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A VARIATIONAL principle is formulated for the dynamic equations of adiabatic magnetohydro- 
dynamics in mixed Eulerian-Lagrangian variables. The variational formulation of two-dimensional 
equations in the cases of plane and axial symmetry is considered in detail. 

Introduction 

One of the most general and fundamental approaches to the investigation of problems of 
theoretical and mathematical physics is based on the use of variational principles. Classical 
examples are the law of the minimality of energy for steady mechanical systems and the law of 
least action for dynamic systems with a Finite number of degrees of freedom. It is possible to 
obtain from the corresponding variational principle the equations of electrodynamics, variational 
formulations are known for dissipative processes and variational principles exist describing the 
hydrodynamic motion of a continuous medium [1 ]. 

Variational principles have been long and successfully used to obtain efficient computational 
tlgorlthn~ for analyzing a wide range of applied problems. Thus, in [2, 3] a vaxiational principle 
I~nilar to Hamilton's principle of least action was used as the basis for constructing discrete models 
of a continuous medium. 

The variational approach to the construction of discrete models is based on the approximation 
of the action functional and of a number of conditions having the nature of constraints [3], by 
difference expressions involving the spatial rambles. The latter use of the variational formalism leads 
to differential-difference equations (differential in time and difference is space), approximating the 
dynamic equations in Lagrangian variables. For sufficiently general requirements on the method of 
approximating the action functional the resulting differential-difference equations possess the 
property of conservativism. Moreover, the approximations of the difference equations, forming a 
complete system of equations of the mechanics of a continuous medium, are in a certain sense self- 
adjoint [2], [3]. Self.adjoint discrete models reproduce wetl the fine features of the flows modelled 
even on coarse computing meshes. 

However, since the computational algorithms obtained on the basis of the variational approach 
of [1] are Lasrangian, they have a limited sphere of application. Thus, it is difficult to discuss flows 
with strong deformations on this basis. 
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Flows with strong deformations are usually computed by using Eulerian [4], [5] or mixed 
Eulerian-Lagrangian [6] variables. As a rule discrete models in these variables are constructed on 
the basis of the integro-interpolational approach [7]. However, it is unfortunate that in this 
approach it is not always possible to preserve a number of important properties possessed by the 
variational models in Lagrangian variables, for example, the property of complete conservativeness. 

Attempts to obtain discrete models of a continuous medium in mixed Eulerian-Lagrangian 
variables on the basis of the variational approach have not led to the desired result, mainly because 
of the absence of a satisfactory form of the corresponding variational principle [1]. 

Such a form of the variational principle ff presented in this paper. 

1. A variational formulation of the two-dimensional 
magnetohydrodynamic equations in mixed Eulerlan-Lagrangian variables 

o 

1. Let x, y be Eulerian variables, a, ~ Lagrangian variables, u and v be the components of the 
velocity vector of the medium, and t the time. We will denote by ~,/~ the Eulerian-Lagrangian, or 
"base", coordinates. Since the variables x, y and a, B are connected by a one-to-one correspondence 
x = x (r~, ~, t), y =y (a, ~, t), which below will be assumed to be sufficiently smooth, we can write 

dx=  OX da+  Ox OX dt ' 

8y da+ OVd~+ Oy dt. d y =  
Oa O~ Ot 

We also assume that (x, y) and (a, ~) are one-to-one functions of the base variables (~, #), so that the 

following relations hold: 

~x Ox Ox 
d x =  o -d~+-5-~d~t+ ( ~  )~ dt, 

Oy Oy 

"T; ) at. 

(1.2) 

If we substitute (1.2) into (1.1) and require that d//= d/a = O, we obtain 

c)x Ox 

(~ .3) 

where ~--  (Ox/at) t, ~, Y-~ (ay/at) t , . ,  a--- (da/at) t, ~, ~== ( ~ / a t )  t . .  are the velocities of 
displacement of the base coordinate system (~, ~:) relative to the coordinates x, y, a, ~ respectively. 



Mixed Eulerian-Lagranglan variables 

We rewrite (1.3) in a form more symmetric in the variables (x, y) and (o, ~): 

o(,,+:,,+_,+>_ o<,,.+> 
 iT, ;-) (3' 

, 

Solving (I.Y) for & and ~, we arrive at another form of notation, equivalent to (1.3), for the kine- 
matic connections between the variables (x, y), (a, 13) and (~, p): 

o (z. y) o (a, y) o (z, a) 
- -  a= - -  ( i - u ) +  (O-v) ,  
O(L.)  o ( L . )  o(L~) 

a (~, ~) a (~. ~) 
0 (z, ~) 

- - ( ~ - u ) +  - - ( O - v ) .  o(L~) 

The following notation is used below: 0 is the density, E is the specific internal energT, P is 
the pressure, S is the specific entropy, r7 = l /p is the specific volume, T is the absolute temperature 
of the medium, and ~" = ~ (a) is the density of the medium in Lagrangian variables. 

The time derivatives for fLxed ~ and ~ will be denoted by the symbol D/Dt. 

2. In Lagrangian variables the law of conservation of mass is written in the form [ 1 ] 
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(1.3') 

(I .3")  

0 (z, y) 
9 x ' - '  - -  - ~5 (or, ~) .  (1.4)  

Here l is an integral parameter equal to 1 or 2. 

In the first case Eq. (1.4) holds for plane-parallel flows, in the second case it holds for axi- 
symmetric flows, x for l = 2 corresponding to the radius r, and y to the :-axis in cylindrical 
coordinates. In the base variables ~, ~ introduced above, relation (1.4) assumes the form 

o (z, y) o (~, ~) 
p z Z - t  ~ = ~ - -  

Regarding ~, p as independent of time, we differentiate (1.4') with respect to time: 

D 9 D~  A + ~  , 
D t ' A + P D t = -fit 

where 

O(x,y) o(o~,~) 

0 ( ~ , ~ ) '  0 ( ~ , ~ )  

(1.4') 

(1.4") 

(l  . s)  



156 V. ,~£ Goloviznin, A. ,4, Samarskii and A. P. Favorskfl 

We transform the right side of Eq. (1.4"): 

boA+ Da [a(p,8) 
Dt P --fff = L 6-~'=~, ~ ) ~+ 

[__ +0 ~ (a'8) + _ _  = a (L ~,) a (L ~) a (L p) 

= 5  ( ap~+ ap~ 
a= a8 ) '  

Taking into account (1.3") and (1.4), we write 

a (=, p) i a (=, 8) 
a (=, 8) ~ ] a (~, ~) 

a(: ,p~) 
a (~, ~) 

(1.6) 

p~=pxZ_, [ ~y , .  , Ox 

[ Ox ,. , ay 
p~=ox~-, LT;~y-~- ~ (i-,,.) ] ,  

(1.7) 

from which we fred 

ap. ~ + ap. ~_ a (ox'-' ( i -u) ,  u)+ a (x, ox'-' (#-v))  O.g) 
a= a8 o (=, 8) a (=, 6) 

Substituting (1.8) in (I .6), and (1.6) in (1.4"), we arrive at the continuity equation in mixed 
Eulerian-Lagrangian variables: 

_ _ ,  [ a(xt-'~,y) i 0(xZ,~) ] x z-i a (x ,U)  D O + O  + 
0 (~, p) Dt a (~, ~) l a (~, ~) (1.5') 

a(ox'- '( i-u),y) a(z, ox'-'(~-v)) 
a (~, ~) a (~, ~) 

Multiplying (I .5') by A -I .x I-I , we obtain finally 

z'- ' DtDo + P ~ a x  + ~ a y  = px'-' ( i - u )  + ~ ox'-' (O-v). (1.5") 

We write in mixed Eulerian-Lagrangian variables the law of variation of the specific internal energy. 

Since dissipative processes are regarded as absent, we can write S = S (a, B). 

Differentiating the internal energy E+E(% S) with respect to time and taking into account the 
thermodynamic identity (OE/O~) .~ - -P ,  (OE/aS)..=T, we obtain 

DE OE O~ Dp ~_aE DS P Dg +T( OS OS ) 
D i =  a~ ao Dt a--f D--T = o - r / ) - 7  ~7~+TT~ . 0.9) 
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We substitute in (1.9)Dp/Dt from (1.5") and & and b from (1.3"), we find 

Dt p x ' - '  (x -':t)+=--(z~-'Y)oy 

+ o~ ~,_, oz'- '(e-~)+ pz'-'(O-v) 

08 

3. Let the magnetic field be represented by the components Hz and Hy. The condition of 
freezing in of the magnetic field is written in the form [3 ] 

ay ax (1.1o) 

where Ha = Ha (a, #) and H~ : H0 (a, r) are the components of the magnetic field vector in 
Lagrangian variables. 

Solving (1.10) for Hx and Hy and changing to the base variables ~, ~, we obtain 

a (x, v) a (z, [~) a (:, z) 
x ~-', H,,'=H:, + He , a (~, ~) a (~, ~) a (L ~) 

x'-' a(x,y) H~-:H: a(y,~) +He aca, y) 
a(~,~) a(~,~) a(~,~) 

(1.10') 

We will obtain the magnetic induction equations in mixed Eulerian-Lagrangian variables. For 
this we differentiate (1.10') with respect to time, regarding ~, p as independent of time. Differentiat- 
ing the ftrst equation of (1.10'), we fred 

DH, DA 
~--55- + H.-N- = [ m ~ 

a(cz,~) ] 
a(.~,~) + I - 1 ~ - -  
a (L ~) a (~, ~) 

a(x,~).+H, a(a,x) DH= a(x,~) +DtIea(cz, x)] 
+ H= a(~ ,p)  a(~,Ft) + Dt O(~,tt----~ D--Ta(~,~----T " 

(1.11) 

Using (1.10) we transform the first expression in square brackets on the right side of (1.11): 

a(~,u} a(z,~) ] 0(~,~) +He O(a,J:) -=x'-' I I , - -  + H~ - -  (1.12) 
zi: a (L ~,~ a (L ~,-~) a (L ~) a (~, ~) " 

Substituting the expressions DHa/Dt and DHa/Dt in the second square brackets of (1.11), we obtain 

n~a(L~,~ a(~,~,-----~ a~, ~'+"T# -~ a(~,~,) 
+ ( OHB + OHe :~ [~) 0 (~, x) 0 (z, H,~)  , 0 (aHo, x) 

a= H a(L~) = a ( L ~ )  t a(L~)  

(1.13) 
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Substituting (1.13)and (1.12) into (1.11), we find 

DH, __DA z , [H, a (:~, y) 
A + H ,  : x - 

Dt Dt t O (~, ~t) 
a(aH,,y) + {a(z ,H,~)  + }.  

a(~,~) a(~,rt) 

a (::,i) ] 
- -  + ~ '  a(~, rL) 

In the same way the second equation of (1.10') is transformed to the form 

a(z,~) ] 
- -  + H, o(~,I----- ~ 

DA [- a (#, y) DH~ A + H~ '= x ~-~ [ H, 
Dt Dt O (~, I~) 

+ { a ( / j ' H ' ~ )  + a ( ~ H ~ , y ) } .  
a (L ~) a (~, ~t) 

(1.14) 

(1.1s) 

In (1.14) we transform the terms contained in the curly brackets: 

O(x,H=3). + a(aHB, x) --__O(x'Y) O (H=3-aH~). 
a (~, ~t) a (~, ~t) a (L la) ay 

Using (1.10) and (1.3"), we find 

H~--aH~=x'- '  [H, (~--v) --Ho ( i - -u)  ]. 

After substituting the latter two expressions into (1.14) we obtain 

Dt ~ (x'-'~) + (x'-~) 

=~'-,( ..--~y + H.--~y, 
Similarly from (1.15) we obtain the second induction equation also in mixed Eulerian-Lagrangian 
variables: 

x~-'DH~+- D t  H~ [ a-~-(x~-'~)+ O~ (x'- '#) ] 

:-x'-'  H,~xx-H~ +~x'-'[H~(i-u)-H'(O-v)lox 

4. We formulate the variational principle for the two-dimensional dynamic equations of 
magnetohydrodynamics in mixed Eulerian-Lagrangian variables. 

Variational principle. The dynamic equations of magnetohydrodynamics follow from the 
condition that the first variation of the functional 

fl 
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vmxithes, it being assumed that the base variables ~,/a are not varied, and the variations of all the 
other quantities are interconnected by the ~onditions of conservation of mass (1.4'), conservation 
of magnetic flux (1.10'), by the kinematic relations (1.3') and by the first law of thermodynamics: 

dE==--Pd~l+ TdS. (1.16') 

5. We illustrate the technique for obtaining the dynamic equations of magnetohydrodynamics 
from the variational principle formulated above. 

We write down the first variation of the functional (1.16): 

|1 

to t~ 

E )  +Oh (a fu+v fv -SE)  

--SA 
H':+H': a ] } 

8a 4n (H,SH,+H~SH,) d~ d~ dt. 

(1.17) 

From (1.4')we express the first variation of the density: 

O~Se + 

from which we find 
a ~ a  + a ~  

~(oA)=A( aa a~ ) 

, (1.18) 

Relations (1.3') enable the variations fu and fv to be expressed in terms of the variations fix, 6y, 

( ) ax asz asz ~+ aSa + as~ (J-u)-.---8~ 

ax a (z, 6~) a (6a, z) 
a~ ~ -  a(~,~) : a(~,~) ~' 

fa, f#: 

a6~ v)_ a_~_y 6= 
a6y . aSy._ ~6~ +. ) (#_ 

¢iv=8# - -~-= =-  . -~-  ~-,- ( a= a~ oo: 
av a (y, a~) a (~:, u) 

(1.19) 

and the quantity fE to be determined allowing for (1.16'): 

E =  - -  - -  

aE ST} 
a,q ap 

aE s_Z6p+ ( a_ s as 
~P + ~ x ao~ ' (1.2o) 

Varying (I.I0'), we fred ~Hx and fHy" 

an,=_jy 6a +~ [H :  a(~:,~) +#, A A a(L~) 

i a (z, N:,6~) + a (8~/-h, x) 
+ T I  a(~,~) - a(L~) ] '  

a ((~, 5x) l 
a (L ~) ] 

(1.21) 
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a ((x, ay) ] 5/ / , f f i -H,  55 I o (sy, ~) + H~ 

, [a(y,H¢,5~) a(/ / ,Sa,  y) ] 
4 - - -  q- . 

A a (¢, p) a (~, r,) " 

(1.21 Cont'd.) 

Substituting (1.18) -(1.21 ) into (1.17), we obtain 
$~ 

aa ~ - ' ~ -  
n 

aSy aSy ,,, + ( H,,:+ H,~ ~ 

_ ,__, , . [ , , .  
4:, a(~, ~) a (~, r0 

t H,[H= 

+ { (  a'+v2 

2 
0x 0x 

a (~, ~) a (~, ~) 

a (z, 6~) a (5=, z) ] 
a(=,~)  ~ a(~, ~) ~ 

05~ au 0y 5~ +pAy [( as~+ ) (~-v)-~5:~- 
a (=, ~) a a (=, ~) ~ -pAT x a¢, -~-  5~ 

___t  H, [ a(x ,H,5~)  + a ( S a H , , x ) ]  
4n a (~, ~) a (~, ~) 

4~ a (~, ~) a (~, ~) 
Integrating by parts in the last expression and putting ~x = ~y = 8a = 5fl = 0 on the boundary of the 
domain of integration f~ × t, we obtain 

,,o- s { ss{[ 
~ X  ~ - i  ~ X ~ - I  

+ 

+ 

a (~, i.t) a (~, v,) 
to Q 

a (P, y) t a (Hx:+Ha, 2, y) I O (H,H~,, ~) 

O (x, Px ~-') t a (x, x ' - '  (H,2+H~, ]) ) + t 0 (H~,H,, ~) 
a (~, ~) 8re a (~, ~) 4~ a (~, ~.) 

4~ a (~, ~) 
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O ([u'+v') /2-E-P/p],  ~) a ( p a ( ; / - u ) ,  15) 
a (L u) a (~, ~) 

a ( p a ~ , z )  a(pv~,y) as a(pv(y-v) '~)  + -~ pa t  
- ~a (~, ~) a (~, ~) a (L ~) a~ 

a (L ~) 

0 (a, [ (u~+v:)/2-E-P/p]) - p  
a (~, ~) 

a (~, pvCO-v)) acz, pu~) 
a (L ~) a (L ~) 

-~n [ a ( z, H,) + H~, a(~,~) 

a (:,  O~(i-u)) 
a (L ~) 

a (y, i~v~) 
+ - p A T  a (~, ~) 

a (~, H,) 
a (~, ~) 

as 
I 

a~ 

The requirement that the first variation of ~ vanishes, with the condition that the variations 6x, 
by, 6a, 6# are independent leads to the equations 

+ 
a (~, ~) a (~, ~) a (~, ~) 

± O (tt,2+I-1~ z, y) _ i a (H,H=, ~) i O (~, H, H,) .= O, 
+ x  ~ 

8.~ o(L~) 4~ a(L~) 4~ a(~,~) - 
D a(~v:,~) a(:,~v~) 
D--/(PAY) a (L ~) a (L ~) 

• 1 a (z, x ~-' (H,~+H~ ~) ) t + ~  
8a 

a (x, Pz'-') 
-t 

a (L ~) 

a (H=H,, ~) 1 a (a, H,H~) 

a(L~)  4a a(~,~) 4~ oCL~) 

a ([ (u'+vZ)/2-E-P/o], ~) a(i}u3,zl +a(pvKu) + 
a (i. ~) a (~, ~) a (I, ~) 

as 1 [ a(H,,z) + a(H~,y)1=0, 
-pAT Oa + . HB a(~,~t) a(~,p.) 

D az , .au a(~,~[u(~-u)+v(O-v)])  
Dt PA( ) -  

a(z ,  i~ua) a(y,  pv~) a(cz, [ (u=+v=)/2-E-P/p]) + +.  - p  
a (t, ~) a (L ~) a (L ~) 

as, ~ [a (z , / / . )  + O(y,H,) ]=O. - p A r , ~  + . n =  a(~,N), a (~ ,p )  

= 0 ,  

(1.22) 

(1.23) 

(1.24) 

(1.25) 

6. We will show that any two equations from (1.22)-(1.25) are sufficient to describe the 
dynamics of the medium. We reduce Eqs. (1.22), (1.23) to a more usual form. We consider the 
second and third terms of (1.22). Substituting & and from # from (1.3"), we fred: 

pu~:=A Oy B ax OX_A Oy (1.26) 

U S S  n 2 ~ : ~  . K 
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where A =x"-~pu (i--u).  B=x~-'pu (O--v). It is easy to show that 

[ 0~!~ ~ O(A,y) + O(x,B) (1.27) o(i~u,z,~)+ o(~, i~u~)= A o~a:z + = 
o (~, ~,) o (L ~,) ~ oa o~ / o (f, ~) o (~, ~t) 

We transform the last two terms of Eq. (1.22). Taking into account (I.10), we Fred 

,oy  
Ocz o6 oe ! 

Here A '=  Hx 2, B' = Hx Hy. We then have 

I [O(H,H,,~) 4 0 ( a , H . H , ) ]  ~t [ ~  
4a o(~,v) o(~,g) = A (H~/,) (L29) 

-r' 0 (H,H~) ] [ 1  0 (x'-'A', y) + fl (x, #- 'B ' )  1 

Substituting (1.29) and (1.27) into (1.22), we obtain 

D ~(z'-'pu(i-u),y) O(z,z'-'pu(O-v)) 
--Dt (p-xu) - 0 (~, g) - 0 (~, ix) 

O (P, Y) t 0 (H.2+H, 2, y) (1.22') 
-J~ X I -  t _ _  .-~ X I - t  

o (~, v) 8= o (~, ~) 
l [  O(x~-'H2, v) + O(z,x'-'H.~I.) 1 

4.~ o(~.~) - - - } (~ ,  ~) = o .  

Performing similar operations with (1.23), we reduce it to the form 

D O(x'- 'pv(~-u),y)  O(x,x'- 'pv(O-v)) 
__rD/,pa v ) _ 0 (L ~) - 0 (~, ~) 

O(x,P:c'") I 6(x, (H,2+H,2)x ~-') (1.23') q + 
0 (L g) 8a 0 (L g) 

t [  O(x'-'H.H,.y) O(x,z'- 'H,') ]----0. 

4a o(~, ~t) + o(~, ~) 

Integrating (I .22'), (1.23') over some domain f2' in the plane of the variables (/LP), it is easy to 
verify that these equations represent the law of conservation of momentum. 

Let us transform Eqs. (1.24) and (1.25). We simplify the first term in (1.25): 

D (. ax+vay a(x,y) as D 

(i 20) 
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Let us write down the time derivatives of ax,/afl and ay/afl: 

D ( =a(2'z)  +a~ az ( a a +  o~ ), 
I 

o ( + )  0,,,,> + 

Taking into account (2.3") it is easy to show that 

(1.31) 

a~ . a~ = a (~-,,) + a (#-v)  
as a~ az ay 

+ <.0_,,> (~ o<++ +__~,~. 
ay a~ ayl 

Substituting (1.32) into (1.31 ), and (1.31) into the second term on the right side of (1.30), we 
obtain 

,+(+_u) ( a a_2 +a__al~) 
aa az a~ az (1.32) 

++ : ++ (-z) ]  ° - -  

a (z, y) 
+ [ (a~-u)a a(s.~) 

a~ ( au vaV ~ 

+ as Ou+v Ov 

a2 a a ~  ] 
+ (.~-u) v az= -UazauJ 

-(#-v) [ u a~a a:~ 

a(z,y) { ( a a  a= ~a(=,Is) a(~, ~) ~ v - - - .  

a a(z,y) ] +(#-V)ay a(~, ~) 

(1.33) 

We transform the second term of (1.25) to the form 

a(z,y) {aa a 
8(L ~) ~ - y  ~[u(~-u)+v(b-v) l 

x[u(~-u)+v(~-v) ] }. 

aa a 
ay az (1.34) 

Let us consider the third and fourth term of (1.25): 

a Cz, pu~) a (y, pva) + 
a (~, rt) a (L ~) 

a(z,y) r a ~ r  a . a 
= o (~. , - - - - T  i ~  L ~  ++,. (-,:-.) - V +~v(~-.) ] 

am 
+ - . ~ - f  [ ~-y pu (#-v)-a-~-pv(O-v)l 

a2~. 
a== ~( i -u )+T~ u(O-v) +~[azay 

O2a a2a l ~  
- v(~-u)- v ( # - v )  ] J  . 

c)x: ax ay 

(1.35) 



164 V. b£ Goloviznin, A. A. Samarskii and A. P. Favorskii 

Taking into account (I.16'), it can be shown that 

0 (¢x, (a~+v ~ ) / 2 - E - P / p )  OS 
--5 pAT 

--~ax ~ + v T f  +ao(~:,~) o(z,y)" 

(1.36) 

Substituting Ha from (1.10) in the last term of (1.25), we fred 

t [O(z,H,) O(y,//,) ] 

o (z, y) oa acz atl. oH~ ~ 
4a o(~,~) oy 

(1.37) 

Adding (1.30), taking into account (1.33), to expressions (1.34)-(1.37), after a number of simple 
operations we obtain 

Og { D D(x,y) [ Opz'-'Cx-u) 

bP 1 b (H,,2+H~ ~) + Opx'-'v(y-v) + h - - + - - A  
Oy Oy 8a Oy 

i O(x,y) [ OxZ-'H.H~ +Ox'-'It.2 l }  
4a 0 (~, ~) bx Oy 

Oat D O(x,y) [ Opz-'u(:~-u) 
- o~ ~--~t (~-~)  - ~ (~, . ) ,  ~x 

0 , ] bP l 6 (H,2+H~ :) 
+-~y Ox -'u(O-r) . - A ox + A 8-~ Oz 

1 0 ( x , y ) [ c ) : c ' - ' H . :  Oz'-'I-I.H~ 1} 
- 4 - ~  a (~ ,~)  ' ax + au 

By similar calculations Eq. (1.24) can be reduced to the form 

{ ~ ( o A u )  o [ -~z oz -'u (z -u  ) ay o ([, ~,) 
0 ] OP I O(H.2+H~ z) 

+~pz ' - 'u (y-v)  + A - - - + A  
Oy J Ox 8a Ox 
t O(x,y) [Ox'-'H. z Ox~-'H.H~ 1} 

4a a (~, ~) Ox + ^ " 0y 
_ D~{ D O(x, [Opx'-'v(:~-u) 

oz ~-(oAv)- u) 

+ OPXZ-~voy(~-v) ] +A d-'~0P +i_. A 0 (H.2+H~ 

i O(x,y)[OxZ-'H.H~ Ox'-'H,']} 
4a 0 ([, u) oz  + == O. 8y 

=0.  

(1.25') 

(1.24') 

It is easy to see that Eqs. (1.24') and (1.25') are equivalent to the system of equations (1.22'), 
(1.23') and that any two equations of the system (1.22')-(1.25') are sufficient to describe the 
motion of the medium. 
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. ), (1.14), (1.15) together with the equation of state F.4ttafions (1.22'), (1.23'), (I .5"), (l 9' ' ' 
P = P (p, E) for given ~ = ~ (~, p, t), k : k (~, U, t) from a complete system of equations of two- 
dimensional magnetohydrodynamics in mixed Eulerian-Lagmngian variables. 

2. General formulation of the variational principle in 
adiabatic magnetohydrodynamics 

I. Let xi be Eulerian variables, ai Lagmngian variables, ~i the base coordinates, and H i the 
magnetic field components in a Cartesian coordinate system. Here and below all the indices run 
through the values from one to three. We denote by qi some coordinates with a metric def'med by 
the tensor qi/; H'i are the magnetic field components in the coordinates qi. 

The connection between the displacement velocities of the base coordinate system ~l with 
respect to the coordinates qi and o: and the velocity vector u i of the medium in the coordinates qi 
is determined in exactly the same way as in the two-dimensional case: 

(¢l'-u') : -~q~a~. (2.1) 

Expression (2.1) can also be rewritten in the form more symmetric in the variables @ and 4i: 

a (o:', ¢x 2, a s) a (q', a',  a s) 
( ~ ' - u ' )  = a'  

a (~', g~, V) a (~', ~', U) 
+ a ( a ' , q ' , a  s) ,~.~ a ( a ' , ~ , q ' )  ~s. 

a (~,, ~, U) a (~', U, ~') 

(2.1') 

In Eulerian-Lagrangian variables the continuity equation has the form 

O (q', ¢ ,  q') O (a ' ,  a ' ,  a ' )  
plg,,l':' = i5 (2.2) a (~', ~', ~') o (~,, ~,, ~s) 

We obtain the freezing-in condition of the magnetic field. Let w and v be the internal 
coordinates of some fluid surface. The flux of the magnetic field through the area dwdv is expressed 
by the formula 

O x ~ O x~ 
dF~:H'e,,~ Ow 0 - 7  dw dv 

_ [ H, a(z2, x s) O(x' .z ' )  ~ H  , O(xi, x') ] 
O(w,v) +H2 O(w,v) ' -8(w,v) dwdv. 

We pass from the coordinate xt to the coordinate qi: 

O W ,  x') + t p O ( x ' , x ' )  
a (w, v) a (w, v) 

a (x', x '  x ' )  [ a (q', q', q') 

0 ( ¢ ,  ¢ ,  q') [ 0 (w, v, z ~) 

+.0 (q', qZ, qa) ns ] dwdv--lq,,]" [ O(q', q') 
O (w, v, x') I. 0 (w, v) 

+O(qS, q') H, ,+O!q ' ,q ' )  H " ]  dwdv. 
O(w, v) O(w, v) 

0 (x', x ~) ] 
+H"o (w, v) dwdv 

H'+ 0 (q', ¢, q') 

H" 
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If we now take as (w, v) the Lagrangian variables (al, ~,2), (o~2, a3), (a3, a l )  and require that 
the magnetic flux dFtmH~d~*d~ ~, dP-~ l~da ld~  ~, dF3=A~da'd~ a does not change with 
time, then 

,i,[ ( q , q ,  ~ )  ,, 0(qS, q',~') 
I q,I o(~', p ,  ~') .tt + .~". t O ([',  [*, [') (2.3) 

0 (q', q~, ~') ] + H"  ~ Ar (a', ~', c~ 3) O (~', ~ ,  ~ )  
a W, ~2, ~3) j a W, ~', F) 

2. The general form of  the variational principle. The dynamic equations of magnetohydro- 
dynamics in mixed Eulerian-Lagrangian variables follow from the requirement that the first 
variation of the functional 

't 0 (ql, q2, q3) t 

o (or) 

- E -  8 a 0 q ° H  11 d~' d~ 2 d~ ~ dt 

vanishes, on the assumption tNt the base variables are not varied, and that the variations of all the 
other quantities are interconnected by the law of conservation of mass (2.2), by the condition of 
freezing in of the magnetic flux (2.3), by the kinematic relations (2.1 ') and by the first law of 
thermodynamics. The variational principle formulated leads to six dynamic equations, any three of 
which can be represented as a linear combination of the others. 

To obtain a system of three independent dynamic equations in the variational vector 
6 ~  = (6q 1, 6q 2, 6q s, 6cP, 6~ 2, 6~ 3) it is necessary to impose the additional constaints 
6~ ' : -A6t~ ' ,  where A =A (~t, ~2, ~3) is some matrix of dimension 6 X 3 with rank equal to 3, 
and 6~.= (6~ ~, 6t~ 2, 6~ s) is the vector of the generalized independent variations. 

Translated by J. Berry. 
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