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NUMERICAL METHODS FOR SOLVING MULTI-DIMENSIONAL
PROBLEMS OF MECHANICS AND PHY SICS*
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(Received 22 May 1980)

NUMERICAL methods for solving some multi-dimensional problems of gas dynamics, radiation gas
dynamics, and plasma physics, are surveyed. The present state of computational experiments in
these fields is discussed, and examples are given of the computation of some complex problems of
mechanics and physics.

Introduction. Mathematical modelling and numerical methods

Theoretical studies in mechanics and physics have always been based on a mathematical
foundations, and on obtaining basic quantitative characteristics of the object. As science has
developed, there has been an increase both in the complexity of the phenomena, processes, and
structures studied, and in the required accuracy of the results. Eventually the mathematica!
description of problems becomes so complicated that it is no longer possible to solve them by
traditional means.

The invention of the high-speed electronic computer, the rapid development of computing
methods, and direct numerical calculation of complex mathematical problems have marked a new
stage in the application of mathematical methods to the solution of problems of science and
engineering. The last two decades have seen the creation of the computational experiment (c.e.).
which is a powerful new method of theoretical study. based on the use of a computer, and which
has played an important role in the acceleration of scientific progress [1—4]. In essence, the
experiment amounts to using a basic mathematical model to study, by computer, processes and
systems of different kinds, to examine their behaviour under different conditions, and to find the
optimal parameters and modes of actual or planned systems. With the aid of the c.e. we can predict
mathematically the behaviour of complex effects and technical systems which it is difficult or
impossible to study by other methods. The c.e. can be used effectively to study large-scale topical
problems such as the theory and design of nuclear reactors, controlled thermonuclear synthesis,
MHD energy conversion. topics in plasma physics, laser physics, or aerodynamics etc.

*Zh. vychisl. Mat. mat. Fiz., 20, 6, 1416 — 1464, 1980.
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The underlying ideas of the computational experiment can be seen from the scheme of Fig. 1,
showing the stages in which the experiment is performed.

All the stages are closely linked and have the same basic aim ~ to obtain a result with the
required accuracy in the shortest possible time. Even the present simplified scheme reflects a
remarkable property of the c.e.: it operates effectively at the junction of different specialized fields
and hence is irreplaceable for hybrid studies. It is often the only means, and not just an important
means. for synthesizing knowledge and experience in different fields.

In the context of problems of mechanics and physics, we are concerned with uniting the
efforts of specialists in mathematics, numerical methods, theoretical and experimental physics and,
computer programming and design. These specialist fields are mutually enriched when the c.e. is
performed. For instance, c.e. has stimulated the development of branches of mathematical physics
concerned with the study of neutron transport and radiation equations, diffusion equations,
systems of equations of hyperbolic type, equations with discontinuous coefficients, non-linear
equations, Kinetic equations describing a plasma, etc.

The present survey covers results obtained by the author and his associates during the Jast
few years at the Institute of the Problems of Mechanics of the Academy of Sciences of the USSR,
in connection with the development of numerical methods for solving complicated problems in
mechanics and physics. The compilation of such algorithms is one stage in performing a c.e. With
the experience so far accumulated, we can state certain conditions to be met by computing
algorithms.
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On the discretization of the equations of a continuous medium, i.e., changing from
differential to difference equations, it is natural to demand that the resulting discrete model reflect
correctly the main properties of the continuous medium. The satisfaction of this requirement has
involved the statement and development of important and constructive concepts, such as
conservative and completely conservative difference schemes {5]. Earlier, these schemes were
obtained by means of certain semi-heuristic devices. The approach of the author and A P.
Favorskii to the construction of difference schemes, based on the use of general variational
principles of mechanics. widens the scope for obtaining conservative and completely conservative
schemes (see Section 1). Using this approach, for instance, we can automatically write schemes
with given qualities in different coordinate systems in the multi-dimensional case. In Section 5 we
shall consider the so-called completely neutral schemes of 1.V. Fryazinov and B. D. Moiseenko for
the Navier-Stokes equations, which preserve some important properties of the initial model and
have many similarities to completely conservative schemes.

The choice of the numerical method for solving a problem is closely linked with the choice
of mathematical mode! of the phenomenon in question. Experience shows that the model to be
preferred is that best suited for numerical solution by computer, for which reliable economic
algorithms are available. In Sections 3 and 4 we give examples of a successful choice of model in
the framework of a given physical approximation, whereby substantial advances have been made
in the numerical solution of certain problems of plasma physics. These results were obtained by
L.M. Degtyarev and his colleagues and are concerned with problems of modelling plasma
turbulence and studying the equilibrium configurations of a plasma.

In Section 2 we discuss topics connected with methods for multi-dimensional problems of
radiation gas dynamics, developed under the guidance of B. N. Chetverushkin. The mathematical
models used in studying these problems are extremely complex. For instance, they include as
component parts the equations of gas dynamics and the kinetic equations of radiation transport.
Further difficulties are created by the high dimensionality of the problem and the different
scales of the physical processes that have to be taken into account. When devising the numerical
method, various complex theoretical and practical problems had to be solved in connection with
the choice of difference schemes, the construction of a method of solving the problems, and
computer programming of the methods.

Let us briefly refer to some topics having direct reference to the c.e. but outside the framework
of our present survey.

The mathematical models of many problems in mechanics and physics are often extremely
complex and do not lend themselves to detailed theoretical study. But some of their important
properties may be understood if the initial problem is divided into simpler units (modules). Modular
analysis of a problem and preliminary study of the properties of individual modules demand the
development of qualitative and analytic methods for studying problems of mathematical physics,
such as e.g., the widely used method of constructing similarity solutions. The numerical algorithms
and technology of performing the c.e. must reflect the modular structure of the initial problem.

An important trend in c.e. development is the creation of packets of applied programs of
mathematical physics [6]. The constructional principles of such program packets take account of
the modular nature of the c.e., and of the fact that many different models may be used for studying
the phenomenon to different degrees of approximation. Applied program packets are also
convenient for the standardization, accumulation, and storage of numerical algorithms, etc.
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Before an algorithm is widely used in practice, we need to study it theoretically for economy,
accuracy, universality etc. In the theory of numerical methods two main topics can be
distinguished: a) the construction and study of difference schemes, and a priori and a posreriori
evaluation of their properties (convergence, accuracy, stability); b) the solution of difference
equations. It can be claimed that there is now a very complete theory of difference schemes,
both abstract and constructive, for linear problems [2, 7]. The difference scheme is a system
of in general non-linear algebraic equations. When solving them, various iterative processes are
used, which involves the repeated solution of a special type of system of linear algebraic
equations of high order. The development of economic methods for solving such systems is one
of the principal problems of the theory of numerical methods [8].

When performing a c.e. modelling the behaviour of some medium, we have to know its
physical characteristics with reasonable accuracy; otherwise, the best computing methods
will not yield a true picture of the actual phenomenon. The development of “physical software”
for the c.e. is a vast problem in itself. For example. since the properties of substances cannot
always be found directly by physical experiments, while the simplified models of a substance
used in theoretical physics are crude, it becomes necessary to solve complex quantum-mechanical
problems by numerical methods on a computer. In turn, modern physical experiments are so
complex that their results cannot be correctly interpreted without using special methods of
computer processing [9]. In both these cases we are in fact talking about performing independent
computing experiments side by side with the main c.e.

1. Application of the variational approach to the
construction of difference schemes

In numerical modelling. the difference scheme is interpreted as the discrete analogue of the
physico-mathematical model of the phenomenon [2]. This means that the quality of the scheme
has to be determined, not only by the canonical categories of the theory of numerical methods,
but also by the extent to which the discrete model reflects the physical laws of the process and
hence, the closely related properties of the equations. From this point of view it is natural. when
constructing the difference algorithms. to be guided directly by the methods used in physics and
mathematics for describing the processes.

Variational principles [10~12] are a universal and fundamental means for describing and
studying problems of theoretical and mathematical physics. Due to their constructive features
and relative simplicity they have often provided the basis for a theoretical consideration of many
classical fields of physics. At the same time, the variational approach is widely used to construct
generalized solutions of the equations of mathematical physics. In view of this, we can hope for
the successful application of variational principles in cases where no proof is available of the
existence and uniqueness of a solution. This is the situation that we often have to deal with when
solving applied and notably non-linear problems.

Many vital properties of physical processes are bound up with the properties of the
functionals being varied. For instance, the statement of the laws of conservation of momentum and
energy is based on the absence of an explicit dependence of the Lagrangian on the space
coordinates and time. A further merit of variational principles. that facilitates their use, is their
invariance with respect to the measurement systems.
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In [13-16] it was suggested that the variational approach should be used to construct
finite-difference models of hydrodynamics, magnetohydrodynamics, and diffusion processes.
This approach was further developed in [17-22].

1. Hamilton's variational principle and the equations of hydrodynamics. The Lagrange method
of description is based on the strong analogy between a continuous medium and a continuous
system of particles {23, 24} . This connection between continuum mechanics and the mechanics of
a finite number of particles is best utilized when constructing the discrete model.

First consider the adiabatic motion of a finite volume V, bounded by the surface F, and
consisting of the same continuous particles. Following the usual analogy, we can write the
Lagrangian L of the system as

L= | ( Wg'z —s)dm.

MV

Here. ¢ denotes the time, ¥(x, v, z) is the radius vector of a point, W(y, v, w) is the particle
velocity vector, V is the volume, dV is an elementary volume, M is the mass, dm is an element of
mass. p is the density, € is the specific internal energy per unit mass, P is the pressure and d/dr is
the substantial time derivative.

In accordance with Hamilton's principle of least action, the motion of the medium, as a
mechanical system, produces the stationary value 65 = 0 of the functional of action:

L]
S=SL(t)a’t. (1.1

to

The variation of the functional (1.1) has to be performed in the context of the relation: law
of conservation of mass

&§(dm)=6{pdV)=0, (1.2)
the first law of thermodynamics
8e=(P/p*) bp. (1.3)
and the kinematic connection
dr/dt=W, (1.4)

Variation of (1 1) in the light of (1.2)—(1.4) shows that the stationarity condition (1.1) is
satisfied if we have the equation, expressing the law of conservation of momentum:

v

av
pT+g1‘ad P=0. (1.5
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Relation (1.2) transforms into the equation of continuity

-‘% - o div W=0. (1.6)

and (1.3) into the equation of energy variation
de
— -+ PdivW=0. 1.7
P (1.7)
In the process of variation we also use the law of conservation of volume
d . —
d_*((” )=dV div W, (1.8)

The system (1.4)—(1.7) of equations of hydrodynamics is completed by the equation of
state

R(P,p,e)=0. (1.9)

The existence of the laws of conservation for the equations of hydrodynamics is linked with
the possibility of writing them in variational form. The absence of an explicit dependence of the
Lagrangian on the coordinates and time leads 1o the law of conservation of momentum

Ti_”.{' W dm -+ F§‘P'nr dF=O (110)
and of energy
d W2
—_— . ( \v = l. (
dtwjv (s+ . )dmisﬁ P(W.n;)dF=0 (1.11)

We recall that the law of conservation of mass and the condition that the process be adiabatic are
introduced as connections.

Hamilton’s variational principle extends without modification to the case when account is
taken of the volume dissipative processes with “'viscous pressure™ g:

For this non-adiabatic motion of the medium, Eqs. (1.5) and (1.6) become

v

d
+grad(P+g)=0. p-——

+ (P+q)div W=0.
dt dt (Pg)div 0

p
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2. Construction of the equations of a discrete medium on the basis of a variational approach.
Assuming that the motion of the medium is plane and dependent only on the two space Cartesian
coordinates x and y, we fix as the independent space variables the Lagrangian coordinates « and 3.
Using the well-known arbitrariness in the choice of , 8, we can assume that, corresponding to the
intial volume V, bounded by the surface F, we have in the a, § plane the unit square G, bounded
by the contour I (Fig. 2).

We introduce into G a rectangular difference mesh &y, uniform in each direction and
consisting of nodes w;;:
or={0s=(a;, B;); o=iAa, i=0,1,...,N; B,=jA}p,
i=0,1,..., M}.

We denote by vy the set of nodes lying on I'; the rest are called interior nodes, and the set of them
is denoted by wy,:

on={w,;=G\TY}, Br=ntYn w={w;l}.

We also introduce the set of rectangular cells Q.= {Qy;, i=0,1,...,N—1, j=0,1,..., M—1},
each of which has four nodes wy; as its vertices, forming the pattern Pa, (2) of the cell Q;;:

i, (Qn’) = {(ﬂm Wity §y Wity, 521, Oy, jH}-

The nodes in pattern Pa,, (2;;) are always ordered in such a way that, as they are sampled in turn,
the cell Q;; is circuited counter-clockwise. Any cell is defined one-to-one by its centre, which we
therefore denote by the same symbol: Q;;={eti+05=(i+0.5) Ac, Bssos = (j+0.5) AB}.

This system of notation helps to prevent future misunderstandings.

5y
[
/ F A
I
4 wey,
i 2,62,
/r’
4 :
4 ldvﬂl‘

T 4o a; o
FIG. 2

We shall also use the pattern Pag (w), composed of cells £z, having the node wjj as vertex:
Pago ((l)ij) ={Qi, i Qie gy Qi—l, -1, 824, :‘—1};

here likewise the circuit rule is observed.
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The images of cells Q;; € Q) in the x, y plane are plane rectangular volumes V;; with curved
boundaries. The vertices of any Vj; are the images of nodes w1, (Qy;) in the x, y plane, for
which it is pointless to introduce new notation, as it was for the centres of cells Q;;. The set
Vi={vy i=0, 1,..., N—1; j=0,..., M—1} forms a division of the initial volume V, which
is thus associated with a finite system of particles of finite mass, formally identified with the
“Lagrangian” set of cells Q.

Henceforth, for typographical simplicity, we use the indexless notation Q=Qy. ¥=04,
=i, Baf=fiss, =i Bsf=Fi 01— fa =Aof/Aa, fo=2sf/AB3. It will also be convenient
to use the following symbols of averaging over patterns:

(=025 Z AT NS,

o ePa o

<<f>>m=025 Z fkh f)”""’ka.

2. =Pa. )

We shall also use the abbreviated notation
(Q, Jr=0.35{(fa) s (Fs) e =1),  <Q, 72=0.5[ (fs) s+ (fs):-1. 51

The Lagrangian Lj, of the discrete system of particles modelling the continuous medium is
naturally written as

()
Li(t)= Vym(.ﬁ_u__b_"__.g) )
ﬁ O

1738

The functional of action is

Sﬂ=§dedL

The law of conservation of mass is
pV=m. (1.12)

The first law of thermodynamics, bearing in mind the viscous forces, is, for a volume element
mde=—{(P+q)dV. (1.13)

The kinematic relations, referred to the nodes, are

dr dy —

The law of conservation of volume V is conveniently written in “Jacobian™ form

T =(<Q, 2:5¢Q, ysd—<Q. 2>(Q, yo>) AaAB.
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In this case, V is precisely equal to the area of the figure in the x, p plane, obtained by rectifying
the curved sides of the image of £2.

The laborious process of variation in the discrete case can be replaced by using directly the
Euler—Lagrange extremality conditions:

ES — | = —

d (aL") 5L, d (aLh)_ oL,
oy

—d?-é‘u—éx’ —dt_év

which, in the light of the connection equations {(1.12)—(1.14), become

du 6Vhl
EmY, gy E (Putqu) 7z

n,‘,‘ePan‘u,
{(1.15)
(md, 2 = (Patau) 10
7w dt le KT Gr ay .
0P wl

Differentiating the volume ¥ with respect to time, we obtain the differential-difference equation of
the law of cell volume conservation

v oV av
o_ Vv (uh, 4o, ) (1.16)
dt m“:;; o) dx,; GYn

Associating this relation with (1.8), we obtain the difference analogue of the expression for the

D=— ( u +v )

divergence:

(1.17)

The energy equation in the “‘entropy” form follows from (1.13):

v

de (P+q)
m—=—
dt 4 dt -’

After substituting (1.16) in this, we obtain the usual form:

de oV v
m-dt—=—(P+Q) Z (uu—:—‘f'vkz - )

oz, OYn

wpePagia;

The system of differential-difference equations is completed by the equation of state (1.9).

Without dwelling on the details, we observe that a direct check can be made of the difference
analogues of the laws of conservation of momentum and energy (1.10), (1.11) for the differential-
difference equations; the fact that these laws hold is a direct consequence of the variational method
of obtaining them.
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Expression (1.17) in fact defines an operator DIV on the set of mesh functions
W= {un, t.}, specified in & :

DIV w,

P e
LTy

1 oV av .\

Y
— woEYaL R

{ ar: a1 ) .
—— ! - Uy, .
5 2 <11A. . A Gt/ i Y

Wi

\

Here, Pa, is the pattern composed of paitern composed of pairs of boundary nodes wy; € vj;.
ordered according to a counter-clockwise circuit of I': 7* is the zero volume of the fictitious cell,

adjacent to Pa,, Q'€Q,"; ¢ is an element of the “difference” length of arc corresponding to
Pa,.

The operator adjoint to DIV is then (DIV)* = —~GRAD, where

7

1 V4.
GP“'\Dg"‘=(—<f1'>> 2 Bu a:

QMePac'm)

1 Z 5Vw> L
- ,—— ) in T
(. i 5757 o

fw)
leepag w)

The operator GRAD obviously acts in the set of mesh functions g, specified on Q + 5.

It can be shown that
(g, DIV W,)=—((GRAD g.. W.)),

where the scalar products (, ) and (( , )) are defined as follows:

((“.hu)’ \th) )= Z (@ u® ey (1Y,

wyy

1) (2)~= [FSPNEE v+ (1) 5i2)
.gh)ZggIZggG-
o ™

(

(g».

Using GRAD and DIV, we can write the system of differential-difference equations in the
form

dl'h

pth=mh, ."7h=17h (rh) , ry = {Ih’ yh} , —7[—— = \‘YH- \'\‘h == {um Un} 4
dw (ST
(p“’)"——d%: ——GRAD(P,,+gr.), (Pm)h'_‘—'mv
den -
P"T = — (P,+¢.)DIVW,, R (pr, pr, €x) =0,

P,y .0, my, Vi, Py, thQﬁ-'{h,
<<Vh>>un (pw)hs «mh»u~ r, “VLEG)h.
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The equations of volume conservation and of continuity are corollaries here:

th dph
— 2 =7, DIVW,, — ——+ 7,=0.
7 A o 2 DIVW,=0

On replacing the time derivatives by finite differences df/dt~f,= (f—j)/At,
=/, f=f""*, where n is the number of the time layer, At==t"+'—¢" we obtain the family
of difference schemes of hydrodynamics, which, given a suitable choice of weights, are completely
conservative:

pW=m,  Va=V(m),  (0)=W."",
. ° o Cmude

()2 (W), + GRAD® (P, +4, )= 0, (pu)n = o
h w'

1.19
Cmade (119)

BTN

(cp)

(5, (W,) #GRAD> (B, " 44y © )=0,  (Po)

(Vh) L= th(°‘5)DI\7(o‘5) \Vh(o.s) .

The operators DIV ® | GRAD®® are obtained from (1.18) by replacing each factor of the
operator coefficients by the corresponding half-sum with respect to the time layers. The
parameters op, 0, remain arbitrary.

It can be shown that, for any 0<<05,.0,< |, the constructed completely conservative scheme
has first order of approximation with respect to time and second with respect to space. The
expressions DIV W, and GRAD Py, then approximate div W and grad P respectively. With o, =
04 = 0.5, the scheme has second order of approximation with respect to time also.

The stability of the family (1.19) is unconditional for 0, 6,20.5; otherwise, the time
step is restricted.

With the variational approach, we can construct without serious modifications completely
conservative schemes in cylindrical, spherical, and any other coordinate systems [17, 18, 20].

The variational approach has also been used with success for constructing completely
conservative schemes of ideal MHD. In this case extra terms are introduced into the Lagrangian,
which correspond to the magnetic field energy, and also an extra connection, corresponding to
the frozen condition.

It is quite obvious that the variational approach will also retain its force in the case of three
space variables.

3. Variational-discrete models of diffusion processes. In the numerical modelling of applied
problems it is not often that we can confine ourselves to dissipativeless motion of the medium.
The motion is often accompanied by various physical effects such as diffusion transfer of heat or
magnetic field etc., which in general have to be considered on moving curvilinear irregular meshes.
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A typical feature of many problems is the strong space and time inhomogeneity of the
coefficients in the equations. This is specially true for problems of plasma physics. As a result,
the usual algorithms for solving equations of the heat conduction type prove to be inapplicable
due to the critical loss of computational accuracy. In such situations it is best to introduce, along
with the basic functions, the fluxes of these functions. With the flux form of the equations we can
construct stable homogeneous computing algorithms, with low sensitivity to the spread of the
coefficients and allowing degeneracy in the equations. Finding the fluxes is of independent interest.
It is thus worth mentioning the algorithms by means of which we can simultaneously obtain both
the initial functions themselves (temperature, magnetic field, etc.), and the corresponding fluxes
(heat, electric field, etc.).

Variational principles may be effectively used to construct difference schemes for equations
of the heat conduction type [21, 22]. Consider the equation of heat conduction in the flux form

0
22 div W=0, (1.20)
at
Wk grad u=0 (1.21)

in the simply connected plane domain ¥, in the plane of Cartesian coordinates (x, y); here, u is

the temperature, and W the heat flux vector. Assume that we are given on the boundary T the
homogeneous boundary condition for the normal component of flux; n is the outward unit normal
to the contour I'. At each fixed instant ¢t 2 O the field of heat fluxes that satisfy the boundary
condition stated minimizes the functional

) Wiz 9 ¢ .
O (W)= f——av +—é—tj.u'dV, (1.22)

in which functions 4 and k are assumed given and are not subject to variation. The variation of
du/dt is found from Eq. (1.20), which plays the role of connection. If we eliminate du,/3r from (1.22)
with the aid of (1.20), Eq. (1.22) takes the form

o (W)= (‘—\%i—zu divw)dv. (1.23)

v

©wly
2

ey
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Hence finding the field of fluxes W at each instant can be based on the minimization of the
functional (1.23), while u is found from the balance equation (1.20). If boundary conditions of
different types are specified, the corresponding integrals over the boundary I" have to be introduced
into the functional (1.23) as additive terms.

We replace the domain G by a discrete set of points of a difference mesh. Assume that
functions £ (x, ), n (x, ») exist, realizing a smooth one-to-one mapping of domain V into the
unit square 0<<§<<1, O0<<n<<{. On taking £, n as curvilinear coordinates, we cover the domain
V by a quadrangular mesh, representing the image of the rectangular uniform mesh in the square
in the (¢, n) plane. The values of the mesh function u# and of the coefficient k% will be assumed
constant inside each mesh cell. We shall describe the field of fluxes by means of the pair of mesh
functions Wg", Wn", which are the projections of the heat flux vector on the normal to the
mid-points of the mesh sides, in the directions of increasing ¢ and n respectively. The indexing of
the mesh quantities is illustrated in Fig. 3. This discretization enables the integro-interpolation
heat balance relation for cell Q;; to be written as

I'vut=—Vg(8‘5 IV%)‘—V'Q(SY] W’n). (124)

Here, symbols V;, V, denote the operators of taking the (forward) difference with respect to
directions £ and 7. The quantity V7 is the volume of the cell 2, while the coefficients s¢, sn
approximate the lengths of the sides of the cell. We can write Eq. (1.24) in the operator form

D(u,),=RW,, (1.25)

where  W,={11"gx, 1'nx} is the mesh vector function, R is a block operator acting from the
space of mesh functions I/, into the space of mesh functions Uy, and D is the diagonal operator.
It can be shown [21] that (1.24) approximates differential equation (1.20) to second order with
respect to space and first order with respect to time.

To find the field of fluxes, we approximate the functional in the difference mesh by the
expression

. W, 12 ,
W= M {= V-8 We + Suten w1} (1.26)

7Y

The modulus of the flux vector at the centre of cell Q is found from (see [25])

i
(W7 = [0.25 N arze)r w0+

=1

(=1 eos g, T Wies W m] (sin® cp:f”# )7

id-s, 4!

where @;; is the angle between the sides of the cell (see Fig. 3).
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On writing the minimization conditions for functional (1.26), we obtain the difference
analogue of Egs. (1.21):
{ .
I . }1 1—~.j 5 . i} >
0.25 2(—”—)—:[“’ Lo (=) cos ST W]
e sint g T
+sE, {u,~uimg ) =0,
i -
V/k) .- ' ives (1.27)
0.25 Z—(-_—T—)V—f—(—,l[ﬂ'n;_ (=1 cos @12 Whigeioi]
i QT
- Sni:(uls'—ui,:-l) = (.
or, in operator form,
LW, =Gu.. (1.28)
Equations (1.27) approximate (1.21) to second order with respect to space. Operators D, R,
L, G have the properties
D=D'=6.I, 6,>0, R=-G, L=L'=8.E, &.>0, (1.29)

On eliminating the temperature from system (1.25), (1.28), we can obtain the equation for the
fluxes in divergence form:

L(W,),+4W,=0, A=—GD™'R,

(1.30)

i A
AN
i ., L L

0604 g0 o2
FIG. 4

o4 r




66 A. A. Samarskii

It follows from (1.29) that 4 = 4* > 0. It was shown in [21] that Eq. (1.30) approximates, to
second order with respect to space, and first order with respect to time, the differential equation

3 (W/k)

= = grad (div W).

To examine the stability of this algorithm, the results of the general theory of the stability of
difference schemes [1] may be used. In view of the above-mentioned properties of the operators
R, G, and L, scheme (1.30) is absolutely stable and has second order accuracy with respect to
space and first order with respect to time.

Our discussion extends without serious modifications to the case of any coordinate system
[21], and also to the three-dimensional case. Along with the completely implicit equation (1.30)
we can consider the analogous equation with weight o, thus enabling the approximation with
respect to time to be improved to second order with o = 0.5. The algorithm is also applicable in
the case of moving space meshes; all the properties of the difference operators, and the accuracy
of approximation, are then retained.

4. Solution of multi-dimensional applied problems. The completely conservative schemes
obtained by the variational approach have been used with success for the numerical solution of
some multi-dimensional applied problems. In particular, problems concerning the magneto-
hydrodynamic delayed confinement of a plasma have been considered. One such system is based
on the idea of quasi-spherical compression of the plasma by a heavy cylindrical liquid-metal liner
converging to the axis. Numerical modelling has shown the possibility of the formation of
cumulative jets, arising during the advance collapse of the liner ends (Fig. 4). The jet development
substantially reduces the efficiency of compression and can lead to breakdown of the plasma,
situated under the liner. During a c.e. [26] an optimal mode of liner collapse was found, in which
the intensity of the cumulative jets is only slight and does not inhibit the required degree of
compression of the plasma (Fig. 5).

On the basis of this method, studies were made of the stability of the magnetic cumulation
process [27] , the plasma transport in a magnetic conductor channel has been modelled numerically
[28], and spontaneous development of magnetic fields [29] etc. have been modelled.

2. Methods for solving a two-dimensional
problem of radiating gas dynamics

High-temperature gas-dynamic effects are now being encountered more and more frequently
in science and engineering. Examples are 1) processes occurring in stellar atmospheres,
2) high-velocity entry of flight vehicles into the atmospheres of planets, 3) heavy-current radiating
discharges, and 4) effects in the laser plasma.

Since radiation usually starts to have a substantial effect on the development of a process if
the gas temperature reaches 10 000°K, it is often impossible to find the gas-dynamic fields without
knowing the radiation fields.
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Let us write the system of equations of radiating gas dynamics (see [30]):

d.

~d§—~ + p div u=0, 2.0
d
0 u = —grad(P+a), 2.2)
de ‘ Y LW

p—z-: —{P+w)divuidivigrad T—div W+0Q, 2.3)
Qgrad I,=x.(I,,—1.), (24)
W= [av[araq (2.5)

Here, e=¢ (T, p), P=P(T, p), h=21(T, p), nv=n(v, T, p).

We have used the following notation: ¢ is the time, u is the velocity vector, p is the density,
P is the pressure, ¢ is the internal energy, w is the artificial viscosity, X is the thermal conductivity,
W is the radiation energy flux vector, Q is the contribution to the energy equation of the different
heat sources, /, is the radiation energy intensity, § is the unit vector of the photon transit
direction, v is the photon frequency, and %, is the coefficient of absorption of photons of
frequency v, while the spectral intensity of absolutely black body radiation is

2h v?

Ly=-"—

¢t exp(hv/kT)—~1

To illustrate the difficulties that arise when solving problems of radiating gas dynamics, we
choose the relatively simple transport equation for a plane layer

dl,
[ + KVI\' = KVI\-p,
dx

where  is the cosine of the angle between the direction of motion of the photon of frequency v
and the x axis.

Let us choose 10 nodes for the frequency v and 10 nodes for the angle u. Hence, in order
to find the radiation field /,, and then the radiation energy flux W in each time step, we have to

solve 100 ordinary differential equations of the type

VRt

R . I he . J- 4ﬂh\'3
{ = w € =7
dz T WRETE BT e exp U R T) — 1)

S

p‘P d\‘s

whereas there are just three equations of gas dynamics (2.1)—(2.3).

Hence the main part of the computing time needed to solve the entire problem of radiating
gas dynamics is expanded in solving the transport equation.



68 A. A. Samarskii

This difficulty is linked with the extra dimensionality of the system (2.1)—(2.5) as
compared with the equations of gas dynamics. There are further difficulties that are perhaps not
so obvious, specific to problems of radiation gas dynamics (r.g.d.). Hence it is not a matter of
coincidence that computations of r.g.d. non-stationary problems are 10— 15 years behind those
of probdlems of ordinary gas dynamics.

The close interconnection and mutual influence of gas-dynamic fields and the radiation field,
and the need to solve the multi-dimensional kinetic equation at each time step, prevent us from
constructing algorithms for solving g.r.d. problems by a mechanical combination of methods of
neutron transport theory and methods of gas dynamics. This fact, and the fact that there are many
important practical problems that need to be solved, suggest that numerical methods for solving
such problems should be treated as an independent field of study.

1. Methods for solving one-dimensional problems of g.r.d. The first work on the numerical
solution of non-stationary one-dimensional problems of 1.g.d. appeared in the late sixties and
early seventies.

When solving these problems special attention was paid to minimizing the computer time
needed to deal with the transport equation. Important contributions to the development of
methods for the effective handling of the radiation field dependence on the transit photon
direction and energy were made in [31-34, 37--40]. Also of vital importance for performing
practical computations, was the construction of stable schemes for the joint solution of the
equations of gas dynamics and the radiation transport equation [35, 38, 41 —44].

During these years, in the Institute of the Problems of Mechanics of the Academy of
Sciences of the USSR, a method was devised for solving one-dimensional non-stationary problems of
magnetic radiation gas dynamics (m.r.g.d.), on the basis of which heavy-current radiating discharges
in lithium plasma were later computed [45—46]. As a result. several interesting qualitative and
quantitative laws were discovered in plasma discharges.
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FIG. 6. O experimental data, — theoretical; a) for total current; b) position of shock
wave, - - - boundary of luminous domain; ¢) curve 1 shows the proportion of energy
imbedded in the plasma relative to total energy stored in the capacitor; curve 2 shows
the fraction of energy liberated from a plasma in the form of radiation; d) brightness
of the radiation at different frequencies.
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Subsequently, the method for solving m.r.g.d. problems was considerably improved
{40, 42, 47]. the equations of state and absorption coefficients were more accurately computed,
and general principles were developed for performing c.e.’s. As a result of all this, high accuracy
could be achieved in solving complex one-dimensional m.r.g.d. problems.

As an illustration, consider some computed results for heavy-current radiating discharges in
xenon plasma [48]. In Fig. 6 we plot data from [48] on the comparison of theory and
experiment for convergent discharges. It can be seen that the divergence is at most a few percent.
In the survey [49]. experience in the field of solving one-dimensional r.g.d. problems is
generalized.

2. Methods for solving two-dimensional r.g.d. problems. In view of the much greater
complexity of two-dimensional problems, the difficulties of solving them are even greater. Most
published work [S0 -51] is concerned with methods for solving stationary problems. The solution
of non-stationary two-dimensional problems of radiating gas dynamics is at the limit of the
capability, not only of the BESM-6, but of more powerful computers [52]. At present, the only
way to solve these problems is to devise high-efficiency numerical methods.

Progress in the numerical modelling of one-dimensional problems has made it possible to
come close to the solution of non-stationary two-dimensional r.g.d. problems. Numerical methods of
solution began to be developed at the Institute of the Problems of Mechanics in the mid-seventies.

Radiation transport has been described by means of the multi-group diffusion approximation.
Gas-dynamic flow was considered in Lagrange coordinates. The system of equations of radiating
gas dynamics, for the axisymmetric case, is then

dp L o(ru) ov

a . U T P

du  d(Ptuo)
P dt ur !

dv.  J(Ptw)
L oz '
R . . . 2.6)
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The development of a joint algorithm for solving these equations required the consideration
of a range of problems:

1) solution of the equations of gas dynamics,

2) constuction of a difference approximation of equations of elliptic type in non-orthogonal
meshes,

3) development of iterative methods for solving the elliptic difference equations,
4) development of methods for averaging the diffusion equations over the photon energies,

5) development of methods for the simultaneous solution of the equations of gas dynamics
and equations of radiation transport.

Instead of dwelling on methods for solving the equations of gas dynamics, we shall focus on
the problems specific to r.g.d. problems.

The last three equations of (2.6) can be reduced to a system describing the behaviour of the
radiation energy group density:

+ ?’.h[]hr‘ '/‘CkL'th. (27)

3 or

dz 3 0z

1 4 (rl)‘ aUk> 7 Z); aUA
r or

Application of the Lagrangian coordinate system leads to the appearance of non-orthogonal meshes,
in which we have to approximate the elliptic equation (2.7).

In {53, 54], on the basis of the integro-interpolation method, it was suggested that the fluxes
in a non-orthogonal mesh could be found by an analytic transformation from the orthogonal mesh
coordinates to the non-orthogonal mesh coordinates. With this approach we can partially take into
account the strong variations of the absorption coefficients on the thermal and shock wave fronts.
The resulting difference scheme may be written in the nine-point pattern as

AU e B AU AL UL o KU,
— CUMHEM U a+ Pt Ul + VA UL (2.8)
+DUlins + Fi?=0,  k=1,2....,N,.
In orthogonal meshes, scheme (2.8) becomes the usual five-point scheme.
To solve the difference scheme (2.8), we use the non-linear iterative method described in [35].

When constructing this iterative algorithm, it is assumed that the solution of the difference system
of equations (2.8) satisfies the conditions

(7.=U.'+1‘ nQiyy, n+5i+1, ny U{n=L7|'-1. n7i-i, n+di—i, n,
Uin=U; na18i nstFBe nrss Un=U; o_ /¥ i, nm1tdi ney.
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The pivotal condensation coefficients «. 8. Y. d, &, B. V. d are found from the appropriate
system of equations, which is solved by iterations (see [54—56]):

izt n=(Eint+ sy alintT i1, nDin) vy
$ine=Cin—0inBin—F in Vi =2sGine. Gra=KinF0._, 2dintTioy nPin.
Can=Qs.. 1=2.3,....Ni—1, n=2.3.... N.—1

Yier n= (Kinb0iny w5 =Pin) s,

Biny=Cin—T B~V Vi =YuGire Giny=Eut% .y wLintVioy 2Din,
Yyt o =Gy - I=N—1,...,3.2. n=2,3..... N,—1;

e nes={Vin+ & nsyPintvi D) insm.

Gz =Cin—0 R —YinE =80 Gz Cua=Bu+o: n=duFY: oL,
O o =qi 2 (=2.3.....! N—1. n=23.... N.—1;
Fin=(Buta ao Ay oo L) 5

11'» = ’\'r._ame—'YmEm—Tin¢.’n?~ qin7=Vin+ai n*lpin+\{l', 'n—'iDiﬂ-
'?{‘ .\'n—g=¢i._wn-1. Z'=2, 3... . N,'—i, Tl=Nn—1, Ly 3, 2.

We write in a similar way the system for finding the coefficients B, a, B, d.

As distinct from other iterative methods, instead of solving the initial system (2.8), we here
solve a new system for the coefficients &, 3. ..., d.Comparisonwith other methods has shown
that the non-linear iterative algorithm can be emploved successfully to solve difference linear
equations in the case when a priori information about the limits of the difference operator
spectrum is either absent or is known with insufficient accuracy. The method can be generalized:
a matrix form of the algorithm was described in {57] and used to compute problems of viscous
fluid dynamics.

The solution of the multi-group system of equations (2.8) in each time step sharply increases
the computer time needed for the complete problem of radiating gas dynamics. To achieve greater
economy, the following algorithm has been described and realized.

At some J-th time step we solve the multi-group system of diffusion equations. Then, using
the numerical solution obtained, we construct an averaged difference equation. The coefficients
of this equation are constructed in the light of the solution of the multi-group system. During \;
steps the integral flux and radiation energy density are found from the averaged equation. At step
j + Nj the procedure is repeated.

As distinct from the earlier methods of this type [34, 37], the present method is not tied to a
one-dimensional geometry, equally applicable to solving both one- and two-dimensional r.g.d.
problems. It likewise does not require that the absorption coefficieats be smooth.

The simplest scheme for the joint solution of the energy equations of (2.6) and the radiation
transport equations is the explicit scheme, when the radiation energy flux is found from the data of
the previous time step. However, when domains of high optical thickness are present, the explicit
scheme for joint solution demands restrictions on the time step, similar to the restrictions in the
explicit scheme for computing the equation of heat conduction. Notice that it quite often happens
that there are instants when part of the plasma domain becomes opaque.
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The implicit scheme of (42, 43] for the joint solution of the energy equation and equations
of diffusion type is as follows:

(1+g1> (A inLl‘:j—i.n-—i+BmUij,n—l+LinL7iii,n~l + Kl"nUi:—i,ﬂ

- C{nl’/vinj‘:’Eml—'.t’if-i.n+P1nl’-i‘-i n+1+VinUiJ,n+1+Dm(—'7i+1,n+!)
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where DWW is the difference approximation for div W, obtained on the basis of the last three
equations of (2.6).
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This scheme has shown high efficiency when solving both one- and two-dimensional problems
of r.g.d. For the model problem, linear with respect to 7%, it can be shown that the scheme is
absolutely stable.

The diffusion approximation is fully applicable for a correct description of the radiation
field in most r.g.d. problems. For a more complete description of the radiation field, it was
proposed in [58] to use Vladimirov's self-conjugate equation [59]

—(Q grad) Ut Us=x.1,,.

Computations have shown that, by using this equation, we can successfully counter the negative
computational effect of the ray, which can occur when the radiation field is found directly from
the transport equation (2.4).
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3. Examples of solutions. The approach described for solving two-dimensional non-stationary
problems of radiating gas dynamics has been realized in a program complex utilizing the extended
working memory of the BESM-6 (see [60] ). The approach has been used to solve a whole range of
important practical problems. The program has provision for using the actual equations of state of
a substance and the actual absorption coefficients.

As an example, consider the solution of the two-dimensional problem on the interaction of
laser radiation with nitrogen plasma of high density close to a metal surface [63]. Effects of this
type were studied experimentally in [61, 62]. It was pointed out there that, on the one hand, the
zone of thermal action on the metal is much greater than the laser radiation focussing spot, while
on the other hand, this thermal action does not lead to crater formation on the metal surface.

Consider some computational data for the version in which the initial nitrogen pressure was
taken to be equal to 107 Pa, the laser radiation power was 3 X 10 W/em2, and the laser radiation
focussing spot on the metal had a radius rg = 250 um.

r.ooum

000 F———~.
800

600

400

200+
-
Py A
200 w00 600 ’ 1600
200 - % M
/

400
600
soo -

1000

In Fig. 7 we plot the characteristic velocities in the shock wave travelling in the cold nitrogen,
and the characteristic pressures and temperatures in the hot plasma. Due to the high initial density
of the nitrogen, the velocity in the shock wave is relatively low; hence it does not screen the laser
radiation, which is entirely absorbed in the hot plasma.

In Fig. 8 we show space profiles of the temperature at the instant # = 0.5 usec. It can be seen
that the radius of the domain occupled by the hot plasma is much greater than the radius of the
laser radiation focusing spot. The radiation generated in this domain has direct heating action on the
metal plate. On the other hand, the hot plasma entirely screens the metal plate from the action of
laser radiation. Hence the thermal action on the plate is quite gentle, which explains the absence of
mechanical damage.
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3. Modelling of turbulent processes in plasma

As a result of studies of plasma heating by heavy-current beams of relativistic electrons or
high-power light beams, the topic of collisionless mechanisms of energy dissipation in a plasma has
become vitally important. [nitially, the energy of the external source is stored in the plasma in the
form of long-wave electron oscillations with Langmuir frequency wp. The transformation of the
energy of long-wave Langmuir oscillations into the short-wave part of the spectrum (the domain of
their absorption by particles) is linked with what is known in plasma physics as modulation
instability [64]. As a result, the energy of the Langmuir oscillations becomes localized in the
domains of reduced plasma density (caverns). In the long run, a turbulent state (Langmuir
turbulence) is established, when the energy of the original long-wave Langmuir oscillations becomes
concentrated in a large number of randomly situated caverns of different characteristic size. As
distinct from hydrodynamic turbulence of incompressible fluid, Langmuir turbulence admits of a
one-dimensional model. This is bound up with the fact that the tendency for modulation
instability to develop and for caverns to form is retained in the one-dimensional case.

Nevertheless, there is an important difference between one- and three-dimensional turbulence.
In the actual three-dimensional geometry, the phenomenon of Langmuir collapse, predicted in [64],
is present; it may be described as follows. During the energy localization in the caverns, energy
compression occurs, and accordingly, short-wave pumping occurs of the energy of the Langmuir
oscillations, forbidden in the caverns, to scales at which some dissipation mechanism becomes
significant. In the one-dimensional geometry, the energy of the plasma oscillations is localized in
caverns of finite size (solitons), with the result that the one-dimensional case is degenerate. This
degeneracy is partially removed in the presence of a continuously operating source of Langmuir
oscillations, when forced collapse is possible: as a result of absorption of energy from the source,
the cavern can be compressed to a size at which dissipative processes come into action.

Strict analytic solutions are exceptionally difficult in the problem of strong Langmuir
turbulence and so far none are available. However, on the basis of numerical modelling, it is possible
to construct approximate models that are logically feasible.

Two approaches may be used for numerical modelling of Langmuir turbulence. In the first,
the mathematical model is based on the Wlasow kinetic equations [65, 66], whereby both the wave
and the kinetic processes in the plasma can be taken into account simultaneously. But computational
realization of this model involves two serious difficulties. First, the characteristic space-time scales
of the effect are determined by the ion dynamics and usually greatly exceed the space-time scales of
the model (the Debye radius rp i.e. the electron displacement relative to the ions, and the plasma
period wp—1). Moreover, for Wlasow’s equations, the particle velocities as well as the space variables
are independent variables, so that the dimensionality of the problem is increased. Hence practical
realization of the kinetic approach is only possible if we take m/M ~ 10-2 as the electron to ion
mass ratio in the model; but this distorts the true picture of the turbulence.

In view of this, the second approach to constructing mathematical models of Langmuir
turbulence is preferable; it is based on the approximate dynamic equations obtained by averaging
the Wlasow equations over the particle velocities and a time interval greater than the plasma period.
This model does not contain the plasma period as characteristic quantity and has natural space-time
scales of the modulation instability.
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1. Inirial equations. On the basis of the dynamic system of equations of plasma turbulence
[64], we consider the problem in a restricted interval L with periodic boundary conditions with
respect to all the unknowns. For a single space dimension the equations take the form (in
dimensionless variables)

& [E(x,t)exp(—iwpt) T E*(z,t)exp(iwpt) ].

fI
o]

The complex amplitude of the high-frequency electric field satisfies the Schrodinger type of
equation

%UE ATE+En=6n(E+E,) —(8nE>=0. G.1)

In the linear approximation the quasi-neutral variation of density 87 =n — ng and of the
velocity w of slow movements satisfies the ordinary system of equations of gas dynamics, allowing
for the high-frequency pressure of the Langmuir oscillations:

6n;+w,=0, (3.2)
1 L

weryw + (dn+|E+E |}, =0,  (6nk> =z—j 6nE dz. (3.3)
0

The last term on the right-hand side of (3.1) corresponds to the source, which maintains a
homogeneous electric field in the plasma at a constant level £, so that

1

(E> = T E(z, t)dz=E,.

P U,

In (3.3) we introduce terms describing the resonance absorption of plasma and sound waves
by electrons. The terms I' £ and ¥ w are integral operators of convolution tvpe:
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are the Fourier images of the damping decrements ', ¥,, of the n-th terms of the corresponding
Fourier series
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where

1 ¢ 17
ikx . 1Rz
Ek———L .!E(.z,t)e dr, w,‘———L jw(x,t)e dz.

0

For the system of Egs. (3.1)—(3.3) in a finite interval L with periodic boundary conditions, we
have the integral corollary (energy balance)

oW / dt+R=Q,
[ - . (3.4)
W=— 1Bz, R= ZZI‘.IE.I: Q=Im Eo(6nE">.
In the absence of a source and of damping, E°=f‘E=*;w=0 ,in (3.1)—(3.3), we have the
integrals of motion
1 L
w=— j |E|® dz,
0
(3.5)

L
1
1= [IE,|2+—2—(n3+wz)+nlE\2] dz.
0

In this case, system (3.1)—(3.3) has, on the unbounded straight line the family of exact solutions
of solitary wave type (solitons):

_ EnexpliE.'t/4+q(z—z,) )

E(I. t) ch[Em(:c—x@—qt)/‘l(i—qW’

(3.6)
bn=—FE"/ (1—¢%), w=qén,

3. Difference scheme. Langmuir turbulence is a set of randomly situated solitons (3.6) with
different amplitudes. The external field energy Eg is absorbed by the Langmuir waves, whose length
has a lower bound given by the condition

7.2>2ﬂzlE0 I 2.

They develop by non-linear evolution into the soliton solutions (3.6). These fairly narrow solitons
include the absorption of waves by electrons (the terms ['E and yw in the initial system become
substantial). Hence the problem contains all the main features of the turbulent process: energy
absorption in the long waves, energy spectrum transformation in the short wave domain, and
finally, damping of the short-wave part of the solution. The main interest here is not in the details
of the space distributions E (x, t) and én (x, t), but in the variation of the time-averaged energy of
the plasma oscillations W, the frequency vesr of its particle absorption, and the energy of the sound
waves W,
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The computational algorithm used for numerical modelling of this process has to satisfy the
following two requirements. First, for correct transmission of the statistical properties of the
turbulence, the problem must be solved for sufficiently large values of L, in order for the solution
to have sufficiently many solitons. Hence, in order to limit the meshes to a realistic number of
nodes. it is essential to use algorithms with as high an order of space approximation as possible.
This condition means that we have to employ spectral methods [67, 68], such as came to be
developed after the appearance of the fast Fourier transformation algorithm [69]. A further
advantage of the spectral method is that. after Fourier transformation of Egs. (3.1) and (3.3), the
non-local operators of convolution type, connected with the damping, transform into local
operators of multiplication of the Fourier coefficients by the appropriate decrements. Second, in
addition to high space approximation, the algorithm must yield a solution at asymptotic times,
when the initial stage of turbulence is completely forgotten and a dynamically time-stationary
solution is established. The need arises to construct conservative schemes |5, 70], possessing the
difference analogue of the conservation laws (3.4).

Let us give the difference scheme for (3.1)—(3.3) that satisfies the above conditions. For
simplicity. we confine ourselves to the case E,=I'E=yw=0. We introduce the meshes

(1)1={t)=jT7 ]=0, 1, . } (_L)»_:{I‘.‘-_—ih’ i=0’ 1, o A7~1},

(th=0)x><(1)n-

On mesh wy,, with the aid of Fourier finite sums, we introduce the mesh function

N/2

2an
fi(t)= Z fnexp (ikz.), k= z :
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where
h N—1
1x =7 v exp(~thzr).
We approximate the derivatives 7 //3x? by the expression
ap N/2
( ! ) = ¥ o faexplinen.
x
ne= N, 24t

On thus approximating £. 6u, and U, and their derivatives, and substituting into (3.1)—(3.3), we
obtain the following system of ordinary differential equations for the Fourier coefficients:

2y, — ki, —¢ =0, 2f =R =0,
3.7)
E.=u,+iv,, dn.tikuw.=0. Uik {w,+e,) =0,
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Here C.+ic, and e, are the Fourier coefficients of the discrete Fourier series for 6n.E; and
€i= |E, I z,

N—-§

-k
Eaics = — Z n.E, exp(—ikz,),

i=0

h N=-1{
€, = A Z |E;|* exp(—ikz;).

1=0

For an analytic function f we have the equation

- (), o (rms(-41).

axp 51?

and for an R + 1 times differentiable function, the equation

(z:) - ( j:f ) =0u). (3.9)

Consequently, system (3.7) approximates the initial system to order (3.8) or (3.9) in the case p = 2.
We next approximate (3.7) with respect to time to order O (72):
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and hence approximate problem (3.1)—(3.3) to order O (t*+h~%¢~*"") , if the solution is an
analytic function, or to order O(t*+h"-?) for an R + 1 times differentiable solution. For mesh
functions E;, n;, w; the difference analogues of conservation laws (3.5) for the differential problem
are satisfied:

N/2

W, = Z |E. 2, (3.12)

Rom = N/241
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N2
Iy= 2 (k:lEnlz+'j2—|6nnl"+lwn.'Ténne"')‘

nN=-=N I+1!

(3.13)

The difference scheme (3.10), (3.11) thus satisfies the above two conditions on approximation and
conservativeness.

3. Method of solving the difference problem. To solve the non-linear algebraic problem (3.10),
(3.11), we use the iterative process
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T

It can be shown that, given a restriction on the time step, process (3.14) is convergent.

Experience shows that, if the difference analogues of the integrals of motion (3.12) are
satisfied sufficiently accurately during the entire computing time, roughly 10 iterations are
required. But this number can be reduced. We make the transition to the next time layer in two
stages. At the first, predictor, stage, we confine ourselves to a finite number of iterationss + 1 = p
in (3.14). At the second (corrector) stage we perform a supplementary iteration in accordance
with the relations

2 P AU \ .
— = )P ()P~ (1, )P (e =0,

-

o ~ A

k) (P (P () =
- (3.15)
6?2,1—6;%\ o

Fikw,t =0,
T

T s k(R + (e 7] =0,
T
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On adding the first two equations (3.15) and summing the result on n, we see that, after the

second stage, Eq. (3.12) is satisfied exactly. A similar corrector was used in [71] in the explicit
scheme for modelling turbulence in an incompressible fluid. If the predictor iterations (3.14) are
convergent the correcting iteration (3.15) does not disturb the solution, i.e. the corrector is
matched with the predictor. Conversely, restriction of the predictor to an insufficient number of
iterations (e.g. p = 1) with a sufficiently coarse time step leads to the appearance of negative

energy for certain harmonics: |E?|*=(u,?)?+ (v,?)?<<0. This situation prevents us from
restoring the electric field E,=u,+iv, and passing to the next time step. In order to exclude

the case |£,; 2 <0 from (3.14), it is sufficient to perform a finite number of iterations (in practical
computations p = 3, and from this condition the time step may be chosen). After the corrector, the
signs of u,;, v, are determined by the signs of u,”, v.? after the predictor. If, for some n, we have
up2 <0orr,2 <0, but u,*+v,*>0, then

u,=(|Ea|*)" cos ¢.",
ve=(|Ea|?) " sin ¢a”,
where ;P is the phase of the electric field after the predictor. Then, in addition to (3.12) being

satisfied exactly, (3.13) is satisfied with sufficient accuracy.

W, (2) I,/¢t)
Wy (00| 7,(0)
20+

16

iz
"
08 1
as ot
FIG. 9

Consider the application of this algorithm for computing the exact solution of (3.6). As the
initial data in the length L=4x (N=0512) we specify functions (3.6) with E,=35, ¢=0, 2,=2x1.
We choose the time step 7 = 10~3, which amounts to = 0.02 7, where T=8x/E.* is the period
of the time oscillations of the soliton electric field. In Fig. 9 we show curves of W, (t) / W, (0)
and I,(t) / 1,(0) against time for different numbers of iterations: curves 1, 2 are for p = 6 without
corrector: 3, 4 are for p = 8 without corrector; 3, 6 are for p = 4 with corrector. It can be seen that,
by using the corrector (3.15), we can considerably reduce the number of iterations in (3.14).

The difference scheme (3.14), (3.15) extends in a natural way to the initial system of
equations (3.1)—(3.4): we then have the difference analogue (3.4). It also extends in a natural way
to the case of several space dimensions.
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4. Some computational results. Using the results of a numerical integration of (3.1)—(3.3),
we can trace the main stages in the development of Langmuir turbulence.

The initial stage of the modulation of the Langmuir pumping field is described by the
dispersion equation, connecting the frequency w and the wave number k of the modulating wave.
In the dimensionless units quoted above, the equation is

kz
Qo+k) Qu—k*)

o' —k*=2\E,|*K* (3.16)

It follows from (3.16) that the domain of modulation instability is bounded by the condition
K*<2|E.|*. In the model examined below of plasma turbulence, L=4n, k=n/2, n isthe
number of a harmonic. In the domain of instability, e.g. for £g = 2, there appear then the
harmonics n = 1. ..., 5 (the increment y4 = 3.46, corresponding to n = 4, has maximum value).

As initial data we shall use the following noise distributions of the electric field and density
variation:

N/2
2
E(x,0)=¢ 2 (A,f” -riB,f”)exp [i (%x-&aﬁ’ )] \
—N, 241
3.17)

e 2 2an 2
6n(zr,0)=v Z (A,fz)-"—iB,f'))exp [z‘ (Tx"r'aff] )] .

~N/2+1

2 2 2 2 2 2 i 2) 2
Here, A,,( )=A_(n), B,f ’=—Bfn), ol =—q) ); Al ), Af.’ . B,f“, B are the random
. . . ) 15 .
amplitudes, uniformly distributed in {0, 1], o. a,ﬁz) are the random phases, uniformly
distributed in [0, 27], and €, v are fairly small coefficients. At the initial instant the jon velocity is

zero.w =10,

Let N=40, e=v=0.1, E;=2.0 in(3.17), which corresponds to growth in the linear stage with
maximuin increment of the fourth harmonic of the solution. In Fig. 10 we show the space
distributions of &, and {£]2. Up to ¢ ~ 3.5, we have an exponential rise of the 4th harmonic
amplitude. At the instant {~10/y=4.0 a mesh of four solitons is formed from it. The energy
absorbed from the pump is localized in the caverns. At other values of the pump field, the number
of such solitons is likewise equal to the number of the most unstable harmonic. Then the mesh is
disrupted. The presence of sound disturbances from the absorbed solitons and the pump action lead
rapidly to a turbulent picture (see Fig. 10, r = 11.90). Here the Landau damping decrement I'y, is
independent of time and corresponds to a Maxwellian velocity distribution of the electrons.
Important characteristics of the plasma in the turbulent state are the mean oscillatory energy level

1

1 ¢ IEI . . ,
w=—rf— dz=ZlEkl*. W,=|E,]

and the effective collision frequency vesy, characterizing the rate of absorption by the plasma of
external source energy dW/dt=v | Eo|?.

LESBRCE £



82 A. A. Samarskii

& t=40
7. . 375 5.00 625 V.50 875 10.0: 1.25 12.50
ul \/ X
_40 -
-s0k
134
0 125 250 315 5.00 8.25 750 875 10.00 1025 1250

In the course of time, solitons of fairly high amplitude are formed, and hence, by (3.6), they
are fairly narrow, so that absorption by electrons starts. In the long run a quasi-stationary state of
turbulence is established, with balance between the pump and the energy absorption:

daw |E,|? S 1
pai = Wl

whence

\.eff-: !E01_2Z Fh|EhI:-
a2
Details of the physical results may be found in [72, 73].

4. Solution of boundary value problems of MHD equilibrium
of toroidal plasma

1. Equation of equilibrium. One of the main problems arising in the mathematical modelling
of physical processes used for the long-term magnetic insulation of high-temperature plasma, is the
study of possible equilibrium plasma configurations. For later study of such properties of the plasma
configuration as the most dangerous magnetohydrodynamic instabilities of the plasma filament, and
the transport process etc., an exact description of the equilibrium state is needed.
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Equilibrium in plasma configurations is described in the approximation of single-fluid
magnetohydrodynamics by the equations

VP=(jXB), rot B=j, divB=0, 4.1)

where P is the plasma pressure, j the electric current density, and B the magnetic field. In
axisymmetric configurations (max current setting) we can introduce the so-called flux function
¥ = rd,, where A is the magnetic vector potential, and (7, y, z) is the cylindrical coordinate
system. Apart from a constant, ¢ = $p/2m, where ®p is the poloidal (transverse) magnetic flux.
Put = rB,; then the total magnetic field is given by

B=(VyXe,)/ r+fe;/r,
where e, is the unit vector along ¢ axis.

It follows from Egs. (4.1) that P=P (), j=f({), while the function V satisfies the
equation of equilibrium, which has the form [74]

=2 TN ), “2)

__apP i _‘_il 4.3)
]c(q r)"‘r‘a‘”*' fd\p .

Equations (4.2), (4.3) hold in the domain Qp, occupied by the plasma (Fig. 11). In the vacuum
layer 2,,, we have the homogeneous equation of equilibrium

g L dyp, &
LT e, o
or r or 8z

The system of equations (4.2)—(4.4) is completed by suitable boundary conditions. On the
ideally conducting casing I'g, the flux function v is constant. To be specific, let

t(r, 2)=0. (r. 2)el,. 4.9)

The plasma—vacuum boundary Iy is defined by the level line = yg = const, if there is no surface
current on it, and Y and its normal derivative are continuous. Hence we have the boundary value
problem (4.2) -(4.5) with unknown boundary 'y and discontinuous right-hand side.

Two approaches may be used to solve such a problem numerically. The first is based on a
solution of the initial equation of equilibrium on a fixed Euler mesh. Many publications have dealt
with this type of approach (see e.g. the surveys [75, 76] ). The second is based on a passage to new
independent variables, one of which is the unknown solution. This approach takes the most complete
account of the specific features of the problem and in particular, the unknowi boundary of the
plasma can be considered. The approach is developed in [77 -80].
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Many publications [75, 76] have dealt with the solution of equilibrium problems with given
dependences P(y) and (). However, problem of much greater interest are those when, instead of
F(¥), we are given the so-called stability margin factor g () with respect to spiral disturbances of
the plasma filament:

ao, do,

S TN

here, & is the toroidal (longitudinal) magnetic flux. It is easily shown that the function f(v/) is
expressible in terms of g () as follows:

1 ds )"

.f(¢)=4n:q(1l‘>( @ vyl

V= (cnl

(4.6)

The integration in (4.6) is over the surface of a torus with cross-section iy = const in the (7, z) plane.

The equilibrium problem is thus reduced to solving (4.2)—(4.6) with given functions P(y),
g (V) and ¥ on the plasma-vacuum boundary I'; and on the magnetic axis, i.e. with the conditions

=1, (r, 2)€T5;, ¥ =Ymaz, (r, 2)e{(r. 2) | V{=0}. (4.7)

Let us now show that, with this statement of the problem, the second of conditions (4.7) must
in fact be stipulated. We average the equilibrium equation (4.2) over the volume between the two
adjacent magnetic surfaces ¥ and Y +dy = const. Denote by V' (/) the volume inside the magnetic
surface defined by the condition y = const. In the averaging we use the equations

vHdy ds ¢+dy
adr= —dy, divad == Y

j T ¢aIV¢| 1, 5 ivadt= @(a ) — qu

+ N +
where dr = rdr dy dz is a volume element in cylindrical coordinates. Here, V' () =— § ds/| V],
while the average value <z > on the magnetic surface { = const is given by

ds
Kd=—=[V'(§)]* Da .
(4)] gﬁ Iy
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Noting that

o* .. 1
+ —— =r*div—-grad,
z rt

3\ i QD
QB

A Jd 1
= or r

we obtain after averaging Eq. (4.2) the ordinary second-order equation

() F

For the magnetic axis, where V =0, we have <|VV|*/r*>=0, on the left-hand side of (4.8),
and hence ¥ = Y qa is an interior point of the operator A*. But, in view of the right-hand side of
Eq. (4.8), we obtain an ordinary second-order differential equation, solvable for given y at both
ends both when I = ¥ (the volume of the entire domain occupied by the plasma), and when
¥ =0, i.e. on the magnetic axis. Notice that it is the last term on the right-hand side of (4.8) that is
the principle part of the corresponding differential operator. This fact has to be allowed for in the
relevant numerical algorithms. Such a non-standard boundary value problem demands the
development of suitable methods of solution, one of which is the method of inversion of the
variables.

4.8)

2. Orthogonal flux coordinates. Complete solution of problem (4.2)~(4.7) is only possible
by using numerical methods. The most convenient for solving problems of evolution is the
formulation of equilibrium in so-called natural (flux) coordinates, in which, as one of the
independent coordinates, we choose the flux function y itself, or in the general case, a connected
function g = a (y), while as the other we take some auxiliary function 6. The unknowns in this
case are r (g, ), z (a, 8), and hence the coordinate surfaces a = const and v = const yield directly
the geometry of of the magnetic surfaces.

The choice of the function 0 is determined by the specific features of the problem. Below we
consider orthogonal flux coordinates (¥, 8) such that the coordinate surfaces 2 = const and 8 =
const form two families of orthogonal surfaces.

We write the orthogonality condition for § and 6 as
oy 66 ay¢ 00 _

T e T 4.9)

ar or 0z 0z

Condition (4.9) is a consequence of the dependence u = u (v, 8), for which

g6 oy 08 oy (4.10)
Pe—=— —_———— '
T P e iz

where u = u (i, 8) is an arbitrary function. We choose the function u in such a way that y (r, z)
satisfies the equilibrium equation (4.2) in the domain 2, occupied by the plasma, and the
homogeneous (4.4) in .. From (4.10) we obtain

—— . e g, ———

6.4 9% 0% (fm 68 dp 59)_ (4.11)



86 A. A. Samarskii

Consider the right-hand side of this equation. Substituting

—— T —— cm——— — e

6u_6u0\p+6p6’6 andﬁ_u__@_c?\p an 90

or 9y ar 89 ar 9z oy 0z = 60 8z
into the right-hand side of (4.11), we obtain
du 08  dp ob ép(dlp o8  dy 58) 4.12)
or 8z 8z or Gy \or oz 0z ar )l
In addition, Eqgs. (4.10) give
0 99 0% 36 _|Vyl @13)
ar 0z dz Or T
Using (4.12) and (4.13), Eq. (4.11) can be rewritten as
9 1 0y Oy | .
y O 0w O ow IVIE (4.14)

or r or 9z* 9y

In the domain Qp, Eq. (4.14) must be identical with the equilibrium equation (4.2). Hence, for
Yo<<Y<{max, the function u (¥, 8) is given by the condition

2

op B

5y '—Wlw(lb,r). 4.15)

In the vacuum domain 2, in accordance with (4.4), we obtain from (4.14):
ou/o¢ =0, 0<yg<to. 4.16)

The equilibrium is thus defined by the system of equations (4.10) with function u (v, §), which
satisfies (4.15), (4.16). We introduce the general flux coordinates (@ ('), 8). On a () we impose
the requirement of monotonicity. We shall assume for clarity that 2 {y/max ) = 0 on the magnetic
axis, where Y=4m,;s, @{{:)=a. on the plasma boundary I, where ¥ = Yg, and 2 (0) = amax On
the casing, where ¥ = 0. Let v (a) =—(da/dy) ", pa(a, 8) =—uv=*(a), and let the surface
functions (pressure P, function f; stability margin factor g) be functions of q, i.e. P=P(a),
f=f(a), g=q(a). Then, the system of equations (4.10) can be rewritten as

39 Ga 30  da 4.17)

Har_,‘—='1—'q P’ﬂrﬁ_-—'__;

03 or or o0z

in the plasma, (4.15) transforms into the integro-differential equation

6max

0 d dey-? , dP (4.18)
—_ (vt Y) e — — = " — <Z < 04
6a(x He') da[ ;f ]r] 2r ’ 0<a<a
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and in vacuum, to

g
5 (V) =0, a<a<apa. (4.19)

Next, we transform in Egs. (4.17)—(4.19) from the variables (r, z) to (g, §). We then take as
unknown functions r=r(a, 8), z=z(a. 0). After the transformation, we arrive at the following
system of equations for r(a. 0), z(a, 6):

ar  dz 9z or (4.20)
=, o=
% a0 "aa e
The problem in (g, 8) variables is thus reduced to tlie simultaneous solution of Eqs. (4.18)—(4.20).
The domain Q=0Q,~+Q, in the (r, 2) plane maps into the rectangular (see Fig. 11)
Q' ={[0, amax]X[0, Bgaxl} in the (g, 6) plane.

For numerical solution of the problem. it is preferable to transform from system (4.14) to
the two elliptic equations

d ar 0 1 or

e ) ) o

da da 98 \ por 96 (4.21)
i} 9z ] 1 9z

e =Y+ = (=Z2Y=0

7a (“' aa) 56 (,uar ae)

Consider the boundary conditions for (4.21). With respect to the variable 6, we pose natural
conditions of periodicity, period 6y

r{a, 8+8r.) =r(a, 6), z(a, 9+ 6u.) =2(a, 6). (4.22)

In the general case, the position of the magnetic axis is unknown. However, we do not need to
specify boundary conditions here, since. by (4.20),

0 d
Hor ;i =0, uar—ai =0 “23)
a

for a = 0, and hence, on the magnetic axis, (4.21) are degenerate elliptic equations.

Given the function ur, system (4.21} is equivalent to system (4.20), provided that we
suitably pose the boundary conditions on [y (with @ = a5y ). Since @ and 8 are orthogonal, the
functions 6 and i cannot be arbitrary on any magnetic surface 2 = const, including on the outer
surface a = a5 - With @ = const we can arbitrarily specify just one of functions § or y, the other
then being uniquely determined by the condition that @ and 6 be orthogonal. For instance, it
follows from (4.20) that, given 6, we can define the function y, (2, 6) on a magnetic surface
a = const from the condition

e [ () )= (5
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This expression gives the initial condition for (4.18), (4.19). It can be substituted into the last
magnetic surface g = @,y Or in some interior magnetic surface @2 = a*. In the latter case, (4.18),
(4.19) have to be solved separately in (0, @*) and (¢*, amax)-

After the function 6 has been specified on the outer boundary (casing), on using the given
coordinates of the casing Iy for (4.21), we can pose boundary conditions of the 1st kind with

a = Ama

r(amax, e) =r0(e), z(amax, 8) =Zo(9). (425)

Hence the solution of the initial problem (4.2) —(4.7) of the equilibrium of an ideal plasma
with given pressure and stability margin factor, reduces to the solution of the non-linear boundary
value problem (4.21)—(4.23), (4.25) with coefficient u, which satisfies (4.18), (4.19), (4.24).

This statement of the equilibrium problem was taken as basis for the method of numerical solution.
We shall not dwell on the details of the numerical modelling.

3. Examples of computations. The method developed above for solving problems of MHD
equilibrium, based on the method of inversion of the variables, is specially convenient for solving
problems of the evolution of equilibrium configurations and in the study of their stability.
Consider as an example the solution of the problem of the evolution of an ideally conducting
plasma as the pressure rises. For specific realistic set-ups, dimensionless parameters such as the
stability margin factor and the quantity 8 are of definitive importance:

B=2¢(P>/{By*>,
where
. , e
<P>=[ (Sa) _fP drdz ] ,
Q

P

(B2 =(SQP)-*j'B; drdsz, gp=j dr dz.

Qp Qp

The condition g > 1 ensures stability of the equilibrium configuration with respect to
particularly dangerous spiral disturbances. Set-ups with high values of § are energy-wise more
favourable from the point of view of the thermonuclear reactor. The equilibrium configurations
with sufficiently high values 8 = 0.1 can be obtained e.g., by increasing the pressure while keeping
the magnetic fluxes constant.
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FIG. 12

In the examples below, as the flux variable we choose the function a(y)=0,,
a(y)€[0, 1], —da/dy=~-2a9(y)=v=*(a), ®, max=1. The stability margin factor q (a) is
taken to be the linear function g¢(a)==g.+q.a, so that g{(0)=g,, g(1)=g.+gq,, while the
pressure P(a)=a(l—a),dP/da=—a.

In Fig. 12 we illustrate the results of computations with different a (pressure) for g,=1.5,
g,=2.5, when the plasma touches the casing of circular section. It can be seen here that, due to
the balloon effect (widening of the plasma filament as the pressure rises), the magnetic axis is
displaced towards high values of r, while the magnetic increase the ellipticity of the plasma cross-

section.

The method here described can be extended to non-orthogonal coordinates {79], and
applied to problems with free boundary for elliptic equations and systems [78].
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5. Completely neutral difference schemes for
Navier—Stokes equations

In the numerical solution of problems of gas dynamics and hydrodynamics, it is vital to
construct the difference schemes in such a way as to satisfy in them analogues of the conservation
laws which are imposed in the initial differential equations. Schemes of this kind have been called
conservative [2] . Further development of the principle of conservativeness has led to the concept
of complete conservativeness of difference schemes, in which are reflected the auxiliary relations
expressing the balance of different kinds of energy [2, 5].

In spite of the fact that numerical methods of hydrodynamics of incompressible viscous fluid
have found wide application for different classes of applied problems, the theory of the difference
schemes, and in particular, aspects of their stability, have not been adequately studied. For instance,
when computing fluid flows in long time intervals, some of the usual difference schemes exhibit
instability, and computation becomes impossible in practice. This situation, often referred to in the
literature as “‘non-linear instability,” was pointed out by Arakawa in [81]. Similar stability problems
were encountered by Rozhdestvenskii ef al. in [71] when numerically modelling turbulence. In this
case, according to linear theory, an exponentially increasing mode is present in the solution, and in
schemes which do not have the properties to be described below, computational instability develops
extremely rapidly.

In [81], when considering the transport equations, some types of difference approximation
(on a square mesh) of certain transport terms were proposed; these terms are the Jacobians
D=0(w, ¢)/0(z, y), which do not give a contribution to the energy balance
(E=S[(U*+V?)/2]dzdy) or enstropy balance (§(®*/2)dzdy), but reflect the properties of
the initial equations at zero velocities on the domain boundary. We shall call such schemes
energy-wise neutral and enstropy-wise neutral. Energy-wise neutral schemes for the equations of
hydrodynamics, based on the use of Galerkin's method, were previously described in [71]. This
latter fact justifies our introducing the special term “neutral” for characterizing the property in
question, since Galerkin’s method is implicitly conservative by definition. Moreover, the term
“neutral” suggests the approximation of just some precisely defined terms of the equation.

We shall propose [83] some families of energy-wise and enstropy-wise neutral schemes for
the systems of equations of viscous incompressible fluid hydrodynamics on meshes that are non-
uniform with respect to x and y, and we shall construct a completely neutral scheme. Our
discussion of aspects of the approximation of the Navier—Stokes equations will be carried outin a
rectangular domain. On the rectangle boundary we specify velocities U and V in the directions of
the coordinate axes Oy and O).

Study of approximation of the boundary conditions in the variables ¢/, w has shown that the

well-known approximation of vorticity at boundary nodes in accordance with Thom’s formula

(see e.g., [82] ) enables us to construct conservative implicit schemes. The mesh operators then
retain the important properties of the differential operators of the initial problem, and the schemes
are homogeneous. For these schemes we obtain a priori energy estimates, from which it follows that
the schemes are stable (in the sense of stability of the zero solution). We also give a scheme which is
linear in the required functions on the upper time layer, and which does not violate the energy
estimates of stability.
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1. Statement of the initial problem. In the rectangle G={0< z<<a, 0<<y<<b} , with
boundary T, we consider the system of Navier—Stokes equations for an incompressible fluid with
density p = 1 for 0 <7 < T, written in variables ¥/, w, Q, where Q=P+ (U*+V*)/2 is the head,
and P is the pressure.

We write the system of equations as
C02=W2:_W71y, W!x+W2y=0, Ap=—o0. 5.0
Here, the “‘fluxes™ W; and W have the form

W=~ (vo,—D.+0Q,), D,=Vo, V=-—1,
W2=\.(‘03—Diuovs D1=[J(l), U=¢U'

The boundary and initial conditions for system (5.1) are

W,=U,, W.=Vy, P=1, (x, y)eT, 0<i<T,
(5.2)
U=U"°, V=V, (z, y) i, t=0;

U, V0 are the given boundary velocities, which are obviously connected with ¥q.

2. Meshes and mesh functions. In the intervals 0<<z<<a, 0<Sy<<b we introduce the points
2o=0, 2, ..., Tu=4a, ¥:=0, yi, ..., yx=>b. Denote the distances between adjacent points by
R, R™® . We also introduce the step mid-points 7', h® (see [2]). In the rectangle we
introduce the mesh 8,=Q.UT, of nodes X=(z,, y,), i=0, 1,..., M, k=0, 1,...,N.

The mesh functions and corresponding functions of the initial problem will be denoted by the same
letters. At nodes of the mesh £} we define the quantities w;x and wix. The mesh functions

Q= Qis1. ni, will be referred to nodes X,=(Zi.1;, Ya-rs) €Qu, and also to boundary nodes
(Zizw, Wa), k=0, N, (z, yrsv.), i=0, M, the set of which we denote by Thg-

We introduce the mesh analogues of the derivatives with respect to x and v. For the mesh
functions z,,=z(xy, ¥s), s=k, k+'/s, and 2y, =2(2iov, ys), s=Fk, k+'/,, we put
respectively

(H
zh,(+’/z,5= (Zi+l,l_zil) /hi-i-'/‘:' S=k7 k+‘/2§
' ) } —
(211, s — Z0a) / F 1=0,
. . 3, (1 .
Z:is = (bi.u 2. 8 Zi12,, 5\ : 715 , 0 < 1 < 1[,

(ns— Zags ) T RSY, =M, s=k L+,
The difference ratios zy and z; are similarly defined.

We introduce the mesh Q.= {t,=jt, j=0, 1....,j,=T/1} with step 7. We shall refer the
function Q to the time layer t;..,=0.5(t,.,+t;). We put

¢,_;‘;=(q..*l_‘;_u.:)‘/?” (L)H'/::((O"H‘*‘O)j)/?. (5'3)

etc.
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3. Difference scheme. Using the integro-interpolation method for approximating the initial

problem (5.1). (5.2), we arrive at the following difference system of equations:
PARIERINER v Pl NN § B AL yo—
(l)? = 11 o% H 1y 3 A = Qh?
Sl i+ -
/I: +W‘ly = 07 ‘XOEth
Ah'\J,J“:—ﬁ)jH. XeQ,
with the boundary conditions at the nodeson I':
L R £ 21 e i+t

11 i =L707 ‘V2=I~0? v ‘pi+1=¢0 1 j=03 1: ceey j(!,

and the initial conditions

The quantities T, T are the means of Ug, Vg over the appropriate intervals /1(2), (1) or
RE A o, is expressible in a natural way in terms of them.

The fluxes Wy, W in (5.4), (5.5) will be given by the relations
Wi. f, R+ (V@y—D2+O§ )i, B, +'s

W‘Z i, AT (\.m:—Di—"Q{i )H-'/l. 1.0
We specify W), W3 at points of T as follows:

1471=F01, H73=T'0,, t=t"_l";.
) . 4 ) ) N RN )
We introduce the notation «: =hi.y/ (20, ), ax =h..../(2h, ); then.

2)

R0 0y ==l ot 28 Y =1—a,

(54)

(5.5)

(5.6)

5.7)

(5.8)

We shall give three ways of approximating the quantities D=0 and D.=Vw, leading to

schemes on a nine-point pattern for functions w. y (we shall omit the index j + % of functions

w, ¥, U V).
Method I:

Di,(:l’/:,h= (U(+i,kﬁ)i+i,k+ﬁihmih) /'2, D’-".f’,’k+'/;= (V-;Ha(ﬂi,uf{'vu(ﬂih) /2,

2

2
Ua=a, Ui st (1“%«( )) Uiy O0<k<N.

Uio=U:‘. Yy U,-,\-=U,-. Nl

V(h=a{m V«+'/:.u+ (1-—le( ‘)‘)‘Vi-'/z,h o<i< ]‘I-. Vo»= V'/:Jn

wa‘—_‘ Vu—‘/-,h-
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Method I

() 75 — (2) FF —
D, T+ =Uh';;_v,;tvli+t S Du-p/,,N—U P4 N~EWipy N1,

(2) )57 (2) yips
D:,i+'/;,»\=dh U1+',M',;(ﬂu'/z,»ar'/z'*‘(1"‘au )L'+’.’;,h—‘/;(ﬂi+‘/:.h-‘.’=-r

O0<k<<A;
(2 — —_ () 55 —
2,0,k+'f:=],'/;,h#";(o";,k+’/n DZ,M,h+‘/z=I M—'/:,h-{-’/:wﬂl-‘.‘:,hi-'/z*

(2) ) = — [E))] ~—
D:,1,h+'/z=ai Vi+’/:,l+'/xﬁ)i+'/:.h+'/:+ (1-““( ) Vl'—'lx,h+‘/a(1)i-’l:.k+‘/n
0<i<M;
l_~ k- ;=(L71‘1 A—~'.+Ui, h-':)/2~

[ : 1_--;‘(1‘:— . k~71+1/7i+’:‘ k)/lz.

[C P .:((')i-s O (O k+mx,k71+mlh)r/4-

Method 111:

Di(.:ln;,k=Ui+'fz,h (mi+5,h+(ﬂu) /2,

szf,;J, ‘;;=Va,k+’. ((l)i,k+l+(1)ih)/21

Uiz, <\=Uh1.. L. Uif’.';, N ‘Yx+‘,;_ Nl

- (2)5= )\ e
Uisia=ar Uizt (A= Y ipmn-n, 0<k<N;

1 O A=]v k= s T:.\l‘ (. A———T.\f—g R~ e

o= ()=

= (1)
V ke =0

I 1+'.’:,h+'/z+(1—a1 )?1—'/:"%)-'/29 0<l<.’7‘1

The quantities U, V are expressible in terms of U, V, while the latter are expressible with the aid

of the equations U wsv.=Vy, i nim  Vie s=—Vx, s, n in terms of Y. Hence D, =D (y'+*,
o*+), s=1,2 n=1,2 3.

Equation (5.4), written at points I, contains the boundary values of the variable Q. At
interior nodes, the variable Q in (5.4) falls out. It can be shown [83] that (5.4)—(5.8)is
algebraically equivalent to the well-known problem in ¥/, w variables, and to the problem for Q
with the appropriate conditions. For v/, w, the problem can be solved independently of the
variable Q; then, instead of Eq. (5.4). we have 1o use at the boundary nodes the well-known Thom

condition, while noting that it connects the boundary conditions &0 and Y0 on T'h: &°=—A,",
.'L'EQ),.

We thus arrive at the following scheme in v, w variables:

ot +D (@™* ) =y A, ™+, XeQ,,
(5.10)
Ag\l’f‘?i:—mﬁﬁi, XEQ,\, ]=0, 1, ey fo.



94 A. A. Samarskii

Here, A is the natural approximation of the Laplace operator at interior nodes, and the Thom
approximation at boundary nodes:

(5.11)

4. Family of neutral schemes. Completely neutral scheme. Let us study the properties of
schemes (5.10) (or (5.4)—(5.8)) for different approximations D and D3 in accordance with the
expressions of methods 1-111 in the case of homogeneous boundary conditions

Uo=V:=0, P/=const, (z,y)=l. (5.12)

i+

Since Wih' =0, i=0M, WIL"=0,k=0, N, wehavetoputin(5.11): D/ =0, i=0,M,
DT =0, =0, N. Atnodes(z:v, Ys), k=0, N, (Zi, Ya-), i=0, M, we shall define

W, WLt from (5.9). In this connection, we shall also compute Da{ﬂ"/m k=0,N,
Dg_f,i:‘;:, i={, M, in accordance with the relevant expressions (under conditions (5.12)).

For the initial problem (5.1), (5.2) under homogeneous boundary conditions ug = vg =0,
we have the identity

ot

E
— -y j widzdy=0, jD¢dxdy=o, (5.13)
G

G
where D=4D,/0x+0D./8y. D.=Uw, D.=Vo.

In the case of homogeneous boundary conditions ug = vg = 0,
j' Dawdzdy=0. (5.14)
G

Equations (5.13), (5.14) mean that the transport terms yield no contribution to the energy and
enstropy balance.

We shall say that the difference scheme is energy-wise or enstropy-wise neutral if the mesh
analogues of the transport terms D™*"* = (D{*'*); + (D}" %) do not yield a contribution to
the energy balance (D'*+, ¢'*") =0 or the enstropy balance (D", w+") =0. If both these
equations hold, we call the difference scheme completely neutral. Here we introduce the scalar
product

((’3) \F)z 2 (r).‘;‘:i:‘(l)/‘i(m, H ® “! — ((1), (D)i ':'
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To discover the family of energy-wise neutral schemes, we have to compute under condition
(5.12) the scalar product (D™ **" =+%), n =1, 2, 3. We find as a result that
(D' o+ ') =0, n=1. 2, i.e., schemes with D*"%==D®) &' D*i=D). 7+ (expressions
of methods 1 and I1) are energy-wise neutral. For schemes with D'+'"=D'" **"_we have the
enstropy-wise neutral case (D' ~":, w*"*)=0. For energy-wise neutral schemes we have the
analogue of (5.13):

£€+£+\ \UJ.* I\ =U

1 . . 1
E:T(E‘“ ‘TE‘W ). (5.15)
(1 ) (£ Yoo ) EQ,

Consider the one-parameter family of schemes (5.10)—(5.12):

it (2),3+%
D, ::- R =p 1:+‘~ +(1 S)Di 148 (5.16)
j+'2 PR A4 .
DZ{:R-*—'/E: ﬁDZ‘?i.::'h +(1_B) Dz(.zi),k’:'iz .

Obviousl) this famﬂ) of schemes is energy-wise neutral. We compute the scalar products of
it

0. and D i D,+/ D(s) i+'h and DJ:- f__ D (23.4+% |
ik =Ll i ik .
(D ('-,“";. m_—';) =F,+‘:, (D(Z/,_r— ;, (1)':+ _)=__O.5F_T :
On comparing the last two equations, we see that the energy-wise neutral scheme (5.10)—(5.12)

of family (5.16) with § = 1/3 is likewise enstropy-wise neutral. Thus. the scheme (5.10)-(5.12)
with

9
i+l 1 (1)41-:« - (2),j+'% =
Di,1+ D“-a.',;x _Dl Al k=D11+/ ko
3 3
i+ 1 (1) 2 (2,04 =
Dz,f_n+’/,= —B_Dz,i.k+’.';+ 'g‘D iR+ *"D. i u+’

is completely neutral. The one-parameter family of enstropy-wise neutral schemes can be
constructed on the basis of D,'”, D."" and D, D..

Similar approximations were previously obtained in [81] on a square mesh.

Notes. 1. Instead of (5.3) we can introduce

PR i+t i+'h i+t

Wix = 00 +(I—0)wit, Yixn =0a +{1-0)Punt (5-17)

In this case, to the left-hand side of (5.15) we have to add the term 1 (0-0.5)+ (th:;" R

i . . . - .
+1, ’,+ I-2), Ei+t>0as t;4~+=, if 0 2 0.5. The previous assertions remain true.
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2. Schemes (5.4)—(5.8) with D=D) and D=D( remain energy-wise neutral if D(1) and
D@ are evaluated with respect to y;x/*% of (5.17) (with ¢ > 0.5), and with respect to w;x/. The
schemes with  D=D= (Di);+(D2);, D=D(®) are also enstropy-wise neutral, if D and D3) are
evaluated with respect to w;;/** from (5.17) (with o > 0.5) and with respect to y;/. In these
cases, a linear system of equations is obtained for w/*1 and y/+1.

Translated by D. E. Brown.
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