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NON-STATIONARY DISSIPATIVE STRUCTURES. 
IN A NON-LINEAR HEAT~CONDUCIING MEDIUM 

G.G. ELENIN, S.P. KURDYUMOV and A.A. SAMARSKII 

The eigenfunctions of the non-linear boundary value problem, defining the non- 
stationary dissipative structures of the modes with peaking in an elementary one- 
component heat conducting medium, are studied. The stability of the dissipative 
structures is examined. 

The emergence of structures is non-linear systems of different kinds plays an important 
role in modern science, as indicated by the rapidly growing number of monographs, surveys, 
and international symposia /1--8/. A wide range of publications (see surveys /5,7/I is devot- 
ed by the study of stationary dissipative structures and wave processes in systems of diffus- 
ion equations. For the relevant mathematical problems, global solutions are found, defined 
for all t~0 (t is the time). 

The present paper~studies the non-stationary dissipative structures forming in a non- 
linear heat-conducting medium due to a mode with peaking. Modes with peaking (see definition 
1 below) were previously studied e.g., in /9/, as examples of the non-existence of solutions 
in the large (a solution exists only in the bounded time interval t~[0, T), T<+~). In the 
present paper, and in others in which the present authors have been involved, modes with peak- 
ing are regarded as the intermediate asymptotic form /IO/ of an evolutionary process. 

The interest in modes with peaking is due to a variety of unusual properties. It is 
shown in /ll--13/that the heating of the medium caused by a non-linear heat source and occur- 
ring in a mode with peaking can be of various kinds. 

In the S-and LS -modes with peaking, the heating is accompanied by localization of the 
heat (see definitions 2,3) on the fundamental length. With the HS-mode the heating of the 
medium is by a wave. In /14,15/ the spectrum of the dissipative structures of the LS -mode 
is found, and the stability of a simple structure is proved, while the averaging method is 
used to study features of the establishment of the structures and of the heat waves of the 
HS-mode. 

The effect of heat localization inthe S-and LS -modes with peaking makes it possible, 
not only to maintain, over a finite time interval, and in a bounded domain of space, an arbit- 
rarily large value of the temperature and the quantity of heat, in spite of the presence of 
thermal conductivity, but also to arrive at the existence of non-stationary dissipative 
structures. Notice that a localization effect of a different physical kind occurs in a heat- 
conducting medium with absorption /16,17/. In this case, in connection with the action of 
the volumetric heat drain, the temperature and quantity of heat are bounded at any instant in 
a bounded domain. Among localization effects of another physical and mathematical kind may 
be mentioned the example of localized stationary dissipative structures studied in /3/. 

The present paper contains an extension of the problem on dissipative structures produc- 
ed by modes with peaking, and is closely linked with /14/. Our main attention is focussed on 
the Cauchy problem for the equation of heat conduction, in which the thermal conductivity and 
the heat source are power functions of the temperature. We analyze in detail the similarity 
solutions,which on the one hand have properties of interest to us, and on the other hand, 
admit of relatively simple methods of analysis. This approach-- in the spirit of modern com- 
puting experiments, combining traditional methods of analysis with numerical methods /18/ -- 
allows us to bring into relief the main features of the problem, to introduce some new con- 
cepts, and then to see a way of defining wide classes of coefficients of the equations, re- 
taining the properties of the solutions which are of interest. 

The similarity solutions are found by integration of the non-linear boundary value eigen- 
value problem. Its eigenfunctions, corresponding to the positive eigenvalues, determine the 
concrete form of the different similarity modes with peaking. The eigenfunctions correspond- 
ing to the negative eigenvalues determine the'solutions existing in the large (ordinary modes). 
A feature of the similarity solutions of the LS -mode is that the boundary value problem for 
any eigenvalue has a definite number of qualitatively different eigenfunctions. These func- 
tions define the simple and complex heat structures. 

The similarity modes with peaking are unstable with respect to small disturbances of the 
initial data, though, as will be shown below, this does not mean~that, given any initial data, 
the space structure of the solutions at the asymptotic stage differs from the space structure 
of the similarity solutions. By an analysis of the structural stability, using similarity 
processing (definitions 4,5), we isolate the class of similarity solutions, asymptotically 
stable in a special norm, matched with their space-time structure (see Sects.7,8). 

i. The simplest mathematical model of a non-linear heat- conducting medium isthe equation 
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T,=(K(T) T.).3-Q(T), (i) 

where the thermal conductivity is a differentiable function and. satisfies the conditions 

K(T)>0,  T>0,  K(0)=0,  i K(x)x-'dx<+~~ (2) 

o 

while the heat source is a convex non-negative function, vanishing at zero temperature and 
satisfying the condition 

iQ-'(x)dx<+~, 6>0. (3) 
6 

For Eq. (i) we pose the problem 

T(x,O)=To(x), 0~<z<+ oo , 0 ~ r , ( x )  < + ~ ,  

lira To (z) =0,  

T.(0, t) =0,  lira T(z, t) =0, lira [K(T)T,] =0, 

whose solution, where T(x, t)=0 , may not have the smoothness following from the equation (see 
/19/). In this connection we shall distinguish two cases. 

Problem A. The initial distribution is finite: 

T(x,O)= lTo(x), O~x<a,x>~a. 

Problem B. The initial distribution is non-zero throughout the space: 

T(x, 0) =To(z)>0, 0~<z<+~. 
Problem A consists in finding the temperature T(x, t) in a segment of variable length 

l=x+(t) and the law of motion of its boundary x=x~(t), zf(0)=a when the temperature and heat 
flux is continuous: 

T(z~(t), t)=O, K[r(z/t), t)] T,(xf(t), t)=O. 

%~le fact that a finite rate of motion of the heat wave front can exist is mentioned in 
/20/. In /17, 21, 22/ it is shown that satisfaction of conditions (2) ensures the existence 
of a finite velocity of the front. The fact that we distinguish problems A and B is not of 
essential importance, and merely facilitates the analysis. 

Definition i. The heating process occurs in the mode with peaking if T>0 and x0~>0 
exist such that 

T(x, t) <+oo Vt~[0 ,  T) and Iim T(xo, t)=+oo. 

The q u a n t i t y  T i s  t h e  p e a k i n g  t ime  /11,12/, w h i l e  (3) i s  t h e  n e c e s s a r y  c o n d i t i o n  f o r  a mode 
with peaking to exist. 

Definition 2. In problem A there is heat localization due to the mode with peaking if 
z~u exists such that 

l~mx~t)<xo and T(x,t)=O Vx>x0, t~[0, z]. 

The minimum value of x0is the depth of localization. 
Obviously, localization is impossible when the velocity of propagation of the heat wave 

front is infinite, i.e., when condition (2} is infringed. The localization effect defined 
above does not occur in problem B, though effective localization may exist in this problem. 

Definition 3. In problem B there is effective heat localization due to a mode with 
peaking, if T,>0 and x0>0 exist such that, given any"/~[0, T] and x>xo , we have T(x, t)<~--To. 
The minimum value of x0 for the given To is the depth of effective localization. 

Let us demonstrate the features of modes with peaking in the class of power functions: 

A'(T)=T ~, Q(T)=T ~, o>0, p> t .  (4) 

Conditions (2) and (3) hold in this case. The power functions admit the existence of similar- 
ity solutions. Notice that in /23/ all the classes of functions K(T), Q(T) were found, ad- 
mitting the existence of invariant solutions /24/, of which the similarity solutions repres- 
ent a particular case. 

2. The expression T(x, t)=g(t, T)0(~, ~), ~=x~-'(t, T), is a particular solution of the in- 
itial problem under condition (4), provided that g(t, T)=(I--tT-')-', r ~)=(l--tT-*) =, ~=(~--I)-', 
Ct=0.5~(~--G--|), and function 0(~, T) is the non-trivial solution of the boundary value problem 
for the equation 

(0o0,'),'-  0+0 =0 
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The boundary conditions in problem A have the form 

0:" (0) =0, O(a) =0, O~ 0:' (a) =0, (6) 

and in problem B, the form 

0((0)=0,  limO(~)=O. (7) 

Problems (5~, (6), and (5), (7) are problems on the eigenvalues ~ and determine the eigenfunc- 
tions 0(~, ~). 

The positive eigenvalue and corresponding eigenfunction define the similarity solution 
of the mode with peaking. A negative value of �9 along with the eigenfunction define the 
similarity solution existing in the large (for any t>0). 

3. Problem (5), (7) has the solution 0(~, ~) for any ~ , if the solution 0(~,T,) exists 
for some ~t such that ~Tt>0. Here, 

0 (~, T) = (~+t-') -'0 ( ( ~ , - ' ) - %  ~,). (S) 

If problem (5), (6) has a solution in the segment ~[0, a,], ~o+I, then a solution exists, 
given by (8) , in any other segment ~[0, a] and 

x='r t (aat ' t ) ' ,  o=~-t. (9) 

These assertions are easily proved by a direct check. 

4. For solutions of problem (5) and (6) to exist the conditions I<~+I, x>0 and 
~>od-~, ~<0 must be satisfied. 

For, on the one hand, the principal term of the as!nnptotic form (~v~+l) as ~-~a:0(~)~ 
[--~0-'(a--%)] u~ has a meaning under the condition ~(~--o--|)<0; and on the other hand, on inte- 
grating (5) in the light of (6), we obtain the inequality 

[ ]-' >o. 
o o 

With ~=o+l the solution of the problem is found by direct integration of (5) (see /ii/): 

O, [~>O,5L,, 

where L,=2~o-'((~+I) 'h, 00=[2(~+I)~-'x-'(~+2)-'] '~~ The quantity L, is called the fundamental length. 

0 01 a6 Q5 
f 

Og 0.2 
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Fig. 1 

i O~(~,T)d~ [SO(~,T)d~]-t 
r 0 

Problem (5), (7) has no solutions for 
1<~.a+|. The necessary condition for solu- 
tions to exist such that 

[o(L ~)d~<+,~, 
o 

is a+3>~>o+i, T>0. For, the asymptotic form 
of the solutions as ~-~+~ ks 

0(~, X)=c~ -'("-~-'~-', c=const>O, (11) 

and 

~ -  (13-a-3) (~-l)- '~- ,>o.  

5. Qualitative and numerical analysis 4 shows that, with |<~<~+| and arbitrary a>0, 
problem (5), (6) has a unique solution 0(~, z) corresponding to the unique eigenvalue ~T(a). 
The time T decreases as a increases in accordance with (9). The eigenfunction 0(~, z) is 
monotonic for any fixed ~>0 (see Fig.l,a). With ~=o~-I, problem (5), (6) has a one-para- 
meter family of non-trivial solutions, existing in the unique interval a=0.5L, (see(lO)). The 
free parameter of the family is the peaking time T>0. With o+|>~>a+3 problem (5), (6) 
has no non-trivial solutions. In the same band, problem (5), (7) has for every positive T 
a definite number N of eigenfunctions 0~(~, T), i=|,2,...,N. Their number is equal to the number 
of zeros in the solution y(z) of the following linear problem (it is established by means of 
a numerical experiment): 

y"--0.5 (~--a--i) xy'+ (~--i) y=0, y'(0) =0. (12) 

The solution of this problem is 

y(x) =c0~(--(~--o) (~--o--i)-', 0.5, 0.25(~--o--J)x'), c0~0, (13) 

where ~)(a, b, ~) is the degenerate hypergeometric function /25/, and co is an arbitrary con- 
stant. The number of zeros of solution (13) is found with the aid of the function [z] (the 
integer part of the number z) from the expression 
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N=[z-[[~]~-']]+l, ~=(~-1) (~-a-l)-'. 
The eigenfunctions are such that 

~0,(~, x)d~<+~. 
o 

In Fig. l,b we give the three eigenfunctions for the case ~=3.G~ 0=2+0 and T=(2.67)-' 
(0,(~, 7) is curve I, 0z(~, T) is curve 2, 03(~, x) is curve 3) . With 6>0+3 solutions of 

problem (5), (7) exist for any 7>0: 0,(~,x),i=1,2,...,N. In this case 

| 

]im ~O(q,x)dq=+~ 

(see (ii)). Moreover, in the same range of parameters ~,o , problem (5), (6) has a unique 
non-trivial solution O(~, 7), corresponding to the unique number x=z(u). As a increases, 171 
increases in accordance with "(9). The eigenfunction is monotonic. 

6. The expression T(x,t) =g(t, 7)0(~, T) is the exact solution of our problems, if the 
initial data are similarity data: T(x, 0)=0(x, 7). With |<~<0+I and any 0>0 , there is a 
unique initial temperature distribution 0(x, 7(a)), determining a unique similarity heat wave 
of the so-called ]IS-mode with peaking. The peaking time is given by the length of the 
segment a �9 With ~=~+| , in the unique interval a=0.SL, there is a one-parameter family 
of initial data 0(x, x), defining non-stationary dissipative structures of the S-mode with 
peaking, localized in the fundamental length. The peaking time of the structure is determin- 
ed by the amplitude of the initial distribution O0 (see (lO))+ 

The similarity initial data T(x, 0)=0~(z, 7), ~>0, ~>~+|, define N similarity solutions 
of the mode with peaking, having a qualitatively different space structure and existing dur- 
ing the same time interval 7>0. The similarity solution, corresponding to 0,(~,~) has a 
maximum at ~=0. The half-width of this solution xh(t): T(0, t)=2T(zh(t), t) tends monotonically 
to zero as t-~7. The similarity solutions corresponding to 01(~, T), i~2, have i local extrema. 
In these solutions, all the local extrema move towards.the centre of symmetry /=0 and at 
the instant t=7 focus at it, while leaving in space the trace (the limiting temperature dis- 

tribution) 
T, (z) = lim T (m, t) =e,z -=c~-~ 

t+, (14) 

where c~>0 is a constant, dependent on ~>0 and on the number i of the eigenfunction. The 
existence of limiting distribution (14) reveals the effective localization in the similarity 
solutions of the so-called LS -mode with peaking /14/. The similarity solutions correspond- 
ing to the first eigenfunction determinethe simple dissipative structure, while the higher 
eigenfunctions determine the complex dissipative structures. 

With ~>0+3 , along with simple and complex heat structures of the mode with peaking, 
there is a similarity heat wave existing for any t>0. The heat wave amplitude decreases with 
time. For any a>0 , there is a unique initial distribution O(x, T(a)) and a unique value 
T(a)<0 , defining this wave. 

Table 1 

Problem I<6<,+I ~=a+l I o+l<~<a+3 ~>a+3 

HS-mode 
withpeaking 

.q-mode Ordinary 
11s -mode 

with peaking s LS-mode 

I with peaking with + peaking 

In Table 1 we classify the solutions of problems A and B both according to the time- 
variation of the temperature (ordinary modes, existing in the large, and modes with peaking), 
and according to the time-variation of the half-width. Following /ii, 12/, we call the 
similarity solutions with monotonically decreasing, fixed, and monotonically increasing, half- 
width, respectively the LS-, S-, and ZIS-modes. 

7. The similarity solutions of modes with peaking are unstable with respect to the 
initial data. A small disturbance of the initial distribution leads to a small variation of 
the peaking time. This in turn leads to an arbitrarily large difference between the solu- 
tions, starting from a certain instant close to the instant of peaking. This type of instab- 
ility does not mean that always, in the case of non-similarity initial data, the space struct- 
ure of the solutions at the asymptotic stage differs from the space structure of the similar- 

ity solution. 

Definition 4. Let T(x, t) be the solution of the original problem. The transforma- 
tion of the solution in accordance with the expression 

OCt, t )=r ,c ' ( t ) r (~ l (T~ . ( t )  ), t), (15) 
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where /(Z)=Z -a's(~ . . . .  ), 

T,~(t)= { e i t h e r  T(O,t), 
or max T(z,t), 

is called similarity processing, and ~(~, t) is the similarity form of the solution /14/. 
Applying transformation (15) to the similarity solution, we obtain the normalized eigen- 

functions 

~(~)= { either 0-'(0)0(~, l), 
o r  [ max 0(~, ~)1- '0(~ ,~) .  

A normalized eigenfunction is a stationary similarity processing (15). 

Definition ~. we shall say that the similarity solution of a mode with peaking has a 
stable space structure if the normalized eigenfunction defining this solution is stable and 
stationary among the similarity representations of the solution ~(~,l). 

8. Analytical methods and a numerical experiment /14, 26/ show that, in the range 
|<~<o+| the similarity solutions are stable in the sense of definition 5. In Fig.2 (0< 
tz<t._<t,<x) we give the results of a numerical computation with similarity processing. The 

heating is realized by the similarity heat wave of the HS-mode with peaking. With ~=o~-i 
the similarity solution of the S-mode is stable. In the fundamental length a symmetric 
stable non-stationary dissipative structure of the mode with peaking is formed and an effect 
of heat localization occurs. In the parameter range o+3>~>o+~ the simple heat structure is 
stable. The complex structures are preserved during aimost the entire peaking time. During 
a fairly short time directly before the instant of peaking, degeneration of the complex struc- 
ture to a simple structure occurs (see Fig.3). With ~>o+3 , there are two types of similar- 
ity solutions: the heat wave of the ordinary I/S-mode and the heat structures of the LS-mode 
with peaking (see Table i). The similarity solution of the ordinary HS-mode is unstable. 

The n~erical experiment showed that, if the initial distribution is minorized by the tempera- 
ture distribution of the similarity solution of the ordinary HS-mode, then the LS-mode with 
peaking occurs, or if it is majorized, then over a fairly long term a damped wave exists. In 
both cases the maximum temperatures in the initial and the similar distributions are the same 
(see Fig. 4). 
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9. It has been shown above that problem A 
has no similarity solutions of modes with peaking 
in the range 6>o+L However, by using the averag- 
ing method /14/, /26/, the comparison theorems /27 
-- 30/, and a computing experiment/ii/, it can be 
shown that a heat localization effect in the sense 
of definition 2 occurs in the solutions of problem 
A, in spite of the absence of similarity solutions. 
Non-stationary and dissipative structures exist, 
localized in the fundam, ental length of the LS-mode. 
bmny numerical experiments /14/ show that the temp- 
erature distribution in the structures of problem 
A, almost everywhere inside the localization domain, 
with the exception of the neighborhood of the 

front x=x| T(xr t)--0 (x~(~) is the fundamental length of the s coincides with the 
temperature distribution in the similarity mode of problem B. An estimate of the fundamental 
length of the LS-mode with peaking is given in /13/. 

lO. Further studies have shown that modes with peaking and heat localization are typical 
for wide classes of thermal conductivity and a spatial heat source. An important role in 
determining these classes is played by the comparison theorems for parabolic (including degen- 
erate) equations /27--36/, and by the construction of approximate similarity modes /37/. 
Important results of such work include a method for constructing, given Q(T) , the coefficient 
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K(T) leading to heat localization in a mode with peaking. Applications of the localization 
effect are discussed in /38--44/. Interaction of heat structures in the multi-dimensional 
case has been studied numerically in /45,46/. The averaging method, proposed in /14, 26/, 
has proved useful when studying the transition into the similarity mode. Dissipative struct- 
ures of modes with peaking in media with distributed parameters are~considered in /47, 48/. 
The series of papers /49--54/ is devoted to the study of non-stationary structures in differ- 
ent mathematical models of non-linear media, including multi-component media. Effects of 
heat localization in problems with limiting modes are considered in /55/, where very complete 
references will be found. 
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