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CLASSIFICATION OF SOLUTIONS OF A SYSTEM OF NONLINEAR DIFFUSION 

EQUATIONS IN A NEIGHBORHOOD OF A BIFURCATION POINT 

T. S. Akhromeeva, S. P. Kurdyumov, 
G. G. Malinetskii, and A. A. Samarskii 

UDC 517.958 

The theory of reaction-diffusion systems in a neighborhood of a bifurcation point 
is considered. The basic types of space-time ordering, diffusion chaos in such 
systems, and sequences of bifurcations leading to complication of solutions are 
studied. A detailed discussion is given of a hierarchy of simplified models (one- 
and two-dimensional mappings, systems of ordinary differential equations, and 
others) which make it possible to carry out a qualitative analysis of the problem 
studied in the case of small regions. A number of generalizations of the equations 
studied and the simplest types of ordering in the two-dimensional case are de- 
scribed. 

i. Two-Component Systems and the Classification Problem 

In many systems which are studied in physics, chemistry, and biology there arise self- 
sustaining structures of various types [24, 32, 36, 40, 42, 62]. The question of the prop- 
erties of nonlinear media where structures are formed and of the general regularities of 
their occurrence is one of the fundamental questions of modern science. 

We shall characterize the deviation from equilibrium in the systems studied by a para- 
meter I (I = 0 corresponds to the equilibrium state). It follows from classical thermo- 
dynamics that the evolution of such a system proceeds in the direction of increasing entropy; 
any order hereby vanishes. A necessary condition for the existence of stable structures is 
exchange with an external medium (the system must be open). 

For small deviations (0 < i < I0) concepts of linear nonequilibrium thermodynamics are 
applicable. This theory describes processes in a neighborhood of thermodynamic equilibrium 
and "... encompasses all cases where the flows (or velocities of irreversible processes) are 
linear functions of the "thermodynamic forces" (gradients of the temperature or concentra- 
tions)" [52]. It has been shown that in this range of parameters a stationary state of the 
system is close to the equilibrium state (for each value of I it is unique and stable). It 
is therefore said that all such states lie on the thermodynamic branch. 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie 
Dostizheniya, Vol. 28, 207-313, 1986. 
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Off the thermodynamic branch (X > X0) structures of various types can arise. Nonlinear 
effects play an essential role in their formation. This leads to the necessity of construct- 
ing and investigating nonlinear mathematical models. The principles of constructing such 
models and their connection with concepts of thermodynamics are discussed in the works [52, 
70]. 

Structures arise in open systems to which energy is supplied from without. The energy 
is transformed and dispersed as a result of dissipative processes whose role turns out to 
be very large. They determine the number of types of structures, the coordination of processes 
in different parts of the system, etc. In order to emphasize this circumstance the structures 
in open, nonlinear systems arising off the thermodynamic branch are called dissipative struc- 
tures. 

The development of the theory of dissipative structures or synergetics has shown that it 
is possible to distinguish a number of general regularities in the behavior of open, non- 
linear systems. 

The mathematical models which describe concrete physical, chemical or biological systems 
may be very complex. In many cases there are systems of nonlinear parabolic equations depend- 
ing on a number of parameters: 

(ii$0v ..... ..... 

In them, however, it is frequently possible to distinguish a small number of controlling vari- 
ables to which all others are tuned. The presence of such variables, which are usually order 
parameters, greatly simplifies the description of the processes. They usually make it pos- 
sible to describe the behavior of the system at large or small characteristic times [42, 70]. 

Separation of the order parameters affords the possibility not only of simplifying the 
model used but in a number of cases of investigating many nonlinear processes within the 
framework of the same equations. They are usually called base models. One of the most im- 
portant and widely used base models is the system of equations of the form 

Xt ~-D~Xxx+F~ (X, Y, X), (1.2) 
Yt =D2Yxx+F2 (X, Y, ~). 

Here F I and F 2 are nonlinear functions depending on the parameter X. Equations (1.2), just 
as (i.i), are frequently called models of reaction-diffusion type. 

In spite of the fact that the base model is much simpler than the original problem, 
it is a complex mathematical object. It is just for this reasons that computational experi- 
ment - the combination of a large series of calculations on a computer with extensive use of 
various analytic methods - plays a major role in the development of the theory of dissipative 
structures [51, 59, 62, 63]. It is possible to give a number of examples from plasma physics 
[41, 62, 67], the theory of nonlinear waves [7,66, 68, 69, 125], biology [21, 36, 48, 56, 
86] and other areas where investigation by means of numerical computational experiment pre- 
ceded experimental discovery of new phenomena, the introduction of new concepts, or the crea- 
tion of a rigorous mathematical theory. 

i.i. Reaction-Diffusion Systems; Description in a Neighborhood of a Bifurcation Point. 
In recent decades the system of equation (1.2) has been used in modeling a large circle of 
phenomena in chemistry, ecology, the theory of morphogenesis, the physics of plasma, the 
theory of combustion, and many other areas. An enormous number of works have been devoted 
to this model. 

The diversity of two-component systems of the form (1.2), the broad area of their appli- 
cation, the necessity of constructing approximate methods, and the performance of a large 
number of numerical calculations in their analysis lead to the formulation of two questions. 
First, do there exist common features in the behavior of solutions of Eqs. (1.2) for different 
right sides? This question is very complex, since the "number of qualitatively different 
solutions of these equations is so great that up until now no general method of classifying 
them has been found. In the best case it is possible to construct approximate expressions 
for some special solutions of the type of stationary solutions or periodic or almost periodic 
solutions, but without special assurance whether these solutions exhaust all possible bifur- 
cations in the system" [52]). 
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The second question is whether it is possible to classify two-component systems accord- 
ing to some criteria. The importance of this problem can be judged from the significance 
classification problems had for the theory of ordinary differential equations and the theory 
of singularities of differentiable mappings [4, 5, 29]. Classification and separation of 
general features would make it possible to go over from the investigation of concrete models 
of special form to the creation of a theory of them and would assist in simplifying the anal- 
ysis of each concrete problem. 

A basic step in this direction was made in 1975 in the work of Kuramoto and Tsuzuki 
[103]. There exists an analogue of the thermodynamic branch for the majority of open dissi- 
pative systems considered in synergetics. For all values of the parameter the equations 
studied have a spatially homogeneous stationary solution. This solution is stable if I < 
10. The behavior of solutions after loss of stability of the thermodynamic branch (% > I 0) 
is determined by the spectrum of the linearized problem for Eq. (1.2) in a neighborhood of 
the bifurcation point I0 [49, 52, 70]. 

If for I = 10 one simple eigenvalue passes through zero there arise spatially inhomo- 
geneous stationary solutions. Such behavior in the system (1.2) was found by Turing in the 
investigation of a mathematical model of morphogenesis [120]; it is often called the Turing 
instability. A typical dependence of the amplitude of the stationary solution A on the para- 
meter I will be as shown in Fig. i. 

If for I = 10 two complex conjugate eigenvalues intersect the imaginary axis in the 
(RED, Im ~) plane, where ~ is the eigenvalue, then a Hopf bifurcation occurs, and oscillations 
begin in the system [49]. 

The equation proposed by Kuramoto and Tsuzuki describes the behavior of both two-compo- 
nent systems in a neighborhood of the bifurcation point I0 [103]. It has the form 

V/r= (-+- 1+ico) W+ (1+i t0  V./~R-- (1-+-ic2) W I WI2. (1 .3)  

Here W = u + iv; co, ci, c 2 are real constants whose values are determined on the basis of 
the coefficients DI, D2, the functions QI(X, Y, I), Q2(X, Y, I), and their derivatives. The 
plus sign on the right side of Eq. (1.3) corresponds to the range of parameters I > 10, while 
the minus sign corresponds to I < 10. 

We shall clarify the meaning of the variables W, R, T. The possibility of going over 
from systems of the form (1.2) to Eq. (1.3) is connected with the presence of a small para- 
meter ~ ~ (I - X0) I/2 A solution of Eq. (1.2) in this case can be written in the form 

(~) (~0) (eg. (1.4) = q-~[W(R, T ) - / - k c . c . ]  e2 '  e:,e2--const, 

where {X0, Y0} is the thermodynamic branch; W depends on the slow variables R = gx, T = ~2t, 
f = eikc x in the case of a Turing instability; f = e im0t if a Hopf bifurcation occurs. That 
is, R and T are slow variables determining the modulation in time and space of the simplest 
solutions f whose form follows from linear analysis. 

The functions W(R, T) characterize the deviation of solutions of the system of equations 
(1.2) from a spatially homogeneous solution. Therefore, Eq. (1.3) describes only those cases 
when for % > I0 the solution remains in a small neighborhood of the thermodynamic branch. 
This condition is violated, for example, when a jump occurs to another stable branch (the 
bifurcation is subcritical; see Fig. 2). Equation (1.3) also does not describe degenerate 
cases when more than two eigenvalues of the linearized problem intersect the imaginary axis 
simultaneously. Nevertheless, this equation is applicable to a very broad class of problems 
and is therefore of great interest. We consider just this equation below. 

The study of Eq. (1.3) turns out to be closely related to the problem of classification 
of two-component systems in a neighborhood of a bifurcation point. Suppose the qualitative 
features of its solutions (the type of asymptotics, symmetry, etc.) are known for all values 
Co, cI, c z and length of the region s It is then possible to combine into one class all 
systems of the form (1.2) for which the solutions of Eq. (1.3) behave in a similar manner. 
This approach turns out to be still more useful if it is possible to set forth effective 
approximate and qualitative methods of analysis of solutions of different types. 

We shall consider in more detail the algorithm of passing from a concrete system of the 
form (1.2) to Eq. (1.3), following the work [103]. 
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We rewrite Eqs. (1.2) in vector form, denoting the spatial coordinate by r: 

x -  Dv~,X = F (x),  

(X) [D~ O~ 
where X~- ' D~0 D2]" We transform this equation to 

Px = O (x), 

where  x = X - - X o  (X 0 i s  t h e  t h e r m o d y n a m i c  b r a n c h ) ,  x - - = ( ; ) ,  

0 (Oq-Kxx--Dw~ K.,~ 
-*v,)=\,:,. =v,/ O , . .  D 2." 

The function G~-(~) in this notation contains only terms nonlinear in x. 

Equation (1.6) can be rewritten as 

0 K --D2v, --Kxyl, 0 ( ~  + YY ~ ' 
+ K,,x-- D1v, ] 

where 

(1.5) 

( 1 . 6 )  

(1.7) 

(1.8) 

0 
~ ( - - i  or' -- iV,) ---- det P. (1.9) 

Thus ,  a f t e r  s e p a r a t i o n  on t h e  r i g h t  s i d e s  o f  t h e  s y s t e m  ( 1 . 2 )  o f  t e r m s  l i n e a r  w i t h  r e s p e c t  
t o  d e v i a t i o n  f rom t h e  t h e r m o d y n a m i c  b r a n c h ,  i t  can  be b r o u g h t  t o  t h e  fo rm ( 1 . 5 )  o r  ( 1 . 8 ) .  

(1.1o) 

Suppose now that 

In a neighborhood of a bifurcation point 

Ko,\ 

and ~ can  assume t h e  v a l u e s  x o r  y ,  m = 1, 2. 
omit the prime on these terms. 

Let 

(1.11) 

(1.12) 

(1.13) 

(1.14) 

(X is a real number), 

K ~ ,  ' D m do not depend on e; we henceforth 

T~-e2~t, (~>0); R=exr 

le~Vkc r * (case A, a Turing instability), 
fv= [eivwd (case B, a Hopf bifurcation) 

here v = +I, -+2 .... (The explicit formulas for ~, X, kc, e0will be derived later.) 

The vector of deviations X can also be represented as a series 

X~- ~ 8nXn, where Xn=~x(~v)(T,R)f~. 
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Then for operators 

The operators .~n----.o~n(--i-~-f, 
setting 

_JSe~(0, ~k~) (o~ a~, 
s ('~')- ~$G B, tOo, 0) (oa~ ~). 

The same goes for the operators [., I ~, O. 

~, c~, L, O we also obtain series: 

= 1~0 -1- 8 r l  M-I . . . .  "(~ = ,~0  -I- 8-~1-1-1~2-~2 -Jr- . . . .  ( 1 . 1 5  ) 

L = L 0 + e L 1 - F  . . . .  ( i - -  e202+ esOa+ . . . .  

) . o  -- ivr c o n t a i n - - t - ~ i  and - - i v r .  We s i m p l i f y  t h e i r  n o t a t i o n  by 

(1 .16)  

where a-----( I )a 

x~l)----x~-')*-----a~W (/~, T), 

x~) = O, ~ # + 1, 
(1 .17)  

a =  - -  Po (1)xxlPo (1)~y = -- Po (1)yx/~o (1)yy ----L 0 (1)yy/Lo (1)xy ----L o (1)yx/L o (1)xx ( 1.18 ) 

connects the Kuramoto-Tsuzuki equation for the function W(R, T) and the deviation x (xx is 
the upper left element in the matrix, xy is the second element in the first row, etc.). 

The coefficients ca, 
defined by the formula 

c l ,  c 2 in  Eq. ( 1 .3 )  and ~, X, ~ in  fo rmulas  ( 1 . 1 2 ) ,  (1 .17 )  a re  

Co=Im~/lRe)l, c,=Imb/Refg, c2=[mTt/Re~, 
~=lRevl, Z~=lRe}l/Ref), I;IZ=lRe#l/Reg, 

where y, D, and g are defined differently for cases A and B. 

Case h (a Turing instability). It follows from linear analysis that at a bifurcation 
point 

( K xxD2 -- K yyD 1) 2 -~- 4K xyK yxD1D2 = O, 

k~--_ _ ( K xxD2 q- KyyD O / (2D ~D2). 

(1 .19 )  

We shall consider only the case k c ~ 0 

(1.20) 

(1.21) 

2 2 t ~- - -  {(Kxx-}- D lkr (~yy -t- d2~,r "T (Kyy '~- D2k2c) (Xxx + dlt~ 2c) - -  (Kyx~xy -~ Kxy~yx)}] {Kxx -F Kyy "-l" (D, + D=) k, }, 

b = -- 2 (D2Kxx-t-- DxKyy)/{Kxx + Kyy + (Dx -{- D2) k~} > 0, ( 1.22 ) 

g--= g/{Xxx + X , ,  + k 2 (Dz+Dd A, 

the quantity g is defined by the formula 

[ ^ A  ( /" t A A ( a T p 2 a ~ .  o .T~  ;~ ,  .L a , r~aha] ,  ( 1 .23 )  cY'  . . . .  g =  -- 4 . ~  -1 (0) aTMzLo (0) \a*TQza/ 

* corresponds to complex conjugation, and T is transposition. 

The terms contained in g are determined from the relations 

" 1 0  
where a~(0 a)' 

.~o (0) = K xxK y y-- K xyK yx, 

.~o (2)-~ ( K.~x + 4D,k~) ( Ky, + 4D~k~) -- K xyKyx, 

gvg + 4D~k2e --gxg ) 

Kxx+ O,k~ Kvx 
a =  

Kxv Kvv + D2k f" 

(1.24) 
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Case B (Hopf bifurcation). At the bifurcation point there are the equalities 

K= + K~y- 0, ~0 = VK=Kyy- K~yK,., 

7, D, and g are determined by the relations 

(1.25) 

I i 

1 (DI+D2) ,  -g=--igl2o)o. fk=D+-q-iKxxD_lo) o, D+=-~ _ 

(1 .26 )  

The quantity g is determined by formula (1.23), and ~0(0) and L0(0) are the same as in for- 
mulas (1.24). For the other terms contained in g we have the relations 

s (2) = (2i~o Jr Kxx) (2i~o-+-/t"y y)-- KxyKyx, ( 1.27 ) 

Lo(2)=[2i~o+Kuu --Kxu ), M2,3~___(i~0.JC/i"yy) P2, 3 __ 
--Kyx 2i~o + Kxx 

(iwo + Kxx) 
-KxyQ2,a, a =  Kxu =--Kyx/(i~~ 

We shall list the basic steps in going from a concrete system (1.2) to equation (1.3). 
i. Separation in Eq. (1.2) of the part linear in the deviation, and reduction to the form 
(1.6) and (1.8). 2. Expansion in the small parameter^e [formulas~(l.ll) and (1.15)]. Determina- 
tion of the values ~xx, ~yx, 7xy, ~yy, dl, d2 and P2, P3, Q2, Qa. 3. In case A, when rela- 
tion (1.20) is satisfied, k~, c o , c I, c 2 are found in accordance with formulas (1,21)- 
(1.24) and (1.19). In case B, when relation (1.25) is satisfied, the values of m 0, c o , c l, 
c 2 are found according to formulas (1.25), (1.26), (1.23), (1.27). 

An example of the use of this algorithm for the Brussalator model [F 1 = A - (B + I)X + 
X2Y, F 2 = BX - X2Y in formulas (1.2)], which is widely used in the theory of dissipative 
structures, is presented in the work [102]. 

We focus attention on the difference of this approach connected with multiscale expan- 
sions from traditional methods of bifurcation theory [39]. In that theory solutions of known 
form (stationary or periodic) are usually investigated in a neighborhood of an analogue of 
the thermodynamic branch. Here an equation is obtained which generates such solutions. This 
method can be compared with the results of Chapman and Enskog on the derivation of the equa- 
tions of hydrodynamics from the Boltzmann equation [98]. 

1.2. Other Problems Leading to the Kuramoto-Tsuzuki Equation. The range of applicabil- 
ity of Eq. (1.3) is not exhausted by the analysis of two-component systems of the form (1.2). 
It is of great interest in many physical problems. In particular, in the work [2] for the 
investigation of wind waves on water the following equation was suggested: 

at--i• a~-- ia l a [ ~a=,yoa + i6at + ~a=+ ~a~y--o [ a l ~ a. 

Special cases of it were considered for Poiseuille flow [i15], for ion-sonic waves in a 
plasma [55], and also for Tollmin-Schliching waves [92]. A number of important and inter- 
estimg effects can be investigated by studying its one-dimensional analogue which coincides 
with (1.3). 

In many problems of nonlinear optics and hydrodynamics, in particular, in the theory of 
waves of finite amplitude on the surface of a deep liquid the SchrSdinger equation with a 
cubic nonlinearity is used [66, 68, 125]. This equation has an infinite number of conserva- 
tion laws; typical solutions of it are solitons [68]. In those cases where it is necessary 
to consider dissipative processes, sources, and sinks Eq. (1.3) occurs; solutions of it may 
behave in a completely different manner. 

Equation (1.3) was used in the analysis of order arising in active biological media 
[21, 97] and for the investigation of autowave processes in oscillating chemical reactions 
[90]. There is reason to suppose that the behavior of perturbations in many nonequilibrium 
processes for small supercriticality is described by this equation. The importance and gen- 
erality of this approach are indicated by the authors of the work [2] in which an analogy 
is drawn between problems of hydrodynamics and plasma physics. 

Various names are used for Eq. (1.3) in the literature. In the works [22, 109] it is 
called TDGL (time-dependent Ginzburg-Landau equation). In the work [97] it is assigned to 
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X- m systems. It has also been called the Kuramoto-Tsuzuki equation [7-19], since it was 
just the authors of the work [103] whose proposed using it for the analysis of a broad class 
of two-component systems. For brevity and convenience we shall use this name below. 

2. General Properties of the Equation and the Basic Types of Solutions 

2~i. Basic Properties of the Kuramoto-Tsuzuki Equation and Its Simplest Solutions. 
Equation (1.3) is a complex mathematical object. Analysis of it began from the construction 
of various classes of special solutions. 

In Eq. (1.3) it is possible to set c o = 0 with no loss of generality. This can be seen 
by making the change of variables W = W' exp (ic0t). We shall henceforth assume that such a 
change has already been made. 

In the majority of cases the second boundary value problem is a major interest with the 
condition that the fluxes on the boundaries are equal to zero: 

W , =  + W+ (1+ic 0 W=-- (1+ic~) W I WI2 , 
O~<x~<l, O < t < o o ,  W(x, O) ----- W0 (x) , ( 2 . 1 )  

W,(O, t)=W~(l, t)~-O. 
The simplest solution of this problem is the zero solution 

W(x, t)=O ( 2 . 2 )  

and the spatially homogeneous solution 

W(x, t) -~-exp (--ic2t+i=), ==const .  ( 2 . 3 )  

All spatially homogeneous solutions are described by the dynamical system 

When the minus sign is chosen on the right side, in its phase plane there is one singu- 
lar point - the stable node (0, 0). If the plus sign is chosen, then (0, 0) is an unstable 
node, and in the phase plane there is a stable limit cycle (2.3). For nonzero initial data 
solutions of Eq. (2.4) tend to it as t + ~. 

I 

If in Eq. (2.1) the minus sign is chosen, then ](~+~2)dx-+O as t § ~. We write prob- 
0 

lem (2.1) in the form of a system of equations for u and v. We multiply the first equation 
by u, the second by v, add them, and integrate over the length of the segment. After inte- 
gration by parts with consideration of the boundary conditions we obtain 

1 l l l 
1 0 (u2 + or) d x  = - I dx I (2.5) 

0 o 0 0 

If u ~ 0, V ~ 0 for O~<x~<l, then the right side of equality (2.5) is negative. This implies 
I 

[]W]2dx-+O, t-+~. We therefore consider henceforth only the case that for any initial data 
0 

where the plus sign is chosen on the right side of Eqs. (2.1). 
I 

In this case for [IW] 2dx there is the relation 
0 

l 

1 0 I ( tF+~2)  dx  " ~  
0 

l 1 1 

= -  l S S + § 
0 0 0 

(2~ 

The first term is nonpositive, and the second can be estimated by using the Cauchy-Bunyakov- 
skii inequality for the functions u 2 + v 2 and I: 

i(u2+~=)dx~<(i (u2+~F)gdx)ll2(idx)ll=. 

As a result we obtain the inequality 
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1 0 f (u2 + v2) d x <  (u 2+v2) d x - 1  0-7 ~ T (u2 + v2) dx , 
0 0 

from which we obtain the estimate 

l 

(~ + v 2) dx -.< l / [1 + A 1 exp ( - -  t)], ( 2 .7  ) 
0 

where A I depends on the initial data. Thus, the solution of problem (2.1) is bounded in the 
norm of L 2. 

We note that all that has been said is valid also in the case of a problem with periodic 
boundary conditions. 

We shall specify those values of the parameters for which it is necessary to investi- 
gate problem (2.1). We first go over to the variables p, ~: 

P,- - - -P--Ps+P=--P~2--2c lp~--c lP~=,  ( 2 . 8 )  
[xp,------c~3+2px~+ctp=--cxp~2+p~=, u =p co s~ ,  v~--psin~. 

Suppose  ~ ( x ,  t), ~(x, t)} i s  a s o l u t i o n  o f  (2.8) and h en ce  a l s o  o f  (2.1); t h e n  t h e  f u n c -  
t i o n s  {p(x, t),--~(x, t)} will also be a solution of this system if the values of the param- 
eters ct, c2 are replaced by -c~, -c 2. 

The validity of this assertion can be verified by direct substitution. It implies that 
it suffices to consider the range of parameters ci~0. 

From the form of the equation it is clear that the transformation W +-~ and W(x, t) 
W(s - x, t) takes solutions into other solutions. Symmetry with respect to the transforma- 
tion 

W-+WO% ( 2 . 9 )  

where ~ is a real constant, plays an important role. 

By carrying out a linear analysis of the stability of the solution (2.3), it can be 
shown that it will be stable relative to small perturbations of the n-th harmonic under the 
condition [103] 

(cx~+l)k4+2k2(l+clc2)>O, k----~n/l, n = l ,  2 . . . .  (2.10) 

Inequality (2.10) is valid for any values of k if 

l+clc2>D. ( 2 . 1 1 )  

It is natural to expect that if inequality (2.11) is not satisfied, then the solution 
of problem (2.1) will be spatially inhomogeneous. 

2.2. Basic Types of Regimes and Problems Arising in Their Analysis. A group-invariant 
analysis carried out for Eq. (1.3) showed that it can have a spatially inhomogeneous, self- 
similar solution of the form [22]: 

W(x, t)=R(x)exp[~t+ia(x)].  (2.12) 

In order to construct such solutions in problem (2.1) it is necessary to solve a nonlinear 
boundary value problem for the functions R(x) and a(x) depending on the parameter m whose 
value must be found from the boundary conditions. 

Spiral waves are studied theoretically in many active media [34, 36, 90]. To model 
them it is necessary to solve a multidimensional problem. The two-dimensional analogue of 
the Kuramoto-Tsuzuki equation can also describe spiral waves. To them there correspond self- 
similar solutions of the form 

W(r,t) =R(r)exp[i(~t+m~--S(r))] ,  r~=x~-~-y 2, x = r e o s ~ ,  (2.13) 

y = r s i n %  m----0, 1, 2 . . . .  

Here  t h e  f o l l o w i n g  c o n d i t i o n s  a r e  imposed on t h e  f u n c t i o n s  R and S [90,  95 ] :  R ( r )  + 0, S r 
0 as r § 0; R + R ~ = const, S r § const as r + ~. Solutions with m > i have received the 
name many-loop waves. Their asymptotics as r § 0 is as follows: 

W --- rmexp (io~t + irr~p + iS). 
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To construct the functions R, S it is again necessary to solve a nonlinear boundary 
value problem for different values of ~ from which it is also necessary to determine the 
value of w. An extensive bibliography devoted to the investigation of numerical and analytic 
methods in this problem is presented in the works [34, 90]. 

In the work [96] it was shown that spiral waves in many two-component systems do not 
depend on the details of the kinetics and can be described by the same averaged equations. 
Results concerning such solutions were carried over to the simplest spatially inhomogeneous 
media for which c = c2(r) [123]. 

Having written the solution (2.13) in the form W = R(r)e i8, it can be seen that the 
value of the phase 0 for r = 0 is not defined. Such points have received the name of phase 
singularities. In the book [121] the thought was expressed that they play a basic role in 
the occurrence of order in a large class of systems of different nature. 

Earlier cases were investigated where spiral wavs lose stability. In the work [i01] 
results are presented of a numerical calculation in which phase singularities were created 
in pairs and then a turbulent regime ensued. 

We shall point out difficulties connected with the investigation of spiral waves. These 
solutions are considered in the Cauchy problem. However, their numerical modeling is carried 
out in a bounded, usually small region. There arises the question of how the solutions of 
these problems are related. Explicit schemes and grids with large step sizes in spaces are 
frequently used in calculations in order to investigate spiral waves in the largest possible 
region. It would be an important problem to clarify what techniques in this case make it 
possible to convey the basic characteristics of the solutions studied. 

In the study of Eq. (1.3) major attention is devoted to the search for periodic solu- 
tions of it (they have received the name of diffusion chaos). Such regimes are of great 
theoretical interest and can be related to models of many concrete processes [98-100, 105], 
in particular, to the occurrence of complex, apparently oscillatory, nonperiodic regimes in 
the Belousov-Zhabotinskii reaction [31]. This question is also interesting in that the be- 
havior of spatially homogeneous solutions which are described by the dynamical system (2.4) 
turns out to be very simple. Therefore, the complex behavior is occasioned only by the in- 
fluence of the spatial inhomogeneity and diffusion processes. 

Computational experiment is a main source of information regarding stochastic regimes 
in problem (2.1). This made stringent demands on the technique of calculation. Therefore, 
the results of a number of works [i00, i01, 105], where solutions are described which remain 
nonperiodic for a certain time, cannot with total certainty be interpreted as diffusion chaos 
(large step sizes in space, insufficient time of the calculations). Below we shall consider 
questions of the technique and results of investigating nonperiodic solutions in more detail. 

The study of diffusion chaos posed still another important question. After the work of 
Lorenz [47] and also Ruelle and Takens investigations of chaos in dynamical systems and the 
study of strange attractors were broadly developed. A general question was posed of whether 
it is possible to relate stochastic regimes in a distributed system having infinitely many 
degrees of freedom with the presence of a strange attractor in a system of a small number of 
ordinary differential equations representing a simplified mathematical model of the processes. 

In application to problem (2.1) this question was posed in the work of Kuramoto: "An 
important problem which is so far unsolved is to find a connection of diffusion chaos with 
some known type of chaos in systems with several degrees of freedom" [99]. 

We shall summarize what has been said and formulate questions which we shall consider in 
more detail below. 

i. Equation (1.3) is a complex object. An ideal situation would be one in which we 
could predict the qualitative and basic quantitative characteristics of solutions for all 
values c~, c2, and ~. A path to the solution of this problem is connected with the construc- 
tion of a hierarchy of simplified models (systems of several ordinary differential equations, 
etc.). Such models should be simple and nevertheless reflect the most important features of 
the original problem in various cases. 

It is natural to excpect that the construction of such a hierarchy requires invoking 
various mathematical methods and broad use of computational experiment. 

2. It would be important to clarify whether, aside from self-similar solutions, there 
exist other types of solutions describing space-time order in the system. 
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3. The question of the existence of nonperiodic solutions (diffusion chaos). Are such 
regimes connected with the presence of strange attractors in some dynamical system of low 
dimension? What is the mechanism for passing to chaos? 

4. For many dissipative systems passage from an entire class of initial data to one 
and the same solution as t + ~ is characteristic [52, 70]. It is interesting to clarify 
whether different initial data in problem (2.1) can lead to a different asymptotic behavior 
as t§ 

5. Investigation of properties of the two-dimensional analogue of problem (2.1). Anal- 
ysis of the simplest types of order in the multidimensional case. 

6. Methodological questions. Choice of the most effective algorithms for numerical 
investigation of Eq. (1.3) and for different simplified models. 

Such are the basic questions which arise in the investigation of two-component systems 
in a neighborhood of a bifurcation point. We now proceed to analyze them. 

3. Symmetric Solutions of the Kuramoto-Tsuzuki Equation 

3.1. Solutions Preserving Spatial Symmetry. Investigation of the asymptotics of solu- 
tions of problem (2.1) for different initial data W0(x ) is a major interest. Regarding the 
latter, in the work [105] it was conjectured that the initial data are of no consequence 
and the system "forgets" them for large characteristic times. We shall show that in the 
case of problem (2.1) this is not so: there exist certain symmetric initial data whose evolu- 
tion as t § ~ is qualitatively different from the behavior of other solutions. 

We point out that a closely related situation occurred in the case of the nonlinear 
heat equation with a volumetric source [30, 42, 43, 61] and in media with trigger properties 
[45]. 

We represent the solution of problem (2.1) as series 

2 (x,  t )  = o (0 cos u (x, t) = ~ am (t) cos --T- '  
m = 0  m = 0  

where W = u + iv. We assume that the boundary condition at the initial time are satisfied 
and the corresponding series converge. It can then be verified that the functions am(t) and 
bm(t) are connected by the relations 

do= ao-- ~- ro(ao--c2bo)+ rm(a,~--c2b~), 
rn=O 

bo = bo-- ~ ro (Czao + bo) + rm (c2a~ + b~ , 
,TriO 

Lm=O 

+ ~ rm(ap+m--C2Op+,~)+ rp+m(am--c2b~) , 

�9 

bp = bp - -  k Z p  2 (Cl~Zp "-~ ha) - -  0,5  m=o r,~ (c2a~-m + On_m) - v  

~ )] 
m = O  m = O  

where  k----=/l, to=O,5 a~o+b~+ ( a i + b  r . =  (ama~+. , bmbm+.)-~0,5 (ama._m+bmbn_,~) . We 
0 m = 0  r~ =0 

also introduce the notation Pm=(a i-~b 2 )i/~ 
m. * 

It is possible to formulate conditions under which part of the Fourier coefficients of 
solutions of problem (2.1) are equal to zero during the entire process 0 < t < ~. We assign 
to the initial distributions u 0 (x) and v0(x) a sequence of integers {L} in the following 
manner: if tz~{L}, then Pn(0) = 0. In other words, {L} contains all indices of harmonics 
with nonzero amplitude. 
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Fig. 3. Examples of evolution of symmetric solu- 
tions. 

We shall prove the following assertions. 

LEMMA i. If the sequence {L} is such that for any numbers mE{L}, n~{L} the condition 

m_+n6{L}, holds, then all Fourier coefficients of solutions of problem (2.1) with indices 

.n6{i} are equal to zero for 0~.~t<oo. 

Proof. It can be verified that under the conditions of the lemma all r n = 0 if n6{/}. 

But then for all p6 {L}, a~=0, which follows from the form of the right sides of the system 
of equation (3.1). 

Example i. Taking the sequence {L} = {0, 2, 4, 6 .... }, we obtain solutions symmetric 
with respect to the midpoint of the segment x = i/2. An example of passage to a nontrivial 
spatially inhomogeneous even solution is shown in Fig. 3a. We point out that all quantities 
Pn(t) tend to constant values as t ~ =. 

The sequences {0, m, 2m,...}, where m is any natural number, also satisfy the condition 
of Lemma i. An example of a solution with m = 3 is presented in Fig. 3b. We note that 
all sequences satisfying the conditions of the lemma must contain zero. Otherwise (0~ {L}) 
the conditions k6{i} and k4-0~ {L} must be satisfied simultaneously. 

LEMMA 2. If the sequence {L} is such that 

i) for all m, n6{~L} we have m__+n~ {L~; 

2) for all m, n~{iI we have m++_n~ {L}, 
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then all the Fourier coefficients of solutions of problem (2.1) with indices n ~{L} are equal 
to zero for 0<t<oo. 

Proof. It can be verified directly that r n = 0 if n~{~L}. From this, as in the preced- 
ing case, it follows that for all p~ {L} ap=0. 

Example 2~ The sequence of odd numbers {I, 3, 5, 7 .... } gives an example of such a 
sequence. 

We mention that 0~{L} for all sequences {L} satisfying the second lemma. 

The assertions proved turn out to be useful also in a more general case. Suppose, for 
example, that {L} = {3, 9, 15, 21 .... }. This sequence does not satisfy the conditions of 
Lemmas 1 and 2. However, it is entirely contained both in {Ll} = {0, 3, 6, 9, 12 .... } and 
in {L2} = {i, 3, 5, 7, 9 .... }; {LI} satisfies the first lemma, and {L2} satisfies the second. 
Therefore, the solution of the problem in partial derivatives will contain only modes with 
indices nE{LI}~{L2} = {L}. An example of a numerical computation corresponding to a solution 
of this type is shown in Fig. 3c. 

Suppose anonzero sequence of initial data satisfies Lemma 1,0O{L} , and m is the next 
element of this sequence. If the spatially homogeneous solution (2.3) is unstable relative 
to perturbations of the form cos (=mx/~), then as t § ~ the solution of problem (2.1) remains 
spatially inhomogeneous. A necessary condition for this follows from formula (2.10): 

(~m/ O ~ < --2 (1+clc2) / (1+c1D . ( 3 .2 )  

The g r e a t e r  t he  l e n g t h  of  t he  r e g i o n  ~, t h e  more numbers m s a t i s f y  i n e q u a l i t y  ( 3 . 2 ) ,  and 
hence the more different types of symmetric initial data lead to the appearance of spatially 
inhomogeneous solutions. 

Numerical investigation of problem (2.1) shows that the symmetric solutions constructed 
in many cases are unstable relative to perturbations of general form. However, below we 
shall consider a range of parameters where precisely such solutions determine the behavior 
of the system in the case of initial data of general form. 

3.2. A Class of Odd Solutions. We shall consider as an example a class of odd solu- 
tions of the Kuramoto-Tsuzuki equation corresponding to the nonzero sequence {L} = {I, 3, 
5,...}. 

Suppose cl = 0 and that the initial data are nonmonotonic in space and are not symmetric. 
In calculations it is possible to distinguish a complex transitional regime; it is connected 
with the appearance and vanishing of extrema and with restructuring of the profiles of u(x, t) 
and v(x, t). However, the nonmonotonicity is then smoothed out and passage to the spatially 
homogeneous solution (2.3) occurs. 

We now choose odd initial data. The equation contains only odd powers of functions and 
even derivatives with respect to the coordinates. It is therefore clear that if a point, 
located at first at the midpoint of the segment at which u(x, t) = 0 or v(x, t) = 0, were 
displaced, then this would ruin the symmetry of the positive and negative parts of the solu- 
tion. This conclusion follows from Lemma 2. 

The picture of the process differs qualitatively from that observed in the case of ini- 
tial data of general form (see Fig. 4). The functions u(x, t) and v(x, t) vary in a complex 
manner. However, their Fourier coefficients ak(t) , bk(t) decay rapidly with increasing in- 
dex and depend on time in a rather simple way. For t > 65 the amplitude of the zeroth har- 
monic increases, and symmetry is lost. 

The last circumstance is connected with features of the algorithms used and the com- 
puters. They contribute small perturbations to the even harmonics and therefore are unable 
in full measure to convey the properties of problem (2.1). This calculation nevertheless 
shows that an odd solution will be unstable and it makes it possible to estimate its incre- 
ment. If the length of the region is changed while the other parameters remain fixed, then 
in large regions odd solutions have larger amplitude, smaller period, and smaller increment. 
Moreover, a nontrivial odd solution occurs only for ~ ~ 3; in smaller regions Pn(t) + 0 as 
t + ~ (this solution is also unstable relative to the zero harmonic). 

We note that odd initial data of different form lead to the same asymptotic behavior 
as t § ~. It is important to clarify how the period of the limit solution and its amplitude 
depend on the parameters cl, c2, and ~. In order to answer this question we consider an 
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approximate method of analysis of the system in question. 

3.3. A Simplified Model�9 Since the Fourier coefficients of solutions decay rapidly 
with increasing index, an approximate method should at least give the law of variation of 
several first harmonics. We suppose that there are only two modes in the solution studied: 

and we choose k so that the boundary conditions of problem (2.1) are satisfied. As a rule, 
k will be equal to ~/s which determines the first harmonic. We substitute (3.3) into formula 
(2.1) and drop all terms containing cos (~mx/s m > i, assuming that they are negligibly 
small. This leads to a closed system of ordinary differential equations 

-~o = X o - -  (Xo- -  c2Vo) (p2 + p ~ / 2 ) - -  s (Xl - -  c2w), 
�9 _L 2 t 2 , 

Yo = Vo-- (C2Xo , Yo) (Po-r  P , / 2 ) - -  s (c2xl --c YO, 

~ = x ,  - ( x ~  - c 2 v O  (p~ + 30,2/4) - 2s (Xo - C2Vo) - k 2 ( x ,  - -  c~vO, 

v'l = W - -  (c2x~ + 2 , 2 gl) (po - r  3,ol/4) -- 2s (C2Xo-~- Vo) -- k2 (clx~ - r  W), 

where po~-----x~+Vo 2, p~-----x~+y~, s-~xoX1+YoYl. We rewrite this system in a form more convenient 
for subsequent analysis. If we set Xo=poCOSgo, yo=posingo, x,=p~cosgl, yl=p~sin91, then we 
obtain the relations 

(3.4) 

where ~=9o--91- 

P0 
2 ~ 2 

---- Po - -  Po (Po n-  Pl /2) - -  Po)~ cos 11; [cos ~" + c~ sin ~s], 
2 2 2 

Pl -~-Pl - -  Pl (Po -{- 3p l /4)  - -  2,oOPl COS ~ ~COS ~ - -  C2 sin ~ ]  - -  k2p~, ( 3 . 5  ) 

~Po= c~(p~o+ 2 , - -  pd  2) - r  p~ cos tF [sin ~F--c2 cos 1F], 
2 2 2 

q;x = - -  c2 (p0 + 3 p l / 4 )  - -  200 cos ~Z [sin qr + c2 cos ~g] - -  c lk  2, 

F r o m  ( 3 . 5 )  i t  i s  p o s s i b l e  t o  go  o v e r  t o  t h e  s y s t e m ' o f  t h r e e  e q u a t i o n s  

= ~ -  2~ (~ + n ) -  ~n (cos o + c~ sin o), 
== 2~1-- 2~1 (2~ @ 3,1/4) - -  2~q (cos 0 - - c 2  sin O) - -  2k2~1, ( 3 . 6  ) 

6 =  c2 (2~--  ~l/ 2) -}- sin O (2~ + ~l) + C2 COS O (2~ - -  ~l) + 2c ~k 2. 

The connection between the variables ~, n, 8 and P0, Pl, 90, 91 is determined by the relations 
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~-p~, ~-~9~, %--~,=0/2, (3.7) 
4o = - -  c2 (~ + ~) + 0,Sq (s in O- -  c2 cos 0). 

The possibility of going over to the system of three equations is connected with the sym- 
metry (2.9) which the original system possesses. We shall be interested in the asymptotic 
behavior of the simplified two-mode system as t § ~. We consider the simplest solutions of 

it. 

The first solution is the unstable node in the system (3.4) 

xo=O, yo=O, x l=O,  v t=O,  ( 3 . 8 )  

to which there corresponds the invariant line in the dynamical system (3.6) 

~=0, ~=0, O=2c~k2t+const. (3.9) 

Another solution can be obtained by setting x I = 0, Yl = 0: 

Xo=COS(--c2t+~), 9 o = s i n ( - - c 2 t + ~ ) ,  x1=O, y1=O, ( 3 . 1 0 )  

where ~ is a real constant. In Eqs. (3.6) there corresponds to it the stable invariant line 
= i, n = 0, 0 = 0(t) if the following inequality holds: 

C~ k4 -k 2eic2 k2 - -  1 > O. ( 3 . 1 1  ) 

A p a i r  o f  s i n g u l a r  p o i n t s  ~ = 1, ~ = 0 - a s a d d l e  p o i n t  and  an  u n s t a b l e  n o d e  - g e n e r a t e d  on 
t h e  c u r v e  c~k 4 + 2 c z c i k  2 - 1 = O. The  n o d e  l o s e s  s t a b i l i t y  on t h e  l i n e  

(c~-i- 1) k4-kik z (1 +c~ci)----O. ( 3 . 1 2 )  

It is natural to compare solutions with ~ = i, ~ = 0 to spatially homogeneous solutions of 
the problem in partial derivatives. The limit cycle (3.10) also loses stability on the line 
( 3 . 1 2 ) .  

Suppose now that p0(0) = 0; then 9o(t)-~O, 0~<t< ~. From (3.5) we find that 91~p, ~i-+~i 
as t § ~, and 

~ = { 0 ~ 4  ( 1 - - k 2 ) / 3 ,  k ~.< 1, _3c2~14_clk2" (3.13) 

An analogue of such a solution in the system (3.6) may be the invariant line ~ = 0, q = ~z, 
0 = 0(t) or a pair of singular points. The condition for the existence of singular points 
is the inequality 

P(ci, c~,k)~<O, k < l ,  

2 I o 2 4 where P(Cl, C2, ,~)==(9C1"-76ClC2--4--oC2)k --2k~(3ClC2--4--3C~)--(4+3C~).. One of these points is 
stable if 

- -  (4k2-- 1)2 < p (c .  c2, k). 

The solution with ~ = 0 is an invariant line when 

P (c~, c2, k) > O. 

This line i s  stable for k < 1/2. 

If an analogy is drawn between odd solutions of the problem in partial derivatives and 
solutions of the system (3.5) with P0 = 0, then it is possible to make the following quali- 
tative predictions. For odd initial data the quantity pl=(a~+b~)U2 is constant, and appar- 
ently the quantities 9~----(a~-}-b])It ~, n = 2m + i, m + i, 2, 3 .... are also constant as t + ~. 

Passage to one and the same solution occurs from an entire class of odd initial data. Non- 
trivial odd solutions arise only in regions whose length exceeds some critical length [from 
(3.13) an estimate of it is ~e = ~]" 

The calculations carried out for problem (2.1) completely corroborate these predictions 
[i0]. In the example shown in Fig. 4 the amplitude of the first harmonic is zl.l, and the 
period of the solution is T z 7.5. It follows from formulas (3.13) that p = i.ii, T = 2~/ 
~ = 6.75. In this case it is possible to speak not only of a qualitative but a quantita- 
tive correspondence of these characteristics. For odd initial data a fair correspondence is 
observed for ~ < 4~ - 5~ [I0]. 

Thus, Eqs. (3.4) turn out to be a useful simplified model, and we shall consider them in 
more detail below. 
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4. Two-Mode System and Its Properties 

4.1. Simplest Properties of Solutions. We shall consider the simplest properties of 
the dynamical system (3.6). 

Boundedness of Solutions. Using the first two equations of the system (3.6), we con- 
sider how the quantity 26 + q changes: 

2~ + ~---- 2 (2~ + n) --  (25 + N)2_ ~2 / 2 - -  2k~q-- 4~q (1 + cos O) -.< 2 (2~ + N) --  (2~ + n) 2. ( 4 .1  ) 

From the last inequality it follows that 2 ~ + ~ < Z ,  where z(t) is a solution of the equation 

= 2 Z - -  z 2, Z (~---- 2~ (0) + ~ (0) ~ O. ( 4 . 2 )  

Since  z ( t )  i s  bounded and ~>0, N~O,  each  o f  the  f u n c t i o n s  6 ( t ) ,  q ( t )  i s  a l s o  bounded.  

Dissipativeness of the System. The quantity ~, which determines the rate of variation 
of a small volume in phase space on motion along trajectories, V = ~V, is an important char- 
acteristic of the dynamical system. This quantity characterizes the dissipativeness of the 
system and shows how fast its solutions converge to an attractor. In our case 

 =o /o +a lan+ob/ao=4-2k2-s -sn. (4.3) 
The quantity ~ does not depend explicitly on the parameters ci, c 2 and one the variable 0. 
In the case k > /~ (sufficiently small values of ~) the system is dissipative everywhere. 
For k < ~ in phase space there appears a region where ~ > 0. Neither stable singular points 
nor stable limit cycles can lie in this region. This region is located below the line 86 + 
5q = 4 - 2k ~, that is, rather near to the origin. In the majority of systems which have so 
far been investigated the quantity ~ is constant in all of phase space. In this sense Eqs. 
(3.6) constitute a complex object. 

4.2. Singular Points. Above we cons&dered the simplest solutions of the dynamical 
system for which $ = 0 or q = 0. We now assume that $ ~ O, q ~ 0. From (3.6) we then obtain 
the system of equations 

2--2 (~+N)--N (cos 0+c2sin 0) = 0, 
2--2 (2~+3~/4)--2~ (cos 0--c~sin 0) - - 2 k  2 = O, ( 4 . 4  ) 

( 2 ~ - - ~ / 2 )  + s i n  0 (2~+N) +c~cos 0 (25--q) +2c~k  ~ =0. 

The f i r s t  two e q u a t i o n s  make i t  p o s s i b l e  t o  e x p r e s s  6 and q in  t e rms  of  cos O and s i n  0. Sub- 
s t i t u t i n g  t h e s e  e x p r e s s i o n s  i n t o  t h e  t h i r d  e q u a t i o n  and s e t t i n g  e =  ( c22+1) / [k~(c~- -c2 ) ] ,  y =  
t a n  ( 0 / 2 )  - ~ /2 ,  we o b t a i n  t h e  e q u a l i t y  

y 4 + b y 2 + c y + d = O ,  b = - - 1 , 5 e 2 + 8 e c l k 2 - - 1 4 ,  
(4.5) 

c =,e (ez- -8ec ,k '2+8k2) ,  d = --3e4/16+2c,le%3+e 2 (3,5--4k 2) --  15. 

The coordinates of the singular point are determined by the relations 

~= (l+2k~)x~+4e2(k2--1)x+(6k~--3)(l+x2) ' . ~ c = y + ~ / 2 ,  

x4 + (Sc~--6) x~--15 (4.6) 

4 ( 1 + x ~ ) ( - -  k~x ~ + 2c~x-- k 2 --2) I - -  x ~ 2x 
~1= x4+(8e2 6) x~__15 ' C O S O = I ~ ,  sinO=l '+x~'  

From the form of Eq. (4.5) it follows that for all c ~ c 2 it has at least two real roots. 
Indeed, the function on the left side of (4.5) is continuous, for y = -E/2 it is equal to 
-15, and as y § _+~ its values are positive. Writing out the equation of fourth degree for 
the quantity x, it can be seen that its free term is always negative. From this it follows 
that Eq. (4.5) cannot have a fourfold root. It has a twofold root if 

]/--b+ VO2+12d [2b + _ ] / b 2 - / 1 2 d  ]= -{ -3 ] /8 -~ -c ,  (4.7) 

) / - - b  + Vo2-? 12d [20 + Ko2q - l e d ]  = - 3 1 / $ / 2  c 

b2+12d=0,  (4.8) 

and a root of multiplicity three if 

- - 8 b  3 = 27cL 
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The singular point with coordinates {$, q, e} which is determined by relations (4.5), (4.6) 
is stable if the real parts of all eigenvalues of the following matrix are negative: 

A - [-ZR(Z*cooI -~,o) ~1-kg~-Z~(L~oe...*.l) 2|R(ua, .,,~,e) I ( 4.9 ) 

Formulas (4.4)-(4.9) give complete information regarding each singular point of the 
system of equations (3.6). We shall consider what conclusions can be drawn from these rela- 

tions. 

We consider the basic regularities in the example of systems with k = i. We turn to 
Eq. (4.5). Results of its investigation are shown in Figs. 5-8. Calculations show that for 
all values of c I and c 2 Eq. (4.5) for k = 1 has at least one root determining a singular 
point with q < 0. Figure 5 shows the number of points for which ~ > 0, q > 0 in different 
regions of the parameters. The number of such points can change on passing across the lines 
ABD and DMEQF in the {cI, c2} plane. 

The curve ABC is determined by relation (3.12) for c I + ~; it has the asymptotics c 2 = 
-0.5cik 2. Above and to the left of this curve (including for all c I < 0) the singular point 

= I, q = 0 (or the singular line) is stable. It determines the asymptotics of the system. 
On the line ABC the point $ = i, q = 0 loses stability. One of the eigenvalues of the matrix 
A becomes equal to zero. Simultaneously with this a point from the region $ > 0, q < 0 goes 
over into the region $ > 0, q > 0 and becomes stable. 

The line DMEQF is the line of multiple roots. It is determined by formulas (4.7). Two 
states of equilibrium appear or disappear on this curve. On the segment QF it is close to 
a line; we find its asymptotics for Ic21 ~ 1 by setting Ic1[ ~ Ic21 ~ IEI + ~. Leaving the 
leading terms in the expressions for the coefficients b, c, d, we have from (4.7) 

3 V 3 / 2  8 ( -  82--}- 8ectk2) + . . . .  3 ] / ' 3 - ~ 8  ( ~ -  88clk~)-} -- . . . .  ( 4 . 1 0 )  

which is equivalent to the equation 

g = 8CI/~ 2 for 

In our case from (4.11) we obtain 

c--L = --4k 4 +_ ]/16k 8 q- 8k 4. ( 4. i i ) 
g, 

c21c1= - -  4 - -  2 ]/'6" ~ - - 8 , 9 ,  

which coincides with the dependence observed in calculat ions.  Such are the equations which 
describe the boundaries of regions with a d i f fe ren t  number of singular points.  Stable points 
which determine the asymptotics of the process are of greates t  i n t e r e s t .  

Figures 7 and 8 show the number of s table  singular points of the system of equations 
(3.6) as a function of t l~e parameters c I and c 2. The curves ABC and DMEQF are the same as 
in Figs. 5 and 6. Aside from these, the line MQNF on which a Hopf bifurcation occurs gives 
important information regarding stability. On this line the matrix A has two purely imaginary 
eigenvalues; one of the singular points of the system loses stability on it. In the region 
bounded by the lines FQNP there are no stable singular points. The attractors are limit 
cycles or haveamorecomplexstructure. We also note that in the region MEQ on the {Cl, c2} 
plane the system (3.6) has two stable singular points. 

We shall clarify how the system of equations (3,6) behaves as Ic21 § ~. Can it be as- 
serted that in this region of parameters it has stable singular points? What are their 
characteristics? These questions were considered in the works [6, ii, 113]. 

The results of the analysis carried out are contained in Table i. From it it is evident 
that in the region there is always at least one stable point {~*,~*}. Moreover, ~*--+;e,l+~ l, 

ic, i+~O. There is a range of parameters where still another point can be stable. This is 
the situation, for example, if k = 3, c I = 3, c 2 + -~. 

The behavior of the dynamical system (3.6) for c 2 close to zero determines a solution 
with $ = i, q = 0. Calculations show that as c 2 decreases the attractor becomes more com- 
plicated, and other points, limit cycles, and nonperiodic solutions appear. However, the 
system possesses an interesting feature: for c 2 + -~ a stabilization of processes occurs in 
it. Solutions corresponding to the point {~*,N*} again determine the asymptotics. Moreover 
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TABLE i. Asymptotic Behavior of Singular Points of the System of Equa- 

tions (3.6) for =~. Only Leading Terms Are Written in the Matrix of the 
Linearized System 

~oots of~E Singular 
~quation points of Matrix of the linearized 'Equation for the 
~f fourth the matrix ~2~ree system [3.6)i system of equations (3.6), eigenvalues of 

f 5  ~5 ,~'5-- " ~  + 

x , - - O  z,5 ~ .~  z ~- ~ . 

ct - =  ~c z -~c~l~ z(~g'~) ' + ~ c ~  (7-4~)~ , T = O  
- 105 
�9 -Z  -~-K z 8C'iK6 X~=-Zt.+ 

X2.--.=o 
C 2 ~ o  

?-OKz 
g~= 35 
r~ 8 ?-OKZ 

e~ = ?,r 

Z~Z=f _Sc~s 
rLZ =~( f+  ?K ~) 

rL -,,.O, cz -...-~ 0o 
Oz=~r + Z~n 
~=0,+-I.., 

3,r ZC~X~# 
_ ~+xz,, ' 
% ~  c,x~,--~"~ 
s~.n~,~ = Zv-~Z f+ x &q 

cos%,,,= 
'1 + X g, ~ I 

I+ZK~ 

0 f+ZK# 

cZ/~ -Z(t+K 2) . 

( ~ - x ~ ) c K ~ - O  " 

0 ~-K z - 
Zczx~ 

0 CzX~,~ 

. . . .  O_Z~2 

+Z(f+~Z)~ - 

8c~czKe )=O 
I +  ZK/.I 

A ~ + (?K 2- # ) , t 2 ,  
+ K Z - I  + 

* O.  
X3,~ 

"(X~,o-OK~ + 7) =0 

!Condition for s t a ' -  - 
Ibility of the 
singular point, c 2 -~oo 

Unstable if 

~,>O 
~ > 0  

ctc?t.O 

either 

f ~z>2 X~,~ < ~KZ- 7 
z �9 3K z-7 

or 

"K2 >2 
X~, 4<qK2-7 Z 

z > F. 3K -7] 
x3,  J 

C Z 

-4 
-2 

-3 

-6 

-7 

-8 
-9  

-f2 
-t2 

2, 5 e 8,9, ,o,=, 

o ,8 c,, ,; 

' E -2 
Fig. 5 Fig. 6 

-E 

-7 

-8 
-9 

-'H 

C, 

-f 

"/, C~ P 
,. 0,7 O,e O~ CI 

A~ F 

Fig. 7 Fig. 8 

Figs. 5, 6. The number of singular points of the system 
(3.6) for k = i: I) I point, 2) 2 points, 3) 3 points. 

Figs. 7, 8. The number of stable singular points for 
k = i: i) a point, 2) 2 points, 3) no stable points. 

~* § i, q* + 0 when c 2 § --~. Thus, the processes in the system forc= + 0 and c 2 + -~ are 
qualitatively similar. 

We shall consider features of the occurrence of states of equilibrium. On the curve 
DMEQF the system has two singular points. Calculations show that on the segment ME one of 
them is stable, while on the segment DM both are unstable. A particular situation is realized 
depending on the eigenvalues of the matrix A on the curve of multiple roots. One of the 
eigenvalues on the line DMEQF is always equal to zero. If at least one of the two others 
has a positive real part, then both states of equilibrium which arise are unstable. If the 
real parts of both eigenvalues are negative, then one stable and one unstable singular 
point occur. 

Figure 9 gives a graphic representation of the occurrence of states of equilibrium. We 
fix a value of c I and reduce the parameter c 2. The variation of the quantity P0 = $I/2 for 
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Fig. 9. Picture of the 
behavior of singular 
points with ~>0. ~,~0 for 
different values of c I. 

) Indicates a stable 
point, - - -) indicates 
an unstable point. 

all singular points with ~ > 0, q > 0 and $ = i, q = 0 obtained in the calculations for dif- 
ferent values of c I is shown in the figure. Those values of the parameter c 2 for which the 
number of singular points or their stability changes are denoted by the letters A, B I, B 2, 
B 3 , C. 

The point A lies on the line ABC, and the point C lies on the line of Hopf bifurcation. 
BI, B2, B 3 are determined by the line of multiple roots. At the points B I and B 3 two new 
states of equilibrium occur in the system (3.6). At the point B 2 the two states of equi- 
librium vanish. 

If Icii ~ i, then the system always has one stable singular point (a typical situation 
is shown in Fig. 9a). When Icii Z 1 there are not stable points in a certain range of para- 
meters (see Fig. 9d). In the intermediate case the picture may be more complex; it is illu- 
strated in Fig. 9b and c. It is evident that here two stable points exist simultaneously, 
and the dynamical system (3.6) hereby possesses trigger properties. 

We note that one of the states of equilibrium arising on the line of multiple roots is 
stable. This is especially interesting. Complication of the system on change of the para- 
meter in synergetics is usually associated with sequences of bifurcations, and branching 
theory is the main tool used [52, 70]. An altogether different behavior is observed in the 
model studied: the stable point determining the asymptotics of the system does not occur as 
a result of the branching of solutions present earlier. Apparently this situation is rather 
common. Analysis of it requires invoking other methods (for example, ideas from catastrophe 
theory [5, 29]) and further developing of existing concepts. 

4.3. Stable Limit Cycles. We shall consider periodic solutions of Eqs. (3.6). Suppose 
the functions ~(t), q(t), O(t) satisfy this dynamical system and that ~(t + T) = $(t), n(t + 
T) = q(t). It can then be verified that 

O(t+T)--O(t)=2~m, r e=O,  i-_l, +__2 . . . .  ( 4 . 1 2 )  

Solutions with m = 0 correspond to ordinary limit cycles which are closed trajectories in 
the space of 6, q, 0 (0~_$<oo~0~<oo, --oo<8<oo). If m ~ 0, then the functions {$(t), 
N(t), 0(t)} define spirals. In the literature they are called limit cycles of the second kind 
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Fig. i0. Self-oscillations corresponding to dif- 
ferent types of attractors of the system (3.6). 
Solutions of the system (3.4) are shown by the solid 
line in the figures. 

in contrast to solutions with m = 0 which are called limit cycles of the first kind. For brev- 
ity we call both solutions cycles. 

It is convenient to distinguish cycles according to the number of turns which the pro- 
jection of the point {$, q, 0} onto the plane {~, q} makes about some central region while 
returning to the original position [Ii]. Cycles which are characterized by the numbers m 
and n we denote by S~. We call cycles S~ simple. 

We shall consider the connection between solutions of the two-mode system (3.4) and the system 
(3.6). A periodic solution in the model (3.4) corresponds to a singular point in Eqs. (3.6) 
(see Fig. i0). To limit cycles of different types there correspond double frequency regimes 
in which the functions x0, xz, Y0, Yz may be nonperiodic [19]. Passing from (3.4) to (3.6) 
makes it possible to simplify the description. Below in speaking of cycles in the simplified 
model, we have in mind the periodicity of the functions p0(t) and pz(t) (respectively, $ and 
q). 

We shall consider periodic solutions of the system (3.6) for which k = I. We distin- 
guish the most interesting qualitative properties of the solutions and note their common fea- 
tures. 

Figure ii shows the decomposition of the plane of the parameters {cl, c2} into regions 
in which the attractors of the system (3.6) have different type. On the curve QNP (see Figs. 
7, 8) the singular point determining the asymptotics of the system loses stability. Bifurca- 
tion of the creation of the limit cycle S~ occurs - a Hopf bifurcation. The cycle arising is 

1310 



Cz 

CZ =-3,10 C z =-3t50 

t 
o,e : o~B I 
o,6 O,e 

I I I i I I I I I ! ! | I 

o o,z o,4 o,6 o,e o,z o,~ o,s o,8 %0 
C~ =-3,15 Cz =-%00 

,,o - g  ,,o . t ,  

o,s o,8 

0,6 0,8 ~, 

o$ b o,a 
o ' ' ' ' ' . . . . .  ~ ~ ' ' ' ' ,to 

o,z o,,~ o,6 o,e ~,o o,z o,4 o,s o,B ~,o 
CZ =-3,35 C z =-~,0S 
,,o-P, ,,o s, 2 

o,8 o,B 

o,,~ o$ 

o,z o$ 
C 

I I I I l i 

f 

~ - ~  ~ - ~  -,,-.----6 o ~z ~ 0,5 %8 1,0 ~z ~ .  0,8 %8 ~,o 

Fig. ii Fig. 12 

Fig. ii. Types of attractors for the system of equations (3.6) for k = i: i) the point 
$ = i, q = 0, 2) singular point with g > 0, ~ > 0, 3) simple cycle, 4) the cycle S 2, 5) 
more complex solutions, 6) the line on which the transition S~ + S~ occurs; QNP is the 
line of Hopf bifurcation. The picture was obtained as a result of numerical solution of 
Eqs. (3.6). The step size in the parameter c I is h I = 1.0 and in the parameter c 2 is 
h 2 = 0.5. In a neighborhood of the boundaries between regions the step size was reduced 
to 0.i. The initial data for the problem with parameters {c l, c 2 - h2} below the line 
ABC were provided by a point belonging to the attractor of the system for the values 

{c~, c2). 

Fig. 12. Complication of the attractors of the dynamical system (3~ as the parameter 
c2 is reduced; k = I, ci = 3. 

stable on the segment QN. On the segment NP nonperiodic solutions arise on passing across 
the line QNP with a jump [13]. 

The a~plitude of the stable cycle S~ increases with decreasing c2o Beginning from some 
value of this parameter, the asymptotics of the system is determined by the cycle S~. As 
the transition point c~ is approached the cycle approaches one of the saddle points g = i, 

= 0 (see Fig. 12). After the transition, c z < c~, the cycle passes away from it. For 
cl = c~ the cycle passes through the saddle. It is natural to expect that T(c 2) § ~, c 2 
c~. Just this dependence is observed in calculations (see Fig. 14). The line on which the 
type of the cycle changes is shown in Table ii. 

There exists a region of parameters in the {c~, c2} plane where complication of periodic 
solutions occurs (see Fig. II). In this region a sequence of bifurcations with doubling the 
period is observed, the theory of which is being intensively developed at the present time 
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Fi B . 13. Change of attractors on further reduc- 
tion of c 2. 

n 2n . [27, 84, 85]. A cycle of the type S m hereby goes over into S2m, and its period is doubled 
Figures 12 and 13 show the picture of this process for c I = 3. After several bifurcations 

2n nonperiodic solutions are observed in the computations (see Fig. 13b) examples of S~ + S2m 
which we consider below. Bifurcations S~ + S~ occur when c 2 is reduced further (see Fig. 
13) as a result of which simple cycles again arise. 

Figure ii shows that in a broad range of parameters the cycle S~ determines the asymp- 
totics of the solutions. We shall consider some features of them. We consider the depen- 
dence of the period T on the parameter c 2. Figure 15 shows that over a broad range of vari- 
ation of c 2 (Ic21 ~ I) the period does not depend on this parameter, while the remaining 
characteristics of the cycle vary strongly (see Fig. 13e and f). The calculations showed 
that for Ic:l ~ i, k = I there is the following dependence: 

T = 3/c~.  

In the work [i] this phenomenon was called the effect of constancy of the period. Another 
regularity is observed for the cycles Sz: although the variable 8(t) changes in a complex 
fashion and rapid segments on this curve alternate with slow segments, the laws of variation 
of the quantities ~ and q are close to harmonic. 

In many works where dissipative structures are investigated the dependence of the struc- 
tures arising on many parameters and their correspondence to intrinsic properties of the 
system are emphasized. Their dependence on the initial data ("forgetting" details of the 
initial data [I, 52, 70]) and on the boundary conditions (effects of localization of pro- 
cesses [28, 33, 42, 60, 61]) has been frequently emphasized. Here we see a new type of in- 
dependence of a parameter. The magnitude of c 2 determines the frequency of oscillations of 
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the homogeneous solution (2.3). Dissipative processes lead to the situation that the fre- 
quency of oscillations of the quantities ~ and q does not depend on c 2. 

The most complex periodic solutions are observed for small values of r l~cj~2. A num- 
ber of their properties were considered in the works [13, 19]. On the line c I = 1.5 examples 
of stable cycles S~, $44, S~, S~ were constructed numerically. Several further examples of 
limit cycles are shown in Fig. 16. They differ considerably from all solutions considered 
above. This difference consists in the fact that the number of maxima of 00(t) may not coin- 
cide with the number of turns of the cycle on the {P0, Pl} plane. We shall compare the solu- 
tions shown in Fig. 16a and b. As c 2 is reduced the cycle practically does not change. How- 
ever, the first solution has three maxima of P0 while the second has four. 

This can be explained as follows. In a nearby region of parameters the system (3.6) 
has a stable singular point. Restructuring of the vector field precedes its appearance. 
The trajectories are bent in a complex manner in some region of phase space. Excess maxima 
and loops appear in their projections onto the {P0, Pl} plane. This is evident in the ex- 
ample of cycles shown in Fig. 16. Such complication of the cycles is not connected with bi- 
furcations. 

The influence of a stable singular point is also expressed in the quantitative char- 
acteristics of the solution. The period of the cycle shown in Fig. 16c is equal to 111.3. 
During time t = 107 the point describing the state of the system is located on a flat portion 
of it where Pl m 0.66. For c 2 = -8, c I = i, k = i there arise singular points whose coordi- 
nates are labeled in Fig. 16c. To such limit cycles in the region III there correspond re- 
laxation self-oscillations. 

4.4. Complex Cycles and Nonperiodic Solutions. Numerical investigation of the dynamical 
system (3.6) shows that in some range of parameters it has nonperiodic solutions. In this 
section the solution will be considered nonperiodic if after 300-400 loops about the central 
region (see Fig. 13) the trajectory does not contract to the limit cycle. The projection of 
such solutions onto the {00, Pl} plane turns out to be very complex and gives no qualitative 
information regarding the process. Therefore, here it is convenient to use the technique 
applied by Lorenz [47]. We shall trace the values of the local maxima of the function o0(t) = 
~i/2(t). Along the axis of the abscissa we plot the value of the n-th maximum and along the 
ordinate axis that of the (n + l)-st. A remarkable property of the system (3.6) is that these 
points usually do not fill out any region on the plane. They lie near a certain curve Mr+ l = 
f(Mn). Within the limits of accuracy of the calculations this dependence often defines a 
continuous and single-valued mapping of the segment onto itself. It can be used to approxi- 
mately describe the complex solutions of the system (3.6) by applying methods of the theory 
of one-dimensional mappings [71, 73, 77, 106]. 
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Fig. 16. Stable limit cycles in the simplified 
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not coincide with the number of maxima of @0(t). 

On the chart of attractors it is possible to distinguish three distinct regions where 
nonperiodic solutions exist. We consider each of them separately. 

Figure 17 shows functions f(M) obtained in calculations for different values of c 2 (c z = 
5). Over the entire range of the parameters f(M) is continuous, single-valued, and has one 
sharp maximum. The points usually fill out several "islands" on the curve f(M). As c 2 is 
reduced passage to complex cycles occurs. After several bifurcations S 2n + S n a simple cycle 
arises. 

The region of parameters II differs from the region I in that passage to nonperiodic 
regimes occurs on the line QNP by a jump as the value of c 2 is reduced. On this line there 
occurs a Hopf bifurcation. While in region I a stable limit cycle is created (the bifurca- 
tion is supercritical), in region II the bifurcation is subcritical. Hysteresis is usually 
a consequence of subcritical bifurcation. The calculations show that above the line QNP 
nonperiodic solutions and stable singular points can exist simultaneously [13]. 

The region of parameters III is the most complex to investigate. In this case part of 
the time the trajectory lies in that region of phase space where the system (3.6) is nondis- 
sipative. The function Mn+ z = f(Mn) here often turns out to be discontinuous and non-single- 
valued. However, even in this case it is possible to assign certain one-dimensional mappings 
to the solutions according to a particular algorithm [13]. As a rule, they have a "plateau" 
consisting of an entire interval where the derivative f'(M) is close to zero. As a conse- 
quence of this in the system there may exist several attractors for one and the same %~alues 
of the parameters. In a number of chemical experiments mappings of just this type occur 
[25, 112]. It is possible that just they may turn out to be typical for problems where there 
are several interacting attractors. 

The analysis of system (3.6) carried out made it possible to obtain a partition of the 
plane of parameters into regions in which the attractors have the same type. Figure ii gives 
a classification of solutions for k = 1 as t + ~. By varying the initial data, it is pos- 
sible to see that in certain regions of the parameters several attractors may coexist [ii, 13]. 
However, for the system (3.6) for k = 1 this is more an exception than a rule. 

We wish to point out that the picture obtained is rather simple. In a large part of 
parameter space the asymptotics is determined by singular points and simple limit cycles; 
the boundaries of these regions are given by comparatively simple relations. The question 
of the correspondence of solutions of the simplified system and of the problem in partial 
derivatives will be considered below. 

5. A Strange Attractor in the Two-Mode System 

Earlier we considered complication of the attractor on change of the parameters in the 
dynamical system (3.6) and the appearance of nonperiodic regimes. It would be important to 
investigate one such regime in detail. Analysis of a strange attractor turns out to be espe- 
cially important in studying diffusion chaos in those cases where it has few modes. It would 
be useful to distinguish general properties of nonperiodic solutions of problem (2.1) and of 
the model (3.6). 

On the other hand, the number of dynamical systems in which strange attractors have been 
studied in detail is not large. Therefore, analysis of each concrete model can play an im- 
portant role in the development of theoretical concepts. 

1314 



Mr~ +1 

170 [ 

0,8 

+ 

+ 

+ 

~ -5,0 
C 2 =-5,2 

C?. = - 5,~ 

CZ =-5,6 
+ 

v I I I 
0,7 ~ 8  ~ 9  1,0 ~ 

Fig. 17. One-dimensional mappings corresponding 
to solutions of the simplified system (3.6) for 
c I = 5, k = i. In the case where c 2 = -5.6 in the 
system there is the stable cycle S 8. 

In this section we shall give main attention below to the attractor of the system of 
equations (3.6) for c I = 7, c 2 = -6, k = I. Its projection onto the {~, q} plane is shown in 
Fig. 18; it lies entirely in the region where the system is dissipative. It is evident that 
a trajectory may land in a neighborhood of the singular point ~ = i, q = 0 and thus spend a 
long time near it. The average time T of one turn about the central region is approximately 
equal to i..63, while the average value of ~ in formula (4.3) is -4.2. Therefore, after one 
turn the phase volume in the motion along a trajectory is decreased by almost 900 times. 

5.1. Properties of the Poincar~ Mapping. We shall consider successive intersections 
of a trajectory with the plane @ = const. Since ~, q, 0 depend only on cos 0 and sin @ (0 
is a cyclic coordinate), it is necessary to consider intersections with all planes 8 = const + 
2~n, n = 0, i, 2 ..... The points of intersection form a certain set in the {g, D} plane. 
It is shown in Fig. 19 for different values of 8. It is evident that the intersection with 
the plane 19 = 0, has the simplest form. We shall consider it in more detail. 

The system of equations (3.6) uniquely defines a mapping of the plane into itself (the 
Poincar~ mapping) 

~ = Y (~o, ~o), (5 .  i )  
~=g(~o, n~. 

Here ~i, ql are the coordinates of the point of first intersection of the trajectory with 
initial data (~0, q0, 0) with the planes @ = 2~n. We shall consider only intersections for 
which ~ > 0. 

It is possible to distinguish a region in the {~, q} plane which under the mapping (5.1) 
goes over into itself; it contains the attractor. This is the strip ABCD in Fig. 20; its 
image is a narrow region whose thickness is not evident in the scale of the figure. This is 
caused by the strong compression of the phase volume under motion along trajectories of the 
system. 

To investigate the Poincar~ mapping it is natural to go over to new coordinates. One of 
them, x, we direct parallel to the side AB; the other is orthogonal to it: 
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Fig. 18. Projection of the strange 
attractor onto the {~, ~} plane. 

% 

0,~ 

\ \ , 

\ \ \ 

O,Z t~=0 B = 16.~/9 t~=15~/g 
�9 . ,  \ 

% 

0~0 ' , ' "ml;. . . . .  -~.-..-..:'_. L . .  t 
O,S 0,6 0,7 0,8 0,9 

Fig. 19. The Poincar~ sections for 
different planes. 

x - -  [3 ( ~ - -  0 ,45)  - -  7 (q - -  0, 3 8 ) ] / V ~ - ,  ( 5 . 2  ) 

y---- 17 (~ - -  0 ,46)  + 3 (~ - -  0 ,38)]  / ~ .  
The form of the region ABCD and its image A'B'C'D' in the new coordinates is shown in Fig. 
21. (We point out that Fig. 21a and b are strongly stretched in the y direction.) In these 
coordinates the image of the rectangle is a complex curvilinear figure consisting of two 
parts. The region APQD maps into its lower part. The corresponding trajectories acquire a 
phase increment A8 = 2v after one turn. The upper part of the curvilinear figure is the 
image of the set BPQC. The phase increment for trajectories beginning here is equal to zero. 
The segment PQ goes entirely into the point R. 

The form of the functions f and g defining the Poincar4 mapping in the new coordinates 
x, y, 

x1=f(xo, yo), (5.3) 

y,=g(xo, Yo), 
is shown in Fig. 22. These functions are continuous but have a discontinuity of the deriva- 
tive on the line PQ. The value of the function f on this segment is equal to the x-coordi- 
nate of the point R (see Fig. 21b) and is approximately 5.4"10-4; the y-coordinate of this 
point determines the value of g on the segment PQ and is equal to 2.77"10 -2 �9 The calcula- 
tions show that the partial derivatives of the functions f and g grow without bound in a 
neighborhood of the line PQ. These properties of the Poincar4 mapping turn out to be very 
essential, and we shall return to them below. 

We have gone over from the dynamical system (3.6) to a simpler object - the two-dimen- 
sional mapping (5.3). The section of the attractor by the plane 0 = 2~n can be obtained as 
a result of an infinite number of iterations of the functions f and g: 

Xn+1 =f(xn, Yn), (5.4) 
y~§ g~), n ~ ' l ,  2, 3 . . . . .  

T h e r e  e x i s t  s i m p l e  t w o - d i m e n s i o n a l  m a p p i n g s  f o r  w h i c h  a s  n ~ ~ t h e  p o i n t s  a r e  a t t r a c t e d  t o  a 
s e g m e n t  (xn+l=l--2x~ 2, Yn+l=aYn [ a [ < l )  o r  t o  an  a r c  o f  a c u r v e  (xn+~=l--2x~ ~, y~+l=h(xn)). How- 
e v e r ,  f o r  m a p p i n g s  g e n e r a t e d  by  a s y s t e m  o f  t h r e e  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  s u c h  a 
s i t u a t i o n  i s  n o t  t y p i c a l .  The u n i q u e n e s s  t h e o r e m  i m p o s e s  r e s t r i c t i o n s  on t h e m .  

The s e c t i o n  o f  a n  a t t r a c t o r  c o r r e s p o n d i n g  t o  a c h a o t i c  r e g i m e  m u s t  p o s s e s s  c o m p l e x  i n -  
t e r n a l  s t r u c t u r e .  F o r  s e v e r a l  m o d e l s  c a l c u l a t i o n s  made i t  p o s s i b l e  t o  f i n d  t h i s  s t r u c t u r e  
[107, 113]. We shall try to do this for the system being studied. 

We turn to Fig. 23. Here the distribution of points of intersections of one of the 
trajectories with the plane 0 = 2wn is shown in different scales. Figure 23b shows in magni- 
fied form the rectangle labeled in Fig. 23a. In turn the rectangle labeled in Fig. 23b is 
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20. Poincar4 section by the plane ~ = 0 and the region going over into it- 

Fig. 21. 
dinates. 

The region going over into itself a) and its image b) in the new coor- 

shown in a still larger scale in Fig. 23c. The section of the attractor on the upper figure 
consists of two lines. Increase of the resolution by 500 times leads to the situation that 
each of them splits into two more. We note that the distance between the lines is very small; 
it does not exceed 4"10 -7 It can be expected that this process occurs at still smaller 
characteristic distances. That is, the attractor in one of the directions possesses a Cantor 
structure. 

Figure 24 shows the dependence of Xn+ l on x n. In the scale of the figure the points 
lie on a continuous, single-valued curve F. We note that IdF/dx I > i everywhere except for 
one part on the left end of the segment. 

The one-dimensional mapping Xn+ l = F(x n) can be considered a certain simplified model 
for problem (3.6). Many results of the theory of mappings of a segment into itself turn out 
to be useful in analyzing it [71, 73, 77]. 

We now consider how Yn+1 and Yn are related. The results of the corresponding calcula- 
tion are shown in Fig. 25. The picture obtained is more complex than for the coordinate x. 
Since to one value of y there correspond one, two, three, or four different points lying on 
the attractor (see Fig. 23a), the dependence of Yn+1 on Yn will also not be single-valued. 
To one Yn there may correspond from one to four Yn+~- (Of course, all that has been said 
is valid on those scales where the fine structure of the attractor is not manifest.) 

We compare Fig. 23a and Fig. 25. Images of points lying on the branch ABC in the first 
figure are determined by means of the curve A'B'C' on the second. The branch C'R' makes it 
possible to find where points from the portion CR go; the branch R'D'E' corresponds to the 
line RDE in exactly the same way. The point B in Fig. 23a lies on the intersection of the 
arc AC of the attractor with the segment PQ (see Fig. 21a). 

Thus, the result of the action of the two-dimensional mapping (5.3) for points of the 
attractor can be predicted quite accurately by means of several one-dimensional mappings. 

Remark. As a rule algorithms of high-order accuracy are used in the numerical solution 
of dynamical systems. However, successive intersections of a trajectory with a plane are 
usually determined by simple interpolation which sharply reduces the accuracy of the calcula- 
tions. Henon's algorithm, connected with passage to new variables [91], makes it possible to 
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avoid this. It provides the possibility of constructing the Poincar4 mapping with the same 
accuracy to which the solution is known. For analysis of the dynamical system (3.6) a Runge- 
Kutta method of fourth order and Henon's algorithm for constructing the Poincar~ mapping are 
applied. 

5.2. Behavior of Trajectories near Singular Points. Figure 18 shows that the projec- 
tions of different loops of the trajectory onto the {~, q} plane do not differ from one 
another qualitatively. However, by tracing their variation in the space {$, q, 8}, it is 
possible to distinguish loops of two different types. In one type on return to the plane 
8 = 2~n, n = 0, i, 2,... the phase is changed by 2~, while in the other type it is unchanged. 
In the one-dimensional mapping F (see Fig. 24) the left part of the curve corresponds to loops 
of the first type, while the right part corresponds to loops of the second type. If the time 
of each turn were bounded above, then the functions f and g in the mapping (5.3) would be con- 
tinuous and differentiable, and the increment of the phase A8 could not suffer a jump. In 
our case this is not so. It may be supposed that the reason is the influence of one of the 
singular points of the dynamical system (3.6) in a neighborhood of which the time of the loop 
can grow without bound. 

An important property of the system (3.6) is that the plane q = 0 is an invariant mani- 
fold: if q(0) = 0, then also q(t) = 0. We shall find all singular points with ~2 + q2 ~ 0 
lying in this plane. Judging from Fig. 18, they are precisely the ones which affect the be- 
havior of the strange attractor. From the first equation of (3.6) it follows that $ = i, 
while from the third we obtain a relation for 8: 

s i n O + c 2 c o s O + ~ + c l k ~ = O .  (5.5) 

This equation has two solutions: 
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sin 0 =  [ - -  (c2-~- c1 ~2) ~ C2 V ' l  "k-C~--(Ci-~-CZki)2]/(t +C~), ( 5 . 6 )  

cos 0 = [ - - c 2  (c2-kc~k 2) + V' I  + c  2 -  ( c 2 +  c~k2)21/(1 +c~). 

Stability of the singular points is determined by the real parts of the eigenvalues of the 
matrix (4.9) of the system (3.6) linearized in a neighborhood of the singular point. For 
points with $ = i, q = 0 the matrix A simplifies: 

(2e 2s l - -0  2 - -2 - -cos0- -e~s in0  0 ) A ~  --2 0 +k i+cos0 - - c2  sin 0) 0 . (5.7) 
\ 2+ ("n0+c~cos0) - - e i / 2 - - e i c o s 0 + s i n 0  2cos0--icisin0 

This makes it possible to find its eigenvalues in explicit form: 

A~ = - -  2, A2 ~- - -  2 [ 1 -k- k z + V 1 + c ~ -  (c2 -[- c ~/~2)2], ( 5 . 8 )  

A 3 =  + i V l + c  2 ~ ~ ~ k  2~2 

Here we have used the corollary of equality (5.5) 

cos 0 - -c2  sin 0 = + V 1 + c 2 - (c~ + Clki) 2. 

We now s u b s t i t u t e  t h e  v a l u e s  o f  t h e  p a r a m e t e r s  o f  i n t e r e s t  t o  us  c 1 = 7,  c 2 = - 6 ,  k = 1 i n t o  
f o r m u l a s  ( 5 . 6 ) - ( 5 . 8 ) .  The s o l u t i o n s  o f  Eq. ( 5 . 6 )  a r e  h e r e b y  t h e  f o l l o w i n g :  0 A -= 1 . 2 4 ,  0 a = 

3 ~ / 2 .  I t  w i l l  be  c o n v e n i e n t  f o r  u s  t o  r e n u m b e r  t h e  e i g e n v a l u e s  i n  i n c r e a s i n g  o r d e r  ( , , ea, e i, 

e~, e~ a r e  t h e  c o r r e s p o n d i n g  e i g e n v e c t o r s ) .  F o r  t h e  p o i n t  A we o b t a i n  

For the point B 

[o] "[il ._> /~ 
~ . 1 = - - 1 6 ,  e l - -  ; 3 , 2 = - - 2 ,  e i =  ; ~ , a = + 1 2 ,  e s - -  . ( 5 . 9 )  

I!] Lq_l k t J  

(5.1o) 

Here m, n, ~, a, b, p, q, r, s, t are constants whose specific values are inconsequential for 
US. 

From formulas (5.9), (5.10) it is evident that the points A and B are saddle points 
each having one unstable direction. The line $ = I, q = 0, 9 = 0(t) joining these points is 
hereby an integral curve of the system of equations (3.6) for all values of the parameters. 
Figure 26 shows the approximate position of the singular points A and B and also of the 
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eigenvectors of the matrix A corresponding to them. The surface M is a stable two-dimen- 
sional manifold of the point A. The line $ = i, N = 0 is an unstable manifold. The plane 
h = 0 is a stable manifold of the point B. Its unstable manifold intersects the plane 0 = 24 

at the point R. 

Proceeding from Fig. 26, it is possible to represent an integral curve beginning near 
the surface M (above it) in the following manner. First a point on the trajectory moves near 
M to the point A and then along the segment ~ = i, D = 0 to the saddle point B. It then 
passes along the arc BR and intersects the plane 0 = 2z at a point Q located in a neighbor- 
hood of R. This is curve I in Fig. 26. We note that the trajectory cannot issue from the 
point B downward into the region N < 0, since for this it would have to intersect the plane 

= 0 which is an invariant manifold. 

Suppose now that the trajectory begins below the surface M (curve II in Fig. 26). In 
this case the point also moves along M but near the point A it turns to the left. It ap- 
proaches the saddlepoint B' and then falls onto the plane 8 = 0 along the curve B'R'. In 
the first case the phase changed by 2~, while in the second it did not change. The increment 
of the phase on the next loop depends on the relative position of the manifold M and the 
points Q, Q'o The calculations carried out completely corroborate what has been said [17]. 

The surface M intersects the plane 8 = 0 along some line TS. The image of this line is 
the point R (or R' ). Formally the Poincar~ mapping is not defined on TS, since the trajec- 
tories pass through two singular points which requires infinite time. However, it can be 
extended by continuity. The segment PQ in Fig. 21a is part of the arc TS. 

From the qualitative picture described it is clear that as an initial point on the plane 
0 = 2~n approaches the line TS the time of the loop will grow without bound. The law of 
growth plays an essential role in investigating stochastic properties of the attractor. We 
shall try to estimate it. 

Let x(t) be a trajectory of the dynamical system, x(0) = x0, x(t I) = x I. We shall be 
interested in the behavior of a nearby trajectory with x(0) = x 0 + e. If lel is small, then 
the difference y(t) = x(t) - x(t) will be determined by the solution of the linear problem 

Y=B (Oy, y (0)=8. (5.11) 
If the system is nondegenerate and the value of t z is finite [that is, the trajectory x(t) 
does not pass onto the interval being studied at a singular point], then 

-fUO--x(tO =y(t~) = 11~11" Y(tO, 
where Y(t l) depends on the dynamical system. From this it follows that the order of the 
quantity y(s) can change only near singular points. 

Proceeding from this, we surround the saddle points Aand B by spheres S A and S B of small 
but finite radius r. We assume that inside each of them the system (3.6) is well approximated 
by the linear problem with matrix (5.7). Let e be the distance from the initial point to the 
surface M (the stable manifold of the saddle point A), s << r. This distance will have the 
same order when the trajectory intersects the sphere S A. It is possible to determine the co- 

--~ __> __> 

ordinates of the point of intersection in the basis el, e2, e3 up to leading terms in g: 
---> --~ -~ ---> 

sl = ael -}- be2 q-  ce3, a2 -[- b 2 ~  r 2, c ~  s. (5.12) 

S u p p o s e  t h a t  a t  t i m e  T A t h e  t r a j e c t o r y  p a s s e s  o u t  o f  t h e  b a l l  S A. The  c o o r d i n a t e s  o f  t h e  
p o i n t  s2 o f  e x i t  c a n  b e  w r i t t e n  i n  t h e  f o r m  

- ->  ~ --~ T - ->  s 2 ~ a e  -I  d r A e l + b e - I ~ l  Ae2+~-~'~TA~ ~ ( 5 .  13)  ~ e~ ~ tea. 

From this it follows that 

T A = ~ I  In- - -  l . (5.14) 
ha g 

At time T A the distance 6 from the point of exit from the ball to the plane ~ = 0 is 

6 ~ C~e -Ja~lvA = aeia,I/x~. ( 5 . 1 5  ) 

I t  i s  a l s o  p o s s i b l e  t o  e s t i m a t e  t h e  d i s t a n c e  f r o m  t h e  p o i n t  o f  e x i t  t o  t h e  l i n e  ~ = 1,  q = 0 :  

P ~ be-J~lrA -~ be jx~ll~. ( 5 . 1 6  ) 

We r ~ c a l ~  t h a t  !~2t<lzI[. 

1321 



Between S A and S B the point is located in a neighborhood of the integral curve $ = i, 
q = 0, e = e(t). Therefore, the order of smallness of the quantities ~ and p does not change. 

->! --> --> 

The point s I at which the trajectory enters the sphere S B is determined in the basis el, ~, e'a 
as follows : 

.-> --> _-> -_~ 

s; = a'e~ + b'e; + c'e' 3, ( 5 . 1 7  ) 
where a;,-~r, b'~p, c'N6. 

We now remark that 6 determines the distance from the point of entry into the sphere 
S B to the stable manifold of the saddle point B - the plane N = 0. Therefore, the time T B 
which the point passes inside the sphere S B can be found from a formula analogous to (5.14): 

1 1 I ~ I  TB=.-~ln-s  , In 1 .  (5.18) 
~ 3  %3~3 8 

As e + 0 T A and T B tend to infinity, while the time of motion along other parts of the tra- 
jectory is bounded. Therefore, the dependence of the time of return to the plane 0 = 2vn on 
c is determined by the sum 

T=T~-I-TB-"~(1-!.~)ln-~-. (5.19) 

Thus, the function T(E) has a logarithmic singularity. Calculations carried out [17] 
corroborate this. For c z = 7, c 2 = ~, k = 1 the dependence T(~) obtained in the calculation 
has the form T = 0.5801og(i/~); formula (5.19) gives 0.5781og(i/~). 

It is thus possible to clarify the behavior of the functions f and g near the line of 
discontinuity of derivatives PQ (see Fig. 21a). The values of the functions on the segment 
PQ itself are constant and coincide with the coordinates of the point R. The character of 
the singularity is determined by the dependence ~(~), where ~ is the distance from the tra- 
jectory to the curve BII at the time of exit from the sphere S B. [The order of ~(E) does not 
change further until the intersection with the plane 0 = 2~n. ] Formula (5.17) makes it pos- 

�9 ~ ->! 
sible to find the coordinates of the point of exit from the sphere S B in the basis ez, 
->! 

ca: 

s~=~ ~' ,~-i~;I ~ - ~  ~ ,~  0,~-1~;1~2~. ~,~r (5.2o)  

Since ~max{a'exp[--IX;Ir~], O'exp[--l~;Ird}, i t  fol lows that U ~ ~ ,  where 

For c z = 7, c 2 = -6, k = i, ~ = 1/2, that is, p ~ /~. In the calculation the value of the 
exponent ~ near the singularity for the function f(x, y) and y = 0 was approximately equal to 
0.51. Good agreement of the results of calculations with the estimates (5.19), (5.21) corro- 
borate the qualitative picture of the behavior of trajectories near singular points which has 
been described in this section. 

As we have already mentioned, projection of a trajectory onto the {$, q} plane does not 
give a full idea of the geometry of the attractor in three-dimensional space. ~'igure 27 
shows part of an integral curve of the system of equations (3.6) in the coordinates x = 
$cos0, y = ~sin0, z=n. It lies on some surface, since in the scale of the figure the fine 
structure of the attractor is not evident. This surface consists of two parts which are 
"glued together" in the upper region. From this region a point begins to move in the direc- 
tion of the saddle point A and then to the right or left depending on the initial data. Later, 
passing near the saddle point B, it again lands in the upper part of the attractor. After 
one such circuit the right strip is stretched and its orientation is changed. The left part 
of the surface is also stretched, but the orientation does not change. 

From this it is clear that the attractor in this space can be represented as a M~bius 
strip (the right side) and an ordinary annulus (the left side) glued together. On completing 
a circuit about the right side of the attractor, the trajectory increases the phase by 2~, 
while about the left it remains unchanged. 

This behavior makes it possible to give a symbolic description of a trajectory by assign- 
ing to it an infinite sequence of symbols R and L. Here R will stand at the n-th site if on 
the n-th loop the trajectory moved along the right portion of the surface and L if along the 
left. Topological methods developed in the study of the Lorentz attractor [26, 114] can 
apparently also be used here. 
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5.3. Properties of Contraction and Dilation of the Mapping T 4. At the present time 
stochastic properties of so-called hyperbolic systems have been studied in detail. The fol- 
lowing inequalities constitute the condition for hyperbolicity for the two-dimensional map- 

pings Xn+ 1 = f(Xn~ Yn), Yn+l = g(Xn, Yn): 

t l ( /A-~l l<I ,  itg, l i < l ,  [Ia(x, v)li= max Ia(x,  v)[, 
(x,y)Ea 

[[ ( fx)  -I gx [[" [] f y  [] < (1 --H (fx) -1 []) (1 --[] gy I[), ( 5 . 2 2 )  

-II  ( fA-'  rl-Jj g~ jr > 2 Vii ( f A  -1 g~ If. Jf (fx) -~ H-I! fy  [~. 

They mus t  be  v a l i d  in  some r e g i o n  G which  c o n t a i n s  t h e  a t t r a c t o r .  The f i r s t  two i n e q u a l i -  
t i e s  i n d i c a t e  t h e  p r e s e n c e  o f  e v e r y w h e r a  c o n t r a c t i v e  and e v e r y w h e r e  d i l a t i n g  d i r e c t i o n s .  The 
two o t h e r s  b e a r  w i t n e s s  t o  t h e  e x i s t e n c e  in  a n e i g h b o r h o o d  o f  them o f  an e n t i r e  cone  o f  con -  
t r a c t i v e  and d i l a t i n g  d i r e c t i o n s  [23 ,  54 ] .  

For  t h e  i n d e p e n d e n t  v a r i a b l e s  x and y and t h e  f u n c t i o n s  f and g in  t h e  P o i n c a r ~  mapping  
( 5 . 3 )  i n e q u a l i t y  ( 5 . 2 2 )  a r e  n o t  s a t i s f i e d .  The d e r i v a t i v e  [ S f / ~ x [  t u r n s  o u t  t o  be  l e s s  t h a n  
one in the left part of the region ABED. The y direction is contractive everywhere with the 
exception of a small neighborhood of the line PQ (see Fig. 21) on which the derivatives of 
f and g have a singularity. 

In place of the Poincar6 mapping we consider its fourth iteration T4:xn+4=p(xn, 9n), 
9n+4=q(Xn, 9n)" Calculations show that 10p/Oxl>l in the region O={0~.~x~0,27; --0,002:~9 
0.005} entirely containing the attractor. We note that the corresponding one-dimensional 
mapping x~+4~-p4(xn) is also everywhere dilating (see Fig. 28). 

The function q(Xn, Yn) has a singularity not only on the sequence PQ as does g(x, y) in 
formulas (5.3) but also on some other lines LI, L 2 ..... L 5. The derivative 8g/By is small in 
the region G if the points {Xn, Yn} do not lie in a neighborhood of these lines. On the 
lines Li, PQ the only contractive direction is the direction tangential to them. The deriva- 
tives in all other directions tend to infinity. This follows from the form of the functions 
p and q in a neighborhood of Li, PQ: 

p (xn, g~) = po+B (Xn, g~) [x~--xo (g~) ] ~, ( 5 . 2 3 )  

q (x~, y~) = qoq-A (x~, g~) [xn--Xo (g~) ]~, 

where P0 = const, q0 = const, B(x, y), A(x, y) are sufficiently smooth functions, a is de- 
termined by formula (5.21), and x n = x0(y n) is the equation of the arc L i, PQ. 

Substituting formulas (5.23) into inequalities (5.22) and assuming that the y axis is 
directed along the arc Li, PQ it is possible to verify that these conditions are satisfied 
near the singularity. Calculations were carried out in which one of the axes was chosen 
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along x and the other along PQ. They made it possible to verify the presence of a contractive 
direction for the mapping T in an entire region containing the attractor. Apparently this is 
also true for T ~. (Numerical verification of this fact requires the introduction of a more 
complex curvilinear grid.) It can be expected that, as in the Lorenz model [6, 23], ergodic- 
ity of the system will follow from the validity of conditions (5.22) away from the singular- 
ity and the existence of contractive directions along them. 

5.4. Quantitative Characteristics of the Strange Attractor. The presence of a strange 
attractor means that the trajectories of the dynamical system behave in a stochastic manner. 
One manifestation of stochasticity is the existence in phase space of a stationary probabil- 
ity distribution or an invariant measure [65]. Such a distribution makes it possible to find 
the mean values of various characteristics of the system and to study its statistical prop- 
erties. 

We return to the dynamical system (3.6). We shall trace the values of the coordinate 
of successive points of intersection of a trajectory with the plane 8 = 2vn at which 0 > 0. 

We construct a histogram on the basis of the sequence {$n} and orthonormalize it so that the 
area under the curve is equal to one. Calculations show that with increase of the sample 
length N this curve becomes smoother and smoother and ceases to change. Figure 29 shows the 
histogram constructed on the basis of N = 20,480 points. The number N depends on the selected 
interval e along the ~ axis. The finer the step size we choose, the larger becomes the value 
of N for which the histogram practically ceases to change. For other initial data the same 
function 0(6) was obtained. This fact gives reason to suppose that also in three-dimensional 
phase space there exists an invariant measure which determines the statistical properties of 
all trajectories attracted to the strange attractor. 

A typical property of strange attractors is the sensitivity to initial data [46, 72, 77]. 
The average rate at which trajectories infinitely close initially diverge is conveniently 
characterized by Lyapunov exponents. 

Suppose that ~t(x0) , ~t(xo@Ax ) are two nearby trajectories of the dynamical system is- 
exponent X(X 0, co) is the suing from the points x 0 and x 0 + Ax (see Fig. 30). The Lyapunov § " 

quantity 
--> 

X(Xo, O)=l im lira I t..oo d(o)-~o ? In (d (t)/d (0)). ( 5 . 2 4 )  

It can be shown that this definition is equivalent to 

/ 
xo+~x\,~ / 

XO 

Fig. 30 
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Z(x0, o )=l im ~ ln(llv*(~)ll/ll ~ II), (5 .25)  

wher~ yt(~) is a solution of the problem linearized in a neighborhood of the trajectory ~t(x0) 
and w is an arbitrary vector directed from x ~ to the point x 0 + Ax. 

In an n-dimensional dynamical system the Lyapunov exponents X(X0, ~) assume a finite 
collection of values ~z, 12,...,~n �9 In many problems these values are the same for almost 
all initial data x 0. In the case of a stable limit cycle %i~0, i = i,.~., n. The existence 
of positive Lyapunov exponents indicates that nearby trajectories diverge exponentially and 
that the system possesses sensitivity to the initial data. This gives reason to suppose that 
a strange attractor exists in the system. 

To compute Lyapunov exponents it is convenient to use the technique proposed in the 
work [74] which requires simultaneous solution of the original system and a variational sys- 
tem. Renormalization and orthogonalization of solutions of the linearized problem are hereby 
necessary after particular time intervals. 

The attractor being studied of the system of equations (3.6) (c I = 7, c 2 = -6, k = i) 
is characterized by the following exponents: 11 = +0.23, ls = -4.39, and 12 is close to 

zero within the accuracy of the computations. These values of li were obtained in calcula- 
tions for various initial data. The sum of the exponents gives the mean value of the quan- 

tity Q :~1+'~-~-~3=<~/0~---~/~-~0/~0> which determines the rate of change of the phase volume 
during motion along a trajectory. An important characteristic of an attractor is its dimen- 
sion. Knowing the Lyapunov exponents and using the Kaplan-Yorke formula, it is possible to 
estimate the probabilistic dimension of an attractor (the dimension of the natural measure) 
[83]. In our case this formula gives 

D--~-2 + (~1+~2)/1%3[ ~ 2,05. (5.26) 

Since the quantity D has a small fractional part, it is natural to expect that the behavior 
of trajectories on the attractor is characterized by high accuracy by some one-dimensional 
mapping. This agrees with results of calculations (see Figs. 23, 24, 28). 

Another quantitative characteristic of a strange attractor is the autocorrelation func- 
tier 

<%2(~)>__<~(~)>2 , (5.27) 
T 

I a (~) (a(~)> =lira y dx, 
0 

When b(t) + 0, t + ~ there is mixing in the system which bears witness to the randomness of 
the process in question. Exponential decay of correlations turns out to be one of the 
strongest stochastic properties [65]. 

In our case the autocorrelation function has oscillating character, and the period of 
the oscillations is close to the average time of a loop. In order to trace the decay of 
correlations, along the ordinate axis we plot the local maximum of the function b(t) and 
along the abscissa the times at which they are achieved. The picture obtained is shown in 
Fig. 31. 

We note that the computation of b(t) requires calculation of mean values over large 
portions of the trajectory. We shall clarify this with the following example. We consider 
a sequence {an} whose terms change sign on the average every r elements. [The sequence 
~(t n) - <~> of points on a phase trajectory found numerically has just such a structure~ 
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Then 

N N 
I N--r--I A-I--- ~.~ a,,. (5.28) 

( g t ) N = N - E  an= N (a>N--r--1 , N 
r t ~ l  t l ~ A t - -  r 

From t h i s  f o r m u l a  i t  f o l l o w s  t h a t  <a> N has  o s c i l l a t i n g  c h a r a c t e r ,  and t h e  a m p l i t u d e  o f  t h e  
oscillations depends on N (z<a>r/N). In order to compute <a> with accuracy c, it is necessary 
to take N > <a>r/e elements. 

In our case e should be much less than b(t); therefore, N>>[<~2>--<~>2]r/b(t). In the cal- 
culations conducted N = 106,496, and this did not make it possible to determine the decay 
law of the correlations. 

In a quantitative investigation of correlation functions it is convenient to go over to 
another mathematical object connected with the dynamical system (3.6). We again consider 
the sequence {$n}, where ~.n is the coordinate of the n-th intersection of the trajectory 
with the planes 8 = 2~n, 8 > 0, and the corresponding autocorrelation function BN(k). For 
the sequence {$n}, r = i. Figure 32a shows the dependence of BN(k), and Fig. 32b shows its 
logarithm. It is evident that on this interval IBN(k)I decays faster than const'e -%k, where 
% z 0.0675. 

In this calculation N = 19�9 An important question in this case as well is the re- 
lation between the length of the sample N and the number of terms which we can compute with 

N 
! 

sufficient precision on the basis of it. It can be shown that the sums II=~E _ ~nSn+k and 
A t r t~ l  

f2 ~--ff gnfk(gn) are connected with one another. Here f is a continuous function having one 

extremum [qualitatively the function f is analogous to the dependence Xn+ ~ = F(x n) shown in 

Fig. 24]. ~max 

The sum I s approximates the integral I-- j ~fk(~)p(~)d~, in which the integrand is rapidly 
~mln 

oscillating. The function fk(~)=f(f(...f(~))) has 2 pk extrema where 0 < p < i, where p = 
-k 

const. (This follows from the form of the function f. ) For numerical integration it is 
natural to require that on each extremum there should be no fewer than s points; then N = 
s-2p k. Figure 29 gives an idea of the function 9(~). Thus�9 the number of values of the 
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correlation function which can be computed with sufficient precision depends on the sample 

length according to the logarithmic law: 

-- 1 log2 N ,  (5 .29 )  k m~-- 7 s = 4 - - 6 .  

For N = 19'2 l~ the maximal number kma x has order 30. 

We point out that correlation functions computed along a trajectory of the dynamical 
system and on the basis of the Poincar4 section differ substantially. It is evident that 
even maxima of the correlation function decay according to an exponential law, while odd 
maxima practically do not decay. By the Wiener-Khinchin theorem it follows from this that 
in the spectrum of the solution there is a sharp maximum at some frequency m. It can be ex- 
pected that ~ = 2~/T, where T is the average time of a loop. 

Study of those properties of the dynamical systems which are not fully described by the 
Poincar4 section is now of major interest [78]. An analysis of these properties in the at- 
tractor being studied would be useful. 

We have considered the behavior of the system of equations (3.6) for concrete values of 
the parameters. Calculations show that in the entire interval of variation of c 2 (c I = 7, 
k = i, --6.4 S c 2 ~ -5.2) nearby trajectories of the system diverge exponentially. One of the 
Lyapunov exponents is positive and approximately equal to 0.2. It is natural to expect that 
there exists a strange attractor in this entire interval. Its statistical properties are 
apparently close to the properties of the attractor studied. This is indicated, in particu- 
lar, by the form of the one-dimensional mappings Xx+ ~ = F(x n) which are qualitatively very 
similar to Fig. 24. 

6. Comparison of Solutions of the Kuramoto-Tsuzuki Equation and the 

Two-Mode System 

The basic properties of the two-mode system (3.6) were investigated above. The ques- 
tion remains of whether the problem in particular derivatives has the same properties. It 
is convenient to compare the simplified system (3.6) and the original problem by comparing 
the types of their attractors. We earlier commented in detail on Fig. ii in relation to the 
dynamical systems. Figure 33 shows the results of calculations for the problem in partial 
derivatives. In both cases a problem with s = ~ (k = i) is considered. In the {ci, c2} 
plane it is convenient to distinguish several regions in which the solutions have the same 
type. 

6.1. Class of Self-Similar Solutions. Above the line ABC both systems have the same 
properties. In the linear approximation the spatially homogeneous solution (2.3) is stable 
here. On the line ABC this solution loses stability. In the system of ordinary differential 
equations (3.6) the solution with ~ = i, ~ = 0 corresponds to it. It also loses stability on 
passing across the line ABC, and a new stable singular point with $ r 1 arises. Therefore, 
as t § ~, $ + const, q + const, 8 + const. The functions x0, x I and Y0, Yz in the system 
(3.4) vary according to a harmonic law. 

In this same range of parameters in the problem in partial derivatives passage occurs 
to solutions for which the quantities Pn, n = 0, i, 2,..., and the quantities ~n, n = 0, i, 
2,..., are constant. Here an=p~cos,~n, bn=p~sin~n, ~Fn=~n--~o. This means that passage to a 
self-similar solution of the problem studied occurs. Indeed, we have the following lemma. 

LEMMA. Suppose W(x, t) is a solution of problem (2.1). A necessary and sufficient 
condition that it be a self-similar solution of the form (2.12) are the equalities Pn(t) = 
~n, ~n(t) = Sn, where ~n and Sn do not depend on time. 

Proof. i. Necessity. Suppose the solution is self-similar; then 

a n = A n c o s ~ t - - B n s i n ~ t ,  b ~ = B ~ c o s ~ t + A n s i n m t ,  

where l 

An = ~n S R (x) cos a (x) cos (~nx/l) dx, 
l 0 

Bn=vn S R(X) sina(x) cos (~nx/l)dx; ~o= 1/l, ~n=2/t, 
0 

n > l .  

From this it follows that 
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neous solution is stable, 2) the 
solution for which the quantities 
Pn(t) do not depend on time, 3) 
the solution for which p0(t) and 
pl(t) determine a simple cycle, 4) 
90(t) and 9z(t) determine a double 
cycle, 5) an even solution, 6) 
more complex regimes. The solid 
lines indicate approximately the 
position of the boundaries on 
which the solution changes its 
type. 

2 a2 ,  ~2 Tn~{arccos(An/pn)--arccos(Ao/9o)}. pn ~ ~n -V ~n, 

From these two equalities it follows that On and ~n do not depend on time. 

2. Sufficiency. We turn to the system (3.1) and write out an explici t expression for 
the quantity R2(x, t) = u2(x, t) + v2(x, t) 

R 2 (x,  t) = ~ ~ (t) cos (~x/O.  ( 6. l )  
n=O 

2 2 where  ro(t)=p~+0.5 Z 2 Pro, ~ (t)~ PmPm+n cos (~m--~m+~) @0.5 9mPn-m cos (~m--~n-~), n >  1. S i n c e  
m = l  m=O m=O 

r n depend only on 0m and the phase differences gm, it follows that the quantity R 2 does not 
change with time. 

We set W(x,t)=~(x)e l~. It can be verified that 

[ 
COS(~--~O)~ [n=o 9nCOS(~IZX/I) cos ~n ~ (X), ( 6 . 2 )  

sin ( ~ - - % ) =  [n=~ ~ 9~cos (mzx/l) s i n ~ ] / R  (x) 

and hence  ~ - - % ~ a ( x )  does  n o t  depend on t ime .  From f o r m u l a s  ( 3 . 1 )  i t  i s  p o s s i b l e  to  o b t a i n  
the value 

1 m~ ~ pmrm(c2cos~m+sin~m)=~, ( 6 . 3 )  +~176 =1 

which is also constant. Therefore, ~=mt+a(x )  and the solution is self-similar. 

We shall compare the coordinates of the singular point of the simplified system with 
those values of 9o and Pl which characterize self-similar solutions of problem (2.1) of 
the form (2,12). From Table 2 it is evident that these values coincide up to several per- 
cent. The calculations were carried out according to a purely implicit difference scheme 
with second order approximation of the boundary conditions. Thus, in this range of parameters 
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Fig. 34. Function u(x, t) corresponding to a self-similar solution of the form (2.12) 

for c] = 2, c 2 = -i, ~ = 18.6. 

Fig. 35. Variation of the parameters of the self-similar solution with increasing c I. 
The step size in the parameter c I is equal to 0.01. The solid lines correspond to 
the system of five ordinary differential equations and the crosses to calculations in 
partial derivatives. 

the approximate system gives a good quantitative description of solutions of the problem in 
partial derivatives. 

A typical form of the function u(x, t) in the self-similar solution of the form (2.12) 
is shown in Fig. 34. It is evident that this solution can describe a rather complex auto- 
wave process in the course of which local extrema of the functions u and v periodically ap- 
pear and vanish. 

The lower boundary of the range of parameters in which the self-similar solution deter- 
mines the asymptotics (the portion QNP in Fig. 33) can also be predicted with good accuracy. 
A Hopf bifurcation occurs on this curve. In the approximate system a limit cycle is created 
and in problem (2.1) a solution for which the function R2(x, t) = u2(x, t) + v2(x, t) is 
periodic in time. 

6.2. Even Self-Similar Solutions. From the simplified system it follows that in the 
range of parameters AEF (see Fig. ii) there also exists a stable singular point. Therefore, 
passage to self-similar solutions occurs here also. We turn to the results of calcula- 
tions. A typical picture is shown in Fig. 35. 

We separate out several characteristic regions on the line c I and consider the behavior 
of the sol/utions. 

i. 0 < c I < c[. As follows from the two-mode system, the spatially homogeneous solu- 
tion is stable here. Linear analysis of its stability makes it possible to find the 
value of c' I. 

2. c[ < c I < c I. The solution constains a zeroth, first, and second harmonic (the 
others are an order less), and as t + co it passes to a self-similar solution of the 
form (2.12). The value of c I is close to that given by linear analysis of the 
stability of the spatially homogeneous solution relative to the second harmonic. 

3. c I < c I < c I. Passage to self-similar solutions of the same form again occurs. 
However, they are not ordinary ones. Their Fourier series contain no harmonics 
with odd indices. The functions u and v as t + ~ are even in spite of the fact that 
the initial data possessed no symmetry. The parameters of these solutions can also 
be predicted with an accuracy of several percent on the basis of the two-mode system 
Cr3.6) [12]. In it it is necessary to set k = 2v/s since the zeroth and second har- 
monics have the largest amplitude. 

4. c~ ~> c I. As t § ~ the quantities Pn do not approach constant values. The ampli- 
tudes of the first three modes are comparable. 

1329 



TABLE 2 

System of . ; The problem 
C~ Cz 3 ODE k = 1 derivatives 
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Fig. 36. Dependence Xl(cz) on the bound- 
aries of the interval of stability of the 
even solution. 

In order to qualitatively explain the picture observed it is necessary to use a model 
more complex than the system (3.6). It turns out that it suffices to consider the first 
six equations of the system of equations (3.1), writing them in the variables {P0, Pz, ~2, 
Pz, ~z}- 

An even self-similar solution of the problem in partial derivatives is observed for 

ciE~1, ci). In order to estimate the boundary of this interval we investigate the stability 
of the even solution of the approximate system obtained of five ordinary differential equa- 
tions relative to the first harmonic. Suppose the quantities {P0, P2, ~2, 0, ~i} determine 
a singular point of this system for k = v/s Then {P0, P2, ~2} is a singular point of the 
system (3.6) for k = 2(~/s It can be verified that this point is stable in the range of 
parameters considered. The matrix A of the linearized system (3.6) is negatively definite. 
The value of ~l can be found from the condition 4 1 = 0. 

The linearized system of five equations in this case has the form 

9o a14 0 90 

~'2 = a34 ~2 �9 
~;~ 0 0 0 ~1 91 
~/'t (ZS1 a52 0~53 a54 ~'2 "1~I 

Three of its eigenvalues coincide with eigenvalues of the matrix A and have negative real 
parts. The two others are defined by the formulas 

where 

h = P + V ~ Q ( I + c ~ ) - R  2, ~ 2 = - 2 ~ / Q ( I + c ~ ) - R  2, (6.4) 

P = 1 - -  k 2 -  2 ~ - -  p~-- 29o92 cos 02, 

Q ---- p~ + 9~/4 + 29002 cos 02 [9~-[- p~/2 + 9op2 cos 021, 

R = - -  C1 k2 ~ C2O~--  2C2P0P2 COS 02 + 0,50~ [Sin 202 -~ C2 COS 2021. 

The v a l u e s  o f  fil and c l  can be found  a p p r o x i m a t e l y  f rom t h e  c o n d i t i o n  t z ( c  z) = 0. The g raph  
o f  t h e  f u n c t i o n  Xz(c z) n e a r  t h e  b o u n d a r i e s  o f  t h e  i n t e r v a l  o f  s t a b i l i t y  i s  shown in  F ig .  36 
[Xz(cz )  were  computed b o t h  by an e x p l i c i t  f o r m u l a  and n u m e r i c a l l y  on t h e  b a s i s  o f  t h e  be-  
h a v i o r  o f  t h e  i n t e g r a l  c u r v e s  in  a n e i g h b o r h o o d  o f  t h e  s i n g u l a r  p o i n t s .  The r e s u l t s  o b t a i n e d  
c o i n c i d e  t o  h i g h  a c c u r a c y ] .  

Figure 35 shows that at the point c z a solution of general form goes over continuously 
into an even solution; the harmonics with odd indices become equal to zero. The first solu- 
tion simultaneously loses stability, while the second solution becomes stable. 

The calculations show that solutions of the system of five ordinary differential equa- 
tions and of the original problem are close (see Fig. 35). This gives reason to suppose that 
also in the problem in partial derivatives the change of type of a solution is occasioned by 
instability of the even self-similar solutions relative to perturbations of the first harmonic. 

Usually symmetric solutions in problems of synergetics are unstable. In the problem 
being studied this is not so: there exists a range of parameters where the even self-similar 
solution is stable. In contrast to the majority of open, nonlinear systems where spontaneous 
loss of symmetry occurs [52, 70], here spontaneous symmetry creation is observed. As t + 
the solution possesses symmetry not present in the initial data. 
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Because of the evenness of the functions u and v the nonlinear system decomposes as 
t + ~ into two identical noninteracting subsystems. More complex symmetric solutions corre- 
spond to decomposition of the system into a large number of noninteracting parts. They may 
turn out to be stable in regions of large length. 

Above we have investigated the change of solutions of problem (2.1) for different values 
of el, c 2 when the length of the region was fixed. In many cases, however, it is important 
to know how the solution changes as s is changed. Analysis of this problem for stationary 
dissipative structures led to the discovery of a so-called zone structure. It turned out 
that when the length of the region is increased structures may periodically appear and dis- 
appear (in the latter case the spatially homogeneous solution again becomes stable) [37]. 

We fix the parameters cl, c 2 in the model being studied and consider how the solution 
of problem (2.1) changes with increasing s Figure 37 shows the dependence of the steady- 
state values of Pn on the parameter. For s ~ 5 the spatially homogeneous solution loses 
stability, and a self-similar solution of the form (2.12) then determines the asymptotics. 
At first the zeroth and first modes have largest amplitude. The first harmonic then decays, 
and the solution becomes symmetric. Beginning with s = 18, the number of harmonics with 
close amplitudes increases rapidly, but the solution continues to be self-similar. For s > 
22 a complex oscillatory regime is observed in the system. The question of simple and effec- 
tive simplified models in this range of parameters so far remains open. 

6.3. Two-Frequency ReKimes. If from distinct initial data passage occurs to one and 
the same solution of the problem in partial derivatives in which IWI depends periodically on 
time, then we call such a solution a cycle. We distinguish the functions p0(t), 91(t) in it 
and compare them with the predictions of the simplified system. Here it is again convenient 
to use the notation S n, where n is the number of turns which the projection of the solution 
onto the {90~ 01} plane makes after one period. 

It can be seen that the following assertion holds [19]. 

LEMMA IV. Suppose the solution of problem (2.1) is such that 

p ~ ( t + T ) = p ~ ( t ) ,  n = 0 ,  1, 2 . . . . .  ( 6 . 5 )  

~ . ( t + T ) = ~ . ( t ) + 2 ~ m ~ ,  m~{0,  _ 1 ,  __2 . . . .  }, 

00 ; 0 for tG[0, co). Then it can be represented in the form 

W (x, t) = R (x, t /exp[i  ~ot + ~, (tli~a (x, t~)], (6.6)  

where  R (x, t~- T) = R  (x, t), ~1 (t-~- T) -~- ~1 (t), 

a(x, t+T)=a(x, t ) + 2 ~ p ,  p~{0, +_+_.1, ___2 . . . .  }, ~ o = c o n s t .  

Thus, a Hopf bifurcation in problem (2.1) is connected with passage from self-similar 
solutions of the form (2.12) to more complex solutions of the form (6.6) in which there are 
two frequencies that are independent in the general case. 

Comparison of Figs. ii and 33 shows that solutions of the approximate system (3.6) and 
of the equation in partial derivatives behave qualitatively the same as the parameters c I and 
c 2 vary. In both cases the plane of the parameters is partitioned into similar regions in 
which the solutions do not change their type. However, the boundaries of the regions are 
shifted somewhat. This is natural, since on these lines bifurcation of the solutions occurs, 
and the higher harmonics affect their position. 

Examples of comparing simple cycles are shown in Fig. 38. In the region above the bound- 
ary of transition to complex solutions the periods of the cycles differ by no more than i0- 
15%. Other characteristics of the solutions, for example, the quantities 90mln, p0max, plmln, ptmax, 
are also close [12]. 

Examples of simple cycles for which the parameters c I and c 2 lie below the region of 
complex solutions are shown in Fig. 38b. We point out that their periods agree well, al- 
though the dimensions may differ by several times. The effect of the second harmonic is the 
reason for the divergence. This shows a solution of the simplified system in which not only 
the zeroth and first but also the second harmonic are considered (N = 3 in Fig. 38b). Its 
solution practically does not differ from that given by problem (2.1). 

Considering the two-mode system, we focused attention on the fact that in a wide range 
of variation of the parameter c 2 the period of simple cycles does not depend on c 2. (We 
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recall that it is just c 2 which determines the period of spatially homogeneous solutions.) 
Figure 15 shows that in this same range of parameters the period of pn(t) practically does 
not depend on c 2. The values of T in the simplified system and in the original equation 
agree well with one another. If the parameter c 2 is reduced further (c2~<--35), then solutions 
of the system (3.6) and of problem (2.1) begin to behave differently. In the simplified 
model there exists a stable singular point, while in the original equation there is a simple 
cycle. Its period decreases slowly with decreasing c2, and for c2~--400 it passes to a con- 
stant value, 

The amplitude of the cycle varies according to the law N Ic2I-I/2. Solutions of the orig- 
inal equation and the problem 

Wt= W.-~ (1 .-~-/~Cl) Wxx--~c2W[ W[ 2, [O~x~l, (6.7) 

w~(o, t)=w~(t, t)=o, W(x, o)=~(x)  

are close in this range of parameters. We note that in problem (6.7) only the two parameters 
c I and s are essential. The change of variables W = W'c~ I/2 makes it possible to set c 2 = I. 
The region of appliability of Eq. (6.7) is limited. In particular, its homogeneous solutions 
grow without bound as t + co. An analysis of it may nevertheless turn out to be useful. 

Since ]WI § 0 as c 2 ~ -~, in this range of parameters p0(t) and p1(t) are also close to 
zero. An analogue of such a solution in the two-mode system must lie near the origin where 
the quantity ~ in formula (4.3) is strictly positive, and hence there are no stable cycles. 
This is the cause of the difference in the behavior of solutions of the original problem and 
of the simplified model. 

Calculations show that for c I = 3.0, c 2 § -~, s § ~ 3-4 of the first Fourier coeffi- 
cients of the functions u, v are comparable. To describe such solutions in the system (3.1) 
it is necessary to consider at least four harmonics. However, in some physical problems the 
investigation of the two-mode system for equation (6.7) is of independent interest [55, 113]. 
A detailed analysis of this model is carried out in the work [113]. In it there was dis- 
covered a cascade of bifurcations with period doubling, hysteresis, strange attractors, and 
transitions from stochastic to regular regimes as a result of tangential bifurcations. 

6.4. Some Methodological Questions. Questions of the method of calculations have major 
significance for the investigation of nonlinear problems. Solutions may here have involved, 
frequently nonperiodic character, and computational experiments are practically the only source 
of information regarding them. 

In the numerical solution of problem (2.1) a purely implicit difference scheme with 
second-order approximation of the boundary conditions was used [58]. The method of simple 
iteration was applied with consideration of the nonlinearity, and matrix sweep-out was ap- 

8 8 

plied for solution of the linear system. The functions ~(x)~ cos(2~mx/f), ~0(x)-----~ cos 
m =0 m =0 

(~(2nZ~-1)X/[) were usually used as initial data. 

Approximation of the boundary conditions turned out to be a very important factor. Use 
of a scheme with second-order approximation of the boundary conditions improves the accuracy 

1332 



DI /(=1 
0,8 

0,4 

T-~. ,9  
I I I I 

0,4 0,8 
a 

0,8 = ~  N--'2 

0,4 N 

T = 1, 05 
0 . I , l I 

0,4 0,8 
b 

Fig. 38. 

JD1 

.oo 

%=7,5 

K=I ,P~ 0,8 

0,4 

,Po 

C~ = ;5 

e = X  

=10- 

T=5,6 
I I l I I 

0,~ 0,8 2o 
Cz = -3 

t = E  

r =lO" 

% 
T=1,06 

I I I I I 

0,1+ 0,8 Po 

Cz=-15 

Comparison of the simplest peri- 
odic solutions of the dynamical system 
(3.6) (on the left) and of the problem in 
partial derivatives (on the right). 

of the calculations and makes it possible to compute with a larger step size in space. This 
is essential near bifurcation lines where the parameters of solutions may depend strongly on 
the length of the region Z. 

For the problem being studied large computation times are usually necessary (they de- 
pend strongly on c I and c z and grow rapidly with increasing length of the region) after which 
the system passes to a steady-state regime. Another feature is the necessity of small step 
sizes in time and space. A rigorous test for the choice of the step size in time �9 is the 
calculation of the spatially homogeneous solution whose period is equal to 2~/C2o As a rule, 
the step size found makes it possible to compute other solutions as well whose period is 
usually larger. The step size �9 must decrease with increasing c I. Increase of the step size 
can qualitatively change the picture of the process. An example of such behavior is shown 
in Fig. 39. For T = 10 -2 , h = ~/30 the calculation in partial derivatives gives a simple 
cycle. Reduction of the step sizes h and ~ leads to a change of the type of the solution: 
the behavior of the system as t + ~ determines a double cycle. Results of other methodologi- 
cal calculations are presented in the work [12]. 

The Fourier coefficients of solutions of the problem studied decay rapidly with increas- 
ing index. Therefore, in a number of cases it is convenient here to use the Galerkin method 
and its modifications. Just such methods were used in the calculation of symmetric solutions. 
Figure 40 shows approximate solutions of the system of equations (2.1) in which the first N 
harmonics are considered. It is evident that for N ~ 4 the parameters of the cycles practi- 
cally do not change. 

The perturbations which the difference scheme and the Galerkin method cause in the solu- 
tion are different. Indeed, in numerical realization of symmetric solutions of various types 
these solutions preserve symmetry properties as t + ~ which coincides with the properties of 
the original problem. Application of the difference scheme leads to a different result: a 
solution with symmetric initial data decays. Therefore, passage to some solution in this 
case bespeaks its ss which is especially important in the problems studied. A simi- 
lar situation is characteristic also for media with trigger properties [45]. 

7. Diffusion Chaos 

In this section we consider complex nonperiodic solutions of the Kuramoto--Tsuzuki equa- 
tion. We shall primarily be interested in the following questions. How does the transition 
from simple solutions to complex solutions occur as the parameters of the problem vary? What 
bifurcations lead to the appearance of chaos? Is it possible to use two-dimensional and one- 
dimensional mappings as simplified models? 
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Fig. 40. Approximate solutions of the system of equations (3.1) in which the first N har- 
monics are considered. 

We shall study the one-dimensional problem (2.1) for small regions. This case is espe- 
cially interesting for the following reason. Increase of the length of the region or the di- 
mension of the problem must lead to complication of the solutions. Therefore, if chaos is 
discovered in the problem being studied it can be considered a rather general property of the 
Kuramoto -Tsuzuki equation. 

In this respect investigation of problems of hydrodynamics, where it is necessary to 
consider multidimensional effects, is much more complex, and this leads to the situation that 
"... for the complete Navier-Stokes equations we not only do not know of a single turbulent 
solution but it is even unknown whether such a solution exists. What the appearance of a 
stochastic attractor should be for a turbulent flow is also unclear" [50]. 

As before, we shall consider problem (2.1) for s = n. On the {cm, c2} plane (see Fig. 
33) it is possible to distinguish three ranges of parameters in each of which the passage 
to complex solutions and the complex solutions themselves possess a number of interesting 
features. 

7.1. Occurrence of Nonperiodic Regimes in the Region I~ II. Their Properties. We set 
c I = 5.0 and trace the change of solutions as the parameter c 2 is reduced (the range of pard- 

3" 3 

meters I). The initial data in all cases have the form ~(x)=: coS(2~px/l), v0(x)=~ cos[(2p~- 
p~U P~0 

1)SX/l]. From calculations carried out for the two-mode system with k = i it follows that the 
occurrence of nonperiodic solutions in this case is occasioned by a sequence of bifurcations 
with period doubling S n ~ S =n. A simple cycle arises as a result of supercritical Hopf bi- 
furcation. Qualitatively the same picture is observed in the problem in partial derivatives. 
Namely, for c I = 5, c 2 = -4.1, s = ~ the cycle S z with period T = 3.00 determines the asymp- 
totics; for c z = 5, c2 = -4.16, s = ~ there isastablecycle S ~in the system with periodT=5,76. 

Passage to nonperiodic solutions then occurs. We therefore again consider the sequence 
{M n} of local maxima of the function p0(t). Along the axis of the abscissa we plot the values 
of the n-th maximum and along the ordinate axis the values of the (n + l)-st maximum. In many 
cases the points {Mn, Mn+z} lie on a curve Mn+ I = f(M n) which with the limits of accuracy of 
the calculations turns out to be continuous and single-valued. It defines a one-dlmensional 
mapping of the segment into itself. 

We shall assume that the elements of the sequence (Mn} are distinct if they differ by 
more than E (E is determined by the accuracy of the calculations and for the problem in partial 
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parameter c2. The problem in partial derivatives was solved for c z = 5.0, s = ~. 

derivatives amounts to ~10-s). The characteristic time of the computation depends on the 
type of solution. A sequence of 50-80 maxima was usually constructed for complex cycles. 
Solutions containing 100-300 distinct maxima were considered nonperiodic. As a rule, such 
a sequence is sufficient to determine the features of the function f(M). More than 104 val- 
ues are needed to investigate statistical properties of the solution, for example, to con- 
struct a histogram of N(P0) showing how often the maxima of p0(t) assume some value. 

We turn to the results of numerical solution of the problem in partial derivatives for 
e I = 5.0. At first the picture turns out to be the same as in the two-mode system (see Figs. 
41a and 17). As before the function f has one sharp maximum which moves to the left with 
decreasing c 2. There is nevertheless no quantitative correspondence here: the scales on 
these figures are different. 

Under further reduction c 2 a restructuring of the function f begins which is not pre- 
sent in the simplified model (see Fig. 41b). At first the curve f has a minimum. The solu- 
tion here is also nonperiodic. However, the presence of a portion with a small derivative 
near the smooth minimum indicates the possibility of the occurrence of stable limit cycles. 
Indeed, for c 2 = -5.6 the limit cycle S 8 in the system is stable. The function f then ac- 
quires two sharp maxima. 

In all cases considered above the mapping f was single-valued. For c 2 = -6.3 single- 
valuedness is lost; the solution is nonperiodic as before. 

A further restructuring then occurs after which the function f becomes smooth and single- 
valued (see Fig. 41b). A complex nonperiodic regime is again observed. The points hereby 
lie within the limits of several "islands." Such regimes, which have received the name of 
semiperiodic solutions of noise cycles, are being intensively investigated at the present 
time [77]. The order of passage about the islands in them is fixed, but within the limits 
of each of them the trajectory behaves in a stochastic manner. The notation X n was intro- 
duced in the work [119] for a solution with n islands. In Fig, 41b we see that there is a 
transition X ~ § X 2 and X 2 + X 4. Investigation of the family of one-dimensional reflections 

x~+, =~,x~ (l--x,  0 ( 7.1 ) 

showed that in the neighborhood of noise cycles there must be complex periodic solutions. 
It is natural to expect that they indeed exist in the case under investigation. 

1335 



o,e 

2, 
r 

-10 

~=10" 

J ~. I I 

0, ~ 0,8 20 

DI 

0,e 
Cz " - 8  

h " Z /30  
= 10-~ 

J I I 0 
0,4 0,8 

Fig. 42. 

Fig. 43. 
onto the {P0, Pl} plane. 

P l  
o,a 

0 ,,, I 

..x/~Q 
r = 10-0 

I , ,  i i i 

O,~ 0 ,8  . 2~ 

C z = - 7 , 8  

A-X/~O 

I,,, | I i 

~176 I 

. =~/~o z=  2,(1o -~ 

-- J J I I t i I 

Fig. 42 Fig. 43 

Complication of solutions of problem (2.1) on the line c I = 5, s = ~. 

Part of a nonperiodic solution of the Kuramoto-Tsuzuki equation in the projection 
Range of parameters III. 

If we assume that the function f(M) is continuous and single-valued, then we can consider 
it in the quality of a useful simplified model. In analyzing it, we can use results from the 
theory of one-dimensional mappings. In particular, here we used theorems of A, N, Sharkovskii 
[71] and Li and York [106] on the existence of cycles of different types, and a whole array of 
theorems from ergodic theories [73, 77, 93]. From the form of the function f(M) it is clear 
(see Fig. 41b) that near the peak it can be approximately a quadratic parabola. Obviously, 
here the theory of Feigenbaum [27, 84, 85] was ~,sed. By it, it is possible to predict the 
value of c= at which there will be consecutive bifurcations. 

When cz = 5, c= = --10 the asymptotics of the solutions to problem (2.1) determine the 
simple cycle. If the parameter c= is increased, moving toward the region of diffusion chaos 
from below, then in the system there will also be bifurcation of the period. Cycles S*, S =, 
and S ~ are proved in Fig. 42. For c= =-7.4, we use cycle S s, for c= =-7.35 -- S .6. 

The basic difference between the regions of parameters I and II has to do with the fact 
that in it there occurs a transition to the nonperiodical solutions with a decrease in the 
parameter c=. Far from the curve QNP the behavior of the solutions in region I and II is 
qualitatively the same as for the initial system and simplified model. This shows the com- 
parison of corresponding one-dimensional mappings [13]. 

In the simplified system as the parameter c 2 is reduced by a jump there occurred a tran- 
sition from singular points to nonperiodic solutions. Calculations carried out indicate that 
an analogous picture is observed in the original problem. Transition to nonperiodic regimes 
occurs with a jump from self-similar solutions. 

7.2. Feature of Solutions in the Range of Parameters III. The behavior of solutions 
of the Kuramoto-Tsuzuki and simplified model in the range III is similar in many respects. 
Figure 43 shows the projection of one of the nonperiodic solutions of the problem in partial 
derivatives onto the {P0, Pl} plane. It is evident that different loops differ in dimensions 
and in the number and position of the loops which is not observed in the ranges I and II. 

We again consider the dependence Mn+1(Mn). It can define a one-dimensional mapping 
(see Fig. 44a) which, however, differs strongly from the form of the function f(M) obtained in 
the simplified model [13]. As c 2 decreases single-valuedness is lost (see Fig. 44b). This 
means that an attractor of higher dimension arises in the system. 

In many cases a complex transitional process precedes passage to a steady-state solution. The 
calculation shown in Fig. 44c corroborates this. Successive maxima here do not lie on one 
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curve. For 0 < t < i00 the solution changes in an irregular manner. For t N i00 passage 
to a self-similar solution of the form (2.12) with P0 = 0.6905, Pl = 0.0275, P2 = 0.2939 
occurs. Apparently, it appears as a result of loss of stability of the even self-similar 
solution determining the asymptotics for small values of c I. A similar behavior was ob- 
served in the Lorenz system and was called metastable chaos. This phenomenon has been stud- 
ied in detail and has been observed experimentally in a number of cases [38, 114]. 

7.3. Other Problems Connected with Diffusion Chaos�9 Above we considered results of 
solving problem (2.1) for Z = ~. The question arises if other paths from ordered solutions 
to chaos are possible for other values of the parameters�9 Calculations show that successive 
Hopf bifurcations occur as the length of the region is increased [109]�9 If the local maximum 
of p0(t) are again selected and the graph Mn+l(M n) is constructed, then its typical form after 
two bifurcations is as shown in Fig. 45. Appearance of nonperiodic solutions as a result of 
several Hopf bifurcations was considered by Ruelle and Takens [57, 72]. Calculations car- 
ried out make it possible to suppose that in many other cases complication of solutions of 
problem (2.1) will proceed in accordance with this mechanism. 

We have considered qualitative features of nonperiodic solutions of the equation in par- 
tial derivatives. An estimate of their quantitative characteristics is an important problem. 
At the present time algorithms have appeared which make it possible to estimate the dimension 
of attractors in infinite-dimensional systems [82, 87, 117]. It has been shown that for this 
it suffices to measure one of the variables at one point at discrete times [117]. Use of 
these methods in the investigation of problem (2.1) is of great interest�9 

Numerical calculations carried out for the Kuramoto-Tsuzuki equation showed that there 
exist several ranges of parameters where problem (2.1) has nonperiodic solutions. In in- 
vestigating them simplified models of various types turn out to be useful: the system of 
three ordinary differential equations; the family of one-dimensional mappings. We shall now 
answer the question of the connection of diffusion chaos with the presence of a strange at- 
tractor in a finite-dimensional system. Such a connection exists�9 The two-mode system (3.6) 
makes it possible to predict many important properties of nonperiodic solutions of the Kura- 
moto-Tsuzuki equation. 

Among them we distinguish the following, i. The presence of three regions where tran- 
sition to nonperiodic regimes occurs in a different manner. 2. A sequence of bifurcations 
leading to chaos. 3. The form of one-dimensional mappings corresponding to complex solu- 
tions of the problem in partial derivatives in a broad range of the parameters c I and c 2. 
All this leads to the situation that the investigation of strange attractors in the simpli- 
fied model gives important information regarding diffusion chaos which is described by the 
original equation. 

At the present time dozens of chemical reactions in which oscillatory and chaotic re- 
gimes are possible are being investigated experimentally [25, 31, 112]. Complex mathematical 
models are usually used to model their basic features. As a rule, they all describe the be- 
havior of the system far from the point of loss of stability of the 'thermodynamic branch. A 
detailed investigation of them turns out to be a very complex problem. 

Investigation of problem (2.1) shows that diffusion chaos can be observed in a neigh- 
borhood of a point of first bifurcation. Probably many qualitative features of oscillatory 
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reactions in which the distribution of reagents is spatially inhomogeneous can be explained 
on the basis of the simpler model (2.1). Therefore, the theoretical and experimental in- 
vestigation of open dissipative systems in a neighborhood of a point of bifurcation is a 
natural and necessary step in their analysis. Experimental study of complex processes peri- 
odic in time and phenomena of diffusion chaos are of special interest. 

8. Simplest Types of Order in Two-Component Systems in the 

Two-Dimensional Case 

In many mathematical models the following two-dimensional analogue of the Kuramoto- 
Tsuzuki equation is a major interest: 

W,= W+ (l+ic,) (Vg=+Vguu)--(1+ic2)lVr IV. (8. i) 

These include the theory of occurrence of wind waves on water [2], investigations of dissi- 
pative structures in media and in oscillatory chemical reactions [90], and some models of 
morphogenesis [21]. We note that Eq. (8.1) describes a narrower class of two-component sys- 
tems than the Kuramoto-Tsuzuki equation in one-dimensional problems. Since in the two-dimen- 
sional case not only the length but also the direction of the wave vector is essential, there 
are more unstable modes, and more complex models than Eq. (8.1) arise. 

Earlier major attention was devoted to the investigation of the Cauchy problem of this 
equation. Spiral waves or other solutions having phase singularities were hereby usually 
considered [121]. However, it would be useful to study the behavior of solutions of Eq. 
(8.1) for the case of small two-dimensional regions. This would make it possible to carry 
out a more complete analysis without restricting attention to one distinguished class of 
solutions and to clarify the basic types of order which would be of interest in more complex 
problems. 

We consider the following boundary value problem: 

W , =  Wq- (lq-icl) (Wxxq--IVuu) - -  (1-q-ic2) lWl2W, 
O~x~l, O~y~l, W(x, y, O).-~--IVo(X , y),  ( 8 . 2 )  

lv=(o, u, t )=W=(t ,  y, t) = vZ~(x, o, t ) =  W~(x, t, t )=o .  
We shall consider the behavior of solutions of it for different values of c I and c 2 in the 
case of small regions. In the numerical calculations presented below s = ~. 

We consider the following questions. Are one-dimensional solutions of problem (8.2) 
stable relative to two-dimensional perturbations? Does this prohlem have solutions for which 
there is no one-dimensional analogue? How does complication of two-dimensional solutions 
occur as the parameters c I and c 2 vary? 

We shall consider solutions of the boundary value problem in a square with side length 
s The coefficients of diffusion and cross diffusion are chosen to be the same in both di- 
rections. This leads to the situation that problem (8.2) has a broad class of symmetric 
solutions. For example, solutions which are even or odd relative to the axis of symmetry 
of the square. The evolution of such solutions may differ qualitatively from the behavior 
of solutions of general form, as was the case in the one-dimensional problem. They will not 
be considered below. In all calculations the initial data are nonsymmetric and have the form 

4 

u(x, V, ~ = 0 , 1  ~_, cos (~mxll)cos (~ny/l), 
m,n~O 
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(x, V, ~ = 0 , I  ~ cos (nmxll) cos (ntw/l)l(m + 1). 
m,~=O 

In this formulation only the simplest symmetric solutions are of consequence. Namely, 

a) the spatially homogeneous solution 

W ( x ,  y,  t) = e x p  ( - - i c # )  ; ( 8 . 3 )  

b)  t h e  o n e - d i m e n s i o n a l  s o l u t i o n s  W(x, y ,  t )  = W(x, t )  o r  W(x, y ,  t )  = W(y, t ) ;  

c) solutions symmetric relative to the diagonal of the square: W(x, y, t) = W(y, x, t) 
or W(x, y, t) = W(~ - y, s - x, t). 

8.1. A Simplified Finite-Dimensiona ! System. Analysis of various simplified models 
plays an important role in the investigation of the one-dimensional problem (2.1). To con- 
struct such models in the two-dimensional problem it is convenient to represent a solution 

of  i t  i n  t h e  f o r m  u (x, y, t) = a m . . " 7 - -  , e, t) = (t) cos  cos  
m,~nO m,~--0 

and write out the system of equations connecting the Fourier coefficients amn and bmn: 

~m~ = am~- ( a ~ -  c~bm~) k2 (m2 + ~2)_ (~m~- c 2 ~ ) ,  ( 8 .4  ) 

bran -~- bran - -  (cxamn -{- bran) k 2 ( n~2 -~- n 2) - -  (C2Umn + ~mn), k = n l  l ,  

where  unto and Vmn a r e  known f u n c t i o n s  o f  {az~}, {btj}. Below we s h a l l  a l s o  u s e  t h e  n o t a t i o n  
Pmn = amn + b~n. Simplified models can be obtained from this infinite system by leaving only 
a finite number of equations in it. This can be done in various ways, for example, by drop- 
ping harmonics with indices for which m a p or n ~ p. The simplified system obtained in this 
manner we shall call a system with N = p; it contains 2p 2 equations. 

The system (8.4) may turn out to be useful in numerical solution of problem (8.2). As 
methodological investigations show, in a number of cases application of the Galerkin method 
turns out to be more effective than use of a difference scheme. This may become especially 
important in studying solutions in larger regions. 

Below we shall consider the simplified model with N = 2. The number of equations it 
contains can be reduced by one by going over to the variables Pmn, 0mn according to the for- 
mulas a=~=p~ cos ~mn, bmn=pmnsin,~mn, Omn=~mn--~oo. The equation for if00 can be solved sepa- 
rately. This means that the functions am(t) , bmn(t) vary in a more complex manner than 
Pmn(t) and Bmn(t). In particular, to the singular points Pmn = const, 0mn = const there 
correspond periodic solutions in the variables amn, bmn, and to limit cycles there corre- 
spond two-frequency regimes. Therefore, below we shall call solutions of the simplified 
system, forwhich Pmn = const singular points and solutions for which 0mn are periodic, limit 
cycles. 

In the simplified model with N = 2 there is an analogue of the simplest symmetric solu- 
tions. To the homogeneous solution (8.3) there corresponds a singular point P00 = i, Pmn = 
0, m + n ~ 0. To one-dimensional solutions of problem (8.2) along the y axis there corre- 
spond solutions of the simplified system for which amn = 0, bmn = 0 for n ~ 0. 

To solutions of problem (8.2) symmetric with respect to the diagonal of the square x = y 
it is possible to assign integral curves on which amn = anm , bmn = bnm. We shall also call 
them symmetric. 

We shall trace how the type of solutions of the simplified system changes as the para- 
meter c 2 decreases. We consider the line c I = 1.5. In the one-dimensional problem the se- 
quence of transitions was as shown in Scheme i. (Only the simplest attractors are represented 
here.) 

In the model with N = 2 the point with P00 = 0, m + n ~ 0 [it corresponds to the solu- 
tion (8.3)] also loses stability; a stable point with P00 ~ 1 hereby appears, The value of 

I Singular ~ Singular ~ Simple ~ Double 
point point i imit limit 
~:~, ~=0 ~#I, ~0 cycle cycle 

Scheme i 
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c 2 for which this bifurcation occurs coincides with the critical value of the parameter for 
the problem in partial derivatives. In the sigular point appearing Pmn = 0 for m ~ 0. We 
remark that another singular point for which Pmn = 0 if n ~ 0 simuitaneously appears in the 
system. In this case the system with N = 2 simplifies and goes over into the dynamical sys- 
tem (3.6). 

Further complication of solutions is shown in Scheme 2. As c 2 decreases the point for 
which Pmn = 0 for m ~ 0 also loses stability, and the singular point with Pmn ~ 0 determines 
the asymptotics (see Fig. 46). Then for some value of c 2 P01 becomes exactly equal to Pl0, 
and passage to a symmetric solution with a01=a10, bm=b~0 is then observed in the calculations. 
For c 2 ~ -3.3 a Hopf bifurcation occurs, and a symmetric limit cycle is created [P01(t) = 
p10(t)]. The position of the singular point losing stability and examples of symmetric cy- 
cles are shown in Fig. 47a. For c 2 ~ -3.7 the cycle loses symmetry. The majority of bifur- 
cations in Scheme 2 are connected with the loss or creation of symmetry which distinguishes 
the two-dimensional problem from the one-dimensional problem in an essential way. 

The first transition in this sequence is connected with the appearance of a singular 
point with Pmn = 0, m ~ 0. As in the one-dimensional case, the critical value of the para- 
meter is determined by equality (3.12). However, the situation may be more complex. This 
can be seen by tracing the variation of solutions on the line c I = 3.0 (see Fig. 46). The 
scheme of complication of solutions determining the asymptotics of the simplified system 
with N = 2 will be the following. First there appears a point with P01 = Pl0 and then a 
symmetric cycle (see Scheme 3). The point and an example of a cycle are shown in Fig. 47d. 
After loss of symmetry the projections of the cycle onto the {P01, P00} and {Pl0, P00} planes 
are close (see Fig. 47e), while the projection onto the plane {P01, P10} is close to a line. 

It is important to note that the singular point with P0~ = P10 appears for the same 
value of the parameter c 2 where points with Pmn = 0, m ~ 0 may appear. Passage to a symmetric 
solution occurs from initial data of general form. It would be interesting to determine 
whether this phenomenon occurs in the original problem and what the reasons are for it. 

8.2. Loss of Stability of the Spatially Homogeneous Solution. We consider problem 
(8.2) near critical values of the parameters for which the homogeneous solution (8.3) lost 
stability. The results of the corresponding calculations are shown by the crosses in Fig. 
46. As t § ~ the solutions with Pmn = const, m, n = 0, i, 2,... determine the asymptotics. 
On the line c I = 1.5, as the simplified model with N = 2 predicts, the solution arising is 
one-dimensional; on the line c I = 3 it turns out to be symmetric. Not only the type of the 
solutions of these two problems coincide; their quantitative characteristics turn out to be 
close. 

Periodic solutions of the problem in partial derivatives are an analogue of the singular 
points of the simplified model. The following lemma holds. 

LEMMA. If a self-similar solution of the form 

W(x, y, t)=R(x, y)exp[i~t+ia(x, y)] ( 8 . 5 )  

s a t i s f i e s  p r o b l e m  ( 8 . 2 ) ,  t h e n  t h e  q u a n t i t i e s  Pmn and Omn, m, n = O, 1, 2 , . . .  f o r  i t  a r e  con -  
s t a n t  (Pmn and Omn a r e  d e t e r m i n e d  on t h e  b a s i s  o f  t h e  F o u r i e r  c o e f f i c i e n t s  amn, bmn in  t h e  
same way as in the simplified system). The converse assertion is also true: if the ampli- 
tudes of the harmonics and the phase shifts between them in the solution of problem (8.2) 
are constant, then it can be represented in the form (8.5). 

It is easy to see by direct substitution that solutions of the form (8.5) can satisfy 
problem (8.2). The first assertion of the lemma can be verified by expanding the solution 
(8.5) in a Fourier series based on the system of functions {cos(~mx~).cos(~ng/l); m, n=0, I, 
2,...} and computing explicitly the quantities Pmn, 6mn" The converse assertion follows 
from the relations which connect R(x, y, t) = IW(x, y, t)l and a(x, y, t) with the moduli of 
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the harmonics and the phase shifts. If in the system of equations (8.4) we go over to the 
variables {~, ~,}, then ~00~. The computations here will be the same as in the one-dimen- 
sional case. 

The self-similar solutions arising after the loss of stability of the homogeneous solu- 
tion are close to it. Therefore, to analyze them it is natural to use asymptotic methods. 

We write Eqs. (8.2) in the variables p, ~: u=pcos% u=psin~: 

Pt = P-- p3 § ~ 2 (Pxx-- P~x -~ Pyy -- 9~v) -- Of (2~x~x ~- P~xx -~ 2py~y -~ p~yy), ( 8.6 ) 
p%---- - -  c2~ 3 § ( 2 ~ %  § p%~ + 2py~y + p~yy) + c~ ( o ~ - -  ow~ + Pyy-- ~w~). 

We seek a solution in the form of a series in the small parameter g which characterizes the 
deviation of c 2 from the critical value c 2 for which the solution (8.3) loses stability: 

p =  1 + ~r~ (x, y) +~2~  (x, y) +~3r8 (x, y) + . . . .  
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= ( - - ~ + r  t+ea~ (x, y) +e~a~(x, y) + . . . .  

( 8 . 7 )  

We subtitute formulas (9.7) into Eqs. (9.6) and equate terms with like powers of ~. This 
gives a system of equations for successively determining rn(X, y), an(x , y). In zeroth order 
in e the equations are satisfied identically. In first order they can be brought to the form 

~_r~ + k~r~ = C 1 {1~ 1 -~-- (t)l) / (1 + C~), ( 8 . 8  ) 

aa~ = ~/:r~ § ( ~  + Ol)/(I + c~), 

where  k~=--2(l-t-c~c~)/(1-t-c~), L--~-(c2--cO/(l-}-c~). The s t r u c t u r e  o f  t h e  e q u a t i o n s  o f  n - t h  o r d e r  
is analogous: r n and a n are contained in them just as r~ and az in formulas (8.8), but the 
right sides are much more complicated. 

From the boundary conditions of problem (8.2) we obtain the equalities 

O-X--[x~0,t - ~ '  Og ]y=0.l = 0 '  "~-Ix=O,t O, -~- iy=0, t=0.  ( 8 . 9 )  

I t  can be v e r i f i e d  t h a t  p rob lem ( 8 . 8 ) ,  ( 8 . 9 )  i s  s o l v a b l e  o n l y  u n d e r  t h e  c o n d i t i o n  ~q-~0x~-0. 
h s o l u t i o n  of  i t  has  t h e  form 

rt  = : 2  A ~  cos (:tmx/l) cos (zng/l), 
~,~ ( 8 . 1 0 )  

a~= -- 2Lrx/k ~, #(m~q-rt~)/l~=l~ ~, 

where m, n are integers. From the formula for k ~ it follows that at a point of first bifur- 
cation m = 0, n = i or m = i, n = 0. We henceforth assume that k = ~/s and r~ and a~ have 
the form 

r, = A c e s  kx+Bcos ky, ( 8.11 ) 
a~ =- -2Lr  dk2+const. 

The equations of higher orders will be solvable if their right sides are orthogonal to 
all nontrivial solutions of the corresponding homogeneous equations (the Fradholm alterna- 
tive). Considering the solvability conditions for the equations of second order, we obtain 

~ol =0,  ~=q-o~2 ----- L (A2q-B ~) ( 1 nt-cl 9) [2L~/k=q-k2]2]. (8 .12)  

Solutions of these equations are 

r2 = C cos kx  + D cos k~r Q~ cos 2kx + Q2 cos 2I~y + Q3 cos/~x cos ky + Q4, 

2L [C cos kx q- D cos kyl --[- B1 cos 2kx q- B2 cos 2ky A V B a cos k x  cos ky, a2 ----- -- -~ 

where 

Q~ .-~-A2[O,25q-2L2[ (3k')1, Q2 ----B 2 [0,25-b 2L 2/(3k*) ], Q3 = 3AB, 
Q, ------(A2+B 2 ) (L2/k2+k~/4+5/4], B,-.~-A~IL/(4k2) - -L ~] (3k ~) ], 

B2.=B2[L[ (4k2)--La/(3k 6 ) ], B3------4ABL/k 2, 

and C and D a r e  new unknown c o n s t a n t s .  

(8 .13 )  

The solvability conditions for the equations of third order make it possible to deter- 
mine the values of A and B. Earlier the small parameter ~ was determined up to a factor. 
We shall henceforth assume that 

This simplifies the relations for A and B: 

A (XA2q-YB2--~Z)=O, ( 8 . 1 5 )  
B(YA~q-XB~--aZ)=O,  

where 

X~_ 9L~ 3L2 ~_ k4 7 ~  Ic1__.~] 

F____!~ q_L2__kZ + k" ~-,  ~ =  sign c, �9 sign (c2-- c2). 

(8.14) 
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From formulas (8.15) it is clear that X + Y > 0, Z > 0; it can also be seen that X > 0. 

It is easy to verify that for ~ = -i the system of equations (8.15) has only trivial 
solutions. This corresponds to that region of the parameters where the spatially homogeneous 
solution (8.3) is stable. Therefore, bifurcation in the system being studied is always super- 
critical [39]. For ~ = +i the system of equations (8.16) has nine solutions: 

a) A = B = 0, 

b) A = 0, B = • I/2, 

c) B = 0, A = i(Z/X) I/2, (8.16) 

d) for X ~ Y A 2 = B 2 = Z/(X + Y). 

The case X = Y is degenerate [the system (8.15) has infinitely many solutions for which A 2 + 
B 2 = Z/X] and it will not be considered further. 

Relations (8.16) show that in the general case (X ~ Y) the solutions arising after bi- 
furcation will be either one-dimensional or symmetric. This conclusion is corroborated by 
calculations. 

We consider the question of stability of the self-similar solutions arising. Suppose 
r(x, y, t) and @(x, y, t) are small perturbations: 

p=R(x, y)+7(x, y, 0; ~ = ~ t + a ( x ,  @+~(x ,  y, t). (8.17) 
Stability of the_solution is determined from the problem in partial derivatives linearized 
with respect to r and @. We shall seek solutions of it in the form r = ektr(x, y), ~ = e At • 
I(x, y). As a result an eigenvalue problem is obtained which can be brought to the form 

(1 + c,R~) Arq-r  [ I -e '~  - -3  l+e'e '  R2-- (a~q-a~)] - -2R(a~x+ay~y)=-~  l+e~ ' 
L ~+4 1§ (8.18) 

[ -~ -~ '  + S~'-~' R2 l + 2Rx~x+ 2Ry~y=~ R ~ - e ' r  R A ~ q - r [  l-+-~c~ 1 +e~ +Aaj+2axrx+2ayry  
I + e ~  " 

The boundary c o n d i t i o n s  fo r  r ( x ,  y) and ~(x ,  y) a re  the  same as in formula ( 8 . 9 ) .  

Since we are interested in solutions in a neighborhood of the critical value c2, we 
shall assume that 

R = 1 +sr1+s~r2+~3r3+... ,  ~ =~t+~a{+~2a2 + ~aa + .. . .  (8 .19)  

Suppose first that ~ = 0, that is, R = i, ~=--e2t. We seek a solution of problem (8.18) in 
the form 

= ~ ,  =o C ~ 1 7 6  

in order that the boundary conditions be satisfied. As a result for each pair rmn, ~mn we 
obtain a system of two homogeneous equations which are solvable under the condition 

~ + 2~[~m~/12 + ~n~/l~ + l ]+ [ ~m~/t~ + ~n~/F] ~[ ( l +c~) ~ (m~ +n~) /l~ + 2 ( l + r162 ]=O. (8 .20 )  

Problem (8.18) has an eigenvalue which is equal to zero under the condition 

( l +Cl2) ~ (m~ + ~2) /12 + 2 ( l q-c~c~) =0. (8.21) 

It determines c= if we set m 2 § n = = I. 

Suppose now that ~ ~ 0, relations (8.19) are satisfied, and 

| § = ~ 1 ~ - 8 2 ~ 2 - ~  . . . .  r=9~ . . . .  (8.22) 

= ~0 + ~a q- ~z~= q" .... 

We substitute the expansions (8.19) and (8.22) into Eqs. (8.18) and equate terms with like 
powers of ~. The equations of zeroth order give 

9o--'~Ecoskx+Fcos~y, vFo=--2Lpo/k~+consL (8.23) 

The solvability conditions for the equations of first order lead to the equalities 
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%x----tO, A E + B F = O ,  

where A and B are determined by formulas (8.16). Solutions of them have the form 

( 8 . 2 4 )  

pl = ~ l c o s  2kx+~cos  2ky+ ~sc0s kxcos kV+ ~4cos kx+ ~ c o s  ky 

112'~-----rl~COS 2kx-q-~12cos 2kb'+rl~COS kxcosk~+ ~14coskx,+ rl~cos ky, 
(8.25) 

where ~,--.~AE[0,5-t-4L2/(3k4)], ~2----BF[O,5+4L2/(3k 4) ], ~3-----3(AF +BE) ,  

~h----- LAE [ 1/(2k 2) --2L2/  (3k 6) ], N2 = LBF [ l~ (2k 2) - -2L2/(3k ~ ) ], 

~I3=--4L(AF+BE)  / k  2, aq4=--2L~4/k 2, ~q~=--2L~/k 2, 

where ~ and ~ are unknown constants. The solvability conditions for the equations of sec- 
ond order in the parameter ~ lead to the following relations: 

E [ ~ 2 - - F -  j [~ I+k2"I~E[PA2+QB2-}-CZl--~-~c~c~c~],'c', 

[Z l+k ' ]  2 ,e,I Ft. ~-Te-j=F[QA2+PB- +~z~], 
where 

( 8 . 2 6 )  

( 8 . 2 7 )  

p ~ 25L ~ 2L 4 L 2 _  k* 23k 2 
2k 2 k s 4 4 "' 

Q = k 2 - -  L~ - -  4 L ~ / k  ~ -  k 4 / 4  ~ -  - -  Y .  

We consider the one-dimensional solution. Suppose A = 0; then B ~ 0, F = 0, E ~ 0. 
Equation (8.27) is satisfied identically, and from Eq. (8.26) with consideration of formulas 
(8.15), (8.16) we obtain 

1 + k~ ---- ( X - -  Y) B t  ( 8 . 2 8 )  

The s i g n  o f  X2 i s  d e t e r m i n e d  by t h e  s i g n  o f  t h e  q u a n t i t y  K = X - Y. I f  K > 0 ,  t h e n  t h e  o n e -  
d i m e n s i o n a l  s o l u t i o n  i s  u n s t a b l e ;  i f  K < 0 ,  t h e n  i t  i s  s t a b l e .  

S u p p o s e  t h e  s o l u t i o n  i s s y m m e t r i c :  A 2 = B 2 = Z / ( X  + Y) .  H e r e  E ~ 0 ,  F ~ 0 ,  and  Eqs .  
( 8 . 2 6 )  and  ( 8 . 2 7 )  c o i n c i d e .  A f t e r  a l g e b r a i c  t r a n s f o r m a t i o n s  we o b t a i n  

~ - - f r  = (X + P )  A S =  - - 2 K A  ~. ( 8 . 2 9 )  

The s y m m e t r i c  s o l u t i o n  i s  u n s t a b l e  f o r  K < 0 and  s t a b l e  f o r  K > 0.  The m a g n i t u d e  o f  K i s  c o n -  
n e c t e d  w i t h  t h e  p a r a m e t e r s  o f  t h e  p r o b l e m  i n  t h e  f o l l o w i n g  m a n n e r :  

K = 2 L "  I L~ " 9k~ --2--k~ k = n / l .  ( 8 . 3 0 )  
3k,  - -  1 2 ~  5 - - 4 - ,  L =  2e~ " 

It is possible to draw the conclusion that the one-dimensional solution will be stable for 
negative K, while for positive K the symmetric, self-similar solution will be stable. 

We shall compare the results obtained with the two-dimensional calculations carried out. 
From formula's (8.7), (8.11)-(8.16) it follows that in a neigborhood of the bifurcation point 
c2 the following relations hold: 

Po0----- 1 --I c~--c21 (A2+ B2):[L2/k4 + L 2 / k 2 + k 2 / 4 + 5 / 4 1 +  . . . .  

plo = l  c 2 - - ~  1 I/2 ] A I [1 +4L2/k4p/2+ . . . .  ( 8 . 3 1 )  

p01 = 1 c2- -  7211/21 B 1 [1 + 4L2/k4l '/2 + . . . .  

pH--I c2-J2 I.I ABI [9 + 40L2/k4+ 16L4/ksF2+... 

For  c 1 = 1 . 5 ,  k = 1,  c 2 = - 1 . 7 5 ,  and  L = - 1 .  F o r  c 2 = - 1 . 8 5 ,  t h a t  i s  e2 = 0 . 1 ,  f o r m u l a s  
(8.31) give P00 = 0.903, P01 = 0.372. We note that in this case K = -31/32; therefore, the 
one-dimensional solution must be stable. In calculations for the problem in partial deriva- 
tives we obtained P00 = 0.908, 001 = 0.334; the harmonics Omn, m> 0decayrapidlyand tend to 
zero as t § ~. In the system of eight ordinary differential equations @00 = 0.911, P01 = 
0.333, Ol0 = 0, Oll = 0. 
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Fig~ 48. Function R corresponding to the nonsyn~netric self-similar solution c I = 1.5, c 2 = 
-2.9, s = ~, h = ~/20, ~ = 10 -2 

Fig. 49. Process of passage to a self-similar solution. 

For c I = 3, k = i, K = 11/12; here the symmetric, self-similar solution must be stable. 

The critical value of c 2 is equal to -2, L = -0.5. For c 2 = -2.1, ~2 = 0.i. Formulas (8.31) 

predict the values 000 = 0.937, P01 = 010 = 0.177, 011 = 0.070. In the problem in partial 

derivatives 000 = 0.942, P01 = 0.162, 01o = 0.156, 0,1 = 0.057 areobtained;insimplifiedsys- 
tem with N = 2:P00 = 0.945, P01 = Pl0 = 0.157, 011 = 0.055. This means that formulas (8.31) 
describe well the solutions of problem (8.2) in a neighborhood of a bifurcation point when 

g = /0.i ~ 0.316. 

From relation (8.30) it follows that for small values of c I at the time of loss of sta- 
bility of the homogeneous solution symmetric solutions must also arise. The calculations cor- 
roborate this. Such a picture is observed, for example, for c I = 0.4. It can be concluded 
that the expansions obtained above agree well with solutions of the problem in partial deriva- 
tives and the simplified system. 

8.3. Two-Dimensional Self-Similar Solutions. To the simplest attractor of the system 
of ordinary differential equations - a stable singular point - in the original problem there 
corresponds a complex self-oscillatory process which is described by a self-similar solution 

of the form (8.5). We note that the spiral wave is a special case of this solution. Formula 
(8.5) defines a spiral wave if R(x, y)=R(p),a(x,y)=S(p)~-rn(p, x=pcos~, y=psin~. Each of the 
components u(x, y, t), v(x, y, t) in the self-similar solution is periodic in time, and u(x, 
y, t) = v(x, y, t + T/4), where T is the period. However, the function R = (u 2 + v2) I/2 does 
not depend on time. Figure 48 shows its level lines and the type of projection for the non- 
symmetric solution. 

Here and below the level line with index p corresponds to the value of the function fp = 
-i + (p - I)/I0; the axis of the abscissa is directed horizontally, and the axis of the ordi- 
nate is directed vertically upward. All two-dimensional calculations in this section were 
carried out: with use of the method of variable directions [58]. The step sizes in time 
and in space h are indicated in the figures. They were determined after carrying out test 
calculations. In those cases where in the two-dimensional problem the asymptotics is deter- 
mined by the one-dimensional solution, the latter practically coincides with a solution con- 
structed for the one-dimensional problem by another method [12]. 

The process of passage to a self-similar solution is shown in Fig. 49. The functions 

0mn(t) tend to constant values at t § ~, and p0z'~ Olo. 

On the line c i = 3, as shown above, after loss of stability of the homogeneous solution 
symmetric solutions of the form (8.5) arise. Figure 50 shows the results of the correspond- 
ing calculation. It shows the function R which for sufficiently large values of t does not 
depend on time. The function u(x, y, t) changes with time in a complex manner, preserving 
symmetry relative to the diagonal of the square (see Fig. 51). It is evident that the values 
of the maxima and minima of the function u vary within broad limits and may be either positive 
or negative. 

We shall consider how complication of solutions occurs in the problem in partial deriva- 
tives. The sequence on the line c I = 1.5 is shown in Scheme 4. The first two bifurcations 
coincide with the bifurcations in the simplified system. Here the parameters of the singular 
point for which 0mn = 0, m ~ 0 up to several percent coincide with the characteristics of the 
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Function R(x, y) corresponding to a symmetric, self-similar solution: c I = 3, c 2 = 
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Fig. 51. Variation of the function u(x, y, t) in the symmetric, self-similar solution; c I = 
3; c 2 = -2.5, s = ~, h = ~/20, �9 = I0 -~. 
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one-dimensional, self-similar solutions. However, on the whole in problem (8.2) the sequence 
of transitions is simpler: they contain no analogues of singular points with Pmn =Pnm and 
no symmetric limit cycles. 

On the line c I = 3 the sequence of bifurcations in the simplified system and the origi- 
nal problem is the same as in Scheme 3. The parameters of the self-similar-solutions and 
the singular points here also agree well (see Fig. 46). 

8.4. Two-Frequency Regimes. We shall consider solutions of the problem in partial 
derivatives for which the functions R and a are periodic in time. It can be seen that in 
this case Pmn(t) are also periodic: pm~(tq-T)=pmn(t), Omn(t--}-T)-'~-'Omn(t)'q'-2~pmn, pmn-~--O, "q-l, 
• .... Such solutions are analogues of limit cycles in the system with N = 2. We note 
that the functions u and v are not periodic - in the system a steady-state, two-frequency 
regime will be observed. An analogous situation occurred in the one-dimensional problem. 
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Two-dimensional solutions of this type are rather complex. In order to clarify the 
character of the qualitative rearrangement it is necessary to consider their projections onto 
some finite-dimensional spaces. In the present case projections onto the plane {Pz0, P0z} 
are the most indicative. They are shown in Figs. 52, 53 together with graphs of the func- 

tions Pmn(t)~ 

The solution shown in Fig. 52 projects onto a curve lying entirely above the diagonal 
Pz0 = P0z- During the course of an entire period the directions of x and y are "not of 
equal influence." We call it a solution of type I. In the solution shown in Fig. 53 the 
projection is a closed curve which lies on both sides of the diagonal. This line is almost 
symmetric with respect to the line Pl0 = P01. The directions x and y in time T/2 "change 
places": R(x, y, t + T/2) z R(y, x, t). This is evident in Fig. 54 where projections of the 
function R(x, y) are shown at times t I = 30.963 and t 2 = 37.333 (t 2 - t I ~ T/2). We call 
such a solution a solution of type II. 

It is important to emphasize that solutions of type I and type II differ qualitatively 
from one another. In Figs. 52 and 53 it is evident that the function p00(t) is close to 
P00(t + T/2). However, p0z(t) and pz0(t) behave differently: part of the period the function 
Pz0(t) in the bottom figure (a solution of type II) repeats the course of Pl0(t) in the upper 
figure; in the remaining part it repeats the course of the function p0z(t). The period of 
the cycles increases abruptly as the transition point is approached. For a small change of 
the parameter c 2 the period of a solution increased by approximately two times (see Figs. 52, 53). 

In the simplified system such transitions were not observed. However, the reason for 
their appearance can be explained by proceeding from features of the finite-dimensional model. 

Suppose for some value of the parameter c 2 the system with a sufficiently large number 
N has two stable singular points situated symmetrically relative to the plane Pmn = Pmn but 
not lying on it. As c 2 decreases a Hopf bifurcation occurs; two limit cycles arise which go 
over into one another on reflection in this plane. As c 2 decreases the amplitude of the 
oscillations will increase, and the cycles from different sides will approach the plane of 
symmetry. Because of the uniqueness of solutions they can touch one another, and hence also 
the plane Pmn =Pnm, only at a singlular point. 
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The period of each of the cycles on approach to this value of the parameter c 2 = c~ 
must increase without bound. After the transition c 2 < c~ the cycles are qualitatively re- 
arranged. If earlier, being on a limit cycle, a point rotated about one equilibrium state, 
now it is alternatively in a neighborhood of each of them. 

We point out that for c 2 = c~ in the finite-dimensional system a homociinic trajectory 
arises, and the system itself possesses special symmetry [if {Pmn(t), 8mn(t) } is a solution, 
then Pnm(t), 8nm(t) } is also a solution]. This makes it possible to suppose that here meth- 
ods developed in the analysis of the Lorenz system can be used effectively [114]. 

We recall that together with the solution shown in Fig. 53 there exists the solution 
W(x, y, t) = W(y, x, t) symmetric to it. Therefore, complication of solutions of problem 
(8.2) can also proceed along a path connected with the symmetry in an essential manner. 

A completely different picture is observed for c I = 3. This is connected with the fact 
that the Hopf bifurcation in this case admits a symmetric, self-similar solution as in the 
simplified system with N = 2. The symmetry is then lost. Figures 55 and 56 show a nonsym- 
metric solution with a periodic function R which cannot be assigned to either type I or type 
II. 

The circumstance that analogues of limit cycles can determine the as}~ptotics of the 
two-dimensional problem (8.2) is very important. Indeed, there is the widespread notion 
that the basic forms of order in active media are guiding centers and spiral waves. In prob- 
lem (8.2) they are a special case of the two-dimensional self-similar solution in which the 
variables are again separated. Indeed, in a particular range of parameters precisely the 
self-similar solutions determine the asymptotics of the process. However, in a large range 
of values ci, c2, and s they are unstable, and more complicated order arises. It is de- 
scribed by solutions with periodically varying functions R and a. It is natural to expect 
that such solutions will be observed in many open dissipative systems near a bifurcation 
point. 

It can be expected that two-frequency regimes will be observed in those cases where the 
solution has a phase singularity. Apparently, such solutions would be similar to spiral 
waves in which the function R = (u 2 + v2) I/2 and the frequency of rotation depends period- 

ically on time. 

Spiral waves are characteristic not only for self-oscillations but also for excitable 
media [34, 36]. Therefore, attention should be directed to computational experiments where 
in the case of excitable media regimes are observed in which the instantaneous radius of ro- 
tation of a spiral changes periodically with time [35]. The model studied in this work arose 
in modeling processes in a heart muscle. It would be interesting to investigate such solu- 
tions in the case of Eq. (8.2) for large values of the parameter s also in other models pos- 
sessing self-oscillatory properties. 

When the parameter ~ is reduced further the solutions of the one- and two-dimensional 
problems become nonperiodic. In the one-dimensional case both on the line c I = 1.5 and on 
the line c~ y 3 complication was connected with a sequence of bifurcations with period dou- 
bling. In the two-dimensional problem solutions were also observed in which it was not pos- 
sible to observe any order during the time of the calculations. However, the mechanism of 
occurrence of stochastic regimes and their properties require further study. 
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We shall formulate the basic results concerning the two-dimensional problem. 

After loss of stability of the homogeneous solution (8.3), as analytic investigation 
and calculations show, in a wide range of parameters cl, c2, ~ in the two-dimensional solu- 
tion is stable. Such behavior of solutions should be observed also in a region of rectangu- 
lar form. Hence, solutions of the one- and two-dimensional problems for certain values of 
the parameters coincide. 

The order in the two-dimenslonal problem possesses features for which there is no one- 
dimensional analogue. New classes of symmetric solutions appear which can determine the 
asymptotics of the process in the case of initial data of general form. For example, solu- 
tions s~nmnetric relative to the diagonal of the square. There also arise more complex os- 
cillatory processes than in the one-dimensional case. 

The simplified system with N = 2 in some cases correctly conveys the sequence of bi- 
furcations leading to complication of solutions of the problem in partial derivatives. For 
self-similar solutions there is not only qualitative but also good quantitative correspon- 
dence with singular points in the simplified model. In a certain range of parameters (for 
example, on the line c I = 3) the limit cycles in the system of eight ordinary differential 
equations describe well the two-frequency solutions of problem (8.2). 

Complication of solutions in the two-dimensional problem differs essentially from the 
one-dimensional case. Transitions between symmetric and nonsymmetric solutions play an im- 
portant role in it. The lines on which bifurcations occur lie here much closer to one an- 
other in the space of parameters. 
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The analysis carried out showed that in the two-dimensional problem there exist analo- 
gues of the space-time structure which were studied in the one-dimensional formulation. 
These are the periodic self-similar solutions and two-frequency regimes. It is important 
to note that in spite of the complexity of the two-dimensional problem in partial derivatives 
simplified models are a great aid in investigating it. 

9. Other Problems Connected with the Analysis of Dissipative Systems 

in a Neighborhgodpf a Bifurcation Point 

Simplified models have been widely used in the investigation of two-component systems 
in a neighborhood of a bifurcation point. We see that analysis of each of them requires 
carrying out numerical calculations and application of various analytic methods. In the 
hierarchy of models represented in the scheme there are several levels. Work in studying the 
majority of models cannot be considered complete. We point out some questions requiring 
further study. 

Two-dimensional self-similar solutions played a major role in the study of the two- 
dimensional problem. In a number of cases they were precisely the solutions which deter- 
mined the behavior of the system for t § ~. At the present time many other nonlinear equa- 
tions have appeared in which they play a basic role [43, 45]. Their construction is con- 
nected with solving an elliptic boundary value problem depending on a parameter. Effective 
methods for their numerical analysis have practically not been developed even for the case 
of the simplest regions. 

In the one-dimensional problem it would be interesting to clarify how the number of 
self-similar solutions and their properties change as the parameters vary. It is unclear 
how it would be possible to construct a complete bifurcation diagram. The construction of 
such a diagram for stationary structures in a number of systems of the form (1.2) led to 
interesting results [37]. 

Above we have considered the simplest solutions of the dynamical system (3.6) and one 
example of a strange attractor. The majority of notions regarding stochastic regimes in 
systems of ordinary differential equations are connected with the results of studying the 
Lorenz system. It would be useful to have several more dynamical systems with stochastic 
behavior. In the model (3.6) it is interesting to clarify how the strange attractor arises 
as the parameters vary and what are the properties of the complex nonperiodic solutions in 
the range of parameters III. 

The majority of results obtained at the present time pertain to the case of regions of 
small length when solutions of problem (2.1) and of the dynamical system (3.6) agree well. 
Increase of s leads to the necessity of studying simplified models with a large number of 
degrees of freedom. For example, in a three-mode system it is possible to study strange 
attractors that have 2 positive Lyapunov indices. Analysis of the structure of the attractor 
carried out for one of the generalizations of the Lorenz equations [107] shows that there are 
a number of substantial problems here. 

Analytic estimates of the dimension of an attractor have been obtained for a class of 
systems arising in chemical kinetics [20]. It would be interesting to apply these results 
to the analysis of problem (2.1) and also to clarify by means of various numerical algorithms 
the law of growth of the dimension with increasing s 

The method of multiscale expansions by means of which Eq. (1.3) was obtained can be 
successfully applied in studying convective instability of a liquid [ii0], in the analysis of 
problems of plasma physics [94], and in the theory of nonlinear waves [118]. The following 
equation was obtained under the assumption of the closeness of a solution of Eq. (1.3) to a 
spatially homogeneous solution [104]: 

= ~ A v - - ~ V 2 V ~ V - - ~ v  (VV). (9.1) 

H e r e  v i s  t h e  g r a d i e n t  o f  t h e  p h a s e  W, v = 1 + c l c  z ,  ~ = 2 ( c ~  - c z ) ,  ~ = (1 + c ~ ) / 2 .  
In the work [i00] the problem of the instability of waves in active media in the two-dimen- 
sional case on passing from one stable background to another was posed. Application of the 
method of multiscale expansions also in this case leads to Eq. (9.1). In such an approach v 
is interpreted as the local phase velocity of a traveling wave. An analytic solution of Eq. 
(i0.i) of the type of a traveling wave was found in the work [i00]. 

When v > 0 (9.1) is close to the Burgers equation with regard to its properties [68]. 
For v < 0 this equation may have complex, apparently nonperiodic solutions [122]. Indeed, 
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in the absence of the term ~V2V2v solutions of it may exist for a bounded time. It can be 
reduced to a linear equation with negative diffusion by the Hopf-Cole substitution for v < 0. 
The term ~\~2V2v ensures stabilization of solutions; it describes dissipation of the harmonics 
exp (i~t + ikx) for large k. Equation (9.1) is of interest as one of the simplest model equa- 
tions which in the one-dimensional case can describe chaotic processes. 

Howew~r, calculations show that in many ranges of the parameters the function IW(x, t) I 
is essentially inhomogeneous in space; therefore, the range of application of Eq. (9.1) is 
much smaller than the original equation; this was pointed out in the works [98, 99]. 

In deriving Eq. (1.3) it was assumed that a Hopf bifurcation or a Turing bifurcation for 
k c ~ 0 occurs in the system (1.2). Analysis of more complex cases (when k c = 0 or more than 
two eigenw~lues intersect the imaginary axis) leads to other equations [iii], 

One of the generalizations of the Kuramoto-Tsuzuki equation is connected with consider- 
ation of subsequent terms in the expansions with respect to the small parameter in problem 
(1.2). Suppose the nonlinear sources in this system depend on two parameters I and ~. We 
write Eq. I[1.3) in the form 

W,-----d0W=+ (al+a2[ W[ 2) W. ( 9 . 2 )  

Suppose  t h a t  f o r  ~<~0  Rea~<O, and f o r  ~>~0  Rea2>O. I n  t h e  l a t t e r  c a s e  Eq. ( 9 . 2 )  i s  n o t  
applicable: as the parameter k varies the amplitude of the solution changes by a jump to a 
finite quantity. The Fitz-Hu-Hagumo model and other models where threshold effects play an 
essential role give examples of this behavior [66]. In order to describe these effects it 
is necessary to consider subsequent terms and pass to the equation 

W,=doW=+ (a~+a~ [ W]2--a3[ W] 4) W, ( 9 . 3 )  

where  do, ah a2, a3, a r e  complex  c o n s t a n t s  [ 1 2 4 ] .  The p o s s i b i l i t y  o f  s u c h  a t r a n s i t i o n  i s  con -  
n e c t e d  w i t h  t h e  p r e s e n c e  o f  s t i l l  a n o t h e r  s m a l l  p a r a m e t e r  ~(~ - V0) 1/2 T h e r e f o r e ,  Eq. ( 1 0 . 3 )  
does  n o t  p o s s e s s  t h e  same g e n e r a l i t y  as  Eq. ( 1 . 3 )  and h a s  a much more  l i m i t e d  r a n g e  o f  a p p l i -  
c a t i o n s .  

I n  p a s s i n g  f r o m  t h e  o r i g i n a l  s y s t e m  ( 1 . 2 )  t o  Eq. ( 1 . 3 )  t h e  o n e - d i m e n s i o n a l i t y  o f  t h e  
p r o b l e m  i s  e s s e n t i a l :  t h e  fo rm o f  t h e  f u n c t i o n s  f i n  f o r m u l a  ( 1 . 4 )  can  be u n i q u e l y  d e t e r m i n e d  
f rom t h e  l i n e a r i z e d  e q u a t i o n .  I n  t h e  m u l t i d i m e n s i o n a l  c a s e  t h e  s i t u a t i o n  i s  more c o m p l i -  
c a t e d  - t h e  l i n e a r i z e d  p r o b l e m  may h a v e  s e v e r a l  s o l u t i o n s ;  t h e  number  o f  them depends  in  an 
e s s e n t i a l  way on t h e  g e o m e t r y  o f  t h e  r e g i o n .  Fo r  e x a m p l e ,  f o r  a s q u a r e  f l  = exp ( i k x ) ,  f2 = 
e x p ( i k y ) ,  f s  = a f l  + ~f~-  

E q u a t i o n s  d e s c r i b i n g  t w o - c o m p o n e n t  s y s t e m s  f o r  a T u r i n g  b i f u r c a t i o n  were  o b t a i n e d  in  t h e  
two-  and t h r e e - d i m e n s i o n a l  c a s e  in  [ 1 1 1 ] .  Fo r  r e g i o n s  o f  d i f f e r e n t  g e o m e t r y  t h e s e  e q u a t i o n s  
may c o n s t i t u t e  s y s t e m s  n o t  o f  two e q u a t i o n s ,  as  ( 1 . 3 ) ,  b u t  o f  a l a r g e r  number  o f  e q u a t i o n s .  A 
d e t a i l e d  a n a l y s i s  o f  them would  be v e r y  u s e f u l .  

A model  c o n n e c t e d  w i t h  a d i s c r e t e  a n a l o g u e  o f  Eq. ( 1 . 3 )  i s  u s e d  in  some p h y s i c a l  p r o b -  
l ems .  A s y s t e m  o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  i s  o b t a i n e d  by r e p l a c i n g  Wxx by [W(x + 
h) - 2W(x) + W(x - h)]/h 2 [3]. 

1351 



A number of generalizations of the Kuramoto-Tsuzuki equation arise in problems of hy- 
drodynamics. A two-dimensional equation containing derivatives with respect to the x and y 
directions with different coefficients arises in the theory of wind waves on water [2]. In 
a number of cases it is necessary to consider the effect of low noise [80, iii]. Proceeding 
from the method of multiscale expansions, equations were derived which made it possible to 
describe a system of convector rolls for low Prandtl numbers [79]. This problem is also of 
interact. 

Above we considered the simplest method of constructing simplified models for problem 
(1.2) and Eq. (1.3). In a number of hydrodynamic experiments it was found possible to esti- 
mate the dimension of the attractor and to show that the number of degrees of freedom is not 
large [76, 108]. However, it is usually not possible to construct a sufficiently simple 
model connecting these variables. The Galerkin method often gives systems of high dimension. 
For many concrete systems the question of constructing effective simplified models remains 
open. 

We note a class of problems arising in nonlinear optics where the dissipative terms are 
small increments to the terms iciWxx and ic2WIWl 2 [75]. It is natural to expect that solu- 
tions of equations of this type at particular times will be close to solitons [66, 68]. In 
a number of cases it is here possible to trace the sequence of bifurcations leading to com- 
plication of solutions and chaotic regimes [75]. 

Thus, the results of investigating two-component systems in a neighborhood of a bifurca- 
tion point may find applications in many other problems. A number of unsolved theoretical 
questions concerning classification of two-component systems are of great interest. This 
gives reason to suppose that in the future new interesting results can be obtained in this 
area. 
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