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A NON-LINEAR ELLIPTIC PROBLEH WITH A COMPLEX SPECTRUM OF SOLUTIONS* 

V.A. GALAKTIOMOV, S.P. KURUYUMOV, S.A. POSASHKOV and A.A. SAMARSKII 

Radially-symmetric positive solutions of a non-linear elliptic equation 
in RN, which arises when examining the unbounded selfsimilar solutions 
of a quasilinear parabolic equation with a source, are considered. It 
is shown that the elliptic problem has four different families of 
solutions, three discrete (denumerable) solutions and one continual 
solution. In the one-dimensional case the solutions are constructed 
numerically, and the branching pattern is given. 

1. Introduction. 
1. In this paper we examine a class of unbounded selfsimilar solutions of a quasilinear 

parabolic equation 
.u,-V(IVU~TU)+U~, DO, x=RN, (1) 

where u>O, fi>o+l are fixed constants, and V(*)=grad.(-). Under defined conditions, we can 
consider (1) as the equation of heat diffusion in a continuous non-linear medium with thermal 
conductivity k-lVwI">O, which depends on the temperature gradient u=u(t, 2). At the same time 
there is a volume energy release in the medium, and the strength of the heat source Q=u'>O 
at each point of the space is determined by the value of the temperature. Many properties 
of the solutions of Cauchy's problem for (1) have been examined in detail at the present time. 
It is well-known, for example, that due to the intense energy release (pal) the combustion 
process can occur in a mode with peaking. In other words, the Cauchy problem for (1.1 cannot 
have a (time) global solution, and at some instant of time 1-T,<+= (the peaking moment) 
the amplitude of the solution becomes infinitely large: 

supn(t,z)++-, t+T,- (2) 
SUP 

(see the review in /l, 2/). 
The conditions of global solvability and non-solvability as a whole of the Cauchy problem 

for (1) are obtained in /3/ (see also the bibliography therein), where it is shown that for 
any lCB<o+l+(a+2)/N all the non-trivial (a*O) solutions are unbounded in the sense (2). 
If p>u+i+(u+2)/N, then as a function of the value of the initial perturbation u,(s)=n(O,t)> 
0 in RN, both global solutions - determined for all t>O- and unbounded solutions are 
possible. In addition, the conditions of the localization of unbounded solutions of Eq.(l) 
are obtained in /3/. The unbounded solution is termed localized /2/ if it increases to 
infinity as t+Tp- in a domain of bounded dimensions. Andconversely: if u(t, z)+- as t-T,- 
everywhere in Rn,tiere is no localization. It is established in /3/ that for (1) the latter 
occurs for all'fie(l,a+l).Using numerical calculations, and also scme qualitative estimates, 
it was also shown in /3/ that in when @>u+l the solutions are localized. In particular, an 
example was given of a localized solution, represented in explicit form, when p=u+i. 

The range of parameters fi and s, for which the localization effect exists in Cauchy's 
problem, in the same for (1) as in the case of the equation W-V(u~Va)+uC. The proof of the 
localization of the finite unbounded solutions of the latter for $So+l, carried out in /4/ 
for N-l, is obviously transferred to the case of Eq.(l). 

2. Below we examine the "thin structure" of unbounded localized selfsimilar solutions 
of Cauchy's problem for (1) when p>u+i of the following form: 

u(t, z)- (T,-t)-“(‘-“B(q), 
2 

q- (T,-tj O-l~+r)ll(o+r~O-o * 

Substitution of Eq.(3) into (1) gives the following quasilinear elliptic equation for the 
function e(q)>0 : 

In accordance with the formulation of the initial problem we will concern ourselves with the 
non-trivial (Wo) non-negative solutions of Eq.(4), which satisfy, at infinitely distant 
points, the condition 

8(H)+ II++=. (5) 

The spatial-temporal structure of the selfsimilar solution (3) gives a represenation of 
the character of the evolution of the thermal perturbation in the above non-linear problem. 
In particular, it is obvious from (3) that when fi>a+i the combustion process is localized, 
and the effective width of the thermal structure zig(t) generated is reduced in time: 
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[I~*&) 11,” (To_t)I)-“+l)ll(‘+*‘(B-‘l*o as t--T.-. Thus, the elliptic problem (4), (5) obtained enables 
us to separate the manifold of thermal structures peculiar to this medium, and describe in 
detail their spatial geometry ("architecture", in the terminology of /5/). However an analysis 
of the whole set of solutions of this non-linear elliptic problem in R"in the general formula- 
tion is hardly possible, in spite of the recent successes in the theory of elliptic problems. 
Note, in this connection, that the basic advances in the theory are connected with variational 
methods (see, for example, /6-S/and their bibliography); as far as problem (41, (5) is 
concerned, it does not assume an equivalent variational formulation. 

We will therefore confine ourselves to an investigation of the special class of radially- 
symmetric solutions of problem (4), (51, which depend on one coordinate e-[jqll>O. All of 
them satisfy the boundary value problem for the ordinary differential equation: 

_?--(l”-‘le’,“~‘)‘_ iJ-(u+i) e’E__&+eB_o, 
to+3 (B-1) 

P-0, (6a) 

8’ (0) -0, (3(+-p) -0. 
(6b) 

It turns out that even in the one-dimensional case (N-1) the set of solutions of problem 
(6) is extremely complex. Roughly speaking, the spectrum of generalized solutions counsists 
of four families of non-monotonic non-negative functions 6=6(e), see Sect.3. At the same 
time three of them are discrete, whilst at least two consist of an infinite (denumerable) set 
of solutions. The fourth family is a "continuous" (continual) set. In Sect.3 for the case 
a--l, p-3, N-i a curious branching pattern is presented of the solutions of problem (6). 
arranged along some parameter. In addition, the functions 9 of three of the families can be 
combined in pairs, and we obtain as a result new solutions which are radially-asymmetric when 
N--l . The corresponding examples are presented in Sect.3. The functions 6-e(&) are 
constructed using numerical methods. 

Some preliminary investigations are made in Sect.2, enabling us to clarify the character 
of the oscillations of all the possible solutions of problems (6) with respect to the spatially 
homogeneous solution 6-(~-~)-UC8-". On the basis of the approaches developed in /2, 5, 9, lo/, 
this "local" analysis gives important (even exhaustive) information on the principles of 
constructing solutions of problem (6) , which is used in numerical calculations, and also 
determines the main content of theorems of solvability and the "number" of solutions. 

3. It will be no exaggeration to say that the theory of modes with peaking in non-linear 
media (see, for example, /2-5,9, lO/ and the review in /l, 2/) formulated a number of new 
non-linear elliptic problems with unique properties. This refers both to problem (4), (5), 
and to an equation of another type /2, 5, 9, lo/: 

(7) 

which arises when constructing unbounded selfsimilar solutions of a parabolic equation with 
a form of non-linearity that is different from that in (1): 

u,=v(U"vU)+u~, DO, ZERN. (8) 
The selfsimilar solution of Eq.(S) is sought in the form 

u(t,r)E(T,-t)-"'D-"e(r), cl-s(T,--t) -Lb-,o+l,,,llo-l,,. 

then e(q)>0 satisfies elliptic Eq.(7). Problem (71, (5) when o>O, ~>a+i has a discrete 
and obviously finite set of positive solutions, which possess an extremely diverse spatial 
structure. In particular, in the one-dimensional case M-(~-!)/[~-(&I)] different non- 
monotonic solutions exist /2, 9, lo/. When N>1 these solutions were constructed numerically 
/5/. 

We emphasize that the presence of a "discrete" spectrum of solutiens of Eqs.(7) or (4) 
is connected with the fact that they occur when investigating the selfsimilar solutions that 
develop in a mode with peaking. Here it is pertinent to make a comparison with the similar 
elliptic problems that appear with a selfsimilar description of the usual, non-peaking thermal 
processes. For example, an equation with a runoff 

which differs 
solution 

It is defined for all t (U(t,Z)+O as t-i-m); the function e(q)>0 is such that 

This equation differs from (7) in the signs for the three last terms, which sharply alters 

tit== v (UVU) -d, PO, z=RN, o>o, p1, 

from (8) in the sign in front of the lowest term, also allows of the selfsimilar 

u(t,s)~(T+t)-‘“~-“e(~), ~_Z(T+t)-LP-(‘+l)III’,P-l,,, w 
T-const>O. 

v,(ev,e)+ Bz;Et’ v,e.q +&-e-en-o, tpd3N. (IO) 

the set of solutions. A recent paper /ll/ shows that the elliptic problem (lo), (5) when 
u-0, b=-1+2/N, N>2 always has an infinite-dimensional set of solutions (when N--i it is two- 
dimensional). The radially-symmetric solutions of Eq.(lO) when o-0 and for arbitrary p>l 
form one continuous branch of the solutions /12/ (a continual set). In addition, all the 
solutions of the form (9) are asymptotically stable /ll, 12/. 

Thus, "discretization" of the spectrum of solutions (or, in other words, of the eigen- 
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functions of the non-linear medium /2/) occurs precisely for the development of modes with 
peaking which confirms the unusual reinforcement of the principles of evolutionary selection 
of stable solutions at a highly intensive stage of the thermal process. 

2. The "ljnearized" non-linear equation. 
1. It is easy to see that (6a) (like, however, the initial elliptic equation (4)) has 

an obvious spatially homogeneous solution 6=8,-(~-1)-""-'1. For convenience we will transform 
(6a), such that is converts to 6-1. This is achieved by the substitution 

fJ,(fi_*)--1,w--r)*, g,(~_~)t~-fo+'~l/(D+')(v-'t e- 

As a result we obtain the problem 

(lla) 

e!(o) -0, e(+-)=o. (1l-b) 

As already noted in the Introduction, the set (number and form of non-monotony) of 
solutions of problem (11) depends on the number and spatial behaviour of the different families 
of solutions of the equation, obtained as a result of linearizing the initial solution with 
respect to the homogeneous solution 6-1. Assuming e(g)+-Z(~) and carrying out the linear- 
ization procedure in (lfa) (formally assuming that Iz(E)\<:1), we obtain another (but all the 
same non-linear:) equation in the function z(E): 

$ (g-lZ’I’Z’)‘- “,I”,“’ z’t_t:(p--1)Z==O, p-0. (12) 

Naturally, z(e) need only satisfy one boundary condition of symmetry when E-0: 

z'(O)-0. (13) 
Problem (121, (13) in fact describes the possible oscillations of the soltuion e(e) of the 
initial problem (11) with respect to its homogeneous solution 6-i. 

2. We shall now formulate the main result of this section. 

Proposition. Suppose o>O,b>o+i and, in addition, 

a*_B(s-l)+i.&o 
a 

Then problem (12), (13) for any NT1 has four different families of solutions, which are 
infinitely oscillating in any neighbourhood of the point e--t-. 

(9) is a single-parametric family of solutions ~U-{z-z(E,n),n#O), which satisfy the 
boundary conditions ~'(0, u)-O,z(O, p)-=u; 

(0) is a single-parametric family of solutions 9.1{z=-z(E, a),a>O), such-that z(E, a)-0 
when +[O,a),z(&a)@O in some right-hand neighbourhood of the point E-a and z(a,a)-z'(a. 
a)=O. 

(se) is a double-parametric family of non-trivial solutions %={z-z(t, v), v=(v,, %)I, 
which satisfy the conditions z(O,v)=z'(O,v)-0 and are of constant sign in the fairly small 
right-hand neighbourhood of the point k-0; 

(S) is a single-parametric family of solutions SC-{z-z& A)), ~(0, A)-~'(0, A.)-0 and, 
unlike the functions from a, are infintely oscillating in some unlimited neighbourhood 

g-0. 
Note. These families of solutions also exist in the case cr.tO, when (14) does not hold. 

However, at the same time the proof that the solution can oscillate in the neighbourhood of 
infinity (the fundamentally important result) requires a fairly cumbersome analysis of the 
phase plane of a first-order equation, equivalent to (12). 

This proposition is proved in fairly general form in /13/. We shall briefly describe 
the main stages of the proof. The local existence of the solutions of 9',, and Q. is proved 
in /13/ using theorems on the fixed points of continuous transformations. The global 
properties (in particular, oscillability) of the solutions of 9", Q.,92, and St are established 
by reducing Eq.(l2) using the substitution 

r(E)=e'e+*)'aqG~), rl'In&, P-d&Jrl (15) 

to the first-order equation 

dP i U.cp-mP 
-a_- 

dv, (a+i)P I (qJ(o+2)lO+PI" +bm+cP ’ 1 
where the following notation is introduced: 

=. _ 8(-i)+i B- (u+u 
0 ’ m-0+2’ 

*-[N-i+- 2(o+i) u+2>0 I 
c_N_l+ (a+i)(e+4) >. 

a a ’ u 

(16) 

The main result of the analysis of Eq.(16) is as follows: for any p>u+i its phase 
portrait contains a limiting cycle encompassing the point (0,O). This conclusion means, by 
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virtue of (15), that all the solutions of the initial problem (121, (13) are infinitely 
oscillating in the neighbourhood E-+=. The pattern of phase trajectories of Eq.(16) looks 
particularly simple when a.>0 (see Fig-l, where N-i, 0-1, p-3). It is obtained during the 
numerical solution of different Cauchy problems for Eq.(12) with a simultaneous treatment in 
accordance with the transformation (15). Fig.1 illustrates the interior of the limiting 
point S. 

P 

Fig.1 

The letters Q,Se and S denote the trajectories which, as a result of the inverse 
transformation to (15), generate the families of solutions Q., 9% Sk. The trajectories Q and 
S are unique; therefore they generate single-parametric families of solutions. At the same 
time the trajectory S (the limiting cycle) determines the solutions z(E) from S, which are 
infinitely oscillating in both the neigbbourhood of g-+ 00 and in the neighbourhood of the 
point t-0. The trajectories 92 form a bunch, and therefore the transformation, inverse to 
(15), determines the double-parametric family of solutions L&, v-(v,, vz). The trajectory 9, 
which determines the family g,,, is "wound" on to the limiting cycle S from the outside, and 
is not shown in Fig.1. 

We shall now present the asymptotic form of the solutions I(&) from 9', Q., 5% which 
determine the "local" dependence of the function z(e) on the corresponding parameters: 

*(~la+tlllo+o) 
, E-0, 

(Q) 4%)--m 
(,o afl -‘o+“‘o ( 1 al’o(f-e) ww.+o( (%-a) (*+‘q, pa+. 

u 

As far as the solutions from L% are concerned, when a'>0 (see /13/j 

(8 &k)‘%(‘+*ll~ ([v,~‘“+...I+[v,E’exp( +‘I-“%-“)+...]}. 

where U,'-m'{s.(U+~)[(a+2)/u~a./m]"}-', a-a.o/m. Here the rational part of the asymptotic form 
(the first square brackets) andthe essentially non-analytical part (the second square 
brackets) are naturally separated. It is impossible to write out the asymptotic form of the 
solutions fraa SI, each of which can be said to be an "essentially non-linear" solution (we 
recall that they are all produced by one trajectory of Eq.(16), which forms the limiting 
cycle). However, they indeed form a single-parametric family since problem (121, (13) is 
invariant with respect to the transformation 

t-4, P+*u"+*"l(%), a=-conat> 

(strictly, this fact determines the form of the transformation (15) which reduces the order 
of Eq.(l2)). 

3. Thus, two principal facts have been established: 
1) the families of solutions B,;Q., 9E. and S, of the "linearized" problem are continuous 

with respect to the corresponding parameters; 
2) all the solutions infinitely oscillate in the neighbourhood of 8-i-m. 
Then the representations developed in /2, 5, 9, lO/ enable us to draw the following 

conclusions. Each of the single-parametric families B,Q., S, must, in principle, produce a 
discrete (denumersble) set of solutions of the initial problem (11) with the same character 
of non-monotony in the neighbourhocd of 6-I. These sets of solutions can be conveniently 
denoted by 8-{9,), Q-(Q,} and S-(S) respectively. As far as the family L8.i.s concerned, 
here owing to the appearance of a new parameter (a., unlike the previous ones, is double- 
parametric) the set of corresponding solutions e(E) must be not discrete, but continual. 
Henceforth it is denoted by %-(W}. Here the index v-(v,) underlines the continuousness 
of the spectrum of these solutions. The need for a discrete lower index 1 is explained in 
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Sect.3. The degree of authenticity of these qualitative conclusions is verified numerically 
in Sect.3. 

3. Non-linear eigenfunctions (numerical results). 
For Eq.(lla) we can obtain, using a formal expansion, the following representation of 

the solutions in the neighbourhood %-+m: 

~(~),~~-c~+~lllb-~~+I~l+~(~-~~+IlIIb-lo+l~l), g*_, (17) 
where C>O is an arbitrary constant. At the same time in the case b>a+l we have e(e)-0 
as E-m, such that condition (1l.b) holds. 

Below the solutions of problem (11) with the asymptotic behaviour (17) in the one- 
dimensional case (N-l) when o--i, 8'3 are constructed numerically. 

The qualitative conclusions of Sect.2 are basically confirmed. Indeed there exist four 
families of solutions of problem (111 , which have topologically diverse local behaviour in 
the neighbourhood of the homothermal solution 8-I. Each solution from these families has 
its now constant C from (171, and henceforth we call these solutions eigenfunctions. The 
parameter C from (17) (it enables us to arrange all the sets of solutions), which corresponds 
tothe functions from the families {y,), {Q,} and I&"}, will be denoted by Cei, CQi and Cg 
respectively. We will discuss the family S below. 

1. Eigenfunctions frcm the family 9. The eigenfunctions (9'0 have the values 0(O)=EP+ 
1. Generally these solutions have a non-monotonic profile. The i index here and henceforth 
equals the number of extrema of the eigenfunctions. We are able to construct numerically 
several of the first eigenfunctions from 8 (see Fig.2). The parameter Ca' increases as i 

increases: C~'>C,',C~' is a finite non-vanishing quantity. It is obvious that, in the 
eigenfunctions which have extrema, a "buildup" of oscillations occurs alongside the homothermal 
solution 6-1, as in the linearized problem, and the inequality le~-11<lb”~-lI holds. 

Bunching of the oscillations occurs in the leading eigenfunctions (for large values of 1) as 

E-0. 

2. Eigenfunctions from the family Q. The solutions {Q‘) of this family satisfy the 
condition 6(%)-i when %~[0,%~] and e(%)Ml when %>%,, The parameters %, and O,,@' from 
the sets Q and 9' respectively can be called the eigenvalues of problem (11). The pairs 

(bl, Co? are arranged in the following way: %,+,<&,,C~<Cef (%, and Ce' are finite quantities). 
The form of the non-monotony of the behaviour of the eigenfunctions Q, is the same as for 9,. 

3. Eigenfunctions fram the family 9. The solutions from .%-=@!I'} satisfy the Condition 
6(0)-l and in the fairly small neighbourhood E-0 the solutions e(%) are monotonic. The 
non-monotonic behaviour of the solutions is the same as for the eigenfunctions P,,Q,. 

However, unlike the first two families of spectra the eigenfunction (9,") has a con- 
tinuous form. If they are expressed more exactly, then Se-@&"} consists of a denumerable 
(infinite) setof continuous sets of different solutions e(%). As the calculations show, when 

i>O any CE(C p"',CpO produces an eigenfunction from q+, (here we formally assume Ce*=m, 

such that the set lo' consists of one spatially-homogeneous solution 6-i). The behaviour 
of these eigenfunctions in the danain of the monotonic approach to the 'homothermal solution 
as E-0 is characterized by the constant v , from the expansion (Sn) (see Sect.2). The pair 

of constants (v1',CZ ) corresponds to any eigenfunction from 9;. The graph of the relation 

between $+I and C~""~(C~',Ce') has zero values Y:'~ at the boundary ofthedomain of variation 

of pp and one finite extremum. Hence it is clear that the eigenfunctions Q, are "limit" 
functions, in a specific sense, from the continuous family Se;, i.e. the constants ~“-0 
correspond to them. 

Figs.3 and 4 illustrate the comparative behaviour of the functions Qi,Se; respectively 
when i--l,2 in the domain of values which are "close" to the homothermal solution. For large 
% all these solutions monotonically approach zero as %++ 0~ (in the same way as in Fig.2). 

4. Brdnchingpdttern of the solutions; the eigenfunction is from the family S. Fig.5 
illustrates the relation between the number of extrema M of the eigenfunctions and the values 
of the constant C from (17). It is obvious that as .f+w the constants C,' converge from 

i,* 
below, and C,',Ce converge from above to some value Cs. Bearing in mind that es--i, t-0, 
I-+_, and also the results of Sect.2, we can conclude that Ca corresponds to some eigenfunction 
of the S family. This.eigenfunction satisfies the condition S(O)-I and oscillates infinitely 
in any small neighbourhood E-0 i.e. M-+a corresponds to it. The S-type solution iS 
apparently natural. 

5. Non-symmetric eigenfunctions. It is obvious that when N-l we can connect the 
eigenfunctions Q,,$&",S smoothly together when e-0 and obtain, at the same time, non- 
symmetric eigenfunctions which are defined on the whole axis %E(-m, +m). Examples of these 
solutions are given in Fig-C. They are all generalized solutions of Eq.(lla) in R'. From 
the form of the asymptotic behaviour e(%) as E-0 it is easy to derive the conditions for 
which O(%) in Fig.6 are classical solutions, @mC(R'). 
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ITERATIONAL METHODS 01: SOLVING EQUATIONS OF GAS DYNAMICS* 

A.I. ZUEV and V.G. DIKOLAYEV 

Iterational methods of solving non-linear sets of difference equations, 
which are written in a divergent and non-divergent form and approximate 
the equations of gas dynamics for a heat-conducting gas, are described. 
For divergent equations, bearing in mind the physical viscosity, all 
the methods are applicable in the case of plane geometry, and for non- 
divergent equations some of them can be used after obvious modification 
in the case of any uniform geometry. The effectiveness of these methods 
is illustrated by the example of the solution of model problems. 

1. Introduction. 
'When numerically solving the equations of gas dynamics implicit methods, as a rule, 

possess absolute stability and enable us to use a large step, with respect to the time 
variable, in the calculations. In implicit schemes the time step is determined according 
to the accuracy of the solution obtained and the condition of convergence of the iteration 
processes used to solve non-linear sets of difference equations. Greater effectiveness of 
implicit by comparison with explicit methods is achieved, on the one hand, by using conservative 
or completely conservative schemes /l/ enabling us to obtain the required solution with the 
required accuracy in coarse nets which must inevitably be used in practical calculations and, 
on the other, by usinq econanical algorithms and iteration methods. This paper covers the 
latter problem. At the same time great attention is paid to constructing iteration methods 
of solving non-linear sets of difference equations which approximate equations of gas dynamics 
in divergent form (conservative schemes). 

We will write out this system for general one-dimensional motion in Lagrange's mass 
variables: 

g+R; (p+rf+o)+l.5vUR-'~-o, (Ma) 

aR 
x -u, (Lib) 

&+3%,, (Llc) 

$(e+%)+$ IRu(p+Il+.)l-~(RIvx~)+ (i.id) 

1.5v; (pu'R-'j-0, 

n---- ; ;g (Pa), p-Q'.r. 

Here we use the following notation: II is the mass velocity, R is the Euler radius of the 
Lagrangian coordinate, V is the specific volume, T is the temperature, g is the Lagrangian 
mass variable; v-0,1.2 for plane , cylindrical and spherical geometry, respectivelyi o is the 
Neumann - Richtmeyer mathematical viscosity, and p. is a constant. The equations of state 
and the thermal conductivity are taken in the form 

s==e(T, F), p=p(T, V), X==X(T, V). (1.2) 

l Zh.vychisl.Nat.mat.Pis.,26,3,408-416,1986 


