto the developmentof a periodicoscillatory regime. Thena cascade
of period-doublingbifurcationsis observed,5” —~ ~ Diffusion-inducedchaosemerges.Here we may
also constructa family of one-dimensionalmapswith a smoothvertex.

Decreasingthe laser beam intensity still further leads to a situation where the temperature
oscillationsbecomemore relaxing. The solution acquiresnew properties.

We discussthemby the exampleof the following calculations:I = 1.8; r0 = 1.0; c = 0.1; a = 9.0;
/3 = 0; K = 0.6; 5 = 9.0; d = 0.894; y = 1.0. The variationsof the temperatureand the thicknessof the
oxidelayerwith time atdifferent pointsof thesampleareshownin fig. 11.13. It is seenthat at r = 0.03

i/rI _____ ________

fT(o~t) [ fT(ot)

2

XIqL S
2x(

0 __________________________
0 e~8 .3~6 5;4 7,2 ~,O i~8 I

Fig. 11.12
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maximaof the temperaturewith an amplitude Tmax >0.9 appearwith a period r 12.5. At r = 0.35
they appearwith a period~2r, andat r = 0.86with period4r. Analogouslythe time dependenceof the
oxidethicknessvarieswith the radius.At r = 0.03theoxide thicknessvarieswith a periodr, at theedge
of thesamplewith period 4r (fig. 11.13).The observedpicture significantly differs from theauto-wave
processesin systemswith spatially homogeneousparameters.It is usuallypointedout in the theoryof
oscillations that a nonlinear dissipative system may behave as a generator [86]. Here an open
distributedsystembehavesasafrequencydivisor aswell: thermalpulsesof largeamplitudeappearwith
different frequenciesat different pointsof the system.

From the model (11.12) it follows that by switching the laseroff (I = 0 for t> t*) we may create
complexspatialdistributionsof theoxide thickness.Examplesof suchdistributionsandotherproperties
of this model are discussedin ref. [285].

The spatial dependenceof thesourcein eqs. (11.12) is explainedby thefact that a Gaussianbeam
anda ratherlargesamplearetaken. Suchmodelsare also of interestwhenthermodiffusionprocesses
areanalysed.

In ref. [286]a mixture of two gasescontainedin a thin cuvette is considered.The cuvette is
illuminated by a narrowbeamof radiation,which is absorbedby the heavycomponent.An elementary
model of suchprocessesincludesthe heat conductivity equationand the diffusion equation,

T1 = + b[I,(x) e~0/T — (T — T,)],
a,b>0, 0<x<R,

x (11.14)

I,(x) = Iexp[—(x — x~)
2/r~],

TJ,
0 = T,, nJ10= n0 T1I~,,,0R = 0, ~xIx=OR = 0
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Thereis a conservationlaw for the secondequation,which is not typical for theproblemsconsidered
earlier of the theory of dissipativestructures.Moreover, it may be shown that in the homogeneous
problem (I, = const.)the homogeneoussolution is stableand oscillationsare impossible.

Applying theaveragingtechniqueto eqs.(11.14)we canobtain an approximatemodel — a systemof
two ordinarydifferential equationswherestablelimit cyclesmay occur [286].

Numerical calculations revealed oscillations in the nearby domain of parametersin the initial
problem. The localizationof oscillatory processeswas demonstrated— as the length of the domainR
increasedtheoscillations at the boundarydid not disappear,remainingat the centre.In spite of the
equality of the heatconductivity and diffusion coefficients (for v = 1) the length of the localization
domainin the concentrationprovesto be severaltimes as largeas that in temperature.This is dueto
the lack of a sink in the secondequation;therefore the absorbingcomponentfrom the illuminated
regionconcentratesin its vicinity.

Thus, theexistenceof distributedparametersqualitatively changesthepropertiesof thesystem.We
may expect that later other interestingphenomenawill be found in reaction—diffusionsystemswith
spatiallyinhomogeneousparameters.
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