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A survey is given of results of investigating unbounded solutions (regimes with 
peaking) of quasilinear parabolic equations of nonlinear heat conduction with a 
source. Principal attention is devoted to the investigation of the property of 
localization of regimes with peaking. A group classification of nonlinear equa- 
tions of this type is carried out, properties of a broad set of invariant (self- 
similar) solutions are investigated, and special methods of investigating the 
space-time structure of unbounded solutions are developed. 

INTRODUCTION 

Processes of spontaneous violation of a high degree of symmetry of a macroscopic state 
of a complex system are one of the surprising phenomena of the world surrounding us. 

These processes lead to the appearance of so-called dissipative structures - ordered 
formations with characteristic space-time forms. For the occurrence of processes of spon- 
taneous violation of symmetry with reduction of its degree the system must necessarily be 
open and the mathematical model of it must be nonlinear [29, 64, 80]. 

At the present time phenomena of structure formation are the focus of attention of in- 
vestigators in various specialities. These phenomena are of interest to biologists in con- 
nection with the question of the origin of life, problems of prebiological evolution, and 
morphogenesis [49, 71, 75, 80, 81], to ecologists from the viewpoint of recognizing the laws 
of formation and stable functioning of biogenesis [75], and to physicists and chemists in 
connection with the possibility of creating new devices and installations which are new in 
principle. The interest of technicians is caused by the possibility of raising the produc- 
tivity of old technologies and creating new intensive technologies [77]. These phenomena 
attract philosphers as exan~les of the nontrivial occurrence of a category of "part and 
whole" and the dialectics of self-movement [78]. 

In spite of the different nature of the systems, on passage from an unordered state to 
an ordered state they behave in a similar manner which bears witness to the existence of 
fundamental principles of their functioning. Representatives of various disciplines are 
occupied with the study of theseprinciples within the framework of the synergetic approach 
[59, 64, 79]. 

It is altogether natural that one of the most powerful tools of modern science - mathe- 
matical modeling by means of a computational experiment [72] - is used in studying structures 
in nonlinear media. A combination of traditional methods of mathematical physics, modern numer- 
ical methods, and methods of processing information makes it possible to analyze the phenom- 
enon considered from all sides, accumulate information regarding it, and create new concepts 
and methods adequate to the qualitative features of nonlinear phenomenona. The concept of 
sym~netry-asymmetry is of considerable use in creating the basic concepts and constructing 
mathematical models. 
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In studying any phenomenon the investigator deals with a hierarchical sequence of models 
which, as a rule, is formed by successive consideration of various factors. In such a hier- 
archy of models it is always possible to trace the hierarchy of symmetry. The model of the 
lowest level[ of descriptive detail hereby has maximum symmetry. 

The presence of a rich symmetry makes it possible to formulate "atomistic" concepts 
which are to a considerable extent adequate to the class of phenomena being studied. In es- 
sence almost all dissipative structures known at the present time are from a mathematical point 
of view invariant or partially invariant solutions of phenomenological nonlinear equations, 
that is, the most symmetric solutions. Thus, stationary dissipative structures are a special 
case of invariant solutions - stationary solutions [39]. Autowave structures to good accu- 
racy can be represented by means of another special case of invariant solutions - so-called 
traveling waves [38, 49, 56]. Finally, the nonstationary dissipative structures of regimes 
with peaking considered in this work and in other works of the authors [32, 40, 41, 45, 59, 
73, 74] are directly connected with power self-similar solutions. Symmetry -asymmetry is 
the deep property of the matter which can be used not only for formulating the basic concepts 
but can also be taken as the foundation for mathematical modeling. We have in mind the crea- 
tion of a hierarchy of models on the basis of a hierarchy of symmetry. 

The present work is devoted to the study of dissipative structures of regimes with peak- 
ing which are formed in an active, dissipative nonlinear medium. As a substantial mathematical 
model of minimal dimension we choose the quasilinear heat equation 

us = div (K (u) grad u) + Q (u). ( 1 ) 

I n  t h i s  e q u a t i o n  u~O i s  t h e  t e m p e r a t u r e  o f  t h e  medium, K(u)>jO i s  t h e  n o n l i n e a r  c o e f f i c i e n t  
o f  t h e r m a l  c o n d u c t i v i t y ,  and Q ( u ) ~  0 i s  a n o n l i n e a r  h e a t  s o u r c e .  I t  i s  assumed t h a t  K(u)  
and Q(u) a r e  d e f i n e d  and smooth  f o r  a l l  u > 0 and v a n i s h  o n l y  in  an a b s o l u t e l y  c o l d  medium 
[K(O) = O, Q(O) = 0 ] .  

S o l u t i o n s  o f  t h e  Cauchy p r o b l e m  f o r  Eq. (1 )  f o r  v a r i o u s  t y p e s  o f  t h e  p a i r  o f  c o e f f i -  
c i e n t s  {K(u) ,  Q(u)} f o r m  t h e  o b j e c t  o f  i n v e s t i g a t i o n .  

Of s p e c i a l  i n t e r e s t  a r e  K(u)  and Q(u) s a t i s f y i n g  t h e  c o n d i t i o n s  
1 

K (u) a-Idu < q- ~ (2) 
0 

and 

[Q (u)l-'eu < + ~ .  ( 3 ) 
1 

C o n d i t i o n  ( 2 )  i n  t h e  a b s e n c e  o f  a h e a t  s o u r c e  i n  t h e  medium [ Q ( u )  ~ O] e n s u r e s  i n  t h e  
case of a compactly supported initial distribution a wave regime of propagation of a thermal 
perturbation in an absolutely cold medium with finite speed of the front [43, 68] (see Fig. 
I). 

Condition (3) in the absence of heat conduction in the medium [K(u) ~ 0] leads to the 
nonexistence of a global solution of the Cauchy problem. In this case heating of the medium 
occurs in a regime with peaking: after a bounded interval of time rE[0, ~ in some region of 
space the temperature becomes infinite. An essential feature is the localization of the 
region of high temperatures in space for an inhomogeneous, bounded, initial thermal pertur- 
bation (see Fig. 2). 

Study of the solution of the problem with simultaneous action of the dissipative factor 
[K(u) ~ 0] and a volumetric heat source [Q(u) ~ 0] is of interest. 

Investigations of unbounded solutions (regimes with peaking) occupy a special place in 
the theory of nonlinear evolution equations. In the general theory nonlinear problems ad- 
mitting unbounded solutions are globally (in time) unsolvable. For a long time they were 
considered exotic examples indicating the degree of optimality of those conditions which en- 
sure global solvability. 

Successful attempts to derive conditions for unboundedness of solutions of nonlinear 
parabolic problems were made more than 20 years ago [93, 97, 108]. The methods proposed in 
these works were very fruitful and were further developed. 
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Fig. i. Evolution of an initial thermal perturbation in a medium without a 
source. The front of the heat wave propagates with finite speed. 

Fig. 2. Evolution of an initial thermal perturbation in a medium without heat 
conduction. The temperature reaches an infinite value after a finite time 
at one point of space. 

The development of the theory of unbounded solutions received new impetus from possi- 
bilities of practical applications, for example, problems of self-focusing of light pencils 
in a nonlinear media, the effect of a T-layer in a low-temperature plasma, problems of shock- 
less compression, etc. (in this regard see [59] and other papers of the present volume). The 
number of mathematical publications in which unbounded solutions of nonlinear evolution equa- 
tions were studied rose abruptly in the last decade and a half. 

However, in mathematical investigations of unbounded solutions preference is mainly 
given to questions of the general theory and principally to the derivation of conditions 
for global insolvability of nonlinear problems. Constructive methods of investigating 
space-time structure of unbounded solutions has so far not advanced far enough. The main 
reason for this apparently is that to a wide circle of specialists in the area of nonlinear 
evolution equations those essentially nonstationary effects and phenomena of physical char- 
acter which can arise in a nonlinear medium and stably evolve for a bounded interval of time 
are unknown. These effects are unusual and are of considerable theoretical and practi- 
cal interest. 

In particular, regimes with peaking lead to localization in space of regions of high- 
temperature and to the formation of nonstationary dissipative structures. 

i. Unusual Effects of Regimes with Peaking 

Properties of regimes with peaking can be most simply demonstrated in a one-dimensional 
medium with a particular pair {K(u), Q(u)}. 

As such a pair we choose the power functions 

K(~)=U a, 0>0, (4) 

O (u)----u~, ~>1. 
With the restrictions o > 0, ~ > i the functions K(u) and O(u) satisfy conditions (2), (3). 
The choice of power functions is not accidental. By means of methods of group analysis it 
will be shown below that in the class of such functions the symmetry of the mathematical 
model is maximal in a particular sense. On the other hand, the powers o~and ~ are a con- 
venient measure of the intensity of the heating and dissipative factors. Relations between 
o and $ determine the space -time order in the medium in question. An idea of the space- 
time structure can be obtained on the basis of a preliminary analysis of invariant solutions. 

For a special choice of the initial thermal perturbation u(x, 0) = 9(x) its further 
evolution 

u(x, t) = g  (t, T)o (x~-' (t, ~) ) (5)  
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is determined by the functions 

g (t, "~) = (1 - -  t v l ) - L  qD (t, ~) = (1 - -  t~-1)% 

where 

Y = ( ~ - - l )  -1, ~ = 0 , 5 ( ~ - - ~ - - 1 ) ( ~ - - t ) - L  

The f u n c t i o n  0 ( g )  h e r e b y  s a t i s f i e s  a c o r r e s p o n d i n g  b o u n d a r y  v a l u e  p r o b l e m  ( s e e  See .  3) f o r  
a s e c o n d  o r d e r  n o n l i n e a r  o r d i n a r y  e q u a t i o n  

7 o=o.  (6) 

Although the invariant solution (5) is a special solution of the Cauchy problem it nev- 
ertheless turns out that for practically any initial perturbations the solution of the origi- 
nal problem "passes out" onto this solution at an advanced stage of the heating process. 
Thus, the most symmetric solution describes the asymptotics of the evolution process. The 
basic asymptotic regimes of heating of the medium [40, 41, 45, 73, 74] are established by an 
analysis of Eq. (6). 

The Thermal Wave. HS-Regime with Peaking. A wave regime - the so-called HS-regime 
with peaking - is possible in the medium in question. A wave regime of evolution of the 
initial perturbation is possible for 1 < ~ < o + i. The last inequality means roughly speak- 
ing that with increase in the temperature the diffusion of heat occurs more intensively than 
the heating of the medium. In this case after a finite time the entire space is heated to 
an infinite temperature (see Fig. 3). 

Localization of Heat in an S-Regime. For $ = o + 1 the intensity of heating and diffu- 
sion of heat equalize which leads to a parodoxical effect: heating of the medium to infinite 
temperature occurs over the so-called fundamental length (see Fig. 4). In spite of the pres- 
ence of diffusion the heat does not propagate into cold space beyond the limits of the funda- 
mental length. An effect of localization of the region of intense heating occurs. Moreover, 
a nonstationary dissipative structure is formed in which the distribution of temperature does 
not depend on the initial perturbation. Only the time of existence of the structure depends 
on the initial perturbation. Such a heating regime was called an S-regime [45, 74]. We 
emphasize that in the cases of the HS- and S-regimes at an advanced stage of heating the tem- 
perature perturbation has a unique structurally stable space-time form determined by the 
unique solution of the boundary value problem for (6) with a definite value of the time of 
the existence of the solution T > 0. 

Dissipative Structures of the LS-Regime with Peaking. For more intense operation of the 
source as compared with the diffusion of heat (o + 1 < $ < o + 3) a finite number of dissi- 
pative structures of the LS-regime with peaking are formed in the medium. The number N of 
qualitatively distinct structures is determined by the formula [40]: 

N =  - -  [ - - a ]  - -  l , ( 7 )  

where a---- (~- -1)  (~ - - (T - - ] ) - '  

The number of structures is connected with the number of zeros of the solution y = y(x) 
of the following linear problem [40]: 

/ ' - - 0 , 5  ( [~--~--I)  xV:+' (~-- O V = O, 

v',(OI =o, vlOI=L 
The solution of this problem has the form 

y(x)  =(1)(--(~[3--e)(13--(~--1) -l ,  0,5, 0,25([3--(~--1)x2), 

where r b,  ~) is a degenerate hypergeometric function [7]. 

Each structure has its own space-time form which is determined by a solution of the 
same boundary value problem for Eq. (6) (see Fig. 5). These structures exist for the same 
interval of time T > 0. At the time of peaking t = T each structure leaves a trace in the 
medium- the limit distribution 

U(X,T,)=CiI.X] -2(fj-o-l)-', i = l , N ,  ci>O. ( 8 )  

The limit distributions for different structures are distinguished by the values of the con- 
stants c i . 
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Fig. 3. The thermal wave of an HS-regime with peaking. 

Fig. 4. Formation of a dissipative structure of an S-regime with peaking. The structure is 
localized at the fundamental length L s. 

Fig. 5. Eigenfunctions of a self-similar problem in the case of an LS-regime with peaking: 
8 = 0i($), i = I, 3. The eigenfunctions determine the distribution of temperature in the 
simple (i) and complex (2, 3) dissipative structures. 

G0 

a b 

Fig.  6. a) Decomposi t ion of  a complex d i s s i p a t i v e  s t r u c t u r e  co r re spond ing  to  the  
second e i g e n f u n c t i o n ;  b) decompos i t ion  of  a complex d i s s i p a t i v e  s t r u c t u r e  c o r r e -  
sponding to  t he  t h i r d  e i g e n f u n c t i o n .  

The values c i are the eigenvalues of a nonlinear boundary value problem for (6), and 
its solutions are eigenfunctions. 

For a given time of peaking there are N isochronic structures (existing for the same 
interval of time) "containing" at the initial time a definite quantity of "thermal energy" 

Q~=~O~(~)d~, Q~>Q~_~, i=2 ,  N .  
0 

Thus, the eigenfunctions determine a finite number of "energy levels" existing for the same 
time interval ~. 

On the other hand, due to profiling over space of the initial temperature, any amount 
of energy given at the initial time in correspondence with the finite number of eigenfunc- 
tions can exist as a finite number of isoenergy structures. The times of existence of such 
structures are different: the simplest structure has minimal "life time"; the most complex 
structure has maximal life time. The degree of complexity of the structure is determined 
by the character of its nonmonotonicity for x~0. To the simple structure there corresponds 
a monotonically decreasing temperature distribution; to the most complex there corresponds a 
distribution with the maximum possible number of local extrema. 
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Investigations have shown [41] that the simplest structure is the most stable structure. 
Figure 6a, b shows results of calculation of the conversion of complex structures ~2 and e 3 
into the simple structure e~. The complex thermal structures are conserved during almost 
the entire time of peaking. Degeneration of a complex structure into the simple structure 
occurs during the course of a rather brief interval of time just before the time of peaking. 

The existence of "needlelike" limit distributions (8) bears witness to the loalization 
in space of the region of intense heating (Fig. 7). 

On the basis of the examples considered above the impression is formed that localization 
of the region of intense heating occurs for an action of the source more intense than diffu- 
sion. Indeed, for 1 < $ < o + 1 there is no localization; for $ = o + 1 the region of local- 
ization is determined by the fundamental length L s. For o + 1 < ~ < o + 3 the higher the 
temperature u0, the smaller the region of space where u>/u0. 

If for 1 < $ < o + 3 and any initial data a regime with peaking is always realized, then 
for $ > o + 3 there exist two types of regimes - the HS-regime of cooling without peaking 
(~ < 0) and the LS-regime with peaking (~ > 0). 

The invariant solution of the HS-regime without peaking is structurally instable and is 
the boundary between two classes of initial data. If the initial distribution dominates a 
temperature distribution of an invariant solution of the HS-regime of cooling, then an LS- 
regime with peaking occurs (see Fig. 8a). If the initial distribution is majorized with the 
same values of the maximal temperatures, then a damped wave is formed (see Fig. 8b). The 
wave exists for a rather large interval of time. In Fig. 8 the distribution of the HS-regime 
without peaking is denoted by a dashed curve. 

It should be noted that the existence of the regimes enumerated for power dependence 
of K(u), Q(u) on u can be predicted on the basis of the method of averaging proposed in [42]. 

A preliminary analysis of the invariant solution (5) for the special case of power de- 
pendence of K(u) and Q(u) [40-42, 45, 59, 73, 74] made it possible to determine and formulate a 
number of concepts characteristic for the class of problems considered. These are pri- 
marily the concepts of peaking, localization, effective localization, a limit temperature 
distribution, complex and simple dissipative structures, and their structural stability. 
The precise definitions of these concepts can be found in Sec. 3. 

In proving the existence of peaking and localization in the case of more general depen- 
dencies of K(u) and Q(u) an important role is played by methods of group analysis, qualita- 
tive methods of the theory of ordinary differential equations (o.d.e.), numerical methods, 
and methods of comparing solutions of parabolic equations, including degenerate solutions. 
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Fig. 8. a) Formation of a dissipative structure of an LS-regime with peaking for 
> o + 3. The structure is localized at the fundamental length. 1 is the criti- 

cal temperature distribution; b) formation of a thermal wave of an HS-regime with- 
out peaking. 

Methods of group analysis make it possible to determine for which pairs {K(u), Q(u)} 
there is a sufficiently rich collection of invariant solution~ and to determine their con- 
crete form. 

By means of the methods of the qualitative theory of o.d.e, it is possible to establish 
special properties of invariant solutions and to formulate the basic concepts. Numerical 
methods make it possible to obtain information regarding a specific invariant solution and 
its stability relative to perturbations. 

By means of the method of approximate self-similar solutions (ASS; see [23]) it is pos- 
sible to assign to the initial equations certain other basic equations. These equations may 
have a richer collection of invariant solutions as compared ~ith the original equations. A 
remarkable circumstance is that these equations may differ from the original equations, and 
nevertheless the solution of the original problem at the asymptotic stage of the evolution 
process tends to invariant solutions of the basic equations. This circumstance makes espe- 
cially important the investigation of the spectrum of invariant solutions which determine the 
various final forms of processes in nonlinear media. 

A sufficient reserve of invariant solutions is needed for successful application of 
methods of operator comparison. In the method of operator comparison these solutions are 
used as the basic carriers of particular properties of the general solution (see [14]). 

One of the interesting results of the investigation in the multidimensional case is 
establishing the existence of different types of group-invariant solutions on the basis of 
different coordinates: power self-similarity with respect to the radius and a traveling wave 
with respect to the angle. Such solutions determine the well-known spiral waves [49]. It 
is noteworthy that solutions of such type exist for only the heat equation with a source. 

In the present work we do not consider the important and difficult problem of construct- 
ing and studying the architecture of multidimensional eigenfunctions of a nonlinear medium. 
We mention that basic constructive steps in this direction have been made in the work [60]. 
The problem of constructing multidimensional self-similar solutions leads to the necessity 
of numerical solution of nonlinear elliptic equations. The problem of the initial approxi- 
mation is solved on the basis of the method of linearization in a neighborhood of a so-called 
homothermic solution and of a fundamental solution. This approach makes it possible to con- 
struct multidimensional structures also in trigger media. 
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Establishment of the asymptotics of evolution processes leading to the occurrence of a 
particular number of types of metastably stable dissipative structures whose space-time 
structure is described by group-invariant solutions plays the role of an analogue of the 
second law in open nonlinear systems. 

2. Symmetry of the Heat Equation 

2.1. What Does Group Analysis Provide? Modern group analysis is a generally recognized 
method of describing the symmetry of continuous mathematical models. 

This direction is based on the theory of continuous groups developed by Sophius Lie at 
the end of the last century and is a synthesis of algebraic ideas with ideas of analysis. 
The concept of a continuous group developed intensively and led to the creation of an entire 
direction in mathematics: the theory of Lie groups and algebras, the theory of group repre- 
sentations, etc. Lie's approach to the problem of integration (from the beginning Lie's 
purpose was the creation of a theory of total integration of differential equations) was 
basically forgotten in the theory of differential equations. This was caused by the fact 
that the methods of integration developed by Lie were not a universal mathematical tool - 
an arbitrary system of differential equations need not admit a nontrivial group of transfor- 
mations (a discussion of these questions can be found in [66]). Moreover, Lie's theory is a 
local theory unsuited, generally speaking, to giving directly a solution of a boundary value 
problem. 

Nevertheless, later Lie's approach to differential equations was appreciated by applied 
persons, since the mathematical models used in physics and mechanics possess, as a rule, 
basic symmetry described by a broad group of transformations. Knowledge of this group af- 
fords the investigator considerable information for study of the mathematical model. In 
particular, a group property of a system of differential equations makes it possible to dis- 
tinguish classes of group-invariant solutions, the finding of which is a simpler problem 
than finding a general solution, to generate new solutions from solutions already known, 
etc. This circumstance acquires special importance in studying nonlinear models where each 
exact solution plays an important role and where algorithms of group analysis act just as 
effectively as for linear models. We remark also that in contrast to traditional methods 
of investigation (for example, the method of a small parameter, etc.) groups methods do not 
use linearization of the original model. Apparently the wide investigation of group prop- 
erties of sets of models of mathematical physics carried out in the sixties is connected 
with these circumstances. A new, independent direction called group analysis of differen- 
tial equations arose after the works of Birkhoff, L. V. Ovsyannikov, L. I. Sedov, and their 
followers. 

Contrary to popular opinion group analysis is not exhausted by methods of constructing 
special solutions of a system of differential equations. Already at the beginning of our 
century the connection of the symmetry of a mathematical model with conservation laws found 
a constructive formulation in the form of Noether's theorem. Since conservation laws in the 
majority of cases are the foundation for constructing mathematical models, Noether's theorem 
indicated the fundamental role of symmetry in mathematical modeling. It is not superfluous 
to recall tlhat considerations of symmetry played a decisive role in the creation of quantum 
mechanics, the theory of elementary particles, and in other areas. 

The development of group analysis led to many other ways of using the symmetry of a 
mathematical model. However, modern problems of mathematical physics hereby posed a number 
of questions which found no solution within the framework of classical Lie theory. Individ- 
ual transformations not of point character were found which preserved differential equations; 
transformations were found which connect solutions of nonlinear equations; solutions were 
found which are not classical invariants (for example, the multisoliton solutions of the KdV 
equation). The so-called B~cklund problem crystallized out completely, although a construc- 
tive formulation of it was given comparatively recently [48]. 

All this was a prerequisite of the development and generalization of Lie theory. Lie 
himself gave the first generalizations - his theory of first order tangential transfor- 
mations. However, further advances in this direction encountered difficulties of principle 
character. Only recently [47] was it possible to create a satisfactory theory - the theory 
of Lie-Bicklund groups - which generalizes classical Lie theory in a nontrivial manner. The 
new theory made it possible to resolve a number of questions which were unsolved by the 
classical theory and, most important, provided the possibility of finding "hidden symmetry" 
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of mathematical models inaccessible in the classical approach. Within the framework of the 
theory of Lie-B~cklund groups it is possible to obtain a number of constructive theorems 
in the study of conservative systems of differential equations, to formulate the B~cklund 
problem, and to give effective methods of solving it. 

At the present time group analysis is undoubtedly at a new stage of ascent and is be- 
coming an effective method of investigating nonlinear differential equations. 

In this part of the work we present some results of group analysis and its applications 
within the framework of the model of nonlinear heat conduction. The symmetry of the non- 
linear heat equation with a source will here interest us mainly from the point of view of 
structures - the possibility of the existence of stable dissipative structures of a heat- 
conducting medium. The concept of structural stability, i.e., the preservation in time of a 
form characteristic for a given structure, rate of growth, localization in space, etc., is 
closely connected with the concept of invariance of a solution under transformations involv- 
ing time. There is reason to suppose that precisely the invariant solutions in many cases 
form "attractors" of the evolution of dissipative structures of a particular type of non- 
linear problems. From this position group-invariant solutions are not exotic, degenerate 
representatives of a manifold of thermal formations but structures which characterize impor- 
tant intrinsic properties of the nonlinear dissipative medium. 

2.2. Group Classification of a Nonlinear Heat Equation with a Source: the Group of 
Point Transformations. 2.2.1. In this subsection we consider group properties of the non- 
linear heat equation with a source (sink) in the one-dimensional case 

u,=(k(u)u~L+Q(u). (1) 

For concrete functions k(u) and Q(u) the algorithms of group analysis make it possible 
to find groups of transformations (forming local Lie groups) admitted by Eq. (i). A natural 
generalization of this problem [group classification of Eq. (i)] is the enumeration of groups 
of transformations for all possible forms of k(u), Q(u), more precisely, the finding of an 
admissible group of transformations for an arbitrary pair (k, Q) (nucleus of the basic 
groups) and enumeration of all those special forms of (k, Q) for which extension of the group 
of transformations admitted by Eq. (I) occurs. 

It is known (see [67]) that a criterion for the invariance of a differential equation - 
in our case Eq. (I) - relative to a group of point transformations of the dependent and in- 
dependent variables of the form 

t * = f ( t ,  x, u; al . . . . .  a~), 

x * = g ( t ,  x, u; al . . . . .  a ,) ,  ( 2 )  

u * - ~ ( t ,  x, u; al . . . . .  at) ,  

w h e r e  a l , . . . , a  r a r e  t h e  p a r a m e t e r s  o f  an  r - p a r a m e t e r  L i e  g r o u p  o f  t r a n s f o r m a t i o n s  

7c ( u , -  (k (u) u~)~- Q (u)) t ~,~ = o ,  (3) 
where the linear operator 

a + ~  a - a a a 

defines an inifinitesimal transformation of the group (2), where t, x, u are unknown functions of 
the point (t, x, u), and ~ut, ~Ux, ~Uxx are computed by the standard extension formulas in 
terms of t, x, u (see [67]). The operator X is connected in a one-to-one manner by the Lie 
equations with the group of transformations (2), and hence to find the admissible group it 
suffices to solve the system (3) for the functions t, x, u. 

In solving the problem of group classification the system of equations (3) [we note 
that (3) is a system of equations, since the coefficients t, x, u do not depend on the de- 
rivatives ut, u x, Uxx ..... and hence, expressing, for example, u t in (3) by means of (i) in 
terms of Ux, Uxx, we obtain the possibility of "decoupling" (3) into a system of equations by 
equating to zero the coefficients of Ux, Uxx and their powers] is solved for nonspecific 
dependencies k = k(u), Q = Q(u). As a result classifying equations for k(u), Q(u) arise 
whose solutions give an extension of an admissible group of transformations. 

The results of group classification can be written in more compact form if we use a 
group of equivalent transformations (see [67]). In our case we can use the transformations 
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TABLE 1 
/ ~ e  tt 

+ e  9~, ~ # 0  

+_eU+8, 8= +_1 

c5=__1 { 

o { 

TABLE 2 

X 
~t (~-- 1)-2- -- 1 

e -6t 0 6e -~t 
0 x 2 

e -~ 0 6e -6/ 
2t x 0 
t 0 - -1  

k = u  ~, ~4=0; --4/3 

O(u) /" a? 

e - S e t  0 8e-6etu +_ u ~+1 + 8u 
151=1 
+ ~n 

8u, 181=1 

5 = + 1  

0 

2 ( n - - l ) t  
( o 

e--6~t 

t 
{ 2t 

0 

(n-- ~--1) x 
f i x  

0 
(:~+ 1) x12 

X 

f i x  

--2u 
2u 

8e-6~t u 
U 

0 
2u 

k (u) = ~2k (~u + ~), 
(4) Q (u) = -~ Q (~u + ~), 

Two equations (i) equivalent in the sense of the transformations (4) admit similar groups 
and are not: distinguished in the group classification. 

For arbitrary k(u), Q(u) Eq. (i) admits (see [30, 31]) the group of translations in 
t and x (the nucleus of the basic groups) to which there correspond the operators X I = 3/3x 
and X 2 = 3/3x. For Q ~ 0 to X:, X 2 there is added the dilation X s = 2t(3/3t) + x(3/3x). 
Tables 1-4 present special forms (specializations) of the pair {k(u), Q(u)} for which Eq. 
(I) admits a wider group of transformations. For each pair {k(u), Q(u)} the coordinates t, 
x, 5 of the basic operators of the Lie algebra are presented, but the nucleus Xl, X 2 is not 
listed. Tables 1-4 also contain classical results [65, 115] pertaining to the linear heat 
equation and the nonlinear heat equation (without a source). 

2.2.2. Here we present results of the group classification of the heat equation with a 
source (sink) in the two-dimensional and three-dimensional cases (see [33, 35]): 

N 

u,=~(~(u)u~i)~+Q(~), k>0 (5) 
i=l 

Calculations according to the method of [66] lead in the case of Eq. (5) to the following 
equivalence group: 

F=b2t + f , 

u = c u + d ,  ( 6 )  

k ( . ) =  ~ k  (u), 
e Q ( u ) = ~ Q ( u ) ,  

w h e r e  a ,  b ,  c ,  d ,  e l ,  f a r e  a r b i t r a r y  c o n s t a n t s ,  a ' b ' c  ~ 0 ,  i = 1 , . . . , N .  
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TABLE 3 

k = tZ-4[3 

Q(u) F ~ Y 

t~U -113 + ~U, 

l a i = l S i = l  

I 
~t-./--1/3, I o~ I = I I / 
+_u n, n ~ - - - 1 / 3  

flu, i8!=I  { 

8=__.1 

o I 

e 46t 13 

0 

4t /3  

0 

2 ( n - - l )  t 
0 

e46t ]3 

0 
t 

2t  
0 
0 

0 
e2(C~/a)ll2x 

e-2(c~/a)l12x 

0 
e2 (~/3) l/2x 

e-2(o~13)l12x 

(n + 1/3) x 
- - 2 x / 3  

0 

- - x / 6  
x 

- - 2 x / 3  
- - X  l 

6e46//3 u 

--(3<z) 1/2 X 

X e2(al3)l[2xa 

(3a) ~/2 X 
e--2(cqa) ll2xu 

u 

--(3a) l/2X 
X e2(~/3)ll2xtg 

(3@/2 X 

e--2(o~13)ll2xu 

- - 2 u  
u 

~e46//31z 

3X~ 

0 

3x- 

TABLE 4 

QCu) F Y Y 

4- ett 
+ u n 

~}ulnu, 8= +I { 

~t~, 

t 
2 ( n - - I )  t 

0 
0 

2t 
4t 2 

x /2  
( n - - l )  x 

eft  

0 
x 

4x t  

- - 1  
- - 2 t z  

-- fi/2 e~txu 
e6t u 

28ta 
- - ( 2 t +  x~--4fi t  2) a 

6 = 4 - 1  0 

0 
0 

2t 
4t 2 

6 = 4 - I  0 
0 
0 

2t 
4t 2 

0 0 
0 
0 

2t 
0 
0 

X 
4xt  
2t 
0 
0 
x 

4x t  
2t 
0 
0 

--Xt~ 

tt 

b (x,  O, 
bt = bxx + 8b 

28t 
(6 t2+  tx'~) - (x~ + 2t) u 

- -  x u  + 8x t  
u - - S t  

a ( x ,  t),  a t = a x x  
0 

--  (x ~ + 2t) u 
- -X/Z  

gZ 

a ( x ,  t), a t = a x x  

The result of solving the system of equations for (i) for N = 3 is as follows. In the 
case of arbitrary functions k(u), Q(u) Eq. (5) admits the group of translations along t, x I, x 2, 
xs and the group of rotations about any of the spatial axes which are defined by the infi- 
nitesimal operators 

XI--~% T, X==~-77, Xa=~-77' X4=~, 
Ms_x2 @_~__x ~ 0 0 0 ~ .  ~;;" X 6 = x ~ - x ~  7, 
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TABLE 5 

l q + q(u) 
an arbi- 
trary 

I function 

i q=-+e"§ & 
I~l  = I  

q=• e=, '' 
~ 0  

~=_.+ U I'Z 

nr 

K-1 K=U -#/5 K=U. ~ K=e" 

k = k(< 
an arbi 
trary 
functio~ 

L 7 b 7 b 7 b 7 L 7 

b 7 h ? L7 / / 9 8 / /  L 7 / / / /Z 
"//,.///, 

, . ,  1., 

/ / / / / .  

~=• 

= ~  

~=0 

~7 L7 b7 b7 

</.///, 
'~,~t, .~ L 7 

0 0 (7)  
X7 = x3  ~ - -  x 2 0 x ~  " 

The group nucleus (7) can be extended only for those special forms of k(u), Q(u) listed below. 

Table 5 presents an orienting "scheme" of group properties of Eq. (5). L r denotes the 
space of dimension r (the Lie algebra) of operators of the form 

3 

' Ox~ +uOF' 
i=I  

a d m i t t e d  by Eq. ( 5 ) .  

We remark that in linear cases, just as in the linear one-dimensional case (see above), 
the space of admissible operators is formed by a direct sum of a finite-dimensional and in- 
finite-dimensional space. 

Tables 6-10 present the coordinates of the basis operators of the Lie algebra for cases 
of extension of the nucleus of the basic groups (the hatched cells in Table 5), while the 
coordinates of the basis operators of the nucleus are not presented. In the majority of 
cases • is written in place of the three coordinates xl, x2, x3- 

2.2.3. In the two dimensional case (N = 2) the group nucleus is formed by the following 

operations: 

X O , 0 O 

TABLE 6 

7 }'~ l Y I q(u) 

2t 1 x, ] 0 [ Q---O 
Note. The function k = k(u)is arbitrary. 
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TABLE 7 

= e u. 

Q (u) F F t E 

Q =181 =1-+ e=+ 8, e_~t 0 ~e -~t 

Q = + e=U' 2c~t (=--1) x~ --2 
aq~O 

0 xf 2 
Q=8=+_I 

Q=O 

e--6t 

2t Xi 

6e--6t 

--I 

TABLE 8 

k = u ~, 6=/=0; --4/5: 

Q= +.n, 
n~O; 1 2 ( l - - n )  t ( a - - n +  l) xt 2u 

Q = + U cr+l + (Su, e--66t 0 8e--6otu 
18{=1 

0 oxt 2u 
Q=Su= + u  

Q=-o 

e-5Ot 

2t Xi 

fiXl 

8e--SCtu 

2u 

Table ii gives the scheme of the group characteristics of equation (5) when N = 2. Table 12 

shows only the special case K = u -I not obtained from the two-dimensional case. All other 
cases of extension of the nucleus of the basis groups (the hatched cells in Table II) are 
obtained from the corresponding cases for the three-dimensional equation (5) if we formally 
set x 3 = 0, d/dx 3 = 0 

We note that in case of any special dimension N with coefficient of thermal conductivity 

4 

k (u) = u -~+2 ( S ) 

There w i l l  be s i g n i f i c a n t  extension of the admissible groups of  transformations. At the 
same time the two-dimensional case N ffi 2, k = u - l  d is t ingu ishes i t s e l f ,  when the groups of 
admissible transformations is  i n f i n i t e -d imens iona l  

u,=~(lnu)+6u, 8 = 0 ;  •  (9) 

I t  i s  known t h a t  a c o n s i d e r a b l e  change  o f  t h e  f u n c t i o n a l  p r o p e r t i e s  o f  s o l u t i o n s  o f  
Eq. (5 )  [ f o r  e x a m p l e ,  t h e  Cauchy p r o b l e m  f o r  (5 )  c e a s e s  t o  be  w e l l  p o s e d )  o c c u r s  f o r  t h e  co -  
efficient of thermal conductivity 
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TABLE 9 

k = u-415: 

/ n # O ;  1 

1 I Q~-- • tt I1~ + 6u, e4/56t 0 6e 4156tit 
161=1 

I 0 0 0 604/s6tu e4/56f 

0 2xt 2x2 2x3 --5u 

2 2 2 Q = 6u, 0 , x l - - x 2 - - x  3 2X~X2 2xlxa - - 5 x , u  
16l=1 I 

I 2 2 2 0 2xax3 2x2x~ XS- -X2- -X  1 

Q = 0  0 2xlx+ - - S x l u  

0 2x~x8 - -5 x~u  

2 2 2 --Sx~tt  0 x 3 - -  x 1 - -  x 2 

Ix~-~-AI 2~x~ 

2 
kCu)=u ~v. (1o) 

It is interesting to note that the intersection of the regions (8) and (i0) gives pre- 
cisely N = 2, that is, Eq. (9) (and only it) has all the qualities enumerated. 

We note that negative power exponents in the coefficient of thermal conductivity are 
used in describing diffusion processes in polymers, semiconductors, in porous media, in 
crystalline hydrogen, in some problems of chemistry, in problems of the physics of the sea, 
etc. In these areas modeling of the diffusion process with reduction of the dimension of 
the problem may distort the group properties of the problem which, in particular, may lead 
to the appearance of solutions which are absent in the multidimensional formulation or, con- 
versely, to the absence of solutions present in the multidimensional case. 

2.2.4. We consider the group properties of a nonlinear, anisotropic heat equation with 
a source (or with a sink) 

N 

u, = ~ (k, (u) uO~ , + Q (u), 
t = l  

kz>O, N = 2 , 3 ,  (11) 

In c l a s s i f y i n g  Eq. (11) on t he  b a s i s  of  k i ( u ) ,  Q(u) the  f o l l o w i n g  e q u i v a l e n c e  group i s  used :  

x~ = aibxi + e~, 

{'=b2t-}- f , 

~ = c u + d ,  
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TABLE ii 

O,=~lu)  
�9 n arbi- 
trary func-i 
tion 

II = +  e"+ b', 
I I1=~ 

(~=• e"U 

#0 

~=_+u n 

IFI=~ 

IFI=I 

~=_+~ 

g.=-+ 1 

~ . -0  

L 

TABLE 12 

Kml K=g'~ K=gd an arbi- K=g 1.1- 
(6=-I) 6~0;-I trary 

/unction 

hq L~ L~ L~ L# 

Y/ / /  

/ A 5 %  "~ L. , ' / / / /  ~/ ' ,~ 

 /22 

L~ L# 

I.,# b~ 

h# h# 

, / / / . '2" / / /  ~ ' ~ ,  
"./'///, / / / / ,  ,. 

?2iZ "~ z / / /  y / / /  

~,. k i ~, Y//fi/,, 
"2"///"//// ,  ~// /> " / / / / V / / / ,  

_i 
k=u : 

Q= -~u n 
n 4:1 2 1 (n,-t) '  nxi nx2 --2u 

q = ~a + 8, e~ t 
[ ~ 1 = [ 8 [=I  0 0 c*eC~fu 

Q=_+I  t o 0 a 

e 6t 0 0 8e6tu 

0 A (x,, x~) B (x~, x2) --2uAx,  
Q = 8u, 

181=I A, B--any solution of the system 

Ax~ ~ Bx~ 

Ax2 = --Bx~ 

I 
t 0 0 [ 

! 
Q=--O 

0 A (x~, xO B (x,, x=) [ --2uAx, 
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TABLE 13 

~Z ~ ~$~x~: 

) ~i =~t~i, 

an arbi- 
trary func- L# 
tion 

~=+ e ~tt, 

a.#O u~ 

~=+- iz n, 

n#O: 

0~=+-1 

Ks =e ~163 

L# 

~q 

an arbL- 
trary func- 
ti on 

b# 

Lq 

~4 

&# 

2.2.4.2. 
ators 

k~ (~----- ~k~ (U), (12) 
- -  - -  C 

Q (u) = ~ q (~, 
In the three-dimensional case it is convenient to distinguish two possibilities: i) 

all three components are nonproportional kl~k2, k~k3, ks~k, and 2) two coefficients are pro- 
portional, ki~, ki~kz , where (i, j, ~) is any permutation of (i, 2, 3). The second case 
reduces by means of the equivalent groups (12) to k~kj~ . To be specific we assume that 
k~ka~k 2 which will be convenient for reduction of the two-dimensional case to a special 
case of the three-dimensional case. 

2.2.4.1. k1~,~ks, k3~kl. As a result of solving the definition-system for equation 
(ii) (see [34, 35]) we obtain the group nucleus corresponding to the operators 

0 0 0 
X1-----o--Z- ' , X~-----0-77, X~--o-Zf, X 4 = ~ ,  

which can be extended only for those specializations of [ki(u), Q(u)] which are listed in 
Table 13 and below. 

The "general scheme" of group properties of Eq. (ii) in the present case is presented 
in Table 13. 

Tables 14-16 give the coordinates t, xi, u of the basis operators which augment the 
nucleus; the latter is not given. 

The case kl----k3~k2. The group nucleus in this case is determined by the oper- 

o o X - -  o 
Xl=o--77, Xz=~-77, 3--o-;7, 

0 0 0 
X4=~, Xs -=x~;7- -x ,  ~;- f . 

Table 17 shows the "general scheme" of the group properties of Eq. (Ii) in the case 
considered, while cases of extension of the group nucleus are listed in Tables 18-22. 

In the case k I = k 3 = i, k 2 = u -4/3, Q = -u -I/3, and Q = -u -I/3 + ~u (see Table 22) two 
operators augmenting the nucleus have complex-valued coefficients. In structuring real- 
valued invariants and invariant solutions this circumstance, however, causes no difficulties: 
using the linearity of the space of admissible operators it is always possible to take the 
real or imaginary part of a linear combination of operators relative to which invariance of 
the objects studied is then considered. 

2.2.5. In the two-dimensional anisotropic cases k1~k2 the nucleus of the basic groups 
consist only of translations along the axes xl, x~, t: 
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TABLE 14 
ki(u ) are arbitrary functions: 

Q (u) F ~i [ 

Q-~O 2t x~ 0 

TABLE 15 

ki=e% u, ~i~2~35~I: 

Q = • e ~u 2~t ( a - - ~ )  xt - - 2  

Q = • 1 0 ~ix~ 2 

0 

Q_=0 

TABLE 16 

2t I xf 

kI = u ~t, ~i ~ ~2 ~ ~8~/=~: 

q (u) F ~i 

Q= • un 2 ( l - - n )  t ( v i + l - - n )  xt 2u 

Q= • 2t (~z+ l )  xt 2u 

2t xt 0 
Q~O 

fftXl 2u 

0 0 0 
X1=a-77, X2-----~77, Xs-----~, 

which form a basis of the Lie algebra L~. 

Table 23 presents the "general scheme" of the group properties of the two-dimensional 

anisotropic equation (kl~k2). The coordinates of the operators augmenting the nucleus L a 

(the hatched region of Table 23) are obtained from the operators of the three-dimensional 

case enumerated in Tables 18-22 if in them we formally set x s = 0, d/dx 3 = 0. 

We note that in the two-dimensional anisotropic case no extensions of the group are 
observed. Indeed, for example, the case k I = k s = u -I, Q = 0 (Table 21) on passing to the 

two-dimensional case k I = u -I, k 2 = i, Q = 0 gives the operator X I = d/dx I which is obtained 
from 

0 , 0 0 

if we set x 3 = 0, 8/8x 3 = 0. 

2.3. Lie-Bgcklund Groups Admitted by the Heat Equation with a Source. 
section we consider the group classification of the heat equation 

N 

ut = ~ (k, (u) ux,)~ + Q (u), 
i=! 

In this sub- 
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TABLE 17 

-arbitrary- 
function �9 

o~#o 

~ = +  ~.r~ 
!n~O; 1,-11~ 

~ = +_ u- ~/s 

O,=+u-~ls+6u 

IEI=~ 

~=+u 

0 =+ '1 

~=--0 

K7 =K,=/, - - "; (~! 
KZ= _#/3 Kt=l K2=I162 K~=e(ZZ~ K~ K 2 is an 

a~bitrary 
61562 ~X~#lX 2 function 

L5 L'5 /'5 1'5 L 5 

I, 5 L 5 b 5 I. 5 

9" l / l /  

/<<//•/ 
L5 ~5 /~/L~/, L 5 L 5 

v / / /  
/ / / / , / / / / /  

TABLE 18 

k, = k~ = k (u),  k~ = k2 (u), 
k (a), k2 (u) is an a rb i t r a ry  function:  

o. I I 
Q~-O 2t xt u t I 

TABLE 19 

oh ~ o~2 : 

Q = _+ 1 0 / ~ , x ,  ~2x2 ~ ,x~  2 

2t [ x, x2 x~ 0 
Q-~O 

ki>O, N----1,2,8, 

from the point of view of tangential Lie-B~cklund transformations [47, 48]. 

2.3.1. Suppose there is given the one-dimensional evolution equation 

ala 

u t = F  (u, u,, ~ . . . . . .  urn), u~=ox~ �9 

(13) 

(14) 
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TABLE 20 

k1=k3=a a, /~2=u ~ a~ff~: 

Q=+I  2t (a+l) x~ (a~+l) x~ 1 (a+l) x~ 12t~ 

2t. x~ x~ x~ 1 0 
Q~o 

0 ffX~ O~X~ 

TABLE 21 
k~=k,~=a -~, k2=l: 

Q (u) t- " ~ 1 1 ~ "  2 ~3 l ~ 

Q= +_gn 2(l--n)t  --nx~ I (l--n) x2 --nx,  2a 

Q = • u -1/~ ] 8/3t 1/3xl I 4/3x~ 1/3x~ 2a 

Q= • 0 A(x, ,  x~)* I 0 B(x,,  x~)* I - -2Axa 

Q = • 1 2t 0 x~ 0 I 2a 

2t 0 x2 0 I 2~ 
Q--O 

0 0 A (x,, x~)* [ B (x~ x~)* I --2Axfi 

( A  x = B  X , 
*Here A, B a re  any s o l u t i o n  of t he  system:~A ' -  ~ [ Xa----~X, �9 

Let ~2 be -the manifold defined by (14) and all its differential consequences in the space 
of points z= (t, x, u, u, u .... ), where u={ul, ut}, u={u2, ult, utt}, etc. The one-parameter Lie- 

1 2 1 2 

B~cklund group admi t t ed  by ~,  i s  g iven by t r a n s f o r m a t i o n s  in ~ of  t he  form ( see  [47, 48])  

x * = x + 5 ( t ,  x, u, ul, u2 . . . .  ) a + o ( a L  

t*=L+~t, x, u, ul, u~ . . . .  ) a + o ~ a ) ,  (15) 
u*=u+U~t ,  x, u, ul, u2 . . . .  )a+o(a~,  

where ~, ~, U6~, ~ is the space of locally analytic functions of a finite number of vari- 
ables from z = (t, x, u, u l, u= .... ), and a is the group parameter. The symbol o(a) denotes 
the remainder of a formal series of special form [ensuring closedness relative to multiplica- 
tion - superpositions of the transformations (15)]; if the series in (15) converge, then the 
symbol o(a) takes its usual meaning. The arguments do not contain derivatives of the form 
3i+ju/3ti~xj, since they can be expressed in terms of u, u l, u 2 .... by means of the original 
equation (14). 

Just as in classical Lie theory, Lie-B~cklund groups are related in a one-to-one manner 
to vector fields (infinitesimal operators). Thus, the transformations (15) can be given by 
means of an operator of the form 

X = O  + ~t~--~7+ t t ~ T  . . . .  

i ~ l  l~0 
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TABLE 22 

k1=ks=l, k2=~-413: 

2~ x, 0 ] x~ 3/2u 

Q = ? u-1/3, 0 0 e2~97~x~ I 0 -- ]/8~e2 (~13)~l~x~ 
?=_+I 

0 0 e -2V~7~x2 [ 0 V'3-? e2(Y/3)l/2x2~ 

+~u. 
11,1--- 18 1=1 0 0 e -2 l/-~i'~x~ ] 0 ]/3? e2(Yla)U2x2u 

0 0 x2 I 0 --3/2u 
Q=+u 

0 0 x~ 0 --3x2u 

Q=__.I ,[ 2t x~ --1/3x~ I x~ 2tt 

2t x~ 0 I x8 3/2u 

Q=--O 0 0 x~ [ 0 --3/2u 

0 0 x~ --3x~u 0 

where U------ U-- ~Ul-- ~]ut, ~, -~- (Dx) 10, ~, -~ D, (Dx) ~ 0 .... , 

0 0 0 

D 8 , o ' u  @ 

The criterion of invariance of (14) has the form 

X {ut--F (u, u~ . . . . .  um)}l~=0. 
This equation can be rewritten in the form 

(Dr--F,) OJ~:0, (16) 

where we have introduced the operator 

F OF OF -- , =~-~ +~-~-Zl..)x+... +~-~(DA m. 

We remark that Eq. (16) always has a solution, since the evolution-Eq. (14) admits trans- 
lation in x and t to which there correspond the operators 

o X 2 = F O .  Xx ----Izl ~"d ' 

Knowledge of one solution U of gq. (16) often makes it possible to construct a sequence 
of solutions of this equation (this is precisely the situation for all Lie-Bicklund groups 
admitted by evolution equations which have so far been computed. For systems of equations 
this is not true; see [48]). 

Indeed, suppose for F, and some differential operator L the following commutator is 
defined: 
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TABLE 23 

~(~ ~ 

~=~(u~ is 
arbitrary 
function 

Kf=l, xf=u 6, ~t=e"~u xf(u),~$(.) 

~2 :~'~ 6#62 ~.I#~2 ]traryfunc. 
tion 

L 5 L 3 L~ L 3 

o.=• e ~u, r~///~ 
~#0 b~ b 3 ~3 

,., , . ,  

/ / / / / /  

IF., L]=F.L--LF. .  

Then if on solutions of (14) the operator L satisfies the Lax equation (see [122]) 

Lt=[F., L], (17)  

where  L t i s  d e f i n e d  by t h e  e x p r e s s i o n  DtL = L t + LDt,  t h e n  t h e  o p e r a t o r  L t a k e s  any  s o l u t i o n  
U o f  Eq. (16)  a g a i n  i n t o  a s o l u t i o n  LU o f  t h i s  same e q u a t i o n .  I n d e e d ,  (17)  i s  e q u i v a l e n t  t o  
t h e  e q u a t i o n  

[D~--F,, L]=0,  

and hence on solutions of (14) 

( Dt--F.) ( LU) = L ( Dt--fi.) U=0.  

I n  o t h e r  w o r d s ,  t h e  a c t i o n  o f  t h e  o p e r a t o r  L g e n e r a t e s  an i n f i n i t e  c h a i n  o f  s o l u t i o n s  Lku 
of Eq. (16). 

We remark that solvability of Eq. (17) in a particular class, generally speaking of 
operators L which are not differential operators (see [48]), is a necessary condition that 
(16) has solutions U(t, x, u, ul, .... u k) of arbitrarily high order k, and hence that Eq. 
(14) admits an infinite group of Lie-B~cklund transformations. This fact has major practical 
importance, since solution of the Lax equation (17) is frequently a simpler problem than 
solution of the defining Eq. (16). 

2.3.2. The defining Eq. (16) for the one-dimensional heat Eq. (13) has the form 

Ut~(~'u12+k'u~)U+2k'mUx+kU=+Q'U, 

where  Ut=DtUIos) , Ux=DxU, Uxx=Dx2U. 

I t  i s  assumed t h a t  t h e  d e s i r e d  f u n c t i o n  U depends  on a f i n i t e  number o f  v a r i a b l e s :  U = 
U ( t ,  x ,  u ,  u 1 . . . .  ,Un) .  I t  can  be shown [36] t h a t  f o r  n ~ 2  Eq. (18)  d e f i n e s  t h e  L i e  g roup  
o f  p o i n t  t r a n s f o r m a t i o n s  computed  in  [30 ,  31] and p r e s e n t e d  a b o v e ;  t h e r e f o r e ,  i t  i s  h e n c e -  
f o r t h  assumed  t h a t  n > 2. 
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The method of investigating the definition-Eq. (18) is based on decoupling it according 

to the powers of Un+l, Un+ 2 contained in (18) and not contained in the number of arguments 
of U. It is shown in the work [36] that a nontrivial solution of (18) exists only in the 
following cases: 

I) k = i, Q = au + b, where a, b are arbitrary constants; 

2) k = u -2, Q = 0; 

3) k = u -2, Q = au, where a is an arbitrary constant; 

4) k = u -2, Q = b, where b is an arbitrary constant. 

It is easy to indicate point transformations reducing the case 3) to 2) and taking case 
i) into a linear equation without a source. Since point changes do not alter the structure 
of the Lie-B~cklund group, it is possible to restrict attention to three variants: 

a) u t = Uxx; 

b) 

c) 
a) 

tions 

u t = (u-2Ux)x; 

u t = (u-2Ux)x + b, where b is an arbitrary constant. 

The linear equation u t = Uxx admits transformations (see [105]) given by the func- 

Uo=u, U~=W(t,x), 
where W(t, x) is an arbitrary solution of the equation w t = Wxx. 
case has the solution 

The Lax equation in this 

LI=Dx, Lz=tDx+-~. 
Any Lie-B~cklund transformation for a linear equation is determined by a linear combination 

of U0, U~ and solutions obtained from U 0 by means of the indicated operators L l and L 2. Those 
solutions U which depend on u n for a~3, correspond to Lie-B~cklund transformations. 

b) The equation u t = (u-2Ux)x is investigated in [89]. The admissibile Lie-B~cklund 
group in this case is determined by a linear combination of the functions U k = LkU0, k = 
i, 2 ..... where U 0 = (u-2Ux)x, and L = D~(u-I)D~I; the operator L in this case is an integro- 
differential operator. It can be shown that U k can be represented in the form 

Uk = - -  [D~ (u~l.D.) k] (x),  k - -  1, 2 . . . . .  

c) The case u t = (u-2Ux)x + b is essentially new (see [36]). 

I n  t h i s  c a s e  t h e  Lax e q u a t i o n  h a s  t h e  s o l u t i o n  L = D ~  ~ Dx--Tx D22., w h i l e  t h e  s o l u -  

t i o n  o f  t h e  d e f i n i n g  e q u a t i o n  w h i c h  " s t a r t s "  t h e  c h a i n  o f  L i e - B g c k l u n d  t r a n s f o r m a t i o n s  h a s  
t h e  f o r m  

It can be shown (see [36]) that the series U k can be represented in the form Uk .... D~[u-~Dx - 
b 7 k+l 
~Xj (X), and any solution of the defining equation can be represented as a linear combina- 

tion of the U k. 

It is shown in the work [36] that the multidimensional heat equation with a source (13) 
admits a nontrivial Lie-B~cklund group only in the linear cases: k i = const, i = 1 .... ,N, 
N = 2, 3, Q = au + b, where a, b are constants. 

Thus, with this the group properties of the heat equation with a source have been stud- 
ied in the one-, two-, and three-dimensional cases. Below examples will be given of the use 
of the groups of transformations admitted by the heat equation. 

2.4. Invariant Solutions of the Heat Equation with a Source in the One-Dimensional 
Case. 2.4.1. The presence of a nontrivial group of transformations admitted by some differential 
equation or system carries a particular algebraic structure into the set of its solutions. 
This is expressed in particular in the fact that transformations of the group take any solu- 
tion again into a solution of the same system of equations. The set of solutions obtained 
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by this process can "start" with any solution including one whizh is in no wa~ connected 
with the admissible group of transformations. This property is especially important in in- 
vestigating nonlinear equations where the "value" of each exact solution is high and where 
transformations taking a solution into solutions often carry a nonobvious character. 

If under a transformation of the group a solution goes over into itself or remains with- 
in an invariant manifold, then such solutions are called, respectively, invariant and par- 
tially invariant solutions. The search for such solutions is alleviated in connection with 
the possibility of describing them in terms of invariants of the same group of transforma- 
tions. Since the number of invariants is always less than the total number of dependent and 
independent variables in the original system, the theorem on the representation of a non- 
singular invariant manifold (see [67]) guarantees a reduction of the dimension in a coordi- 
nate system connected with the invariants (the special case of this fact for groups of dila- 
tions is known as the "~-theorem" in dimension theory). The number of independent variables 
in the space of invariants is called the rank of the invariant solution and may assume dif- 
ferent values. Therefore, a first step in the classification of invariant solutions of a 
system of differential equations whose admissible group is known is enumeration of the classes 
of solutions having the same rank. The next step of classification is usually the calcula- 
tion of an optimal system of subgroups of the basic group to which there corresponds a col- 
lection of essentially distinct invariant solutions [67]. Such solutions cannot be obtained 
from one another by means of the admissible group, while all other invariant solutions are 
obtained in just this manner. Distinguishing a collection of essentially distinct solutions 
makes it possible to systematize the set of invariant solutions: altogether even for cases of 
a small mmnber of variables it has a cumbersome form. In the work [31] such a classifica- 
tion is carried out for the one-dimensional nonlinear heat equation with a source for all 
forms of k(u), Q(u) for which an extension of the group of admissible transformations occurs. 
(We remark that for the heat equation in any dimension there may exist only invariant solu- 
tions, and there may not exist partially invariant solutions distinct from the invariant 
solutions..) 

2.4.2. Linear Heat Equation with a Source of Alternating Sign. Here we present only 
a fragment of the classification corresponding to the special case 

ut=Uxx+Sulnu, 8 =  • 1. (19)  

Equation (19) admits (see Table 4) the Lie algebra L~ of infinitesimal operators with 
basis 

o 6 e~xu~,  0 X2~-O~' Xs~e~tox 2 X~=bT, (20) 

(21) 

0 X4=e~tu~-u, 
and the optimal system of one-parameter subgroups in this case is 

{X~;  ~Xl+X2; X3; X2• X O, 
where ~ is an arbitrary constant. 

The invariant solutions corresponding to this collection can be represented in the cor- 
responding form: 

u (t, x)  = ~  (x), 

u (t, x ) = ~ ( ~ x - t ) ,  

~X 2 

u if, x)=~(Oe -w, 
,~X2 

u(t, x)=u(t)e 4( l~e--6f)  o 

There  e x i s t s  no i n v a r i a n t  s o l u t i o n  c o r r e s p o n d i n g  to  X4, s i n c e  f o r  i t  t h e  c o r r e s p o n d i n g  n e c e s -  
s a r y  c o n d i t i o n s  a r e  n o t  s a t i s f i e d  ( s e e  [ 5 7 ] ) .  

S u b s t i t u t i o n  o f  t h e  r e p r e s e n t a t i o n s  (21)  i n t o  Eq. (19)  l e a d s  t o  an o r d i n a r y  d i f f e r e n t i a l  
equation for u(%),  where ~ is the independent variable in the given representation. 

It is necessary to note that the classification of invariant solutions from the view- 
point of similarity (that is, distinguishing a collection of essentially distinct solutions) 
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may not have great value from the viewpoint of applications. In applications the collection 
of solutions found is usually adapted to a particular boundary value problem. There the 
interest is in global properties of such solutions, while the classification is carried out 
by means of the group of admissible transformations, that is, by means of local analysis. 
Proceeding from the collection of essentially invariant solutions, it is not always easy to 
perceive a "suitable" solution, since passage to a similar solution may be realized by rather 
complex transformations of the group. In the work [30] an example is presented where passage 
to a solution similar to one of the invariant solutions of the optimal collection leads to 
a regime with peaking, while none of the solutions of the optimal system of subgroups pos- 
sess this property. 

Below we shall consider in more detail the family of invariant solutions of Eq. (19) 
corresponding to the operator (see [32]) 

X=~X2+X3. 

In this case the invariant solution can be represented in the form 

_6W__2__I ~ 
tt(t, x ) = u ( t ) e  4 h+~e-~U. (22) 

Substitution of (22) into (19) leads to an ordinary differential equation for u(t): 

Ut-------~ l+~e_~, {-6ulntt. 

This equation can be integrated and gives a two-parameter family of invariant solutions 

6x" 6t F {l+ee--6t ~1/2~] 
u(t, x)---e 40+,e-a') ef ]nLtt~ 1-"[u ]" (23) 

We shall consider only those solutions of the Cauchy problem for Eq. (19) in which the tem- 
perature perturbation is bounded in space: u(t, x) ~ 0 as Ix[ + =. The family (23) is a 
solution of the Cauchy problem for the two-parameter family of initial data 

6x~ 

it(O, x)=ttoe 4(1+,), (24) 

where u0, g are parameters ~%>0, 8<--I for 6 < 0, -i < e < +~ for 6 > 0. We shall consider 
in more detail possible variants of the evolution of the initial perturbation (24). 

a) The solution (23) for s = 0 goes over into 

6x* 6t/- I \ 
it(t, x)=]/-ge--~-e e Wu*-~-l, (25) 

~>0, ~>0. 

The half width of the temperature distribution (25) does not depend on time and is equal to 
2 1V'~n2/6. 

For u 0 < ~e at each fixed point x the temperature u(t, x) decreases monotonically to 
zero, tim u(t, x)----0, for u 0 = v~ the solution (25) is stationary, and for u 0 > /e the tem- 

t~q-oo 

perature increases monotonically and unboundedly at each fixed point x as t § + ~. 

Figures 9 and I0 show the numerical realization of a solution with constant half width. 

b) We consider the solution (23) for ~ > 0, 6 > 0. In this case the half width of the 
initial distribution (24) is greater than the half width of the solution (25). The half width 
of the solution (23) is a monotonically decreasing function and as t + +~ tends to the half 
width of the distribution (25). There are three possibilities for the amplitude of the solu- 

tion. 

~0<~2(s)=el/(2+~e), then the amplitude decreases monotonically and lira ILmax(/)=O. 

~0>~i(8)=(I~-g) I/2e, then the amplitude increases monotonically and unboundedly as 

~2(e)<~< ~l(e), then the amplitude is a nonmonotone function of time: it first in- 
creases (but does not reach the magnitude /e - the amplitude of the stationary solution), 
and it then decreases to zero as t + +~. 
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The solution (23) for ~ > O, 6 > 0 is a solution with a monotonically decreasing half 
width. 

Figures ii, 12, 13 show a numerical realization of a solution with a monotonically de- 
creasing half width. 

c) Solutions with a monotonically increasing half width are determined by formula (23) 
either for 6 > 0, -i < E < 0 or for 6 < 0, E < -I. 

In the first case the half width of the solution (23) is a monotonically increasing 
function. At the initial time t = 0 it is less than the half width (1.4), while as t § 4-oo 
it tends to the value 2/in 2/6. 

If u 0 < ul(e), then the amplitude decreases monotonically to zero. 

If u 0 > u2(e), then the amplitude increases monotonically and unboundedly as t § +~. 

If UI(E) < U 0 < U2(E), then the amplitude is a nonmonotone function: it first decreases, 
it attains some maximum value at a finite time, and it then grows without bound in a mono- 
tonic way as t + +~. 

A numerical realization of the solution for 6 > 0, -i < e < 0 is shown in Figs. 14, 15, 

and 16. 

In the second case (5 < 0, e < -i) the half width of the solution (23) grows monotoni- 
cally and unboundedly as t § +~. 
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If u 0 < u2(E), then the amplitude increases monotonically to the value u(0, =) = i. 

If u 0 > u2(g), then the amplitude first decreases monotonically and then, while growing 
monotonically, tends to the value u(O, ~) = i as t + +~. 

Such a solution (see Figs. 17, 18) is analogous to the solution of a traveling wave 
considered in the work [54]. 

The behavior of the temperature distribution (23) in space and time is determined by 
the pair of parameters (e, u0). Figure 19 shows the plane of parameters of the initial data 
(e, u 0) which is separated by the curves uz(e) and u:(e) into zones corresponding to the 
regimes described above. 

d) In order to graphically represent the behavior of the solution (23) in time, we go 
over to variables of the amplitude and half width of the temperature perturbation: 
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O where a = , ,  l / In  2/161 
(27) has  t h e  form 

( o  = .  ( , ,  

X h (f) = 2 ]/-in 2 1/ ,e-~') I' I "~ ' - -  sign (6) (1 + . 

The c o n n e c t i o n  of  t h e  a m p l i t u d e  w i t h  t h e  h a l f  w i d t h  i s  g iven  by t h e  e q u a t i o n  

dA Aa~sign(6)(1--2sigrt(6)X~ a-~lnA) 
sign (8)) ' 

is the half width of the stationary solution (25). 

where Xh0 = Xh(0), A 0 = h(0) = u0(0). 

In the (Xh, A) plane Eq. (27) has a zero isocline 

21n2slgn(6) 
181x~ 

A----e 

and an infinite isocline (dXh/dA = 0): 

which exists only for 6 > O. 

A singular point of Eq. 
coordinates X h = a, A00 = v~. 
Fig. 20) 

X2 A 1_ n s ign  (6 )  

The integral of Eq. 

(26)  

(27) 

(27) for finite A ; 0 and X h > 0 for 6 > 0 is the point with 
The singular point is a saddle point with separatrices (see 

(28) 

/IXh\2 ~-t 

" 

In the case 5 < 0 the point (0, 0) is a saddle point with separatrices X h e 0 and A ~ 0 
(see Fig. 21). 

The course of the integral curves of Eq. (27) is represented in Figs. 22, 23. 

We note that all results enumerated in this section carry over easily to the case 
where the volumetric source of heat has a lienar "increment" Q = ~u Inu + Su by means of a 
transformation of the equivalence group u § ~u, 7 = const. 

2.4.3. Nonlinear Heat Equation with a Source of Variable Sign. We consider the heat 
equation in the case where the source and the coefficient of thermal conductivity have power 
dependence on the temperature 

~t = ( ~ X  "-1-- ~ +  1 "-1- 6~,  0 > 0 .  (29) 

One of the invariant solutions (see [31]) in this case has the form 

u (t, x) = u (x) (X + (1 --  X) e-e6t) -11~. ( 30 ) 
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The representation (30) gives a solution of the Cauchy problem if the following conditions 
are satisfied: ~ > 0, X6 < 0. [These conditions ensure that the heat flux k(u)u x vanishes if 
the temperature vanishes.] 

The function u(x) is a solution of the equation 

+ + = 0, 

and has the form 
, -g-- 

{0, lxl>Lst2, 
w h e r e  L s = s  + 1 ) ~ - 1 / a  i s  t h e  f u n d a m e n t a l  l e n g t h .  We r e m a r k  t h a t  L s i s  d e t e r m i n e d  o n l y  by  
t h e  p a r a m e t e r s  o f  t h e  medium o and  a and  d o e s  n o t  d e p e n d  on ~, t h a t  i s ,  t h e  p r e s e n c e  o f  a 
linear source (sink) does not affect the spatial structure of the invariant solution. 

For ~ > 0 for any u0= (--2%6(a+])a-l(o+2)-l)ll~>0 the time characteristic of the solution 
( 3 0 )  g ( t ) =  (%+(l--~)  e-~t)-ll~ as  t--~-T=--tn[~(%--l)-t]/oO. 

For 6 < 0 there exists a critical value of the amplitude of the initial distribution 
u.=(216J(o+1)I/~(~+2)) (the amplitude of the stationary solution) such that 

(a) if u 0 > u,, then g(t) + +~ for t + ~; 

(b) if u 0 < u,, then g(t) § 0 for t § +~; 

(c) if u 0 = u,, then g(t) ~ i, where 

In [u~lu~ u z~-'l t O - -  , I  j 
* =  ~181 

The solutions considered convey the qualitative features of the Cauchy problem for the 
heat equation with a source of variable sign and nonlinear type: the phenomenon of localiza- 
tion and the presence of superfast regimes of growth of thermal perturbations. 

2.5. Two-Dimensional Heat Conduction: Directed Propagation of Heat in an Anisotropic~ 
Nonlinear Medium. 2.5.1. Here we consider an example of the construction of an invariant 
solution describing the propagation of heat with different types of localization in different 
spatial directions which occurs in a regime with peaking [4]. 

As shown in part 2.4, the nonlinear, anisotropic heat equation with a source 

U t = (Ue'UX)x -~ (~Uy)y  "6 ~ ,  ~1 > O, ~2 > O, ~ > O, ( 31 ) 

1250 



is invariant relative to transformations defined by the Lie algebra of infinitesimal opera- 
tors of translation in t, x, y and dilation 

0 a X2=J7, X3=~, XI= ~f, 

0 0 t) O~ X 4 = 2  (1--~) t ~ + ( ~ 1 +  1 --~)X ~ + (Oz+  1--~) Y ~ + 2 u  .: 

We s h a l l  c o n s i d e r  s e l f - s i m i l a r  s o l u t i o n s  i n v a r i a n t  r e l a t i v e  to  t he  subgroup of  d i l a t i o n s  
d e f i n e d  by t he  o p e r a t o r  X~ which we w r i t e  in  t he  form 

0 x A  0 0 X4--2(1--~)( t~ O(to--t) 5(o~+1- -~)  Ox +(~2+l--~)V-O-v+2u~" (32) 

The pa ramete r  t o > 0 i n t r o d u c e d  d e t e r m i n e s  the  t ime i n t e r v a l  [0,  t 0) on which t he  s o l u t i o n  
e x i s t s  (a s o l u t i o n  does no t  e x i s t  g l o b a l l y ) .  To t he  o p e r a t o r  (32) t h e r e  c o r r e s p o n d s  t he  
i n v a r i a n t  s o l u t i o n  

u(t, X, y)=(to--t)l[1-~(~, ~l), (33) 

where 

~t+l--8 ff2+l--~ 

~ = x  (to--t)2c.~-~), ~=y(t0--t)2r 

S u b s t i t u t i o n  of  (33) i n t o  Eq. (31) l eads  to  an e q u a t i o n  f o r  t he  f u n c t i o n  5 ($ ,  q) :  

(~'~)~ ' ~ ' ~d~ ~ ~ + ~  ~=0.  (34)  2 (1~-1) 2-~-:-i) ~ -1  

Regimes with peaking corresponding to the case ~ > 1 are considered below. The depen- 
dence of the direction of heat propagation on the relations among the parameters $, al, a 2 
follows easily from (33). 

Equation (34) was solved numerically by two methods: the method of finite elements and 
a finite-difference method (see [4]). It is assumed that the temperature distribution at the 
initial and subsequent times is symmetric relative to the axes Ox, Oy. This makes it pos- 
sible to consider the problem only in one quadrant of the (x, y) plane. 

Let 

Q= {(x, y), O < x < a ~ ,  O<y<a2},  
~ = { ( x ,  y), O<.x<~b~, O<~y<~ b~}, 

where a~, b~, a = l , 2  are positive constants, 

Afunctionu(t, x, y) is sought which satisfies Eq. (31) in the cylinder QT = ~ • (0, T], 
where T = const, 0 < T < to, the initial condition at t = 0 

1, (x, y)~P.1, 
u(O, x, v )=u0(x ,  v ) =  O, (x, v ) ~  (35)  

and the boundary conditions for t > 0 

~=0, if X=~l or ~=a2, (36) 

OU if  x = O  y=O,  7n = O, o~ 

(n is the normal to the boundary of the domain ~). 

The relation among the quantities ~, (o~ + I), and (o~ + i) affects the character of 
heat propagation as is evident from the representation of the invariant solution (33). Below 
we consider two types of solutions which in analogy with one-dimensional regimes [45, 74] 
we call HS-S- and HS-LS-regimes. The results presented also make it possible to judge the 
qualitative features of self-similar regimes of heat propagation with other parameters of 
the medium, in particular, in an LS-S-regime which we therefore do not consider. We remark 
also that the formulations of the problems can easily be carried over also to a three-dimen- 
sional, anisotropic medium. 

HS-S-Regime. Problem (35), (36) was solved with the following parameters: 

(~=3, c~=2, f3=(~2+1=3. 
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In this case no propagation of heat occurs in the y direction, while in the x direction after 
a finite time t o propagation of heat to infinity occurs (an HS-regime). 

Figure 24 shows the numerical solution u(t, x, y) at different times; Fig. 25 shows its 
level lines. It is evident that the support of the solution is a convex region. The time 
of peaking obtained in calculations was t o = 2.42389, while the discrepancy of the procedure 
is less than 4%. 

Figure 26a, b presents results of self-similar processing of the numerical solution 
u(t, x, y). Namely, the quantity [see (33)] 

~(~, ~l)=(to-t)-~/~(t, x, v), 
x = ( t o - - t ) - ~ / 4 ~ ,  y - - ~ ,  

was computed which in the course of time t ~ t o approaches a solution of the self-similar 
problem. Beginning at a certain time the curves u(~, D) practically coincide which bears 
witness to the passage to a self-similar regime. A solution of the elliptic equation (34) 
was thus obtained numerically. 

HS-LS-ReRime. This regime is the most paradoxical manner of heating an anisotropic 
medium. 

Problem (34), (35) was solved with the following parameters: o I = 3, 02 = i, ~ = 3. In 
this case the invariant solution (33) approaches infinity in the x direction (an HS-regime), 
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while in the y direction curtailment of the effective depth of heating occurs (an LS-regime), 
that is, the interval along the y axis where, for example, u >- Umax/2 tends to zero as t § t o . 
Thus, at the final stage the solution (see Fig. 27) is an infinitely heated line off which 
the temperature is finite. The level lines of the solution are shown in Fig. 28. We point 
out the characteristic cross-like form of the support. This form of the support is deter- 
mined by two processes. Along the x axis accelerated heat propagation proceeds in an HS- 
regime, while along the y axis the solution tends to a self-similar LS-regime in which the 
heat front is located at infinity. The time of peaking obtained in the calculation 
was t 0 = 3.07660. 

Figure 29a, b shows the results of self-similar processing of u(t, x, y) for x = 0 and 
y = 0, respectively. The functions ~(~, q)I~0 and ~(~, D)I~=0 are computed from the formulas 
[see (33)] 

(~, ~) = ( t o -  t) ~ u (t,  x ,  v), 

x=~(to--t) -I/4, y=~(to--t/14. 
In the course of time the functions ~(~, ~) tend to a solution of the elliptic equation (34), 
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We note that the heat propagation analogous to that described above will occur for any 
oi, 02, and $ for which the relation o I + 1 > $ > 02 + 1 holds [see (33)]. Moreover, the 
anisotropy ol > o2 may be expressed arbitrarily small. This leads only to a change of the 
rate of growth of the amplitude and propagation of the front; the qualitative features of 
the process remain the same. 

We emphasize that in this subsection, on the one hand, we have presented a numerical 
investigation of an evolutional (structural) stability of the self-similar solution (33) 
of the nonlinear, anisotropic heat equation with a source (31). On the other hand, we have 
constructed a numerical solution N(~, ~) of the nonlinear elliptic equation (34). This is of 
particular interest, since so far there exist no efficient methods of integrating such equa- 
tions. The construction of this solution can in principal not be done by direct solution of 
Eq. (34) by the method of determination, since the solution u(~, N) ~ 0 in such a formula- 
tion is unstable (regarding theoretical methods of investigating such problems see, for ex- 
ample, [16, 87]). 

2.5.2. An Example of the Construction of an Invariant Solution on an Infinite Group. 
An unlimited reserve of invariant solutions can be generated by an infinite group. We con- 
sider the two-dimensional heat equation 

~A(ln~=[ux~ , (uv) (37) 

which admits (see Table 12) the algebra of operators 

X ~ - - a t ;  ~ f q - u  ; X ~  ax o-d ' 

where A(x, y), B(x, y) is an arbitrary solution of the Cauchy-Riemann system 

A~=By, A~=--B~. (38)  

A s o l u t i o n  o f  t h e  s y s t e m  (38)  can  be w r i t t e n  in  t h e  fo rm A + iB = ~(x  + i y ) ,  where  ~ i s  an 
arbitrary differentiable function. 
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As an example we consider ~(x + iy) = ex+iy, where A = e xcosy, B = e xsiny, A x = e x • 
cos y, and the operator X~ takes the concrete form 

a , x .  0 0 
2 ~ = e  ~ cos V ~-  ~ e  sm V ~ + 2~e~ cosy ~ 

In order to construct an invariant solution of rank one of Eq. (37), it is necessary to 
consider a two-dimensional subalgebra. We consider the algebra <X 2, X=> for which a com- 
plete collection of invariants can be chosen as follows: 

e 2x e x 

I i = u - 7 - ,  12= sinv'" 

We seek an invariant solution in the form 

u(t,  x ,  y)----t e-~--' ~'=~ s inv '  

where the function ~(l) is determined by the ordinary differential equation 

Making in (39) the change of variables ~(1) = e 6(X), we obtain the equation 

which by means of the substitution ~(%) = y(x), % = i/x goes over into the equation y" = eY 
whose general solution is known [53] (the method Of integrating it is also based on the group 
of transformations which it admits). As a result the desired invariant solution can be 
represented in the form of the three families 

2t 
U(JC, y ,  t ) =  ( s i n y + e 2 e X )  2 , 

2c~teC, (e -x  stn v+cD 
u (x, v, t ) =  

e TM (I -- e c' (e-dg .~ln y+C,))i' 
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e~t [lg~(~_ t sing + r  
u (x, y, t )=2 -  

where c~, c 2 are arbitrary constants. 

2.5.3. "Spiral Waves" in a Nonlinear Thermally Conducting Medium. We consider the 
invariant solution describing spiral propagation of inhomogeneities in a nonlinear medium 
constructed in the dissertation of S. R. Svirshchevskii. The equation 

gt = (gc~gX)x-[- (uC~Uy) y '~  UI~' 

admits (see Table 8), in particular, the operators 

0 0 X~=V~--x~, 

We write Eq. 

~> 1, (40) 

(40)  and t h e  o p e r a t o r  X = coX ~ + X 2 in  p o l a r  c o o r d i n a t e s :  

1 i! 1 092 .J~-~Ul ~, (41) 
( 7  0 / ~UO+ 11 

Ut 

T u Co X = ( 1  --~)(t0--t)  0 {to--t) r" - - - - f - -  +(1  --~) (42)  

where  c o and t o a r e  c o n s t a n t s ,  t o > O. P r o c e e d i n g  f rom t h e  c o m p l e t e  c o l l e c t i o n  o f  i n v a r i a n t s  
of the operator (42) 

~-a-i 
I~=r(to--t)2o-~); I2=~--coln(to--t); I~=u (t0--t)-l/l-~; 

we seek a solution of Eq. (41) invariant relative to X in the form 

I 

u (t, r, ~ )=( t0 - - t ) l -~  u (R, ~), 
S-a-1 (43) 

R=r(to--t) 2o-~f, ~=~--coln(to--t). 

The f u n c t i o n  u(R,  0) i s  d e t e r m i n e d  by t h e  e q u a t i o n  

I {~___ 0 /--Oua+l\ 10=u ~+1} ~--a--I DOu Ou +~__~ .  (44) 
0 . .  

I t  i s  e a s y  t o  s e e  t h a t  t h e  i n v a r i a n t  s o l u t i o n  ( 4 3 ) ,  (44)  d e s c r i b e s  t h e  p r o p a g a t i o n  o f  i n -  
h o m o g e n e i t i e s  o f  t h e  t e m p e r a t u r e  f i e l d  ( l o c a l  maxima,  weak d i s c o n t i n u i t i e s ,  e t c . )  a l o n g  a 
l o g a r i t h m i c  s p i r a l .  The t r a j e c t o r i e s  o f  such  i n h o m o g e n e i t i e s  a r e  r e p r e s e n t e d  s c h e m a t i c a l l y  
in  F i g .  30: Fo r  B < o + 1 we h a v e  e x p a n d i n g  s p i r a l s ,  f o r  $ > o + 1 c o n t r a c t i n g  s p i r a l s ,  and 
for $ = o + i we have circles. The arrows indicate the direction of motion of the inhomo- 
geneities with increasing t (c o > 0). We note that the growth of u as well as the motion 
of the inhomogeneities along spirals takes place in a regime with peaking. 

In the three-dimensional case it is possible to construct analogous solutions which 
describe the propagation of inhomogeneities u along spirals wound on the surface of cones with 
vertex at the origin. Numerical realization of the invariant solution (43) encounters 
great difficulties. The case c 0 = 0 of the solution (43) describing the evolution of a 
complex "architecture" of inhomogeneities u in a regime with peaking is realized numerically 
in the work [60]. 

2.6. Linearization and Other Questions. Heat equations admitting an infinite group 
of transformations occupy of special place. The presence of an infinite chain of transfor- 
mations leaving the equation unchanged makes it possible to construct a corresponding chain 
of solutions invariant relative to the Lie-Bicklund group. However, the chief property of 
such equations is related to the possibility of their linearization. The presence of an 
infinite Lie-Bicklund group (more precisely, automorphicity of the equation) is a necessary 
condition for the presence of a (nonpoint) transformation taking it into a linear equation 
[48]. Although sufficient conditions for linearizability have not been obtained for all 
heat equations admitting a nontrivial Lie-B~cklund group it is possible to find a linearizing 
transformation. The presence of linearizing transformations makes it possible to construct 
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solutions of the nonlinear equation by proceeding from solutions of the linear equation, to 
apply the principle of superposition of solutions, etc. 

2.6.1. The equation 

u,---- (u-2uOx, (45) 

a d m i t t i n g  an i n f i n i t e  cha in  o f  L i e - B g c k l u n d  t r a n s f o r m a t i o n s  [89] can be l i n e a r i z e d  by means 
of the change (see [105]) 

u(t, x)=(Vy) -~, x=v(F,  y), F=t. (46) 

Indeed, it follows from (46) that 

o~=(~y)-1~ o o -o r(vy)1 o 
Oy' Ot Ot Og' 

and t h e r e f o r e  (46)  t a k e s  (45)  i n t o  t h e  e q u a t i o n  

o, 

or 

where f is an arbitrary function of t. 
the equation 

into a solution of Eq. (45). 

2.6.2. The equation 

Hence, the transformation (46) takes any solution of 

~ r = ~ y y  (47) 

U,~(u-~Ux)x+b, b =cons t ,  

by means of the transformation (see [36]) 

b (vy ~-1 
u(t, x)=--- - fLy ]y ' 

2(vy) 
x=--T ~-, t=7, 

goes over into the equation 

Dy [(v~' / ~-IO 1 7 
L~ JyJ y[vr =~ 

(48) 

(49) 
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Thus, any solution of Eq. (47) goes over under the transformation (49) into a solution of 

Eq. ( 4 8 ) .  

2.6.3. Heat Equation in an Inhomogeneous Medium Admitting a Nontrivial Lie-B~cklund 
Group. In the work [76] a broader classification problem was solved - heat equations 

u~= (k(x, u)u~)~+Q(x,  u), 

were distinguished which a~mit a nontrivial Lie-B~cklund group. It was shown that nontriv- 
ial Lie-Bicklund transformations are admitted by a linear equation in an inhomogeneous me- 

dium (k~ = 0, Quu" = 0) and by the nonlinear equation 

u, = (ku-2uD. + au + b V k - -  V k  ( V k ) . .  u -I, 

where k ( x )  i s  an a r b i t r a r y  f u n c t i o n  o f  x,  a and b a r e  c o n s t a n t s ,  and ab = 0. 
change  

u - + V k ( x ) ~  (51) 

Eq. (50) reduces to the equation 

(50) 

By means of the 

ut = (u-2u~). + au + b, ab = O, 

investigated above. 

In the work [119] a special case of Eq. (50) for a = b = 0, k = (%x + ~)2 

~,x+~ 2 

By means o f  t h e  ( p o i n t )  t r a n s f o r m a t i o n  

1 ~2 x-- , .ylnlXx+vt  1, t ~ - -  t, 
7 

the last equation goes over into the equation 

u, = ( (=u + ~)-2ux)~+~ (=u+D -2ux, 

which arises in some problems of porous media and is considered in [91]. 

New equations linearizable by B~cklund transformations are obtained in [76] where a 
more complex model of heat conduction is considered - one of hyperbolic type. 

Figure 31 shows the scheme of connections of the solutions of the equations considered 
where the following transformations are given in addition to those listed above: 

I e_2% x = x ;  ( 5 2 )  u(t, x)=ue-~ ' ,  F 2~ 

W (g, t) 2 D_I-  . . . .  g---~ 7-U,  t = t ;  (53) 
u x  

W (g, t)~- 2v fl v; (54) 

1 u(t, x )=--bW-~ 1, f l c = - - T  W(v, t); (55) 

[>,oz u(t, x ) = - - ~  (56)  

2 
x - -  _ _ ,  t = t .  

bxu 

2.6.4. Invariant Solutions. Suppose the evolution equation 

u~ = F (u, u~ . . . . . .  u,,,), 

admits a nontrivial Lie-B~cklund group defined by the operator 

0 
X = U  (x, it, u~ . . . . .  u~) g3 + . . . .  (57) 

Then the solution u = f(x, t) invariant relative to the corresponding transformations is 
defined by the relation 

U ( x ,  u ,  Ul . . . . .  u=)l==r(.,t ) = O. 

In other words, to find invariant solutions it is necessary to solve the system of equations 

u , = F ( u ,  ul . . . . .  u~). 

is considered: 
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U(x,  ,4 u~ . . . . .  u .)  =0, (58) 
of which the second is an ordinary differential equation. As n increases it is necessary to 
solve a differential equation of even higher order. Since this equation, as a rule, is non- 
linear, attention is usually restricted to only a small number of solutions in the chain 
given by means of a recurrence for U (see, for example, [89]). Nevertheless, the problem 
of solving (58) can be simplified considerably (see [36]) if a linearizing transformation 
is used. 

We consider the equation 

u , =  (u-2u,),+b, (59) 
which admits operators (57) for which 

U = ~ c~V~ + coVo + c'V' + cfV 2, 
t = l  

w h e r e  n = 1, 2 , . . . ,  c o ,  c z,  c 2, c i a r e  c o n s t a n t s ;  

U 0 =  (u-fux) ~ + b, U'----- ux, U 2-= 2u+xu~ - -2 t  (u-fux) x--2bt 

c o r r e s p o n d  t o  p o i n t  t r a n s f o r m a t i o n s  ( f o u n d  i n  [ 3 1 ] ) ,  whi l e  U i h a v e  t h e  f o r m  

~2 f i ~  b X/t*1 U i - - - - - - v x ~ u - z ~ x - - ~  , (x),  i ----1,2 . . . . .  

n 

S o l u t i o n s  o f  Eq. ( 5 9 )  i n v a r i a n t  r e l a t i v e  t o  t h e  g r o u p  w i t h  U----Xc~Ui,  a r e  d e f i n e d  by t h e  
equation i=0 

Applying the linearizing change (49) to (60), we obtain a linear system. As a result of 
solving it it is found that the entire collection of solutions invariant relative to the 
Lie-B~cklund transformations is given parametrically in the following form: 

b {vv~-I 2 vu 
u( t ,  x ) = - - ~  \ v ) v , x - - - - - - ~  y ,  

where 

( 6 0 )  

k i 

~-----~E " t i JA e y z(k~-j~ 
i=, j=o (61) 

[L~] 
] L 2 J 

(ki--s)~ tJ-s~t 
Ai(ki-j) ~- ~ Bk i -s (k~--j)l ~-~ (2)~i)]-s-2lC~--s--21(j--s--i),' 

s = 0  l = 0  

n i s  Bki_  s ( s  = 0 . . . .  , k  i )  a r e  a r b i t r a r y  c o n s t a n t s ,  [ . . .  ] i s  t h e  i n t e g r a l  p a r t  o f  a number ,  c m 
the number of combinations of m things taken n at a time, and X i (i = i .... ,r) are pairwise 
unequal complex numbers. 

We shall not pause to analyze the invariant solutions (61) of Eq. (59), since for (59) 
it is not possible to formulate the boundary value problems considered here. 

2.6.5. For heat equations admitting an infinite series of Lie-Bgcklund transformations 
it is not possible to construct a corresponding chain of conservation laws (as is the case, 
for example, for the KdV equation). By a conservation law we mean the existence of a vector 
(g, h) satisfying the condition 

Dtg + Dxh=O, 

on s o l u t i o n s  o f  t h e  c o r r e s p o n d i n g  h e a t  e q u a t i o n .  The f u n c t i o n s  g and  h d e p e n d  on t ,  x ,  u ,  
ul,...,Un; g is called the density of the conservation law. 

It was shown above that the equation 

u,-~- (u-~ux).~+b (62) 

admits a Lie-B~cklund group for which the definition equation 

D t U - -  D 2 (u-fU) = 0 
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has the sequence of solutions 

2 b k+l Uk=--D~(u- iD.--~x)  (x), k = l , 2  . . . . .  (63) 

Hence, Eq. (62) formally has an infinite series of conservation laws of the form 

OtU~J-O~(--Oxu-~Uh) =0, k= I, 2 .... 
However, by (63) these conservation laws can be represented in the form 

b ~k+l 

and are trivial in the sense that they have a density equal to zero. 

This situation has general character in considering evolution equations having even 
order in the leading derivative (and one of the differences from equations with an odd leading 

derivative consists in this). 

It is known (see [54]) that if g is the density of a conservation law for an evolution 
equation 

ttt = F  (tt, ttl . . . . .  tt~), (64) 

then the function f = - ~ g ~ E ( - - D x )  ~ satisfies the equation 

~=0 

(formally adjoint to the defining equation of the Lie-B~cklund group), and, conversely, if f 
is a solution of Eq. (65) and f = (6/Su)g, then g is the density of a conversion law. From 
this theorem (see [see [54]) it follows that in the case m = 2k Eq. (64) cannot have conserva- 
tion laws whose densities depend on u s , s > k. 

Therefore, in the case of the equation 

ttt = (le (11.) ttx) x + Q (g) ( 66 ) 

i t  i s  p o s s i b l e  to  f i n d  s o l u t i o n s  f of the  de f in ing -Eq .  (65) which depend only  on t ,  x, u, 
u I, u 2. Analysis of Eq. (65) shows that in this case fu = fu I = fu 2 = 0, that is, f = f(t, 
x), and (65) has the form 

f t + k f x x + Q ' f  = O ,  (67) 

whereby 

g=f(t,x)u. (6s)  

It follows from Eq. (67) that (66) has nontrivial conservation laws only in two cases: 

i) k = const, Q = au + b; a, b are constants. The density g in the conservation law has 
the form (68), and f is any solution of the equation 

2) k ~ const, Q' = ak + b; a, b are constants, and g has the form (68), where 

f [e_bt(cle lv~x__kc2e-~vyx), a~=O, 
= [ e  -~ (clx+cf), a = 0 ,  

where C I and C 2 are arbitrary constants. 

3. Quasilinear Equation ut = V(uaVu) + uS: Unbounded Solutions~ 

Localization, Asymptotic Behavior 

The present section is devoted to the investigation of unbounded solutions of the Cauchy 
problem for a quasilinear equation with power nonlinearities 

ut=V(u~'Tu)+~, t>0, x~RN; o>0, 8>1; (1) 
u(O, x)--Uo(x)>O, xER~; s u p ~ < + ~ .  (2) 
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As a rule, we assume that the initial function u 0 has compact support, and u~+~CI(RN). Since 
the degenerate equation (i) describes processes with a finite speed of propagation of pertur- 
bations, for all t > 0 the solution u = u(t, x) ~ 0 will then also have compact support in x. 

Justification of the many qualitative results of Sec. 1 is given below. We shall 
first introduce a number of concepts and definitions whose significance has been discussed 
in detail in preceding sections. 

Principal attention will be devoted to the investigation of unbounded solutions of prob- 
lem (i), (2) defined on a finite time interval t6[0, T0),with 

lira sup u(t ,  x ) =  -p ~ .  (3) 

Here a point x=x0fiR s, at which unbounded growth of the solution occurs as t § To we call a 
point of singularity or a point of peaking if there exists a sequence t~6[0, T0),tk-~T0when k § 

such that 
u(t~, x0)~+oo, k-++~.  (4) 

! 
The value T O = T0(u0)e R t which, naturally, is a function of the initial function u 0 ~0, is 

called the time of peaking of the unbounded solution. 

A considerable part of this and the next section is devoted to the study of the effect 
of localization of regimes with peaking in which unbounded solutions of problem (i), (2) may 
occur for particular values of the parameters (see Sec. i). 

Definition i. Let u0(x) be a compactly supported function. An unbounded solution of 
problem (i), (2) is called localized (in the strict sense) if the set (the region of local- 
ization) 

~ = {xGR~I u (To, x) > O} (5) 

is bounded in R N. If ~L is unbounded (for example, flz~RN), then there is no localization. 

Boundedness of ~L means that u - 0 in [0, T0) X{RN\QL}; this follows from general proper- 
ties of solutions of a parabolic equation with a source. The next definition is more gen- 
eral; it is meaningful in the case of arbitrary equations and for any noncompactly supported 
initial functions. 

Definition 2. An unbounded solution of problem (i), (2) is called effectively localized 
if the set (the region of effective localization) 

c%={xERN[ tt (To, x ) =  -1- Qo} (6) 

is bounded. If ~L is unbounded, then there is no effective localization. 

In both definitions u(To, x)=l]m~(t,x). 

It is obvious that ~L-----~L. As a rule, we henceforth omit the word "effective" from the 
second definition. Introduction of the set (6) makes it possible to classify localized solu- 
tions as follows: localization in the S-regime if mes mL > 0 and in the LS-regime if mes ~L = 
0. In the last case the solution u(t, x) can grow to infinity as t + T o only at one singular 
point, while at the remaining points it is bounded above uniformly with respect to 16(0, To). 

We shall indicate the basic conditions imposed on the solution of problem (I), (2). 

i) In any region of the form (0, T0--~)XR N there exists a unique, bounded, nonnegative 
generalized solution of problem (I), (2), u~+I6L~(0, T; ff~(RN)), (/ta+zl2)t6L2(0, T; L2(~N)), 
uI+oI26L~176 T; L2(RN)), T~T0--T (see the various methods of analysis of properties of 
generalized solutions in [9, ii, 37, 51, 55, 63, 68, 84, 114, 124, 125]). 

2) The solutions satisfy the comparison theorem with respect to initial functions: if 
u (v), v = i, 2 are two solutions corresponding to different initial functions u(V)(0, 
x)=~0 (~)(x)>0 and u~ 2)>I-u~ I> in R N, then u(2)>/u0) in (0, T0) XR N, T0-----min[T~ I),T~ 2)} (see, 
for example, [51, 55, 68, 84, 88]). 

3) The function VtU+I([, x) is continuous in x in l~ N for each fixed 16(0, To); see [50, 55, 
82, 90, 110]. 
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4) The solution u=u(t,x)~O in the case of a compactly supported initial function u o is 
compactly supported in x for any tE(O, To) (this is established by comparison of u(t, 
x) in the sense of 2) with compactly supported, self-similar solutions constructed, 
for example, in [12]. 

5) In deriving individual results we shall use the fact that a generalized solution in 
(0, T0--T) xR N can be obtained as the limit of a monotonically decreasing sequence of 
classical, strictly positive solutions of the same equation on each of which it is 
uniformly parabolic; see [51, 55, 68, 114] [we note that this implies the validity 
of 2-4)]. 

6) In a number of cases we shall also assume with no loss of generality that everywhere 
in P[u]={(t,x)~(O, To) XR~Iu(t,x):>O} the solution is classical, u~CI,2(P[u]), and fails 
to have the required smoothness only on a surface of degeneracy S[u]=fi[u]\P[u]\{t= 
0, x6R N} [51 ,  55,  68 ] .  

Other natural restrictions will be formulated during the course of the exposition. 

3.1. Conditions for the Occurrence of Unbounded Solutions. A very complete analysis 
of conditions for unboundedness of a solution of problem (i), (2) can be carried out by con- 
structing unbounded lower solutions of Eq. (i). For this we require the following assertion 
where A(v) denotes the operator A(v)=v~--V(v~Vv)--o ~, v=v(t,x)~O and D T denotes the region 
(0, T) X {x6RN[ Ixl<~(t)}, where ~6C([0, T)) is some nonnegative function; QT = (0, T) XR ~ 

Proposition. Let ~:Qr+[O, ~-~)be a solution of the Cauchy problem (i), (2), and sup- 

pose the functions av:Qr-~[0, ~-~), u~ECI'~(Dr)InC(Dr), u~=O in QT \ DT satisfy in D T the in- 
equalities A(u_)~<0, A(~+)>O.. Suppose Vu~+IEC(R ~) for all t@(0, T), and, moreover u_(0, x)~ 
U0 (X) ~ U+ (0, X) in  R tv. Then u_ ~< u ~< ~+ in  ~ ,  T) X R N. 

The f u n c t i o n s  u_ and u+ a r e  c a l l e d ,  r e s p e c t i v e l y ,  lower  and u p p e r  s o l u t i o n s  o f  p r o b l e m  
( 1 ) ,  ( 2 ) .  For  a p r o o f  s e e ,  f o r  example ,  [51 ,  52,  55,  88 ] .  

3 . 1 . 1 .  C o n s t r u c t i o n  o f  Unbounded Lower S o l u t i o n s .  We seek  a lower  s o l u t i o n  o f  p rob l em 
(i), (2) in the self-similar form 

u_(t, x)=(T--t)-'/(~-I)O_(~), ~=lxl/;*(O, (7 )  

where  ~*(t)=(T--t) ~, m----[~--(a+l)]/2(~--l). The i n e q u a l i t y  A (u_ )~0  in  D T i s  t h e n  e q u i v a l e n t  
to the ordinary differential inequality 

I N - - 1  q ' t ' l U _  ~ (~ 0_0_) m0_~ -- p-----T 0- + 0~ > 0. ( 8 ) 

Setting O-(~)-----Atl--~2/a 2W~ where A, a are positive constants [we note that V~0~+I~C(R N) ], we 
reduce (8) to the following form: 

m--nA--[-A~-IA L'~i+~>0, A=(1--~2/a:)+fi~,  1 l, (9 )  

where 

m 4A ~ . ~ - - (a+ l )  I [1-L2Ae (N  ' 2Q -~-;~-~q ( ~ - o ~ '  n = 7 [  ' - -~ -  -t-~]j.  ( lO) 

C o n d i t i o n s  f o r  t h e  v a l i d i t y  o f  (9 )  and t h u s  t h e  v a l i d i t y  o f  t h e  f o l l o w i n g  a s s e r t i o n  [19] can 
be derived without difficulty. 

THEOREM I. Suppose in problem (i), (2) u0(x) is such that 

~(x)>u_(O,x)  T-~/(~-O0 (!x!) ~-- _~T m 7, x@R N, (11)  

where  O-(~)--A(1--~2/a~)~ ~, and T, a ,  A a r e  p o s i t i v e  c o n s t a n t s  t h e  l a s t  two o f  which  a r e  con-  
n e c t e d  by the inequalities 

n~ ~0, A~-I >(~__~)(~/~)-[~+a-ll/~. (12) 

Then a s o l u t i o n  o f  p rob lem ( 1 ) ,  (2 )  e x i s t s  f o r  a f i n i t e  t im e  T0=T0(u0)~T.  

It is easy to see that the system (12) is solvable for a, A for any values o > 0 and 
> I. An elementary analysis of the lower solution (7) shows that for ~0(I,~-I) any solu- 

tion of problem (i), (2) for u 0 ~ 0 is unbounded. A stronger result will be proved below. 
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3.1.2. Absence of Nontrivial Global Solutions for i < ~ < o + i + 2/N. THEOREM 2. 

Let ~(I, o+I+2/N), u0~0. Then the solution of the Cauchy problem is unbounded. 

The proof of the theorem is based on comparing u(t, x) with a known self-similar solu- 
tion of the equation without a source 

v t = V ( v ~ V v ) ,  t > 0 ,  xGR N. (13) 

It has the following form (see [5, 43, 44]): 

VA (t, X) = (T~ + t)-m(2+N~ f (~), n = l x I ( r~-~  t) -~I(2+N~ (14) 
/ (~) = B  (~_~2)$o; B = [0/2 (2+  Na)l~/*. 

Here T I and ~0 are arbitrary positive constants. 

Suppose without loss of generality u0(x) > 0 in some neighborhood of the point x = 0. 
We fix an arbitrary T I > 0 and choose N0 > 0 in (14) so small that Uo(X)~vA(O,x ) in R x. Then 
obviously u(t,x)~vA(t,x) in RN for all admissible t > 0. We shall show that for ~ < o + i + 
2/N there exists t1~0, such that V(tl, x) satisfies inequality (Ii) [v~(tbx)~u_(O,x ) in R x] 
for some T > 0 and hence because of the estimate u(l~,x)~vA(tbx ) a solution of the Cauchy 
problem exists for a time no greater than tl + T. 

The inequality vA(ll, X)>~u_(O,x) in R x is equivalent to the following: 

(T~ + tO -~/(2+~) B ~  ~ > A T-~/(~-~>, ( 15 ) 
~o (T~--~ t~) ~/(2+x~) > TI~-(~+~)I/2(~-~) a. 

Suppose in the first of them equality holds; it then remains to verify that the second is 
satisfied for large T > 0. It can be reduced to the form 

T~(~=~ ) [~-(~+1+ ~a_l  ~1 (15') 

and is valid for all sufficiently large T if ~ < o + i + 2/N which completes the proof. 

We note that conditions (15), (15') make it possible to analyze also the "critical" case 
= o + I + 2/N, but the result obtained at the qualitative level [40, 41] regarding the 

absence of global solutions for $ = o + I + 2/~ cannot be proved in this manner. For the 
case o = 0 Theorem 2 has been known for a relatively long time (see [63, 97]); an analysis 
of the critical value ~ = I + 2/N is carried out in [85, 102, iii]. Of course the technique 
of investigating a semilinear equation using the possibility of inverting the linear operator 
(8/8t -- A) is not applicable in the quasilinear case. 

3.2. Global Solutions for ~ > o + i + 2/N. Optimality of Theorem 2 is established 
below. 

Conditions for global solvability of the problem will be obtained by means of the con- 
struction of upper solutions u+ of the following form: 

u+ (t, x ) = ( T  + t)-~/(~-~) O+ (~), ~=I x l/(r + t)~, 

O+(~)=A(1--~2/ai/] ~, T > 0 ,  A > 0 ,  a > 0 .  

The i n e q u a l i t y  A (~+)>0 [we no te  t h a t  ,Ttt+~+lCC (R At)] i s  e q u i v a l e n t  to  

m , - [ - n , h +  A~-~A ~ <0,  A=(1--~2/ai).6(O,l); 

(16) 

(17) 

4A a [~--(a~-l) ' [ 2A~ ( @)] 
= ' - -  ~ 1 - - - - Z ~  N-k m .  ~ ( ~ - - 1 ) , , ~  ' n * - - Z -  . " 

For the validity of (17), for example, it suffices that m,<0, m,@n,+A~-1-.<O, if 

4 A ~ ~--(g+l) A~-I<  2N A ~ 1 (18) 
0 2 a 2 ~ <  ( ~ - - 1 ) ~  ' ~ a ~ 6 - - I "  

I t  i s  not  hard to  ob ta in  a c o n d i t i o n  fo r  s o l v a b i l i t y  of  (18) .  From the  second i n e q u a l i t y  we 
obtain the necessity of the restriction 2NA~ 2 > I/(~ - i) which together with the first 
gives 
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Therefore, (18) has a solution if 

2 4 A c~ ~iO--(~-f- 1) 
No'(~--l)  <~ c~ ~ -  a ~ ([~--I)o' 

N~(p--l) -- (~----L-U$ 

or, equivalently, [~--(a+I-/2/N)]/o!O--I)>O, i.e., B > o + i + 2/N. We have thus proved the 

following theorem [19]. 

THEORF~ 3. Suppose ~ > o + 1 + 2/N and for some T > 0 

u 0 ( x ) ~ u + ( 0 ,  x)~T-11(~-l)O+(lxl/T~), x~R N, (19)  

where  0 . (~) - -A(1- -~Z/aZ)~  ~ and  t h e  c o n s t a n t s  A, a > 0 s a t i s f y  ( 1 8 ) .  Then t h e  Cauchy p r o b l e m  
( 1 ) ,  (2 )  h a s  a g l o b a l  ( b o u n d e d )  s o l u t i o n ,  and 

u(t ,  x ) ~ ( T  +t)-~I(~-I)O+ (IxI / (T + t )~  ) ~ R ~ X R  N. ( 1 9 ' )  

Summarizing the results formulated in Theorems 1 and 3, we arrive at the following as- 
sertion: for B > o + 1 + 2/N for all "large" initial functions problem (i), (2) is not glob- 
ally solvable, while for sufficiently "small" u 0 there exists a global solution. 

Remark. It is hard to show that global solutions for ~ > o + 1 + 2/N are not necessarily 
finite as in (19). To construct a "nonfinite" set of stability it suffices to take for 0+ 
in the upper solution (16), for example, the function 0+(~)=A(a2+~2)-lJ(~-l~>0, and to choose 
the magnitudes of the constants A > 0 and a > 0 so that A(u+)~0 in R+~R N 

3.3. Three Types of Self-Similar Regimes of Combustion with Peaking. It is convenient 
to begin the investigation of concrete properties of solutions of the rather complex non- 
linear problem (I), (2) from an analysis of special self-similar solutions which were in- 
vestigated in a preliminary way in Sec. i. Although these special solutions are realized 
for a certain special choice of u0(x), analysis of their very simple space-time structure 
nevertheless makes it possible to basically judge the character of the course of the combus- 
tion process with peaking in the general case. The passage from special solutions to in- 
vestigation of solutions of very general form is realized on the basis of special comparison 
theorems formulated in Subsec. 4. A detailed qualitative and numerical investigation of 
various regimes of combustion with peaking in the present problem was carried out in [40, 45, 
59, 74]. The first investigations of complex self-similar thermal structures and their stabil- 
ities were carried out in [40, 41, 59, 73, 74] (see Sec. i). 

The investigation of self-similar solutions carried out below uses individual results 
of [i, 2, i01] and is based on some of the approaches developed there. 

3.3.1. Formulation of Self-Similar Problems. As shown in Sec. i, for any* o > 0 and 
$ > 1Eq. (i) has an unbounded self-similar solution 

1 
x . _ ~ - - ( ~ + 1 )  

uA(t, x ) = ( T o - - t )  ~--aOA(~), ~= (To--t) m ' " ~ -  2(~--1) ' (20 )  

where T O > 0 is the time of existence of the solution. The function 0~(~)~0 satisfies in R ~ 
the following elliptic equation which is obtained after substitution of the expression (20) 
into (I): 

v (o~ v o , )  - m V0A~ - -  ~ 0,  + 0~ = 0, ~GR N. ( 2 1 ) 

Equation (21) always has the trivial solution e A m 0 and also the spatially homogeneous solu- 
tion0A(~)~0n=(~--1)-Im-IL We shall be interested in nontrivial solutions O A # 0 such that 
0A($) § 0 as I~[ § +~. Radially nonsymmetric solutions of the elliptic equation (21) have 
so far been studied only qualitatively and numerically [60] (we note that (21) apparently 
admits an entire spectrum of solutions with extremely varied spatial structure; examples are 
given in [60]). 

We henceforth restrict our analysis to symmetric solutions: 

OA =0A (~), ~ = l x I l ( T o - - t ) m > O .  ( 2 0 ' )  

Then (21) becomes the ordinary differential equation 

~The case o = 0 is consigered in Sec. 4. 
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: (U-,o~ok)'--mo~-~_-~oA+o~=o, ~>0, (22) ~N--I 

0A (0) ----- 0, 0A ( -~ ~ ) = 0 (0A (0) > 0). ( 23 ) 

Equation (22) degenera tes  a t  O A = 0, and hence problem (22) ,  (23) admits ,  g e n e r a l l y  
speaking,  a g e n e r a l i z e d  s o l u t i o n  not  having the  necessa ry  smoothness a t  po in t s  of degeneracy.  
However, in all cases the solution O A must be such that O~0~ is continuous for all ~0 (and, 
of course, OAEC 2 wherever 0 A > 0). In particular, this means that 8~OA = 0, where O A = 0. 

3.3.2. Localization of Combustion in an S-Regime, ~ = o + i. For ~ = o + 1Eq. (22) 
takes the especially simple form 

~Ns (~N_IOAOA)~,,_ y 0A..{_ O ~ + : l  -----0, ~>0. (24) 

In the one-dimensional case (N = i) it can be easily integrated, and one of its solutions 
has the form (we recall that ~ ~ Ixl for ~ = o + I) 

([2(a+1) " 2/~lxlXqlla 
~ 'X' ~La(-D--i-~ c~ ~--Z~a)] ' l x l < L j 2 '  (25) 

oA=v,~ i=10 , t x ! > Z ~ / 2  ' 

where Ls-~2~(a+l):/~/a. This solution was first constructed in [45, 74]. Its distinguishing 
feature is that the corresponding self-similar generalized solution (20) 

~A (t, X)=(To-- t ) - l leOs(X ) (UA~---0 in[0, To)~ {] X ,>  L~}) (26) 

exhibits the effect of localization of the unbounded solution in the region Qz=oL={[X] <Ls/2}. 
In spite of the unbounded growth of the solution as t ~ T~ at all points of the region of 
localization, thermal perturbations do not penetrate into the surround cold space. The width 
of the region of localization L s = mes~L is called the fundamental length. 

It will be shown below that L s is a fundamental characteristic of the nonlinear medium 
in question. For N = 1Eq. (24) admits a countable set of distinct solutions formed from an 
arbitrary number of elementary solutions (26) [by periodic continuation of the function (26) 
to both sides with period L s] which because of the condition of thermal isolation generate 
in accordance with (20) combustion independent of one another at the fundamental lengths 
L s. The equation ut= (u~+1)xx+U~: also admits another class of unbounded, localized solutions 
of the following form: u(l, x)=~(t)[l--(A+cos(~x))/g(t)]+:/% where I = o/(o + i), A is a con- 
stant. Substitution of this expression into the equation gives a system of ordinary dif- 
ferential equations for the nonnegative functions W(t), g(t) (the idea of constructing such 
"noninvariant" solutions for a parabolic equation with a sink u ~ in place of a source was 
advanced in [88]). 

The multidimensional case N > 1 is considered in detail below. Self-similar solutions 
of the S-regime exist in spaces of arbitrary dimension, but here, in contrast to the one- 
dimensional case, there are no nonmonotone solutions. 

THEOREM 4. For any N > i, ~ = o + 1 there exists a compactly supported solution 8A~0 
of problem (22), (23). The function @A decreases monotonically wherever it is positive. 
The problem has no nonmonotone solutions. 

We note first of all that the fact that the solution of problem (22), (23) has compact 
support follows from a local analysis of the equation in the region of sufficiently small 
8 A > 0. This gives the following asymptotics of a compactly supported solution: 

0A (~)~ { ~  (~0--~)2} :I~(I +~ (~)), ~< ~0, (27 ) 

where ~0=messupp 0A <@~ (OA=0 for ~>~0) and O(~) § 0 as $ ~ $o. 

To prove existence it is convenient to consider, together with (22), (23), the family 
of Cauchy problems 

~_~ (~ - :  101~0')'-• 01~-0=0, ~>0, (28) 

0 (0)=~ >0, 0' (0)=0 (29) 
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and to choose the quantity ~ > 0 so that 0-~-0(~; ~)~0 satisfies the condition 0(~-~; ~)=0; 
0(~; U) will then obviously be the desired function 0A(~). 

The proof of Theorem 4 is based on the following lemmas. 

LEMMA I. Suppose 

Then 9($; ~) > 0 for ~>0. 
~)I < I~ 

0 
~ ~ [ 2(a+l),]Ua 

< - ~ , ~ * = L ~ ( T - 4 ~  ] �9 (30)  

Moreover, !8(~;k~)[ is uniformly bounded for ~>~0 for any ~>0~z:i0(~; 

Proof. Multiplying (28) by 1Of0' and integrating the equality obtained over (0, ~), we 
arrive at the identity 

I (] 0 (~) + iN I) 
0 

where ~(~) denotes the function 

!~l~+ ~ !!~['~+~ 

From (31) it follows immediately that r V))<r for all $ > 0. It is not hard to see 
that this ensures the validity of the assertions of the lemma. 

LEMM& 2. There exists ~ = ~* > O H such that 0($; ~*) vanishes. 

Proof. We suppose otherwise: suppose 0($; ~) > 0 in R$ for any ~ > 8 H . Setting ~- 

]Olo0, ~(~=bo+~, we obtain the following integral equation for the new function ~: 

, [ ~ ] 
an, 

0 

Setting now ~2~ (~) =~ (~)/~ (0) ~ (~)/~Oq-1, we have 

~)'p,(~)=((~'~l) ~l--Arf~]Are'l['-~-~ - ]*11[ 
0 

o+1~_~g dN, $>0. (32) 

It follows from Lemma i that I~(~)[~<I in R% if U > O H , while from (32) we find that I~2~($)I ~-< 
const on any compact set [0, $m]" From the Arzela-Ascoli compactness theorem it follows 
that for some sequence ~-+~-co, ~k(~)-+w(~)>~0 uniformly on each compact set [0, gin]- An 
equation for w is obtained from an integral equation equivalent to (32) by passing to the 
limit , = ~k § +~ and has the form 

w'(~)=--(~q--1)~'-A'~nN-~w(q)d~, ~>0; w(0)=l, (33) 
0 

wi th  ~v(~)>/0. Because of (33) w' < 0, and hence  w > 0 in  R $ .  Now (33) i s  e q u i v a l e n t  to  t he  
following problem: 

~ " ~ - ~ - ~ w l ~ - ( ~ ' n - 1 ) w ~ - 0 ,  ~>0; ~ ' ( 0 ) : 0 ,  w ( 0 ) = l ,  (34) 

whose solution vanishes [at the point ~I=Z~)/((YAc-1) ll2, where z > 0 is the smallest root of 
the Bessel function J(N-2)/2]. 

To complete the proof we need the assertion regarding conditions for continuous depen- 
dence of the solution of problem (28), (29) on ~ > 0. We note that in the general case con- 
tinuous dependence, generally speaking, is lacking, since Eq. (28) is degenerate. 

LEMMA 3. Suppose the function 0(~; VI), ~I>0 is such that (16100) ' z 0 at those points 
~(0, $~], where 0 = 0. Then (101q0)(~; ~) and ([01~0)I(~; ~) depend continuously on ~ on the com- 
pact set [0, $m] in a neighborhood of the value of the parameter ~ = ~l. 

Regarding the proof, see Lemma 5 in [20] which is closely related in meaning. 

Proof of Theorem 4. We construct the set df={~0>0] for all0<~<~~ ~) > 0 inR+1}. 

Then ,//f::/=.{~~ (Lemma i) and J{ is bounded above (Lemma 2). Therefore, there exists 
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O0=sup3/{>Os. It then follows from Lemma 3 that the function @(~; @0) is the desired func- 
tion @A which satisfies conditions (23) with the asymptotics (27). Monotonicity of @A fol- 
lows from the identity (31). 

3.3.3. The Lemma on Stationary Solutions. To investigate the solvability of problem 
(22), (23) for $ ~ o + 1 we need some properties of radially symmetric solutions of the sta- 
tionary equation 

v ( U ~ V U ) - k U ~ = O ,  U = U ( x ) > O .  (35) 

Setting U ~ = V and transforming the independent variable x + x(o + i) I/~, we obtain for the 
function V = VX(Ix I ) the following problem: 

I @ N - I V ' , , ,  V ~ n r = ] x l > O ,  (36) 'rN_l ~ ~l "-7 k ~J~  

Vx (0)=~,, V~ (0)--0, (37) 

where X > 0 is  a cons tan t  ( the  parameter  of the  fami ly  {Vz}), ~=[~/(aq-1)>O. Because of the  
invariance of Eq. (36), for any ~ > 0 we have the identity 

[ ~-I 'I Vz (r) =-- ~,V 1 ~% ~-'F/. ( 38 ) 

LEMMA 4. Suppose ~ > 0. Then 

(a) for ~<(N@2)/(N--2)+ [i.e., 0 < a < +~ for N = 1 or N = 2 and 0 < ~ < (N + 2)/(N - 
2) for N > 2] the solution of problem (36), (37) vanishes at some point r=r0(%)---- 
r0(1)% (~-~)/2 , and V'~(r0)7~O, so that the problem has no solution V~>/O in R~+; 

(b) if c~>(N-{-2)/(N--2)+, then Vl(r) > 0 in R$ and VI + 0 as r + +~. 

For the proof, see, for example, [i0, 107, I01]. At the "critical" value ~ = (N + 2)/ 
(N - 2)+ the solution can be represented in explicit form: 

[ N (N--2) ](N-2)/g, r = l x l > O  (39) 
V;~ (r) ~ ~ N (N--2) + ~4/(N-2)r2 

(this family was considered in [116]). 

Returning to Eq. (35) we find that for 0 < ~ < (o + I)(N + 2)/(N - 2)+ no stationary 
solutions U~-U(Ix[)~O in R$ exist (moreover, there are even no nonsymmetric solutions U = 
U(x) ~ 0; see [98]). On the other hand, for ~(~q-I)(Nq-2)/(N--2)+ all symmetric solutions 
of it are strictly positive [69, i01, 107]. 

The basis of the proof of Lemma 4 is a known integral identi%y [69]. The investigation 
carried out in [69] and for more general quasilinear elliptic equations in [70] shows that 
the "critical" value of the parameter, on passing through which the properties of solutions 
change abruptly, can be found from a condition for imbedding function spaces corresponding 
to various terms of the equation. For example, for Eq. (36) for o~(Nq-2)/(N--2)+ compact- 
ness of the imbedding HoI(BI)~L=+I(BI), BI is violated; B z isthe ball of unit radius in R N [62]. 
In the critical case ~ = (N + 2)/(N - 2)+ Eq. (36) is invariant relative to a certain con- 
formal mapping [46, 48] which in final analysis made it possible to find the family of solu- 
tions (39) [116]. 

Proceeding from these propositions, it is possible to analyze other problems. For ex- 
ample, for the equation 

V ( I v U I ~ v U ) q - U ~ = O ,  (~>0, [3>1 

~--=[N(~q-l)-k(oq-2)]/[N--(~q-2)]~ is "critical," and for this ~ there exists the family of solu- 
tions (see [20]) 

In the case of the equation of fourth order 

--  A2Uq- U ~ = 0 ,  [~>I, 

at the "critical" value ~ = (N + 4)/(N - 4)+ there exists the following family of strictly 
positive solutions I~ ~ [25]: 

U (x) = {a4N ( N  - -  4) (N ~ -  4)} (v-4)~s/(a :_k t x ] :)r 
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3.3.4. Nonlocalized Self-Similar Solutions of the HS-Regime, ~ < o + i. It can be 
established by local analysis that a solution of problem (22), (23) for ~E(I, o+i) can only 
be a compactly supported function with the following asymptotics near a point of the front 

~-----~o----~mes suppOA: 

0A (D -- i (~ + ! - ~) ~ ~0($0- ~) ] ~i~ (I -F c0 (~)), (40) k 2(p- -b  

where o~(g) § 0 a s  ~: § ~ .  

THEOREM 5. For any 1 < ~ < o + 1 and N~I there exists a compactly supported solution 
t 

O A of problem (22), (23) with O A < 0 wherever O A > 0. The problem has nonmonotone solutions. 
For n = 1 a solution @A # 0 is unique. 

The proof of the first part of the theorem is practically no different from the analy- 
sis of the S-regime presented above. Uniqueness of the solution for N = 1 is established in 
Subsec. 3.6 on the basis of an investigation of the original parabolic partial differential 
equation. 

We shall say a few works regarding properties of the self-similar solution (20) for 
~@(I, ~+i). It represents an HS-regime of combustion with peaking, and there is no localiza- 
tion. The front of the thermal wave moves according to the law 

I X,v(t)I=~o (To--t) t~-<~+~ + Qo, t-+To, 

i.e., after finite time the wave encompasses all space, and u A § +~ as t ~ T~ everywhere in 
l~ N 

3.3.5. Localization in a Self-Similar LS-Regime with Peaking, ~ > o + i. The self- 
similar solutions (20) for ~ > o + 1 still more clearly than in the case of an S-regime con- 
vey the property of localization of processes of diffusion of heat and combustion. Here it 
is a question of effective localization, since the self-similar problem (22), (23) for ~ > 
o + 1 has no compactly supported solutions (in contrast to the case ~+i ), and, as local 
analysis shows, any function 0A(g) has the following asymptotics: 

0A(~)=CA~ -~It~-(~+~l(l+~(~)), ~(~)~0, ~-+ + oo, (41) 

where C A = CA(O, ~, Ni is a constant, 

THEOREM 6. Suppose $ > o + I. Then 

(a) if $ < (o + I)(N + 2)/(N - 2)+, then problem (22), (23) has at least one solution 
@A-----0A(~)>0 in l{$, which decreases in a strictly monotonic fashion in $ and has the 
asymptotics (41), whereby 

CA~{ 2N 1) %+I p-(~+l) [l~__(~+i)] [~--(~- ] } > 0 ;  (41') 

(b) for N = 1 problem (22), (23) has no fewer than 

p--1 
f o  = - - [ - -  a] - -  l, a--p_(~+l )>l, 

distinct solutions differing in the number of extremal points for $6[0, +oo) (the 
first is a monotone solution which has only a maximum point at B = 0; if K 0 > 1 the second 
solution has a minimum at $ = 0 and exactly one maximum for ~ > 0, etc.) 

The main part in the proof of Theorem 6 is the method proposed in [40, 73] of describing 
the local behavior of nonmonotone solutions near a homogeneous 0 - O H by "linearization" of 
the equation. Together with (22), (23) we consider the family of Cauchy problem 

1 

~N-~ (~N-' 1 o i % ' ) ' -~zo '~-~- -7~  ~ o + 1 o I ~-%=o,  $>o ,  (42) 

~--(6+ I) (43) o (o) = ~ > o ,  o' (o) = o; m 
2(p--I) 

We set 0------0(~; ~)=0s+gv(~), where g > 0 is a constant which plays the role of a small para- 
meter below. For v(~) we then obtain the problem 

O~t ~ N~'~l (~N--l~Ot)t - -  lf~ 7-Jt~ "Jl- ~O = 8(~)~ (%)), ~ > 0, (44) 
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v(o) =~= (~-0~)/~, v'(o)=o, (45) 

where ~e:C 2 § C is a bounded, quasilinear operator of second order. From (44) it follows 
that because of the continuous dependence of a solution of the equation on the parameter 
in a neighborhood of ~ = 0 on any compact set [0, Sm] the solution v(~) for a particular 
choice of [~I ~ i and I~ - 0HI ~ 1 is close to a solution of the corresponding linear prob- 
lem 

O~I-~_~(~m-Iy')'--my'~+y=O, $ > 0 ,  (46)  

v(o)=v@o, v'(o)=o. 

By the chang~ ~=~a/~(20~/m)~/2 the equation for y reduces to a degenerate hypergeometry equa- 
tionNy'+yt(c--N)--ay=O, y(0)=v, where c=N/2, a=--I/2m=--(~--1)/[~--(o+l)]. Solutions of 
this problem are nonmonotone and have for ~ > 0 exactly K = -I-a] roots (see, for example, 
[7]). Returning to problem (44), (45) and then to the original problem (42), (43) we find 
that for sufficiently small l~0nl any function 0($; p) in the region of its positivity has 
no fewer than 

8--I K0=--I--a]--l>~l for a=9_(a+l ) >I (47) 

extremal points for $ > 0. This fact is of principle significance. We note that for o = 0 
from (47) we have K 0 - 0 which, as will be explained below, bears witness to the absence of 
nontrivial self-similar solutions O A for o = 0 [and I<~(N+2)/(N--2)+]. 

We shall briefly describe the main features of the proof of proposition (a) of Theorem 
6. We set ~={~>.0n[0(~;~)>0 on (0, ~p) and has on (0, ~) at least one minimum point}. 
From the foregoing analysis A~ If W is bounded above, then the function 0(~; 00), 00=supR 
will obviously be the desired solution of problem (22), (23) with asymptotics (41). 

We shall thus prove that supW<+ oo. In problem (42), (43) we set ~(~)=~-(a+')~(~/ 
~m~i~-1)), where ~=]01~0. For ~p we then obtain the following integral equation: 

0 

where  ~ ( 0 ) = 1 ,  ~'~(0)=0 and O ( ~ )  i s  an i n t e g r a l  o p e r a t o r  bounded in  C, 

1 ~ I 

0 

which is not contractive in a neighborhood of ~ - 0. In contrast to the case ~oq-I (see 
Subsec. 3.2) for $ > o + 1 it is a priori not possible to say anything regarding the bounded- 
ness of I~[ and I~I on a compact set. Therefore, the continuous dependence of ~p($) on 
in a neighborhood of B = +~ will be used. For ~ = +~ (48) formally becomes the equation 

0 

o r ,  e q u i v a l e n t l y ,  ~ -N (~U--~*L)' + (~-{- 1) l ~P~ l ~/(~+~)-~*~ = 0 ,  ~ >0 ;  , ~  (0) = 1, *~o (0) = 0 .  T h e r e f o r e ,  as  
f o l l o w s  from Lemma 4 in  Subsec .  3 .3 ,  f o r  [~ < (o + 1)(N + 2 ) / ( N  - 2)+ t h e  f u n c t i o n  ,~(~)  van-  
i s h e s  at some point ~ = ~, [,~ > 0 on (0, G'~)], and *'~(~,)<0. We consider the compact set 
K~[O, $.--~I. e>O. Then ~($)~(~.--e)>O on K~, and hence on K~ there is continuous de- 

pendence of ~p and ~B on B in a neighborhood of p = +~, i.e., in particular, ~(~.--e)-+ 

~(~.--~), ~'~(~j. -- e) -+ ~' (~.--e)as ~ § +=. Now O(~)~-O(II~II~/(~+~))-+O as II~IIc-+O- Therefore, 
it is possible to use Schauder's theorem to extend ~(~) from the point $=$,--a to a neigh- 
borhood of g = $,; moreover, due to the "smallness" of O(~,) the derivative ~(~) on {]$-- 
$.[ <e} will change inappreciably, and as a result @~($) vanishes for all sufficiently large 

> 0. This completes the proof of proposition (i). The estimate (41) will be proved in 
Subsec. 3.8. 

The question of the existence of nontrivial solutions of problem (22), (23) for ~ 
(~+I)(N+2)/(N--2)+ remains open. 
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Proposition (b) of Theorem 6 is proved in detail in [i, 2]. A discrete spectrum of 
solutions of problem (22), (23) can be constructed in this manner for particular values of 
B, o also in the multidimensional case N > i. The idea of linearization of the equation 
relative to the homogeneous solution 0 - O H makes it possible to investigate the structure 
of nonsymmetric solutions of the elliptic equation (21) for ~ > o + i. So far interesting 
qualitative and numerical results have been obtained in this direction [60]. 

In conclusion we present an important result below which follows from a simple analysis 
of Eq. (22). 

THEOREM 7. Suppose ~+I<[~(~+I)N/(N--2)+. Then any self-similar solution (20) is 
critical, that is, everywhere in (0, To) XR Iv 

0u A 1 ~_11 ] Ot-~(To--t) ~ - l - l L r n 0 A [ - r  - 0A >0 (4~) 

and hence 
2 

UA(t, X ) < U A ( T o ,  x)~CA]X I ~--(0+1)" xE~N~{0}. ( 5 0 )  

The estimate (50) graphically indicates the effective localization of combustion in an 
LS-regime- the temperature grows without bound as t + T~ only at the one point x = 0; in 
R~\{0} it is bounded above uniformly with respect to t~(0, To) by the limit distribution u A • 
(To, x). Strict localization in the Cauchy problem (i), (2) for $ > o + 1 with compactly 
supported u0(x), N = 1 will be proved in Subsec. 3.5. 

We shall now proceed to an investigation of general properties of rather arbitrary un- 
bounded solutions of the Cauchy problem. Here an important role is played by a special ap- 
proach to comparing different unbounded solutions of Eq. (i) having the same time of peaking. 

3.4. Main Comparison Theorem. Application of the traditional apparatus of the theory 
of parabolic equations - comparison theorems based on the boundary conditions - is difficult 
for investigation of the asymptotic properties of unbounded solutions. The situation is 
that majorizing one solution of the Cauchy problem by another, u~v, as a rule, means that 
the solutions u ~ v have different times of peaking; therefore, beginning from some time, 
one of them ceases to exist, and the comparison loses meaning. In the theorem formulated 
below solutions with the same times of existence are compared, while the number of spatial 
intersections of the profiles of the solutions is taken as the main "comparison criterion." 
As will be shown below, this approach makes it possible to describe the space -time structure 
of unbounded solutions of general type. 

Below u ~ 0  and o ~ 0  denote different solutions of the one-dimensional equation 

u s =  (u~u~)x+u ~. (1')  
We s a y  t h a t  two s o l u t i o n s  u a n d  v f o r  f i x e d  t-~to~O " i n t e r s e c t "  w i t h  r e s p e c t  t o  x on a 

(bounded) interval l=[a, b], a~b, if w(to, x)~-u(to, x)--v(to, x)=0 on I, and w assumes values of 
different signs in any ~-neighborhood of it {a--e<x<b+e},e>O. 

This definition is specially oriented toward investigation of generalized solutions non- 
analytic in x. If u and v, u ~ v, are analytic in x (which is natural for solutions of 
semilinear parabolic equations with analytic coefficients; see [92]), then obviously any 
intersection for t = t o > 0 occurs at a point, and they are isolated with respect to x. 

We introduce the following notation: N(t 0) is the number of intersections of u(t0, x) 
or v(t 0, x) or, equivalently, the number of changes of sign of the difference w(t0, x) in 
the x-region considered. 

THEOREM 8 (the basic comparison theorem). Suppose u(t,x)~ 0 and o(t, x)~0 are two dis- 
tinct, unbounded solutions of Eq. (i') having the same time of peaking t = T o < +~. Suppose 
that N(0) < +~. The following assertions hold: 

(!) Suppose u and v are defined in a region ~r~-(O, ~X(~l(t), ~2(t)), T<T0, which is not 
necessarily bounded, where Di are either continuous functions or separately or together are 
equal to !~. Then N(T) in [~l(T), q2(T)] does not exceed the number of changes of sign of 
the difference w = u - v on the parabolic boundary 3m T. 

(II) Suppose u, v are solutions of the Cauchy problem for (i') with v0(x) ~ v(0, x) > 0 
in R I, and u0(x) e u(0, x) is compactly supported. Then N(t)~2 ,and N(t) is nonincreasing in 
tc(O, To). 
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Suppose u o and v 0 are compactly supported functions in R I with connected supports. Then 

(III) {t6[0, T 0 ) I u ( t , x ) > ~ ( t , ~ )  for allx~supp~(t,x)}=~; 

( IV) i f  supp u0nsupp v o = ~ ,  t h e n  N ( t ) < l  f o r  a l l  tG(0, To). 

For uniformly parabolic equations assertion (I) is a natural consequence of the strong 
maximum principle, and in a somewhat different formulation it has been known for a relatively 
long time [126] (see also [117, 121]). In the proof the fact is used that the difference 
w = u - v satisfies in mT a "linear" parabolic equation. Its extension to the case of un- 
bounded I~i[ =@~, i= I or 2, in the case where the behavior of u and v at infinitely distant 
points in x causes no special difficulties; see, for example, [26, 27]. In the case of a 
degenerate equation (I') in the proof the possibility is used of approximation (with repre- 
sentation of the number of intersections on 8m T) of generalized solutions u and v by sequences 
of classical, positive solutions on each of which the equation is uniformly parabolic [15-17]. 

The condition of equality of the times of peaking of the solutions u and v is used in 
an essential manner in (II) and (III). It is not difficult to verify that violation of the con- 
clusions of each of these assertions, because of sufficient regularity of the solutions, leads 
to contradiction of the condition of coincidence of the times of existence of u and v. Com- 
parison theorems of this type were broadly used in the works [15-17, 26-28] where additional 
facts can be found. 

To conclude this subsection we note that the concept of intersection is defined in a 
natural manner for symmetric solutions of Eq. (I) depending on r = Ix I . We shall not spe- 
cially formulate the corresponding comparison theorem (which is altogether analogous to the 
foregoing), and below in analyzing unbounded solutions u = u(t, Ixl) for N > 1 we shall appeal 
to the corresponding one-dimensional assertions. 

3.5. Localization of Unbounded Solutions for ~+I. We restrict ourselves below to 
the analysis of the one-dimensional Cauchy problem 

u,-~-(u"u~)~+u ~, t>D, x~RI; ~>0,  ~>1; (51)  

u(O, X)=Uo(X)~O , X~R1; sup u0<+oo, (52) 

where  u 0 r 0 i s  a c o m p a c t l y  s u p p o r t e d  f u n c t i o n  w i t h  c o n n e c t e d  s u p p o r t ,  m(0) =supp Uo---{x6 
Rrluo(x)>O}=(h_(O), h + ( 0 ) ) ~ R  1, and u~ +1 i s  u n i f o r m l y  L i p s c h i t z  c o n t i n u o u s  in  R ~. Then t h e  
s u p p o r t  o f  an unbounded ,  g e n e r a l i z e d  s o l u t i o n  u ( t ,  x)  f o r  each  t6(0, To) i s  a l s o  bounded and 
c o n n e c t e d :  o)(t) ~supp  u(t, x)=(h_(t), B + ( t ) ) ~ R  I. Moreove r ,  b e c a u s e  o f  we l l -known  p r o p e r t i e s  o f  
s o l u t i o n s  o f  an e q u a t i o n  w i t h  a s o u r c e  o(t)~_~(t+,) f o r  a l l  t,t+,~[O, To), , > 0 ,  so t h a t  mes x 
o(t)~h+(t)--h_(l) does  n o t  d e c r e a s e  w i t h  t i m e  L0, and h •  e C( [0 ,  T o ) ) .  

At the present time differential and other local properties of the functions hi(t) have 
been studied in detail (see [83, 109, 123]; interesting results have been obtained for the 
multidimensional equation ut=Au ~+I, ~>0 [90, 94, 123]). We shall primarily be interested 
in the behavior of hi(t) for t-+T0-(u0)<+~. The conditions Jh• are equivalent 
to localization (in the strict sense) of the unbounded solution. As will be shown below, 
this occurs in S- (~ = o + i) and LS- ($ > o + i) regimes. For 1 < $ < o + i (an HS-regime; 
see Subsec. 3.6) h• + • as t § T~, and there is no localization. 

The main result of this subsection is formulated in the following general assertions 
[151. 

THEOREM 9. L e t  ~ = o + 1. Then an unbounded S o l u t i o n  o f  t h e  Cauchy p rob lem ( 5 1 ) ,  (52)  
is localized, and 

h+(T~)4h.(O)@Ls, h_(T~)>h_(0)--L., (53) 

where L s = 2~(o + 1)I/2/o is the fundamental length of the S-regime, and, in particular, 
rues ~ (To:) ~<~mes o(0)  +2LB. 

The estimates (53) show that the quantity Ls is actually a fundamental characteristic 
(not depending on the initial perturbation)of the nonlinear medium. In correspondence with 
(53) each front of the thermal structure independent of the form of the initial perturbation 
u 0 and the time of existence T O = T0(u 0) < 4-oo can travel a distance no greater than the fun- 
damental length L S. 

THEOREM i0. Let $ > o + 1 and let T O < += be the time of existence of an unbounded 
solution (51), (52). Then it is localized, and 
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h+(V~)~&(0)+~*~"'~ .o,  h_(TT)>h_ (0)--FTg, (54) 

where m-----[~--(~+l)]/2(~--l)and ~*=~*(~,~)>0 is a constant. 

We emphasize that here, in contrast to the S-regime, the distance which a front of the 

solution can travel depends through the quantity T O = T0(u 0) on the initial function u 0. 
Upper bounds for T O = T0(u 0) are obtained in Subsec. l; a lower bound can easily be obtained 
by comparison with a spatially homogeneous solution. 

Other theorems which specify for a special form of u0(x) the depth of penetration of 
the thermal wave will be proved below. We mention that many results carry over to the multi- 
dimensional case without principle changes. 

3.5.1. Proof of Theorem 9. Investigation of the effect of localization for ~ = o + 1 
is carried out by comparison with the localized self-similar solution UA= (To--t)-I/~ where 
(see part 3..3.2) 

r ~ / n x  

--tO, Ixl>L~/2, 

so that messuppu A = L s. 

We shall prove the first estimate of (53); the second is established in a similar way. 
For convenience we denote by us(t, x; Xo, To) the function uA= (To--t)-I/~ localized in the 
region ]x--x0] <Ls/2 and having the same time of peaking t = T o as u(t, x). We set xo=h+(O)+ 
L~/2, xl:xo+Ld2. 

It is then obvious that u0(x) and Us(0, x; x 0, T o ) have only one intersection at the 
point x = h+(0), so that N(0) = i, and hence N(t) ~ i for all t@(0, To). We shall show that 
h+(t)~h+(O) +is. We suppose this is not so and for some t=tL6(O, To), h+(tl)>h+(O)-~is. But 
then u(tl, xl)>us(tl, xl; x0, T0)=0 and u(tl, h+(0))>us(tl, h+(0); x0, T0)=0. Therefore, either N(tl)~ 
2, which contradicts assertion (IV) in the comparison theorem or N(t I) = 0 and supp Us(t I, x; 
x0, T0)csuppu(tl, x),which contradicts assertion (III) (i.e., the assumption of the equality 
of the times of peaking of the solutions u and Us). This completes the proof. 

Comparison with the self-similar solution u A for ~ = o + 1 makes it possible to establish 
other finer properties of S-regimes with peaking. 

3.5.2. Condition of Invariance of the Support of an Unbounded Solution for ~ = o + i. 
The support of the self-similar solution (26), (25) does not change during all the time of 
its existence tG(O, To). It will be shown below that this property is possessed by a broad set 
of order (non-self-similar) solutions which are localized in the region suppu 0 where they 
are initially prescribed. In the formulation of the theorem Us(t, x; x 0, T 0) denotes the 
solution introduced in part 3.5.1. 

THEOREM ii. Let ~=~+I, mes supp uo>Ls and suppose T O < +~ is the time of existence of 
a solution of problem (51), (52). Suppose there exists l 0 > 0 such that us(O, x; x0, Zo)<~uo(x) 
in R I, where xo=h+(O)--L~/2, and the functions Uo(X), us(O, x; xo, ~) intersect only once for all 
0 < I < l 0. Then h+(t) = h+(0) for any tE(0, T0). 

It is curious that for the immobility of a point of the right front during the entire 
time of peaking a "nonlocal" condition is needed on the character of the behavior of u 0 only 
in an Ls-neighborhood of it [h+(0) - Ls, h+(0)]; the behavior of u0(x) in the rest of space, 
i.e., for all x~h+(D)--Ls, isnot reflected in the mobility of the front. This underscores the 
universality of a characteristic nonlinear medium such as the fundamental length L s of 
an S-regime which now emerges as a type of radius of the effective influence of thermal per- 
turbations. 

Combining Theorem ii with an analogous assertion regarding the immobility of the left 
front, h_(t) ~ h_(0), we Obtain the set which unbounded solutions with unchanged support gen- 
erate [15]. 

Proof of Theorem II. It is obvious that To~To(uo)~lo. If T O = k 0, the the assumption 
regarding the motion of the right front because of assertion (III) of Theorem 8 leads to a 
contradiction. Thus, T o < ~0. If then N(t) is the number of intersections of u(t, x) and 
us(t, x;xo, To), Xo~-h+(O)--Ls/2, then under the conditions of the theorem N(O) = I, and hence 
N(t)~l. The arguments used in completing the proof of Theorem 9 are now repeated. 
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3.5.3. The Condition of Localization at the Fundamental Length Ls. Below conditions 
are obtained under which an unbounded solution during the time of peaking is localized in 
the region {IxI<Ls/2}, i.e., both fronts of the solution during the time of its existence 
travel a total distance not exceeding L s - mes suppu 0 < L s. It is hereby assumed that 

U0(--X)=R0(X ) in RI; ~0(x) does not increase for X>0. (56) 

Under these conditions u(i, --x)-------u(t,x), Ux(t,X)~<O for X6(0, k+(~)) and supu(t, x)~u(t,O). 
X 

THEOREM 12. Suppose ~=~+I, supp~c{Ix[<Ls/2 } and (56) is satisfied. Suppose, more- 
over, that there exists %0 > 0 such that Us (0, x; O, 10)>tt0(x) in RI, and u0(x) and u0(0, x; 0, 
X) have exactly two intersections for all X > X0. Then Ik• for any rE(0, T0(u0)). 

The theorem is proved in analogy to the previous theorem. Under the assumptions made 
To < X0, and hence Us(0 , x; 0, T o ) and u0(x) have exactly two intersections: N(0) = 2, i.e., 
N(t)~.<2. But then either N(t) E 2 (which proves the theorem) or N(t I) = 0 for some ti6(O, To), 
which contradicts the equality of the times of peaking of the two distinct solutions. 

3.5.4. Proof of Theorem I0 (Localization in an LS-Regime, ~ > o + i). In Subsec. 
3.3.5 it is shown that for ~ > a + 1Eq. (51) has no self-similar solution capable of con- 
veying the property of strict localization as in an S-regime. However, it is possible to 
construct a lower self-similar solution with a localized point of the front: 

U~ (t, x)----(ro--t)-l/(~ -1) O- (~), ~=x / ( ro - - t )  m, (57)  

(o~ol)' - moi~-  ~ o_ + o~ = o, (58) 

where tit-----[~--(6-~- 1)]/2(~-- 1) > 0 .  

LEMMA 5. Le t  $ > o + 1. 
such  t h a t  

Then there exists a solution 8_($) > 0 on (-~*, 0) of Eq. (58) 

O- (0)=0, (0~01)(0)=0, (59)  

and 0_(-$*) = 0. 

Local solvability of problem (58), (59) for $ < 0 is established by reducing it to an 
equivalent integral equation and analyzing the latter with the help of Schauder's theorem. 
The fact that 8_($) vanishes at some point $ = -$* < 0 follows from the identity obtained 
after multiplication of (58) by (0f01)($) and integrating over the admissible interval ($, 0); 
see [15]. 

We now set 8_($) = 0 for ~ > 0. Then 8_($) is a generalized solution of Eq. (58) on 
(-$*, +~), and hence UA(t, x) in (57) is a generalized solution of Eq. (51) in the region 
(0, To)X (x,(t),+~) with a mobile left boundary x~(t)------~*(To--t)m-+O -, t-+T$, on which uA(t, 
x,(t)) = 0. Therefore, (57) exhibits localization in the strict sense: the point of the 
right front xr is fixed in spite of the unbounded growth of UA in a left neighborhood 
of it. If we additionally set 8_($) = 0 for $ < -$*, then UA is obviously an unbounded lower 
solution of Eq. (51) in (0, T0)XR I [we note that (8~81)(--~*)> 0]. 

We denote by ULS(t , x; x0, T o ) the function uA(t, x - x0), and we set x0----h+~0)+~*T~, 
T o = T0(u 0) - the time of peaking of u(t, x). In the region(0, T0)X{x0--~*(T0--t)m<x<3c~}- 
intersections of u(t, x) and uis can occur only due to their occurrence on the lateral bound- 
ary (O, To)X{X=Xo--~*(To--t)m}, since for t = 0 u0(x) and uLS(0, x; x 0, T o ) do not intersect 
in this region. But then by construction m(t)~<] for all rE(0, To), which, as we have seen 
earlier, proves the theorem. 

With the help of the lower solution UA in exactly the same way as in the case of an 
S-regime it is possible to find conditions for the immobility of the front of the solution 
during the entire time of peaking and also other properties (see [15]). 

In conclusion we mention that ~*(~, ~+ I)=Ls, so that Theorem 9 is a special case of 
Theorem I0 for ~ = o + I (when m~-[~--(~+l)]/2(~--l)~=0). 

3.6. Nonlocalized~ Unbounded Solutions of the HS-Regime~ 1 < ~ < o + i. In the next 
assertion with the help of the comparison theorem sharp upper and lower bounds are obtained 
for the length of the support of an arbitrary, unbounded solution of problem (51), (52) for 
~(I, o+I) which is compactly supported in x. 

THEOREM 13. Let 1 < B < o + i. Then a solution of the Cauchy problem (51), (52) is 
not localized, and if t = T0(u 0) < +~ is the time of peaking, then there are the "lower" 
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bounds 

h+ (t)> h_ (0) + ~oTg [(1 --t/To)~-- 1], (60) 
h-(t)Kh+(O)--~oVY[(1--t/To)~--ll, tG(O, To), (61) 

m=[~--(e+l)]/2(~--l)<O [and hence hi(t) + +_~ as t + T~]. Moreover, there are the where 
"upper" bounds 

h+ (t)K h+ (0)-~ ~oT~ ~ [(1 --  t/To)m+ 1], (62)  

h_ (t) > h_ (0)-- ~oT~ [(1 --  t/To) ~ + 1], rE(0, To). (63)  

Here ~0-----~0(~, ~)>0 is the length of the support of the compactly supported self-similar 
function 0A($) (t0 = messupp8 A < +=) whose existence is proved in Theorem 5, Subsec. 3.3.4. 

The estimates formulated in the theorem imply that 

h •  t-~T~, (64)  

f o r  ~6(1, a + l )  and any s o l u t i o n  of  p r o b l e m  ( 5 1 ) ,  (52)  c o m p a c t l y  s u p p o r t e d  in  x.  From ( 6 4 ) ,  
in particular, it follows immediately that the self-similar function ~A for N = 1 is unique 
(see Theorem 5 in Subsec. 3.3.4) [16]. 

In method the proof of Theorem 13 is practically no different from previous ones. Having 
"at our disposal" a self-similar solution UA with time of peaking T o = T0(u 0) < +~ first on 
one side and then on the other side of supp u0, so that in each of the cases N(0) = I, from 
the comparison theorem we find that N(0~.~] for all t6(0, To). This leads to the lower and 
upper bounds for hi(t). For the details we refer to the works [15, 16]. 

In conclusion we mention that absence of localization for ~6(1, a+l) is also established 
by the method of stationary states in part 8.1 where, for example, it is shown that in an HS- 
regime u(t, x) § +~ as t § T~ everywhere in R I 

3.7. On Asymptotic Stability of Unbounded, Self-Similar Solutions. The main purpose 
of this subsection is to prove "structural" stability of the self-similar solutions con- 
structed, i.e., to establish conditions under which the asymptotic behavior of u(t, x) as 
t + T~ is described by uA(t , x). Earlier we discussed some principle difficulties of the 
analysis of the space-time structure of unbounded solutions which arise in the absence of 
stability of solutions with respect to perturbations of the initial function. Therefore, in 
this subsection we shall not strive for maximum generality which requires considerable ef- 
forts directly mainly in overcoming nonprinciple difficulties. The key features of the proof 
are presented for the example of the one-dimensional Cauchy problem using some restrictions 
on the form of the initial perturbation u 0. 

Everywhere below we consider problem (51), (52), and we assume that the conditions on 
u 0 formulated in Subsec. 3.5 and also conditions (56) are satisfied. Then u(t, x) is a solu- 
tion even in x, and supu---~u(t, 0). 

X 

We first give estimates of the amplitude of unbounded solutions of problem (51), (52). 

LEMMA 6. Let o > 0, ~ > I. If T o = T0(u 0) < +~, then 

sup u(t, x)>0,  (T0--t)  -1/(g-D, tE[0, To); O. = ( ~ - - 1 )  -I/($-1). (65)  

The proof is based on comparison of a solution u(t, x) compactly supported in x with 
the homothermic solution v(1) =0H(T0--0 -I/C~-I) (they must intersect, i.e., N(t)~2 for all t6[0, 
To) j whence (65) follows). 

LEMMA 7. Suppose o > 0, $ > 1 and (56) is satisfied. If T o = T0(u0) < +=, then there 
exists a constant 0, > 8 H such that 

sup U (t, X ) ~  U (t, 0) < 0. (To --  t) -1/(~-1), tE [0, To). ( 66 ) 
x6R, 

A proof of Lemma 7 can be found in [15, 16] (see also the assertions in [26-28] having 
analogous proofs). In all three cases ~<a+l, ~=a+1, ~>~+I it is carried out by comparing 
u(t, x) with a lower self-similar solution u~ of the form 

uT(t, x)----(ro--t)-'t(~-')O([~[; ~), ~-----x/(ro--t)% (67) 
where the function 0($; p) wherever it is positive is a solution of the Cauchy problem (42), 
( 4 3 ) .  
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As an example we present the proof of (66) in the case ~ > o + 1 (for ~a+1 it is 
still simpler). As follows from the proof of proposition (a) of Theorem 6, for all suffi- 
ciently large ~ > 0 the function 0($; ~) vanishes at some point $ = Su > 0 (0($; ~) > 0 on 
[0, Sp)). Moreover, by the continuous dependence of 0 ~ and (o~ p in a neighborhood 
of ~ = +~ we have the estimates 

,~+I-~ ~+a+1 
~ ~ -+o, I[o~+~(~;~)]q~-w-, ~ . + + ~  

[this follows from the condition 0 (~i ~)~ V~(~+') ((a+ I) I12] ~ I), %----~+I as ~ + +~; see Subsec. 
3.3.5]. Therefore, it is always possible to choose a sufficiently large ~ = 0, so that, 

first of all, suppuf(0,X)csuppu0 [then obviously suppuT(t, x)csuppuT(0, x)csupp~ for all [~(0, 
To)] and, secondly, u0(x) and u~(0, x) have exactly two intersections. Then by the compari- 
son theorem N(t) ~ 2 in the region (0, T0)X suppuT(t, x), which leads to (66). 

Remark. Following the procedure indicated, it is not hard to show that for 1 < ~ < o + 
1 the estimate (66) holds for arbitrary compactly supported u0(x). Indeed, in this case 
~p § +~ as p § +=. Therefore, by Theorem 13 [see also (64)] it is possible to find a ~ = 8, 
such that, first of all suppu(Lx)c{Ixl<~(T0--t) ~} for all tG[0, T0)and, secondly, u0(x)<u;(O , 
x) in {IxI<~Ts Then obviously ~(t, x) ~< u~ (t, x) in {Ix]<~(T0--~)~}, which gives (66). 

3.7.1. Asymptotic Stabi$ity of the Self-Similar Solution of the S-Regime (6 = o + i). 
If conditions (56) are satisfied the only self-similar solution which can possibly be asymp- 
totically stable is 

UA (t, X)=(To--t)-~/*O, (x), t6(O, To), xCR ~, (68)  

where 0 s is the function (55). It satisfies the ordinary differential equation (see Subsec. 
3.3.2) 

1 (0~0~)'--- 3- 0~ -[-0~ +1 ----0, x~R t. (69 )  

We specially emphasize that 0 = 0 s is the unique nontrivial solution of it which is even, 
compactly supported, and monotone in x for x > 0. 

In accordance with the structure of the self-similar solution (68) we introduce a 
self-similar treatment of the unbounded solution u(t, x) of problem (51), (52), $ = o + i, 
with time of peaking T o = T0(u0) < +~: 

O ( t , x ) = ( T o - - t ) ' l * u ( t , x )  in (0, To)XR ~. (70)  

The asymptotic (structural) stability of the self-similar solution (68) implies the following 
theorem (see [16]). 

THEOREM 14. Suppose ~ = o + i, and conditions (56) hold. Then uniformly in R ~ 

0 (t, x)  ----- (To-- t)~l~u (t, x)  ~ O, (x), t -+ T~. (71 ) 

It can be verified without difficulty that the function 0 = 0(~, x) at the new time 
z=--In(1--t/T0):[0, T0)-+[0, + ~) satisfies the Cauchy problem 

0~ = (0~0~)~--  I-- ~ " ~ + ~  a ~ , ~ > 0 ,  X~R l, (72)  

0 (0, x)  = Oo (x) ~ T~/*Uo (x), x~R ~. ( 73 ) 

Comparison of Eqs. (72) and (69) shows that (71) is equivalent to the proof of stabil- 
ization as �9 § +~ of the solution of problem (72), (73) to the stationary solution 0 ~ 8s(X). 
The main difficulty here is that 0 e 8 s is an unstable stationary solution of Eq. (72); 0 ~ 0 
and 0 = +~, roughly speaking, are stable here (0 ~ 0 s lies between them and is hence un- 
stable). Corresponding examples are presented in [16, 32]. Stabilization to other "sta- 
tionary solutions" is forbidden by the following: 

LEMMA 8. Under the conditions of Theorem 14 for all �9 > 0 

sup 0 (x, X) > a -l/a, sup 0 (~, X) < 0.; (74)  
x~R' x~R' 

supp0 (~, x ) c [ - - l o - - L s ,  lo+Ls], 2lo--mes s u p p l .  (75)  

The estimates (74) were proved in Lemmas 6 and 7; the inclusion (75) was proved in 
Theorem 9. By (75) the Cauchy problem (72), (73) is equivalent to a boundary value problem 
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in an arbitrary region Q~(--lo--L~, lo+L~) with the condition @(x, x) = 0 on R+~/0Q. The 
following estimates can be derived without difficulty (see, for example, [Ii, 125]): 

O'+~I2EL~176 (R~-; L 2 (~2)), (01+W2)~EL2 (R~- X Q), (76) 
o~ (R%; n~ (~)). 

With the presence of estimates (74)-(76) stabilization of 0(~, x) in the weak sense to some 
stationary solution of Eq. (72) as �9 = ~i § +~ follows from general results of [8, 84] with 
use of the fact that the equivalent boundary value problem has the Lyapunov function 

V (0) (T)= 2 (~ + 11 -F ,~ ((~(c~+2) + 1 )  0~+2__ 02("+1) dx,  
n 

which does not increase in �9 on any evolutional trajectories. Formal computations give 

4(~+1)  ~( l+a/2 2 --~ V (o) (~) 3 o )Tdx ~ O. dr (~ + 2) 2 

Here the independence of the limit function of the choice of sequence {~i} follows from the 
uniqueness of the corresponding nontrivial stationary solution 0 ~ 6s(X). Stabilization in 
C(~) follows from stronger estimates; by the method of S. N. Bernshtein in the form [82] it 
is not hard to show that [(0~+1)xl<const in R$ X R  1. From this it follows that 0~+1(~, X) is 
HSlder continuous also in the variable ~ in R~XR I [57, I00]. For details we refer to [16] 
(see other examples of investigating stabilization of solutions of degenerate equations in 
[84, 95, 118, 127]). 

Remark. In the process of proving Theorem 14 we actually constructed the set of at- 
traction qffof the unstable stationary solution 8 = 0s(X) in the Cauchy problem for (72) [if 
00E~, then 0(~,')-+0~ (') as �9 § +~ everywhere in Rt']. It has the form@ff:{00=T~/~ 
satisfies (56) and T0=T0(~0)< ~- ~}. It is obvious that @dZ is unbounded, for example, in 
C(RI), is infinite-dimensional, and, of source, is not dense in C. We emphasize that such 
an unbounded set of attraction of an unstable solution can in principle not be determined 
by "linear" analysis of solutions near a stationary solution (by this method it can be proved 
only that there exist functions 006~, lying in a small neighborhood of 0 = 8s; see, for ex- 
ample, [106]). A somewhat different approach to the construction of ~ was used in [120]. 

As a corollary of (71) we present the following result. 

COROLLARY. Under the conditions of Theorem 14 u(t, x) + +~ as t § T~ at any point of 
the region of localization {[x[<L~/2}. 

Here condition (71), generally speaking, does not forbid unbounded growth of the solu- 
tion outside the region of localization which, however, must proceed with speed o((To--t)-i/o), 
i.e., more slowly than according to the self-similar law. One of the optimal results from 
this point of view can be obtained by combining Theorem 14 and Theorem 12 of Subsec. 3.5.3; 
this gives the following assertion. 

THEOREM 15. Under the conditions of Theorem 12 u(t, x) § +~ as t § T~ everywhere in 

{Ix[<Ls/2}, and u ~ 0 in [0, To)X{[xl~LJ2 }. Combustion at all points xER ~ hereby asymptoti- 
cally approaches self-similar combustion: (To--t)I/eu(t, x)-+Os(x), t-+To-. 

3.7.2. Asymptotic Stability of the Self-Similar HS-Regime. As shown earlier, for 1 < 
< o + 1 Eq. (51) has a unique, self-similar, unbounded solution 

~--(~+ I) UA=(To--t)--I/(~--I)OA(~), ~--x/(To--t)~; m =  2(~--1) ' (77)  

(o~oD'-mok~-~_--~ o~+o~=o, ~R', (78) 

where O A ~ 0 is an even function which decreases for ~E(0, ~0) [~0=mes{~>010A(~)>0}]. We 
shall briefly characterize the main problems which arise in proving its asymptotic stability. 

Introducing the self-similar representation of the solution u(t, x) of problem (51), 
(52) in the usual manner, 

0 (t, ~) = (To-- t)'/(~-a)u (t, ~ (To-- tP),  

where To-To(uO)<-~, we obtain in the new time �9 = -in (i - t/T 0) the Cauchy problem for 
o = o(T, ~;): 
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13~-----(O~O},)~--mO~}o--~_--~lO+&, x>O, ~,ER', (79) 

0 (o, ~) = oo (~) - :ro'~(~-'>~,o (~rs  ~(~R ~. ( 80 ) 

To prove stabilization of O(~, ~) to the stationary solution 0 ~ 0 A of Eq. (79) special 
estimates of O(~, $) are required. Suppose conditions (56) are satisfied. Then by Lemmas 
6 and 7 (Subsec. 3.7) and the estimates of Theorem 13 (Subsec. 3.6) we immediately obtain 
for all x>~0 

sup'O (x, ~) > (p-- 1)-'/(0-~), sup 0 (x, ~) <~ 0,; (81) 

suppO(*, ~)c[--~o--(lo-~oTg)TZmexp(mx), ~o +(lo+~oTs ~o], x--+ -~ ~ .  (82) 

As in the case ~ = o + I, the last inclusion implies that the Cauchy problem is equivalent 
to a boundary value problem in a bounded region ~cR I with the condition 0 = 0 on RSXa~. 
By the method of S. N. Bernshtein uniform HSlder continuity of the function 0~+I(T,~), in RSX 
R I can then be established; therefore, stabilization of 8o+i(x, $) as �9 + += to the unique (see 
Theorem 5 of Subsec. 3.3.4) stationary solution 0 = 0A(~) follows from the existence of a 
Lyapunov function V(B)(~) with suitable properties. The function V(0) is constructured ac- 
cording to the general approach [8] (it cannot be written out in explicit form). Known prop- 
erties of the two-parameter family of solutions of the stationary equation (78) are used in 
constructing V. The proof of stabilization uses in an essential way the uniform boundedness 
of the support of a generalized solution of the Cauchy problem (79), (80). 

3.7.3. Stability of the Self-Similar LS-Regime~ ~ > o + I. Leaving in place all com- 
putations of Subsec. 3.7.2, we characterize the basic problems which arise in the proof of 
asymptotic stability of the self-similar solution (77) for ~ > o + I. 

First of all, suppe(~,~)-+R I as �9 ~ +~, i.e., the possible limit function e($) [8(~, $) 
0(~) as �9 § +~ in R I] is not compactly supported. Therefore, in contrast to S- and HS-re- 
gimes, here nothing so far forbids stabilization of 0(~, $) as �9 § +~ to the spatially homo- 
geneous solutionr O~(~--I) -II(#-I) . This difficulty, by the way, can be avoided; in Subsec. 
3.8.2 conditions are obtained on u 0 (x) under which u(t, x) ~< CAI X [-2/t~-(~+I)I in (0, To) X (RI\{0}), 

which is equivalent to the inequality 0(x, ~)~<CAI~1-21[p-(g+~)f in RSX(R~\{0}) [this obviously 

forbids the stabilization 0(~,.)-+(~--I) -l/(g-~ as �9 + +~ uniformly on each compact set of Ri]. 
However, additional complications arise in constructing the Lyapunov function by the method 
of [8] and in the derivation of the corresponding integral estimates. 

Secondly, the question of uniqueness of a self-similar function 0A($) of simplest form 
has so far not been resolved (this is important for the independence of the limit function of 
the choice of sequence ~i + +~)" Therefore, the question of asymptotic stability of the self- 
similar LS-regime remains open. 

3.8. Asymptotics of Unbounded Solutions of the LS-Regime near a "Singular" Point. 
Here, for example, an analysis of the multidimensional Cauchy problem is carried out for 

> o + i under the assumption that u0=u0(]xl) is a bounded function on R ~, and u~ +~ is uni- 
formly Lipschitz continuous in R~; ue is not necessarily compactly supported; u0(0) > 0. 
It is assumed that x = 0 is a point of singularity of the unbounded solution, i.e., there 
exists a sequence l~-TTo-(Uo ) <+o% such that u(~, 0)-++oo. 

The main problem is in deriving estimates of u(T~, x) in a neighborhood of x = 0 [the 
sense in which u(T~, x) is to be understood will be specified in each concrete case]. It 
will be shown that the limit distribution which the self-similar solution gA(T~, x)=CA x 
I~[ -~/l~-(g+~)] forms is characteristic for a broad class of non-self-similar solutions of the 
LS-regime. 

3.8.1. A Lower Bound. This problem can be solved quite precisely on the basis of the 
method of stationary states [13, 14, 17, 26] as possibilities of a type of "approximation" 
of evolution properties of solutions on a "field" of stationary solutions continuous with 
respect to a parameter. A general characterization of this method of investigating various 
nonlinear evolution parabolic problems is given in [24]; application to parabolic systems of 
quasilinear equations can be found in [24, 25]. 

tThis occurs, for example, in the case o = 0; see Subsec. 4, Sec. 4. 
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We d e n o t e  by {U(Ix l ;  u0)} t h e  f a m i l y  of  symmet r ic  s t a t i o n a r y  s o l u t i o n s  of  Eq. (1 ) :  

1 (rN_~U~U,), }_U~=O, r = l x l > 0 ;  rN--1 

U'~ (0; Uo) = 0, U (0; Uo) = Uo, 
(83) 

where U 0 > 0 is the parameter of the family. The basic properties of the functions {U} are 
indicated in Lerama 4 (Subsec. 3.3.3). In particular, if ~(1, (oAcl) (Nq-2)/(N--2)+), then 
each of them vanishes at the point r0(U0)~r0 (I)wta+l-~I/'~< ~-oo. We also present the identity 

u (Ix  l; Uo)-= UoU (I x I Uot~-c~ l), (84) 
We extend U([xl; U0) to the region r > r0(U 0) by zero. Since U([xl; U0) are not stationary 
solutions in R N, it will be convenient to call them stationary states. For ~>>-(gq-I)(Nq-2)/ 
(N - 2)+ the functions U(lx[;Uo)>O are stationary solutions in R N. 

The family of functions {U[x[; U0)} forms in the plane {Ix[, U} a "field" of stationary 
states which is continuous with respect to the parameter U 0 > 0. For ~ > o + 1 a general 
characteristic of the family {U} is the envelope L = L(r), r > 0, to the functions U(r; U 0) 
on the {r, U} plane which is defined from the following condition: for any r > 0 there exists 
U 0 > 0 such that 

L(r)----U(r; Uo), L'(r)=U':(r; Uo). (85) 

As will be shown below, the form of the envelope L(Ix I ) makes it possible to estimate 
the structure of the limit distribution u(To, x) near the singular point x = 0 (see [13, 17, 
2 6 ] ) .  

LEMMA 9. Le t  B > o + 1. Then problem (85) has  a un ique  s o l u t i o n  

L (I x 1) = Col x [-2/m-(~+m, [ x l > o, 

where t h e  c o n s t a n t  C O = Co(o,  I~, N) > 0 i s  d e f i n e d  from t h e  sys t em of  t r a n s c e n d e n t a l  e q u a t i o n s  

Co=%21m-(~+mU (%; 1), (86)  

2 Co=~ (~o; 1), ao > O. 
[l~--(~ + D] 

Here we have the estimate 

1, 
C0> *=[~--~$t) >0. (87) 

We The first part of the lemma can be proved directly with use of the identity (84). 
note only that tangency of L([xl) and U(Ixl; U0) in accordance with equalities (85) is 
realized for Uo-~-(=o/r)2/I~-(~+1)l, where ~0 > 0 is the constant in (86). The existence and 
uniqueness of a solution of the system (86) follows from known properties of the function 
U([x[;l) (it can be expressed in terms of a special function of mathematical physics). We 
consider in more detail the derivation of (87) (see [17, 26]). Using the estimate rl--N(rN--Ix 
U~U'/------U~>--U~, we find without difficulty that 

Uo)>Uo(1 -2 ~+1 rr6-(~4-D~U(~+l) U([x l ;  - - r  - ~ -  ~o ]+ -------U_(Ix]; Uo) , ( 8 4 ' )  

0 < r < (2N/(a q- 1) )1/2U(oC;-1-1-~)/2, 

The family of functions {U_} is very simple, and from the same considerations it is easy to 
construct an envelope of the following form: L_(Ix[)-~C,[x[-2/[S-(~+I)I. However, by (84') in 
L,([x[)>L_(IxI) in RN\{0}, which gives (87). 

THEOREM 16. Suppose a-~-1<~<(cr~-1)(N-~-2)/(N--2)§ Then under the assumptions made 
regarding u 0 = u0(Ixl) there exists s > 0 such that the unbounded solution of problem (i), 
(2) satisfies the lower bound 

u(To, x)--limu(t, x) >Col  x 1-2/lv-(~+l)l, x E { 0 < [ x l <  e}. (88) 
t ~ T  0 

Proof. We choose U0>tt0(0 ) so large that, first of all, {[xl<ro(Uo)}csupp Uo for any 
U0>U0 and, secondly, U(Ixl; U0) intersects tt0(Ix[) in Ixl at exactly two points for all U0> 
U~. We set e=ro(U~). Then obviously tz(t, x)>O=U(Ix]; Uc) for [x ]= ro (Uo) ,  if Uo>Uo. In 
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accordance with the comparison theorem the number of intersections N(t) of the distinct 

solutions U ( I x ] ;  U0) and u(t, x) of Eq. (I) in {r-~!xi<ro(Uo) } is such that N ( t ) ~ l  for all 
t6(0, To). S i n c e  x = 0 i s  a s i n g u l a r  p o i n t ,  t h e r e  e x i s t s  tkC(0, To), such  t h a t  u(tk, 0 ) > U 0 .  But 
t h e n  by symmet ry  N ( t  k)  = 0, and h e n c e  tt(tk, x ) > ~ U ( I x t ;  Uo) in  R ~. By t h e  maximum p r i n c i p l e  
t h i s  w i l l  be  t r u e  a l s o  f o r  a l l  t6(tk, To). C o n s i d e r i n g  now t h a t  Uo>/Uo i s  chosen  a r b i t r a r i l y ,  
we o b t a i n  

tt(To, x ) >  sup U(Ix]; Uo)=L(IxD ' O<lxl< , (89)  
Uo~U 0 

which  by Lemma 9 g i v e s  ( 8 8 ) .  

We n o t e  a c u r i o u s  c o r o l l a r y  o f  t h e  method  o f  p r o o f  o f  t h e  t h e o r e m .  

COROLLARY 1. Under  t h e  c o n d i t i o n s  o f  Theorem 16 t h e r e  e x i s t s  t06[O, To), such  t h a t  u t ( t ,  0) 
> 0 f o r  a l l  to ~ [ t 0 ,  T0] .  

Thus ,  t h e  d e f i n i t i o n  o f  a s i n g u l a r  p o i n t  x -- 0 g i v e n  a t  t h e  b e g i n n i n g  o f  t h e  s e c t i o n  in  
the symmetric case is equivalent to the condition u(t, 0) + +~ as t ~ To. We note that for 
N = 1 this is valid for arbitrary solutions. The proof in the general case requires applica- 
tion of a special comparison theorems based on an analysis of the character of spatial in- 
tersections of distinct solutions, and is not considered here (in this regard, see [27, 28] 
and Sec. 4). 

COROLLARY 2. Under the conditions of Theorem 16 for any p>~[~--(a+l)]N/2 

lirn S ttP (t, x) d x =  q- ~ . (90)  

The validity of (90) follows directly from (88). A similar assertion was known earlier 
for the case o = 0; see [86, 103, 128] where (9) was not proved for the "critical" value 
p = [$ - I]N/2 when the integral has a weak logarithmic divergence at the point x = 0. The 
proof in [86, 128] used the semilinear structure of the equation for o = 0. From the posi- 
tion of the method of stationary states for the derivation of integral and pointwise estimates 
of u(To, x) the type of nonlinearity in the differential operator of the equation makes no 
difference; examples are presented in [13, 17, 24]. 

If the method of stationary states is applied to investigate the HS-regime, then the 
following result is obtained [19, 13]. Suppose l<~<aq-l, u0~u0(lx[)>/0 in R ~, and u0 ~ 
is a uniformly bounded, nonincreasing, Lipschitz continuous function. Then u(t, x) § +~ as 
t_+To@to) < -[-oe everywhere in R N. In the proof the fact is used that for ~<a~-I U(Ix[; 
U0)-+-~ oo for U0-+ q-co everywhere in R N. Therefore, the validity of the assertion formu- 
lated follows from an estimate similar to (89) 

u (To, ' x )  > sup U (l x l; Uo) = + ~ ,  xCR N. 
u*?v 0 

3 . 8 . 2 .  An Upper  Bound. We s h a l l  show t h a t  u n d e r  p a r t i c u l a r  c o n d i t i o n s  t h e  lower  bound 
(88)  i s  s h a r p  w i t h  r e s p e c t  t o  t h e  c h a r a c t e r  o f  t h e  d e p e n d e n c e  on Ixl n e a r  x = 0. One e x -  
ample  i s  a l r e a d y  known: t h e  s e l f - s i m i l a r  s o l u t i o n  (20 ~ ) which  f o r  ( r q - l < ~ ( a ~ l ) N / ( N - - 2 ) + ,  
as  shown in  Theorem 7, i s  bounded a b o v e :  UA(t,x)<tt(To, X)=-CAIxl -ilm-(~ i n  R'~\{0}. With  t h e  
h e l p  o f  t h i s  r e s u l t  a s i m i l a r  u p p e r  bound i s  o b t a i n e d  be low f o r  a b r o a d  c l a s s  o f  u 0 ( x )  s a t i s -  
f y i n g  a l l  t h e  c o n d i t i o n s  i n t r o d u c e d  e a r l i e r .  

THEOREM 17. Suppose  o + 1 < 13- .~ (aq-1)N/ (N--2)+ ,  To=To(tto)<-'rcr and u 0 = u 0 ( I x l )  i n t e r -  
sects with respect to r = Ix] the function To~/('~-~)OA(]xI/T$) (O A is defined in Theorem 6) at 

precisely two points, while U0(0)>Tol/(~-I)0A(0 ). Suppose further that u 0 is critical, i.e., 
ttt>~0 in P[u]. If x = 0 is a singular point of the solution u(t, x), then 

u(t, 
Before proceeding to the 

in the hypotheses are not too 
is resolved very simply. If, 

then by the maximum principle 
"linear" parabolic equation. 
i f  A~-(~m>~2aexp {[~-- ( a +  1) ]/2 (~+ 1) } ,  
U{tx[; Uo) f o r  any  U o > 0 ( s e e  [14 ,  

x) < CA IX ] -2/I~-(~+1)1 s (0, To) X (RN\{0}) �9 (91)  

proof of the theorem we shall show that the conditions on u 0 
restrictive. As concerns u0(x) being critical, this question 
for example, u06C2(RN), u0>0 and 

A (u0) ~ V (u~Vu0) + u0~ >I 0 in R N, (9 2) 

ut>~O in (0, T0) XR N, since the function z = u t satisfies a 
Condition (92) is satisfied by, for example, uo(x)---Aexp('o~IXl2), 

a > 0. Another example of a critical function is u0(x) = 
17, 26]). 
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The condition of the presence of precisely two intersections of u0(x) and the self- 
similar function UA(0, x), where u A has the same time of peaking, is somewhat more difficult 
to verify. Without considering this in detail, we mention that the compactly supported func- 
tion uo---U(Ixl; Uo), satisfies all the conditions of the theorem; see [17]. We remark also 
that the condition that u 0 be critical for N = i, generally speaking, is superfluous; re- 

garding this, see Subsec. i, Sec. 4. 

Proof of Theorem 17. We suppose that (91) does not hold and there exist r, > 0 and 

t,E(0, To), such that ~ ( t . ,  r~)>~CAr72I[~-(~+l>l. Then by the critical property this is satisfied 
in (t,, T~X{[xI=r~ }. In the region 'S,=(t,, To){]x]<r,} we consider two solutions u and u A 
with the same time of peaking t~T0<~-~. Under the assumptions made N(t) e 0 in [t,, To), 
while since on (f,, To)X{Ix[=r.}-the lateral boundary of S, -there is the estimate 

inf u(t, x)>" sup CA(t, X), lxl=r, ,  t6(t,.ro) t6(t,,r.) 

it is not hard to show that there exists a �9 > 0 so small that aA( t - / g ,  X)~<u(t, X) in (t,, 
T0--z)X{[x[<r,}. This contradicts the equality of the times of peaking of the solutions 

u and u A. 

COROLLARY. Under the conditions of Theorem 17 for any p@(0, [~--(o-~l)]N/2) and E > 0 

up(t, x )dx<C~ 5 I xl-2p/tts-(~+~}ldx< -{- ~ '  rE(Q, To). 
{Ixl<q {txI<q 

4. Semilinear Parabolic Equation ut = uxx + uS 

In this section we present some results of investigating the Cauchy problem for the 
one-dimensional semilinear parabolic equation 

Ut=U=~UU ~, t>O, XOR1; ~=const> 1, (1) 

u(O, x)=uo(x)~O, x~R'. (2) 

Many of  t h e  r e s u l t s  p r e s e n t e d  be low can  be c a r r i e d  o v e r  w i t h o u t  s p e c i a l  c h a n g e s  t o  t h e  c a s e  
o f  t h e  m u l t i d i m e n s i o n a l  e q u a t i o n  u t = Au + uS.  

T h i s  p r o b l e m  h a s  much in  common w i t h  i t s  q u a s i l i n e a r  a n a l o g u e ;  t h e r e f o r e ,  ou r  main  a t -  
t e n t i o n  be low w i l l  be g i v e n  t o  t h o s e  p r o p e r t i e s  o f  unbounded  s o l u t i o n s  which  a r e  n o t  p r e s e n t  
i n  t h e  q u a s i l i n e a r  c a s e .  C o n d i t i o n s  f o r  t h e  o c c u r r e n c e  o f  unbounded  s o l u t i o n s  o f  t h e  Cauchy 
p r o b l e m  ( 1 ) ,  (2 )  h a v e  been  s t u d i e d  f o r  more  t h a n  20 y e a r s ;  s e e ,  f o r  e x a m p l e ,  [93 ,  97,  108,  
112, 113] and t h e  b i b l i o g r a p h y  in  t h e  s u r v e y  [ 2 1 ] .  W i t h o u t  c o n s i d e r i n g  t h i s  i n  d e t a i l ,  we 
m e n t i o n  o n l y  t h a t  f o r  1 < ~ _ 3  any  s o l u t i o n s  u ~ 0 i s  unbounded ,  w h i l e  f o r  ~ > 3 t h e r e  e x i s t s  
a class of global solutions; see [63, 97]. 

The following conditions are imposed on the initial function u0: 

sup uo---~Mx<-at-oo; l uo(x,l--uo(x ll< M lx -x l, x~Gm, (3 )  

where MI, M 2 are positive constants. 

Everywhere below we assume that T0=T0(u0)<+oo. 

4.1. The Critical Set. The theorem formulated below simplifies the exposition of sub- 
sequent results. 

THEOREM i. Under the assumptions made there exists a constant MK=MK(MI, M~)>O, such 
that if u(to, Xo~M x, then ut(t, x0)J~0 for all 16[t0, To). 

In particular this means that the conditions - thereexists a sequence th--~T0-<~-oo, such 
that u(tk, x0)-+-~oo as k + +~ (the condition that x = x 0 is a point of singularity of the un- 
bounded solution) and u(t, x0~-++oo as t + To - are equivalent. 

The proof of Theorem 1 [27] uses a rather fine theorem of comparison of u(t, x) with 
a family of stationary solutions {v(x)==-U(x--a; U0), UoER$, a6R1}, based on an analysis of the 
character of intersections of the functions u and v with respect to x. An approximate for- 
mulation of this comparison theorem is as follows: if N(0) = 2 for any small "C1-deforma - 
tions" of u0(x) and v(x), then at any point of intersection x=x0, w(t, Xo)-~-u(l, Xo)--U(Xo)= 0 
the condition wx(t, x0)=/=0 holds. In this connection we note that solutions of Eq. (i) are 
analytic in x [92]; therefore all intersections for t > 0 are isolated points (with respect 
to x). 
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4.2. An Upper Bound for the ~nplitudeof an Unbounded Solution. Several approaches 
are known to the derivation of an important upper bound for the amplitude of an unbounded 
solution; see [15, 16, 26-28, 96, 129, 130]. The following result is the most general [27, 
28] (see also [26]). 

THEOREM 2. Suppose (3) is satisfied and u0(x) § 0 as Ixl + +~. Then there exists a 
constant ~,=~,(T0, MI, Mf)> 0 such that 

u (t, x) < ~, (To -- t)-u(~-') in [0, To) X R'. ( 4 )  

The proof is based on a comparison (an analysis of the character of intersections) of 
u(t, x) with a family constructed in [26, 27] of unbounded, lower self-similar solutions. 

4.3. A Lower Bound for the Amplitude. The next result follows immediately from Theorem 
8 in Sec. 3; see assertion (II). As a comparison function v the spatially homogeneous solu- 
tion v=---(~--l)-l/~"-i)(To--t) -1/(~-1) is taken. 

THEOREM 3. Under the conditions of Theorem 2 

supu(t ,  x ) > ( ~ - -  1) - '1(~- ')  (To--t) -1/(~-1) inp, To). (5 )  
xER' 

4.4. Asymptotic Behavior of Unbounded Solutions. The asymptotics of u(t, x) for t 
T~ < += in the Cauchy problem for a semilinear equation is considerably different from what 
would be expected in the quasilinear case. 

THEOREM 4. Suppose (3) is satisfied, and, moreover, u0(-x) = u0(x) in R I, and u0(x) 
is nonincreasing in x in R$. Then 

0 (t, ~)=--(To--t)'l(~-')u(t, ~(To--t) 112) ->(P-- 1) -x/(~-') as . t -+Ts (6 )  

uniformly on each compact set in ~ of R*. 

The proof [27, 28] proceeds basically by the same scheme as that used in Subsec. 3.7, 
3. The equation for the self-similar representation 8=0(% ~), T=--in(1--t/Y0) has the Sec. 

form 

O z = A ( o ) ~ o ~ - - + ~ O ~ - - ~  1 0~-0 ~, T>O, ~ 1 .  (7)  

Under the assumptions made x = 0 is a point of singularity of the solution u(t, x), and 
supg(t, x)~g(t, 0). By Theorem 2 the solution 8 of the Cauchy problem for (7) is then uniformly 
x~R' 

�9 1 1 bounded ,  0(~, ~)<[~, i n  R + X R ,  and u n i f o r m  b o u n d e d n e s s  o f  O~ as  w e l l  as  b o u n d e d n e s s  o f  O~ 
on each set of the form [I, @ oo)X {1 ~1< l} can be established by the method of S. N. Bern- 
shtein. Theorem 3 then forbids stabilization to the trivial solution of the stationary equa- 
tion (7) 8 ~ 0, since (5) implies that 0(T,O)>OH ~---(~--1) -I/(~-I) in R$. The following result 
is of major significance for the proof of (6). 

LEMMA i. The function 8 - 8 H is the unique nontrivial, nonnegative solution of the 
equation A(O)=O in R I. 

For $ = 3 the lemma is proved in [104]; for arbitrary ~ > 1 it is proved in [3]. 

To complete the proof of Theorem 4 it now suffices to note that (7) admits the Lyapunov 
funct ion 

--co 

which  i s  monotone  on t h e  e v o l u t i o n  t r a j e c t o r i e s :  
&oo 

v (0)(r - l o. 
--oo 

From the last equality we obtain the uniform estimate (C I > 0 does not depend on T > i) 

S ]exp(--~2/4)O~ cl[c[~<Cl" 
1 --oo'  

Remark 1. As shown in  t h e  work [ 9 9 ] ,  t h e  a s s e r t i o n s  f o r m u l a t e d  in  Theorem 4 and Lemma 1 
a r e  c h a r a c t e r i s t i c  a l s o  f o r  t h e  m u l t i d i m e n s i o n a l  p r o b l e m  
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THEOREM 5. 

d > 0 such that 

ut=Au+u% t > 0 ,  x6R N. ( 8 )  

Here there arises the problem of investigating the solvability of the elliptic equation [the 
analogue of the one-dimensional equation A(8)=0, see (7)] 

N 

= ~ t - -  ~ 8"~0 ~ = 0  in 

In  [99]  i t  i s  e s t a b l i s h e d  t h a t  0 e 0 H i s  t h e  u n i q u e ,  n o n t r i v i a l  s o l u t i o n  f o r  l<~(N+2) /  
(N - 2 )+ .  The b a s i s  f o r  t h e  p r o o f  o f  t h i s  i n t e r e s t i n g  f a c t  i s  t h e  d e r i v a t i o n  o f  a s p e c i a l  
e n e r g y  i d e n t i t y  on t h e  b a s i s  o f  t h e  t e c h n i q u e  o f  [69,  70 ] .  For  ,~> (N+2)/(N--2)+ t h e r e  may 
e x i s t  n o n t r i v i a l  s o l u t i o n s  0(~)---~0, I .~l -++c~;  an example  o f  such  a s o l u t i o n  was c o n s t r u c t e d  
in  [22] f o r  t h e  c a s e  ~ = 2 and 6 < N < 16 [ t h e  lower  bound of  t h e  d i m e n s i o n  of  t h e  s p a c e  
N > 6 i s  c o n n e c t e d  w i t h  t h e  i n e q u a l i t y  ~>(N+2)/(N--2) = 2  f o r  N = 6 ] .  We n o t e  t h a t  in  t h e  
p r e s e n c e  o f  t h e  e s t i m a t e s  (4)  and (5)  Theorem 4 f o l l o w s  f rom a r e s u l t  o f  [99] where methods  
c l o s e  t o  [26 ,  28] were  used  f o r  t h e  p r o o f  o f  s t a b i l i z a t i o n .  

Remark 2. R e t u r n i n g  f rom t h e  s e l f - s i m i l a r  r e p r e s e n t a t i o n  0(~,  $) t o  u ( t ,  x ) ,  we f i n d  
t h a t  Theorem 4 g i v e s  an i d e a  o f  t h e  a s y m p t o t i c  b e h a v i o r  o f  t h e  unbounded s o l u t i o n  u ( t ,  x) on 
any compact: s e t s  o f  t h e  form P~(O={Ixl4a(ro--t)m}:~(t,x)-~O. (r0--0 - ~ - ~  in  P a ( t ) .  Of 
c o u r s e ,  t h i s  does  n o t  e n a b l e  us t o  e s t a b l i s h  t h e  s p a c e  - t i m e  s t r u c t u r e  o f  u ( t ,  x) in  a n e i g h -  
bo rhood  of  t h e  p o i n t  t = T~, x = 0, s i n c e  i t  d e t e r m i n e s  o n l y  t h e  a m p l i t u d e  o f  t h e  s o l u t i o n  and 
n o t  i t s  s p a t i a l  w i d t h .  I n  [26] ( e a r l i e r  f o r  t h e  c a s e  ~ = 3 in  [ 1 0 4 ] )  i t  was shown t h a t  t h e  
behavior of u(t, x) as t + T0 in regions {]x[<a(To--t)~lilln(To--t)[I/21 of larger dimension is 
described by the degenerate approximate self-similar solution with a nontrivial spatial struc- 
ture 

aa(t, x)=(To--t)-l(~-l)f, (N), N=x/(To--t)'12[ ln (To-- t )  l ~t2. (9)  

The function u a satisfies the equation without diffusion u t = u~; substitution of (9) 
into this equation after passing to the limit t § T~ leads to the following ordinary differ- 
ential equation of first order for f = f,(u): 

I , I 
- ~ f ~  p _ ~ / + p = o ,  ~6R'. 

It has an entire family of solutions f (~={(~--I)~-C~-II(~-~), C > 0. The value 

C = C.  = (~--  1)214~, ( 1 0 )  

t o  which  t h e r e  c o r r e s p o n d s  t h e  f u n c t i o n  f , ( q )  i n  (9)  i s  s e l e c t e d  f rom t h e  q u i t e  n a t u r a l  con -  
d i t i o n  of  a n a l y t i c i t y  o f  0(~ ,  ~) a t  t h e  p o i n t  ~ = +~, ~ = O. 

The question of rigorous justification of the asymptotics (9) remains open. A numerical 
verification was carried out in [26, 104]. In Subsec. 4.6 a result is presented which in- 
directly argues in favor of the asymptotics (9). 

4.5. Localization of Unbounded Solutions of the Cauchy Problem. In this subsection 
conditions are obtained for the effective localization of unbounded solutions, i.e., for 
boundedness of the set (the region of localization) 

Oz-----{x~R~[ u (T~, x ) ~  l]-m u(t,  x ) = - ~  ~}.  (11)  
~T~ 

Suppose conditions (3) are satisfied and, moreover, there exists a constant 

U0 (X) -.< d i X 1-2/(6-I) for sufficiently large [ X ] ; (12) 

u0(x) decreases monotonically in [X I as [X[-+-~oo. (13) 

Then the region of localization (Ii) is bounded. 

The proof (see [27, 28] and also [26]) is based on a comparison of u(t, x) with a spe- 
cial lower self-similar solution of Eq. (i) of the usual form 

ttA (t, X) = (To - -  t)-'l(t3-m)o (~), ~ = xl (To-- 0 '/2, 

where the function 01>0 satisfies the equation A (0)~0, A is the operator of (7). It has 
no nontrivial solution 0 ~ 8 H in R I (Lemma i) but admits special lower solutions exhibiting 
the property of localization. 
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LEMMA 2 [26]. For any d > 0 there exists C > d such that the equation h (0)~0 has in 

(--t0, +~), ~0>0 a solution @ -----O(~)>10, whereby 0(--~0)=0~ Or(--~0)>0, and 

e ($)= C~ -2/(~-~) + o ($-21(~-~)), $_.,. + ~ .  (14)  

The next lemma gives simple properties of the self-similar solution 

v (t, x; XO)=---UA (t, X--Xo) -~(To--t)-l/(~-l)o ((X--Xo)l(To--t)ll2), (15) 

which is strictly positive in the region (0, To)X(Nx(t), -{-~) -~(0, T0)XQ(t; x0), Nl(t)=x0--~0(T0-- 
t) I/~, while v = 0 on (0, To) XO~. 

LEMMA 3 [26]. For any fixed t06[0, T0) 

~(to, X; Xo)/X-210-o-+C, x."+ 2r" ~ ;  (16) 

for any fixed x > x 0 there exists the limit 

v(t,  x; Xo)-+C (x--Xo) -2/(~-1), t ~ T~; (17) 

everywhere in (0, To)X{X>Xo} the solution v is critical (v t > 0), and by (17) 

v (t, x;  Xo) < v ( Ts  x; xo) =--C l x - -  Xo1-2/~-~ (18) 
The validity of Theorem 5 follows from an assertion in which, to be specific, bounded- 

ness of ~L on the right is established. We first recall that by Theorem 1 the solution of 
the Cauchy problem is critical in the region {x~R1, u>M~}. 

LEMMA 4. Under the conditions of Theorem 5 there exists a constant C > d and x06R I, such 
that 

~(t, x )~max{C (x--Xo)-21(~-l), MK}, t~(O, To), X > Xo, (19) 

i . e . ,  ~:zn{x>xo} = ~.  

Proof. By Lemmas 2 and 3 in the family of self-similar solutions (15) there is a func- 

tion v [T o =T0(u0)<+ooand C > d in (14)] such that u0(x) and v(0; x; x 0) intersect in ~(0; 
x 0) at exactly one point, i.e., N(0) = i. This is ensured by conditions (12), (13). Then 
by the comparison theorem (Subsec. 3.4, Sec. 3) N(t)~l for t6(0, To). Then it is not hard to 
verify that violation of (19) at even one point (t,, x.)~(0, To) {x>x0} implies that (19) is 
not satisfied everywhere in (t., To) X {x=x.}, which contradicts the equality of the times of 
peaking of the unbounded solutions u and v considered in the region (t., To)X{N1(t)<x<x,} (a 
detailed proof is given in [27]; an analogous technique was used in [26, 28]). 

4.6. Behavior of Unbounded Solutions near a Singular PoSnt. The principal aim of 
this subsection is to show that under particular conditions unbounded growth of u(t, x) as 
t--+To-(Uo)<2+oo occurs at only one point (i.e., an LS-regime with peaking develops) and to 
establish estimates of the limit distribution in a neighborhood of the singular point from 
above and below. 

4.6.1. A Lower Bound. It can be obtained by the same method as in the quasilinear 
case (Subsec. 3.8, Sec. 3). However, since each solution has a critical set (Theorem I) it 
is possible to obtain a stronger result in the present csae. 

THEOREM 6. Suppose (3) is satisfied and x = 0 is a point of singularity of the solu- 
tion of the problem. Then there exists ~0 > 0 such that 

max{u(T~, x), u(Tj ,  --x)}> Col x 1-2/(~-1), x~(--~o, 8o)\{0}, (20) 

where Co=Co(~)>0 is a constant, and Co>C,=(~--1)(2~-~ I/(~-I). 

As in the quasilinear case, the proof is based on comparing u(t, x) with a family {U(]x[; 
Uo)} of stationary solutions of Eq. (i). The envelope L=i(Ix[)>O in Rl\{0} of the family 
{U} is determined as in Subsec. 3.8.1, Sec. 3 and is indicated on the right side of inequal- 
ity (20). 

We choose the quantity U0*>0 so large that U0*>M1~supu0 and, moreover, U(]x[; U0) 
for all Uo>Uo* intersects u0(x) at exactly two points. We set s0=max{~>0[L(e)~Uo*, L(e)~ 
MK}. Then for any x,6(--80, eo)\{0} we have the following: the function U(]x[; U0), where U 0 > 
0 is determined from the condition L(]x.])-.~-U(]x.[; Uo) [i.e., the envelope L = e(Ix I) is tan- 
gent to U(Ix[; Uo) at the points x=~[x.[], is such that the number of intersections of u0(x) 
and U([x[; U0) is N(0) = 2. Then by the comparison theorem N(t)~2 for all b6[0, To). Because 

1284 



of the continuity of u(t, 0) in t6[0, To) there exists t0~(~0, To), such that u(to, 0)----U0~U(0; U0). 
Then, since N(t0)~2, all intersections of u0(x) and U(Ixl; Uo) will lie either in x~0, or in 
x~0, and hence u(to, x)~U([x]; Uo) either for x < 0 or for x > 0. In any case we obtain 
max{u(to, x.), u(to, --x.)}~L(Ix.[)~--Co]x.[ -~/~-~). Suppose to be specific that U(to, x.)~L([x,[). 
Now L([x.I).>~MK by construction. Hence, ut(t, x.)~O for all rE[to, To) (Theorem i), i.e., u(t, 
x.)~L([x.[) for all t~[to, To), which proves (20). 

A somewhat different version of the proof of Theorem 6 is presented in [27]. From (20) 
we obtain the 

COROLLARY. Under the conditions of Theorem 6 for any p~(~--1)/2 and ~ > 0 

S uP (t, x) dx--> + ~ , t ~ T~. (21) 

A similar result was obtained earlier for the interval of values p>max{l, (~--I)/2} (see 
[86, 128]) not containing the "critical" value p = (~ - 1)/2. We note that it is possible to 
prove the validity of an inequality of the type (21) for e=~-oo, p~(~--l)/2 without special 
separation of a concrete point of singularity [27]. 

4.6.2. An Upper Bound. The main problem of this subsection is to determine the degree 
of optimality of the lower bound (20) with respect to the character of the dependence of 
u(T~, x) on Ix I . In contrast to the quasilinear case, for o = 0 Eq. (i) has no localized 
self-similar solutions (Lemma i). Therefore, an upper bound for u(T~, x) cannot be derived 
by the same method used in Subsec. 3.8.2, Sec. 3. For this purpose the approach proposed in 
[96] turned out to be effective. An upper bound for u(T~, x) which is apparently optimal 
(within the framework of this method) will be obtained below. For simplicity we carry out 
the investigation of the boundary value problem for (i) in the region (0, To)X(--R, R), R~- 
const > 0 with the conditions 

u(t,--R)=u(t,R)--~O, t>O; u(D, x)=uo(x)~O, x6(--R,R) (22) 

(a problem of this type was considered in [96] where the investigation was carried out for 
the multidimensional Eq. (8)]. It is assumed that uoECl([--R, R]) and To=To(uo)<-~. 

The idea of [96] is to derive an estimate of the function 

w(t, x)=u~+c(x)F(u), 

where c(x)~'~O, F(u)~O a r e  some smooth f u n c t i o n s  which remain to  be de t e rmined .  The f u n c t i o n  
w satisfies a "linear" (in w) parabolic equation, and by the maximum principle it is then 
concluded that w<0 in (0, To) (--R,R), if w(O,x)~O, Wx(t,q-R)~O and, moreover, in application 
to Eq. (i) 

~u~-~F--u~F~--2c~Ff ~O, F">O, c"~O (23) 

for all u~O, x E[--R, R]. It is not difficult to verify that integration of the equality ~ 
u~-c(x)F(u)~O for a suitable choice of the functions c and F makes it possible to obtain an 
upper bound for u(T~, x). 

In [96] for this purpose c~e[x[ I+~, F(u)~u ~, were chosen where I~7<~, 6>0 is arbitrary, 
and g > 0 is sufficiently small. It is easy to verify that (23) is then satisfied. Without 
going into the procedure of choosing suitable initial functions u0(x) and z > 0 [in order 
that w(O,x)~O and Wx(t , • ~ 0], we note only that integration of the inequality u~-~e[x[1+~x 
uT~0 over (0, x) leads to the estimate 

u(t, x ) < x [ x l  -~l(v-1), l < v < ~ ,  (24) 

where the quantity v can, generally speaking, be made arbitrarily close to the value ~-; ~>0 
in (24) depends on v, 6, g and u0(x). With regard to the character of the dependence on 
Ixl the upper bound u(T~, x) (24) and lower bound (20) are quite close. As will now be shown, 
the "gap" between them can be made still smaller. 

For this we first consider in place of (22) the boundary value problems with the condi- 
tions 

u(t, -4-R)=A, t>O; u(O, x)=uo*(x)~A,  x6(--R, R), (25) 

where Uo*(x)~A(2--x2/R~), and A > 0 is sufficiently large. The last ensures the unboundedness 
of the solution of the problem, and u(t, x)~A in (0, T~*)X(--R, R). 
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THEOREM 7. For any R > 0 there exists A > 0 such that the solution of problem (25) is 
unbounded, T0*=T0(u0*)<+oo, and there is the following asymptotically sharp estimate: 

@-- I )~ -~/(~-D [11(13-1 ), U(To, x)~< [ ~ ]  Ixl-="~-'llnlxl Ixl-~O. (26) 

For the proof in [28] a solution of the system of inequality (23) was found which is 
sharp with regard to the dependence of F(u) on u for u + +~. It has the form c(x)---]xl/2 ~, 
F(~)=u~/Inu(F"(u)>O for u>/exp[2/(~--l)]). Integrating the inequality Ux @xu~/2~Inu<0 over 
(0, x), X~(0, R), and considering that by Theorem 4 e(t, O)=(~--l)-I/(~247 
t) -Iti~-D) (because of the estimates (4) and (5) it is then also valid for the boundary value 
problem (25); see also the general assertion in [99]), we then obtain the following estimate 
which is asymptotically sharp for t-+To, x-+0: 

u (t, x) ~< [(To--011n (To-- 01] -~/<~-D x 

{r r ,x, ' m - i - - ' ,  {,,,(,o (27) 
415 Liro_O.= !~---(ro_O i ,~'~1 ] - 

Setting here t = To, we arrive at (26). 

The upper bound (26) and lower bound (20) (it holds also for a solution of the boundary 
value problem) now differ in the character of the dependence of u(T o, x) on Ixl only by a 
logarithmic factor which increases weakly as Ixl § 0. Inequality (26) establishes, more- 
over, the optimality of the corollary of Theorem 6. From (26) we also obtain the following 
estimate: under the conditions of Theorem 7 for any ~ < -3/2 and ~ > 0 sufficiently small 

~' u(~-D/2 (77, x) [ln u (7 o, x)ffclx < + oo. 
- -g ;  

Remark. From (27) it is not hard to obtain the following estimate: on the trajectories 

~]=_IxI/(To--t)li2[in(To--t)ll/2--~const as t + T o there is the estimate 

U(L x)d(Fo--t) -'/(~-') {(~-- t)-~- (i~ I)------~'rl2}-'/(~-'). (28) 
The approximate self-similar solution u a [see (9) in Subsec. 4.4], which was constructed in 
[26] proceeding from other considerations, appears on the right here. 

Passage from the special result formulated in Theorem 7 to rather general solutions of 
boundary problem (22) is established by means of the comparison theorem. For example, we 
have 

THEOREM 8. Suppose x = 0 is a point of singularity of an unbounded solution of problem 
(22), and suppose the function u0(x) and uo(x) intersect at precisely two points, while 
To(uo)=To(uo*)=To<§ Then for all sufficiently small Ix[ > 0 there is the asymptotically 
sharp estimate 

~t  @--1)2 4-1/(~-1) [ x I-2/(~-D x] 11/(~-D. min{u(To, x), tt(To, --X)} L ~ J  [ln[ 

Rega rd ing  t h e  method of  p r o o f ,  see  Subsec .  3 . 8 . 2 ,  Sec.  3 and a l s o  [27] .  

CONCLUSIONS 

i. The search for principles of localization and also conditions for formation, self- 
sustainment, and complication of structures should be carried out with substantial models 
of minimal dimension not overloaded with details. The relative simplicity of the model makes 
it possible to develop a number of new mathematical methods for studying the developed non- 
linear stage of evolution processes. Computational experiment makes it possible to play 
through the scenario of nontrivial behavior of an open nonlinear system. 

2. Investigations of the simplest model of a heat conducting medium turned out to have 
content. Depending on the relations of the exponents of the nonlinear medium (o, 8), its 
heating can take place in three regimes. The most interesting regime was the LS-regime with 
peaking. Heating of the medium in this regime can lead to simple and complicated dissipative 
structures localized at the fundamental lengths. Complex structures may be considered as a 
particular manner of existence of simple structures having, generally speaking, different 
times of peaking. The regions of localization of the simple structures within the complex 
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structure overlap in such a manner that the structures synchronized their rate of growth - 
they had one common time of peaking. Construction of eigenfunctions of the self-similar 
problem provides all possible types of such coordination. The criterion for the "viability" 
of the union of the parts into a whole in such a medium is the synchronization of the pro- 
cesses of heating and diffusion of heat. If synchronization is destroyed rapid degeneration 
of the complex structure into simple structures occurs. 

3. Regimes with peaking and the phenomena of localization and formation of structures 
accompanying them have the character of intermediate asymptotics. For the occurrence of 
properties of localization growth according to a law with peaking is required only for one 
or two orders. 

4. As shown by means of the method of approximate self-similar solutions, the asymp- 
totic stage of processes in models not admitting group-invariant solutions can be described 
by group-invariant solutions of other equations. 

5. From the analysis of the structures of the LS-regime with peaking it follows that 
processes near the center of the structures are characteristic in a particular sense for their 
states in the past, while processes on the periphery are connected with the future. In the 
HS-regime with peaking the sites of spatial occurrence of the past and future are inter- 
changed. The connection of past and future in the spatial structure existing in the present 
is the paradoxical principle of construction of dissipative structures of the type indicated. 

6. The development of concepts and methods of investigating the phenomena in nonlinear 
media established in the process of the analysis may play an essential role in understanding 
tendencies of evolution processes in the problem of obtaining the spectrum of elementary par- 
ticles in a unified field theory and explaining and predicting the spectrum of biological, 
economic, and social structures as products of self-organization of processes in correspond- 
ing media. 

7. In this approach the medium as a whole contains in its material characteristics in 
nonmanifest, potential form all types of structures which can occur in it and stably or meta- 
stably exist as the asymptotics or a type of intermediate "goals" of the evolutionary de- 
velopment. 
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CLASSIFICATION OF SOLUTIONS OF A SYSTEM OF NONLINEAR DIFFUSION 

EQUATIONS IN A NEIGHBORHOOD OF A BIFURCATION POINT 

T. S. Akhromeeva, S. P. Kurdyumov, 
G. G. Malinetskii, and A. A. Samarskii 

UDC 517.958 

The theory of reaction-diffusion systems in a neighborhood of a bifurcation point 
is considered. The basic types of space-time ordering, diffusion chaos in such 
systems, and sequences of bifurcations leading to complication of solutions are 
studied. A detailed discussion is given of a hierarchy of simplified models (one- 
and two-dimensional mappings, systems of ordinary differential equations, and 
others) which make it possible to carry out a qualitative analysis of the problem 
studied in the case of small regions. A number of generalizations of the equations 
studied and the simplest types of ordering in the two-dimensional case are de- 
scribed. 

i. Two-Component Systems and the Classification Problem 

In many systems which are studied in physics, chemistry, and biology there arise self- 
sustaining structures of various types [24, 32, 36, 40, 42, 62]. The question of the prop- 
erties of nonlinear media where structures are formed and of the general regularities of 
their occurrence is one of the fundamental questions of modern science. 

We shall characterize the deviation from equilibrium in the systems studied by a para- 
meter I (I = 0 corresponds to the equilibrium state). It follows from classical thermo- 
dynamics that the evolution of such a system proceeds in the direction of increasing entropy; 
any order hereby vanishes. A necessary condition for the existence of stable structures is 
exchange with an external medium (the system must be open). 

For small deviations (0 < i < I0) concepts of linear nonequilibrium thermodynamics are 
applicable. This theory describes processes in a neighborhood of thermodynamic equilibrium 
and "... encompasses all cases where the flows (or velocities of irreversible processes) are 
linear functions of the "thermodynamic forces" (gradients of the temperature or concentra- 
tions)" [52]. It has been shown that in this range of parameters a stationary state of the 
system is close to the equilibrium state (for each value of I it is unique and stable). It 
is therefore said that all such states lie on the thermodynamic branch. 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennye Problemy Matematiki, Noveishie 
Dostizheniya, Vol. 28, 207-313, 1986. 
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