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A NEW CLASS OF ASYMPTOTIC EIGENFUNCTIONS" FOR CAUCHY'S PROBLEM 
FOR A NON-LINEAR PARABOLIC EQUATION" 

V.A. GALAKTIONOV, S.P. KURDYUMOV and A.A. SAMARSKII 

The asymptotic behaviour of the solutions of Cauchy's problem for a non- 

linear parabolic equation describing the diffusion of a body in a 
continuous medium with absorption of energy is investigated. The 
conditions under which the solution of the problem converges as t-+~ 
to any spatially-non-uniform selfsimilar solution of a first-order 

equation are established. A description of a finite-dimensional set 
of these solutions (asymptotic "eigenfunctions") is given. 

Introduction 
This paper contains a description of a family of asymptotic eigenfunctions of Cauchy's 

problem for a semilinear parabolic equation which is new compared with /i--3/ and which describes 
the diffusion of a body in a medium with non-linear absorption of energy: 

B(u)~ut--Au+u~=O. t>0, xeR ~, (I) 

u(O,z)=uo(z)>~O, xeR", uo~C(R~), supu0<+oo. (2) 
Here ~>I is a constant, and uo(x)--O as lx]~+ °o. As regards the nature of the discussion, 

notation andterminology, this analysis is closely connected with that of /3/, where we can 
find a brief review of the literature on non-stationary processes of heat conduction in 

continuous media with volume absorption. 
Eq. (i) is one of the few non-linear parabolic equations in R" with asymptotic behaviour 

of the solutions as t~+o= which has been investigated in some detail. At the present time 
there is a fairly complete, and - in some domains of the parameters ~ and N - an apparently 
exhaustive description of the main elements of the attractor of Eq. (1) as sets of asymptotically 

stable states (eigenfunctions) , to each of which its own set of attractions in the space of 
the initial functions corresponds. 

2. Brief description of the attractor of the equation. Fundamental result. 
The asymptotic behaviour as t--+ ~ of the solution of problem (i) , (2) depends, besides 

and N, only in fact on the manner in which initial function u~(x) approaches zero as Ix]--+z= 
(see /1--3/). If we arrange the results obtained in these papers systematically, this picture 
emerges in the simplified discussion (we can set up an accurate formulation of the results 
discussed below using the references presented here). 

Suppose 
u°(x) ~[zl-% lxl~+~, (3) 

where a>0 is a constant. The following cases are possible. 

Case i: ~=2/(~--i). We can call this case the resonance case, the behaviour of u=u[t,x) 
as t~+~ is defined by all three terms of Eq. (i) and in the final analysis u(t, x) converges 
in a special norm to the appropriate selfsimilar solution of Eq.(1) of the form 

u~(t, z) =t-'"~-'0~,(~), ~=xlt', (4) 
where 0,>0 satisfies the elliptic equation 

A~O,L + t__2 V~8~ + ~ 8A--O~=O, %~R", (5) 
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The existence and asymptotic stability of radially-symmetric solutions (5), O,=O,(l~l), for 
arbitrary ~>| are established in /3/, and an analysis of a wider set of solutions ,~A(t, x) 
when ~>I+2/N - which are asymmetric with respect to ~ - is made in /i/. Note that the 
structure of the set {0~(~)} is substantially different when ~I+2/N and ~<I+2/N (see /3/). 
This superimposes certain requirements on the technique for proving the asmyptotic stability 
of selfsimilar solutions. 

Case 2: (z>2/(~-l). a. If ~<I+2N and, for example, uo(x) -exp(-Izl'/4) as I X l ' - " +  °° 
(formally this corresponds to ~=+~ in (3)), then the asymptotic form of u(t, x) is described 
by a selfsimilar solution of the form (4), where 0,=0,(I~I) satisfies Eq. (5), whilst 

0,, ( U -  I ~,I"'P-"-"~' exp (-Hil '14),  I U - +  ® 
(see /3/). When ~I+2/N the function o,,(l~l) with a similar "exponential" asymptotic form 
does not exist. 

b. If ~>I+2/N, then when ~>2/(~--~) the volume absorption is unimportant as t~+~ and 
the asymptotic behaviour of the solution u(t, z) is described by the space-time structure of 
the selfsimilar solutions of the linear heat-conduction equation 

u,=Au, t>0, zER". (6) 
Namely, when u,~L'(R ~) (this means that a>N) the fundamental solution 

tt°(t,z)= co I Izl'~ 
(4nt) ~'------'-~ exp I, - -  -~"~,1 ' 

where the constant C0>0 depends on uo(x) (see /2/, and also /3/, where a close result is 
obtained using another method) is this soluiton. When 2/(~-l)<a<N(uo~L'(R'~)) the asymptotic 
nature of the process is described by other selfsimilar solutions of Eq. (6): 

u,(t, ~) =t-~nOo(D, %=zlt '~', 

,~,0.+ i--vto.~,+~--o.=o, ~ R  ~, o.(~)~l~,l -~, I~I-+oo. 
2 

The proof of the convergence u-+u~, t~+ °° in this case is carried out, in /I/ and /3/, using 
different methods (the case ~=N is also discussed in /3/). 

c. For the critical value of the parameter ~=|+9~/N, as shown in /3/, the occurrence 
of a non-trivial approximate selfsimilar solution is possible. If, for example, uo..uo(Ixl)~ 
exp(--Ixl' ), IxI-~+ co (in this case uoeL'(RU)), then u(t, x) can converge as t-~+~ only to an 
approximate selfsimilar solution of the following fairly unusual form: 

a,(t, x) =Mu(t  ln t)-~'n exp ( - ~ t  ~ ) , (7) 

where M~.=(.V/2)~n(I+2/N) ~'~ (see /3/). The appproximate selfsimilar solution (7) satisfies 
the equation 

N u. 
(u.),=au. 2 t i n t '  t>t ,  z ~ R  ~, (8) 

which differs from both the original equation and from (6). For this case an estimate of the 
range of the soluition of the problem was obtained earlier in /2/: u(t, x) ~c(t]n t) -'~''' for large 
t in each compactum from R ~. 

case 3: ~<2/(~-I). This paper analyses this case. The following /2/ has been well- 
known until now: for any ~>~ we have t'/c"-"u(t, x)~O,=(~--|) -'Ict-'l uniformly in each set of the 
form P,(t)~{zER~l lxl~<aP}, a>0 However, this result in fact gives only an estimate of the 
range of the solution (u(t, x)~0,t -'/It-i) in P~(t) for large t) and in no way reflects the space- 
time evolution of the initial perturbation u~(x). 

This paper shows that when ~<2/(~--~) in (3) and for some additional limitations a 
peculiar "degeneration" of Eq. (i) occurs at the asymptotic stage of the process and as t-++oo 
the diffusion term is unimportant. As a result the asymptotic feature u(t, x) is described 
by the selfsimilar solutions of the first-order equation 

u , = - u  ~, t>0, z~W',  (9)  
which have the form (T=const>0) 

z 
Ua(t ,x)=(l '+t)- ' l (~- ' l . (~) ,  ~=(r+t),/a,~_, , • (10) 

Substitution of gq. (iO) into (9) gives the following equation for the function Io>0 

1 1 

Eq. ( l l )  i s  e a s i l y  i n t e g r a t e d :  

lo(~)~[(~-t)+C'-'(~ll~l) I ~ ,p 'P- "  ] - ' ' ' ' - ' '  , ~ ,~R ~,', (t')) 

where C(o)>0 is, generally speaking, an arbitrary fairly smooth function determined on the 
unit sphere S=(~R~I I~I~I}. The non-empty set of attraction in the space of the initial 
functions {uo(x)} satisfies each solution (iO), (12), which is an approximate selfsimilar 
solution in relation to the initial Eq. (i) , and the solution of Cauchy's problem u(t. x) 
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converges to an approximate selfsimilar solution in the following sense: 

b(t,  [)--(T+t)'/ ' t-"u(t,  [(T+t) ' / '¢t-")" ' l . ([) ,  t--*+~, (13) 

where the selfsimilar representation u(t, X), determined in accordance with the space-time 
structure of the approximate selfsimilar solution (iO) , is denoted by It(t, ~). The set of 
asymptotically stable approximate selfsimilar solutions (iO), which are part of the attractor 
of Eq. (i), is infinite-dimensional when N>I due to the arbitrariness in the choice of the 
function C(~) in (12). In the one-dimensional case the set of functions (12) is two-dimen- 
sional. Any function ]o(~) from (12), with respect to each direction ~=~)I~I, has, generally 
speaking, different asymptotic features: 

I . ( U - = c ( , ~ )  i~,1 -o , i ~ 1 ~ + ~ .  (14) 
The function 

where k,>0. i = | ,  2 , . . . ,  N a re  a r b i t r a r y  c o n s t a n t s ,  i s  a c h a r a c t e r i s t i c  r e p r e s e n t a t i o n  of the  
family (/,}; it corresponds to 

i- i  

The functzons (15) from an N-dimensional set. 
Note that it follows directly from (13) that at each point x~R ~ a stabilization to the 

spatially-homogenous solution t'/It-';tt(t, x)~8,, t-~+z~ Occurs, which agrees with the conclusion 
in /2/. Besides this, however, the limiting Eq. (13) together with (12) gives a clear 

representation of the nature of the asymptotic evolution of not only the "range" of the 
solution of Cauchy's problem, but also its effective spatial width. It follows from, (13, (iO) 
that the effective width of the thermal structure for fairly large t can be estimated using 
the formula x.,f(t)~t '/~tr-'~, whilst it differs with respect to each direction ~=0~l~ i as a 
function of the form of the function C(t0) in (12). Eq. (13) thereby describes the law of 
formation as t~+¢o of the asymptotic eigenfunction in all the space IR ~ (unlike the "icon!" 
result /2/). 

In conclusion we turn our attention, once more, to the curious "transformations" which 
the parabolic Eq. (i) can undergo at the asymptotic stage. Depending on the quantities 5, X 
and the initial function u0(x), it can be transformed into an equation of three types: into a 
linear equation without a sink (6), into a first-order equation with diffusion (9) and - in 
the critical case ~=I+2/N - into Eq.(8) with a linear sink. 

3. Proof of the asymptotic stability of degenerate approximate selfsimilar 
solutions. 

The main aim of this section is to determine the conditions under which the limiting Eq. 
(13) holds. For this, without aiming for maximum generality, we shall use an extremely simple 
method cf proof which is close to that used in /3, Sect.3/. 

Theorem. Suppose 

[~-I < a < m i n  ,N (16) 

and, in addition, in (12) 

C(to) >0,  o~S,  C(~)~C'(S) .  (17) 

Then p>0 exists, such that for any initial functions uo(x), conditionally satisfying, for 
some T>U , 

luo(-)--u.(O, .) l . . . . . . .  ~H'  (n") (18) 

(uo is determined in accordance with (iO), (12)), the limiting equation 

1~ (t, %) -- (T+t)"' t-"u (t, % (T+t)'/='t-") --1o (%) (19) 
holds i.~ L v+'(R'') as t~-boo. 

An estimate of the rate of convergence will be obtained when proving the theorem. For 
convenience we shall first formulate the following lemma: 

Lenzma. Suppose (17) and the following conditions hold: 

N -  (a+2) ( p + t ) < 0 ,  N + [ a ( [ ~ - t ) - 2 ]  (p+ l )  >0,  p>0.  (20) 
Then A~/=EL ~+' (R ' ) .  

Proof. By virtue of (17), the singularities of the integrand in i,At/olL~..~a', only e.n. erge 
at the points I~I =o¢ and ~=0. Two conditions (20) guarantee their integrability (it is 
sufficient to look at the asmyptotic features: as I~I~ -c¢ it has the form (14) , if ~--~'. 

then /~(~)mOn-0,(~-l)-'C'-~(%/]~])l~l~'t-") 

Proof of the theorem. The function z=tl--Uo satisfies in [{_'XR' --he eouat:c:: 

z,=Az--zg(t, x) +h (t, x) , 2!, 
where 
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t 

g(t,z)=~ ~ [rlu(t,x)+(t-~l)U,(t,x) ]t-' d~l, h(t ,z)=Au,(t ,z).  
o 

Eq. (21) is a "linear" equation in z. Note that g(t, z)>0 in R+'xR ~ and when conditions 
(20) hold we will have h(t, )et"+'(R ̂') for each t~0. We shall confine ourselves, below, to 
a formal proof of the theorem, using the natural assumptions concerning the regularity of 
the generalized solution of the linear Eq. (21) (see /i, 2/). 

Suppose z(O. z)eLP*'(R~), Vlz(0 , Z) I¢,+')/=EU(R ") for some p>0 (see (18)). We scalarly 
multiply Eq. (21) in L2(R ~') by IzlP-'z. Then, integrating by parts on the right-hand side, 
we obtain 

t d ,., 4p 
p+l dt ll~[l~..,,.~, (p+t)~l lVlzl"'"l l : , , . - ,+  

( l~l"z ,a , ,=)- ( l z l" ,g( t , z ) )<(Iz l ' - ' z ,  Zxu.), t>O. 

Suppose coniditions (20) hold. Using H~ider's inequality 
p - i  p (Iz[ z, Au.)<~llzll=..,,.~,l[a".l[=,.,,..,, 

and also the specific form of the approximate selfsimilar solution u, (see (iO)), by virtue 
of which 

[IAudt)ll=,..,..,-(T+t)~Uad.U=,.,(...,, 6 N - - ( a + 2 )  ( p + t )  > 0 ,  
a@-i) (p+i) 

we arrive at the estimate: 

d ~-[llz(t)ll=..,(..,<(r+t)*m., t>O, m.=llAd.U~,.,o,-,<+**. 

Hence it directly follows that 

[0(t"') ,  6>-I, 
Ilz(t) lI=,.,,.~,= IO(lrt), 6=-I, 

t 0(t) ,  6 < - t ,  

as l ~ + ~ .  Finally, bearing in mind that, by virtue of (iO) and the definition of the self- 
similar representation /z, 

llz (t)II:-,(.",- (T+t)'liMt, ")-h(')I1:.,,~.-,, 

s = a ( p + l )  t , 

we obtain a final estimate of the rate of convergence in (19): 

[O(:+'-'), 6>-I, 

IIl.(t, )-l.()[k,.,,~.,=lO(t-'lnt), 6 = - t ,  
t O(t-'), 6 < - i ,  

(22) 

as t ~ + o %  We shall require that ~>0, i.e. 

N - = ( p + l )  > 0 .  (23) 

Then, as follows from (22), when 6~--I convergence always occurs. If 6>--I, then 

w h i c h  a l s o  g u a r a n t e e s  t h e  n e c e s s a r y  r e s u l t .  
I t  r e m a i n s  t o  v e r i f y  t h a t  t h e  s e t  o f  i n e q u a l i t i e s  ( 2 3 ) ,  (20)  f o r  t h e  v a l u e s  ~ f r o m  (16)  

always has the solution p>0. We shall rewrite then in the equivalent form 

N - a  N - ( = + 2 )  N - [ 2 - - = ( [ ~ - t )  ] 
p < , p > , p < (24) 

a (=+2) 2 - = ( p - t )  

From the first inequality there directly follows the necessity for the limitation ~<N and, 
consequently, of the right-hand inequality (16). The third inequality (24) signifies that we 
must have 2-=(~-I)<N, i.e. ~>(2-N)+(~-I)-'. It is easy to see that the second and third 
inequalities (24) when N>=+2 do not contradict each other, such that the required value 
p>0 exists. This completes the proof. 

Note I. The limitation C(~)>0 in (17) is, generally speaking, unimportant. For example 
in the uniform case the theorem also determines the conditions of stabilization to the approxi 
mate selfsimilar solution (iO), where lo(~) can have, in particular, the "exotic" form: 

( f (p-l) -'/(~-~ , ~,,~ O, 

I .  ~) = "t ( (~ -  t) + ~*,~-~ q-'/~#-'~, ~>0.  

Here C(+I)=I, C(-I)=0. S={~x!=l}. The limitations (16) on the quantity ¢ when A'=I are as follow5 
if J<~3, then ~/(~-|)<~<2/(~-I). and if ~>3, then I/(~-I)<=<I. 
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Note 2. When proving the thoerem the linearity of the operator ~,dt-h in (i) is not used. 
1~nerefore, using the same method, we can carry out an analogous investigation of the asymptotic 
behaviour of the solutions of the quasilinear equation u,=Aua+,-u~, where 0>0,~>0+l are 

constants. 
We shall make one more observation. The attractor of the heat conduction equation with 

the runoff (i) in R N when N>| is infinite-dimensional (when N=I it is at least two- 
dimensional). Moreover, the set of selfsimilar solutions of the form (4) is also infinite- 
dimensional. Coniser, now, the heat conduction equation with the heat source u,~Au~*'+u ~, 
t>0, x~B ~, where o>0, ~>o+I are constants. It also permits selfsimilar solutions which 
evolve in time in the mode with peaking: 

z 
=~(t,z)=(r.-t)-,,,,-.o(~), ~ =]r°_t )  ~ . ,(25) 

m=[~--(o+|)]/2(~--l), T0>0 is a constant (the peaking time). This is the eigenfunction of the 
combustion of a non-linear dissipative medium (see the review in /4/). The function 0(~)~0, 

0-~0 as l~l-~+m satisfies in ~ the elliptic equation 

A~O~+'-m Vt8~ - ~ O+O~=O. (26) 

When ~>0+I, i.e. when m>0 it differs from a quasilinear analogue of Eq. (5) only by the 
signs for the last three terms. But nevertheless the set of solutions of Eq.(26) is, to all 
appearances, discrete. For N=| this is established in /5--7/, when N>I the functions 
0(~) are constructed numerically in /8/ (see also the list of publications in /4, 3/). They 
can have an extremely diverse spatial structure. 

Thus, the principles for organizing the attractor of the quasilinear parabolic equations 
of heat conduction with a sink and source are essentially different. The asymptotic stability 
of the unbounded sefsimilar solutions (25) when ~(I,o+I] is proved in /9/. 
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