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A METHOD for comparing the solutions of second-order parabolic equations is based on pointwise 
estimates of the highest derivative of the solution in terms of the lower derivatives. 

I. In~~uction 

For the qua&linear degenerate parabolic equation 

(1.1) 

we consider in Q T={(t, r):O<tG~, P&z), 52={s:O<2<0”}, the first boundary 

value problem with the conditions 

72 (0, s) =u,(5) 30, Xd2, u(t, O)=u&)20, Octet, (l-2) 

where Q(X) and r+(f) are continuous functions of their arguments, OGz&Mcco, i=O, 1, u0 

(0) =u, (0). The function k(u) is defined for u>O, k(u) >O for u>O, k (0) =O. 

In particular, Eq. (1 .l) describes the process of heat propagation in a medium with thermal 
conductivity k(u), dependent on the temperature u of the medium. 

In [l-5] the concept of metastable lo~~ation of heat was introduced, and for the case 

k(u) =a”, 00, conditions were defmed for the existence or absence of localization in 
boundary value problems and in the Cauchy problem for Eq. (1 .l). In the analysis, use was made of 
the similarity solutions obtained in [6,7], and the theorems given in [8] on comparison with 
respect to the boundary conditions. 

If k(u) is not a power function, the class of group-invariant solutions of Eq. (1 .l) (see [9] ) 

contains none that has the heat localization property, Hence it becomes necessary to find a 
suitable means for comparing the solutions of such equations. 

*Zh, vjkhirl. hiat. mat, Fir., 19,6,1451-1461,1979. 

91 



92 V. A. Gabktimov et al. 

We show in the present paper that the solutions of problems (1 .l), (1.2) with different 

k(u) can be compared in QT provided that certain comparison conditions are imposed on the 
coeffkients. The boundary conditions (1.2) then have to satisfy certain requ~~ents, ensuring 
that a pointwise estimate is satisfied in QT for the highest derivative of a solution in terms of the 
lower derivatives. Our solution comparison method extends the heat localization effect to a wider 
class of coefficients. 

In Section 2 we give the existence con~tions for special point-wise estimates of the leading 
derivative (conditions for criticality of boundary data), while a comparison theorem is proved 
in Section 3, some generalizations of the comparison method are discussed in Section 4, and 
finally, in Section 5 we use the comparison theorem to isolate the classes of coefficients k(u) which 
admit the existence or absence of heat localization, depending on the form of the boundary 
conditions. 

Our approach enables the solutions corresponding to different parabolic operators G(u) to 

be compared. As one such operator we can take e.g., an operator of simple type such that the 
corresponding solutions have familiar properties. 

We shah assume that the functions k, uo, uI satisfy the assumptions of the existence 
theorem for a generalized solution of problem (1. l), (1.2) in the sense of [8] . We introduce the 
notation: Qk-“=(i(t. s):(t, 5)=?T, u(t,z) =-O}, where u(t, x) is the generalized solution, 

and &=QT"\Qyo,PT=Q&L It was shown in [8] that u(i, X) satisfies in PT Eq. (1.1) 

in the ordinary sense, while in S,, i.e., at points of degeneracy, the generalized solution may not 
have the smoothness predicated in (1.1). Put Qt,, 12 ={(t, 5): ti<~~tz, z&2), Si,, iz = 

{(t, 5): t,<:t<t2, (4 5)dT}, Pt,,t, ={(t, s): t&t<tz$ (t, X)EP,}, OG,ftz<T. 

2. Criticality conditions 

D@zition. We shah say that the boundary conditions (1.2) in problem (1 .l), (1.2) are 
critical if, everywhere in Pp 

Uf (t, 5) 20. 

The criticality conditions for the boundary data will be used below to derive a priori 

pointwise estimates for the highest derivative uXX in terms of the lower derivatives +, u. 

We shall assume that the functions k, uo, u1 satisfy ~oo~ess conditions, sufficient for 
term by term ~fferentiation of Eq. (1.1) with respect to r or x once everywhere in P-p We also 

assumethat ~,(x)EC(Q)~~~(P~,~), ZZ~(~)~~(ZO, TI). Under these assumptions, 

we have: 

Lemma 1 

For criticality of conditions (1.2), it is necessary and sufficient that 

(2.1) 

(2.2) 
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Proof: The necessity is obvious. Let us prove the sufficiency. 

1. Some preliminary remarks need to be made about the properties of function ~(t, x). 
We shall show that the function Q(X), satisfying inequalities (2.2) and bounded in St, is non-increasing 

insz. 

We first show that uu(x) cannot have a positive maximum in St. For, if, for some 
x, E 52, r+,(x) has a positive maximum and is not identically equal to a constant, then 

x*cxm, X~~Gn, existsuchthat u,(z) >O, zi6zGx2, uo'(xi)>O, uo(xz)CO. Using the 
fust inequality of (2.2), we obtain k(&(s) ) &‘(z) 1 2 20, which leads to a contradiction. 

Assume that u,‘(xs)>O, uo(x9) ~0 for some x3 E 52. Then, by what has been proved, 

uO’( 5) 20 for x>xs. Hence .!Z(uo) is defined for all x > x3, and the first of inequalities 

(2.2) can be written as 

~(uo(x))=a(x), X=-X% 

where o(x) is non-negative and continuous for x > x3. Let x4 > x3 exist such that mes we > 0 
for some E > 0, where os= {x: xJCx<zr, cc(x) 2~). By integration of the above 
equation, we obtain 

On estimating the integral on the right-hand side for x > x4, we get 

jd6ja(l)~rjdEj~(~)d~PEmeso.(x--s), 

II =a =I xr 

whence we see that uo(x) + 00, x -+ PO, which contradicts the boundedness of the function in CL 

The case a (5) ‘0, 5>&, may be treated in the same way. 

We have thus shown that 

u,‘(x) GO, XEP,,,. 

Hence it follows that there is not more than one point t(O) E So,,, and for any 0 < t < T, 

the set S,., consists of at most one element. Let us denote it by t(t). It is easily seen that 

ST={@, s): Oct<T, z=E(t)}, &={(t, 5): Oct<T, x4, sPE(t)}. 

It can be shown that the definition of generalized solution (see [8]) stipulates that, for 

anyO<t<T, 

Hence, given any D-0, S<E (t) +O, OctGT, there exists x0(t) such that 

(2.3) 
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0.4) 

2. Denote z+(f, x) by z(f, x). Everywhere in PT the function z satisfies the equation 

Weput z(t, z)=Y(t, z)eQ’, a>O. The function Y satisfies in PT the equation 

[a-k’(u)&-k”(u) (u$lY+Yt==k(u)Y,+2k’(z+,Y,. (2.5) 

Consider the set N of points u of the interval (0,Z’) such that Y(t, x) > 0 for all (t, z) EQ~,,,. 
If sup u = T, the lemma is proved. Let sup u = t,, < T. 

By definition of to, there exist to<ti<T and O-G&‘-t, such that 

mill act,, 2) -0 
r*G 

(2 -6) 

and for all t~<tG-l-& the function Y(f, x) has negative values in G!. 

Consequently, by inequalities (2.2), Y has a negative minimum with respect to x for all 
ti-=XCt~-tb~. Denote the minimum point by (t, F(t)). Then, 0~5 (t) <E(t) , iA<I-G+&, 
since, for at least one I of the interval, the equation F(t) = t(f) contradicts (2.4). Notice that fl 
is chosen in such a way that 

Y(t,, Z&))=O. (2.7) 

Since the function zr (t, Z (t) ) /z (t, Z (t) ) is not upper-bounded as r + ?I+, 

Yt(S, f(t))Go, tl<tai+62 . V&-O, O-a&G&,. (2.8) 

On choosing a sufficiently large Q > 0 in (2.7) and using (2.8), we arrive at a contradiction, 

sup u = T, the lemma is proved. 

If E(t) =a, OCtGT, in (2.3), the proof is similar. 

Corollary. If functions uo(x) and u1 (t) satisfy the criticality conditions (2.2), it follows 
from inequality (2.1) and the structure of operator I: in (1.1) that, everywhere in PT, we have 
the pointwise estimate for the leading derivative. 
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ua?x>-[k’(n)lk(u) 1 (4)“. 

Note. 1. Under the assumptions of Lemma 1, it can be shown in the same way that 

Note 2. For the case uo(z)=Ot z=P, inequalities (2.1), (2.9) were obtained by a 
different method in [ 1 Of . 

3. Comp~o~ theorem 

Consider in Qr, for the equations 

the boundary value problems with the conditions 

Id”) (0, z) =z$) (z> * * ma, uty) (t, 0) =uf” (t), 

Oete, v--l, 2. 

(2.9) 

(2.10) 

(3.1) 

(3.2) 

Let us fmd the conditions on operators X(l) and f!(*) in (3.1), and on the boundary data 
(3.2), which ensure that the solutions of the problems, with: = 1,2, can be compared in &, i.e., 
that the solution of the problem with Y = 1 is majorized in Q T by another solution, ~orre~ond~g 

to Y = 2. To obtain the conditions, we use pointwise estimates of the highest derivative of the 
solution, condone to Y = 2, and (see Section 2), we assume that r$) (z) E 6’ (a) n L’s 

(PF’,, uf’ (t) E C’ ([o, T]) and .(a) (t, 5) E C'*' (Pg’). Moreover, let 

up (q EE C (IO, Tl), u@) (t, Z)E C’*“(Pp), 

r$’ (x) E$C (ij), 

and O<ucv~<M, iI= 0,1, v = 1,2. 

17teorem 1 

Let the following assumptions hold: 

1) al’” (t) sw0”’ (a?)) asa, rp (t) au;” (t) f OrzctG3, 

2) k’2”(zz)>kf*f(U)) fk(2’(rJ)/P(u) 1’20, O<uGH, 

3) with Y = 2, conditions (3.2) are critical. 

Then, everywhere in eT, we have 
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td2) (t, x) Gad) (t, 5) * (3.3) 

&ooj: 1. Consider the set N of points u of the interval (0,7’) such that u@) ( t, 8) 2vz(‘) (t, x) 
for d (t, x)=Qo,.. fL5sumethatsupo=fO<T. 

Let g(t, x), (4 x)=Qo, be the solution of Eq. (3.2) with v = 1 with the conditions 

8 (to, 5) =rP) (to, z) ( xa, Fi (t, 0) =lzy (t), tQGt<T. 

By the boundary data comparison theorem (see [8]), we have 

u(‘)(t, x)ei(t, x), (t, 4 ~Qto, T. (3 *4) 

2.~ z(t, ~)=zP(t, x)-Fi(t, x) and z=Year, a>O. 
satisfies everywhere in ~~~~=Q~,=\~~~~\~~,= the equation 

The function Y (t, x) 

aY+Y*=k(‘) (5) Y,+{u2 [k@’ w*)) 

-k(‘)(~)]+(u,(2))2[k(2)r(at2t)_k”)’(a) ])p (3-5) 

--Ic(‘)’ (Fi) (Y,)%=‘+2k(‘)’ (a) Y&y. 

From (2.6) and the definition of tr we obtain (2.7). 

3. There are three possiiilities. 

a. Let WO, 866 exist such that (t, Z,(t)) EP:::+~,. Then, at points 

(t, 5 (t)), t*<t~t*+&, Eq. (3.5) can be written as 

=k(‘) (a) Y,+<u:’ [ kt2) (u(2)) -k(l) (d2)) ] (3.6) 

where ul. u2 are functions of the variable t, and 8,, &E [u(” (t, jt (t) ) , Ci (t, 5 (t) ) 1. In the 
same way as when proving Lemma 1, we can show that (2.8) holds. Then, choosing sufficiently 
large a in (3.6), we arrive at a contradiction. For, at a suitably chosen point (c 2 (q), the left-hand 
side of (3.6) is negative. But the right-hand side, by conditions 1) and 2) of the theorem, is 
non-negative, in view of the pointwise estimate (2.9) for the second derivative of function 

u(*)(t, x) at the point (Z, 2’ (f) ) ++$+6,. 

b. Now let (4, Z (t) ) &?$!++a, for some 6$-O, 6cG6. 
have all the derivatives appearing in (3.6) at minimum points. 

Then, function Y cannot 
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For function z(r, x) we obtain in Qt,. t,+br the problem 

zt= [ k(‘) (r.d2)) I.$’ I=- [ kti) (ii) fit], 

z(t*, s) =o, 562, 2 (t, 0) -0, tle<ti+bs. (3.7) 

Since (4 f 0) ) ESC!+Q, there exists, for any tlCt-G!1+63 a point 0 < t (r) < 

x(r) such that z(r, t(r)) = 0. Then, 

Noting that z~:(r, E(t))GO, and the first of conditions 2), and integrating (3.7) with 

respect to the set (t,<t<tl+&)X (g(t) CzC~), we arrive at a contradiction with (3.8). 

c. If, for any ifi,>O, 6,G there are minimum points (t, x(t)), belonging both to 
p (2) 

Il.(l+LU, and to St?t!,~,, then the proof folllows similar lines to those in case a or case b. 

Hence, throughout Qto,r we have 
(3.3), sup u = T. This proves the theorem. 

ZVore 3. Conditions 2) of Theorem 1 

d’) (t, ix) >ii (t, 5). From this and (3.4) we obtain 

are equivalent to the following: 

k(1)(u)>k(2)(u)[l+h(u)]-i, O<utM, 

where i(u))O, h’(u)>O, Ocadf. 

4. Some generalizations 

1. When proving the propositions of Sections 2 and 3, we actually only used the assumptions 
that operators 1: and L(“). Y = 1,2, are parabolic and sufficiently smooth. Hence our approach 
to the comparison of solutions is also valid for parabolic equations of general type 

u,=9((U)=L(u, u., u,). (4.1) 

Consider in QT the first boundary value problem for Eq. (4.1) with conditions (1.2). We shall 
assume that a solution exists, and 

[l l-131 . We shall also assume that function L(p, 4, r) is differentiable for O<pdkZ,, --oo 
+I<=, -w<r<w, so that the function L;8’, (P, !I), which, since the operator L 
in (4.1) is parabolic, is uniquely defined by the equation 
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is also differentiable. 

We define criticality of the boundary conditions of problem (4. I), (1.2) in the same way 
asinSection2.Let u,(~)&*(fZ), u,(t)~C’([O, 2’1). Undertheseassumptions,wehave 
the fo~ow~g proposition, which can be proved in the same way as Lemma 1. 

Lemma 2 

For criticality of the boundary conditions (1.2) of problem (4.1), (1.2), it is necessary and 
sufficient that 

L?(u,(x))>O, z&, u!‘(t) 20, OGYGT. 

Corollary, Under these assumptions of the lemma, we have throughout QT the pointwise 

estimate for the highest derivative: 

&x,: t u, us). (4.2) 

Lemma 2 is in fact equivalent to the following: if u,(t, x) 9 0 for (t, 5) =I?== { (i!, 5) :t=O, 

z&-J} u {(t, 5) :Oct<z-, s=O}, where I’* is the boundary of Qr, then u,(t, X) > 0 for all 
(t, 5) E&. This assertion holds for all operators in (4.1) that do not contain the variable t 
(otherwise, the operator has to satisfy a supplementary condition). 

2. Consider in QT two boundary value problems for the uniformly parabolic equations 

(4.3) 

with boundary conditions (3.2). Let u(l) (t, 5) EC~~~(@), zz@)(t, 5) Wl?~c (&I, 

max( sup zP(t, t), sup UfZ) (t, x) ) =M. 
f’?V=QT f:.r)=Q T 

In addition, let the functions L@)(JJ, 4, r) be differentiable with respect to all their arguments for 

Ocp<M, --ao<q<oo, --oo<r<w, v=l, 2. 

113teorem 2 

Let assumptions 1) and 3) of Theorem 1 hold, and also, let 

.G2’ tp, q, r.) 4s”’ tp, 4, J-1 20, 

LCi) (p, q, L(y’ (p, q> IGO, Ocp<M+ -oo<q<m 
(4*4) 
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(here, Lf) =6X,“‘/&). Then inequality (3.3) holds everywhere in Q,. 

The proof is similar to the proof of Theorem 1; we use the estimate (4.2) for the highest 
derivative of the solution uc2)(r, x). 

3. Let us indicate the form taken by conditions (4.4) for some concrete operators .C@). 

a. Let F(V) (u@)) =(ptv) (vtv)) ug, where cp(‘) (u(‘)) ~0, v+‘~>O, v=l, 2. 
Inequalities (4.4) reduce to the condition 

@) (P> W” (P), O<p<M. (4.5) 

In this case, Eqs. (4.1) describe the heat propagation in a medium with fured thermal 
conductivity and with heat capacity C(V) = 1 /cp(v), dependent on the temperature v; hence 
comparison condition (4.5) has a simple physical meaning. 

Notice that Eqs. (3.1) can be reduced to the above by the substitution 

,(“I 

uw=p-i (u(v))) VV) (d”)) = J k”’ (q) dq, 

0 

where fl”1-l are the inverse functions to flu). Here, 

q)(v) (u(v)) =k”‘( VW-1 (p) ) , v=l, 2. 

By comparison with conditions 2) of Theorem 1, conditions (4.3) are much simpler, and 
they contain no differential connections between the participating functions. 

b. Let stv) (,(“) =[ kc” (u(‘)) u’:” lx+Q”’ (u(“)), k”’ (u(‘)) >O, u’;)>O, V=i, 2. 
This example is of special importance for studying the topics considered in [14-191. Equations 
(4.1) then describe the heat and combustion propagation in a medium with non-linear heat 
conduction and volumetric separation of heat (Q(U) is the power of the volumetric energy 

sources). 

In view of the independence of the variation of p and 4 in the second of inequalities (4.4), 
the latter split up into three conditions: 

kC2’ (p) >k”’ (p) , kc’) (p) kt2)’ (p) 2 kc’)’ (p) kt2) (p) , 

Q(‘) (p) k’” (p) >Qci) (p) kc’) (p) 7 Ocp<M. 

4. Our solution comparison method, the scope of which has been illustrated by the example 
of the first boundary value problem in an unbounded domain, is also applicable for problems in 
bounded domains, and for the Cauchy problem. Moreover, our results can be extended to 
problems of these types in multi-dimensional domains for parabolic equations with isolated 
Laplacian: 

N 

u,=.Z (u) =L(u, zzx,, . . . , uxx, Au), Au= 
z 

Uljl;. 
j-i 
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5. Metastable 1ocaIization of heat 

Our comparison theorems wilI be used in this section to study the effect of me&stable heat 
localization in a medium with non-linear heat conduction. 

l.Letproblem(1.1),(1.2)beconsideredin &‘={(t, x):O<t<T, x&}, andlet 
u1 (t) be such that 

ui (t) -+-too, it+T. (5.1) 

Definition. Following [l-5] , we shall say that m&stable heat localization occurs in 
problem (1 .I), (1.2), (5.1) ifx, < 0 exists such that mes supp u(t, x) GxO, 0~~2’. 
Otherwise, metastable heat localization is not present. 

In short, if heat localization is present in problem (1. l), (1.2), (5. l), then, in spite of an 
unbounded temperature rise at the point x = 0, disturbances do not travel beyond a finite domain. 

2. Consider, in QTZ=((t, x):O<t<T, x&L?~), G={x:-m<x<=), the Cauchy 
problem for Eq. (1.1) with the initial condition 

u (0,x) =uo (5)‘) XES-2,. (5.2) 

Definition. Metastable heat localization is present in problem (l.l), (5.2) if 

supp rJ (r, x) -supp r&(x), 0et-w. 

Heat localization in the Cauchy problem implies that the domain with non-zero tem~rature 
remains unchanged for a finite time. 

3. Theorem 3 

Assume that, in problem (1. l), (1.2), (S.l), 

~o(x)~T”(1--diro)~‘~, x~=[2(a+2)/o]“T”f”““2, x,(x0, 

&l(x) =O, 53x0 

(where 0, n are constants, o>O, n<O, l+rz@O), 

ui(t)<(T-t)“, O,ctcT, 

k(u) =u”[ Ifh(u)]-‘, h(u) 30, h’(u) 20, 0-a.K~. 

Then metastable heat localization occurs in the problem, while 

(5.3) 

me5 supp u (t, x) Gx0, OctcT, 
u(t, ~)<T(‘+no)‘o(T-t)-i”(i-x/x0)2’0, OctcT, xdxo, 

u(t, x) =o, OctcT, x>xo. 
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Theorem 4 

Assumethat,inproblem(1.1),(1.2),(5.1), 

u&)>(T--t)“, OGtcT, n<O, 

k(u)=u”[l+X(u)], h(u)>O, ?b’(U)>O, 

(where 00, l?-no<O). Then heat localization is not present in 
foranyxECl, 

u(t, x)--tc=, t+T. 

Theorem 5 

Assume that, in problem (1. l), (5.2), 

OeKw 

the problem. Moreover, 

0cuo(Z)~U,(1-~1~//2,)~“0, (x~-%, uo(x)=O, IspG 

(where u,, x,, u are positive constants), and that (5.3) holds. Then metastable heat localization 

occurs, and 

supp u (4 5) =supp uo (51, octet*, 

OCu(t, 2)9[zbo/z((J+2)]‘/~(t;-t)-‘~~(~-lIs(/~,)”~, 

octcr, 1x1 -am, 

u (t, z) =o, O-act*, Isl,sm, 

where t’=x:,*a/2u,0(~+2). 

Theorems 3-5 are proved in [5] for the case t’=xmaa/2~“(u+2). If X(U) ti 0, the 
theorems follow from our Theorem 1 and Note 1 on it. 

Sufficient conditions for localization in a multidimensional domain can be stated in a 
similar way; here, the results of [ 1,4] are used. 

The authors thank A. A. Arsen’ev for useful discussion. 

7’ransZuted by D. E. Brown. 
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