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DIFFERENCE SOLUTIONS OF A CLASS OF QUASILINEAR PARABOLIC EQUATIONS, I. 

V.A. GALAKTIONOV and ~.A. SAMARSKII 

The properties of implicit difference schemes for quasilinear parabolic equations 
of non-linear heat conduction with a source are investigated. The sufficient condi- 
tions for the scheme to be solvable, for a difference solution to be non-unique and 
non-existent, and also for its unlimited increase over a finite time, are determin- 
ed. 

1. Introduction. In this paper we study the properties of difference solutions of 
quasilinear parabolic equations of the type encountered in non-linear heat conduction with a 
source 

a---t = am ---7 (u~ +at ( l. i) 

Here 0>0, ~>i are certain fixed constants. 
Equation (i.i) was considered in /1--7/ (see also the bibliography in /8/) when invest- 

igating the occurrence and evolution of dissipative structures in non-linear media with volume 
energy dissipation. It was shown, in particular, that the solution of the Cauchy problem for 
(i.i) may be unbounded, when for a certain T0<~-~ 

maxa(t,x)~+~, t-~To-. (1.2) 

It was also established that when ~s+J the unbounded solution is localized in the sense that 
as $-~T0 the solution increases without limit in a set of finite measure. 

The investigation of the unusual properties of the solution of Eq. (i.i), carried out in 
/1--6/, rested largely on the results of a numerical solution of this problem. 

In the present paper we investigate the degree of adequacy with which the solutions of 
the implicit difference schemes for (i.i) describe the properties of the solutions of the 
corresponding differential problem. 

i. For Eq. (1.1) we will consider the boundary value problem 

a(O,z):Uo(X)>>-O, 0<x</, uo~C([O,l]), (1.3) 

it(t, O) =u(t ,  l) =0, t~>O, ( l . 4 )  

where 0</<+ oo is a certain constant. 
The sufficient conditions for the implicit difference scheme for Eq. (i.i) to be solvable 

(Sect.2) , and for the solution to be non-unique (Sect. 3) , non-existent(Sect.3) , and (the dif- 
ference analogue of condition (1.2)) to be unbounded (Sect. 4) are obtained. 

In Sects.5 and 6 (to be published in the next number of the journal under the sametitle) 
we obtain the conditions for the system to be solvable as a whole, and for the solution of 
the difference problem to be unique, and we also establish the admissibility of the limit 
transition, as a result of which theorems on the existence of a solution of pro, blem(l.l), (1.3), 
and (1.4) are again proved (see /9/). Note that unlike the case considered in Sect.5, |<~ 
q+l when ~>6~-I global a priori estimates of the difference solution do not exist. For 
~>a+1 we establish in Sect.6 the limitations for which the solution always belongs to a 
certain difference set of stability H~ as soon as this inclusion is satisfied at the initial 

instant of time. 
The results obtained in Sects, 4--6 indicate that for fairly small but finite intervals 

h, ~ of the space-time net, the solution of the implicit difference scheme exhibits many im- 
portant properties, inherent in the solution of the corresponding differential equation (i.i). 

2. We will introduce a uniform net in space (0a with an interval h=I/(M+1), M>0 is an 
integer, a system of time intervals {Tj}, T~+i<~T~ and a time net co, generated by it. Every- 
where, with the exception of Sect.4,we assume the net o, to be finite and uniform: . r j :T: i r /  
(N~-I), 0~j~N, /V>0 is an integer, Tis a positive constant (in sect.4 we have Tj-*0 as j-*~ 
and the net 6), is non-uniform). We will denote by Ha the set of net functions uh={ujlp0=v,+i=0 , 
v,>~O, i= t ,  2 . . . . .  M}. 

We will assume that problem (i.i), (1.3), and (1.4) corresponds to the following implicit 
(non-linear) difference scheme /iO/: 

= (~~247 ~+~, (t, x) ~,• (i. 5) 
T$ 

U~ Z~6h, [Z~Hk, t~6),, (1.6) 

where ~:u~ I, u:uJ is the required net function, (U)~:(UA+,--2Uh~'UA-,)/h= is the notation for the 
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operator of second-order difference differentiation /IO/, and u0~ is the projection of the 
function u0(z) on (0h. 

When formulating problem (1.5), (1.6) and all subsequent results, we will assume that 
the difference solution is non-negative. In fact, the difference scheme 

= ( l f i l~  [ m a x  {0, ti} ] t , ( t , x )  ~ o , • 1 6 2  ( 1 . 7 )  

is identical with (1.5) when ~-0. However, as can easily be seen, the solution ~ of scheme 
(1.7) cannot be negative if u~0 in (~a (moreover, fi>0 in (0h so long as u~0). Note that a 
similar "weak" maximum principle also occurs for the differential problem. 

A detailed study of the difference scheme (1.5) without the non-linear term on the right 
side has been carried out in a number of papers (see, for example,/iO--15/). It is shown in 
Sects.3--5 that the presence of a source considerably changes the properties of the solution. 
The most interesting case from this point of view is the one where ~o+| when a difference 
solution may not exist, may be non-unique, and may be unlimited. The latter indicates that 
(compare (i. 2) ) 

max u~s~+=, j~+~ (1.8) 

(in this case we assume that Z~j<+~). When l<~<o+i and for fairly small Ta solution as 
a whole will always exist, and it will be unique. 

3. Many results in Sects.2--4 can be reformulated for difference schemes for parabolic 
equations of the type (i.i) having the general form 

au a' 
- ~ =  ~ - ~ ( . ) + Q ( . ) ,  t>o,  : ~ ( o , z ) ,  (1.9~ 

where ~, Q~CZ(H+t)flC([O, q-oo)) are specified functions, and qg(u)>0,~'(u)>0, Q(a)>0 when u>0, 

~'(0)~>0, q(0)=0, 

+-" dT I ~ - -  
/ Q--T~n) ~-"- Cl.lO) 

(inequality (i.iO) is a necessary condition for unbounded solutions of Eq. (1.9) to exist, see 
/16/). The implicit difference scheme for Eq. (1.9) has the form /1(3/ 

- = [ ~ ( a )  ] , . + Q ( a ) ,  (t, x) ~,X~,. ( 1 . n )  

Without any major changes the difference schemes (1.5), (i.ii) can be investigated for 
the case of several spatial variables. 

4. We will use the notation employed in /17/. The spaceV~={u~[i=O, ~ ..... ,~+i; r 
is provided with a scalar product and a norm, which are found from the equations 

(v~,w )̂~=h~,w,, [ t~^]~.,= (~,.,, ~,,) ~ '/' . (1.12) 

The norms in the net analogues of the spaces Lq(0, [), q>t and H0'(0, [) have the following forms, 
respectively, 

M IIq M 
,,+. ~  I ' )  + . 

f - - !  +--0 

We will denote the norm, dual to I['][~.~ with respect to the scalar product (i.12) by ll'lk', i.e. 
, IICvh, w^)h I 

[ vhllh.=---- sup 

The following equation holds: 

It (v.,,) ~ If.,'.,= II v,,ll .... v~V,.  

In the net analogue of the space C(0, I) the norm has the form 

Iv,l+.= m a x  Iv+l, v,,~v,,. 

We will introduce operators of extension pa and q~, assuming that 

(. i.13) 

p^va is a continuous 
function, linear in each interval [ih, (i+i)h], and phuh(ih)=u, i=0, I ..... M+I; qhVh is a piece- 
wise constant supplementation of the net function Uh~VA, which for all ih<x<:(i-[-i)h is equal 
to u+. It is obvious that p~vh~Ho'(O, /), q~vh~Lq(O, l), and 

,q,v,,~.,o.,,=lv~l,.,, Ilp~v~ll,..<~ =ll vdl .... 
In a similar way, for the net functions v,,k, defined at the nodes of the net ~,Xr we will 
introduce an operator of extension q, form the formulas g,p~V,.A----ph~** , q,q~V,.a=qhU~** for all 
]T<t<(j~-|)T, ]=0, 1,2 .... ,A r (the net ~, in this case is assumed to be uniform). 

We will denote (see /iO/) by 

h 4 , ~ h  
~, = - ~ ? s i n  (-~-), (1.14) 
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%(z) tg(:~hl2l) (_~_) 
h sin , 0<z</, (1.15) 

the first (least) eigenvalue and the corresponding eigenfunction of the difference problem 

(~h) ;=~-~= 0, x~h, 9 / ~  Va. (1.16) 

The function ~.h in (1.15) is chosen so that l~ala.,=|. Note that ~a(x)>0 in ~h. 
Throughout this paper the difference constants independent of h and T are denoted by A0, 

AI+ .... 

2. The sufficient conditions for the difference scheme to be solvable in 
a fixed time layer, i. we will show initially that when ~<oJr|, and also when ~=~+I, 
~la>i , the difference scheme (i. 5) is solvable for the net function ~ (u in this case is 
assumed to be known) for any values of T. To do this we will need the following assertion 
(see /10,16/). 

Lemma i. For any function vh~Ha the following 4stimates hold: 

I(a+l) ~ oft ] vJ~.,to+,~ ~< ~-~--llv~ II .... (2.1) 

t,o,t ~ .  o+t (~+o,,il{~+li A0_lt§247 ) 
I vala.p+o+t~A011Yh lla.z , -- . (2.2) 

If the function y(x)>0 is such that veat~H0i(0, l), inequalities (2.1) and (2.2) hold whenh=0. 
Consider the continuous operator Pa: Ru~R" 

ph(~) = { ~,--u, .,,+, , } 
--(ui )~,--~,, k=l,2 ..... M. (2.3) 

T 

The existence of a root of the equation Ph(~)=0 will denote that scheme (1.5) is solvable. 
Suppose initially that I<~<e+I. Then 

(p~(,~), a~ =__t (~-n,  a'+'),+ll,- +' ,~,-Iv<l::~2,. (2.4) 
T 

Using inequality (2.2), and also the estimate /12/ 

(~-n)~~ .... n~247 L n~R. ', (2.5) 

we obtain from (2.4) 

(P~(a)'ti~ o + 2 T  ul . .~ e ~,+,§247 

where A,=l -(~+'~247 The second term on the right side can be estimated using Young's in- 
equality /16/. As a result we obtain 

At l(ofll 
I a I,,',,++;+~, < -~-I al,,t+,+,+A,, 

0-{ ' t - -~  ~'~-O~Cl (~+~ 

A.. [ A,(o+i) ] 
The final estimate takes the form 

, (A,-F o§ AI.tZ+.).+ 
Hence, by virtue of Brauer's theorem /17/, we can conclude that the equation Ph(fi)=0 in the 

sphere 

:c*+,) 2 / t t o+. 
lal, ~+0+, <-~-~, ~A, +-~-{-~-- uh.o+~. ) (2.61 

has at least one solution (note that there are no solutions outside this sphere]. 
Now consider the case when ~=ontl. Then, we have from (2,4) and (2.1) 

I t l-t;:,', 
u )^>(X,  - - t )  lulh.~c~+,l o + 2  x (P~(ti) ,  "'+' ~ + ~c*+,, 

Hence, when X,h>t  , the equation Pa(u)=0 has at least one solution such that 

. ~(e-I-t) ~ e+Z 
lulh,,~o+,l < (7. , , _ t )  ( a + 2 ) ' ~  lul . . . . . .  { 2 . 7 )  

We have thus proved the following theorem. 

Theorem i. suppose ~<o+i or ~=o+|, llh>|. Then, for any T>0 at least one solution 
ft~IIh of the scheme (1.5) exists, which belongs to the sets (2.6) or (2.7) respectively, and 
there are no solutions outside this set. 

Note. i. As estimates obtained in Sect.5 show, under the conditions of Theorem i, dif- 

ference scheme (1.5) has a unique solution for fairly small x>0. 
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2. The following result, similar to Theorem i, holds for scheme (1.11) of general form. 
Suppose that for all u>0 

Q(u)~.r v,=const<l h ~.2=const. (2.8) 

Then in the set 

< - -  ~,,r,. - -  I - I , . ,  

at least on solution ~e[la of scheme (i.ii) exists. 
2. When ~>o+I or ~=a+J, I,"~I the operator of scheme (1.5) is not coercive,andTheorem 

1 ceases to hold. In these cases we will seek a solution D of scheme (1.5) close to u for 
fairly small T. We will put ~--u=Z in ~h and introduce the continuous operator F~: Ru-~R": 

A(~-) ={T[(~-~+uO~ ~, k = l ,  2 . . . . .  3/}. 

The presence in Fa of a fixed point denotes that scheme (1.5) is solvable. We have 

IF~ (~)Ic~< (luI~+I~.I~)PT + 2 ( lu l~+l~ l~)  ~247 ~.  

Hence the operator F~ translates the set Xc0={Zl l~Ic~<e0} into itself (here C0 is an arbitrary 
positive constant) , if 

Co 
T~< (2.9) 

( l u l ~ + C o ) ~ + 2 h - , ( l u l c + C o ) O + ,  �9 

Then, by virtue of Schauder's theorem regarding the fixed point /18/, the following theorem 
holds. 

Theorem 2. suppose condition (2.9) is satisfied. Then the difference scheme (1.5) has 
a solution U~-/J'a, where ]fi--tt[c<<-Co. 

Note 3. Assuming that C0=lulc in (2.9), we obtain the following expression for the 
maximum possible time interval ~d, for which scheme (1.5) is solvable: 

t-' , o h_,)_l" (2.10) d =(Z'I=I= +Z'+ I=lc 
In the last paragraph we will show that this estimate regarding the nature of the dependence 
of Tdon lu]c is in a certain non-improvable (note that in the case of uniformly bounded lulc the 
estimate T d =O(~') when h<l). 

3. Conditions for the non-uniqueness and non-existenceofa solution of the 
difference scheme, i. we will show that when ~>~o+J. and for fairly small T the implicit 
difference scheme (1.5) has, in addition to the solutions constructed in Theorem 2, one other 
solution, which lies "close" to the root ~=z-~/<~-o of the difference equation 

Olz=O t. (3.1) 

Equation (3.1) is identical with (1.5) if in the latter we ignore the term (~o+i)~ and put 
u-----0. This second solution is such that l~Ic-~+ oo as ~-~0. 

We will put ~-~- -T  -'/(~-') and determine the continuous operator GA: Rtz-s'R u from the 
equation 

Gh(~)={~(~k+~-'/<t-")~+~[(~+~-'/~-")~247 -- ~,, k=~, 2 ..... M}. 

The existence of a root of the equation C~(~)=0 will denote that scheme (1.5) is solvable. 
Consider the expression 

(G~ (~), ~)~= ((~ +~-"~-")"-~-~c~-", ~) ~ ~ + 

~([  (~+~- ,n~- , , )  o+,]~, ~.h+ (u, :z)~-I~,l~.~=I,+l,+h-I~l~, 
On the sphere I~l~.,=a0>0. z t  ~s obv ious  t h a t  I~i~<=0~-',., and t h e r e f o r e  by p u t t i n g  

~lo=aoh-'~'W ("-'). (3.2)  

where 

h>-I~la.,lul,.~=-aolu&.~. 
To estimate/twe will use the inequality 

n[ (i+n) Li] ~---~- n, (3.3) 

which holds for any~>l, l~l~<C.(~)<+~. Then, by choosing ~to be so small that 

~+=a+h-';'~~ (~-" <<-C. ( [~ ) , (3.4) 
using (3.3) we obtain 

l~+l , l~+t , 
1, > ~ I~&., = - ~ - - a +  . 

Hence, the following inequality is satisfied: 
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~= ~t=-t~ [iJ<C, (~) ]~ } .  

Henc ~ - we conclude t h a t  (Gh(~), ~)a>~0 f o r  a l l  

'zl~'2=ao = ~ 2~j { 'u"h.=+'~tt-to+"u(~-" ~--~" [ i +C'(~) ]=+' l" } . (3.5) 

It remains to show that conditions (3.4) and (3.5) are compatible for smallT.Substituting a0 
from (3.5) into (3.4) we have 

2 h-"lalh, r162 +- 4 h-~'[l+C.(~) ]=+t I v' z t~-~+'~u(~-i), (3.6) n~ ' ~ - I  

whence I]0-~0 as ~-~0 if ~>enLJ, i.e. condition (3.4) does not contradict (3.5) for small z. 
We have thus established the following result. 

Theorem 3. suppose ~>G~I. Then, for fairly small T the difference scheme (1.5), in 
addition to the solution constructed in Theorem 2, has one more solution. If ~=~-I, the 
previous conclusion holds when (see (3.6)) 

--4 h-~ '[ �94 ]~  ( a + l ) .  
(/ 

Note 4. using the example of problem (3.1) it is easy to show that in any neighbourhood 
of the solution ~=~-u(~-,) as small as desired, the operator 

Fh~) =[~=~+~-,1<p-,~),--~-wc~-,~/+=t, 2 ..... ~I} 
is not a compressing operator. Hence, we can obviously assert that the solution of scheme 
(1.5) constructed in Theorem 3 is unstable with respect to any iterational process (this 
conclusion is confirmed by a number of numerical calculations (1--6). 

2. We will show below that when ~a~-1 , and for certain restrictions on T and h, dif- 
ference scheme (1.5) can generally have no solution. To do this we will use the estimate 

9 

and taking this into account we can derive from (1.5) the system of inequalities 

( '-) ~ + ' c ~  ~247 ~-~+'~---~-/- , x ~ h .  (3 .7)  

It is clear that it is sufficient to check that (3.7) holds at the point where max u, is reach- 
ed, i.e. to determine the conditions for which the inequality 

%>~I al c+,~o+' (%,-(0+,, - ~, ) (3.8) 

has no solution in ~+'. 
We will first consider the case when ~=a~-J. Then, inequality (3.8) takes the form 

and, as is easily shown, ha~ no solution if 

h=>2, ~ > t ' =  (o+t )o+ ,  lulr -+ 1 - ~  . ( 3 . 9 }  

Suppose now that ~>~+I. Using the Young inequality 

~++' ~ T t"+,+, ~'.=R,", ~ =  l+ t_ "--~;-- .I  
we obtain that inequality (3.8) has no solutions if everywhere in R+ ~ 

2z 
~<1-1r i ; ~ + - f f  ~t 

Hence we obtain the condition for scheme (1.5) to be unsolvable when ~>s+|: 

. ,, ~> ..-tic ~ -,- - . ~ -  C6-;-. / . ( 3 . l o )  

We have thus proved the following theorem. 

Theorem 4, suppose ~=~+~. Then, when conditions (3.9) are satisfied the difference 
scheme (1.5) has no solution. When ~>~+~, the difference scheme (1.5) is unsolvable when 
condition (3.10) is satisfied. 

Note 5. Inequalities (3.9) and (3.10) give specific estimates of the value of the time 
interval x for which no iterational process for solving the implicit scheme (i. 5) will con- 
verge. These estimates can be used in numerical calculations. In this connection we will 
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consider inequality (3. iO) in more detail. 
Suppose 

2lp-(a+i)] [ ~(c,+t) -~ ~+,,m-co+,)~ 
~zo I , ~o = 

P L ~ - -  l 
Then (3.10) takes the form 

I "Ic>"0~(At)-~m-(~ ~-,~(~-,) 
and is satisfied, for example, when 

I'-dc=p~rdo(~D-'m-(~ do =[ ~ ] b o  ~'"~'-') , 

' t ~ Z  US ~do(ht) (f~-t)lI~-(~ 

~-~ ( 2 ) "(~-'~ 

(3 .ll) 

(3.12) 

E>~E+'cspoE ~, t~o,,  E~ (4 .7)  

E~-~+~, j-~+~. (4.8) 

and from the inequalities 

we obtain the condition 

At the same time, condition (2.10) for the solvability of the scheme when the quantity 
is chosen from (3.11), takes the form 

s =Io("'-9 (~''w~-c~ lo=[2~(pao~o)P-'+2o+'(,~do)~ 

and is identical with (3.12) in the form of the dependence on the interval h of the space net. 
Hence we can conclude that condition (2.10) for the solvability of scheme (1.5) when ~>o+! 
cannot be improved for fairly large values of lu]c (when, for example, the difference solution 
is developed into a mode with accentuation (see Sect.4). 

4. Bounded difference solutions, we will determine the sufficient conditions for 
the difference solution of problem(l.5), (1.6) to be bounded, in the sense of (1.8), when 
~o+I. (As will be shown in Sect. 5, when ~<o+I problem (1.5), (1.6) has no unbounded solu- 
tions.) TO do this we will use the difference analog of the method, which was previously 
employed in the differential case to investigate the semilinear (0=0) /19.20/, and the quasi- 
linear /9,21/ equations of the form (i.i) (see also /22/). 

1. We will put 
E=(a,~)~, t~,, (4. l) 

where ~h(z) is the eigenfunetion (1.15) of problem (1.16) corresponding to the minimum eigen b 
value (i.14~. Miltiplying the system of equations (1.5) scalarly by ~h, we obtain the chain 
of equations 

R-E 
~th (fi~ qh)A+ (dB, #h) h, t~e,, (4.2a) 

xj 

E~ = (u0h, qh)A, (4.2b) 

in deriving which we took into account the fact that /i0/ (see (1.16)) 

((a~ ~)~=(a TM, (~)~)~=--~t~(~'+', ~)~. 
In view of the normalization of the function ~h and the fact that it is non-negative in oh, 

the Hdlder inequality holds (we recall that ~>o+~ and the function 4^>0 is such that l~hl~ ,,={) 

taking which into account we can derive from (4.2) the estimate 

~-E > (a~ ~) 2,(~ [ i_X ~(ao+, ' ~),c0+,-~,,~~ ], t~o, 
W 

Applying the H~ider inequality (~~ %~)h>(u, #h)~ +* once again, we obtain 

E--E~>(a~176 [I X'h "1 
s ] ' t~o,. (4.3) 

D 

Suppose the value of Eo is such that 

~0= |--X,hE0(~ 0, E0= (u0~, %h)h (4.4) 

(note that when ~+I this condition has the form Xth<1). We can then conclude from (4.3) 
that ~>E in 8, for fairly small W, ]=0, | ..... and hence 

~E >~ s ( I X'~ )=poe ~, t~o~,. E~-to+t) 

Since 

~21c= max ~>E, t~o,, (4.5) 

t o  d e t e r m i n e  t h e  c o n d i t i o n s  f o r  t h e  so~,u t ion  o f  p r o b l e m  ( 1 . 5 ) ,  (1 .6)  t o  be boLmded i t  i s  
s u f f i c i e n t  t o  f i n d  a s y s t e m  {-~} o f  t ime  i n t e r v a l s  s u c h  t h a t  

T. = ~,~<+~ (4.6) 

j~0 
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In view of (4.5), the correctness of (1.8) follows from (4.8). 
Suppose 

Tj=Ap -~J, ]=0, I ..... (4.9) 

where A>0, ct>0, ~>| are constants which will be defined later. Then 

Ap ~ 
T. = -- <+~, (4. i0) 

p~--I 

i.e. condition (4.6) is satisfied. 
We will show that when there are certain limitations on the quantities A, a, p, we obtain 

from (4.7) that the following estimate holds: 

E~>E+p j, ]=0, |,.... (4 .ii) 

To show this it is sufficient to establish that 

Eop~+~,ItoEo~p~J>~E+p ~+', ]=0, I,.... (4.12) 

Substituting the values of W from (4.9) into (4.12) and simplifying to obtain 

Hence, When the following conditions are satisfied: 

a=~--l, p=i+A~0E0 ~-' (4.13) 

estimate (4.11) holds. We have thus proved the following theorem. 

Theorem 5. suppose ~>~+I, and the initial function u0~ in (1.6] is such that condi- 
tion (4.4) is satisfied. Suppose the difference problem (1.5), (1.6) is solvable in its 
sequence of time intervals (4.9), where the constants A,cz, psatisfy relations (4.13). Then 
the difference solution of the problem exists in a time (4.10) where 

I, ,q~>E~ ] + + ~ .  
C o r o l l a r y .  suppose  o+t~<~<z+3 and we a re  g iven  the  f u n c t i o n  tto(z)>O, :zER+'. We f i x  

an arbitrary h>0. Then, for fairly large]~we can find a set of time intervals which satis- 
fies condition (4.6), such that the solution of the difference problem (1.5), (1.6) for l~ 
(~f~-|)h and u0a~0 is unbounded in the sense of (1.8). If lu0~ih.~ for certain ~', a similar 
conclusion holds in the case when ~=s+3. 

This assertion holds for the differential problem (i.i), (1.3), (1.4), see /2,4,7/. 

Proof. For large ~, for the value of M0 in (4.4) the following estimate holds: 

l+to_~|_ [ luo..~,,., ] t,,+~ (__..~) to+,,-t 

Hence, with the assumptions made M0>0 for fairly large l, which, in view of Theorem 5, en- 
sures that the above assertion holds. 

Note 6. The assertion of Theorem 5 and the corollary to it also hold for an explicit 
difference scheme corresponding to Eq. (i.i) 

^ 
u--u (4.14) ~J = (ua+*)7 = + u~,  (t, z)  ~ ~++,: x c% 

with the conditions (1.6). Naturally, in this case, there is no need to stipulate specially 
that the difference problem is s~ivable. It is easy to show that when ~>o+l and four fairly 
small z/h* the solution of scheme (4.14) is subject to the maximum principle. Note that in 
the semilinear case (o=0) the conditions for the solution of the difference scheme (4.14) to 
be bounded were obtained in /22,23/. 

Note 7. It is well known /9/, that in the case of the differential equation of the pro- 
blem considered there are unbounded solutions where ~=o+| if ~.~o=(~/l)'<l. If ~i~ it is 
always solvable "as a whole". Hence, we can conclude from (4.4) and from the inequality 
ks~<Xs ~ (see (1.14)) that when ~=u+l the difference problem may have unbounded solutions when 
its differential analog of such solutions is not permissible in principle. 

Note 8. The following result, similar to that obtained in Theorem 5, holds for the 

general form of problem (i.ii), (1.6). Suppose that for a! 1 a>0 
r vs=const<~.~ h, ~,z=const>O 

(this condition is the oppostive of that of (2.8)). Suppose, in addition, that the function 
Q(u) is convex: Q"(u)>0 when ,>0. Then, if the initial function u~ in (i.6) is such that 

~(~~ ~-~_~, 

the choice of the system of time intervals {zr the form 

AEop* 
z~= , 1=0, I,..., (4.15) 

( l~  Q (E0pJ) - ~. t~LVZ 

whereA>0is an arbitrary constant, and p=f+A>|, ensures that the solution of the difference 
problem (i.ii), (1.6) is unbounded in the sense of (1.8),and estimate (4.11) holds. The 

series Z~=0xj converges if 



9 0  

�9 j i Q(p~) 
Um = lira q=const>I. (4 �9 16) 
j-| xj+~ , . |  p Q(y) 

We will show that it follows from (4.16) that (i.iO) holds. In fact, in view of (4.16), 
Q(py)>pq.Q(y) for all y>y.. where q.>I is a certain constant. Then 

O(n) q. ] .  O(n) ' v > ~ . ,  

and hence, (we recall that p>i) 

( dr 1 +}~ dq <fi" d,1 Vy>y.. 

Hence while making the limit transition y~ we obtain (1.10). 
2. We will give an example of an unbounded solution of the difference problem (1.5), 

(1.6) that can be represented in explicit form. This example, in particular, shows that the 
requirement that the problem is solvable in a sequence of time steps (4.9) , indicated in 
Theorem 5, is not too burdensome. 

Suppose ~=oau~. The difference solution of problem (1.5), (1.6) will be sought in the 
form 

u2=SsO,, (t, x) ~,X~h. 
Substituting u~ ~ into (1.5) , for the net functions S J and 0~ defined in ~, and r respectively, 
we obtain the following problems: 

S-S I Sa+, ' t~(0,, (4.17) 
W o 

(0~+%:+0~+' =---I 0, x ~ ,  O~H~. (4.10) 
o 

Suppose we are  given the system of time i n t e r v a l s  (4.9),  where p> | ,  (z=o. Then the s o l u t i o n  
of problem (4.17) w i l l  be the net  funct ion 

8J=p j, ]=0, I . . . .  , A=op-C~ (4.19) 

We will formulate the solution of problem (4.18) in the special case when 0=2. We will 
fix an arbitrary interger ~I>0 and we will put h=2 sin [3~/2(M+I)]. In this case the length 
of the section I is 

"" . 3 n h  h 
t = ---~-- a r c s i n - '  - ~ - ,  O < h ~ < 2 .  ( 4 . 2 0 ) .  

The solution of problem (4.18) then has the form 

O~ ={ 2[ 3(" 4 ,ahh , , - '~ ' / ,  �9 ---~sin-~--)] ~ sin(aAkh), k=0,1 ..... M+I, (4.21) 

where ah=~/l. 
The functions (4.19) and (4.21) define an unbounded difference solution of problem (1.5), 

(1.6) when 6=2, ~=3. When % h-+0 this solution converges to the solution of the differential 
equation (i.i), constructed in /1,4/. 

Note that the function (4.21) is not the projection onto ~ of the solution of the dif- 
ferential analogue of problem (4.18) when 0=2, although it has a similar structure. For 
example, in the case when o=I, Eq. (4.18) also has the solution 

0~=Ah s in'  (a^kh)+Bh, k=O, l . . . . .  M + i ,  
where 

i h _I 
ah = -;;-, a r c s i n - - / - ,  0 < h ~ < 2 ,  Ah ---- [ 2 ( 2 •  ],l,, 

Zn z 

-TI .I' 
which, however, does not satisfy the boundary conditions, and O~>0 for any/r when h>0. Only 
in the limit as h-~0, when xh-+s/~, Bh-~O is the function 0~ a solution of the (differential) 
problem (4.182 when I~4~. 

In the differential case, the carrier 10 of the analytical solution0(z)of problem (4.18). 

O.. ,2(o+I)., ]}'/~ o tx~=~o(-~s~n [ o 2 ( - ~  x O < x < / o = 2 ~  o4- t  

gives the value of the so-called fundamental length, which defines the dimensions of that part 
of space in which the unbounded solution of the Cauchy problem for Eq. (i.i) increases to 
infinity /1--6/. Note that the fundamental difference length (4.20), corresponding to o=2, 
differs slightly when h<<1 from Io=3~. This difference may be considerable for fairly large 
h, for example, I=9 when h=1, and I=6 when h=2. 

The authors thank S.P. Kurdyumov and V.B. Andreev for useful discusslons. 
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