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A VARIATIONAL PRINCIPLE FOR OBTAINING
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A VARIATIONAL principle is formulated for the dynamic equations of adiabatic magnetohydro-
dynamics in mixed Eulerian—Lagrangian variables. The variational formulation of two-dimensional
equations in the cases of plane and axial symmetry is considered in detail.

Introduction

One of the most general and fundamental approaches to the investigation of problems of
theoretical and mathematical physics is based on the use of variational principles. Classical
examples are the law of the minimality of energy for steady mechanical systems and the law of
least action for dynamic systems with a finite number of degrees of freedom. It is possible to
obtain from the corresponding variational principle the equations of electrodynamics, variational
formulations are known for dissipative processes and variational principles exist describing the
hydrodynamic motion of a continuous medium {1].

Variational principles have been long and successfully used to obtain efficient computational
algorithms for analyzing a wide range of applied problems. Thus, in [2, 3] a variational principle
similar to Hamilton’s principle of least action was used as the basis for constructing discrete models
of a continuous medium.

The variational approach to the construction of discrete models is based on the approximation
of the action functional and of a number of conditions having the nature of constraints [3], by
difference expressions involving the spatial variables. The latter use of the variational formalism leads
to differential—difference equations (differential in time and difference is space), approximating the
dynamic equations in Lagrangian variables. For sufficiently general requirements on the method of
approximating the action functional the resulting differential—difference equations possess the
property of conservativism. Moreover, the approximations of the difference equations, forming a
complete system of equations of the mechanics of a continuous medium, are in a certain sense self-
adjoint [2], [3]. Self-adjoint discrete models reproduce well the fine features of the flows modelled
even on coarse computing meshes.

However, since the computational algorithms obtained on the basis of the variational approach
of 1] are Lagrangian, they have a limited sphere of application. Thus, it is difficult to discuss flows
with strong deformations on this basis.
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Flows with strong deformations are usually computed by using Eulerian [4], [S] or mixed
Eulerian—Lagrangian [6] variables. As a rule discrete models in these variables are constructed on
the basis of the integro-interpolational approach [7]. However, it is unfortunate that in this
approach it is not always possible to preserve a number of important properties possessed by the
variational models in Lagrangian variables, for example, the property of complete conservativeness.

Attempts to obtain discrete models of a continuous medium in mixed Eulerian—Lagrangian
variables on the basis of the variational approach have not led to the desired result, mainly because
of the absence of a satisfactory form of the corresponding variational principle [1].

Such a form of the variational principle if presented in this paper.

1. A variational formulation of the two-dimensional
magnetohydrodynamic equations in mixed Eulerian—Lagrangian variables
1. Let x, y be Eulerian variables, a, 8 Lagrangian variables, « and v be the components of the
velocity vector of the medium, and ¢ the time. We will denote by £, i the Eulerian—Lagrangian, or
“base”, coordinates. Since the variables x, y and a, § are connected by a one-to-one correspondence
x=x(a,B,1),y =y(a,p t), which below will be assumed to be sufficiently smooth, we can write

d a —odat dp+ 0z
= QT
ﬁ ot 1.1
0y
= Y g ey Y
W= 5.2 T

We alsc assume that (x, y) and («, ) are one-to-one functions of the base variables (£, u), so that the
following relations hold:
dx d 0
dr=——dt+ —fde- ( d
0§ 7] p

Oy
dy _§d§+_7dp+ (,t )“dt,
(1.2)

(1.3)

where == (0z/0t)y, ., y=(0y/0t)s ., a=(8a/0t); ., B=(0B/0t)y . are the velocities of
displacement of the base coordinate system (£, u) relative to the coordinates x, y, a, f respectively.
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We rewrite (1.3) in a form more symmetric in the variables (x, ¥) and (a, f):

a(a.ﬁ), . 0B, d(aa)
IO A TR Al ToAn

(1.3)
a(a,B)(g_v) 3 (y, p) .+0(a,y) 5.

(& ) T e w

Solving (1.3") for & and B we arrive at another form of notation, equivalent to (1.3), for the kine-
matic connections between the variables (x, »), (a, ) and (¢, u):

0y . _olay . dxa) .
35 m)  a(k whe D e Y v .,
(1.3%)
0(z,y) . J(p.y) . a(z,p)
- ) — P (=
iew e n s Y e VY

The following notation is used below: p is the density, £ is the specific internal energy, P is
the pressure, S is the specific entropy, n = 1/p is the specific volume, T is the absolute temperature
of the medium, and 5 =7 () is the density of the medium in Lagrangian variables,

The time derivatives for fixed ¢ and u will be denoted by the symbol D/Dr.

2. In Lagrangian variables the law of conservation of mass is written in the form [1]

[ a(I’y)
X —_— =
0 (a,8)

Here [ is an integral parameter equal to 1 or 2.

p(a,B). (1.4)

In the first case Eq. (1.4) holds for plane-parallel flows, in the second case it holds for axi-
symmetric flows, x for I = 2 corresponding to the radius 7, and y to the z-axis in cylindrical
coordinates. In the base variables ¢, u introduced above, relation (1.4) assumes the form

, (?(.'c,y)=£s d(e, B) (1.4"
9 (k. pn) a(kp)

Regarding &, u as independent of time, we differentiate (1.4") with respect to time:

D DA D DA
Rl d =

P = h ¢

+p 22 (1.4")
Dt Dt Dt Dt

where

a(zx,y) N d(a,B)
A=zl , A=—1T_ 1.5
SFTrn 7 ) =
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We transform the right side of Eq. (1.4"):

Dp DA a(p,p) , 9(ap), 79(a,p)
T Tl TP LARETeHy R FTCR™y
0(2,p) . 9(a,p) 1 _0(ps,B)  6(xpp) (1.6)
a(k,u) (& w a(k u (&1
0ps 083
=4 ( da W)
Taking into account (1.3") and (1.4), we write

+p

dy
pa=pz'~* ——%x— r———(y v)]

9 o (1.7
e [0 2 o]
from which we find
ops _ oph 9z~ (E—n),y) , 9(z,pz""(§—v))
+ - + 1.8
da OB 0 (a, B) d(a, B) .8
Substituting (1.8) in (1.6), and (1.6) in (1.4""), we arrive at the continuity equation in mixed
Eulerian— Lagrangian variables:
1—=1, [
i 9@ y) Do V& aw+1ﬁuw)]
a(k,n) Dt a(E 1) CEC-NTY) 1.5")

=0@f“u—wwﬂ+6umf“@—W)
6 (E u) a(& pn)

Multiplying (1.5") by A—1.x/=1, we obtain finally

xl-i

Dp dr'-'d  dz'"'y 9 0 "
-~ 4+ ( + )=_ 1=t (g—u) + — pz'=' (§—v). 1.57)
Dt dx dy oz pz'~ (i-u) dy pz'"(§—v)

We write in mixed Eulerian—Lagrangian variables the law of variation of the specific internal energy.
Since dissipative processes are regarded as absent, we can write S =S (a, ).

Differentiating the internal energy £+ £ (n, S) with respect to time and taking into account the
thermodynamic identity (0E/dn)s=—P, (0E/0S)q=T, we obtain

DE_ 8E énDp SEDS _ P Dp +T(3_Sd+_‘?i ). (1.9)

da ap

Dt ndp Dt S Dt~ o Dt
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We substitute in (1.9) Dp/Dt from (1.5") and & and § from (1.3"), we find

DE

Ft=__.—[-6—(:z:‘ ‘x)+ (x’ ‘y)]
P 7]

+ —z-——li_‘ [—px"’(:t—u)-*-ﬁ-px-"’(y—v) ]
p*x iz dy

s s
4T [-é?(x—u)+-67(y-v) ]

3. Let the magnetic field be represented by the components Hy and H),. The condition of
freezing in of the magnetic field is written in the form [3]

z'! [H‘%_H'%F H,, [11 2% _H, ——] =H,, (1.10)

where H, = H, (a, f) and Hg = H; (a, B) are the components of the magnetic field vector in
Lagrangian variables.

Solving (1.10) for Hy and Hy and changing to the base variables £, u, we obtain

o O@y) 0B d(a,3)
A R I R T I (1.10")
A A A DAY )

e R T A R TN

We will obtain the magnetic induction equations in mixed Eulerian—Lagrangian variables. For
this we differentiate (1.10") with respect to time, regarding £, u as independent of time. Differentiat-
ing the first equation of (1.10"), we find

DH. . DA [, 0D . 8(a3)
A o= s T e

[Ha. d(z,3) +H, d(a,x) +DH<, 9(z,3) +DH5 d(a,z)
J (8w o(&u) Dt 9(g,p) Dt 6(&n)

(1.11)

Using (1.10) we transform the first expression in square brackets on the right side of (1.11):

0 (x,3) d(a,z) -=xf—*[f1 0(2,y) | o 0z.4) ] . 1.12)

H, + H = v
3k w) 3 (& 1) 8 (E )

Substituting the expressions DH, /Dt and DHg/Dt in the second square brackets of (1.11), we obtain

0@ , o Oz  (9H.  8H. \3(zp)
H, +H + %+
a(E,w) k) ( da  9p )3(5,11) (1.13)
8H, . OH, \0(a,z) 0(z, HoB)  3(aHy2)
+ + = +
( da 9P ) o(k, pn) a(E W a(k n)
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Substituting (1.13) and (1.12) into (1.11), we find

DH, DA | [ 9(Y) 9 (z, %)
o AtHp = [”’ I (g, u) AR (1.14)

5 (2, Ha) | 0 (e y)
+ .
{ e GG }

In the same way the second equation of (1.10") is transformed to the form

DH, DA 2(y,y) a(z,y)
— '1' —_— ! H: +HV

oA+ z [ 3 (& n) 3 (t, 1) ]
+{a(y,H(,p,) L 9 (3Huy) }

9(E, u) a(k, 1)

(1.15)

In (1.14) we transform the terms contained in the curly brackets:
0(z,H.3) | 0(aHsz)  0(x,y) 6
-
6 (8 1) 5k w9 Oy

Using (1.10) and (1.3"), we find

(Ha3 aHo)-

Ho3—aHy=2"'[H.(j—v)—H, (—u)].
After substituting the latter two expressions into (1.14) we obtain

, DH.
Dt

z'-

+ H, [—(z' ‘x)+ (x‘ ’y)]

oz

=z!-! ( H,— + H,—
dy dy

)+ —z'"'[He(y—v)—H,(2-u)].
0y

Similarly from (1.15) we obtain the second induction equation also in mixed Eulerian—Lagrangian
variables:
,DH,

x'- -r —_+H, [—(z" x)+% (z"“_z])]

ay ]
- [H,EE—H,,—_i +—z'"'[H, (2—u)—H.(y-v)].
ox vy dx

4, We formulate the variational principle for the two-dimensional dynamic equations of
magnetohydrodynamics in mixed Eulerian—Lagrangian variables.

Variational principle. The dynamic equations of magnetohydrodynamics follow from the
condition that the first variation of the functional

o= [ S (- e o o

th Qiiuw)
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vanishes, it being assumed that the base variables £, u are not varied, and the variations of all the
other quantities are interconnected by the . onditions of conservation of mass (1.4'), conservation
of magnetic flux (1.10"), by the kinematic relations (1.3") and by the first law of thermodynamics:

dE=—Pdn+TdS. (1.16")

5. We illustrate the technique for obtaining the dynamic equations of magnetohydrodynamics
from the variational principle formulated above.

We write down the first variation of the functional (1.16):

50 = j‘ { ”[ 5(pA) ( wr —E) +pA (ubu+vby—8E)

2
117
H+H? A
A=Y O (HsH+H8H,) ] dg dp} at.
8n 4n .
From (1.4") we express the first variation of the density:
6A A [0pba  Opdp )
- 4 — + , .
So=—p3 A( FPRRFT) (1.18)

from which we find

apd apbd
6(pA)=A( gaa+%)'

Relations (1.3") enable the variations 5u and §» to be expressed in terms of the variations &x, 5y,
Sa, 66:

96z 96z 36a 368 oz
Buum=bi — — G +( + i) — 2%
U=z aaa 5 3 ap)(x u)—-—~8x
0 0
L (2,88) . 3(ba,a) 8,
3 7 d(a,p) 0 (a,B)
. 96y oy 98 6P oy (1.19)
Sv==5y — 3 — +( + —v)— — 83
U el S TR ag)( V)= 5 0
_by,, 08 9wy
a3 9 (a, B) 0(a, B)
and the quantity 8E to be determined allowing for (1.16'):
9E oy 9E P 48 88
$E= —— L 0 + —— S — +T(—'6 += ) 1.20
o p P T s 0T eI\ 0a 5 O (1.20)
Varying (1.10), we find 8Hx and 64,
6H,=_H,-—6-A+_1[H° 000z,8) | gy, (. 02)
A A 9 (E, p) (&, 1) (1.21)

_1 a(x,H¢65)+6(6aH,,x)
Al agp a(g,n) 1’
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6 (1.21 Cont'd.)

d(8y,8) d (a, 6y)
oM =—H,——— [H 200P) Ly ]

E I
1 6(y,Ha65) 3(Ha6a,y)]
A XY a(k )

Substituting (1.18)—(1.21) into (1.17), we obtain
3 98 5
o0 = F{If{{os[o(oe- 22422

96y 9oy H+H/}
v (0 - e p) |+ (P =g e

1 9 (6z,8) 9 (a, bz)
-—H,| H, +H* :

4 [ a(k,n) 6 (E, u }
1 a(6y, ) d(a, by)
— ] B T )}

" u*+u? 6(5’;) 5p:a(§’;;63 0,6a+0pﬁ
{(= —E‘7)5(aa <5 es (55 3;)

oz d(z, 6p) ‘_8(6a,x)
(&= “)_—6“ B T @) J

+pAv[(%+—?ﬂ—B)( - )—?—61———63

a(y,68)  9(ba,y) , o8 88
"o p) . () B] AT( but - 38 GB)
__1 ‘[8(1,11“65) N 0(6&55,1)]
4 0(k pn) a(k p)
1 a(ychéﬁ) a(éaﬂhy) «
_ + dt dp ! dt.
43”"[: 9 (& n) 3(E n) ]}} s “}

Integrating by parts in the last expression and putting éx = 8§y = 8a = 6§ = 0 on the boundary of the
domain of integration §2 X 7, we obtain

0= [{ ][ ~ s+ L) 2

6(& 1) (& n)

L 0Py) 4 USRS |t 0 (Hube, )
(&, n) 8 a(E,u) 4n’ 9(E,p)
i 9 (a, H Hy) ] _+_[ (9((50:2,, B) +6(a,pv[3)
4n 0(E,pn) Dt a(E n a(kw

_0@Pe) 1 9@ NHIHHS) 1 (HH, )
d(k,u) 8n (k) 4n a(E,p)

; )
aonm Jo o (a5 +3)
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8 ([u'+v?)/2—E-P/p],B) _ 9 (pu(d—u),p)

3 (E 1) 3t )
_ a(pv(y—v)sﬁ) + 5({5113,:) + a(pvavy) _ AT2§"
3(E W) aEw  aEm 0 da

_i 0(H,, 2) g(Hd,,y) _D_ oz _@_
w2 G T Tew }6°‘+{Dt"A<"-+" )
o(e, [ (u2+v*)/2—E—P/p]) _ d(a, pu(i—u))

AN, d(E,p)
9(a, pvy—v)) | 0(z,pux) , 9(y,pva) as
- - + + —pAT —
5 (5, 1) Em | aEm o 5p

+%HG [ Z(é}:)) + ‘;(é’:)) ]}aa}dg du} dt,

The requirement that the first variation of 5& vanishes, with the condition that the variations 5x,
8y, ba, 6§ are independent leads to the equations

D @uxb) o), ,_, 3(Py)
o P TS Tiem Y G
4 G(HHY) __1_6(11,11“,&)~L6(q,11,11,)_0 (1.22)
8t 9(Ep 4n 9(E,p)  4n G(E ) '
D d(pva,p) d(a,pvp)  9(x,Pzx'-')
= (pAp) — —
A ST R T e (123)
LA HAHY) 1 0(HaHyB) 1 3, HH) o :
8n 8 (& 1) dn 9(E,w)  4p O(E '
iz 0y __8(p[u(.i—u)+v(y—v)],,°))
Bz_pA(”aa'vaa) (& 1)
9 (pu3z) , 9 (pvh, ) _ 8 ([ (w+v7)/2~E—~P/p).p) (1.2
9(E ) a (& n) a(E, )
as 1 3(Hoz) . 9(Huy) 1_
ATt = Gen T ea
D or Ay 3 (e, plu(z—u)+v(g—rv)])
EZ"A(”EE“’?&)“ 3 (5 1)
4 9@ pux) 9y pva)  0(a, [(w+vY)/2-E—P/p]) (1.25)
a(k 9 (E, ) a(E, 1)

98 4n Lok aew 1T

6. We will show that any two equations from (1.22)—(1.25) are sufficient to describe the
dynamics of the medium. We reduce Eqgs. (1.22), (1.23) to a more usual form. We consider the
second and third terms of (1.22). Substituting & and from § from (1.3"), we find:

dy oz oz

pus=A —-B—, Puf=B

6y
-4 — .26

-az- doa

USSP 21:2 . x
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where 4=x""'pu(i—u). B=z'"'pu (§—v). It is easy to show that

9(pus,B)  9(a ﬁuB)_:A(aDui 4 3buB) 3(4,y)  09(zB)
& (E, n) (&, n) do ap

We transform the last two terms of Eq. (1.22). Taking into account (1.10), we find

HHo=z'-1 (A'@-B'ﬁf) 6z _ 4 a_y)
e 93 a8 da da /-’

Here A" = Hy2, B’ = Hy H,. We then have

H.Hy=z'- ‘(B’

0 (HaH,, B) 0 (a, H:Hy)
—_ —(H,H.
4al () a(& ) ] 4n A[ (Halts)

8 _ 0(z''4",y)  d(z,z'"'B’)
TT&E(”‘H”)]'E[ e IO

Substituting (1.29) and (1.27) into (1.22), we obtain

o(x'~'pu(d—u),y) _ d(z,z''pu(y—v))
ok 1) o(& 1

(P, y) o, 1 0(HI+H2y)

_— 4z —_—ee

a (& n) 81 (k)

__1_[6(1"’H,2,y) + d(z,2'-*H.H,) *\ 0

4n o(k.w) 9 (k. n) '

Performing similar operations with (1.23), we reduce it to the form

D
Z_(pAu) -
Dt(p u)

+zi-t

D o (z'"'ov(d—u),y) Oz, 2" 'pv(y—v))
D; PAY) 55 3 (& 1)
+ d (z, Pz"'l_,__ia(x, (H2+H} )z )

d(k,p) 8 3 (&, p)

1 ro(z'HMH,y)  0(z,z'"'H})
| * J=0

0(g, 1) (&)

(8 ) 3(&. w

(1.27)

(1.28)

(1.29)

(1.22")

(1.23)

Integrating (1.22"), (1.23") over some domain §2’ in the plane of the variables (§,u), it is easy to

verify that these equations represent the law of conservation of momentum.

Let us transform Egs. (1.24) and (1.25). We simplify the first term in (1.25):

oz dy d(z,y)  0a D
( 2" Bﬁ) Sz PAY)

D
—pA d(x,B) LozDt
_O_E(p_\u)] pA[ ( )+ DDz(Z!;)]'

Dt

(1.30)
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Let us write down the time derivatives of dx/3f and dy/df:

_D__(it_)_a(i,x) +_¢9_i__§i(0a 63)
58/ 8(a,8) OB P \da 4P (1.31)
D (oyy\ d(ay 0y oy + 98
_( ap)_a(a,5)+ap aa( ap)
Taking into account (2.3") it is easy to show that
9% 03 6(i— d(j— 8 da 9
2 e T T ) (EFE a_p%%) (1.32)

da g3 oz dy
é 9 d 0

o) (2R,

da dy 0P oy

Substituting (1.32) into (1.31), and (1.31) into the second term on the right side of (1.30), we

obtain
o [o5 (55) 3 (55)) =l (5o sy
a 1]
r [ aa<(zg>) (y'v)%a((:,:))]
+a—a(u£+v€£)
0z oy dy
da du dv (1.33)
a5 5)

+ (i) [ d'a 9* ]
—_ _____u__
I—u) v 523y

~- [agr-e g}

We transform the second term of (1.25) to the form
d(z.y) (9o 0 da 0
2 plui-u) o) |- b
0(E,u) Loz gy dy Oz (1.34)

X[u(d—u)+tv(y—v)] }

Let us consider the third and fourth term of (1.25):
9 (z, pua) + 0 (y, pva)
ACHTY a(k, p)
_ 0(zy) fbaro . 8
T a(E ) { [0y pu(t-u)-72 pv(z_u)] (1.35)
G} 0 ]
—| s - -0 |

dy

. aza 0
u(x—u)+vu(y—-v)

a'.‘
+p[ ¢
9x Gy

' . 0*a .
e L(x—u)—ajr 3y v(y—v)]} .
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Taking into account (1.16"), it can be shown that

0 (a, (u*+v*)/2—E—P/p) N
_ — pAT —
(& n) ap (1.36)
du v d(z,y) d(a,P)
- A( L)+ .
e T vas) 3(@p) 9(zy)
Substituting H,, from (1.10) in the last term of (1.25), we find
1, [0GH) | 0w H)
4l agw) dGE W (1.37)
1 d(z,y) da da\ (0H, 06H,
oY (g 2% 4 g% (————
4:tA d(a,B) ( ay) oy ax)

Adding (1.30), taking into account (1.33), to expressions (1.34)—(1.37), after a number of simple
operations we obtain

da {_D_( AL.)__D(x,y) opz'~'(z—u)

D, p) oz
Z R
pz'~ v(y v) ]+A P+—A 6 (H2+H.?)
oy 8 y
— 1 a(z’y) [ 6"51 ’H.H,, +¢9.z‘ ‘Hvz ]}
4“ d(é, “) dx 6y '
: oz -'n (1 (1.25")
- 8a{£( Au) - 9(2,y) [ opx ~‘u(i—u)
oy Une %7 55w =
0 ot OP 1 G(HIHH,)
+_ 11 C s - AN 1
dypx " L)] Aal A8:I dz
1 6(z,y) dr'-'HS: + oz H.H, ]} .
4n 9 (E,p) dx dy :
By similar calculations Eq. (1.24) can be reduced to the form
655 { a(z,y)
(pAu) — ———— z'~'u(z—u)
9 (&, p) a oz °
s 0P 1 o(Hi+H)
+_ =1 . A2 1
PPl u(y L)] _\ax ASn_ —
_ 4 0y [z HS | oz HH, ]}
4:[ 5(§‘ “) aI ay ’
ﬂ{ (pAv) . (1.24))
3z \Dt 2 T S ww Py
691 U(y U) oP Vil (H N z)
pa 82 4 GWHAHS)
5y ] A dy 8n a ay
1 0(zy) [6z'HH, oz'H} 6
moew | o |} =0

It is easy to see that Eqs. (1.24) and (1.25") are equivalent to the system of equations (1.22"),

(1.23") and that any two equations of the system (1.22")—(1.25") are sufficient to describe the
motion of the medium.
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Equations (1.22"), (1.23"), (1.5"), (1.9'), (1.14"), (1.15") together with the equation of state
P=P(p, E)forgivenx = x (§, 1 1),y =y (¢, i, t) from a complete system of equations of two-
dimensional magnetohydrodynamics in mixed Eulerian— Lagrangian variables.

2. General formulation of the variational principle in
adiabatic magnetohydrodynamics

1. Let xi be Eulerian variables, ai Lagrangian variables, i the base coordinates, and H' the
magnetic field components in a Cartesian coordinate system. Here and below all the indices run
through the values from one to three. We denote by g’ some coordinates with a metric defined by
the tensor q;;; H'i are the magnetic field components in the coordinates ¢'.

The connection between the displacement velocities of the base coordinate system ¢ with
respect to the coordinates g and o and the velocity vector u? of the medium in the coordinates g/
is determined in exactly the same way as in the two-dimensional case:

{

(¢'~u )=%}w .1

Expression (2.1) can also be rewritten in the form more symmetric in the variables & and g4':

9 (at, @, %) (rw)m= (¢’ a’, &)
5 (5, &, 8) a(E, &, E) .1

é(at, ¢',a*) » 8 (a!, a2, q)
g(%, 88" a(E', &, E)

<+

In Eulerian—Lagrangian variables the continuity equation has the form

9(¢",9% ¢) d(a',a’,a’)

IE 58 oG E )

We obtain the freezing-in condition of the magnetic field. Let w and v be the internal

coordinates of some fluid surface. The flux of the magnetic field through the area dwdv is expressed
by the formula

plgsl™

2.2)

oxr' or
dF=H e.,;a—w'—a——d wdv
d (2% z°) 9 (2% ) a9 (z' z°)
B +H R ]d wd
[ 3 (w. ) 3 (. 0) (@) v

We pass from the coordinate x? to the coordinate gi:

[H*a(””") I ACAE D ALY ]d wdy

é(w,v) d(w,v) a(w,v)

_ 9= o) [ (¢, ¢ ") ., 0" ¢q")
a(e' ¢% ¢ 0(w, v, 2') d(w, v, 2*)
da(q' ¢* ¢°) . [9(d% q")

+ H® - ) "
é(w, v, z) ]dwdv lg4] d(w,v) H

1 2
a(q’, q*) H,,+a(q.q)

+ d(w, v) a(w, v)

H”] dwdv.
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If we now take as (w, v) the Lagrangian variables (a1, a2), (a2, a3), (a3, al) and require that
the magnetic flux dF'=f'da’da’, dF*=H*da'da’, dF’=H"da'da® does not change with
time, then

A 0(g e’ o a(ghgha) o,
‘jl h H a+ H 2.
S W TNy 3 (&, &, &) 23)
9(¢%, ¢%a') ' d(a',a’, a’)
H’l =H: 1 2 3 .
3(E, & E) ] (o o) )

2. The general form of the variational principle. The dynamic equations of magnetohydro-
dynamics in mixed Eulerian—Lagrangian variables follow from the requirement that the first
variation of the functional

ke 1 a( l‘ 2’ 3) 1 )

_E— L g mm ] de! dg? dg3} dt
8xp .
vanishes, on the assumption that the base variables are not varied, and that the variations of all the
other quantities are interconnected by the law of conservation of mass (2.2), by the condition of
freezing in of the magnetic flux (2.3), by the kinematic relations (2.1') and by the first law of
thermodynamics. The variational principle formulated leads to six dynamic equations, any three of
which can be represented as a linear combination of the others.

To obtain a system of three independent dynamic equations in the variational vector
SW¥=(8q", 8¢ 6¢°, ba', 8a?, 8a’) it is necessary to impose the additional constaints
SWT=AG6u", where A=A (E', £?, t°) is some matrix of dimension 6 X 3 with rank equal to 3,
and Spu=(8u", 6p?, 6p’) is the vector of the generalized independent variations.

Translated by J. Berry.
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