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COMPLEX MULTIDIMENSIONAL STRUCTURES 
OF THE COMBUSTION OF A NON-LINEAR MEDIUM* 

S.P. KURDYUMOV, E.S. KUFKINA, A-B. POTAPOV and A.A. SAMAP.SKII 

The combustion process in a medium with the thermal conductivity kT==koT* 
and volume heat source ‘Q(Tj=q.T~ is examined. Under specific conditions 
combustion occurs in a regime with peaking and the heat localization 
phenomenon occurs, leading to the occurrence of non-stationary dissipative 
structures whose number and form are determined only by the properties 
of the medium. The structures are described using the solutions - eigen- 
functions - of the problem for a quasilinear elliptic equation. An 
analytic method of constructing approximations to the eigenfunctions is 
proposed, which makes it possible to estimate their number, investigate 
the architecture and numerically construct a number of eigenfunctions. 

Introduction. 
The theory of dissipative structures and autowave processes - or synergetics - which has 

been set up in the last few years, examines from a single point of view the processes of self- 
orqanisation in different physical, biological and chemical systems /l-3/. It has been shown 
how, without contradicting the second law of thermodynamics, one can explain the tendency to 
complication /3/. The development of organised structures takes place due to the dissipation 
of energy in open systems situated far from the state of thermodynamic equilibrium /l/. The 
universality of the properties of the dissipative structures is explained by the fact that, 
despite their different nature, they are described by the same non-linear equations. As a 
rule these are sets of parabolic equations with non-linear sources ans sinks /l-3/. The 
development of self-organization in many cases is mathematically compared with the losses of 
stability of the homogeneous solution or with the appearance of time-periodic solutions of 
the wave or autowave type /4, 5/ or with spatial-inhomogeneous steady states /l-3/ or with 
tha development of macrostochastic regimes /6-81. 

Another class of self-organization phenomena exists, however, in which the violation of 
the homogeneous state is acccmpanied by the emergence of non-stationary dissipative structures 
when very rapid processes develop in a medium. This paper investigates non-stationary thermal 
structures which occur in a medium with a non-linear thermal conductivity and a volume heat 
source. In /g-21/ it is shown that under specific conditions combustion processes occur in 
this medium in a regime with peaking, for which some quantities (for example, the temperature 
distribution maximum) arbitrarily increase after a finite time t, (the peaking time) at least 
one point in space. 

Regimes with peaking are an intermediate asymptotic form of actual very rapid processes 
observed in nature. Combustion in a regime with peaking has a number of interesting properties 
which stimulate detailed analysis. They have a bearing on the paradoxical phencmenon of heat 
localization, under which heat and combustion do not propagate into a cold medium. Intense 
energy release takes place in the area of localization and the temperature approaches infinity 
after a finite time t,, and outside this area the temperature either equal zero, or is limited. 
The latter is determined by the character of the initial data. Non-stationary dissipative 
structures emerge in the medium - intense combustion processes which are localized in separate 
parts of the medium. Production, self-maintenance and multiplication of structures of that 
type is observed in plasma /22/, and the T-layer can serve as an example /23/. 

Regimes with peaking and the localization phenomenon occur in a wide range of problems 
of mathematical physics. There is an extensive literature on them, and reviews are given in 
/g-12/, /18/, see also /24-271. In nature, of course, there are no processes in which any 
quantity increases to infinity. But all the features of regimes with peaking, as shown in 
/28, 29/, appear when the quantities increase a finite number of times with respect to the 
law of peaking, and this number is determined by the properties of the non-linear medium 
considered. 

The temperature distribution in the localization areacanhavescomplex non-monotonic 
form, i.e. structures of varied complexity can develop in the medium /9, 10, 13, 16f. In 
the one-dimensional case it is shown that the eigenfunctfons of a non-linear selfsimilar 
problem determine all types of structures and waves in a medium with specified parameters /lo/. 

The following problem arises: do two-dimensional and three-dimensional thermal structures 
which have a complex form of localization area with a special arrangement of temperature 
distribution maxima in it exist and, if they do, how will the emergence and evolution of these 
canplex structures occur? To solve this problem, it was suggested in /30, 31/ that we consider 
a new class of selfsimilar solutions of an equation of quasilinear heat conduction with a non- 
linear source, namely multidimensional solutions which are angle-inhomogeneous. This formu- 
lationisanewand untraditional one for thermal problems. It is connected with the fact that 
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selfsimilar solutions - and, in general, invariant-group solutions - transmit the character- 

istic features of the processes examined, and are not simply particular solutions of problems 

in mathematical physics. They are the intermediate asymptotic forms of a wide class Of other 
solutions with arbitrary initial data /32/, and, for a number of processes, they are even the 
asymptotic forms of another class of equations which themselves do not permit invariant-group 
solutions /19/. 

when a selfsimilar eigenvalue and eigenfunction problem is formulated and a non-linear 
elliptic equation is obtained, the problem of solving it arises. It is necessary to clarify, 
first of all, whether there generally are solutions which are unlike central-symmetric solutions. 
The following problem arises when attemptinq to solve this problem numerically: in order to 
construct different eigenfunctions using the iteration method, we need to have fairly good 
initial approximations to them, and consequently we first need to investigate the problem 
analytically. 

The new approach developed in /9, 10, 30, 31, 33, 34/, also in /35-37/, based on linearis- 
ing the non-linear heat conduction equation around a partial spatial-homogeneous solution with 
the additional condition of connecting the solution with the asymptotic form of the non-linear 
problem, played a decisive role in the analytical investigation. This approach is similar to 
the search for solutions in classical quasi-equilibrium thermodynamics, when they are sought 
as deviations from the equilibrium state, but in the case of non-stationary thermodynamics, 
deviations from a background which is increasing in a regime with peaking are considered. It 
is essential to note that the use of this approach in one special case enabled us to reduce 
the selfsimilar equation to Schradinger's stationary equation with a Coulomb potential and 
corresponding boundary conditions /9, 16, 341. This suggested the existence of exotic 
structures of the combustion of a medium with an area of localization, for example, in the 
form of a dumbbell, star, etc.. 

Soultions of the linear problem were subsequently investigated in detail and contrasted 
with solutions of the non-linear selfsimilar problem. Linearization operates in the central 
part of the structure, describing the whole region of non-monotony of the multidimensional 
selfsimilar temperature distribution. At the edge of the area of localization the termpature 
asymptotically approaches zero. In the one-dimensional case, by "connecting" the solution of 
the linearized equation in a continuous way with the asymptotic form of the non-linear problem, 
we were able to obtain a good approximation to the eigenfunction of the non-linear problem 
/30/, which differs from them on average by 5%. Previously the eigenfunctions of the one- 
dimensional problem were constructed numerically /lo, 16/, at the same time their number was 
finite and was determined only by the parameters of the non-linear medium. The method of 
connection enabled us to obtain all the existing eigenfunctions. In thise sense connection 
with the asymptotic form plays the role of the quantum spectrum condition, equivalent to the 
role of the normalization condition for the SchrGdinqer equation or Bohr's selection principle. 

In order to carry out a similar "connection" procedure in the two-dimensional and three- 
dimensional cases, in this paper we construct two classes of eigenfunctions, which differ from 
each other in the maxima-arrangement principle. The analytic approximations obtained were 
very good and enabled us numerically to construct eigenfunctions of non-linear selfsimilar 
problem and thereby to confirm their existence in most cases. 

Consider the properties of these multidimensional selfsimilar solutions and the laws 
of their development. Thus, they are localized dissipative structures of the combustion of 
a non-linear medium, which develop in a regime with peaking. The problem of localization is 
discussed in Sect.5. Structures of a different type differ in the number of maxima in the 
area of localization and by the shape of the area of localization. At the same time the 
maxima increase in the regime with peaking and move to the centre of the symmetry and, as 
t+t, "hit" it . Combustion outside the area of localization of the structures either does not 
take place at all, or operates slowly (with other t,), The number of eigenfunctions and their 
form are determined only by the parameters of the non-linear medium. Consider the two-dimen- 
sional case as the clearest one. Very beautiful structures exist, the shape of whose area of 
localization is an ellipse, star, cross, rectangle, etc.. We can roughly characterize the 
architecture of the complex structure using two parameters. For this we need to divide it 
into layers (in one case - concentric circles, in the other - rectangles) and observe the 
number of maxima in the layer. The more complex the structure, the more layers it has and the 
more maxima in it. There is a similar picture in the three-dimensional case /23/. On the 
whole the architecture of the complex three-dimensional structure recalls the structure of 
the atom, which is characterized by the number of electron shells and the number of electrons 
in them. (In our case, there are the layers and maxima.) There are also fundamental differences, 
however. Sect.4 provides a detailed description of the architecture of the eigenfunctions. 

Another fundamental property of non-linear media is connected with the representation 
of the complex structure: the principle of amalgamating simple structures (which have one 
maximum in all) into complex.structures, or the principle of superposition in non-linear 
problems /9/. The problems of amalgamating simple structures into complex ones, the laws of 
constructing the organisation of a non-linear medium, and also the problems of the stability 
of this organisation, are considered in Sect.5. In particular, it is established that only 
an organization which corresponds to one of the eigenfucntions of the selfsimilar problem 
can exist long-term in a non-linear medium. If combustion is not induced in accordance with 
the profiles of the eigenfunctions, it either fades or, "collapsing", degenerates into 
combustion in the form of simple structures. 

1. Formulation of the problem. 
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We consider the process of combustion in a medium with a volume heat source and thermal 
conductivity which depend on the temperature in the form of a power law. The temperature 
distribution T(r,t) in the space satisfies the equation 

where xO>O.q ~>O,o>O,fi~1,c,>Oare specified parameters. 
It is assumed that the density depends on the radius in the form of a power law and in 

a special case it can be constant: p-A+, A,s>O. 
Combustion is induced by specifying scane initial limited temperature distribution T(r, 

O)=T,(r)<m, which will subsequently be refined. 
The boundary conditions at infinity have the form T-O, sr,T"grad T-0 as r-+co. The problem 

consists of obtaining all the types of thermal sturctures that can arise in a specified non- 
linear medium. With this aim we investigate selfsimilar solutions of problem (1.1) of the 
form 

T (r, f) = g(b) y’ ‘(R+*) (6), “=&* E=I:I. (1.2) 

The substittttion of (1.2) into Eq.fl.1) uniquely defines the form of the functions 9 and v: 

and the form of the multidimensional selfsimilar equation with respecttothe fuection y. It 
is convenient to carry out a transformation of the coordinates: f=f& to==-g,c,-‘, r=r,r, r,= 

(xOqo-')"'. The function y(g) satisfies the quasilinear elliptic equation 

where T is the arbitrary parameter of the separation of variables (1.3). 
In acoordance with the formulation of the problem we shall seek selfsimilar solutions 

of Eq.(1.4), which satisfy the following boundary conditions: 

Y-=rn when E=O, y-0, grady-rO as z-r=. (1.5) 

Problem (1.41, (1.5) is an problem in eigenvalues r and eigenfunctions y(&~). We note some 
properties of the eigenvalues and eigenfunctions, which directly follow from an analysis of 
the functions g(t). Q(t) and Eq.fl.4). Since 8>1, then for the positive eigenvalue 7 the 
eigenfunctfon exists for a finite time t,=r anddevelops in a regime with peaking. For the 
negative eigenvalue r the eigenfunction ~(5, T) exists for any tXt and describes a decaying 
regime. Since we are interested in regimes with peaking, we will only consider T>.I). If 
the problem investigated has a solution for some value of T===T,>O, it also has a solution 
for any other value of T---T:>U. These solutions are connected by a similarity transformation 
/lo, 16/. The above property of the eiqenfunctions and eiqenvalues enables us to consider 
not all the possible values of 5, but to choose a convenient one. Henceforth we will assume 
X=($-i)-“ 

Thus, first we investigate the eigenfunctions of the selfsimilar solution (1.5)‘ (1.41, 
and then the conditions for their implementation, i.e. the stability. 

2. Selfsimilar solutions in the one-dimensional case, 
1. Three types of selfsimilar solution. Consider solutions of the above problem which 

are functions only of the variable F, (the plane, cylindrically- and spherically-symmetric 
cases). These selfsimilar solutions were examined in /lo, 13/, /16/. It was shown in /13, 
16/ that three different types of selfsimilar solution, describing.the processes of com- 
bustion of the medium, exist as a function of the relation between the indicators B and o- 
When l<JCo-+l the so-called HS-regime is implemented, which is a thermal wave, propagating 
with a finite front, whose amplitude and velocity increase in the regime with peaking. When 
p=oil the selfsimilar problem has a unique monotonic solution. It is a non-stationary 
dissipative structure which is localized in the fundamental length L, (Fig.1: the area of 
localization CD, the half-width AB). In the case of plane geometry and constant density the 
analytic solution has the form ~'38,' (see Fig.1) 

T(i,t)_q~,(l_~)-l’~[~ms’(~)]‘~=, 

LT = -$ [ -$ (0 -I- I)]“‘, t, = (q,oTp)-1. 

At the edge of the area of localization and outside it the temperature and thermal flux 
remain equal to zero, When B>o-tl the LS-regime is implemented , which is also considered in 
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this paper. 
We shall discuss in detail the properties of the selfsimilar solutions in the LS-regime. 

If i%-oi-i, the selfsimilar indicator n>O, and since r-E(l-tr-I)", the half-width of the 
temperature profile narrows with time. The selfsimilar solution cannot have a finite front, 
since its radius would also have to shorten. It follows from the asymptotic analysis that as 

E-+m the solutions have the asymptotic form /16/ 

y=cp + . . .( p= ,“y’, . (2.1) 

Fig.1 Fig.2 

Fig.2 Cylindrically-symmetric eigenfunctions which depend only on one variable E: Fig.2a 
shows all possible eigenfunctions, the dashed line is the solution of the linearized equation 
l+a,u(E), imposed on the second, third and fourth eigenfunctions; Fig.Zb shows the first three 
eigenfunctions and the linear approximations f"*(E) to them. 

If we substitute (1.2) and (1.3) into (2.11, we will obtain that the principal term of the 
asymptotic expansion of the temperature as r-cm does not depend on time: 

(2.2) 

This fact indicates combustion localization: the temperature increases in the regime with 
peaking in the shortening region close to the centre of symmetry, at the same time as outside 
this area it approaches the limit , time-constant temperature distribution (2.2). 

In the multidimensional case three regimes of combustion of the medium with peaking also 
occur for the same relations between fi and a. The asymptotic form of the eigenfunctions of 
the LS-regime has the form (2.1), where C is the function of the direction: 

c==c(b/6)==c(e,cp). 
2. The snectrum of selfsimilar solutions in an LS-re$me. We shall write Eq.tl.5) for 

the case when y depends on only one variable f: 

(23j 

The numerical calculations of problem (2.3), (1.5) showed that it has a finite number N of 
eigenfunctions y,(E), i-l, 2, . . . . N. The number of eigenfunctions and their qualitative behaviour 
depends neither on the character of the density distribution of s, nor on the geometry of the 
region Y and are determined by the formula 

B--i N=[a-[[[a]~-~]] +-i, ‘L=- B_a_-l. 

Fig.1 shows graphs of all the possible eigenfunctions (N=5) for the case 0=2, @=3.5,~==2, v=l. 

The first eigenfunction decreases monotonically. The following are non-monotonic, with a 
number of local extrema which equals their number. In the domain of its non-monotony, as 
follows from the calculations, the eigenfunctions perform oscillations around the hanothermic 
(spatial-homogeneous) solution of Eq.(2.3): ya=l. These oscillations are small and decrease 
as the number of eigenfunctions increases, and also as IS and B increase. The calculations 
also showed that the eigenfunctions reach the asymptotic form with good accuracy for small 
values of 5 inxnediately after leaving the domain of non-monotony. In the domain of non- 
monotony the eigenfunctions are well described by the solutions of Eq.(2.3) which is linearized 
around YO: 
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(itisconvenientto assumethat 1~(0)=1, while y=l+uu, a<~), if the asymptotic form a of the 
solution of the linear problem is correctly specified. Each eigenfunction is described by 
the solution of the linear problem with its amplitude ai, whilst the leading eigenfunction 
in the largest domain (by comparison with the domains for the lowest eigenfunctions) agrees 
with the solution of the linear equation. It is close to it in the whole area of non-monotony. 
The remaining eiqenfunctions "transmit" only one, two, etc., oscillations of the solution of 
the linear equation in accordance with their number. Consequently, we can construct the 
eigenfunctions with good accuracy (besides the numerical solution) , if we solve the problem 
of selecting a number of discrete values of CL. This problem was solved using the connection 
method. The space id divided into two parts: OCg<bl and g,<e<w. In the first domain l-tan 
is chosen as the approximate solution of 3 the asymptotic form Q-p is chosen in the 
second, and the unknowns a,C,& are determined fromtheconnection condition, i.e. from the 
equation when g-E, of both functions and their first and second derivatives. It appeared 
that the number of these approximations equals the number of eigenfunctions and they well 
describe the behaviour of the eigenfunctions qualitatively and quantitatively (we can improve 
the quantitative agreement if we take ghinstead of 5). Themainvalueofthisprocedureisthe fact 
that we were able to extend the concepts of connection to the multidimensional case and we 
can numerically construct a number of fundamentally new structures. 

3, Two-dimensional eigenfunctions. Construction of approximations. 
We shall now construct two-dimensional eigenfunctions. We shall linearize Eq.tl.4) 

around the homothennic solution: y=li-U, {rt!<i. We will then obtain a linear equation with 
respect to the function u(& cc): 

(3.1) 

The direct transference of the connection procedure to two-dimensional and three-dimensional 
problems presents great difficulties and does not essentially simplify the problem: we need 
to solve the problem with a free boundary t,(m), and a and C are transformed from numbers into 
infinite sets of Fourier coefficients. However if we solve the problem in coordinates, where 
the variables in Eq.(3.1) are separated, and we assume that the eigenfunctions have some in- 
ternalsymmetry, i.e., theyarefairlyaccuratelydescribedusingoneharmonic, the connection 
procedure is considerably simplified. There are two such sets of coordinates - polar and 
(for integral s) Cartesian - for the two-dimensional problem. In accordance with this, two 
sets of approximations to the eigenfunctions were also constructed. 

1. Approximation of the E.ihlm class. We shall solve Eq.(3.1) in polar coordinates using 
the method of separation of variables e and g. Then the general solution has the form 

lL= 
2 G%,,(~)c~(v -!- (~'a& (2.2) 
IlIZ20 

where 

R, (E) = $““.lf (- a,, b,,, ’ -; -- ’ E’) , 

til,,=a-nzis, b,- If2m/s. a-(@-l)/(p-o-l), M(o, b, z)is a degenerate hypergeometric function, 
and CL, are arbitrary constants. 

We will assume that the m-th harmonic predominates in the eigenfunctions with respect 
to 9. Then in series (3.2) we can confine ourselves only to the term cc,,R,(~)eos(rnrp), and 
the function C'(p) in the asymptotic form has the form ~(~)=c~i~~cos(~~) and, consequently, 
we can use the connection method. Two functions are constructed for this: 

(3.34 

(3.3b) 

The quantities CL,, Cj,CTA,,$,,$_I are determined from the following conditions: i, and c+, are 
positive, the function j, has two continuous derivatives, 6, has one, and the number of 
extrema of the functions equals their number. The half-sum of these functions is taken: 

G(E)=0.5(f, if;+,)- 1, E < b* 
G (&) = C&-p = 0.5 (Cj + CT;+*) F** P>$+,. 

and their half-difference: 

R (&) = 0.5 (fj - !;+I) = GjRm (& g<EjP 

R(C)= 0.5(C, -c;+,)E-P=C,&-P, E >Gl 

and the following function is taken as the approximation: 

~~~(Bt9))~G(S)fR(tfeos(mrp), 

which equals l+u for small I and C(cp)Y$-p for large g, i.e. it satisfies the boundary 
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conditions. It is convenient to denote these approximations and the corresponding eigen- 

functions by Ejblm. It follows from Eqs.(3.2) and (3.3) that for each m the number of 

approximations which we can construct equals the number of real positive zeros of the 

function k(E): 

N,,=im,r= [a..-t[a.,la~-~ll+1. (3.4) 

It follows from (3.5) that as m increases the number of approimxations N, decreases. 

When m>as the function R, becomes monotonic, R,,,(i)+0 when %>O and it is impossible to 

carry out the connection and construct approximations. Therefore, the overall number of 

approximations EjhIm, by which the number of eigenfunctions is estimated, comprises 

NW= 2 Nm. 
o<m<as 

2. Approximation of the Ei/j class. Consider the constant density case s=2. Since 

%aia%=%,ata%,t-%,ajae,, where %,, %Z are Cartesian coordinates, the linearized equation allows of 

separation of the variables %, and %?. If the parameter sP2, but is integral, separation 
is carried out with respect to the variables 

2 scp &=-p-cos-, 
S 2 

%r=$p'zsin$L. 

The solution of Eq. (3.1) is sought in the form 

11 = a& (%I) + cd (W, G(z)=+a.0.5, '-I-' za), 

where a,,ar are constants. Matching with the asymptotic form is carried out separately with 
_ 

respect to %, and g,. For this, by analogy withtheprevious case, we construct the functions 

1 + aF (4, M4=(,(,,-P, I x I <EL% 
IzI>&j* 

They agree in their structure with the linear approximations to the one-dimensional eigen- 
functions in the plane case (one spatial variable), which are obtained in Sect.2 and depend 
only on one coordinate %d. Their number is determined bythe formula 

N,~i,,,~[a-[[ala-']]+1. 

The following function is taken as the required two-dimensional approximation: 

BIN(%lr %z)-j‘(%1)j~(%*). 

At the same time for I%,l<%oi, 1%,1<%0, 

We shall denote these approximations and the corresponding eigenfunctions by Eijj. The 
functions Ei/j and Ej/t are identical apart from an angle of rotation n/s, and we can 
therefore assume that t<j. The total number of approximations El/j is estimated from the 

formula N=N,(N,+1)/2. 

4. Architecture of the two-dimensional eigenfunctions. 
The presence of approximate solutions of the selfsimilar problem enabled us to obtain 

many eigenfunctions numerically and thereby to confirm their existence. At the same time 
the functions g served as the initial approximation guaranteeing the convergence of the 
numerical iteration process to the corresponding eigenfunction. More than 20 eigenfunctions 
were obtained for different values of p,o and s. In most cases the predictions of the linear 
analysis hold well in the arrangement of the maxima and the ratio of their heights. 

1. Architecture of eigenfunctions of the EjMm class. All the EjMm eigenfunctions 

have the form of a set of maxima ("hills"), arranged near the point %=O. It is convenient 
to classify them by the number and arrangement of the maxima according to the values of m 
and j. 

When j=l the eigenfunction has m maxima situated on the circumference at the corners 
of a right m-gon. In the case j-2 the maxima are arranged in two layers on two concentric 

circumferences with m pieces in each at the corners of the right m-gons, which are rotated 

by an angle of n/m with respect to each other. The other EjMm eigenfunctions are 

organised in a similar way: they have jm maxima situated in j layers on concentric circles 

at the vertices of right m-gons. Thus, complication of the organization occurs in two 
directions: an increase in the number of maxima in the layer and an increase in the number of 
layers. This is illustrated schematically in Fig.3 (8=2.5, o-l, s==2). The figure also shows 
the shapes of the effective areas of localization of the corresponding approximations (lines 
of the level g-0.1). The heights of the maxima in each given eigenfunction increase mono- 
tonically as one move away from the centre. 

2. Architecture of the eigenfunctions of the Eilj class. As in the case of the EjMm 
eigenfunctions, we shall describe the form of the linear approximations Ei/j, which indicates 
the number and arrangement of the maxima and minima. We shall first consider the case s=2. 
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When --m<x<= the function f,(x), I<iCN,, and i maxima and 2-1 minima. The function 
&,,(f,,&) will have a maximum at the points at which j,(t,) and j,(b) simultaneously have a 
maximum (the same holds for the minima). Consequently, the approximation Eilj consists of 
i series of maxima, with j pieces and i-i series from j-1 minima in each. Fig.4 illustrates 
schematically all the eigenfunctions El/j given by the linear approximation for the medium 
p4.5, a-4, s-2. 

For other values of s the maxima and minima are arranged along the lines l$l=consn and 
]%*1=coIlst. 

It is interesting that sometimes the arrangement of the maxima in the eigenfunctions 
Ei/j and EjMm agrees or is similar. In this case they describe one and the same actually 
existing eigenfunction. The eigenfunctions ElMO and El/l, ElM4 and E2/2. ElMs and El/2 are 
examples in Figs.3 and 4. In the series (both horizontal and vertical) the values of the 
maxima increase from the middle to the edge, but strict regularity in the increase of the 
maxima as one moves away from the centre of the eigenfunctions is sometimes violated. 

3. Results of the numerical calculations of the selfsimilar problem. we were able to 

construct eigenfunctions of both classes which are well described by approximations. The 
eigenfunction E2M6 of the medium with p-3.5, a-2, s=2.5 is represented in Fig.5 The arrangements 
of the maxima and their heights are given quite well by the linear approximation. But in 
several cases fairly considerable deviations fromtheapproximate solutions were observed. 
For example, the approximation E2M3 consists of two layers, in each of which there are up to 
three maxima, at the centre g-l. A significant minimum is observed at the centre of the 
numerically constructed eigenfunction (b-3.5, o-2, s=4), and the maxima of the extexnal layer 
were split and have a smaller height in comparison with the first layer (see Fig.6). It is 
possible that at least three harmonics (m-0,3,6) should be used to describe this structure 

in the linear approximation. 

Fig.5 
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Fig.6 

Hcwever, not all predicted eigenfunctions are constructed. In a number of cases the 
iteration process did not converge and it was difficult to draw any conclusions about the 
existence of corresponding eigenfunctions. In the family Ejhlm, without considering the one- 
dimensional eigenfunctions for m==O, we were able to construct about 30% of the predicted 
eigenfunctions. For example, in Fig.3 of nine predicted eigenfunctions two are obtained 
(ElM2 and ElM4, which we can consider as El/2 and E2/2), and for the eigenfunction E2M2 the 
iteration process converged to the eigenfunction E2/3. For the family Ei/j the results are 
significantly better. Thus, five of the six predicted eigenfunctions (besides E3/3 are 
obtained in Fig.4. 

It is interesting to note that if the approximations EjMm and Ei/j are similar, then 
the more often the eigenfunction is implemented, the more similar it is to Etjj (obtained in 
five cases), irrespective of the coordinates in which the calculations are carried out. The 
reverse was only sometimes observed: when 8=4.5, 0==3, s=2 the El144 eigenfunctions (YW=?f) 
were implemented, and not E2/2 (at the centre of the minima). 

Thus, the question of the number of different classes of two-dimensional eigenfunctions 
and of the number of eigenfunctions in each class is still open. Confirmation of the existence 
of complex two-dimensional structures is the main results of the investigations. 

5. Localization and conditions of formation of thermal structures. 
1. The numerical calculations of the Cauchy problem for the two-dimensional and three- 

dimensional heat conduction equations /17, 39/, and also the numerous analyses of the one- 
dimensional problem, showed the following /lo, 16/. Selfsimilar solutions are unstable with 
respect to the initial data in the Lyapunov sense. Small perturbations of the initial 
distribution lead to a small change in the peaking time. This, in turn, leadsto anarbitrarily 
large difference between the solutions beginning from some instant of time which is close 
to the moment of peaking. The stability of selfsimilar solutions in a regime with peaking 
was first investigated in /lo, 33/, where the concept of the C-stability (structural) of self- 
similar solutions is introduced, i.e. stability in the sense of arrival at a selfsimilar 
regime. In the LS-regime only the first eigenfunction , which has one maxima in all, is a 
C-stable selfsimilar solution. Complex eigenfunctions do not possess this property, therefore, 
in order to obtain them, we need to excite the medium to resonacne, i.e. to formulate as the 
initial conditions a profile which is selfsimilar or fairly close to it. For an approximation 
to the moment of peaking these structures as a rule decompose into separately combusting simple 
structures or merge into one. However the time that the complex structure exists is large: 
At-0.99t,, and the temperature is able to increase by a factor of 10-100. 

The principle of the amalgamation of simple structures into complex ones and the principle 
of superposition in non-linear systems /9/ is connected with the representation of the complex 
structure. All the eigenfunctions of the selfsimilar problem (besides the first, which 
describes a simple structure with one maximum) can be considered as an amalgamation of several 
simple structures (each of which has its moment of peaking trt, as if they burn in isolation). 
The complex structure has yet another moment of peaking, t,=r, which is common for the whole 
system. This was first shown in /33/ for one-dimensional structures, where the interaction 
between two simple structures and one temperature maximum was shown. It is shown that if the 
distance I between them is greater than the so-called resonance length LT.. they burn in- 
dependently, if It&' they fairly quickly merge into one, and if lzl,zLr', they consistently 
burn for a long time and form a complex structure with two maxima, corresponding to the second 
eignefunction. The estimate for L; in the plane case for the constant density s=2 iS 

obtained in /14, 38/: 

Stricter estimates are given in /21, 40/. 
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a b 

Fig.7 

Similar analyses were made for two-dimensional structures in /17, 391. At the same time 
not only the distance between the simple structures is important, but also their configuration, 
which must have a certain symmetry. The results of this paper confirm this conclusion. 

Thus, in order that the several maxima arranged in the space develop with one moment of 
peaking, preserving its shape, it is necessary that their configuration corresponds to the 
multidi~nsional eigenfunction. The basic organizing principle when amalgamating simple 
structures into complex ones is the synchronization of the processes occurring in them (the 
establishment of a c-on maent of peaking). 

2. Selfsiiniar solutions in the LS-regime do not have a finite front. However, as is 
clear from the above drawings, they quickly arrive at an asymptotic form which corresponds to 
the solidified temperature profile. This fact indicates localization of the combustion 
process in the LS-regime. From the theorems of operator comparison and the stationary state 
method /l&20, 40/ there follows the localization of the simple structures with one temperature 
maximum. In the case of complex structures the localization is confirmed using numerical 
calculations /lo, 17, 33/. The line of level 0.05-0.01 in fact determines the shape of the 
area of localization. Inside this area the combustion process is described by a selfsimilar 
law, which is only distorted near the boundaries. Theshapa of the areas of localization of 
the two-dimensional structures are shown in Figs.3 and 4. As we see, they have an unusual 
form: a cross, a star, an ellipse, a rectangle, etc.. Numerical calculations of problem 
(1.11, (1.2) confirmed the conclusion concerning localization and the shape of the areas of 
localization. 

An example of this calculation is shawn in Fig.7. A selfsimilar profile was taken as 
the initial profile. The localization structure has the tpye E2f2, p=Z.r). o=l, s=2. The 
peaking time t,-0.6535. The level and section lines for the instants of time t,=o.o (Fig.7af 
and t,=0.6250 (Fig.7bf are given. Selfmaintenance of the structure architecture occurs; 
however because of random perturbations in the numerical computation the profile deviates from 
the selfsimilar one, denoted for t=ts by crosses. It is clear that the structures are indeed 
localized, and outside the area of localization up to t-t, the temperature remains equal to 
zero. The selfsimilar profile, preserved over a long time,isreproducedin ever smaller scales. 
It decomposes only when the temperature increases by a factor of roughly 50. The existence 
time is close to the moment of peaking. 

Remark. The effect of localization of the diffusion processes is theoretically strictly 
proved for a wide class of media in problems with boundary regimes and for the Cauchy problem 
in a medium without sources (see review /X,18,41/; possible applications are discussed in 
/Q, 11, 28, 29, 41-46/j. The localization phenomenon also occurs in hydrodynamic processes 
fll, 47-49/ and in other media fll, X2/. 

3. A distinctive feature of the selfsimilarity E=r[d(t,-t)"]-' examined when n>O in an 
LS-regime is the scale contraction. The area of intensive combustion with maxima contracts 
to the centre, and when #et, the limit temperature distribution T=Cr*, remains, which 
corresponds to the asymptotic form. Thus, the asymptotic form as 6-0~ gives a representation 
about the future structure (t-t,). On the other hand, the behaviour of the selfsimilar solution 
at the centre for E;, which is close to zero, corresponds to the past of the structure, when 
larger values of r correspond to small E and, correspondingly, the area of r-non-monotony 
has larger dimensions. Thus, examining the character of theprocesses at the present in 
different spatial parts of dissipative structures with a space-time invariant of the &= 
r[d(t,-t)"]-' type, we can judge their behaviour tendencies and the organization of processes 
in them in the past and in the future. 

Conclusion. 
At the present time there is great interest in studying the asymptotic forms of non-linear 

processes, since they exhibit the most characteristic features of processes in different media. 
Dissipative structures are often such asymptotic forms: for example, Spectra of stationary 
and oscillating solutions in /l-3/, and travelling waves /3-5/, /31/. These asymptotic forms, 
as a rule, are invariant-group, selfsimilar solutions /7, 50, 51/. 
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In this paper we have investigated the emergence, development and significance of 
complex multidimensional thermal structures in a medium with a non-linear thermal conductivity 
and a volume heat source, and how their number and type depend on the parameters of the non- 
linear medium. A spectrum of structures was constructed for selfsimilarityofthe form g=axt". 
A spectrum of shapes which are only characteristic for a given non-linear medium and are 
defined only by its parameters was obtained. The fundamental statement is the proof of the 
fact that a medium, by virtue of non-linearity, contains in potential form all the structures 
which can exist in it at a developed asymptotic stage and which the processes occurring in 
it can approach, as they approach attractors. It is interesting that these results are 
similar to the ideas of the ancient philosophers about the -potential undeveloped shapes 
contained in a single originally homogeneous substance. 
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