
164 

F=Ym, OD,, m=O,l,..., N, p=1,2,...,N--l. 

All the remaining matrices of the system can be evaluated with an accuracy of O(6), by 
putting 6=0. 

1n view of the stability of the boundary value problem /4/, for small values of 6 we 

can use the solution of problem (16) and (17) when 6-O. 
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A FINITE-DIFFERENCE METHOD FOR SOLVING THE EQUATIONS OF GAS DYNAMICS 
USING ADAPTIVE NETS WHICH ARE DYNAMICALLY ASSOCIATED WITH THE SOLUTION* 

N.A. DAR'IN, V.I. MAZHUKIN and A.A. SAMARSKII 

A finite-difference method for solving non-stationary, spatially one- 

dimensional problems of gas dynamics is proposed. The method is based 

on the use of grids which are adapted and obtained by a coordinate 
transformation which, in its turn, is determined by the requiredsolution. 
An efficient numerical algorithm has been constructed on the basis of 
the proposed method which enables the accuracy of the calculations to be 
increased considerably with a simultaneous reduction in the total number 
of mesh points in the net by a factor of 2-5 compared with other methods. 

Introduction. 
The correct choice of the computational net in problems of mathematical physics is always 

the most important part of a numerical calculation. This choice is particularly important 
in problems of gas dynamics, the solutions of which differ in a wide variety of features. 

Two approaches, the Lagrangian and the Euler /l/, have been used from the outset in the 
development of methods for the numerical solution of the equations of gas dynamics. 

In the Lagrangian methods /2, 3/, the cells of the computational net are moved together 
with the fluid and the velocity of motion of the mesh points is therefore determined by the 
velocity of the hydrodynamic flow. This method of adaptation has been found to be convenient 
in the case of relatively smooth flows in which there are no large deformations. Its appli- 
cation in problems with free surfaces and surfaces of separation is the most effective. When 
there are significant deformations of the flow, there is a strong distortion of the cells of 
the mesh which leads to a reduction in the accuracy of the calculations and a reduction in 
the step size for the integration. When the amplitudes of the perturbing forces are too 
large, this may also give rise to the so-called "reversal" of some of the cells which leads 
to a loss of physical meaning in the results of the calculations. There are a number of 
mechanisms for the regularization of computational nets of the Lagrangian type (see /4/ and 
/5/, for example) with the aid of which it is possible to extend the domain of these methods 
successfully. However, it is not possible to remove the drawbacks of the Lagrangian approach 
completely. 

In numerical methods based on the Euler approach /l, 6/, the mesh points of the 
computational net are fixed and do not change during the calculations, which enables one to 
treat flows with strong deformations. However, in problems where the behaviour of the 

*Zh.vychisl.Mat.mat.Fiz.,28,8,1210-1225,1988 
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solution is not previously known, the arrangement of the mesh points may turn out to be less 
than optimal which makes it necessary to use nets with an exceedingly fine mesh size. This 
drawback can be partially compensated for by a preliminary non-uniform distribution of the 
coordinate lines, if certain a priori information is available concerning the behaviour of 
the solution. Bowever, the structure of the non-uniform meshes in problems with a complex 
geometry for the solution domain is not a simple problem. A number of methods have been 
proposed for constructing the simplest nets which solely take account of the shape of the 
boundaries of the domain and do not change during their motion. These are either based on a 
geometric approach /7/ or make use of the concept of the automatic transformation of the 
coordinates /8, 9/. 

Both approaches have been used to develop methods for constructing nets which take account 
of the motion of the boundaries of the computed region. Differentiation of the elliptic 
system of equations with respect to time is proposed for this purpose in methods using a 
transformation of the coordinates /lo/. In methods based on the geometric approach /ll/, 
moving nets, which are closely connected with the motion of the boundary or with one of the 
special features of the solution, are introduced. In particular, the separation of a bow 
shock wave has been achieved with their help in /II and /12/. 

Attempts to combine the advantage of the two approaches ledtothe development of mixed 
Euler-Lagrange 113-171 and quasi-Lagrangian /18-20/ methods. 

Attempts to make use of all the advantages possessed by the moving net, Lagrangian, Euler 
and mixed Euler-Lagrangian approaches has led in the final analysis to the development and use 
of adaptive net methods. These nets are dynamically linked to the solution (see the reviews 

/21-23/J. 
At the present time, methods for constructing adaptive nets are under intensive develop- 

ment and it is therefore still quite impossible to state a preference for any of them. The 
choice of the characteristic of the solution which is used as the parameter which controls the 
motion of the mesh points of the net is the key problem in all of the methods for constructing 
adaptive nets which are dynamically linked to the solution. The accuracy of the sclution also 
depends on how the difference scheme and the method of constructing the difference net are 

associated. Taking account of these requirements a number of empirical approaches to the 
construction of difference nets with a controlled distribution of the mesh points has been 
proposed by various authors. 

In moving finite-element methods /24, 25/, the system of difference equations obtained 

using the Galerkin projection method is used for these purposes. At the same time, the 

opinion has been expressed in /25/ that moving finite-element methods have an indisputable 
advantage over finite-difference methods which use adaptive nets. 

Methods for constructing adaptive nets in finite-difference methods /26-34,' differ in an 

even greater variety of ways. Methods of constructing adaptive nets based on variational 

approaches /26, 271, an equidistant distribution of the dependent variables /28/, by taking 
account of the error in the approximation 129, 30/ and the gradients of the numerical solution 
/31/, etc. (see /32/, for example) have become widely used in finite-difference methods. 

The fact that the processes involved in determining the solution and the motion of the 
mesh points in them are treated as if they were separate and realized autonomously should be 
added to the drawbacks of the approaches which have been enumerated above. Furthermore, the 

reciprocal link between the difference scheme and the method of adjusting the net which are 

used is specified empirically and, as a rule, extremely crudely. It appears to us that it is, 

in fact, for these reasons that oscillations of the net or the linked vibrations of the 

solution and the net, which have been repeatedly pointed out in different papers, arise 

frequently when solving problems. 
It is also not completely rational to determine the solutions in a domain where there 

are singularities by concentrating the mesh points in it. For example, the isolation of a 

shock wave using this approach /32/ requires about LO2 mesh points. 
A method for solving non-stationary one-dimensional problems of gas dynamics on an 

adaptive net, dynamically linked with the solution, which is free from the above-mentioned 

drawbacks, is proposed in the present paper. The approach which is described in an extension 

to gas-dynamic problems of the method for solving boundary value heat conduction problems 

/33/ and problems of the Stefan type /34/ on adaptive nets. 

1, Differential formulation of the problem. 
we shall define the finding of the numerical Solution 0 f the equations of gas dynamics 

with the aid of an adaptive net which is dynamically linked with the solution as a method of 
solution in which the finding of the net functions and the coordinates of the mesh points are 

continuously linked. The main differences between the proposed approach and those which have 

been previously considered are as follows. 
1. The adaptive net is constructed using a corresponding coordinate transformation. The 

actual form of the transformation is specified in terms of a certain function 0, the form of 
which is determined by the singularities of the solution of the problem under investigation. 

2. A close reciprocal link between the required solution and the method of adjusting the 
computational net is introduced at the level of the differential model which, in the general 

case, is a non-linear system of partial differential equations. In this system some of the 
equations directly describe the phenomenon under investigation while the others describe the 
dynamics of the computational net which are determined, in their turn, by the evolution of 

the solution. In the limiting cases of these equations, nets either in Eulerian or Lagrangian 

variables are obtained from these equations. 
We note that the actual form of the link between the equations of gas dynamics and the 
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equation for the adjustment of the net is specified by analogy with the quasi-Lagrange approach 

/18/. 
We will use the Eulerian system of coordinates 6&t) as the initial system of coordin- 

ates in which the mathematical formulation of the phenomenon under investigation is carried 

out. Then, with the help of a transformation of the general form s=f(q, t), we make the 
transition from physical space to the computational space. The system of non-stationary 
equations of gas dynamics in the unidimensional approximation in Eulerian variables has the 

form 

In the new variables q and t, the system of Eqs.(l.l) is written in the form 

(l.la) 

(l.ib) 

(1.3a) 

(1.3b) 

*p-pax&, 

Q=p(u-ax/at). 

The actual form of the function Q is determined by the rule selected for the coordinate trans- 
formation, that is, by the form of tne function f(4, t). We note that, in the Lagrangian, 
quasi-Lagrangian and mixed Euler-Lagrange approaches, the function f(q, t) is assumed to be 

known. In the construction of an adaptive net which is dynamically linked with the solution, 
it is necessary that the rule governing the coordinate transformation (the function f(% tf) 
should be determined by the required solution. On account of this, it is necessarytospecify 
the function Q for the complete definition of system (1.2)-(1.5). 

Expressions (1.2)-(1.3) are the equations of continuity for the motion and the energy, 

and (1.4) is the equation for the link between the variables 5 and q. Eq.(1.5) can bewritten 
in the form 

&lat=u-Q/p, (W 

where * is the velocity, p is the density of the gas and Q is an arbitrary function of the 
solution. As is shown below, a considerable improvement in the solution of the difference 
equations can be achieved by selecting the function Q in the form 

Q=* (TPP)", (1.7) 

where p is the pressure and 7 is the constant ratio of the specific heat capacities (PI). 
The choice of the function Q in the form (1.7) means that each mesh point of the difference 

net either moves along the C+-characteristic or along the C_-characteristic since, in the 

case of (1.71, Eq.(1.6) takes the form 

ax/at=u*c, c- (YPlP)'", 
where c is the velocity of sound. 

In a number of cases, such as, for example, when describing the motion of a contact dis- 
continuity, it is convenient to select the function Q in the form Q-O. It is obvious that, 

in this case, the variable g is identical to the Laqrangian mass variable m= J pdx. Moreover, 

when the function Q is chosen to be of the form Q=pu , we arrive at the Euler variables 

since, in this case, ax/fiat=O. 
Eqs.(1.4) and (1.5) can be used to determine the Euler variable x(q,t) and the change 

in the density p. However, from the computational aspect, it is more convenient to take 

another equation instead of (1.5). In order to obtain this equation, we differentiate the 

left- and right-hand sides of (1.5) with respect to the spatial variable (7 and, by using 
(1.4), we arrive at the equation for determining the change in p: 

a* auaQ ( ) _ - i=---....- - , 
at P aq ( ) 341 P 

(9.8) 

The system of gas-dynamic equations in the variables g and t finally has the form (1.21-(1.41, 

(1.8). 

2. Selection of the function 0. 
When constructing the function Q, it is necessary to take account of the singularities 

of the solution of the problem under consideration. For instance, the construction of an 
adaptive net for solving the stefan problem /33/ with isolation of the position of the phase 
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boundary, in the simplest case requires a uniform distribution of the mesh points in each 
phase subregion. As a rule, the sizes of the spatial steps in these subregions are quite 
different and depend on the velocity at which the phase front moves. A mesh pointdistribution 
which is almost uniform is attained at each instant of time in the two subregions (with an 
invariant overall amount over the whole range of integration with respect to t) by specifying 
the function Q in the form of a diffusion flow Q=-Da$/c?q, where D is a coefficient, the 
value of which is selected during the calculation. 

A ciass of problems exists, the solution of which within the domain or on its boundary 
is characterized by the occurrence of large gradients which, if the required accuracy of the 
numerical solution is to be attained, necessitate the use of a finer mesh than is used within 
the remainder of the domain. Automatic compression of the mesh can be achieved by a con- 
centration of the mesh points in it with the aid of the function Q, specified in the form 

Q=-Q,;($l$l). 

The removal of mesh points from a region where the solution only changes slightly can 
lead to a very irregular net in this region. In order to avoid this, it is necessary to use 
a smoothing mechanism and, for this purpose, the function Q, in problems with large gradients, 
has been specified in the form of the combination /33/: 

1n problems which describe complex processes, the form of the function Q must, obviously, 
be determined by the predominant process. We note that, in evolutionary problems, the form 
of the equation used for readjusting the net must always be of the evolutionary type. 

Gas-dynamic problems are distinguished by a wide variety of solutions and it is there- 
fore difficult to indicate a universal form of the function Q which would satisfy al:L problems. 
We will now consider some methods of specifying the function Q in problems of gas dynamics 

using the solution of a number of actual problems as an example. 

3. The difference scheme. 
1n the computed space &,,, we introduce a computational net 61 with a constant step size 

h with respect to the variable g and a step size 7 with respect to the variable t: 

a=((&. t’), cqi+v:. t’), q,+,=qifh, q,+s=qi+0.5h 

tJ”=t’+r, i=o 1 > ? .., N-l, j=O, 1 . ..). 

On this net, the system of Eqs.(1.2)-(1.41, (1.8) is approximated by a family of' differ- 

ence schemes in which the functions $,p: u,p, and E are calculated at the half-integralpoints 

(Pli 'b, t') while the values of z and Q are calculated at the integral points (q,,t’). The family 

of difference schemes has the form 

i+‘ I 

Jl~+‘h--l)~+s Q!;:-o!“’ 
=--------t (3.la) 

7 h 

(~p/~),:+:- (qdp) ,+‘s,> u,:~‘-u,‘~) =~- (Q/p) ,:3’- (Q/p)i “‘, 
T h h 

(3.lb) 

[$(Efd/z) l,+‘l-- >+I [$(&+u~/z) I$,> (PU)$l -(PU)Y’ _ (3.lc) 
t h 

(d?-G j+’ )lh= (3/p) :;,;. (3.ld) 

The values of the functions $, p, u,p, and E at the integral mesh points were calculatedusing 

the interpolation formulae 

Y = ;i+,/,Y,-,!,+~,-'bY'.'b 

+,-%+fi+'e 

When o=O and 1, the difference scheme (3.1) is of the order of approximation of O(T+h’) 
and, when a=0.5, the order of approximations of O(?+h’). In the following calculations 

schemes, Eqs.(3.1) with 0=0.5 and 1 were employed. The implicit schemes were solved by the 

method of simple iterations. 
Let us now consider the solution of several non-stationary, spatially one-dimensional 

problems of gas dynamics. The choice of these problems was dictated by an attempt to demon- 

strate the possibilities of the proposed method of solution as fully as possible. 

4. The problem of the formation of a shock wave. 
Let us consider the problem of the formation and propagation of a shock wave using the 
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example of the motion of an accelerating piston. At the instant of time $=O, the piston 

occupies the position s=O and then moves according to the law z=aP,abO in a tube filled 

with a quiescent polytropic gas. During the development of the compression wave, thegradients 
of the solution in this zone increase and, at a certain critical instant of time, t=t,, 

become infinite. A so-called gradient catostrophy occurs, that is, a singularity occurs in 

the solution. The instant of the onset of the gradient catastrophy can be determined using 

the formula /35/ 

where u," is the velocity of sound inthequiescentgas and a is the constant in the law of 
motion of the piston. For pp=l, po=i, and a=i, the time t,=0.484, and T='/~. 

Up to the instant of the onset of the gradient catastrophy, the flow is a simple com- 

pression wave with a weak discontinuity at the point where it joins with the constant flow. 
An attempt has been made to determine the instant when the discontinuity forms from the 
numerical solution of the system of finite difference Eqs.(3.1) with a=0.5 and 1 on a fixed 
Lagrangian net (Q-O) with a total number of mesh points N=60. Spatial profiles of the 
velocity u at different instants of time obtained using the implicit difference scheme (o=i) 

with first-order accuracy (Fig.11 and the scheme with second-order accuracy (a=&5 (Fig.2) 
are shown in Figs.1 and 2. The numerical solution is shown by means of broken lines and the 

exact solution by the solid lines. The positions of the mesh points are indicated by the 

small circles. The results obtained suggest that it is practically impossible to determine 
the instant of time at which the shock wave is formed from numerical calculations on a fixed 

mesh. The solutions obtained using the first order scheme (Fig.1) do not reproduce the steep 
fronts on account of the large approximation viscosity of the scheme. The second-order scheme 

yields oscillations in regions where there are large gradients (Fig.2). 

Fig.1 

Fig.2 

The qualitative effect of the approximation viscosity on the solutions which are obtained 
was investigated using the method of differential approximation /36/. As an example, let us 

take the first differential approximation for the difference equation of motion from system 
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Fig.3. (z-t)-diagram 

Fig.4 

We note the following: the oscillatory nature of the behaviour of u when Q-0 is obviously 
determined by the first term on the right-hand side of (4.1). Both of the terms on the right- 
hand side are functions of the derivatives of the quantities p+Qu with respect to the 
spatial coordinate 4. It is therefore desirable, when solving a problem using an adaptive 
net for the mesh points, to specify a law of motion such that the derivatives of the quantity 

P+QU 7 close to large gradients in the solution, are small. It is well-known /3?,/ that, in 
the solutions of gas dynamic problems which are represented in the form of a simple wave, all 
the quantities are functions of just a single quantity which keeps a constant value on the 
characteristics. It is natural to select the function Q such that the coordinates of the mesh 

points in the physical space should move along the corresponding family of characteristics. 
In the problem under consideration, this must be the family of C+-characteristics, the 
equation of which is written in the form 

dxldt=u+u,, (4.2) 
where U. is the velocity of sound. A comparison of (4.2) with Eq.(1.5) showed that the 
Eulerian coordinate of a meshpoint z moves along a C+-characteristic, if 

is chosen. 
Q&u, (4.3) 

The instant when the compression wave becomes a shock wave can be determined by the 
following considerations. It is known from the method of characteristics /37/ thatagradient 
catastrophy in a simple compression wave implies the intersection of two characteristics of 

the corresponding family. In the problem under consideration, when the flow Q is selected 

in the form (4.3), each mesh point of the net must move along a C+-characteristic. The 

position and the instant of formation will be determined when the quantity $ vanishes in the 
cell between the two intersecting characteristics. The calculations confirmed the hypotheses 
which have been put forward. The results of these calculations are presented in Figs.3-7. 

There are a number of important aspects associated with the formation of a shock wave 

and its subsequent propagation. 
1. It is known /35/ that a gradient catastrophy occurs near the base of a compression 

wave when the characteristics interest. One of these characteristics emerges fromthe piston 

at the instant of time t=O. that is, from the origin of coordinates. When a net which is 
uniform with respect to g and the initial values $=I are used, such a characteristic does 
not occur in the calculations and this may lead to an appreciable error in determining the 
value of t,. In our calculations, when a uniform mesh was used to approximate the character- 
istic emerging from the piston, the initial value of 9, in the first cell was chosen to be 
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much small than in the remaining cell: $,=10-h. +<=I, i-2, 3,. , N-l. Satisfaction of the 
inequality ~i~0.1 in a certain cell 1 was considered to be the condition for the formation 
of a shock wave. In our calculations, using the selected values of UC, a and 7, it was 

satisfied at the instant of time t-0.475, which is close to the calculated tc =0.484,,&~0.02tc. 

Fig.5 

Fig.6 Fig.7 

2. The boundary conditions 

must be satisfied on the boundaries 4=40 and q==qx of the computed region qo<qGqn. 
Hence, when the mass overcurrent is chosen in the form of (4.3), the extreme left-hand 

cell will increase without limit while the extreme right-hand cell collapses to a point after 
a finite time. In order to prevent the above-mentioned phenomena from occurring, a mechanism 
for generating new cells close to the piston and annihilating the fine cells on the right-hand 
end of the region was incorporated in the numerical algorithm. The value of the quantity I) 

for the corresponding cell served as the criterion for annihilation or creation. In the new 

cells, the values of p and u were determined by interpolation. The density p was found from 
the requirement that the entropy should be conserved, and the function J' was determined 

from the law of conservation of mass. Trajectories of the motion of the mesh points of the 
net are shown in Figs.3 and 4. The mesh points used in the calculations are indicated by 
dots, the generated mesh points are indicated by small circles while those which are annihil- 
ated are indicated by small crosses. The instant when the shock wave is formed is indicated 
by a small circle with a cross inside it (Fig.4). The initial net consisted of the minimum 
number of cells, equai to two. The initial values of the function 11, for these cells differed 
by several orders of magnitude. At the end of the calculations the number of mesh points had 
reached 40 (Fiq.4). 

3. After a strong discontinuity has been formed, the difficult question concerning the 
method of calculating the propagation of a non-stationary shock wave arises. There are two 
possibilities for picking out domains where there are singularities in the solution in calcu- 
lationsin adaptive nets. The space-time profile of a discontinuity can be reproduced with a 
sufficient degree of accuracy by concentrating a large number of mesh points in this region 
and, at the same time, not allowing any cells to collapse. However, this route is not 
entirely rational for two reasons. Firstly, a large overall number of mesh points is required 
and, secondly, excessive densification of the net with respect to the spatial variable may 
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bring about a substantial reduction in the integration step size with respect to time. ii i a 
lY?SUlt, the question arises of the efficiency of the method. 

Another route is more promising when the singularities in the solution are isolated in an 
explicit form according to the type of solution of the Stefan problem in j?4/ in which ihe 
discontinuity is located on a mesh point of the net. The boundary conditions in the term of 
conservation laws are written out on the discontinuity and one cf these conservation law,: 
allows one to establish the mass flux through the discontinuity. The value of this flux is 
then used in order to construct the net which is adapted. 

The isolation of a strong discontinuity means that it is located at a certain mesk point 
i-l, at which the values of pi, u,, p,, and F, are different t.c the 16 ft 2nd riL?ht n+ t?:i. 
point. It is known that the Hugoniut relationships must be sati.r:ii& iii this c',iscui,.i$:L,ty. 
In the computational space they are written in a form which excli:ie, !~'r.t= ao,pe;,rzr:c.c r,f tlif- 

ference solirces: 

Here, the indices 1 and 2 denote values in front of and behindthe shock wave respectively. 

The numerical calculations were found to be stable when the values from the region ,,t 
constant flow p,. &, and ~1 and one of the values, uz, for example, from the region beind the 
shock wave front were extrapolated onto the surface of the discontinuity. After the formation 
of a shock wave where a fixed mesh point of the computational net corres~ondstat;ir!~o;i'lLon 
of its front, the cells to the right and the left c,f it were annihilated ,~s:ng the '=?c,:!I.:que 
which has been described above. 

4. We will now consider the question of the link between the choice of n and the dif- 
ference scheme. It is known /l-3/ that implicit schemes of the first order of accuracy t;n 
fixed nets greatly "blurs" weak discontinuities in a gas-dynamic flow. As a rule, second- 
order schemes lead to the appearance of parasitic oscillations in the solution. 

The use of adaptive nets, which are dynamically related to the solution, substantially 
changes these qualities of difference schemes. Calculations of first-order accuracy using 
the scheme (3.1) (e=l, Fig.5) and schemes of second-order accuracy (0=0.5. Fig.61 stowed that 
the blurring and oscillatory effects practically disappeared in both cases. The difference 
between the numerical solutions and the exact solutions did not exceed l-Z%. The exact 
solution is shown by the solid lines, the numerical solution is shown by the broken lines 
and the positions and number of mesh points used are indicated by the small circles. A 

comparison showed that the two schemes yield slightly different results. The instant at 
which the strong discontinuity arises was determined with an identical accuracy in the tjro 

cases. Both schemes clearly reproduce the discontinuity region when notmorethan 40 mc;!~ 

pornts are used. 
In order to ensure that all of this is also characteristic of other difference schemes, 

one of the widely used predictor-corrector type schemes, the Lax-Wendroff scheme /li w1 s 

employed for the purpose of comparing the calculations. The results obtained using this 
scheme are shown in Fig.7. They hardly differ from the results obtained using (3.1‘ ei+l-6.r 

qualitatively or quantitatively. 
It may therefore be concluded that the use of the method based on the employment .: 

adaptive nets for solving problems in gas dynamics reduces the requirements regarding +!'e 

difference schemes. 
Other qualities of the proposed method were investigated using the example Of prd'-rr~S 

which admit of selfmodelling solutions. 

5. The problem of the propagation of a shock wave on a background with an 
exponentially increasing density. 

AS an example of this problem /38/ we shall carry out an additional experimental inves- 
tigation of the accuracy of the numerical solution obtained on a net constructed with the 

help of the mechanisms for the generation and adaptation of the meshpoints described in Sect. 

4. 
At the initial instant of time t=t,, the values of the gas-dynamic functions have the 

form /16/ 

E (5 to) = 
0, x,x,, 

0.5(Alt,)2(l+2~o), 3%X., 

P(X, i")= 1 

p,exp[(r-l,)/Al, X2X,, 

3po(l+2E0)-"~, XGX". 

Here, eo= (xc-x) /A, xo is the position of the discontinuity at the instant &,I% is the 

unperturbed background density when x=50 and A is the characteristic scale of the pulse 

width. 
The selfmodelling solution when t>t, has the form 
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e (I, t) = 0, r>s,(t), 
0.5(A/t)“(1+2&), +eb(t), 

p. exp[ (z-d/Al, z>&(t), 
3pw (1+2g)-'/: sGs,(t). 

Here, sF(t)=zo+l.5A In (t/to) is the position of the front at the instant t and t, g=[zF(t)-xl/A. 
The numerical values of the parameters were as follows: to=& s0=6, p0=l,A=4,y=2. 

Fig.8 Fig.9 

Results of calculations using the above-mentioned technique with the creation and 
annihilation of cells both close to the boundaries of the region as well as in the neighbour- 
hood of the shock wave front are presented in Fig.8 for the first case: at the initial instant 
the net consisted of 31 mesh points and , in the region encompassed by the motion, there were 
11 mesh points (+is for t=4 and 0 is for t=8). In the second case the total number of mesh 
points at the initial instant was 61 and of these 41 lay in the domain x<xO. The error in 
determining the density did not exceed 5% in both cases. For comparison, we note that nets 
with a total number of mesh points N=37-1.50 were employed in analogous calculations in /16/. 

6. The problem of the decay of a strong discontinuity. 
Among the solutions of the system of gas-dynamic equations, some are encountered which 

either contain a shock wave (index s.w.) or a contact discontinuity (index c-d.1 In the 
problem of the breakdown of a strong discontinuity, there are simultaneously two types of 
discontinuities which move with constant velocities. This problem has been widely employed 
in the analysis of the quality of difference schemes by different authors /16, 39, 40/. 

Let us formulate the problem in the following form: when t=o , let us put pl=480, ~p8. 
11,=0, p,=l, &=I, u,=o, wherevaluestothe rightandtotheleftofthediscontinuityatthepoint 
x=0 are denoted by "r" and "1". The problem being considered is a selfmodelling problem 
with respect to the variable k=x/t. The selfmodelling coordinates of the discontinuities have 

the following form: El=-10, E,=1.0933, Ec.d.=8.32, ~s.w~=11.24 (Y=~/~). 
The exact solution in regions I-Ivis described as follows: 

domain I 111 V 
P 8 (a-$5)J 3.0193 K5 
I‘ 0 0.75(&+10) 8.32 0' 
P 480 15p"l 933; 94.52 1 

In the numerical calculations, 5 cells were chosen in each of the regions I-V. In 
region 11, the mesh points of the net were moved along the C--characteristics, that is, the 

current Q was selected in the form Q=pu,. In the regions of piecewise-constant solutions, a 
a diffusion mechanism for pushing the mesh points apart: Q=-D,&$/aq was chosen. Profiles 
of the density at the instant of time t=0.46 are shown in Fig.9. The solid line is the 

exact solution and the small circles are the numerical solution. The number and position of 
the markers corresponds to the number and position of the mesh points of the net. The 
maximum error was observed in the region of the rarefaction wave and this was 0.5%. 

Conclusion. 
An analysis of the solutions of a number of well-known test problems (Sects.4-61 enables 

'us to make the following assertions. 
A finite-difference method has been proposed for solving non-stationary, spatially one- 

dimensional problems of gas dynamics. The method is based on the use of adaptive nets which 
are obtained by a coordinate transformation which is determined by the required solution. 

An efficient computational algorithm has been constructed on the basis of the proposed 
method which enables one to increase the accuracy of the calculations considerably (the error 
with respect to the exact solution was l-5% for the different problems) with a simultaneous 
decrease in the total number of mesh points of the net by a factor of two to five compared 
with other methods. 

The method enables one to determine the site and the moment of formation of discontinuous 
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solutions with great accuracy. 
Using this method, the fronts of strong, weak and contact discontinuities can be isolated 

almost precisely. 

The method is economic and readily allows one to introduce a mechanism for generating 
mesh points. 

The method reduces the requirements regarding the quality of the difference schemes. The 
adaptive nets used in this method, which are dynamically linked to the solution, lead to a 
reduction in the approximation viscosity and to the suppression of parasitic oscillations. 

The efficiency of the proposed method can be increased by using different optimization 
procedures which have not been carried out in the present paper. 
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