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A NON-LINEAR BOUNDARY VALUE PROBLEM OF IGNITION BY RADIATION* 

F.V. BUNKIN, V.A. GALAKTIONOV, N.A. KIRICHBNKO, S.P. KURDYUMOV and A.A. SAMARSKII 

Existence and non-existence conditions are obtained for stationary 
solutions in the model problem of laser macrokinetics whichdescribes 
the heating of a semi-infinite sample by a spatially inhomogeneous beam 
of radiation with a power approximation of the energy liberation at the 
surface 'of the sample. The modes of localization and peaking of the 
heat field in the substance at the high-temperature stage of heating 
are examined. 

1. Introduction. 
Advances in high-temperature physics and macrokinetics have led to the formulation and 

detailed study ofawide class of non-linear boundary value problems for the heat conduction 
equation. Problems of the heating of a substance by radiation, which is the subject matter 
of the interesting new field of laser macrokinetics /l, 2/, occupy an important place. 

Many theoretical and experimental studies of combustion under the action of radiation 
have now been published, see e.g. /3/. It has been found that size effects are typical for 
problems of combustion physics. For instance, to initiate the combustion of a material 
occupying a large volume, the source must have a sufficiently high temperature and large size 
/4/. In problems of laser heating the inhomogeneity of the radiation field is important and 
is due to the finite size of the actual beam and the variable intensity distribution across 
it. In this connection the question arises of the kinetic parameters of the radiation (beam 
radius and power), for which ignition of the substance becomes possible. It is interesting 
to study these questions both for purposes of laser technology and for the further development 
of the theory of non-linear dynamic systems with inhomogeneous parameters. 

The non-linear boundary value problem 

$=ATc;$(r$)+$, (r, z)=xEQ= 

(r>O, z>O), 
3T -- 

I 82 w 
= I(r) + g(T), Lm={r>O, z=O), 

IW=I,exp (-+), 

T(O, 4=0, XEQ, 

(9 

(2) 

(2') 

where g(T)=exp(-i/T), was studied in detail in /5-8/. This is the simple mathematical model 
of the surface heating by radiation of a large metal sampleon whose surface an exothermic 
reaction (oxidation) occurs. Here, T is the temperature and 1, and r0 are the beam intensity 
and effective radius. The term g(T) describes the energy liberation of the reaction. It 
was shown in /5-8/ that, in the plane of parameter values (4r0) there is a monotonic 
stability boundary Za--h(b) such that, for all Z,,>h(ro), the stationary boundary value 
problem (l), (2) is solvable, while when Zoth(ro) there are no stationary solutions. This 
means that, for sufficiently low initial materialtemperatures,no ignition occursif'lO<h(rO), 
while if Z,>h(r,), for any initial conditions, the exothennic reaction covers the entire 
surface. 

Sometimes, however, non-linearities other than g(T)-=exp(-1/T) need to be considered, 
notably because the actual chemical reaction has, in general, several stages, the different 
mechanisms "switch on" at different temperatures, and there are various heat loss mechanisms 
(e.g., radiation -T’ and convective -T), etc. Over fairly wide temperature ranges that 
are of practical importance, the non-linearity g(T) in the boundary condition can often be 
approximated by the power law 

g(T)-T", a-const'0. (3) 
By studying such non-linearities we can draw conclusions about the corresponding systems, 
e.g., on the basis of comparison theorems. 

The present paper deals with the conditions for the existence of stationary solutions 
and the ways that non-stationary solutions evolve for problem (l)-(3) with a power non- 
linearity in the boundary condition. 

2. On the conditions for the non-existence of stationary solutions. 
In the stationary case problem (l)-(3) is equivalent to the non-linear integral equation 

/9/ 
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(4) 

where S is an operator: 

We put z-o in 0)-T(r). Then, 

(4') 

Problems (4) and (4') are obviously equivalent from the point of view of solvability: problem 
(4) is solvable if and only if Eq.(4') is solvable. Moreover, if we know that T(r, 0)>0 is 
the solution of problem (4') , we can easily find from (4) the solution T(r,z) in the entire 
half-space z- (r,z)&. 

Theorem 1 (non-existence). Let O<a<Z. Then problem (l)-(3) has no stationary sol- 
utions. 

For the proof we need some estimates that characterize the domain of values of the 

operator S. 

Lemma 1. We have 

(5) 

where 

Relation (5) follows from the inequality 

S(Z(&))(r)=Z~~lexp(-~)~~~~r'+&'~2r&cosr)~'~> 
0 0 

ZgO*+rtl(r frOW1exp(- r13h> 
0 

Iflo’ +- s r+ro o 
tl(f + n)-'=P(- n2)drl. 

Relation ,(5) gives a simple estimate for the solution of Eq.(4'): T(r)>m,/(r+ro). He form 
the recurrent functional sequence 

T,(r)=A, 
r + r0 

T,+,(r) = T1 (r) -t S(T,V&))(r), n=i,2 ,... . 

Since the operator S(T”) is monotonic with respect to T, we see from (4') that for all 
n>l (if T.(r) are defined for any finite n>l) we must have 

T(r)>TJr), GO, n--l, 2 ,..., (7) 
and in particular, 

T (r) > T, (r) = E T, (r), r>O. (7’) 

Since (T,,) is monotonic, the last limit (finite or infinite) exists. 

Lemma 2. Let O<a<l. Then, by (71, with n-2, 

S(T,"(&))(r) ~m,“s((e+r~)-a)(r)-+m, r>O, 

so that Eq.(4') has no solutions. 

Proof. Obviously, 

s((f+r&?(r)>rE(r+E)-l(rO+&)-=d&= r~“Ttl(.+9)-l(l+fl)“dll, (8) 0 0 

where s-r/r,, when a=(O, I]., these last integrals are divergent. Rut then, see (7), (6), 

T(r)>T,(r)>S(T,ate))(r)>,,as((t+r,)-n)s+oo, 

which proves the lemma. 
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Lemma 3. Let a>l. Then, 

S((&+r,)-a)(r)>[2(a-1) (r+ro)a-l]-l, r,O. (9) 

Proof. We use an estimate similar to (8). With a>1 , the integrals are convergent, 
while 

Since .q/(S+q)>‘h for n>S, we have 

which proves (9). 
We will now prove Theorem 1. 
1. First, let l<u<2. We will show that, with aE(i,2) the sequence (6) is not 

defined for all n, and there is an integer N--N(a)>& such that T,,+,(r)=+=. By (71, this 
ensures that problem (4') has no solution. 

By Lemma 3, all the terms of sequence (6) have the lower limit 

T8 (r) > S (h (E + rP$) > m, (1. + ro)% &=a- 1, 
a 

In,=%; 

T8 (r) > S 0% (E + ro)_V) > m, (r + r,j-b, h,=alr-& 
a 

m,=4&-, 

and finally, for all n>l, 

~,(r)>m,(r+r,)+, h,=aA.,_,-4, m,=m~,/(W.). (10) 

From the recurrence relation on the power h, in (10) we have h,~-(a--ij-'[l-(2-a)a"-'], n=l, 
2 ,.-*, so that, with l<a<2, there always exists an integer N-A'(a)>-In(2-a)/lna>O such 
that aJ.,,Ci, i.e., 

(see Lemma 2). By (7), this implies that (4') has no solution. 
2. Now consider the case a=2. It will be shown below that sequence (6) is now defined 

for all n-l, 2,... , and the non-existence theorem can be proved on the basis of the limiting 
inequality (7'). For the proof, we need two lemmas. 

Lemma 4. We have 

S (6 + ro)-0 (r) 2 -& In (k) , r>r,, a=2. 

Proof. From (8) with a=2 we have 

S ((5 + rd-‘1 09 > 6’ 1 &p (8 + V drl- s=I- 
r. - 

Since n/(1+~))*>1/(4q), q>i, then 

whence (11) follows. 
Using (ll), we obtain the inequality for the second term of sequence (6): 

T,(r)> A+-;_ c,' 
M 1 In r 

( ) r> r,. (12) 

The operator S(u') thus changes the asymptotic behaviour of function v as follows: if 
v-l-1 as r-c+=, then S(d)>(lnr)/r. We next need a lower limit for the general term of 
sequence {T,) with a-2. 

Lemma 5. Let a-2. Then, for all n>2, 

T, (r) > A + %UII (r), 
k-l 

(13) 
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where q(r)=0 for r=(O, rol, and for r)ro, 

The proof is by induction. With n=2, (13) holds (see (12)). Let it hold for n-N. 
Then, from (6) with a=2 we have 

TN+I (r) = + +SG”N2(EN(rl>+- •t 

Proceeding in the same way as when proving Lemma 4, we obtain 

S (ml2 (E + rJ2) > y f In (-&) 3 u1 (r), r>ro. 

and in the general case (see (14)) 

wk2(6))=S(Ck2+l (g2”)> 
G”+f[ln (+)]‘“E“(r+Q1d~> 

r 

But C~bi2-CI+~, so that S(s'(t))(r)>v,+,(r) for any k--l, 2,..., N-l. It then follows at once 
from (15) that (13) holds for n=N+i. This completes the proof. 

We will now show that (4') has no solutions when a-2. We substitute (13) and (14) into 
the limiting inequality (7'), which must be satisfied by any solution T-T(r)>O. We then 
obtain 

T (r) > T, (r) > $& + -!- 2 Pa’, rln2 k 1 r>rO, 

where 

P= +(ln2)1j*[ln (*)]">O, r>ro. 

It is easily seen that the series on the right-hand side of (16) is divergent if $>I, i.e., 
if 

r>r.-r, exp[4/(m,*ln2)]>r0. 

Hence ‘T(r) is not defined for r>r., so that no solution of the initial elliptic problem 
exists for a==2. This completes the proof of Theorem 1. 

Note. Theorem 1 remains true whatever the radiation intensity distribution I(r) in 
the beam: instead of the exponential form r(r)- Ioexp(-r%2) taken in (2), (4), we can take 
any function 1(r)-1&(r/ro), e(e)sO, 8*0. The proof is then only slightly modified (see /7/). 

Theorem 2 (existence). Let &>2. Then, thereisa monotonic boundary of stability 

~0!+?0)'0, rp>O; h(O+)-+=, h(+oo)-0, in the plane of the parameters (I,, r,,} . For all 

Z?h(r,) the stationary problem is unsolvable, while for all Z,<h(r,) there exists a 
minimal solution T-T,,.(s)>0 in 51, which is stable from below; then, T(t, s)<Trd4, 
DO, ~6, and T(t, z)+T,,,,.(z) as t++a uniformly in any compactum of 8. 

This theorem can be proved in the same way as in /6, 7/. However, for aa3 the lower 
limit of h(r,) can be obtained quite easily. Let a>3. We can construct an upper solution 
of problem (l)-(3) as follows: 

T+(s)-C[f+(z+a)‘]-“~, z-(r, a)&& 

where C and a are positive constants. The function T, satisfies the non-linear elliptic 
problem 

AT+-0 in Q, -8T+Iaz~,,-aC-‘T+a 

and is obviously an upper solution of the initial problem if 

-aT+/azI~,o>Zaexp(-r*lr,a)+T+‘, 
or what amounts to the same thing, 

aC(r'+a")-Y'~I~exp(-~/ro')+C'(~+d)-"'* (17) 

for any r>O. Using the inequality (r2+s')-"'(a'-"(r'+a")-', we see that (17) certainly holds 
if 

aC(l-C"-'a*-Q)(r'+az)-"bl, exp(-r’/roa), r,O. 
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This last inequality holds e.g., for 3r,'=2az , 16 aC(~-c”-‘aZ-“)/aJ, i.e., in the case 

I,<*/,r,-%[ l--C"-'(s/*)'2-=)lrT,L-.]. 

The right-hand side reaches its maximum when 

c =rJ4/@-1) (r/ll)tr-a)/a(a-l)~~(~)/(a-'), 

so that the upper solution T+ exists under the constraint on the beam parameters 

I, < h+(r,,)=(a - qa-a/(a-u (a/8)d~a(a-l)~r~Ql(a-l). 
08) 

Let us show that, under condition (181, problem (l)-(3) with a>3 has a stationary 
solution. In fact, the solution of the non-stationary problem then satisfies the inequality 
T(t, z)<T+(z) in R+'X!J, and moreover, T,>O (see Lemma 5 on criticality in /7/j. Hence, 
for any ,x=0, there exists the finite limit 

1F T (4 5) = T, (x) 
cm 

and it can be shown in the same way as in /7, Sect.3/ that T*(x)>0 is the requiredstationary 
solution. 

In short, when a>3, when inequality (18) holds, problem (l)-(3) has a stationary sol- 
ution, so that the function h in Theorem 2 satisfies the inequality h(r&=h+(r,) for all 
r,>O. 

We shall not dwell on the non-existence of solutions when lo>h(ro), since it is proved 
in the same way as in /7/. 

3. On modes with peaking and the effect of reaction localization in the 
non-stationary problem. 

Let us examine the asymptotic behaviour of the solutions of the evolutionary problem (l)- 
(3) in cases when no stationary solutions exist. 

1. Unbounded solutions with lCa42. We will first show that, when lCaG2, development 
of the thermal process always occurs in a mode with peaking, i.e., the boundary value problem 
has no global solution. 

Theorem 3. Let aE(l, 21. Problem (l)-(3) then has no global solution, and there exists 
to=@, +=) such that 

For the proof, we require some auxiliary lemmas. 

Lemma 6. Let T(t,z) be defined in (O,t,)XS1. Then, 

aTlata0, (20) 

aT/a&O, aT/azeo in (0, to) x n. (21) 

For the proof, see Lemma 5 in /7/. 

Lemma 7. With a=(&21 the function T(t,r,O) has no upper limit with respect to t for 
any fixed r&O. 

Proof. Assume the contrary. Then, three cases are possible. 
1. There is a constant M>O such that T(t,r,O)GM for all t>O for any r>O. Then, 

by inequality (21), T(t,r,z)GM in R+‘)<n. From (20) we find in turn that, for any x=0, 
there exists the finite limit 

T,(s)= l&T@ z), 

and it is easily seen that T*(x) must be a stationary solution of the problem, see /7/, 
which by pheorem 1, does not exist. The stabilization of any solution, uniformly bounded 
with respect to t, to the stationary solution, also follows from the existence of the Lyapunov 
function 

V (T) (t) = + II vi” II!.q, (t) - 23~ & T,+‘] dr, 

which is monotonic on the evolutionary trajectories: 

-$- V 0’) 0) = - II Tt Ilho, @) Q 0, t>o. 

2. There exists r.>O such that T(t, r, Q)-++= as t++- in (0, r.) and T(t, r, 0) is 
upper-bounded for all r>r.. Then, by (20), T(t,r,O)-+- as t++m uniformly in [0, 
r./2]. In this case, from the integral equation 

USSR 28-2-K 
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equivalent to problem (l)-(3), with a-0 we find that T(t,r,O)++m as ‘t-c+- for all 00. 
3. The function !!'(t, r,O)++= as t-c+- only at the point r-0. By inequality (20) (see 

Sect.l), this case is equivalent to T(t,r,O) stabilizing as t++m to the "singular" 
stationary solution T.(r) of Eq.(4'), which is defined for any r>O, where T.(O)--00. But it 
was shown during the proof of Theorem 1 that no such stationary solutions, defined in the 
neighbourhood of r-+oo, exist when i<a<2. 

This contradiction proves the lenrna. 

Proof of Theorem 3. Assume that (19) does not hold and that the function T(t, r,a) is 
defined everywhere in R+'XB. By Lemmas 6 and 7, we then conclude that ?'(t, r,O)++m as 
t++- uniformly in any compactum (09&r.} , and it is easily seen, using (221, that 

T(t.r,z)++- as t-c+- 
uniformly in any compactum {OG=Gr., 0<2+3.}, G-0. 

(23) 

Let us show that, in these conditions,nosolution can be global. Consider the function 
T&z) in the domain m-(O<rtr.,O<rtl}, where a sufficiently large r.>O is taken. By 
(23), for any 'MS-0 there is a G-0 such that T(t, z)>M. in (t., -h+)X7~. Hence, by the 
maximum principle, 

T(t,s)>u(t,s)in (t.,+-)Xa, (24) 

where V is the solution of the boundary value problem 

q = Au, t>t,, XEfB, -g=wY t>t., XEaO,= 

(O<r<r,, z=OL 

v-o, t>t.; zEa~,=aO\80,, u(t*,z)=w~(z), swif. 

(25a) 

(25") 

Here, v, (t) a0 is any sufficiently smooth function which satisfies the matching conditions, 
wile v&f. in 78. 

It is easily shown that, as a result of increasing the constants M..and r., we can 
choose 0, in such a way that 

Such a UC can in general be written in explict form. Moreover, it is easily shown that, if 

UC is linear in z, we have ~VOI$&,- cs,I* agv,I&o,-M.9,' and for sufficiently large 

dI. we have I~oll$&,,,,)l~voll~co~ (it is easily seen that, for large r., we can arrange for 

the matching conditions of the boundary functions to be satisfied by a "small" disturbance of 
the function ~8, which does not violate inequality (26) with &GM). 

When condition (26) holds the solution of problem (25) exists during a finite time 
interval (see /lo, Therem 11.1) and there exists t,%. such that 

lim supv(t, 2)=-j- 00. 
EJ;- 

We then obtain (19) from (241, and for the existence time of the solution we have the upper 
Unlit tcctr. 

2. Nodes with peaking with 2<gs3. Theorem 2 shows that, with a>2, the solution of 
problem (l)-(3) in the domain I,<h(r,) is globally unbounded and tends to the minimal 
stationary solution. Hence, in order to initiate combustion, we have to supply a sufficiently 
large non-trivial initial disturbance. We consider below the boundary value problem with the 
initial condition 

T(0, z) -To(z)>O, t-(r, I)=& sup To<+=, (27) 

and find the conditions under which the solution is unbounded. 

Theorem 4. Let a=(i,3) and let t.>O exist such that 

To (2) > t~lfl’(a-l)JCo [rat;’ $ (zt;“’ + a,)S]-1/@-0 in 3, (28) 

where a&[(3-a)/(a'i)]H, C,-[i6(3-a)(a-l)-*]1'1'('-')'. A solution of problem (l), (21, (31, (27) 
then exists in a finite time interval, and for some tort, we have 

lim T (t, 0,O) = -+ SD. 
E3;- 

(29) 

Proof. We will show that, under our assumptions, the problem has an unbounded lower 
solution 
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T_(t,z)~(t.-t)-“[z(=-‘)‘~(%, q), 

%=r(t,-t)-“, q=z(t.--t)-“, 
where 

f(&,~)=C[E*+(~+a)']-"(~-1', (30) 

and C and a>0 are constants which are found below. The function T-is certainly a lower 
solution if 

(T-)t=GAT-in (0, t.)XQ, -~T_&z<T_~ in(O,t.)XdQ, (31) 

T-(O,z)<T,(z)inQ 

or what amounts to the same thing, 

~-'(tf~)r+f,-(Ef~+9f,)/2-fl[2(a-1) PO in 8, (32) 

-A(%, O)~fY%, O), $20 (33) 

(condition (31) is the same as (28)). Substituting for f from (30) into (32) and (33), we 
arrive at the inequalities 

%*+~'+4(3-a)l(a-l)-a*~o, %>O , q>o, 

c=-'>2al(a-I). 

Hence follow the bounds on the values of the parameters a and C: 

a*<4 (3-a)/(@-l)=aa*, C"-'L2a/(u--1). 

In particular, these bounds are satisfied with the constants a, and C, indicated in the 
theorem. 

With this choice of a, and Co, therefore, T-(t,s) is a lower solution, so that TTT_ 
in 8 for all admissible 00. Hence (29) follows at once. 

3. On the asymptotic stage of combustion. It is interesting to see how the temperature 
field evolves after the initiation of combustion. 

It is natural to assume that, at the stage of developed combustion, the energy liberation 
of the reaction greatly exceeds the radiation energy. At this stage, therefore, the tempera- 
ture field must be regularly described by the simplified problem 

Tt= AT, t>o, zE’& -g =T”. 
BP 

As distinct from the initial problem, the boundary condition here does not contain a term 
describing the absorption of radiation. 

Problem (34) admits of the construction of similarity solutions which evolve into a mode 
with peaking: 

T*(t,s)=(to-t)-"[*('-~)'f(%, ,,), (35) 
%=r(tO-t)-", q==z(t,--t)-", 

where f>O satisfies the non-linear elliptic problem (see (32)) 

Af-(%fi+qf~)/2-[2(u-l)]-‘f-O in P, Wa) 

-A(%, O)=P(%,O), %>O. (36b)' 

This asymptotic behaviour is supported by the fact that, with ue(i,3), we can construct 

unbounded lower solutions with the same space-time structure. 
The amplitude of solution (35) increases without limit: T,(t,O,O)-. f(O,O)(t~-t)-LI'*'m-"'~+ 

OD , et,-. The effective width of the resulting thermal structure falls in each direction: 

llzeff'll(t)-.(:,--t)'b-cO, t-:0-, 
and we can expect moreover that T,(t,x)+-b, t+to- at only the one point s-0. Thus 
virtually all the energy liberated at this stage of the combustion is localized in the 
neighbourhood of this point. 

With respect to its space-time structure, TA is a typical localized similarity solution 
of the LS mode with peaking, see /ll/. A reaction energy liberation localization effect was 
earlier.found in another non-linear laser heating problem /12, 13/, where the mode of 
localization with peaking arose as an intermediate asymptotic form of the temperature field 
evolution and was caused by the variation of the optical characteristics of the material 
during the reaction. 

It must be said in conclusion that a rigorous proof of the asymptotic form (35) remains 
an open question. Great efforts, see e.g., /14, 15/, are needed to prove the asymptotic 
stability of similarity solutions with a point of time singularity, even in the case of much 

simpler parabolic non-linear problems. It also remains an open question whether there is a 
non-trivial solution of the elliptic problem (361, which is more complicated than that con- 
sidered in Sect.2. 
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THE APPROXIMATION OF THE BOLTZMANN EQUATION BY STOCHASTIC EQUATIONS* 

A.A. ARSEN'YEV 

An algorithm for approximating the solution of the spatially non-uniform 
Boltzmann equation by solutions of a system of stochastic differential 
equations is proposed. 

1. Suppose R'is a three-dimensional Euclidean space, (,) is the scalar product in 
R',and s I*' is the unit sphere in R'. We will define the following functions: 

(I:R*XR"XS'"+R', s(&,~o)-(q-&@)a, 

cl: u?*xu?*xs”‘+R”, cl(E,q, o)-&+lp(g, q, o), 
&, q=R', o=S'". 

The Boltsmann equation has the form 

W+G Dxf)=s If@, cl& q, o), t)f(z, cl(q, Et a), t)- (1) 

f@, t qm, rll qlh B 11, o)dqdo. 

Here t is the time, 3 is the space coordinate, g is the velocity coordinate, D is the dif- 
ferentiation operator, and f is the distritubion function of the number of particles of the 
gas. The region of variation of the variables is such that 

t=lR+1, XE(R', E, V‘sR', WmS'), do- (4x)-'sin8 dedrp, oce+c, O((p<2n. 
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