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NUMERICAL methods for solving some multi-dimensional problems of gas dynamics, radiation gas 

dynamics, and plasma physics, are surveyed. The present state of computational experiments in 

these fields is discussed, and examples are given of the computation of some complex problems of 

mechanics and physics. 

Introduction. Mathematical modelling and numerical methods 

Theoretical studies in mechanics and physics have always been based on a mathematical 

foundations? and on obtaining basic quantitative characteristics of the object. As science has 

developed, there has been an increase both in the complexity of the phenomena, processes, and 

structures studied, and in the required accuracy of the results. Eventually the mathematical 

description of problems becomes so complicated that it is no longer possible to solve them by 

traditional means. 

The invention of the high-speed electronic computer, the rapid development of computing 

methods, and direct numerical calculation of complex mathematical problems have marked a new 

stage in the application of mathematical methods to the solution of problems of science and 

engineering. The last two decades have seen the creation of the computational experiment (c.e.). 

which is a powerful new method of theoretical study. based on the use of a computer, and which 

has played an important role in the acceleration of scientific progress [I -41. In essence, the 

experiment amounts to using a basic mathematical model to study, by computer, processes and 

systems of different kinds. to examine their behaviour under different conditions, and to find the 

optimal parameters and modes of actual or planned systems. With the aid of the c.e. we can predict 

mathematically the behaviour of complex effects and technical systems which it is difficult or 

impossible to study by other methods. The c.e. can be used effectively to study large-scale topical 

problems such as the theory and design of nuclear reactors, controlled thermonuclear synthesis. 

MHD energy conversion. topics in plasma physics, laser physics, or aerodynamics etc. 
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The underlying ideas of the computational experiment can be seen from the scheme of Fig. 1. 

showing the stages in which the experiment is performed. 

All the stages are closely linked and have the same basic aim - to obtain a result with the 

required accuracy in the shortest possible time. Even the present simplified scheme reflects a 
remarkable property of the c.e.: it operates effectively at the junction of different specialized fields 
and hence is irreplaceable for hybrid studies. It is often the only means: and not just an important 
means. for synthesizing knowledge and experience in different fields. 

In the context of problems of mechanics and physics, we are concerned with uniting the 
efforts of specialists in mathematics, numerical methods, theoretical and experimental physics and, 

computer programming and design. These specialist fields are mutually enriched when the c.e. is 
performed. For instance, c.e. has stimulated the development of branches of mathematical physics 

concerned with the study of neutron transport and radiation equations, diffusion equations, 
systems of equations of hyperbolic type, equations with discontinuous coefficients, non-linear 
equations, kinetic equations describing a plasma, etc. 

The present survey covers results obtained by the author and his associates during the last 
few years at the Institute of the Problems of Mechanics of the Academy of Sciences of the USSR. 
in connection with the development of numerical methods for solving complicated problems in 
mechanics and physics. The compilation of such algorithms is one stage in performing a c.e. With 
the experience so far accumulated. we can state certain conditions to be met by computing 
algorithms. 
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On the discretization of the equations of a continuous medium, i.e., changing from 

differential to difference equations, it is natural to demand that the resulting discrete model reflect 

correctly the main properties of the continuous medium. The satisfaction of this requirement has 

involved the statement and development of important and constructive concepts, such as 

conservative and completely conservative difference schemes [S] Earlier, these schemes were 

obtained by means of certain semi-heuristic devices. The approach of the author and A.P. 

Favor&ii to the construction of difference schemes, based on the use of general variational 

principles of mechanics. widens the scope for obtaining conservative and completely conservative 

schemes (see Section 1). Using this approach, for instance, we can automatically write schemes 

with given qualities in different coordinate systems in the multi-dimensional case. In Section 5 we 

shall consider the so-called completely neutral schemes of 1.V. Fryazinov and B. D. Moiseenko for 

the Navier-Stokes equations. which preserve some important properties of the initial model and 

have many similarities to completely conservative schemes. 

The choice of the numerical method for solving a problem is closely linked with the choice 

of mathematical model of the phenomenon in question. Experience shows that the model to be 

preferred is that best suited for numerical solution by computer, for which reliable economic 

algorithms are available. In Sections 3 and 4 we give examples of a successful choice of model in 

the framework of a given physical approximation, whereby substantial advances have been made 

in the numerical solution of certain problems of plasma physics. These results were obtained by 

L.M. Degtyarev and his colleagues and are concerned with problems of modelling plasma 

turbulence and studying the equilibrium configurations of a plasma. 

In Section 2 we discuss topics connected with methods for multi-dimensional problems of 

radiation gas dynamics, developed under the guidance of B. N. Chetverushkin. The mathematical 

models used in studying these problems are extremely complex. For instance, they include as 

component parts the equations of gas dynamics and the kinetic equations of radiation transport. 

Further difficulties are created by the high dimensionality of the problem and the different 

scales of the physical processes that have to be taken into account, When devising the numerical 

method. various complex theoretical and practical problems had to be solved in connection with 

the choice of difference schemes. the construction of a method of solving the problems. and 

computer programming of the methods. 

Let us briefly refer to some topics having direct reference, to the c.e. but outside the framework 

of our present survey. 

The mathematical models of many problems in mechanics and physics are often extremely 

complex and do not lend themselves to detailed theoretical study. But some of their important 

properties may be understood if the initial problem is divided into simpler units (modules). Modular 

analysis of a problem and preliminary study of the properties of individual modules demand the 

development of qualitative and analytic methods for studying problems of mathematical physics, 

such as e.g., the widely used method of constructing similarity solutions. The numerical algorithms 

and technology of performing the c.e. must reflect the modular structure of the initial problem. 

An important trend in c.e. development is the creation of packets of applied programs of 

mathematical physics [6]. The constructional principles of such program packets take account of 

the modular nature of the c.e., and of the fact that many different models may be used for studying 

the phenomenon to different degrees of approximation. Applied program packets are also 

convenient for the standardization, accumulation, and storage of numerical algorithms, etc. 
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Before an algorithm is widely used in practice, we need to study it theoretically for economy, 

accuracy, universality etc. In the theory of numerical methods two main topics can be 

distinguished: a) the construction and study of difference schemes, and a priori and a posreriori 

evaluation of their properties (convergence. accuracy. stability); b) the solution of difference 
equations. It can be claimed that there is now a very complete theory of difference schemes, 

both abstract and constructive. for linear problems [2,7]. The difference scheme is a system 
of in general non-linear algebraic equations. When solving them, various iterative processes are 
used, which involves the repeated solution of a special type of system of linear algebraic 
equations of high order. The development of economic methods for solving such systems is one 
of the principal problems of the theory of numerical methods [8], 

When performing a c.e. modelling the behaviour of some medium. we have to know its 
physical characteristics with reasonable accuracy; otherwise. the best computing methods 

will not yield a true picture of the actual phenomenon. The development of “physical software” 
for the c.e. is a vast problem in itself. For example. since the properties of substances cannot 
always be found directly by physical experiments. while the simplified models of a substance 
used in theoretical physics are crude. it becomes necessary to solve complex quantum-mechanical 
problems by numerical methods on a computer. In turn: modern physical experiments are so 
complex that their results cannot be correctly interpreted without using special methods of 

computer processing [9]. In both these cases we are in fact talking about performing independent 
computing experiments side by side with the main c.e. 

1. Application of the variational approach to the 

construction of difference schemes 

In numerical modelling. the difference scheme is interpreted as the discrete analogue of the 

physico-mathematical model of the phenomenon [2]. This means that the quality of the scheme 

has to be determined, not only by the canonical categories of the theory of numerical methods. 
but also by the extent to which the discrete model reflects the physical laws of the process and 

hence. the closely related properties of the equations. From this point of view it is natural. when 
constructing the difference algorithms. to be guided directly by the methods used in physics and 
mathematics for describing the processes. 

Variational principles [lo- 121 are a universal and fundamental means for describing and 
studying problems of theoretical and mathematical physics. Due to their constructive features 

and relative simplicity they have often provided the basis for a theoretical consideration of many 
classical fields of physics. At the same time. the variational approach is widely used to construct 
generalized solutions of the equations of mathematical physics. In view of this, we can hope for 
the successful application of variational principles in cases where no proof is available of the 
existence and uniqueness of a solution. This is the situation that we often have to deal with when 

solving applied and notably non-linear problems. 

Many vital properties of physical processes are bound up with the properties of the 
functionals being varied. For instance, the statement of the laws of conservation of momentum and 
energy is based on the absence of an explicit dependence of the Lagrangian on the space 
coordinates and time. A further merit of variational principles. that facilitates their use. is their 
invariance with respect to the measurement systems. 
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In [ I3 - 161 it was suggested that the variational approach should be used to construct 

finite-difference models of hydrodynamics. magnetohydrodynamics, and diffusion processes. 

This approach was further developed in [ 17 -221. 

1. Hamilton ‘s variational principle and the equations of hydrodynamics. The Lagrange method 

of description is based on the strong analogy between a continuous medium and a continuous 

system of particles [23.24]. This connection between continuum mechanics and the mechanics of 

a finite number of particles is best utilized when constructing the discrete model. 

First consider the adiabatic motion of a finite volume V, bounded by the surface F, and 

consisting of the same continuous particles. Following the usual analogy, we can write the 

Lagrangian L of the system as 

Here. t denotes the time, T(X, ~1, z) is the radius vector of a point, W(U, v, w) is the particle 

velocity vector. P’ is the volume. d V is an elementary volume, M is the mass, dm is an element of 

mass. p is the density. e is the specific internal energy per unit mass, P is the pressure and d/dt is 

the substantial time derivative. 

In accordance with Hamilton’s principle of least action, the motion of the medium, as a 

mechanical system, produces the stationary value 6.S = 0 of the functional of action: 

The variation of the functional (1 .l) has to be performed in the context of the relation: law 

of conservation of mass 

6 (dm) =6 (pdT’) =o. (1.9) 

the first law of thermodynamics 

&= (P/p’) lip. (1.3) 

and the kinematic connection 

dr/dt =W. (1.4) 

Variation of (1 1) in the light of (1.2) -(I .4) shows that the stationarity condition (1.1) is 

satisfied if we have the equation, expressing the law of conservation of momentum: 

dM 

’ dt 
- + grad P=O. (1 S) 
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Relation (1.2) transforms into the equation of continuity 

dP 

and (1.3) into the equation of energy variation 

In the process of variation we also use the law of conservation of volume 

$- (dV)=dVdiv~. 
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(1.6) 

(1.7) 

(1.8) 

The system (1.4)-(1.7) of equations of hydrodynamics is completed by the equation of 

state 

R (P, p, E) =o. (1.9) 

The existence of the laws of conservation for the equations of hydrodynamics is linked with 

the possibility of writing them in variational form. The absence of an explicit dependence of the 
Lagrangian on the coordinates and tune leads to the law of conservation of momentum 

and of energy 

d -s \I- an1 + 4 P,nr dF=@ 
dt 

(1.10) 
u 

31 I., P, 1. 

(1.11) 
.\d ( Y , Fir) 

We recall that the law of conservation of mass and the condition that the process be adiabatic are 

introduced as connections. 

Hamilton’s variational principle extends without modification to the case when account is 
taken of the volume dissipative processes with “viscous pressure” 4. 

6E 
PSq 

=-tip. 
P? 

For this non-adiabatic motion of the medium! Eqs. (1.5) and (1.6) become 

d\Y 

’ dt 
- i- grad (PSq) =O. * + (PSq) div W=O. 

p at 
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2. Construction of the equations of a discrete medium on the basis of a variational approach. 

Assuming that the motion of the medium is plane and dependent only on the two space Cartesian 

coordinates x and J’, we fur as the independent space variables the Lagrangian coordinates a and 0. 
Using the well-known arbitrariness in the choice of a, /3, we can assume that, corresponding to the 
intial volume V, bounded by the surface F, we have in the a, p plane the unit square G, bounded 

by the contour r (Fig. 2). 

We introduce into G a rectangular difference mesh Wh, uniform in each direction and 

consisting of nodes +I 

ah={aij=(ai, pj) ; ai=iAa, i=O,1, . . . , A’; pj=jAp, 

j=O, 1 ,..a, M} . 

We denote by 7h the set of nodes lying on r; the rest are called interior nodes, and the set of them 
is denoted by wh : 

i3h=tih+rh? yh= {6-+r}. 

We also introduce the set of rectangular cells Q,= {Qi,, i-0, 1, . . . , N-1, j=O, 1, . . . , M-l}, 

each of which has four nodes wkl as its vertices, forming the pattern Pa, (R) of the cell s2ii: 

The nodes in pattern Pa, (Rii) are always ordered in such a way that, as they are sampled in turn, 
the cell Fiji is circuited counter-clockwise. Any cell is defined one-to-one by its centre, which we 
therefore denote by the same symbol: Qij={ai+o.a=(i+O.S) Aa, ~,+o.s = (j-f-0.5) Ap}. 
This system of notation helps to prevent future misunderstandings. 

i 

FIG. 2 

We shall also use the pattern Pan(w), composed of cells S2kl, having the node Wii as vertex: 

Pa * (Otj) ={Qi, j! Qi-i, j, 52*-i, j-19 Qi, j-i} ; 

here likewise the circuit rule is observed. 
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The images of cells S?+ij E Q, in the x, y plane are plane rectangular volumes Vq with curved 

boundaries. The vertices of any F:j are the images of nodes o~~EUI, (Q,,) in the x, y plane, for 

which it is pointless to introduce new notation, as it was for the centres of cells Qi. The set 

Vh”{Uij: i=O, 1,. . . , N-1; i-0, . . . , M-l} forms a division of the initial volume V, which 

is thus associated with a finite system of particles of finite mass, formally identified with the 
“Lagrangian” set of cells 21~. 

Henceforth. for typographical simplicity, we use the indexless notation Q=S&. o=q, 

f=fij, &f=fi+t, ;-II:. Ao/=fi, j+i-fij, fa =AJ/.Acz, jb=&f/A;j. It wiII also be convenient 
to use the following symbols of averaging over patterns: 

We shall also use the abbreviated notation 

(Q, jCl)=O.5[ (!Z)ij+(j:)i, ji,], (0, !8)=0.5[ (ffi)ij+(jfi)i-1 j]a 

The Lagrangian L\, of the discrete system of particles modelling the continuous medium is 
naturally written as 

The functional of action is 

T, 
St = 

c 
L,,(r)dl. 

The law of conservation of mass is 

pV=m. (1.13 

The first law of thermodynamics, bearing in mind the viscous forces. is, for a volume element 

m de=- (Pfq) av. 

The kinematic relations, referred to the nodes, are 

ax ag -----c= --XV 
dt ’ dt 

The law of conservation of volume V is conveniently written in “Jacobian” form 

(1.13) 

(1.14) 
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In this case, V is precisely equal to the area of the figure in the x, _V plane, obtained by rectifying 

the curved sides of the image of fl. 

The laborious process of variation in the discrete case can be replaced by using directly the 
Euler-Lagrange extremality conditions: 

which, in the light of the connection equations (1.12)- (1.14), become 

Differentiating the volume V with respect to time, we obtain the differential-difference equation of 

the law of cell volume conservation 

dl’ 

y 

8V 

( - 
av 

dl= - “’ ax,,. -?- l’k - 

6Yk! 1 
qpsPa.:Cr 

(1.16) 

Associating this relation with (1 .S), we obtain the difference analogue of the expression for the 

divergence: 

r, ( 
~,...=Pati~- (1.17) 

The energy equation in the “entropy” form follows from (1.13 ): 

After substituting (1.16) in this, we obtain the usual form: 

The system of differential-difference equations is completed by the equation of state (1.9). 

Without dwelling on the details, we observe that a direct check can be made of the difference 
analogues of the laws of conservation of momentum and energy (i . lo), (1.11) for the differential- 
difference equations; the fact that these laws hold is a direct consequence of the variational method 
of obtaining them. 
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Expression (1 .17) in fact defines an operator DIV on the set of mesh functions 
Wh= (12h, oh}, specified in W), : 

I 
1 

v 
= 

1 - 
Cr 

\ 

a 1; av 
Uk: 

1.. - / CA1 - 
ax,+: 1 in Oh. 

b,.rPa_ 2) ah 

r( 

dl_’ 
Uh! 7 

ox,; 
in yh. 

wi, 

(1.18) 

Here, Pay is the pattern composed of pattern composed of pairs of boundary nodes ok/ E yap. 
ordered according to a counter-clockwise circuit of r: I/* is the zero volume of the fictitious cell. 

adjacent to Pa,, PEG,,‘; o is an element of the “difference” length of arc corresponding to 

Pa?, 

The operator adjoint to DIV is then (DlV)* = -GRAD, where 

The operator GRAD obviously acts in the set of mesh functions gh, specified on $21, t yli. 

It can be shown that 

(g+: DIY lY,)=-((GR.iD g:. n-,)), 

where the scalar products ( , ) and (( , )) are defied as follows: 

Using GRAD and DIV, we can write the system of differential-difference equations in the 
form 

deh 

Qh dt 
- = - (Ph+Qh) DIT’\yt.: R (ph. ph, 6,) =o, 
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The equations of volume conservation and of continuity are corollaries here: 

dVh -= 
dt 

I-, DI \- \Yh, +’ + ph DIV !‘V,,=O. 

On replacing the time derivatives by finite differences dfldtz:fi= (f-f) /At, 
j=1”, pfn-‘, where II is the number of the time layer, A\t=t”+‘--t”, we obtain the family 
of difference schemes of hydrodynamics, which, given a suitable choice of weights, are completely 
conservative: 

(1.19) 

(,6*),.(1Vh),t GR_4D~"5'(P~~P~+~h(uQ~ )=0, (&)A= 
tmh>>, 

<(vh>,;“’ ’ 

(V,) = T’t,(o’5)DIJ7(0.5) \J-t;o’5) . 

The operators DIY"" '), GR4D'" 5, are obtained from (1.18) by replacing each factor of the 
operator coefficients by the corresponding half-sum with respect to the time layers. The 

parameters up, u4 remain arbitrary. 

It can be shown that, for any O<op.a $1, the constructed completely conservative scheme 

has first order of approximation with respect to time and second with respect to space. The 

expressions DIV WI, and GRAD PI, then approximate div W and grad P respectively. With up = 
u9 = 0.5, the scheme has second order of approximation with respect to time also. 

The stability of the family (1.19) is unconditional for UP, 0,>0.5; otherwise, the time 

step is restricted. 

With the variational approach, we can construct without serious modifications completely 
conservative schemes in cylindrical, spherical, and any other coordinate systems [ 17, 18, 201. 

The variational approach has also been used with success for constructing completely 
conservative schemes of ideal MHD. In this case extra terms are introduced into the Lagrangian, 
which correspond to the magnetic field energy, and also an extra connection, corresponding to 
the frozen condition. 

It is quite obvious that the variational approach will also retain its force in the case of three 
space variables. 

3. Variational-discrete models of diffusion processes. In the numerical modelling of applied 
problems it is not often that we can confine ourselves to dissipativeless motion of the medium. 
The motion is often accompanied by various physical effects such as diffusion transfer of heat or 
magnetic field etc., which in general have to be considered on moving curvilinear irregular meshes. 
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A typical feature of many problems is the strong space and time inhomogeneity of the 

coefficients in the equations. This is specially true for problems of plasma physics. As a result, 

the usual algorithms for solving equations of the heat conduction type prove to be inapplicable 

due to the critical loss of computational accuracy. In such situations it is best to introduce, along 
with the basic functions, the fluxes of these functions. With the flux form of the equations we can 
construct stable homogeneous computing algorithms, with low sensitivity to the spread of the 
coefficients and allowing degeneracy in the equations. Finding the fluxes is of independent interest. 
It is thus worth mentioning the algorithms by means of which we can simultaneously obtain both 
the initial functions themselves (temperature, magnetic field, etc.), and the corresponding fluxes 
(heat, electric field, etc.). 

Variational principles may be effectively used to construct difference schemes for equations 
of the heat conduction type [2 1,221. Consider the equation of heat conduction in the flux form 

dU 
- - div \Iv=O, 
81 

II’+k grad u=O (1.21) 

in the simply connected plane domain I’, in the plane of Cartesian coordinates (x, y); here, u is 
the temperature, and W the heat flux vector. Assume that we are given on the boundary r the 
homogeneous boundary condition for the normal component of flux; n is the outward unit normal 
to the contour r. At each fiied instant t 2 0 the field of heat fluxes that satisfy the boundary 
condition stated minimizes the functional 

(1.22) 

in which functions u and k are assumed given and are not subject to variation. The variation of 

au/at is found from Eq. (1.20), which plays the role of connection. If we eliminate au/& from (1.22) 
with the aid of (1.20), Eq. (1.22) takes the form 

(1.23) 

FIG. 3 
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Hence finding the field of fluxes W at each instant can be based on the minimization of the 
functional (1.23) while u is found from the balance equation (1.20). If boundary conditions of 
different types are specified, the corresponding integrals over the boundary r have to be introduced 
into the functional (1.23) as additive terms. 

We replace the domain G by a discrete set of points of a difference mesh. Assume that 
functions [ (x, JJ), g (x, ~7) exist, realizing a smooth one-to-one mapping of domain V into the 
unit square 0 GE< 1, 0~7~ 1. On taking t, n as curvilinear coordinates, we cover the domain 
V by a quadrangular mesh, representing the image of the rectangular uniform mesh in the square 
in the (E, n) plane. The values of the mesh function Uh and of the coefficient kh will be assumed 

constant inside each mesh cell. We shall describe the field of fluxes by means of the pair of mesh 
functions WE’, W$, which are the projections of the heat flux vector on the normal to the 
mid-points of the mesh sides, in the directions of increasing E and r~ respectively. The indexing of 
the mesh quantities is illustrated in Fig. 3. This discretization enables the integro-interpolation 
heat balance relation for cell nii to be written as 

I-uI=-vE(s; WE)--V,(sq Wq). (1.24) 

Here, symbols Vi, V,, denote the operators of taking the (forward) difference with respect to 

directions [ and q. The quantity Vh is the volume of the cell R, while the coefficients s& sn 
approximate the lengths of the sides of the cell. We can write Eq. (1.24) in the operator form 

D (uh) t=li\yh, (1.25) 

where W,,={Iiv&! l1.11h) is the mesh vector function, R is a block operator acting from the 

space of mesh functions 1tQ2 into the space of mesh functions Uh, and D is the diagonal operator. 
It can be shown [2 1 ] that (1.24) approximates differential equation (1.20) to second order with 

respect to space and first order with respect to time. 

To find the field of fluxes. we approximate the functional in the difference mesh by the 
expression 

The modulus of the flux vector at the centre of cell .c2 is found from (see [25] ) 

(1.26) 

where q,;; s, jAT is the angle between the sides of the cell (see Fig. 3). 
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On writing the minimization conditions for functional (1.26) we obtain the difference 
analogue of Eqs. (1.21): 

(1.27) 

or? in operator form. 

LW,,=Gu,,. (1.28) 

Equations (1.27) approximate ( 1 .2 1) to second order with respect to space. Operators D, R, 
L, G have the properties 

D=D’aG,E, 61’0, R-=-G, L=L’aj:E, fi.:n. (1.29) 

On eliminating the temperature from system (1 .25), (1.28) we can obtain the equation for the 
fluxes in divergence form: 

L (W,) l+A\Yh=O, A=-GD-‘R. (1.30) 

FIG. 5 



66 A. A. Sammskii 

It follows from (1.29) that A = A * > 0. It was shown in [2 1 ] that Eq. (1.30) approximates, to 
second order with respect to space, and first order with respect to time, the differential equation 

8 (n’ik) 

at 
= grad (dir IV), 

To examine the stability of this algorithm, the results of the general theory of the stability of 
difference schemes [l] may be used. In view of the above-mentioned properties of the operators 

R, G, and L, scheme (1.30) is absolutely stable and has second order accuracy with respect to 
space and first order with respect to time. 

Our discussion extends without serious modifications to the case of any coordinate system 
[21] , and also to the three-dimensional case. Along with the completely implicit equation (1.30) 

we can consider the analogous equation with weight LJ, thus enabling the approximation with 
respect to time to be improved to second order with u = 0.5. The algorithm is also applicable in 
the case of moving space meshes; all the properties of the difference operators, and the accuracy 

of approximation, are then retained. 

4. Solution of multi-dimensio,lal applied problems. The completely conservative schemes 
obtained by the variational approach have been used with success for the numerical solution of 
some multi-dimensional applied problems. In particular, problems concerning the magneto- 

hydrodynamic delayed confinement of a plasma have been considered. One such system is based 
on the idea of quasi-spherical compression of the plasma by a heavy cylindrical liquid-metal liner 
converging to the axis. Numerical modelling has shown the possibility of the formation of 
cumulative jets, arising during the advance collapse of the liner ends (Fig. 4). The jet development 
substantially reduces the efficiency of compression and can lead to breakdown of the plasma, 
situated under the liner. During a c.e. [26] an optimal mode of liner collapse was found, in which 
the intensity of the cumulative jets is only slight and does not inhibit the required degree of 
compression of the plasma (Fig. 5). 

On the basis of this method, studies were made of the stability of the magnetic cumulation 
process [27], the plasma transport in a magnetic conductor channel has been modelled numerically 
(281, and spontaneous development of magnetic fields [29] etc. have been modelled. 

2. Methods for solving a two-dimensional 

problem of radiating gas dynamics 

High-temperature gas-dynamic effects are now being encountered more and more frequently 
in science and engineering. Examples are 1) processes occurring in stellar atmospheres, 
2) high-velocity entry of flight vehicles into the atmospheres of planets, 3) heavy-current radiating 
discharges, and 4) effects in the laser plasma. 

Since radiation usually starts to have a substantial effect on the development of a process if 
the gas temperature reaches 10 OOO”K, it is often impossible to fmd the gas-dynamic fields without 
knowing the radiation fields. 
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LA us write the system of equations of radiating gas dynamics (see [30]) 

- + p diy u=O, 
dt 

p$ = -gcad(P+o), 

de 
P 2 = - (P+w) div utdi\- h grad T-h W-i-Q, 

51 grad Z,=z, (IyP-IV), 
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(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

Here, E=E(T, p),P=P(T, p),A=k(T, p), x,==x(Y, T, p). 

We have used the following notation: r is the time, u is the velocity vector, P is the density, 
P is the pressure, e is the internal energy, w is the artificial viscosity, h is the thermal conductivity, 

W is the radiation energy flux vector, Q is the contribution to the energy equation of the different 

heat sources, I, is the radiation energy intensity, Sz is the unit vector of the photon transit 
direction, v is the photon frequency, and xv is the coefficient of absorption of photons of 
frequency v, while the spectral intensity of absolutely black body radiation is 

IVP=$- eXp(h\;;T)_ 1 ’ . . 

To illustrate the difficulties that arise when solving probiems of radiating gas dynamics, we 
choose the relatively simple transport equation for a plane layer 

where t_c is the cosine of the angle between the direction of motion of the photon of frequency L' 

and the x axis. 

Let us choose 10 nodes for the frequency v and 10 nodes for the angle p. Hence, in order 

to find the radiation field I,, and then the radiation energy flux W in each time step, we have to 
solve 100 ordinary differential equations of the type 

dl, 
\‘R+ L 

4nhv3 

Pp dx 
- + xJ~=(P,,, where (~a=& s c’[esp(h~‘kT)- 1) 

dv, 
\)L 

whereas there are just three equations of gas dynamics (?.l)-(2.3). 

Hence the main part of the computing time needed to solve the entire problem of radiating 
gas dynamics is expanded in solving the transport equation. 
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This difficulty is linked with the extra dimensionality of the system (2.1)-(2.5) as 

compared with the equations of gas dynamics. There are further difficulties that are perhaps not 

so obvious. specific to problems of radiation gas dynamics (r.g.d.). Hence it is not a matter of 

coincidence that computations of r.g.d. non-stationary problems are lo- 15 years behind those 

of problems of ordinary gas dynamics. 

The close interconnection and mutual influence of gas-dynamic fields and the radiation field, 

and the need to solve the multi-dimensional kinetic equation at each time step, prevent us from 

constructing algorithms for solving g.r.d. problems by a mechanical combination of methods of 

neutron transport theory and methods of gas dynamics. This fact, and the fact that there are many 

important practical problems that need to be solved, suggest that numerical methods for solving 

such problems should be treated as an independent field of study. 

1. Methods for solving one-dimensional problem of g.r.d. The first work on the numerical 

solution of non-stationary one-dimensional problems of r.g.d. appeared in the late sixties and 

earl), seventies. 

When solving these problems special attention was paid to minimizing the computer time 

needed to deal with the transport equation. Important contributions to the development of 

methods for the effective handling of the radiation field dependence on the transit photon 

direction and energy were made in [3 l-34? 37 -401. Also of vital importance for performing 

practical computations, was the construction of stable schemes for the joint solution of the 

equations of gas dynamics and the radiation transport equation [35,38,41-441. 

During these years, in the Institute of the Problems of Mechanics of the Academy of 

Sciences of the USSR, a method was devised for solving one-dimensional non-stationary problems of 

magnetic radiation gas dynamics (m.r.g.d.), on the basis of which heavy-current radiating discharges 

in lithium plasma were later computed [45 -461. As a result. several interesting qualitative and 

quantitative laws \L‘ere discovered in plasma discharges. 

FIG. 6. 0 experimental data, -- theoretical; a) for total current; b) position of shock 

wave.--- boundary of luminous domain; c) curve I shows the proportion of energy 

imbedded in the plasma relative to total energy stored in the capacitor; curve 2 shows 

the fraction of energy liberated from a plasma in the form of radiation: d) brightness 

of the radiation at different frequencies. 
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Subsequently, the method for solving m.r.g.d. problems was considerably improved 
[40,42,47] . the equations of state and absorption coefficients were more accurately computed, 

and general principles were developed for performing c.e.‘s. As a result of all this, high accuracy 
could be achieved in solving complex one-dimensional m.r.g.d. problems. 

As an illustration, consider some computed results for heavy-current radiating discharges in 
xenon plasma [48]. In Fig. 6 we plot data from 1481 on the comparison of theory and 
experiment for convergent discharges. It can be seen that the divergence is at most a few percent. 

In the survey [49] . experience in the field of solving one-dimensional r.g.d. problems is 
generalized. 

2. Methods for solving two-dime,zsional r.g.d. problems. In view of the much greater 

complexity of two-dimensional problems, the difficulties of solving them are even greater. Most 
published work [ 50 - 5 l] is concerned with methods for solving stationary problems. The solution 

of non-stationary two-dimensional problems of radiating gas dynamics is at the limit of the 
capability. not only of the BESM-6, but of more powerful computers [52] . At present, the only 

way to solve these problems is to devise high-efficiency numerical methods. 

Progress in the numerical modelling of one-dimensional problems has made it possible to 
come close to the solution of non-stationary two-dimensional r.g.d. problems. Numerical methods of 
solution began to be developed at the Institute of the Problems of Mechanics in the mid-seventies, 

Radiation transport has been described by means of the multi-group diffusion approximation. 
Gas-dynm~ic flow was considered in Lagrange coordinates. The system of equations of radiating 
gas dynamics, for the axisymmetric case, is then 

de 1 u(ru) 

-=-T-- dt 01‘ 

du 0 (P+o) 
Px=- 

(II‘ ’ 
dl d (PTo) 

p,,=- 
C3z 

1 

pd$=-(P+o) 
( 

1 a (ru) 8~ ,l_a(rW,) +dES, 
-PT-, 
r dr dz 1 

-7 
F dr dz 

I, al;, _- = -flTrk, 
1, dub 

3 ur 
-- = - Jj-;:: 

3 d3 

(2.6) 
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The development of a joint algorithm for solving these equations required the consideration 
of a range of problems: 

1) solution of the equations of gas dynamics, 

2) constuction of a difference approximation of equations of elliptic type in non-orthogonal 
meshes, 

3) development of iterative methods for solving the elliptic difference equations, 

4) development of methods for averaging the diffusion equations over the photon energies, 

5) development of methods for the simultaneous solution of the equations of gas dynamics 
and equations of radiation transport. 

Instead of dwelling on methods for solving the equations of gas dynamics, we shall focus on 
the problems specific to r.g.d. problems. 

The last three equations of (2.6) can be reduced to a system describing the behaviour of the 

radiation energy group density: 

(2.7) 

Application of the Lagrangian coordinate system leads to the appearance of non-orthogonal meshes, 
in which we have to approximate the elliptic equation (2.7). 

In [53, 541, on the basis of the integro-interpolation method, it was suggested that the fluxes 
in a non-orthogonal mesh could be found by an analytic transformation from the orthogonal mesh 
coordinates to the non-orthogonal mesh coordinates. With this approach we can partially take into 
account the strong variations of the absorption coefficients on the thermal and shock wave fronts. 
The resulting difference scheme may be written in the nine-point pattern as 

(2.8) 

+ DinA UF+,,n+, + FinA= k-l, 2, . . . , N,. 

In orthogonal meshes, scheme (2.8) becomes the usual five-point scheme. 

To solve the difference scheme (2.8), we use the non-linear iterative method described in [35]. 

When constructing this iterative algorithm, it is assumed that the solution of the difference system 

of equations (2.8) satisfies the conditions 

Uin=Ui+l.*ai+l,"+Bi+l,n, Uin=L'i--i. nyl-f, nfdi-j, n, 

Uin=Ui..+,a,,.i,+p,,.+*, Ui?2'Ui,n-_lTi, n-I+di,n-1. 
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The pivotal condensation coefficients a. $. 7. d, B. p. 7. ~3 are found from the appropriate 

system of equations, which is solved by iterations (see [ 54 - 561): 

We write in a similar way the system for finding the coefficients 1: a, p, 6. 

As distinct from other iterative methods. instead of solving the initial system (2.8). we here 

solve a new system for the coefficients a, g. . . . (6. Comparisonwith other methods has shown 
that the non-linear iterative algorithm can be employed successfully to solve difference linear 
equations in the case when u priori information about the limits of the difference operator 
spectrum is either absent or is known with insufficient accuracy. The method can be generalized: 
a matrix form of the algorithm was described in [ 571 and used to compute problems of viscous 
fluid dynamics. 

The solution of the multi-group system of equations (2.8) in each time step sharp]), increases 
the computer time needed for the complete problem of radiating gas dynamics. To achieve greater 
economy. the following algorithm has been described and reahzed. 

At some i-th time step we solve the multi-group system of diffusion equations. Then, using 

the numerical solution obtained, we construct an averaged difference equation. The coefficients 
of this equation are constructed in the light of the solution of the multi-group system. During -2) 
steps the integral flux and radiation energy density are found from the averaged equation. At step 
J’ + Nj the procedure is repeated. 

As distinct from the earlier methods of this type [34.37], the present method is not tied to a 
one-dimensional geometry, equally applicable to solving both one- and two-dimensional r.g.d. 
problems. It likewise does not require that the absorption coefficients be smooth. 

The simplest scheme for the joint solution of the energy equations of (2.6) and the radiation 
transport equations is the explicit scheme, when the radiation energy flux is found from the data of 
the previous time step. However, when domains of high optical thickness are present, the explicit 
scheme for joint solution demands restrictions 3n the time step. similar to the restrictions in the 
explicit scheme for computing the equation of heat conduction. Notice that it quite often happens 
that there are instants when part of the plasma domain becomes opaque. 
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The implicit scheme of [42,43] for the joint solution of the energy equation and equations 

of diffusion type is as follows: 

where D W is the difference approximation for div W, obtained on the basis of the last three 

equations of (2.6). 

FIG. 7 

This scheme has shown high efficiency when solving both one- and two-dimensional problems 
of r.g.d. For the model problem, linear with respect to 14, it can be shown that the scheme is 
absolutely stable. 

The diffusion approximation is fully applicable for a correct description of the radiation 
field in most r.g.d. problems. For a more complete description of the radiation field, it was 
proposed in [SS] to use Vladimirov’s self-conjugate equation [59] 

- (Q grad) *C,+x,U,=x,l,. 

Computations have shown that, by using this equation, we can successfully counter the negative 
computational effect of the ray, which can occur when the radiation field is found directly from 
the transport equation (2.4). 
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3. Examples of solutions. The approach described for solving two-dimensional non-stationary 

problems of radiating gas dynamics has been realized in a program complex utilizing the extended 

working memory of the BUM-6 (see [60] ). The approach has been used to solve a whole range of 
important practical problems. The program has provision for using the actual equations of state of 
a substance and the actual absorption coefficients. 

As an example, consider the solution of the two-dimensional problem on the interaction of 
laser radiation with nitrogen plasma of high density close to a metal surface [63]. Effects of this 
type were studied experimentally in [6 1,621. It was pointed out there that, on the one hand, the 
zone of thermal action on the metal is much greater than the laser radiation focussing spot, while 

on the other hand. this thermal action does not lead to crater formation on the metal surface. 

Consider some computational data for the version in which the initial nitrogen pressure was 

taken to be equal to 107 Pa, the laser radiation power was 5 X 10 W/cm2, and the laser radiation 

focussing spot on the metal had a radius ‘0 = 250 pm. 

r. rm 

In Fig. 7 we plot the characteristic velocities in the shock wave travelling in the cold nitrogen, 

and the characteristic pressures and temperatures in the hot plasma. Due to the high initial density 

of the nitrogen, the velocity in the shock wave is relatively low; hence it does not screen the laser 
radiation, which is entirely absorbed in the hot plasma. 

In Fig. 8 we show space profiles of the temperature at the instant t = 0.5 psec. It can be seen 
that the radius of the domain occupied by the hot plasma is much greater than the radius of the 

laser radiation focusing spot. The radiation generated in this domain has direct heating action on the 
metal plate. On the other hand, the hot plasma entirely screens the metal plate from the action of 
laser radiation. Hence the thermal action on the plate is quite gentle, which explains the absence of 
mechanical damage. 
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3. Modelling of turbulent processes in plasma 

As a result of studies of plasma heating by heavy-current beams of relativistic electrons or 
high-power light beams, the topic of coliisionless mechanisms of energy dissipation in a plasma has 
become vitally important. Initially, the energy of the external source is stored in the plasma in the 

form of long-wave electron oscillations with Langmuir frequency wP. The transformation of the 
energy of long-wave Langmuir oscillations into the short-wave part of the spectrum (the domain of 
their absorption by particles) is linked with what is known in plasma physics as modulation 
instability [64] . As a result, the energy of the Langmuir oscillations becomes localized in the 
domains of reduced plasma density (caverns). In the long run, a turbulent state (Langmuir 
turbulence) is established, when the energy of the original long-wave Langmuir oscillations becomes 
concentrated in a large number of randomly situated caverns of different characteristic size. As 
distinct from hydrodynamic turbulence of incompressible fluid, Langmuir turbulence admits of a 
one-dimensional model. This is bound up with the fact that the tendency for modulation 
instability to develop and for caverns to form is retained in the one-dimensional case. 

Nevertheless, there is an important difference between one- and three-dimensional turbulence. 
In the actual three-dimensional geometry, the phenomenon of Langmuir collapse, predicted in [64], 
is present; it may be described as follows. During the energy localization in the caverns, energy 
compression occurs, and accordingly, short-wave pumping occurs of the energy of the Langmuir 
oscillations, forbidden in the caverns, to scales at which some dissipation mechanism becomes 
significant. In the one-dimensional geometry, the energy of the plasma oscillations is localized in 
caverns of finite size (solitons), with the result that the one-dimensional case is degenerate. This 
degeneracy is partially removed in the presence of a continuously operating source of Langmuir 
oscillations, when forced collapse is possible: as a result of absorption of energy from the source, 
the cavern can be compressed to a size at which dissipative processes come into action. 

Strict analytic solutions are exceptionally difficult in the problem of strong Langmuir 
turbulence and so far none are available. However, on the basis of numerical modelling, it is possible 
to construct approximate models that are logically feasible. 

Two approaches may be used for numerical modelling of Langmuir turbulence. In the first, 
the mathematical model is based on the Wlasow kinetic equations [65, 661. whereby both the wave 
and the kinetic processes in the plasma can be taken into account simultaneously. But computational 
realization of this model involves two serious difficulties. First, the characteristic space-time scales 

of the effect are determined by the ion dynamics and usually greatly exceed the space-time scales of 
the model (the Debye radius rD i.e. the electron displacement relative to the ions, and the plasma 
period wP -1). Moreover, for Wlasow’s equations, the particle velocities as well as the space variables 
are independent variables, so that the dimensionality of the problem is increased. Hence practical 
realization of the kinetic approach is only possible if we take m/M - 10-Z as the electron to ion 
mass ratio in the model; but this distorts the true picture of the turbulence. 

In view of this, the second approach to constructing mathematical models of Langmuir 
turbulence is preferable; it is based on the approximate dynamic equations obtained by averaging 
the Wlasow equations over the particle velocities and a time interval greater than the plasma period. 
This model does not contain the plasma period as characteristic quantity and has natural space-time 
scales of the modulation instability. 
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1. Initial equations. On the basis of the dynamic system of equations of plasma turbulence 

[64] , we consider the problem in a restricted interval I. with periodic boundary conditions with 

respect to all the unknowns. For a single space dimension the equations take the form (in 

dimensionless variables) 

The complex amplitude of the high-frequency electric field satisfies the SchrBdinger type of 
equation 

2iEt+fE+E,=Gn(E+Eb) -(6nE> =O. (3.1) 

In the linear approximation the quasi-neutral variation of density 611 = )z - no and of the 
velocity w of slow movements satisfies the ordinary system of equations of gas dynamics, allowing 
for the high-frequency pressure of the Langmuir oscillations: 

6nt+ w,=O, (3.2) 
L 

w&u -+(6niIE+E,12)z= 0, <dnE> = +J 6n.E dx. (3.31 
0 

The last term on the right-hand side of (3.1) corresponds to the source, which maintains a 
homogeneous electric field in the plasma at a constant level Eo, so that 

(E) = + j, (J, t)dx=E, 

In (3.3) we introduce terms describing the resonance absorption of plasma and sound \vaves 
by electrons. The terms p E and $ u’ are integral operators of convolution type: 

,^,=+I r (x-x’) E (x’, f) dx’, 
0 

here. 

are the Fourier images of the damping decrements rn) -yn of the n-th terms of the corresponding 
Fourier series 

E (5. t) = 2 Eneinx, 

n--0c 

w(x,t)= s wneib, 

no-m 
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where 
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For the system of Eqs. (3.1)-(3.3) in a finite interval L with periodic boundary conditions, we 

have the integral corollary (energy balance) 

N’= + s’,E,z dz, R- &r,lE,l’, Q=Im&(GnE’>. 
(3.4) 

In the absence of a source and of damping, E,=fE=iur=O , in (3.1)-(3.3), we have the 
integrals of motion 

(3.5) 

In this case. system (3.1)-(3.3) has, on the unbounded straight line the family of exact solutions 
of solitary wave type (solitons): 

E, exp [ iE,*t/4Sq (x---xi,) 1 
E(s.t)=- 

ch[E,,(s-rr,-qt)/2(1-q’)]’ 
(3.6) 

672=-E’ / (i-q*), w=qb. 

3. Differeuce scheme. Langmuir turbulence is a set of randomly situated solitons (3.6) with 
different amplitudes. The external field energy Eo is absorbed by, the Langmuir waves, whose length 
has a lower bound given by, the condition 

3.‘>2.,r2 1 Eo ( *. 

They develop by non-linear evolution into the soliton solutions (3.6). These fairly narrow solitons 
include the absorption of waves by electrons (the terms FE and $V in the initial system become 
substantial). Hence the problem contains all the main features of the turbulent process: energy 
absorption in the long waves, energy spectrum transformation in the short wave domain, and 
finally, damping of the short-wave part of the solution. The main interest here is not in the details 
of the space distributions E (x, t) and 611 (x, t), but in the variation of the time-averaged energy of 
the plasma oscillations W, the frequency v,ff of its particle absorption, and the energy of the sound 
waves WS. 
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The computational algorithm used for numerical modelling of this process has to satisfy the 

following two requirements. First. for correct transmission of the statistical properties of the 

turbulence, the problem must be solved for sufficiently large values of L, in order for the solution 
to have sufficiently many solitons. Hence, in order to limit the meshes to a realistic number of 

nodes. it is essential to use algorithms with as high an order of space approximation as possible. 

This condition means that we have to employ spectral methods [67,68], such as came to be 

developed after the appearance of the fast Fourier transformation algorithm [69]. A further 

advantage of the spectral method is that. after Fourier transformation of Eqs. (3.1) and (3.3), the 

non-local operators of convolution type, connected with the damping, transform into local 

operators of multiplication of the Fourier coefficients by the appropriate decrements. Second, in 

addition to high space approximation, the alg:.Jrithm must yield a solution at asymptotic times, 

when the initial stage of turbulence is completely forgotten and a dynamically time-stationary 

solution is established. The need arises to construct conservative schemes [5, 701, possessing the 

difference analogue of the conservation laws (3.4). 

Let us give the difference scheme for (3.1)-(3.3) that satisfies the above conditions. For c ^ 
simplicit) . we contine ourselves to the case E,.=I’E=yw=O. We introduce the meshes 

~?)~={t~=j~, j=O, 1. . . .}. 01={5,=ih, i=o, 1,. . . *N-l}, 

~I9 =OrXu!‘. 

On mesh ~1~. with the aid of Fourier finite sums. we introduce the mesh function 

N/Z 

f<(t)= C ,/,esp(ikr.), I;=$, 

. =_.Y.‘:ri 

where 

We approximate the derivatives aP,f~asP bl- the expression 

On thus approximating E. 6u, and L’, and their derivatives, and substituting into (3.1 j-(3.3 1, we 

obtain the following system of ordinary differential equations for the Fourier coefficients: 
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Here &-I-it, and E,, are the Fourier coefficients of the discrete Fourier series for 6n,& and 

&i= (Ei I*( 

h 
N-I 

C,+iYm = - 
L c niEi exp (-ikX,) , 

,=o 

h 
N-i 

e, = - 

L E 
IEil’exp(-ik3,). 

1-o 

For an analytic function f we have the equation 

$&(d- ($) i =O(IPerp(-$)), 

and for an R + 1 times differentiable function, the equation 

g(xi)- ($) =O(hR-‘). 
i 

(3.8) 

(3.9) 

Consequently, system (3.7) approximates the initial system to order (3.8) or (3.9) in the case p = 2. 

We next approximate (3.7) with respect to time to order 0 (72): 

2 
un--un -- k2 

V,-+v’, 

t 

2=+ I;? un;“n 
2 

c,=O, 
-i 2,=0. 

T 
(3.10) 

6n,-6rT, 

z 
+ +(wn+cn) = 0, 

W,-l& 
- + ++e,+6r;.iE.) = 0. 

T 

where 

f,,=E,+ic = 2 ‘&ii exp(-ikx,), 
i-0 

f,, = 6n,‘h E,“l, 

bn,‘! = f (tin,+&,), Ed’!2 =+,+i,), 
(3.11) 

6i,e6n, (tj-1) , BiEEi (tj_j) , Gi=W,( tj-1). 

and hence approximate problem (3.1)-(3.3) to order 0 (?+h-‘e-L’*), if the solution is an 

analytic function, or to order 0 ( ?+hR-*) for an R + 1 times differentiable solution. For mesh 

functions Ei, ni, wi the difference analogues of conservation laws (3.5) for the differential problem 

are satisfied : 

N/Z 

wh= y, lEnlO, (3.12) 
Y 

ha-N/Z+, 



Multi-di,,lertsional problems of mechanics atrd ph.w’cs 79 

ti/3 

I r, ( i 
h= k2iEn12 +-_16n,l’+ ju’,l’+ bn,en’ . 

2 1 (3.13) 
n=_.\ :TI 

The difference scheme (3. IO), (3.11) thus satisfies the above two conditions on approximation and 
conservativeness. 

3. Metlrod ofsoh:ing tire di’ferenre problem. To solve the non-linear algebraic problem (3. lo), 
(3.1 l), we use the iterative process 

a+1 + r+t ” 

2 
U, -%I _ k? ” -‘VI _ cnS = 0, 

. T 2 

a+1 

2 
v, 4, 

$ k: 
u:+l +ii, 

+ Z,“=O, 
T 2 

(3.14) 

6n2,1+1-6rTn + ik(w,‘+l+ti;,) 
= , 

o 

T 2 

It can be shown that, given a restriction on the time step, process (3.14) is convergent. 

Experience shows that, if the difference analogues of the integrals of motion (3.12) are 
satisfied sufficiently accurately during the entire computing time, roughly 10 iterations are 
required. But this number can be reduced. We make the transition to the next time layer in two 
stages. At the first, predictor, stage, we confine ourselves to a finite number of iterations s + 1 = /I 
in (3.14). At the second (corrector) stage we perf,)rm a supplementary iteration in accordance 
with the relations 

ll,=--i1,2 
- k2 (l.,‘-)P (u,:‘) P - (17 ,. :) p (c, i : = 0. 

T 

* ” ^ 

L’,,-- i.,- 
-k- k’(u, :)‘(L.,, .)Pf([.n’:,)P(~.)~=(l 

T 

bn,-tin, + i/in,,,“’ = 0. 
T 

(3.15) 

” 

lcn--LL’n i_ik[6E,+(en'")*]=0. 
T 
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On adding the first two equations (3.15) and summing the result on H, we see that, after the 

second stage, Eq. (3.12) is satisfied exactly. A similar corrector was used in [71] in the explicit 

scheme for modelling turbulence in an incompressible fluid. If the predictor iterations (3.14) are 

convergent the correcting iteration (3.15) does not disturb the solution, i.e. the corrector is 

matched with the predictor. Conversely, restriction of the predictor to an insufficient number of 

iterations (e.g. p = 1) with a sufficiently coarse time step leads to the appearance of negative 

energy for certain harmonics: 1 EP] ‘= (u,*) *-I- (II,*) *CO, This situation prevents us from 

restoring the electric field E ,=u,+iv, and passing to the next time step. In order to exclude 

the case lE,12 < 0 from (3.14)? it is sufficient to perform a finite number of iterations (in practical 

computations p =Z 3, and from this condition the time step may be chosen). After the corrector, the 

signs of u,,, V, are determined by, the signs of u np, u,P after the predictor. If, for some n, we have 

u,,2 < 0 or ~~~2 < 0, but u,.,~+z~~~>O, then 

where P,*P is the phase of the electric field after the predictor. Then, in addition to (3.12) being 

satisfied exactly, (3.13) is satisfied with sufficient accuracy. 

I 

FIG. 9 

Consider the application of this algorithm for computing the exact solution of (3.6). As the 

initial data in the length L=kc (A’=jl2) we specify functions (3.6) with E,=35, q=O, x~=?x. 
We choose the time step ; = 10-3, which amounts to = 0.02 T, where T=Sn /E,’ is the period 

of the time oscillations of the soliton electric field. In Fig. 9 we show curves of Wh (t) / Wh (0) 
and Z,(t) / lh (0) against time for different numbers of iterations: curves 1, 2 are for p = 6 without 

corrector: 3.4 are for p = 8 without corrector: 5,6 are for p = 4 with corrector. It can be seen that, 

by using the corrector (3.15), we can considerably reduce the number of iterations in (3.14). 

The difference scheme (3.14) (3.15) extends in a natural way to the initial system of 

equations (3.1)-(3.4); we then have the difference analogue (3.4). It also extends in a natural way 

to the case of several space dimensions. 
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4. Sonze computarional results. Using the results of a numerical integration of (3.1)-(3.3), 
we can trace the main stages in the development of Langmuir turbulence. 

The initial stage of the modulation of the Langmuir pumping field is described by the 

dispersion equation, connecting the frequency w and the wave number k of the modulating wave. 
In the dimensionless units quoted above, the equation is 

d-k*=21E,12k’ 
k2 

(20+kz) (20-k’) ’ 
(3.16) 

It follows from (3.16) that the domain of modulation instability is bounded by the condition 

k*(2po)*. In the model examined below of plasma turbulence, L=4n, k--n / 2, n is the 
number of a harmonic. In the domain of instability, e.g. for Eo = 2, there appear then the 

harmonics 17 = 1. . , 5 (the increment y4 = 3.46, corresponding to n = 4, has maximum value). 

As initial data we shall use the following noise distributions of the electric field and density 
variation : 

E(x,O)=e E (A,‘%~;*))cx+ (%*+a:))] ! 
-.Y, 2+i 

(3.17) 
x/2 

612 (I, Cl) =\’ 

E 

(A,‘*’ wp )exp [i (~t+a(” )] . 

--N/2+1 

amplitudes, uniformly distributed in (0, 11. a,“‘, a:‘) are the random phases, uniformly 

distributed in [0,2n], and E, v are fairly small coefficients. At the initial instant the ion velocity is 
zero. H‘ = 0. 

Let K-40, &=v=O.l, Eo=2.0 in (3.17), which corresponds to growth in the linear stage with 
maximum increment of the fourth harmonic of the solution. In Fig. 10 we show the space 
distributions of 6, and (E12. Up to t = 3.5, we have an exponential rise of the 4th harmonic 
amplitude. At the instant t=lO / y4.0 a mesh of four solitons is formed from it. The enera 

absorbed from the pump is localized in the caverns. At other values of the pump field, the number 
of such solitons is likewise equal to the number of the most unstable harmonic. Then the mesh is 
disrupted. The presence of sound disturbances from the absorbed solitons and the pump action lead 
rapidly to a turbulent picture (see Fig. 10, t = 11.90). Here the Landau damping decrement r, is 
independent of time and corresponds to a Maxwellian velocity distribution of the electrons. 
Important characteristics of the plasma in the turbulent state are the mean oscillatory energy level 

and the effective collision frequency Veff, characterizing the rate of absorption by the plasma of 
external source energy dWldt=~,,,] E, 1 2. 
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FIG. 10 

In the course of time, solitons of fairly high amplitude are formed, and hence, by (3.6), they 

are fairly narrow, so that absorption by electrons starts. In the long run a quasi-stationary state of 

turbulence is established, with balance between the pump and the energy’ absorption: 

whence 

T~~~=IEJ-* c rklE,I?. 
m 

Details of the physical results may be found in [72, 731. 

4. Solution of boundary value problems of MHD equilibrium 

of toroidal plasma 

1. Equation of equilibrium One of the main problems arising in the mathematical modelling 

of physical processes used for the long-term magnetic insulation of high-temperature plasma, is the 

study of possible equilibrium plasma configurations. For later study of such properties of the plasma 

configuration as the most dangerous magnetohydrodynamic instabilities of the plasma filament, and 

the transport process etc., an exact description of the equilibrium state is needed. 
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Equilibrium in plasma configurations is described in the approximation of single-fluid 

magnetohydrodynamics by the equations 

VP= (jXB), rot B=j, div B=O, (4.1) 

where P is the plasma pressure, j the electric current density, and B the magnetic field. In 
axisymmetric configurations (max current setting) we can introduce the so-called flux function 

4 = ‘A,, where A is the magnetic vector potential, and (r, ip, z) is the cylindrical coordinate 
system. Apart from a constant, j, = @p/2n, where @p is the poloidal (transverse) magnetic flux. 
F’utf= rB,; then the total magnetic field is given by 

B= (F’$Xe,) .‘r+fe,/r, 

where eP is the unit vector along +C axis. 

It follows from Eqs. (4.1) that P=P (3) , f=j( $) , while the function J, satisfies the 
equation of equilibrium, which has the form [74] 

8 1 a+ + a’$ 
r-_- 

6r r dl 
F =-rie ($3 r.) , 

where the longitudinal component of the electric current density is 

Equations (4.2), (4.3) hold in the domain -c2, occupied by the plasma (Fig. 11). In the vacuum 
layer R,,! we have the homogeneous equation of equilibrium 

(4.2) 

(4.3) 

(4.4) 

The system of equations (4.2)-(4.4) is completed by suitable boundary conditions. On the 

ideally conducting casing To, the flux function tJ is constant. To be specific, let 

qtr. 2) =O. (r. z) Em. (4.5) 

The plasma-vacuum boundary rp is defined by the level line \i/ = $0 = const, if there is no surface 
current on it, and I,L and its normal derivative are continuous, Hence we have the boundary value 
problem (4.2).-(4.5) with unknown boundary r, and discontinuous right-hand side. 

Two approaches may be used to solve such a problem numerically. The first is based on a 
solution of the initial equation of equilibrium on a fmed Euler mesh. Many publications have dealt 
with this type of approach (see e.g. the surveys [75, 761). The second is based on a passage to new 
independent variables, one of which is the unknown solution. This approach takes the most complete 
account of the specific features of the problem and in particular, the unknown boundary of the 

plasma can be considered. The approach is developed in [ 77 - 801. 
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FIG. 11 

Many publications [75, 761 have dealt with the solution of equilibrium problems with given 

dependences P(Q) andf($). However, problem of much greater interest are those when, instead of 

f(G). we are given the so-called stability margin factor 4 ($) with respect to spiral disturbances of 

the plasma filament: 

here, @T is the toroidal (longitudinal) magnetic flux. It is easily shown that the function ,f( $) is 

expressible in terms of 9 ($) as follows: 

(4.6) 

The integration in (4.6) is over the surface of a torus with cross-section Q = const in the (r, z) plane. 

The equilibrium problem is thus reduced to solving (4.2)-(4.6) with given functionsI’( 

~7 ($) and jl on the plasma-vacuum boundary r, and on the magnetic axis, i.e. with the conditions 

Let us now show that, with this statement of the problem, the second of conditions (4.7) must 

in fact be stipulated. We average the equilibrium equation (4.2) over the volume between the two 

adjacent magnetic surfaces rl/ and J, + d$ = const. Denote by V($) the volume inside the magnetic 

surface defined by the condition $ = const. In the averaging we use the equations 

where dr = rdr & dz is a volume element in cylindrical coordinates. Here, V’( $) =- $ dsl 1 r 3 I, 
while the average value <II > on the magnetic surface $ = const is given by 



Noting that 

we obtain after averaging Eq. (4.2) the ordinary second-order equation 

(4.8) 

For the magnetic a.is, where I/ = 0, we have < 1 'i I'\ *jr*) =O, on the left-hand side of (4.8), 

and hence J, = GrnaX is an interior point of the operator A*. But, in view of the right-hand side of 
Eq. (4.8)? we obtain an ordinary second-order differential equation, solvable for given rl, at both 
ends both when I’= Vo (the volume of the entire domain occupied by the plasma), and when 
V= 0, i.e. on the magnetic axis. Sotice that it is the last term on the right-hand side of (4.8) that is 
the principle part of the corresponding differential operator. This fact has to be allowed for in the 
relevant numerical algorithms. Such a non-standard boundary value problem demands the 
development of suitable methods of solution. one of which is the method of inversion of the 
variables. 

2. Orthogonalflux coordinates. Complete solution of problem (4.2)-(4.7) is only possible 
by using numerical methods. The most convenient for solving problems of evolution is the 

formulation of equilibrium in so-called natural (flux) coordinates, in which, as one of the 

independent coordinates, we choose the flux function I$ itself, or in the general case, a connected 
function [I = a ($), while as the other we take some auxiliary function 0. The unknowns in this 

case are I (a, e), 2 (a, 0): and hence the coordinate surfaces Q = const and 6 = const yield directly 

the geometry of of the magnetic surfaces. 

The choice of the function 0 is determined by the specific features of the problem. Below we 
consider orthogonal flux coordinates ($, 0) such that the coordinate surfaces a = const and 0 = 
const form two families of orthogonal surfaces. 

We write the orthogonality condition for $I and 0 as 

8% a9 + a$? ae o 
-- me=. 
dr dr 82 a7, 

Condition (4.9) is a consequence of the dependence p = 1 (Q, 0). for which 

(4.9) 

(4.10) 

where g = /J ($, f3) is an arbitrary function. We choose the function p in such a way’ that ij (I, 2) 
satisfies the equilibrium equation (4.2) in the domain R,, occupied by the plasma, and the 
homogeneous (4.4) in S2,,. From (4.10) we obtain 

a 1 a+ + a?+ ai1 ae ap ae 
r--- -=r -y--- 

ar r ar a2 ( a,_ 0; a2 dr ) . (4.11) 
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Consider the right-hand side of this equation. Substituting 

aCI 3~ a+ $ a~ 8 -=-- _- 
dr a$ dr de dr 

into the right-hand side of (4.1 I), we obtain 

and dCL 
dP aQ + aP 80 =-- --- 

az a+ az a0 az 

ap ae ap ~3 bp dq be a~ de ---_-=------_____ 
ar a2 a2 47. ( 64 dr a2 1 a2 ar * 

In addition, Eqs. (4.10) give 

Using (4.12) and (4.13), Eq. (4.11) can be rewritten as 

r a I a$ +d2”,_ a~ icql* 
ar r dr a2 alp 1 

(4.12) 

(4.13) 

(4.14) 

In the domain I&,, Eq. (4.14) must be identical with the equilibrium equation (4.2). Hence, for 

$o(3<Vmar : the function cc (Q, 0) is given by the condition 

(4.15) 

In the vacuum domain R,. in accordance with (4.4), we obtain from (4.14): 

apiaq=o, O<$C$". (4.16) 

The equilibrium is thus defined by the system of equations (4.10) with function ~1 (I$, e), which 

satisfies (4.15), (4.16). We introduce the general flux coordinates (a ($), .9). On P ($) we impose 

the requirement of monotonicity. We shall assume for clarity that n (ilima,) = 0 on the magnetic 

axis, where $=qmax, a (+) =a0 on the plasma boundary r,, where $I = $0, and a (0)~ a,,,,\ on 

the casing, where J/ = 0. Let v(a) =- (dald$) -I, CL,(~, 0) =-p-v-‘(a), and let the surface 

functions (pressure P, function J stability margin factor Q) be functions of a, i.e. P-P (a), 

f-f(a), q=q (a). Then, the system of equations (4.10) can be rewritten as 

in the plasma, (4.15) transforms into the integro-differential equation 

(4.18) 
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and in vacuum, to 

(4.19) 

Next, we transform in Eqs. (4.17)-(4.19) from the variables (r, z) to (n. 0). We then take as 

unknown functions r=r(a, 0). z= s (a. 8). After the transformation, we arrive at the following 

system of equations for r(a. Cl), z(n, 8) : 

(4.20) 

The problem in (a, d j variables is thus reduced to the simultaneous solution of Eqs. (4.18)-(4.20). 

The domain S2=R,+R, in the (I, 2) plane maps into the rectangular (see Fig. 1 I) 

Q’={[O, emaX X 10, b,,]} in the (a, 0) plane. 

For numerical solution of the problem. it is preferable to transform from system (4.14) to 

the two elliptic equations 

(4.21) 

Consider the boundary conditions for (4.31). With respect to the variable 0, we pose natural 

conditions of periodicity, period ema, : 

T(U> e+e,,,) =r.(a, e), Z(U, e+e,,,) =~(a, e). (4.22) 

In the general case, the position of the magnetic axis is unknown. However. we do not need to 

specify boundary conditions here. since. by (4.20). 

(4.23) 

for a = 0, and hence, on the magnetic axis, (4.21) are degenerate elliptic equations. 

Given the function p, system (4.21) is equivalent to system (4.20), provided that we 

suitably pose the boundary conditions on To (with a = u ma,). Since a and 0 are orthogonal, the 

functions 19 and cc cannot be arbitrary on any magnetic surface a = const, including on the outer 

surface a = amaX. With a = const we can arbitrarily specify just one of functions 0 or 1, the other 

then being uniquely determined by the condition that a and 0 be orthogonal. For instance, it 

follows from (4.20) that, given 8, we can define the function pa (a, 0) on a magnetic surface 

(I = const from the condition 

(4.24) 
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This expression gives the initial condition for (4.18), (4.19). It can be substituted into the last 

magnetic surface a = umax or in some interior magnetic surface II = a*. In the latter case, (4.18), 

(4.19) have to be solved separately in (!I, a*) and (a*, amax). 

After the function d has been specified on the outer boundary (casing), on using the given 

coordinates of the casing ro for (4.2 1 j, we can pose boundary conditions of the 1 st kind with 

C7=Qma,: 

r(bU 0) =r.o(O), Z(GlaX, e) =&l(9). (4.25) 

Hence the solution of the initial problem (4.2)-(4.7) of the equilibrium of an ideal plasma 

with given pressure and stability margin factor, reduces to the solution of the non-linear boundary 

value problem (4.21)-(4.23), (4.25) with coefficient ~1, which satisfies (4.18), (4.19), (4.24). 

This statement of the equilibrium problem was taken as basis for the method of numerical solution. 

We shall not dwell on the details of the numerical modelling. 

3. ExampIes of computations. The method developed above for solving problems of Ml-ID 

equilibrium, based on the method of inversion of the variables, is specially convenient for solving 

problems of the evolution of equilibrium configurations and in the study of their stability. 

Consider as an example the solution of the problem of the evolution of an ideally conducting 

plasma as the pressure rises. For specific realistic set-ups, dimensionless parameters such as the 

stability margin factor and the quantity fl are of definitive importance: 

,0=2(P)l(B,2>, 

where 

<P),[ (s,+l JPW; 1”; 
QP 

(B,2> = (sap) -’ J B,2 dr c-k, sap= J dr a~. 
QP QP 

The condition ~7 > 1 ensures stability of the equilibrium configuration with respect to 

particularly dangerous spiral disturbances. Set-ups with high values of fi are energy-wise more 

favourable from the point of view of the thermonuclear reactor. The equilibrium configurations 

with sufficiently high values p = 0.1 can be obtained e.g., by increasing the pressure while keeping 

the magnetic fluxes constant. 
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In the examples below, as the flux variable we choose the function a (3) =tDr, 

43PW, 11, -dald~=-2nq(3)=v-‘(a),~,, miLI= 1. The stability margin factor q (a) is 
taken to be the linear function g (a) ==go+giu, so that q (0) =qo, q (1) =qo+qi, while the 
pressure P(a) =cc(l-a), dP/da=-a. 

In Fig. 12 we illustrate the results of computations with different a (pressure) for q,=l.5. 
qi=2.5, when the plasma touches the casing of circular section. It can be seen here that, due to 
the balloon effect (widening of the plasma filament as the pressure rises), the magnetic axis is 
displaced towards high values of r, while the magnetic increase the ellipticity of the plasma cross- 

section. 

The method here described can be extended to non-orthogonal coordinates [79], and 
applied to problems with free boundary for elliptic equations and systems [ 781. 
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5. Completely neutral difference schemes for 
Navier-Stokes equations 

In the numerical solution of problems of gas dynamics and hydrodynamics, it is vital to 
construct the difference schemes in such a way as to satisfy in them analogues of the conservation 
laws which are imposed in the initial differential equations. Schemes of this kind have been called 

conservative [2]. Further development of the principle of conservativeness has led to the concept 
of complete conservativeness of difference schemes, in which are reflected the auxiliary relations 
expressing the balance of different kinds of energy [2,5]. 

In spite of the fact that numerical methods of hydrodynamics of incompressible viscous fluid 
have found wide application for different classes of applied problems, the theory of the difference 
schemes, and in particular, aspects of their stability, have not been adequately studied. For instance, 

when computing fluid flows in long time intervals, some of the usual difference schemes exhibit 
instability, and computation becomes impossible in practice. This situation, often referred to in the 
literature as “non-linear instability,” was pointed out by Arakawa in [81] . Similar stability problems 
were encountered by Rozhdestvenskii et al. in [71] when numerically modelling turbulence. In this 
case, according to linear theory, an exponentially increasing mode is present in the solution, and in 
schemes which do not have the properties to be described below, computational instability develops 
extremely rapidly. 

In [Sl] , when considering the transport equations, some types of difference approximation 
(on a square mesh) of certain transport terms were proposed; these terms are the Jacobians 
D=a (co, $)/a (3, y) , which do not give a contribution to the energy balance 
(E=S[ (V+V2)/2]dtdy) or enstropy balance (5 (0*/2) dxdy ) , but reflect the properties of 
the initial equations at zero velocities on the domain boundary. We shall call such schemes 
energy-wise neutral and enstropy-wise neutral. Energy-wise neutral schemes for the equations of 
hydrodynamics, based on the use of Galerkin’s method, were previously described in [71]. This 

latter fact justifies our introducing the special term “neutral” for characterizing the property in 
question, since Galerkin’s method is implicitly conservative by definition. Moreover, the term 
“neutral” suggests the approximation of just some precisely defined terms of the equation. 

We shah propose [83] some families of energy-wise and enstropy-wise neutral schemes for 
the systems of equations of viscous incompressible fluid hydrodynamics on meshes that are non- 

uniform with respect to x and _Y, and we shall construct a completely neutral scheme. Our 
discussion of aspects of the approximation of the Navier-Stokes equations will be carried out in a 
rectangular domain. On the rectangle boundary we specify velocities U and V in the directions of 
the coordinate axes 0, and 0,. 

Study of approximation of the boundary conditions in the variables $, w has shown that the 
well-known approximation of vorticity at boundary nodes in accordance with Thorn’s formula 
(see e.g., [82] ) enables us to construct conservative implicit schemes. The mesh operators then 
retain the important properties of the differential operators of the initial problem, and the schemes 
are homogeneous. For these schemes we obtain a @on’ energy estimates, from which it follows that 
the schemes are stable (in the sense of stability of the zero solution). We also give a scheme which is 
linear in the required functions on the upper time layer, and which does not violate the energy 
estimates of stability. 
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1. Statement of the initial problem. In the rectangle G= {OK xca, Ocy< b} , with 
boundary r, we consider the system of Navier-Stokes equations for an incompressible fluid with 
density p = 1 for 0 < 7 < T, written in variables $, w, Q, where Q=Pl- (U”SV*) /2 is the head, 

and P is the pressure. 

We write the system of equations as 

01==W2-Wle, W,.+Wzv=O, A$=-w. (5.1) 

Here, the “fluxes” Wl and IV2 have the form 

W i=- (Vq!-DlfQx) ( D,=Vo, v=-l&, 

W 2=v~x--D,--Q~, Di=Uo, U=qv. 

The boundary and initial conditions for system (5.1) are 

~~i==UW, w2=vo*, zc’=J’o, (5, y)d-, O-a<T, 
(5.2) 

U=UO, v=v”, (I, y)=G, t=O; 

UQ, Vu are the given boundary velocities, which are obviously connected with $0 

2. Meshes and mesh functions. In the intervals O<s<a, O< y< b we introduce the points 

ro=o, Zl, . . . ) xAr=a, y,=o, y1,. . . , y,=b. Denote the distances between adjacent points by 
h”’ h(*), We also introduce the step mid-points R(I), tt”’ (see [2] ). In the rectangle we 
introduce the mesh %,=S2,,Urh of nodes X= (z,, yR), i=O, 1, . . . , -71, k=O. 1, . . . ) .4-. 

The mesh functions and corresponding functions of the initial probIem wiII be denoted by the same 
letters. At nodes of the mesh !& we define the quantities r;‘ik and wik. The mesh functions 

Q= QiTI., R+I.: will be referred to nodes X0= (xi+,? yAA+:) ~0&, and also to boundar) nodes 

(X+1!:> .!,‘A), k=O, N, (xi, YA+~;~), i=o, .?I, the set of which we denote by rj,,. 

We introduce the mesh analogues of the derivatives with respect to x and J’. For the mesh 
functions z,,=z (x2, yS), s=k? k-l-‘/,, and z,+I/,, ,=z(x~-~::. yr), s=k, kil,‘ZT we put 

respectively 

‘The difference ratios zY and zj are similarly defined. 

We introduce the mesh o,= {t,=j?. j=O, 1. . . . , jo=T/T} with step T. We shall refer the 

function Q to the time layer tjll,2=0.5 (r,,,+tj), We put 

3 i’.= ($‘y..J ,!2. (p:;=( o!il+ol) /2 (5.31 

etc. 
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3. Differeta scheme. Using the integro-interpolation method for approximating the initial 

problem (5.1). (5.2), we arrive at the following difference system of equations: 

with the boundary, conditions at the nodes on r: 

and the initial conditions 

The quantities fo, To are the means of lie, Vu over the appropriate intervals /IQ), h(l) or 
Tr”‘, fi(l’: 1-O is expressible in a natural way in terms of them. 

The fluxes WI, h’z in (5.4), (5.5) will be given by the relations 

W i, I. t&+-‘/i =- wy--D,+Q; ) j, k, +c::, ( 
(5.9) 

We specify 11’1. h’z at points of r as follows: 

W,=@,,, w,=r:,,, t=ty;.. 

We shall give three ways of approximating the quantities D,=I:o and D2=Vo, leading to 

schemes on a nine-point pattern for functions w. + (we shall omit the index j + M of functions 

0, $> u, 0. 

Method I: 
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Method II: 

93 

Method 111: 

The quantities u, v are expressible in terms of L’, I’, while the latter are expressible with the aid 

of the equations L’, k+l/:=$,, i, hi’!>, Vi,!: k=-ZI.=. ++I/~, k in terms of $jk. Hence D,=D~“‘($+“‘, 

CO.+ .)( s=l, 2, n=l, 2, 3. 

Equation (5.4) written at points rj,, contains the boundary values of the variable Q. At 

interior nodes. the variable Q in (5.4) falls out. It can be shown [83] that (5.4)-(5.8) is 

algebraically equivalent to the well-known problem in $, o variables, and to the problem for Q 

with the appropriate conditions. For $, w, the problem can be solved independently of the 

variable Q; then, instead of Eq. (5.4). we have to use at the boundary nodes the well-known Thorn 

condition, while noting that it connects the boundary conditions Go and q” on rh: Co=-&,$@, 

XER,. 

We thus arrive at the following scheme in ii. w variables: 

(5.10) 
Q.:~i=_o~+l, XEQA, j-0, 1,. . . ) jo. 
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Here, A/, is the natural approximation of the Laplace operator at interior nodes, and the Thorn 

approximation at boundary nodes: 

(5.11) 

4. Fanzi[l’ of neutral schemes. Completely neutral scheme. Let us study the properties of 

schemes (5.10) (or (5.4)-(5.8)) for different approximations D1 and D2 in accordance with the 

expressions of methods I-III in the case of homogeneous boundary conditions 

Cod=Vi. =O. $$:=const, (5, y) El?. (5.12) 

Since IV;:;’ =CJ, i=O.M. lt-~,~“’ =O, X-=0, 2J’, we have to put in (5.11): D:,;tk”=O, i=O, M, 

Dir.,. =O, I;=O, *Y. At nodes (JJ;~, yk), k=O, N, (si, Yang;,), i-0, fl!, we shall define 

IVi-‘., W2j+” from (5.9). In this connection, we shall also compute D~~~~,:,,, k=O,N, 

D, ,,iz’vz, i=O. _I!, in accordance with the relevant expressions (under conditions (5.12)). 

For the initial problem (5.1), (5.2) under homogeneous boundary conditions uo = vo = 0, 

we have the identity 

dE - -, 
!?t J ddxdy=O. J Dqdxdy=O, 

G c 

where D=dD,/d.rSdD:!&y. D,=L:o, D2=Vo. 

In the case of homogeneous boundary conditions uo = ~0 = 0, 

(5.13) 

J Dodxdy=O. (5.14) 

G 

Equations (5.13), (5.14) mean that the transport terms yield no contribution to the energy and 

enstropy balance. 

We shall say that the difference scheme is energy-wise or enstropy-wise neutral if the mesh 

analogues of the transport terms Di” ’ = (DF”2)f + (0;” ‘):, do not yield a contribution to 

the energy balance (D,+“‘, qii”) =O or the enstropy balance (D’+“‘, o’+“‘) =O. If both these 

equations hold, we call the difference scheme completely neutral. Here we introduce the scalar 

product 
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To discover the family of energy-wise neutral schemes, we have to compute under condition 

(5.12) the scalar product (DC’), ?+“I, $i*‘i’), n ==l, 2, 3. We find as a result that 
(D’“‘, J+‘.‘t, $I+‘;:) -0. n=1. 2, i.e., schemes with Dj+‘h,D(i), i+L’y, Dj+‘r’:=D(?), j+‘Ia (expressions 

of methods 1 and 11) are energy-wise neutral. For schemes with D;+“r=D”‘p ;+‘I?, we have the 

enstropy-wise neutral case (D”‘, jl”, (0’ +“;) =O. For energ\,-wise neutral schemes we have the I 
analogue of (5.13): 

Consider the one-parameter family of schemes (5.10)-(5.12): 

(5.15) 

(5.16) 

Obviously. this family of schemes is energ>?-wise neutral. We compute the scalar products of 

On comparing the last two equations: we see that the energy-wise neutral scheme (5.10)-(5.12) 

of family (5.16) with /_? = l/3 is likewise enstropy-wise neutral. Thus. the scheme (5.10) - (5.12) 

with 

D 
3 t ‘(‘2 

z,l.kt’/,= $ D2!f;hti:;+ 

is completely neutral. The one-parameter family of enstropp-wise neutral schemes can be 

constructed on the basis of Dic3), Dzt3’ and B,, B,. 

Similar approximations were previously obtained in [81] on a square mesh. 

Notes. 1. Instead of (5.3) we can introduce 

1 ,, 
3-r i: j-i-1 J.L'lZ 14-l 

Qik = UUik + (i-U> Oih’, $ik = uih +(I-o)$fh'. (5.17) 

In this case, to the left-hand side of (5.15) we have to add the term T (a-0.5) + (ll$x:- ‘Ii!? 

+1]~~~~11~~), ,?P1-41 as f+,+?:, _ if u 2 0.5. The previous assertions remain true. 
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2. Schemes (5.4)-(5.8) with D=D(‘) and D=D(z) remain energy-wise neutral ifD(l) and 

O(*) are evaluated with respect to $jkj+’ of (5.17) (with u > OS), and with respect to wiki. The 

schemes with D=6- (a,);+ (IL);, D=D(s) are also enstropy-wise neutral, if D and 00) are 

evaluated with respect to LJiki+’ from (5.17) (with u > 0.5) and with respect to \C/ikj. In these 

cases, a linear system of equations is obtained for wi’l and $ j+l. 

Trmsluted b)$ D. E. Brown. 
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