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BASED on the variational principle, two-dimensional difference schemes of magnetohydrodynamics 
on triangular Lagrange meshes are obtained, which are fully conservative, including the difference 

analogue of the law of conservation of moment of momentum. The meshes are described in terms 
of difference operators. From the conditions of spectral matching an artificial viscosity is intro- 
duced. Examples of numerical calculations are given. 

It is essential to stipulate that the difference schemes used for solving non-linear problems of 
the mechanics of continuous media depict the precise features of the flows studied on real, i.e. 

comparatively rough, computational meshes [ 131. 

For multi-dimensional problems this situation has a deeper content compared with the one. 
dimensional case. 

Thus, in passing from one to several space dimensions xre must take into account the 
additional law of conservation which in accordance with the principle of total conservation [ 1 ] 

should also satisfy difference schemes: the law of conservation of moment of momentum. 

In addition, in multi-dimensional problems an essential part is played by the “geometrical 
instabilities”, such as Rayleigh-Taylor and Hehnholtz instabilities. The development of these 
instabilities in the early stages is described by the linear approximation of the corresponding 
equations; therefore, for a sufficient description of a continuous medium by a difference scheme it 
is necessary that the acoustic approximations of difference schemes should approximate the 
equations of acoustics quite well and depict their most characteristic properties. 

A comparison of various methods for the numerical solution of problems in gas dynamics and 
magnetohydrodynamics, based on the Euler [2] and Lagrange [3] variables, shows that the latter 
method, in its range of application, has greater “resolving power”. 

*Zh. vychisl Mat. mat. Fiz., 22,4,926-942, 1982. 
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However, when solving two-dimensional problems using quadrangle Lagrange meshes [4 - lo] 
well-known difficulties arise [4,8], due to “overlapping” of the Lagrange cells even when there are 
no strong shear deformations in the modelled flows. Difference schemes on triangular Lagrange 
meshes are free from this drawback [ 1 1 - 141. 

In this paper we obtain and examine two-dimensional differences schemes of MHD on 
triangular Lagrange meshes, intended for computing both flat and axisymmetrical flows with two 
components of the frozen magnetic field lying in the plane of the flow. The construction of the 
schemes is based on Hamilton’s variational principle [5]. 

It is shown that the system of differential-difference equations (differential with respect to 
time and difference with respect to the space variables), obtained from the variational principle has 
the property of complete conservatism [ 1 ] which includes a difference analogue of the law of 
conservation of moment of momentum, and has the first degree of approximation with respect to 

space. The linear approximation of the differential-difference equations approximates the equations 

of acoustics also to the first degree, and in addition the space part of the difference acoustic 
operator conserves the property of self-conjugate and of positive definiteness on the corresponding 
background flows. 

The system of differential-difference equations and the corresponding linearized system are 
written in terms of difference analogues of differential operators [15]. Using the principle of 
spectral correlation a linear artificial viscosity is introduced. 

The transition from differential-difference to difference equations is achieved by replacing 
the derivatives with respect to time by finite differences. This leads to a multiparameter family of 
difference schemes. It is shown that by writing the differential-difference equations in operator 
form we can preserve the property of complete conservatism in the case of time sampling (with 
appropriate choice of the parameters). 

Examples of numerical computations are given. 

1. The functional of action 

Let G be a certain domain in Cartesian coordinates (x, y), occupied by a continuous medium 
(in the case of axial symmetry x corresponds to the r coordinate, which is a radius, and y to the z 
coordinate). 

The region !2 corresponds to the region G in Lagrange variables (01,/l). 

The functional of action for a non-dissipative medium with an infinite electrical conductivity 

in the presence of the magnetic field H= (H,, H,) is defined by the expression [5] 

(1) 

where L (t) is the Lagrangian, p, E are the density and specific internal energy of the medium which 
occupies the domain G, HZ=H2+HyZ, v= (u, V) is the velocity, and 
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(2) 

is the Jacobian of transition from Euler to Lagrange coordinates (I = 1 for plane, and I = 2 for axial 
symmetry of the problem). 

2. The variational principle in MHD 

The dynamic equations of MHD follow from the condition that the fast variation of 
functional (1) equals zero if we take into account the following additional differential relations [5] : 
the conditions for the magnetic field to be frozen: 

1 WVF) 
H,= - 1 ah/&) 

J a(a,p> ’ H”=T a(a,p) ’ 
$I (CL, p) = const; (3) 

the continuity equations 

(4) 

and the first law of thermodynamics 

P 
de=- 

PO (01, B) 
dJ. (5) 

Here $ (01, /3) is the magnitude of the magnetic flux, po (CY, 0) is the density of the medium in 
Lagrange variables, and P is the pressure of the medium. 

3. Equations of adiabatic MHD 

The dynamic equations of MHD in Lagrange variables have the form 

au [ , a(pH,9) 
p”at+x- a(a,p) 

1 a (Hxv s> _* -- 
4n a (a, B) ’ 

d”+_. 1 a w, Pa) 1 a po W,, 44 --, 

at 1 ab, B> 4n ab,P> 
=o 

’ 
where PH=P+H2/8n. 

The condition of adiabatic flow (5) gives an equation for the change in internal energy 

de ( a k Y) 
p”dt”-p a(a, p) 

+ ah, 4 1 ab,B> ’ 
which is equivalent to the law of conservation of entropy s. 

(6) 

(7) 

The system of equations (6), (7), (3) and (4), together with the equation of state P = P (p, E), 

the kinematic relations dx/dt = U, dy/dt = Y and the boundary conditions fully define the MHD 
model of a continuous medium. 
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Without loss of generality we can assume that on the boundary I’ of domain G we are given 
the conditions 

dP 

dn II I =o, PI ,,=P (z, y> 20, 

where 71 U72 = r, and n is the internal normal to I?. 

4. The variational principle for the equations of acoustics 

We will derive the equations describing the acoustic oscillations of the medium [9]. 

Let us assume that a small perturbation (Ax, Ay) of any background flow is given. Expanding 
(l), taking account of (2) - (5), in a Taylor series in terms of values of the perturbations up to the 
second order of smallness inclusive, we find 

AL=A,L+A,L+o( (Az)~, (Ay)“), 

where, as a consequence of Eqs. (6) for the undisturbed flow, the first order term is A 1 L P 0, and 

(9) 

Here the terms of the expansion of the Jacobian J are 

where c~*= (aPl~?‘p) d is the adiabatic speed of sound. The condition for the first variation of the 
functional to be zero 

A,S = j AzL dt 

‘0 

gives the equations of MHD acoustics 

dAu d (~a Y) +z’_, 3 (APa Y) 
PO -+(I-1)As 

at a(a, PI 1 a (a, B) 

f wdid 

3 

1 wL~~),=O -- 
a (a, PI 4n ata, i3) ’ 

(10) 

dAv 1 

PO dt 

a (x’, A&) t d @‘-‘AZ, P,> 

+c ab,p) 8 (a, P) 

1 a(Abb) =o -- 
4n aba ’ 
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where 

APE=- + A,J+ 
H,AH,+H,AH, 

4n -’ 

AH -1 a&:$) 
I- 

J [ 3 (a, B) 
-&LJ , I 

AH,= f 
[ 

aCAy, _H A J 
ah 81 ’ ’ ’ I 

It follows from Eq. (9) that in the operator equation 

d=ArldF=-AAr, Ar= (Ax, Ay) , 

which corresponds to (lo), the operator A is self-conjugate under the condition (8), and PH = const. 
In stable background flows the operator A is non-negative definite. 

5. Sampling of physical quantities 

Since the choice of Lagrange variables is arbitrary, we shall assume that the domain 52 is a 
parallelogram with an angle n/3 (Fig. 1). 

FIG. 1 

We will divide Sl into right-angled triangles (let h, be the side of a triangular cell, and hp its 
height), and introduce in St two difference meshes: a set of vertices 

i;r={a,=(i+j/2) ha, pij=jhb, O<i<h’, O<j<M} 

and a set of the centres of triangular cells 

o={[aiji=(i+(j+1)/2)h,, fAj~=(j+‘/s)hel, 

[aii,=(i+l+j/2)h,, /3ijz=(j+‘/s)hg], OGiGV-1, O<j<M-1). 

Thus, we introduce two subscripts corresponding to each node of the mesh, i and j E is, and three 
corresponding to each cell, i, j, and k E w, k = 1,2. 

By the inverse transformation L! + G we obtain a difference mesh in the domain G. 

We denote by .3& and L.X$, the sets of mesh functions given on meshes ZS and w 

respectively. 
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Let us ascribe the values of the coordinates, the velocities of the particles of the medium, and 
the value of the magnetic flux to the mesh W: 

and the thermodynamic quantities and the components of the magnetic field to the mesh w: 

po(a7 p)ijkl Pijkr Pi)kq Eijk, (N.~)f?k, 
(H,)ijkEz 0, i, i, keo. 

Below, the subscripts ij and ijk will be omitted, using the notation f<j=fGsf, fijE%~, 

i, j=a; gi,h=gwEg, gijkEA?o, i, j, k=a. 

For convenience we will introduce a local system of subscripts (see Fig. 2): 1.10 (ii) = 

(1, 2, 3, 4, 5, S} for the set of cell centres to node ij (see Fig. 2a), III1 (ij) = {I, 2, 3) 
for the set of vertices of the cell qk (see Fig. 2b for cell ij 1 and Fig. 2c for cell ij 2). 

a 
ij b C 

FIG. 2 

6. Variational principle for discrete models of a continuous medium 

We will approximate functional (1) and conditions (3) - (5) by the difference expressions 
with respect to space: 

S, = j L(t)& = t [E (p>(J) ( @);(u’) 

‘0 *0 0 (11) 

-_(&)- 
(Hx>‘+<H,)* h,hB 

8dp) 1 1 -y a. 
(HA = 

&< a,:,“,:>’ 

1 
(H,>= - 

l 
3 (Y, $) 

Cl> I > a(%@> T 

(12) 

(p>(I>=(p,(a, p)>, 

(P> 
d(e) = -- 

(p)(J) 
d(J). 

(13) 

(14) 
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Here < - ) = ( .)ijky i, j, ICEO, are certain linear functionals for the corresponding mesh 
functions 

<f>= c alfh 
ZEIU( ij) 

where III (ii) is the approximation pattern, and al are certain coefficients (ZII (ii> c W iffE L%‘z, 
and I.1 (ii) r w if f&j&,). 

We shah assume that the following essential approximation matching conditions are satisfied 

[IS] : 

etc. 

Expressions (11) - (14) together with the equation of state (P> = P (( p> , <E > > and the 

kinematic relationships dxldt=u, dyldt=v completely define the properties of a discrete MHD 

medium. 

From the condition that the first variation of the functional Bh equals zero, we obtain the 
dynamic differential-difference equations of MHD in the form 

d aL,, aL,, d aL,, aL,, --- -=o, __-- 
dt au ax dt av ay 

=o. (15) 

7. The differential-difference equations of MHD 

Choosing as an approximation configuration of III1 (ii> on W the set of vertices of the cell ijk 
(see Fig. 2), and on o one point, namely the centre of the cell, we define the form of the 
functionals on the set 283 by the expressions 

(J>= -&+4h,,h,), 
a I;,’ 

a,> = s(yig) fo(h,,hJ, <FI,> =*+o(h,,h,), 
V 

(& _ (u~2+u22+us2) 
- 

3 
+ o(j.& 2 j&C) 

a9 , 

.lv2)_ (v~2+v22+~22) + o (h 2 h;) - 

3 a9 

and on the set 28, by 

(16) 

(17) 
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Here, the volume and the cross sectional area of the cell in Euler coordinates are 

s (z, y) = [Xi (y,-ys) +x2 (YrYd +x3 (Yi_Yd l/2* 

Taking into account (16) and (17), expressions (11) - (14) take the form 

H,=S (5, $)/I’, H,=S(y, WV, 

hahfi 
pV=mEfh (a, B), , 

de=- 5’, 
m 

(19) 

(20) 

(21) 

(22) 

where 

M= 23 z mk, ijGi 
keUI,( il) 

(see Fig. 2a) is a consequence of (16). 

On substituting J!.h (t) from Eq. (19) into (15) and taking into account expressions (20) - (22) 
we obtain the dynamic differential-difference equations of MHD on the triangular meshes. The 

complete system of equations is 

MGt- c (P~)~%+& z (H,), ‘Sk;;‘) =O, 
kelU,!?j) k=G(iJ) 

de m-=-p 
dt c( f3v sv 

yUk+.-Ck 
‘2xk 

bEUl,l,i, 
dYk 

pV=m, P=P(p3 E), $=u_ 

dY 
- =u, 
at 

Plg=Pf g . 

(23) 

It should be noted that the energy equation in system (23), which approximates the 
differential equation (7) can be treated as the law of conservation of entropy in a discrete medium. 
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8. Difference analogues of the differential operators 

The dynamic equations (6) and the energy equations (7) in Euler coordinates have the form 

dv 
-=-gradP+~ 

‘dt 
4n [HXrotHl, 

o$=-Pdivv. 

We transform the dynamic equation into divergent form. Using the equation div H=O, we 

obtain 

dv 
P--g= -gradP,+&d, 

where d= (div H,H, div HUH). 

The differential-difference equation of system (23) can be written in a form identical to 
Eqs. (24) and (25), apart from replacing the differential operators by difference operators. 

In fact, let us define the operators of the difference derivative: 

and also 

(25) 

(27) 

(28) 

(29) 

where 

v+ c v,, &=$ z Sk. 
krILIO( ij) REZUp(ij) 

It can be shown by expanding in a Taylor series [15] that operators (26) and (28) approxi- 
mate the corresponding derivatives to second-order accuracy with respect to h, and hs (on a six- 
point configuration), and operators (27) and (28) to first-order accuracy (on a triangular 
configuration). 

With the help of the operators of the first-order difference derivatives (26) - (29) it is possible 
to form difference analogues of the operators grad, div and rot (see [7] and [ 15]), and also the 
operators of higher-order difference derivatives, (for example the Laplace operator [ 151). 
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We shall define the following operators: 

GRADt;f,= (( ‘$>, , (s),, 1 %‘,-+zzj, 

1 
DIV,g, = ___ 

d <s’-‘)ug,n 
\ 

(x’-‘), dx 1, 

(30) 

(31) 

Operators DIV, and -GRAD,- in (30) are conjugate, i.e. cfw DIV,g,) = (-GRAD,f,g,), 
where the scalar product in spaces L&S, and %E are defined by the formulae 

(fo.gkl)= r( Vkfk&r f,g=xb 
kcIu,( ijl 

(32) 

(f& &> = f, gc%iq v-vi& 
Rful,(ij) 

The operators DIVi;, and -GRAD, in (3 1) are also conjugate if in (32) we assume that 
Vo=(s’-‘>,S,, VE=_(x’-‘>,-Ss. We shall regard these formulae as a definition of (x’-‘)~ and 

<xl-‘)o respectively. 

With the help of expressions (30) and (31), the corresponding equations of system (23) can be 

reduced to a form identical with (24) and (25): 

Pa f = -GRAD#H + ?_ Dz;, 
4n 

de 
p dt = -P DIV,v, 

where 

1 1 

ps=-FT z PLVAY D,= (DIV$,H, DIVdT,H) . 
w keu,(~J) 

Note that DIVzH=O. 

Using the difference operators introduced here, it is not difficult to obtain difference 

approximations on triangle meshes of any differential equations, including the equations of 
magnetic field diffusion and of thermal conductivity. 



170 V. M Goloviznin, V. K. Korshunov and A. A. Samarskii 

9. The differential-difference equations of acoustics 

Let us obtain equations describing the acoustic oscillations of a continuous medium. 

Expanding Eqs. (19) and (22) in a Taylor series with respect to any background flow to terms 
of the second order of smallness, we find 

A2Lh = 
c 

Jf+ [(Au)* + (Az~)~j 

(33) 

If Au E 0 and Av = 0, then the quadratic form (33) describes the stability of the background 

flow: the flow is stable if the form is negative definite. 

From the condition that the first variation of the functional 
h 

A&,= 
s 

AzLh dt 

i 
equals zero, there follow the dynamic equations of MHD acoustics. 

In terms of difference operators, these equations have the form 

dAu 

PC dt 
- =- (Z-l) & GRAD,-$K--GRAD~GAP~~ 

Y 

dAv 

“;; dt 
- = -GRAD,;AP, + & DIVz(AH,H) 

where AP,=-~,~pDIv,Art (H,AH,+H,AH,)/~~, 

(34) 

AH,=S(Ax, $)/I’-H,DIV,Ar, 

AH,=S(Ay, q)IV-H,DIV,Ar, Ar= (Liz-, Ay). 
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Comparing Eqs. (34) and (10) we see that the differential-difference equations of acoustics 
(34) approximate the same type of equations (10) with the first order of accuracy with respect to 
the steps of the space variables. 

It follows from Eqs. (33) and (34) that the difference operator Ah on the right-side of (34) is 
self-conjugate on flows which satisfy the boundary conditions (8), and for PH = const. On stable 

background flows Ah is positive definite. 

In the basis of eigenfunctions of the operator Ah the equations of acoustics take the form 

CPLZ,ldP+?biLZi=O, i=l, 2, . . . , IV’, (35) 

where & are eigenvalues of the operator, N is the dimensionality of the mesh space on which the 
operator is defined, and ai (t) are the coefficients of the expansion of Ar with respect to the 
eigenfunctions of the operator Ah. 

10. Artificial viscosity 

The system of differential-difference equations of MHD (23) is unsuitable for computing flows 
with shock waves since it conserves the entropy of a discrete medium. In order to avoid this 
limitation it becomes necessary to introduce some dissipative processes [ 1 ] . 

Following [8], we introduce into Eq. (23) an artificial viscosity in such a way that on an 
equilibrium background the viscosity introduced does not result in a redistribution of the energy 
of standing acoustic waves, i.e. we introduce viscosity into the discrete medium so that each mode 
ai (t) in Eq. (35) is damped independently: 

d2ai 
- + xihi 2 + h,al=O, 

dt’ 
i=l? 2,. . . , N’, 

where x, are certain coefficients. 

The inverse transition from (36) to (34) enables us to obtain the form of the artificial viscosity. 

Below we give the complete system of differential-difference equations taking into account the 

artificial viscosity: 

dv 

%= 
-GRADS,’ +&D-;‘, 

(37) 

dP 
dt = - p DIV,v, 

dr 
H=S(r, $)lV, -& = v, P=P(p, 8) 7 



172 

where 

V. M Goloviznin, V. K. Korshunov and A. A. Samarskii 

Pa'=PIi-x ~,,,.Y+~ Hz- 
( 

dH, + H dH” 
at "-YE- ) 

Dis’= (DIVs’H,‘H, DIVi;‘H,*H), 

H*=H+x$. 

We shall choose the coefficients Xij using the condition of the most rapid attenuation of 

the highest harmonic of the acoustic operator corresponding to a certain partial mechanical system 
which includes the cell fj (see [8]). If, as in [ 131, we choose a triangle as the partial system, we find 

x0 from the condition ~.<2hzk , where A,, is the square of the maximum natural frequency 

of the system obtained by varying the functional A2 & written for one triangular cell. The quantity 

x max can be estimated fairly accurately using Gershgorin’s theorem [ 161. 

11. Complete conservatism 

The system of differential-difference equations of MHD on triangular meshes (37) has the 
property of complete conservatism, namely: 

1. For any subdomain fil of domain s2 such that I’nI’,=@, where r and rl are the 

boundaries of 51 and al respectively, the following relations hold: 

a. The law of conservation of total energy 
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where Wl is the set of.nodes of mesh W in the region RI, wl is the set of cells o in al; So’ (i, j) 

contains the cells of the configuration So (i, j), i, j E Cl which are external with respect to 511. 

b. The law of conservation of momentum 

(38) 

where the second term in the right-hand part of Eq. (38) takes into account the contribution of 

pressure forces applied to the end faces of a cell (in the axisymmetrical case, for I= 2, the cell is 
part of a torus of triangular cross section of angle one radian, see Fig. 3). 

FIG. 3 

c. The law of conservation of moment of momentum 

where 

-~r!k~~(~,)X*(HrlY-H~kx) 
9 

x H ask (‘7 ‘) + H ask (h !d 
a-k ax uk 3 aY ’ 

(39) 

aw-'> 
<y>= Yh 

ask 
kdU,(ij) 
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and the second term on the right-hand side of Eq. (39) takes into account the momentum of forces 
acting on the side faces of a cell for I= 2. 

2. The energy equations written in entropy form [l] . 

3. For cells w the law of conservation of mass p V = m, and the law of conservation of 
magnetic flux H=S (r, $)/I’, Q (a, b) =const are both applicable. 

12. Time sampling 

We shall replace the region of variation of the variable f, 0 < t G T, by the discrete set of 
points C!&={&, . . . , t,,, . . . , tn-; to=& tiv=T; z,,=tn+,--tn}. 

Approximating the derivatives with respect to time in Eq. (37), by finite differences, we 
obtain a closed multiparameter system of difference equations on triangular meshes: 

T-v 
piz’ - 

r 
=-GRAD==;(P,‘)“.-ADS’, 

GE 
P _ =- [ (P~*)~’ - -&~x+H,i,) ]DIV,%++q (03, OS), 

T 

where u,=[O, I], k=l,. . . ,9, o~=(cJJ’, ~a*, aa3, (~3’)~ f”=~f+.ll-~~)f~ f=f”t 

j~fn+~, P=T, and 

D;(03) = (DIV,*H;H(ua), DIVw’H,‘H(oJ) 7 

(W 

DIV:H,*H (us) is expressed by a similar formula. 
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Here we assume that for (Z.Z=*)’ and (H,‘)” the following expressions hold: 

and also 

aP d 8~” a 
-z-=-z V", ay=dy" p, 

lx'-i>"=v"/s", IJo= I’ (x0, y”) , s”=s (x0, y”) . 

For Ok = 0.5, k = 2, . . . , 9 (01 is arbitrary) the system of difference equations (40) has the 
property of complete conservation. 

It should be noted that the presentation of the system of difference equations in conservative 
form (for ok = 0.5) with matched viscosity has become possible thanks to the representation of the 
system of differential-difference equations in operator form, 

System (40) approximates the system of differential equations (6), (7), (3) and (4), generally 
speaking to the first order of accuracy with respect to time, and, for Ok = 0.5, the second order of 
accuracy is achieved. 

13. Examples of numerical computations 

An explicit scheme for system (40) for q.=O, k=l, 2, 3, 4, 6, 7, 9, os=0.5, 08=1 
was tried out in numerous test computations. 

When using the scheme it is convenient to use as a domain in Lagrange variables not only a 

parallelogram but also domains of other forms, e.g. a right-angled triangle or a rectangle. In the 
latter case, in the domain 52 a rectangular mesh of nodes W is introduced. To introduce a mesh of 

cells 0 we use criterion Z (i, j) = (0, I}, in accordance with which a quadrangular cell ij is divided 
by one or other diagonal into two triangular cells. Here the shape of the configuration ZZZo (i, j) is 

not fixed, but can vary from one point to another. Figure 4 shows some possible configurations of 
ZZZo (i, j), from a four-point one to an eight-point. The second order of approximation with respect 

FIG. 4 
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to space variables is retained in this case only for configurations with two axes of symmetry; on the 
remaining configurations the first order is achieved. 

Consider two examples. 

1. The problem of compressing a spheroid (H4) : for t = 0 a gas p=pO=l, E=E~=IO-~, 

P=pe (y-l), 7=2, occupies a domain in the shape of a flattened spheroid (because of the 
symmetry, only the part located in the first quadrant is considered). On the boundary of the 
spheroid the internal pressure 

1 
t for St’, 

P= 
P’=const for C-t’, 

is given, where t* is the time taken by a shock wave to travel a distance equal to the semi-minor axis 

of the spheroid. The results of computations (see Fig. 5, t = 1.1473) were compared with 

b 

FIG, 5. a - computational mesh, b - field of velocities 

those given in (10). In this paper the computations relating to the problem were carried out on 
quadrangular meshes with reinterpolation for long computation times. The comparison shows that 
in computation on triangular meshes the cumulative effect is more pronounced; this can probably 
be explained by the absence of diffusion of momentum, which appears during rearrangement of a 

mesh. 

2. A flat domain occupied by gas with a frozen magnetic field has the shape of a spheroid 
stretched along the y axis. Figure 6 shows a quarter of this domain, divided by the difference mesh, 

X 

Y 

r, 
FIG. 6 
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occupying the top right hand quadrant in the (x, y) plane. On the boundaries 71 and 72 the 

conditions of symmetry are specified, and on 73 the external pressure P* = const. The arrows 
represent the magnetic lines of force. Along these the density and the specific internal energy 
were assumed to be invariable, satisfying the condition P t H2/8n = P* for y = 0. The equation 

of state was P=pe (y-l), Y=& and it was taken that at the initial instant the gas was at rest. 

Since the initial state is unbalanced, the gas begins to be compressed along they axis due to 
the action of the magnetic lines of force. Figure 7 shows the results of numericalmodehing of this 

I 3 

FIG. 7 

process. The number of time steps was around 39,000. The lines dividing the mesh into triangles are 

not shown. 

Translated by W. Chrzczonowicz 
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THE BOUNDARY CONDITIONS IN PENETRATION PROBLEMS* 
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THE EQUATIONS of motion of the mechanics of a continuous medium in an arbitrary mixed 

Euler-Lagrange system of coordinates are examined. The boundary condition on the body-medium 

boundary is formulated, as it applies to the problem of an absolutely rigid body penentrating into a 
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