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THE METHOD of straight lines for partial differential equations, based on approximation of 
part of the differential operator by certain finite-difference relations, is considered. With the aid 
of the operator of exact difference schemes, the rate of convergence of the approximate 
solution is established, under natural conditions on the smoothness of the solution of the initial 
problem, whereby the existence of the solution is guaranteed. 

Introduction 

A lot of work has been published on the method of straight lines; the work up to 1965 is 
surveyed in [l] . All the schemes of the method can be roughly divided into two classes; the first 
contains schemes based on approximation of part of the differential operator by finite-difference 
relations, and the second, schemes in which part of the differential operator is approximated by 

means of a variational-projection method. As regards the second class of schemes, there are many 
publications in which convergence-rate estimates are obtained in the norm of L,, under natural 

assumptions about the smoothness of the solution of the initial differential problem. (It may be 
mentioned that these results are only obtained for equations of.parabolic and elliptic type; 
see [2,3] and the references cited there). No similar results have beeb published for schemes 
of the first class; the usual approach to obtaining convergence-rate estimates leads to excessive 

smoothness being demanded of the solution of the differential problem; these demands are not 
usually met in practice. The reason is that the approximation error appears in the a priori estimates 
in a form which contains high-order derivatives of the solution of the initial problem. In the 
present paper we offer a new approach to estimating the rate of convergence of schemes of the 
method of straight lines of the first class, based on the use of the exact difference schemes originally 
introduced in [4,5]. With this approach convergence-rate estimates can be obtained, of the same 
order, and under the same assumptions about the smoothness of the solution of the initial 
differential problem, as for schemes of the method of straight lines of the second class [2,3]. In 
addition, several new points arise which will deserve attention. Notably, the estimates are obtained 
in stronger norms than the norm of Lz. Also, on the basis of [6,7], our approach allows 
similar results to be obtained for systems of partial differential equations and of high-order 
equations, and also, the results can be extended to quasi-linear equations. 

l Zh. vj5hisl. Mar. mat. Fiz., 20, 2, 371-387, 1980. 
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1. Notation and auxiliary results 

Let us first give some results from the theory of exact difference schemes. 

Consider the boundary value problem. 

-- 
I 

- q(z)u=---f(z), =(O, I), 

)-l/k(s). u (0) =a, u(l)=b, PCS 

L.et the following conditions hold: 

Conditions A: 

a) O<v<k(s)<p, v, p=const and k(x) is a summable function in the interval 

IO, 11; 

c) f(s) ELM (0, I), @I, where LJO, 1) is the space of functions summable to 

p-th power. 

When these conditions hold, the generalized solution of problem (1.1) exists, is unique, 

and belongs to the class W2 1 (0,l). We shall prove this statement, since it holds under weaker 
constraints, and may be obtained (so it seems to us) by a simpler method than that used [8]. 

It is easily seen that, when conditions A hold, boundary value problem (1.1) is equivalent 
to the following Fredholm integral equation of the 2nd kind: 

where 

IP.V 

~(s,r,)= J d’s 
o kc’s) 
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(1.1) 

(1.3) 

(1.4) 
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F(x)=z[O, I]. (1.4’) 

Using Theorem 1.16 of [9], p. 109, it follows from (1.4) and (1.4’) that the linear integral 

operator with kemelK(x, n) acts from L,,(,_l, (0,1) into CIO, 11, and is completely 
continuous. Since, moreover, the operator of problem (1.1) is self-adjoint and negative definite, 

we see also that the solution of integral equation (1.2) exists, is unique, and belongs to class 
C[O, I] . If, additionally, we use the consequence of problem (1.1): 

(1.5) 

then we have u (Z)EW,‘(O, 1) 1 which is what we wished to prove. We introduce the 
uniform difference mesh Oh={x*=ih: i=l, 2,. , . , N-l, h=1/N}. If we take a 
non-uniform mesh, the working is simply more laborious. We shall require the following below: 

Definition. The exact three-point difference scheme for problem (1.1) is the scheme 

v,=a,v,+,+b,v,-,+w,, i=l, 2,. , . , N-1, vo=a, vh.=b, 

of which the coefficients a ,=a,(k( a), q( .)), b,=b,(k( .), q(e)). w,=u,(k( a), 

q(*), f(4) are functionals of k(x), q(x), and Ax) in the interval I,_, <xGs,+,, dependent 
on the parameter h. The following conditions need to be satisfied: 

c,=u (a), i=l 3 
1-9 ’ * . , X-1. 

We have: 

Lemma 1 

Let conditions A be satisfied; then there is a unique homogeneous three-point difference 
scheme for problem (1.1): 

(1.6) 

where a(x)=h-‘v,(z), d(x)=T’(q(.)), q(~)=T’(f(.)). Here, 

T”(w(.))=$) j 
r+h 

viww~+h-l J v2(E)w(E)& 
1 

z-h 
v*(x) 

I 

and u,(s), uz(x) are pattern functions. 
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Proof: Let us show that, when conditions A hold, the pattern functions have the same 

properties as in [4,5, lo], where it was assumed that 

OtM, < L< M,, 
k(x) 

O<q (x) GM,, k(x), qt~),ftx)~Q”[OI II. 

We shall show that the pattern functions v,(x), j=i, 2, being solutions of the Cauchy 

problems 

L’J’q’q’ (5) i $ 
[ 

dVj' (5) 
k(x) dx  

1 
- q (5) 41tx) =o, 

x= h-1, x1+*), Ul’ b-i) =o, dv,’ (G-1) 
kk-1) dx = 1, 

h (x,+1) 
k(x,+i) dx  = - 1, 

exist, are unique, and belong to class Wzl (JL, z,+~). 

The proof is similar to the above proof of the existence and uniqueness of the generalized 
solution of problem (1 .l), belonging to class W2 1 (0, 1). All we have to do, e.g. in the case of 

function v 1 ‘(x), is replace Eqs. (1.2), (1.5) by the equations 

vl’(z)=F(X)+ j K(X,E)Vl’(E)d~, 
=I-, 

dv,’ (3) 
k(s) dz 

where 

(1.7) 

(1.7’) 

On then repeating the arguments of [ 51, we can see that Lemmas 1,2,3 of [ 51 hold. Using 
the imbedding theorem of [ 111, p. 64, any function of W,l(O, 1) belongs to the class CIO, 11, 
and hence the solution u(x) of problem (1.1) is defined at the base-points of the mesh ah. 

We use reductio ad absurdurn to prove the uniqueness of the exact three-point difference 
scheme. Assume that there are two exact three-point difference schemes 

~,=a. ,W u. +b “‘u,++w (,) r+i t I , i=l, 2,. . . , N-l,, j-1, 2, 
(1.6’) 

u,=a, uh.= b. 
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We fix arbitrary i, 1 < i <N - 1, and fmd for problem (1.1) the constants a and b such 

that u(z,_,) =u(x,+,) =O. For this, putting t=L&_, and x=x,+, in(1.2)and 

(1.3), we obtain for D and b the system of linear algebraic equations with determinant 

Then, from (1.6’), for this solution we have wl(” = w,@). To obtain the equations ~,“‘=a(‘~’ 
and b,(“=b,(” we have to repeat the same set of arguments, but choosing a and b from 

the conditions u(x,+~) =I, u(x,_!) -0 or u(x,+J -0 and u(x,+) =l. The 
system determinant A in the meantime remains unchanged. Since i was chosen arbitrarily, the 
schemes (1.6’) must be completely identical. The lemma is proved. 

Note. From (1.7) and (1.7’), and the corresponding equations for vzi(x), we obtain for 
sufficiently small h the inequalities 

II 
1 du,‘(x) 

-- II < c, j=l,2, q(x)= L&(0, I), s=-1, 
h dx wr,-, ‘$+,I 

where the constants y1 and C are independent of h and i. 

Lemma 2 

Let conditions A hold with s > 1. Then, 

1) we have the estimate 

IIT”(~(~))-~(x)IIo~C~ 2 II II Vu(x)@=Wz’(O, I>; 

LI(O.1) 

2)if k(x)EWZi(O, I), then we have the a prioti estimate 

3)if k(x)do j,slO. II, then we have the a prioti estimate 

IIT’(u(.))-u(x) Il0~Ch’+“* Vu(x)G, I,*[O, 11, 
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where 
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Proof: It is easily shown that 

T’(u(.))--o(l)=? 1 ( 
I 

x-h 

+ h-’ r+h m S( 
x 

From this, using our Note, the lemma follows. 

2. Convergence of the method of straight lines for equations 
of parabolic type 

Let us consider the Cauchy problem for an abstract first-order differential equation in 

Hilbert space H: 

Z+Au=f(t). PO, 22 (0) =uo* 

where the linear operator A: H + H has domain of definition D, dense in H, and 

Assume that a linear operator T: H + H exists, with the following two properties: 

1) if u and v are solutions of the equations 

Au=g, 

;ru=[P(PTA)-‘I-‘~=P~g=~, VEX, 

(2.1) 

(2.2) 

(2.2’) 
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where P is an operator from H into Hilbert space X, then 

Pu=c; (2.2”) 

Instead of problem (2.1), (2.2), we consider an “approximation” of it, namely, the Cauchy 
problem 

$+A(t)ti=f(tj, G-0, u(O)=PT(O)u, 

The error z = v - PU is then found by solving the Cauchy problem 

_+-._T(~,:=~~ dz 

df dt ’ 
PO, z(O)=P(T(O)uo-uo)~ (2.3) 

where 

+(t)= jP[ T(‘,) $-$]d:. 
‘- 0 

Theorem I 

Assume that the linear operator A(r) in problem (2.1), with domain of definition D, 
independent of r and derqe in H, is differentiable and satisfies the conditions 

O<vEaqt)=A’(t), tao. 

where Y is independent of t. Then, if there exists a linear operator r(t) : H -+ H, having the 
properties (2.2’), (2.2”), such that 

O~W)Sp*A(t), GO. 1 p, 1 <co. (2.4) 

then we have the estimate for z = v - Fu: 

where II * II is the norm in space X. 

If the operator A is constant, we have the estimate 
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proof. We integrate both sides of (2.3) from 0 to t, then multiply scalarly by z(r); after 
transformations, we obtain 

lo!9 

(2.6) 

Integrating both sides of (2.7) from 0 to ?, and using inequality (2.4), we have 

On applying the generalized Gronwall lemma to the last inequality, we at once arrive at (2.5). If 

A is a constant operator, then (2.7) takes the form 

On integrating both sides of this equation from 0 to t, and applying the Cauchy inequality to 
the right-hand side, we obtain (2.6). This proves the theorem. 

As an example of the use of Theorem 1, consider the problem 

(2.7) 

u(0, t)=u(l, t)=O, L! (5, 0) -z&o (x) . 

Assume that the coefficients of Eq. (2.8) satisfy conditions A; then, as the operator T, we can 
take the operator TX of @ion 1. Here, P is the operator of taking the trace of a function in 
mesh uh, while operator A is given by 

(2.8) 

_a,=- (UJU) .-tdu, 
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and obviously, conditions (2.2’) and (2.2”) are satisfied. 

Consequently, for the scheme of the method of straight lines 

+dv=PT”(f(‘, T)), z=@h, t=-0, 

(2.9) 

v(0, t)=v(l, t)=O, u(5,O)=PT’(u,(*)), 

corresponding to problem (2.8), all the conditions of Theorem 1 hold, and from (2.6) we have 
the II priori estimate 

Using this estimate, along with Lemma 2, we have: 

Theorem 2 

Let conditions A hold with s > 1. Then: 

1) for Ml p, r,,~rGu?. where llr,S1/2q,=5/,, q,E[l, 21, rl=[l, “I$], u,(s;= 

L(O,1) 1 we have the following estimate for the error of scheme (2.9) of the method of straight 
lines: 

2)for llfll~,~~~~:, k(.r)EIi’:‘(O, I), t~,(x)Eti’,‘(O, I) we have the estimate for 

the error of scheme (2.9) of the method of straight lines: 

where 

In the proof of this theorem, we have to use results (see [ 121) on the smoothness of the 
generalized solutions of equations of the parabolic type. 
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3. Convergence of the method of straight lines 
for equations of hyperbolic type 

Consider the Cauchy problem for an abstract second-order differential equation in Hilbert 
space H: 

$4.&4(t).+(t), DO, u (0) =uo, u’ (0) =uo’, (3.1) 

where A(t): H + His a linear operator with domain of definition D, independent oft and dense in 

H, while A (t) =A’(t) >vE>O. 

Assume that there is a linear operator T(t): H + H, with properties (2.2’), (2.2”). We 

introduce, instead of problem (3. I), the problem 

$+m(t)u=f(t), o-0, 

u(O)=PT(O)u,, u’(O)=[PT(t)u(t) ],‘=o. 

where Y E A’, and P is an operator from H into X. For the error z = v - AC of (3.2), (3. l), we 

obtain the Cauchy problem 

d%(t) 
$+n(t)z=yp t>o, 

(3.2) 

(3.3) 

2 (0) =P (T (0) uo--uo) , z’(O)=[P(T(t)u--u)l,IO, 

where 

Theorem 3 

Q(t)= J&E) u”&)--U”(E) I (t--t)& 
0 

Let the conditions of Theorem 2 hold, and let the operator r(r) satisfy the operator inequality 

w*(t) l’Gap,a-*(t) or lA’(t)]‘+2p,AZ(t)>0. Then, for the difference 

z = v - Pu we have the estimate 

0 0 t 
< 2~ exp 

IL 
2 max (pl, 0) _t -&-I t} 5 II G (E) II2 4, 

0 

(3 -4) 

where ~(S)=rl(~)+~z’(O)+~(o), E>O. 
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If A is a constant operator, we obtain, instead of (3.4), 

0 Cl 

Tl 

<2T,'" [S IIP(Tu-u)l12d~ . I 
‘I1 

0 

Proof: We integrate both sides of Eq. (3.3) twice with respect to t, then we multiply 

scalarly by 

and we obtain 

If we integrate both sides of (3.5) from 0 to t, use the conditions of the theorem, and apply the 
e-inequality, we finally obtain 

(3.4’) 

Finally, integrating (3.6) with respect to t, and applying the generalized Gronwah lemma, we 

arrive at the a priori estimate (3.4). 

If operator A is constant, then (3.5) becomes 

(3.5) 

(3.6) 

whence we have 
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which leads to (3.4’). The lemma is proved. 

We shall use Theorem 3 to find the rate of convergence of the method of straight lines 

for the fust boundary value problem, in the case of a hyperbolic equation. 

au 
u(O,t)=u(l,t)=O, 2.2 (5,O) = a0 b), dt t-0 I =u* (5) * 

Using the operators T’ and P of Section 2, we construct the scheme 

v(0, t) =u( 1, t) =o, 

In accordance with ~equ~ty (3.4’), for the error z = v - Pu we have the a priori estimate 

(3.7) 

(3-g) 

This estimate, in conjunction with Lemma 2, gives us: 

Theorem 4 

Let conditions A hold. Then: 

1)for maxIq(s) IGpl, f(s, t)=Ll(&,), u~(~)~~~'(O, I>, u,(x) =L(O,l) 
we have the estimate for the error of the scheme (3.7) 
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2) if the condition of Para. 1) and the conditions 1 k’(s) 1 <p2, ft’(q t) ..EL~,, (&), 

%(f)EWz’(O, l)fl@z’(O, I), u,(z)EW~~(O, I), hold,wehavetheestimateforthe 
error of scheme (3.7): 

To prove the theorem, we make use of the results of [ 121, Chapter 4, Sections 3 and 4, 

on the smoothness of generalized solutions of a hyperbolic equation. 

4. Convergence of the method of straight lines for equations of elliptic type 

Consider the first boundary value problem for an abstract second-order differential 
equation in Hilbert space H: 

$(x)u=f(x), a?= to,11 1 l.2 (0) =uo, u(1) =ui. (4.1) 

Here, A(x): H + H is a linear operator, with domain of definition independent of x and dense 

in H, which satisfies the condition A (9) =A’(z) >vE>O. 

Assume, as above, that there is a linear operator T(x): H + H, with the properties (2.2’) 
(2.2”). Instead of problem (4.1) we consider an “approximation” of it in Hilbert space X 
(“simpler” than space H): 

$d(x)u=f(x), x=(0, I), v(O)=PT(O)uo, v(l)=PZ'(l)u,, 

where all the notation has the same meaning as before. Then, for the error z = v - AC we have 
the problem 

(4.2) 

z(O)=~[~(O)uG-uGl, z(l)=P[T(l)u,--&I, 

where 
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We replace the variable x by 5 in Eq. (4.2), multiply both sides by the function G(x, [), and 
integrate with respect to t from 0 to 1: 

z(x)-ii(x) jG~~,l)zWl=- j G(x,~)[.;T(x)-k(t)lz(~)d~+~(x). 
0 0 

Here, ~(5)=~(~)+5~(1)+(1--5)~(0). From the last equation we have the estimate 

(4.3) 

where it is assumed that 

pi=2 mas 
s G’(~,~)IlA(~)-A(~)l12dj~l. (4.4) 

GCXSl 0 

Inequality (4.3) along with (4.4) and the inequality (Iz (5) II.2 llz (t) II leads to the estimate 

max llz(r) /I< max 112(x) 1l.B (+)I” mas II* b) II. (4.5) 
Octal OSXSl Pi oc=G I 

We have thus proved: 

Theorem 5 

Let the linear operator A(x) in problem (4.1) have domain of definition D, independent of 
x and dense in H, and let it satisfy the condition 

O<YE<A (2) =/l’(x), JE[O, 11, 

where Y is independent of x. Then, if a linear operator Z’(x): H--f H exists, which satisfies 
conditions (2.2’) and (2.2”), and relation (4.4) holds, then we have the estimate (4.5) for z(x). 

Let us use Theorem 5 to estimate the rate of convergence of the method of straight lines 
for the Dirichlet problem in the case of the elliptic equation 

g+$[ k(y);] -q(~)u=fb,~), (x,y)=G, 

(4.6) 

where r is the boundary of the square G= { (5, y) : XE (0, I), YE (0, I)}. 
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Using the operators V and P of Section 2, we construct the scheme 

d2r: 1 

d” + - I’; ( ) -dc=PT” (f(s, )I, r= (0, I), !/=w 
I a ” 

2‘ (J. 0) =q (J, 0). z-(x, I)=& 1). 

2~(0,7J)=PT4’(rf(O. .)), v(l, y)=PT”(rF(l, *))a 

In accordance with inequality (4.6), we have the estimate 

Inequality (4.8) in conjunction with Lemma 2 gives US: 

(4.7) 

(4.8) 

Theorem 6 

Let conditions A hold. Then: 

1)for maxlq(y) /<CL, i(~, y)=L(G), (~(~,Y)EII~~‘(G) we have the estimate 
o< I,< 1 

for the error of scheme (4.7) of the method of straight lines: 

2) if conditions of Para. 1) hold, and also the conditions ( k’ ( y) ) < ~2~ CF (z. Y ) 
~l/i;‘~’ (G) , then we have the error estimate for scheme (4.7): 

To prove the theorem, we have to use the results obtained in [8], Chapter 3, Sections 

5 and 10, on the smoothness of generalized solutions of an elliptic equation. 

5. Conclusion 

The above results can be extended to systems of second-order partial differential equations, 
to higher-order partial differential equations, to the multidimensional case, to the quasi-linear 
case, and to the mesh method. Use is then made of results on exact difference schemes for 
systems of ordinary second-order equations [6] and for higher-order ordinary differential 
equations [7]. Without dwelling on all the possible extensions mentioned above, to which later 
papers will be devoted, let us briefly give the idea of the proof of convergence of the method 
of straight lines under minimal conditions on the smoothness of the solution of the initial 
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differential problem, for the qu~i-fear case. For clarity, we shah consider the method of 
straight lines applied to quasi-linear equations of parabohc type. 

The starting point is the abstract Cauchy problem 

where A : A -+ H is a self-adjoint positive defdte operator, with domain of deftntion D(A) dense 
in H. For simplicity, we shall assume that operator A is independent of r. Let the function 
fit, u) satisfy the Lips&& condition 

with constant L, independent oft. 

Using the notation of Section 2, we consider the “simpler” Cauchy problem 

dr; 
-g + au=PTf(t, AU)) DO, Y (0) -Pi%,, (5.1) 

where A : X + H is a linear operator with bounded norm: II A II G cl. Using the notation 
z(t) = p(t) - Pu(f) for the error of the solution of problem (5. I), we arrive at the Cauchy problem 

2 (0) =P(Tu,-uo) * 

Performing working similar to that of Section 2, we arrive at the a prior’ estimate 

(5.2) 

The application of estimate (5.2) to prove the convergence of the method of straight lines for 
qua&linear equations of parabolic type, is virtually the same as in the linear case, except for the 
operations with the second term on the at-hod aide of (5.2). We shall therefore merely quote 
the result, similar to Lemma 2, for this term. Let the scalar function@, v) satisfy with respect 
to its second argument the L,ipschitz condition 1 f (3, u,) -f (5, h) 1 di 1 u,--u~~ 1 with 

constant L, independent of x. Then, under the condition A w E, and using the operator TX of 
Section 1, we have 
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r-h I 2, I 

< 2 Lh”’ 
r+h (5.3) 

3 
xE@h, 

x-h 

which leads to the estimate 

IIPT’[f( .u~.~)-1(..u~xi)],,~~~L’h’j[u’(x)]~ds. (5.4) 
0 

Estimate (5.4), in conjunction with Lemma 2, enables us to prove the convergence at a rate O(h) 

of the method of straight lines for a quasi-linear parabolic equation, provided that its solution 
belongs, for each fared t, to the class W, 1 with respect to x. 

Now let the solution of the quasi-linear parabolic equation belong, for each fvted t, 
to the class IVz2 with respect to x. As the operator A we take the linear interpolation 

Au= 
X-X,_, 

- u (x,+1) + 
x,+,--z 

2h 
I--U(Xi-I), 

2h 
XE[5,-1,x,+il. 

We then have 
x1+1 

u(x)--,Iu= JK(x,t)d~(t)dt 

Xl-1 

Xt+i 

= S[ Ix-tl, -$3-x1-1) cxa+i-t) ] U”(t)& 
a-, 

where It;lT=t, for k>O, 1 El+=0 for ECO. Hence, recalling (5.3), we obtain 

x,+h 

+,& J h(E) jfl 
x,ih 

K(& t)u”(l)dt 1 d$<Lh” { s [u”(+J2dt,}“, 

=I xc-, q-h 

which leads to the estimate 
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which, in conjunction with Lemma 2, enables us to prove the convergence at a rate O(h2) of 
the method of straight lines for the quasi-linear parabolic equation. 

Translated by D. E. Brown. 
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