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ON DIFFERENCE SOLUTIONS OF ACLASS OF QUASI-LINEAR PARABOLIC EQUATIONS·

V.A. GALAKTIONOV and A.A. SAMARSKII

The properties of implicit difference scheces for quasi-linear parabolic
equations of non-linear heat conduction with a source are studied. The
sufficient conditions are found for the global solvability and uniqueness
of the solution of the difference problec. It is shown that the global
difference solution converges by a passage to the limit to the general­
ized solution of the initial differential problem.

The present paper, which is a continuation of /1/, considers the difference solutions of
the following boundary value problem for a quasi-linear parabolic equation of non-linear heat
conduction with a source:

t>O, xe (0,1),au a'
-~-(u'+I)+u'
at ax' '

u (0, x) =U, (x) ;;;'0, O<x<I,

u(t, O)~u(t, 1)=0,

u,eC([O, I]),

t;;.O,

(1)

(2)

(3)

0>0 and ~>1 arc fixed constants.
Problem (1)-(3) is associated with the implicit (non-linear) difference scheme /2/

(t, x) eoo,Xooh, (4)

(5)

Here and throughout, we use the same notation as in /1,2/.
In /1/ we examined the conditions for scheme (4), (5) to be solvable at a fixed time

layer, and we also showed that, if ~~0+1 , the difference solution may not exist, may not be
unique, and may increase without limit during a finite time.

Below we obtain the sufficient conditions for global solVability and uniqueness of the
solution of problem (4), (5), and we also show that, as t, h-O , the difference solution con­
verges to the generalized solution of the initial differential problem (1)-(3).

5. Global solvability of the difference problem and passage to the limit
with 13';;; 0+ 1. In this section we obtain the conditions for the global solvability of pro­
blem (4), (5) in the case when ~.;;;o+1. (Here and in Sect.6, the mesh 00, is assumed to be uni­
form.)

Theorem 6. Let ~<o+1. Then, with SUfficiently small "1", the difference problec has
a global solution (Le., for any T>O), the solution being unique.

If ~=o+l, a similar claim holds under the supplementary assumption

4 (1Ih)"/=-sin' - >1h' 21 .
(5.1)

Then, on the basis of Theorem 6, we can prove the convergence of the difference scheme
(4), (5) as "1", h-O , and at the same time we prove:

Theorem 7. Let the initial function u,(x) in (2) be such that ug+1el/,'(O,/). Then,

with ~<o+1, the differential problem (1) - (3) has a solution satisfying the inclusions.

ue[,-(O, T; L'+2(O, I», u,+Ic=L-(O, T; 1/,'(0, I», (5.2)

If ~=0+1,

aueL,(O T'Jl-'(O I»at Itt'

a similar claim holds under

a
-ul+"'eL'(O T'L'(O I»at ",.

the supplementary assumption

(5.3)

i.,'=(l'lll)'>1.

To prove these theorems, we require some preliminary lemmas.

Lemma 2. For alII;, fjeR+' we have

(1;,+I-fj'+I) 1;'';;; ~::~1 (I;H,+I_fjH'+I) +C,[max(I;, TJ} ]'-' (I;I+"'-TJ'+O") I,

*Zh.vychisl.Mat.mat.Fiz.,23,4,83l-838,1983

40

(5.4)

(5.5)



where C,~C,(a. ~»O is a constant.

Lemma 3. Given any mesh function vAEIlA,

IVAlc~A,IIv"A+'IIA~:I'+'), A.=I"'(·HI.

41

(5.6)

If the function v(x);"O is such that v·... 'GII,'(O. I). then estimate (5.6) holds with h~O.
Lemwa 3 is proved in /2,3/, while inequality (5.5) is proved directly.

Proof of Theorems 6 and 7. He fix arbitrary T>O. Let u~+1 (x)ell,'(O. I).

1. We first consider the case ~<o+1. By Theorem 1 (see /1/), with ~<o+1 , scheme (4)
is solvable for any 1:. Multiplying scalarly both sides of (4) by li·H and then using the
esti.tlate /4/

we obtain
1 1 '+1 .+' 'Jt.'H

0+2 --:;( Ia1"'+1-1 ul.,.+Z) +11 aO+IIIA,,~ IIiIA,H'+I'

By means of the estimate /2/

(5.7)

and Young's inequality /3/, we obtain

1"1 H'+'.- 1 11"0+'1" +Au AJI+G+l~""2 U h..,I 't

A = [(o+1)-~l [ 0+1 ] 'lo+ll/I.-I.+tll.

• 2(~+0+1) A,(~+o+1)

In view of (5.8), inequality (5.7) takes the form

_1_~llil::+', +...!..·lIu· HU: ,,;;;A. + -.!. +12Iul .,.+Z.
0+2 1:' 2 . .. a

From (5.9) we obtain the estimate

max lu'HI..:~~';;;A.T(0+2)+lu .. I:,:~.';;;A,
~;k:;:N

and by (5.6), the inequality

2 1 "'I.H)
max IUH'lc~A.[2A.+- ( +2)A,]
o<.J<.Y 't a

(5.8)

(5.9)

(5.l0)

(5.11)

To obtain the other a priori estimates, we multiply (4) scalarly by (uO+'-u· H )11: and

then use inequality (5.5), along with the inequality (~.H_'l·H) (~-'l);"C.(;'+·/I-'lI+·")', valid for

ali ;, 'lER+1
• where C,=C,(o»O is a constant /4/. As a result, we obtain

(5.12)

When obtaining (5.12) we have also used the fact that «u·H )&. Ii·H_U·+I).~- (1ili·t1I1.~,-lIu·+lIIA~,)/2,

by virtue of the inequality ~(;-IJ);"-(s'-'l')/2, s. 'lER...'.
We now choose so large an N that C,T[max {Ilile• lulc}]J-'~C,/2 for all O';;;j,;;;N. Le., (see

(5.11»

[
2 1 ] (J-I)/I(o+ll C, '-J

T 2A,+ --; (0+2) A, ,;;; 2C , A, .

It is easily seen that, in the case ~<o+1 , this is always possible.
over all j from 0 to N and applying Young's inequality (see e.g., /3/),

(5.13)

Then,summing Eq. (5.12)
we obtain

0+1 I >"HIJ+'+I + 1 II .+1'1" 0+1 I ,H'+I '-~II(uN+I)'+lII' +A
~+0+1 u A,Jl+'+' 2 no. A,'- ~+a+1 u" ',Jl+.+l"'" 4 A.' ,.
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Hence we have the inequalities

(5.14)

(5.15)max II (uJ+'}ot'II,~,';:;A"
'<JeN

Thus the restriction (5.13) on the time T step ensures global solvability of difference
problem (4), (5). Notice that, using (5.6), we obtain from (5.15) the inequality

max luJ+1lc';:;A ,• (5.16)
O<SCK

Let us show that, for fairly small T , the solution is unique. Let there be two solu­
tions a, and a" and let T be such that restriction (5.13) holds, and also the condition

1 '-I
T<TA,

It follows from (4) that li,_a,=T(a,ot~alot'h",+T(al-al}.

a:+! ---<ilz•
tl

t we get

(5.17)

Multiplying this equation scalarly by

T~[max{la,lc, Ia,lcl p-' (a,-u" u: tI _a: tI }...
lienee we conclude, using (5.16) and (5.17), that (a,-a" u~tI _a;t' ).=0, 1. e., u,,,,,a,.

To justify the passage to the limit we need a further estimate, from (4), we have

lienee, since
II (uo"h,II,~,=IIao"II,." Iiii'll:,,';:;(A,'}-'I'lal:."

we obtain by means of (5.15):

max II uJ+'-U'II· .;:;AII•
oei...:...... T 1.1,1

We introduce for simplicity the notation

(5.18)

H' ,
Vh -V.'I.

V,q,v,,A= --T--'

Fr9rn (5.10), (5.14), (5.15), (5.18), recalling the results of /4/, we obtain the following
estimates:

q,p, (ul) ot'

q,p,(IL,)ot'

are bounded in L- (0, T; lIo' (0, I)},

are bounded in L- (0, T; VOHI/lotil (0, I)},

(5.l9a)

(5.l9b)

(5.l9c)

q,q,(u')o" are bounded in L-(O, T; Vot'I/lotll(O, I)},
q,q,(u')lto/' are bounded in L-(O, T; L'(O, I»,

V,q,q,(u') ,to:' are bounded in L'(O, T; L'(O, I}},
q,p,ul are bounded in L-(O, T; LO"(O, I}},

V,q,p,u' are bounded in L- (0, T; Il-I(0, I)}, (5.l9d)
[q,p,(ul}ot'] .. are bounded in L-(O, T; Il-'(O, I}},

q,q,(u') , are bounded in L-(O, T; £10 "1"(0, I}}, q,(uNtI
} are bounded in L""(O, I}. (5.190)

These estimates, along with the compactness theorem of /5/, justify passage to the limit
as '1", h-O (see /4,6,7/), as a result of which we prove the existence of a global solution of
problem (1)- (3), satisfying inclusions (5.2), and (5.3).

2. Now consider the case ~=o+1. On estimating the term on the right-hand side of (5.7)
with the aid of the inequality /2/

we obtain

1 11'lot' ( 1 )110+'11'''- 1 1 1 1 0

"--- u ',0"+ 1-. a ',I"" +2- u ',"t'·
0+2 T A, 0 T

Hence (see (5.1» it follows that (5.10) holds when A.=O and that
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1 1 1 '}..,. I 1<+" A10lIa<+'II.,.";;; +2-""'-1 UGh .,<+1";;;--'o 't",- 't

We choose 't so small that (see (5.13»

(0'+2)/1(0'+1)"- C1 A -oA -1712 (C11 +I)
"t ......;:;:: 2C. S 10

We then have the inequality

C, ~ 1li'+o/'-U'+o/',' + 1 (1 1) II ( N+')<+III" ~ 1 (II 0+'11" 1 1"«+1 1 )2 .I..J't 't III T - )./" U ",2 ~ 2 U O.\ A,I- UOh A,l(O'+t) ,

J_O •

whence estimates (5.14), (5.15), (5.16). The rest of the analysis is the same as in the case
when ~<0+1.

6. Difference stability set and passage to the limit when ~>0+1 In this
section we obtain the sufficient conditions for the global existence of a solution of differ­
ence problem (4), (5) in the case when ~>0+1, which converges as 't, h-+O to the generalized
solution of problem (1)-(3),

1. We define for all v.ell. the functional

1 0+1
1.(v')=""2 a.(v.)- ~+0+1b.(v.),

where a.(v.) = IIv:+'II,~" b.(v.) ~ Iv.l:,t::;,.

Lemma 4. Let ~>0+1. We then have the inequality

dh= inC sup h(Avh» ~-(a+1) l-[lH3(~'I))J[lI-(~+I)]>0_
rh r=1I h A>D 2 (~ + a + 1)
"h¢4

The proof is similar to that of the similar proposition in /8/.
We define the difference stability set~~ by the expression

~'.= {V.Ivhell., 0,.;;;1. (Av.)<dh, ,.e [0, 1)}.

By (6.2), ~'. is not an empty set.
By the construction of~" we have:

Lemma 5. Let ~>0+1. Then ~'h=iI"'U to} I where

~,,·={v.lvhell., ah(v.)-bh(L'.»O, I.(v.)<dh}.

(6.1)

(6.2)

(6.3)

(6.4)

Note 1. If the functions v(z);>O in (6.1)- (6.4) are such that vo+leH,I(O.I), then Le=as
4 and 5 remain true with h~O (sec /8/, and also the similar assertions in /9, 10/). In this
case, instead of lh, ",., ",h· •.. we shall write 1" "'" ",......

2. Theorem 8. Let ~>0+1 and let the function UGh in (5) be such that U'h~1f"· Then,
for fairly small 't , the difference problem (4), (5) has a global solution, belonging to »..
for all lew" the solution being unique.

Note 2. In the conditions of Theorem 8, no reduction of the step ~ ever leads to un­
boundedness of the difference solution. Hence, by Theorem 5 (see /1/), inequality (4.4) may

not be satisfied if U'h""". 1. e., t-AI·(U". t.)~O+ll-'.;; O. u"",,,.,.. This inequality is a further

characteristic of the difference stability set.
Passing to the limit at T, h-+O , we obtain from Theorem 8:

Theorem 9. Let ~>0+1 and let the function u, in (2) be such that u,GiF,. Then the
differential problem (1)- (3) has a global solution, belonging to ~', for all le(O, T), and
satisfying the inclusions (5.2), (5.3).

Here, ]/', is the closure of~',in the set (ulu(x);;,O, uO+'ello'(O, l)}.

Note 3. It was shown in /8/ that satisfaction of the condition 1,(u,)<O. which is in
a sense opposite to the inclusion u,""', (see (6.3», implies that the solution of problem
(1)-(3) is unbounded, and for the time of existence of a solution we have the estimate

p+a+t 1-'To < l(lI-t )/{GH>UuOUL .. I(O.l)<+oc.
(P-tllP-(a+t)]

Proof of Theorems 8 and 9.

u,¢O. Then, u"G1f'. for fairly

and hence (see Lemma 3)

We fix an arbi trary T>O.
small h. From this and Lemca 5,

~-(0+1)
-=----'---'-:- ah (U'h) ~/. (U'h),
2(~+0+1)

Given any function u,(x)eiF"

[
2(~+0+1)/.(u ) ]'/.(0+1)

Iu.... 1c,.;;;A. ~_ (0+1) Oh ,.;;;A II •



(6.5)

(6.6)
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Let us show that the constraint

min{1.C,/2C,}
• ,,;;; -;-:-:--:--:-:-"':""':":-7-:---:'~~

(1+A.. )~+2h-' (1 +A.. )0+1

ensures that scheme (4) is solvable at each step.
We take the first step. By Theorem 2 (see condition (2.9) in /1/ with C,=1), scheme (4)

is solvable under condition (6.5). Then, from (5.12), recalling that

(notice that, by (6.5), we have lu'lc,,;;;lu'lc+1, see Theorem 2) ,~cwe obtain

C I(U')'+OI'_(l~')'+O/' I' 1-=- ";;;-[J.(U')-/A(U')J.
2 • A.'.

Let us show that u'eYFA. In fact, assume that u'EyrA. Then, since u'-u' as .-0 and
u'eyrA, we can always find., satisfying condition (6.5), such that u'e{)JrA. By (6.3), this

means that /A(u')=dA. Hence we obtain a contradiction with (6.6), since, by hypothesis, /A(U')<
dA•

Thus u'eYFA. We then find by Lemma 5 that aA(u'»bA(u'). On estimating the right-hand
side of (6.6) with the aid of this inequality, we have

C
2
'I (U')HO/'_(U')HO/'" 1 ~-«(J+1) II (u')o+'ll '~J:../ ( 0)

• A.' + • 2(~+a+1) A.'''' • AU.

Hence

~~«(J+1) II (u') 0+111 , ,,;;;/ (u')
2(~+a+1) A,' A

and hence lu'lc";;;A... This last inequality justifies taking the next time step with oondition
(6.5) on " etc.

Notice that, for the global solvability of the problem, it is sufficient that .=o(h').
h«1 , in the difference stability set yrA •

In short, when condition (6.5) holds, the difference problem has a global solution, and
(leYFA, 1(llc";;;A.. for all Oo;;;;jo;;;;N , and moreover,

C, {1 IuI+O/Z_u
HO

/' " + ~-«(J+1) Iluo+lll' 0;;;;/ (u A).
2 L.J • • .. 2(~+(J+1) A.' A ,

i-O .

The uniqueness, for sUfficiently small., of the uniformly bounded difference solution is
proved in the same way as in Theorem 6.

The difference solution satisfies estimates (5.19), which enable us to pass to the limit
as " h-O. As a result, we establish the existence of a global solution of problem (1)-(3)
with ~>(J+1, where ue]F, for any t>O by virtue of the condition. u,e]f'A for tew,.
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