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DIFFERENCE schemes are constructed for the three-dimensional MI-ID equations, on the basis of 
a variational principle similar to the principle of least action in classical mechanics. An arbitrary 
curvilinear coordinate system is used. The properties of the resulting difference equations are 
studied. 

1. Differential equations 

I. In the numerical simulation of the motion of a continuous medium it proves convenient to 

use a formal approach based on the introduction of the Lagrange function [ 1,2 1. In the absence of 

dissipative processes, the Lagrangian of the continuous medium, immersed in a magnetic field, can 
be written as 

pg’” di-2. (1.1) 

Here, as the Euler reference system we use any fixed curvilinear coordinate system z’, i--l, 
2, 3; p is the density, E is the specific internal energy, vi, vi are the covariant and contravariant 
components of the velocity vector v, Hi, Hi are the covariant and contravariant components of the 
magnetic field vector H, Cl is the domain occupied by the medium, dS2=ds’dz2dx3; g is the 

determinant of the metric tensor gik, We assume henceforth that the Latin indices take values from 
1 to 3, while a repeated index denotes summation. 

On transforming to Lagrange coordinates qi, i.e. putting zi==zi(ql, q2, q’, t), d;t*/dt=v’ 
(q,*, q2, q’, t), we can rewrite Lagrangian (1 .I) as 

where 8, 4(x(q) ), dQ,==dq’dq*dqs, J=d(s’, 2, 2) / 6’(q’, q2, q’)>O. 

Specification of the Lagrangian along with the supplementary constraints reflecting the 
typical features of the flow, fully describes the MI-ID system. In our case, the role of the constraints 

will be played by the conditions for continuity, conservation of the magnetic flux, and adiabaticity. 

l Zh. vjk/risl Mat. mu?. Fis., 21, 1,54-68, 1981. 
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2. The continuity condition follows from the mass conservation law for an arbitrary fluid 
volume a’ C 8: 

or 

pJg”=-po (4). (14 

If, as $, we take the coordinates of particles of the medium at the initial instant, then po signifies 

the density at t = 0. On differentiating (I 2) with respect to time, we obtain the relation 

dP agw 
--&- + pg-‘“~ - 0, 

which is the equation of continuity in the curvilinear coordinate system. 

3. The condition for conservation of magnetic flux through any fluid surface C (frozen 
conditions for an infinitely electrically conducting medium) may be written as 

$, j H’g’” dS, - 0; 

x 

here, dSi are the components of the pseudo-vector of an elementary area (31. The quantities 
gsd.Si are the components of the vector, directed along the normal to the surface element, and 

equal in absolute value to its area. Using the transformation rule for pseudo-vectors [4], we find 

that 

Here, dSqk are the components of dS in the Lagrange coordinate system. From (I .3) we easily 
obtain the frozen conditions in the form 

where 

J,k = J aq” _ ’ ekmn “’ “’ 
axi 2 

e hmn , e,,I are absolutely antisymmetric tensors. 

Using the property Of Jik: 

J," axm (j “J 
-= 1 

dqh 
, 

(1.3) 

(1.4) 

(1.5) 

we can easily solve Eq. (1.4) for Hi: 

(1.6) 
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From (1.6) we obtain at once the equations of induction and magnetic field energy variation 

in the Lagrange variables: 

dH’ dPg 

Jg” dt = - 
h+ 

dlH’+W--, 
aqk 

+Jg 
H’H, H,H’ Cug”: + Hi#’ av’ + Jg”JH”‘H” dg,,,, 

-z--p -- 
871 8n dt 4~ aqh 8n dt’ 

(1.7) 

(1.8) 

4. The condition for the flow to be adiabatic is given by 

de=-pdp-‘. (1.9) 

Jointly with the equation of continuity (1.2), condition (1.9) gives the law of variation of e: 

de 
d (3gg’“). Px=-P dt 

(1.10) 

5. By the principle of least action, the motion of the medium occurs in such a way that the 
functional of action 

h 

F=Jqt)dt 

‘I 

takes a stationary value [5,6], i.e. 

Using the supplementary conditions (1.2), (1.6), and (1.9), we can eliminate from this the 

variations 6~, b’, 6H’, 6 (Jg'") , by expressing them in terms of variation Xxi. 

On equating to zero the factors with the independent variations, we arrive at the equations of 
motion of magnetohydrodynamics: 

where p’=p+H,H’l8x. 

(1.11) 

Equations (1.2) and (1.6) or (1.7)) and (1.10) and (1.2)) jointly with the kinematic relations 
&‘/dt-v’ and the equation of state p = p @, E), fully defme the behaviour of a dissipationless 
MHD medium under the appropriate initial and boundary conditions. 
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For the distribution of the initial magnetic field, we need to require that the solenoidal 

condition be satisfied: 

&v H=g-“g -+(g”H’) = 0, (1.12) 

which can be expressed in terms of the fluxes @i as follows: 6'#'/aq'=O. 

2. The Discrete model 

1. We shall assume that a4 is the unit cube in the space of Lagrange variables qi, We introduce 
’ into 52, a rectangular difference mesh with steps A,$ = hi. We shah use Greek indices to indicate 

mesh quantities. With each node we associate a triple of positive integers (a, fi, 7) e%h= 
{(a, /3, y) : cx=O, 1, . . . , N; I= 0, 1, . . . , M; r=O, 1, . . . , P}. The set of all nodes defining 
a mesh cell (elementary parallelepiped) is denoted by 21, assuming that the cell index is equal to 
the node index (cu, fi! 7) E Z1 , at which min (ol + 0 t 7) is reached. The set of all cells containing the 
given node (cr, 0,~) as a vertex will be written as Z2 (cu, 0, y). We introduce the set of cells ;Sh and 
the set of all interior nodes C& , and the spaces of mesh functions Rh and & , defined on wh and 
;sh respectively. 

The quantities .z’, u’, Vi and gik are referred to the mesh nodes by denoting them 

respectively by { (s’),~,}, etc. Then, the connection between the covariant and contravariant 
components of v is written as usual for each node: 

Vi=gi~V’ for (a, B, 7)-h (2.1) 

(to simplify the notation, we omit the index cr.&). 

The thermodynamic quantities, and also HiH’, 1 and jh” will be referred to the centres of 

the Lagrange cells and indicated by the cell index. Since { (gi,)asr} ER,,, the relationship between 

(Hi) cre, and (H’),B, is given by 

(2 4 

where {(gu)aer)f~h is an approximation ofgik at the ceh centre, e.g. of the type 

Qir)Cz*r = $ z (gJ V. 
v= 2 I(aPT) 

(2.3) 

2. Let us find the difference analogues for partial derivatives &f/aqi. For the Lagrange cell 

(CY, p, +y) we introduce the expressions 

(2.4) 
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where {jars,} =Rh. Expressions (2.4) approximate af/iQ i at the cell centre. For sufficiently smooth 

A 

a+ 6 
a45 

- 0 (h2). (2.4’) 

The bar over an index means that the approximation is performed at the cell centre, h2==hi2+ 

h,2+hs2. 

Notice that, for +A we have the relation 

The difference analogue of the derivative af/&$, defined at a mesh node, is introduced as follows: 

(aif)ca,= - c f” a(xf) b (aixk) *. 
Y= Z*(aP?) 

OT 

It is easily seen that &f, j&?,, is the second-order approximation of af/aqi at a node. 

3. We discretize the quantities Jf and J by using ar and J by using a,. We associate with J# 

and J the difference expressions S+ and S, obtained by formal replacement of the derivative 

a/a &by dr: 

Here, 

S- 
1 

Fe imn t?jkI dmid:X’&X+. 

S;==Ji (*+O ( h2) , S==Jjz+O(h2) 

and the difference analogue of identity (1 S) is satisfied: 

Sjs&x~ =6,“S; 

moreover, we have 

c f%8T 
a km) y 

-0. 

YC 2 ,(OET) 

Using (2.7), (2.4), and (2.4’), we can show that, if f&h, and q~~fi,,, then 

z f aSa0v v - = skia,! = J gk 1 a wh 
+ 0 (h2), 

VE 2 1 (orb9 55 

(2.5) 

(2.6) 

(2.7) 

(2 *s> 

c cp 
as, 

V 
vE 2 da&) 

a (Xk)aOv 
= vi (CpSi)la~v = - J acp dzk + o(h’). 

a0v 
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Consequently, the expressions 

can be regarded as difference analogues of the operators Ja/axk, referred respectively to the cell 

and a mesh node. 

4. Let us dwell on the approximation of the expression gS in a cell. Since gik relate to the 
nodes, the value ofg’h at the cell centre can be found e.g. as follows: 

<g’“>>= $ c g,“, (2.9) 
Y. Z,(OPl) 

where g,==det (ga) ++ile tg”)=g’” I,%+0 (h’) . 

On the other hand, if we know the difference expression for V=Jgs (see e.g. [7-g]), we 
can find the mean value ofgs, namely, 

(g’l’)as*‘Ke4%,. (2.10) 

Obviously, (glJ =g” I&-O (h’) , provided that VQ., approximates (g’“l) 1~~ to second order, 

3. Differential-difference equations of MHD 

1. The set of Lagrange cells 3/, can be regarded as a discrete model of the continuous medium. 

The state of each cell is defined by the quantities &BT, pabf, vap,, HcrDr , t?m and (vi),, vEZ 

(spy) . With the variational approach, we can construct a class of differentialdifference equations, 
describing the matched variation of all the MHD quantities. 

For the discrete system of Oh the Lagrangian is defined as the difference between the kinetic 
and potential energies: 

L”= 
c Pcsr~abr (h-&r) ; 

(Sbl)8% 

here. &p,, II,,, denote respectively the specific kinetic and potential energies of a cell: 

Ix .&=EaB,+ wHk)EbT . 
W& 

Obviously, L*=L+O (I?). Notice that there are other ways in which the kinetic cell can be 

approximated. 
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For the difference Lagrangian we introduce the functional of action 

b 

F,,= j L*(t)dt. 
:a 

In order to obtain the supplementary conditions on the variations of the functions appearing 
in 0, we consider the difference analogues of the conditions for continuity and freezing of the 
magnetic field. 

2. Using the expression for P’ introduced in Section 2, we can write 

where m signifies the time-invariant mass of the Lagrange cell (we assume that no mass exchange 

(3-l) 

occurs between cells). From (3.1) we obtain the differentialdifference equation of continuity 

(3.2) 

The time derivative of V can be approximated in two ways. 

If the expression for the volume is regarded as a function of the coordinates, V=r,r=Va~ (5 * 

vdU, (a, b, y)}, then we have to put 

dV 

c 

dV ax, 
-= 

at c (3-3) 
XE Z,(ab’r) 

-= ~.E2,,liZ:, 8LG. v,L. 8(P). dt 

Since V is a known algebraic function, a V/a (xk) can be evaluated explicitly. 

On the other hand, the equation dg”~J/dt=J,‘ag”uk/ds’ can be approximated with the aid 

of (2.8) by the expression 

dV 
- -Sk’& (ukg’“) = 

dt c d (y) (~“g’“)v. 
Y 

WC2 ,(rrBT) 
(3.4) 

We will show that Eq. (3.2) approximates the differential equation of continuity (1.2) at the 
cell centre, if we use (3.4) or (3.3) for dV/dr. In the former case, this is obvious, since, from (2.5), 
we have 

dV . &kg’!* 
- = Ski a7 (3g’ ‘) = Jk ari dt i- 0 (h2). 

2% 
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In the case of (3.3), using (2.8)-(2.10), we can write 

+ 0 (h)’ = J + 0 @*I. 
G5 

3. Let us discretize the equation for the magnetic field being frozen. The difference 
expression 

approximates, in view of (2 6) and (2 .lO), the frozen condition (1.4) at the cell centre to accuracy 
O(h2). It can be shown that W represents the “difference” fluxes through the planes passing 
through the cell centre at right angles to qk. On performing the convolution of u%’ in the light 

of (2.6), we can transform Eq. (3 S) to the difference analogue of Eq. (1.6): 

Time-differentiation of (3.5’) leads to the difference equation of induction, corresponding to Eq. 

(1.8): 

v dHA -= 
dt 

-Hk ; - + wa;d, (3.6) 

where, by dV,dt we mean one of expressions (3.3) or (3.4). 

Applying standard transformations to Eq. (3.6) and the equation of induction, written for 

the covariant components of Hk, we obtain the equation for the magnetic field energy of a cell in 
the form 

+ VH”H” d<g,,> 

871 dt ’ 

(3.7) 

It can be easily be seen that Eq. (3.7) approximates Eq. (1 .P) to accuracy U(H). Various 
approximations are admissible for d<g,,>/di, as they are for the derivative dV/dr. In the general 

case, obviously, 

d(gik) 
dt = (3.8) 

If <grk> is evaluated from expression (2.3), then (3.8) transforms to 

(3.9) 
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Finally, let us consider the question of satisfying the condition for the magnetic field to be 
solenoidal. 

Using the relations (2.8) for difference differentiation and 
expression (1.12) by the equation 

a, (<g”)Ps:) =a,uLo. 

But, by (2.8), the left-hand side of (3.10) is none other than the 
Consequently, the condition 

relation (3.5), we can approximate 

approximation of div H. 

(3.10) 

(3.11) 

can be regarded as the condition for the magnetic field to be solenoidal. Hence, as in the 
differential case, if relation (3.11) is satisfied at the instant t = to, then the magnetic field will 
remain solenoidal at subsequent instants. 

4. Let us find the conditions for the first variation of the functional of action Fh : 

- 6Vae, 
(IAH,) Q, _ v (Hk6Hk) aB, 

83 
OPT 

4n 
(3.12) 

( VHkHf) MT 
- 

83 
6(&h),,, h,h,ha dt. 

to vanish. We take 6 (z’)~), as independent variations, and find their connection with the 
variations of the other quantities, appearing in (3.12). The connection is given by 

V6Hk= -Hk6VicD’d;Gsk, 

For 6Vand 6(g,> we use two types of relations, corresponding to (3.3), (3.8) or (3.4), (3.9): 

and 

(3.14) 

(3.15) 
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It is easily seen that the presence of the different approximations of blr and Ng,,> leads to 
different dynamic equations, which are obtained by substituting (3.13) and (3.14), or (3.15), into 
(3.12), and performing the appropriate transformations. Let us write these equations in their final 
form: 

(this corresponds to the case with (3.14)), 

v= 2 .(OPT) (3.17) 

_ a Hi@” + 1 ag,, yl WOW. 
“Ti- 

em 

8 8~’ I 8n 
vcz ,(crB?) 

(corresponds to case with (3.15)). Here, 

Since M=plg’” 1 ae,+O (I?), the fact that the approximation for Eqs. (3.17) is to second order is 
easily proved on the basis of the relations of Section 2. In Eq. (3 .I 6) we have to estimate the order 
of approximation of the expression 

c dV, r,( as, 
Pv ds’= 

a (gv, 
Pv'(g'"L,,,+ P,.S,‘~) . 

v= z’.(crLv) V= z r(ctfv) 

Using (2.8) and the fact that 

(gih&, = $ c (g”) .+o W) , 

we obtain 

z . av, ap 
py-=- 

ad dXi z J ap- g’” 
pv*& - axi I + O(h') 

aB1 
-Zl(aPT) YE Zn(crBT) 

J ag'" J dp’g’” *_-- g” apv,n 
p ax’ ad )I 86T 

+O(h')==- a~~ 1 +O(h*). 
au 

Hence the second order of approximation of the dynamic equations (3.16) and (3.17) has been 
proved. 

3. The equation for the specific internal energy can be obtained in the same way as in [ 1] : 

de 
mdt-- 

dV mdp 
Pdt-Tr* (3.18) 

Equation (3.18) is in the entropic form; for dV/& we can use either of expressions (3.3), (3.4). 

To calculate flows with shock waves, accompanied by an increase of entropy, we have to 
introduce artificial dissipative processes. This can be done in the ways described in [ 10, 111. 
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It should be mentioned that, in the case of two space variables, the schemes obtained are the 

same as those of [l, 2,7,8] for the cases of Cartesian, cylindrical, and spherical coordinates. 

The technique of timediscretization is just the same as that developed in [ 1,2, 121. 

4. Some properties of differentialdifference MHD equations 

In this section we shall examine the properties of the difference system of MHD equations, 
for the case when dynamic equation (3.16) is used, and expression (3.3) is used for d V/&. All our 
results are easily extended to the case when Eqs. (3.17) and (3.4) are used. 

1. Let us write the complete system of MI-ID differentialdifference equations: 

v dHk -=- 
dt 

H”dV dt + @“cw, 

d HkH, 
-- 
dt 8~ 

V 
H,H’ dV I HkOnd,vk VHkH’ d(gkl> 

= -- 
8n dt 4.1 

---1 
871 dt 

?n=Vp, (4.5) 

dxildt =vi, P’P(G P) * (4.6) 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

Notice that system (4.1)-(4.6) is simplified by utilizing the mixed components of the 
velocity and magnetic field vectors; though, merely by having recourse to the transformation 
expressions (2.1) and (2.2), the equations can easily be written in a form using only the covariant, 

or only the contravariant, components. 

2. Let us turn to the conservation laws for system (4.1)-(4.6). It follows from the 
differential dynamic equation (1.11) that the law of change of momentum for an isolated fluid 

volume 51 C a’ has the form 

$rp,~~dR.-lp.~(~-~)dR, 

01 QP 

+ P s 

c?g’” 
-JdQ,- 
axi 

p'6ik + k(H,IT-H,H') ] dS,s 

(4.7) 



64 V. M. Goloviznin et al. 

Assume that, in the difference case, the set ~h’=-{c&a <I&, ~l<fi<~I, T&‘fGIy,}cl~h, 
corresponds to R, . The dynamic equations (4.1) give the momentum variation of this set. We sum 
(4.1) with respect to all (a&) CO,,’ and use the relation 

As a result we obtain the difference analogue of (4.7): 

where FeX is the difference analogue of the surface integral in (4.7). Hence the difference equations 
(4.1) are conservative with respect to momentum. 

Using Eqs. (4.2) and (4.4), we can similarly obtain expressions for the variation of the 

specific internal and magnetic energy of the discrete set oi : 

(4.8) 

(4.9) 

These equations express the balance of the different types of energy. 

3. Let us show that the following analogue of the law of conservation of total energy holds 

for the differentialdifference system (4.1)-(4.6): 

As a preliminary, we shall obtain an expression for the change of kinetic energy of wi, . For 

this, we write the equation of motion, using the contravariant component: 

(4.10) 

= g’” 
. avv + d<g,,), (HAHI), g’kd,H,tD’ 

” F ‘dz” 83-1 - 4n ’ 
wm,(abT) 

where I’& is the Christoffel symbol of the 2nd kind. 
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On performing the convolution of (4.1) with vi/2, and of (4.10) with Vr/2, and summing with 

respect to all (ap7) EON’, we obtain the following expression for the kinetic energy variation of 
the nodes: 

+ WHkWorr Q?kl)V 
83 

.m (v%] - ( Hk;yPh ) .,,) + A cx. 
Y 

Here,A,, is the work done by the pressure and magnetic field forces from the cells bounding 
wi, from outside. 

On next adding Eqs. (4.8), (4.9) and (4.1 I), we obtain the required relation: 

In view of the results of Sections 2 and 3, and the fact that the magnetic field equation and 
the entropy form of the equation for the specific internal energy (4.2) are mutually matched, the 
system of differential-difference equations (4.1)-(4.6) has the property of complete 
conservativeness [ 131. 

5. Examples of numerical computations 

We consider the motion of an ideal infinitely conducting gas, when all quantities depend on 
the variables t and xl =x. At the initial instant, let o=po=const, p=po==const, ~,nu’=O. 
We choose the initial values of the velocity components U~BU*, u,r$ as follows: 

/ 0, xco, 

u,= W, sin 7, OfxG2, 

0, x>l, 

[ wo, xto. 

u*= ; (1+cos~) , O<t<Z, 

i 
0, X>l. 

We specify the initial magnetic field by the expressions 

HpH’=N,, 

I 
0, x(0, 

HpH’= 
Ho sin:, OGxG, 

I 0, x=-l, 

i 

-Ho, xco, 

Hz-H’= -Ho cos 7, O<x<Z, 

Ho, x>l. 
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Let W,-2H, (4np,) -lb. It is easily seen that, in a reference system moving with respect to 

the laboratory system at a velocity vrel = (a~, 0, M-,/2), where ar==H~(4xpo) -%, we have the 
relations ~,*=H,2+Hz2=const. Vz2=-Uy2+~,*=cor&, v=-H(4np) -%. 

The initial conditions thus specified define the well-known [14] stationary gas motion, 
known as rotational or Alfven simple wave motion. In this wave the transverse components of the 
vectors v and H rotate without changing their absolute values. It can be shown that, in the present 

case, all the phases of the wave move with constant speed and the wavesprofile is not deformed. 
Notice that, with I = 0, the simple Alfven wave becomes a rotational discontinuity. 

The results of a numerical computation of a simple Alfven wave are shown in Fig. I. We plot 
quantities H,, H,, u,, uI against the Euler coordinate at different instants for the following 
parameter values: Ho- 1, p=l, po==O.O1, H,=2, Z-1. The adiabatic exponent y = 2. 

FIG. 1 

FIG. 2 
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FIG. 3 

As a second example we consider the axisymmetric problem of the divergence of a cluster of 
ideal infinitely conducting gas in vacua. As coordinate system we use the cylindrical coordinates 
xl=r, 52=r& x5=;. 

At the initial instant the gas is at rest and in the form of a sphere. In Fig. 2 we plot the 

configuration of the computational mesh and the magnetic field distribution at t = 0. The values 
of H were found from the expression 

H=rot A, A&4,=0, AZ=&= (H,/2) - (l-f-2), AL_AzP(). 

where Ho is a constant, corresponding to the maximum value of the magnetic field. The initial 
pressure was found from the condition p+H2/8n=Ho2/8n. The initial density was taken equal 
to unity for the entire cluster; the adiabatic exponent 7 = 2. 

In Fig. 3 we show the computational mesh configuration and the magnetic field distribution 
at the instant t = 2. 

In conclusion the authors thank M. Yu. Shashkov and V. A. Gasilov for useful comments, and 
B. Ya. Lyubimov for participating in discussions of the differential equations and for constructive 
suggestions. 

Translated by D. E. Brown 
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