
Viscous flow past an elliptic cylinder 149

subdomains was chosen. Figure 3 shows the computed domain of the plane (#, 5). Here to = 0.1,

El = 2.4, Ez = 3.6. The rectangles 9, 18, 27, 36 were added to the computed domain, and by period-

icity they are identical with the rectangles 1, 10, 19, 28.

In the pivotal condensation along the [--axis each subdomain of the partition included 4 of the

numbered rectangles (for example, 21, 22, 30, 31 or 11, 12, 20, 21). The horizontal pivotal condensa-

tion along the @-axis was taken in the domain 1-18. The whole of this domain was divided into three

horizontal strips. Here only the two lower strips were used as the subdomain of the partition (for one

iteration), or the two upper ones (for the other iteration). In these subdomains the convergence of the

iterations was considerably slower than in the others. We therefore increased the number of iterations.

Additional iterations were also performed in the region of the wake (in Fig. 3 these are the rectangles

19, 20, 28, 29, 3 7-40).

The mesh steps were chosen from an analysis of the norms of the matrices described in section 5.

Depending on the domain and the direction of the pivotal condensation, and also to control the results

the steps were varied within the following limits: A$ = n/40 or n/80; A[= 0.1, 0.05, 0.025 or 0.0125.

The final results are shown in the graphs.

Figures 4 and 5 give the steady state values of the vortex on the boundary of the body (5 = &, =

0.1 and close to it ($ = 0.3 and [= 0.5) for Re = 20 and 40 respectively.

Figures 6 and 7 show the stream lines ($J = const) in dimensionless coordinates (x, y) for Re = 20

and 40 respectively.

Translated by J. Berry

REFERENCES

1. KOCHIN, N.E., KIBEL, I.A. and ROZE, N.B. Theoretical hydrodynamics (Teoreticheskaya gidrodinamika),

Part I. Fizmatgiz, Moscow, 1963.

2. DORODNITSYN, A.A. Lectures on numetical methods of solving the equations of a viscous fluid (Lektsii po

chislennym metodam resheniya uravnenii vyazkoi zhidkosti), VTs Akad. Nauk SSSR, Moscow, 1969.

U.S.S.R. Comput. Maths Math. Phys. Vol. 18, pp. 149-155

@Pergamon Press Ltd. 1978. Printed in Great Britain.

0041-5553/78/0301-0149 $7.5010

PRINCIPLES OF THE DEVELOPMENT OF APPLIED PROGRAM PACKAGES
FOR PROBLEMS OF MATHEMATICAL PHYSICS*

V.Ya. KARPOV, D.A. KORYAGIN and A.A. SAMARSKII

Moscow

(Received 27 September 1977)

A REVIEW is given of problems facing the developers of applied program packages.

1. At the present time the level of development of computational technique, programming and

numerical methods for problems of mathematical physics makes it possible to put on the agenda of the

day the topic of the creation of mathematical models of complex physical and technical engineering

processes and objects. The numerical investigation of such models, reflecting fairly fully the funda-

mental properties of the actual object permits us to understand more deeply the nature of the object

and reduce the number of expensive physical experiments usually necessary at various stages of the

realization of large scientific and technical programs.

We indicate as examples two large-scale problems of a complex nature whose solution requires a

preliminary comprehensive theoretical investigation using computers.

A key problem of nuclear power is the design of a nuclear reactor, which is a complex technical

installation. Its design and the control of its operation require the simultaneous solution of problems of

* Zh. $chisl. Mat. mat. Fiz., 18, 2, 459-467, 1978.

150 V. Ya. Uarpov, D.A. Uoyagin and A.A. Samarskii

various branches of physics and engineering. These are problems of nuclear physics and nuclear theory,
problems of neutron and radiation transfer, problems of heat transmission, gas-dynamics and of the

theories of elasticity and strength.
Another large-scale scientific and technical problem is that of controlled thermonuclear synthesis.

In the first place it requires the investigation of the behaviour of a plasma under different extremal
conditions: at high temperatures and densities, at low densities, and in the presence of electromagnetic

fields and thermonuclear reactions. The processes taking place in a plasma are essentially non-linear,
and their theoretical investigation presents enormous difficulties. Several installations for obtaining

thermonuclear synthesis exist. Comparison of them with each other and optimization by mathematical
simulation must precede the construction of these large-scale installations.

Also of a complex nature are such important problems as the automation of the processing of the
results of physical experiments, the solution of problems of chemical kinetics and the calculation of

building constructions.
2. Computer applications to the solution of problems of a complex nature require the use of new,

more modern forms of programing and the creation of highly productive software. This naturally

involves the reconsideration and refining of some of the approaches and views established in program-

ming, and also the determination of the fundamental current and prospective problems.
Beginning with the middle sixties two directions were fairly clearly distinguished in programming:

applied programming, that is, the creation of algorithms and programs for solving problems in various

fields of application of computers, and system programming, whose purpose is the development of
various facilities of the program equipment of the computer. The activity of the teams representing

these directions is characterized on the one hand by mutual collaboration, primarily expressed by the

fact that the developers of applied programs use the “means of producing” programs created by the
pro~~~ystemize~. This colla~ration is based on the identity of the main purpose, namely the

creation of a program availability permitting extensive possibilities for the efficient solution of
problems by the computer. On the other hand, there is inherent in the operations carried out in both

directions a certain separatism, following from the different nature of their problems and reflected

both in the very methods of programming, and also in the nature of the organization of the work of

the teams.
Over some years the negative aspects of this separatism had no serious effect on the efficiency of

the developments of applied programming. This is explained by the fact that one of the important

problems of system programming - the creation of facilities for the formal description of algorithms
for solving problems, and apparatus for the translation of the formalized descriptions into computer
language - was stated at the very beginning in connection with the need to automate the programming

of applied problems. We note that the formulations of a whole series of other problems of systems

programming were also drawn from the practice of applied programming. This practical involvement
was due to the fact that, despite the separatism indicated, the facilities created by the system pro-

grammers were widely used by the applied programmers, and practically completely satisfied their

systems enquiries. In those cases where the existing systems facilities were insufficient, they were

developed by the applied programmers independently, such developments as a rule reducing to the
modification (to some degree) of existing system facilities.

3. The conflation of what is stated above can be seen by considering the evolution of programs

for solving problems of mathematical physics. In the period of the formation of system programming

the degree of complexity of a program was usually estimated only from the point of view of its size
(the number of instructions). On average these were programs containing 103-lo4 instructions. For
the processing of such programs it was sufficient to use some problem oriented language (ALGOL,
FORTRAN) and a corresponding translator.

As the power of computers increased the applied programmers passed on to the creation of large
programs (program complexes), each of which was intended for the solution of a complex, but
specific, problem. Here not only the size of the programs was increased (lo4 -10’ instructions), but
what is more important their logic was made essentially more complex. This stage of the evolution of
applied programs was characterized by the emergence of a new approach to the development of them,
called the modular principle of programming. This principle was primarily based on the possibility of

representing and solving a complete problem as an aggregate of relatively independent physical sub-
problems. As a rule each physical subproblem is in turn represented as an aggregate of relatively inde-

Probkms of mathematical physics 151

pendent mathematical problems. The use of such a structure was in fact the initial idea of modular

programming. The transition to the modular programming principle was expressed by the fact that the

solution of a problem is essentially secured not by one program but by a group of interconnected

programs forming an applied program complex. These programs, specially designed so as to guarantee
the possibility of their interconnection with various other programs, were given the tirle of mod& In

connection with the new approach to programming languages an apparatus of subprograms (pro-

cedures) was developed, serving as a basis for the realization of the modular programming principle,
and special systems of facilities ensuring the static or dynamic formation of a complex of a certain
structure were also developed.

In practical respects an important drawback of such programming complexes consisted of the fact
that they were oriented only toward the solution of one and more rarely of several specific problems

of a definite class. But the application of a complex of this kind for the solution of a problem, not

foreseen in its design despite the modular structure of the complex, as a rule involved laborious de-
bugging, in the final analysis commensurate with the work required to compile a completely new

program. This deficiency was a consequence of both the imperfection of the methods of developing

applied programs, and also of the scantiness of the possibilities presented by the facilities of the
system.

Indeed, in the development of applied complexes the possible versions of the mathematical model

were taken into account by including in the complex all the necessary moduli and by using in the

process of its operation so-called controlling parameters. It is clear that with this approach the flex-
ibility and universality of the complex was determined by the amount of foresight with which the

moduli and controlling parameters were chosen. It must also be noted that from the point of view of

each specific problem such a program complex is characterized by a certain redundancy, since it

contains “superfluous” moduli and data fields, that is, moduli and data fields not used in the solution

of this problem. So far as the scantiness of the possibilities of the system facilities is concerned, this

was mainly expressed not so much by the absence of convenient facilities for modify~g texts and the

rearrangement of the structures of applied programs (in some form services of this kind were pro-

vided by developed computational systems), as by the absence of unified methods of using these
facilities. In other words, the solution of questions of the coordinated use and organization of the

interaction of various facilities, for example, such as the editor of texts, the translator and the data

control system, were practically completely left to the applied programmers. We emphasize that it

was precisely in connection with this fact that the applied programmers first seriously encountered the

need to revise, modify and extend the possibilities of the existing system facilities.
4. We have already remarked that the present stage of development of programing is connected

with the transition in computer applications to the solution of problems of a complex nature. In this
connection we would like to mention three facts which in our view most precisely reflect the current

position of affairs in programming and the interrelations between the two directions of this discipline:

a) the conduct of a computational experiment;

b) the creation of a stock of programs;
c) the universality of the system facilities.

The most important factor determining the nature of the operations in modern mathe~tical
physics is fact a). In essence the method of the computational experiment is the fundamental theo-
retical method of investigating complex physical and technical engineering processes and objects.

For physical problems the fundamental stages of the computational experiment consist of the follow-

ing [l]:
1) the choice of the physical approximation and the formulation of the mathematical model (as

a problem of mathematical physics);
2) the choice of the discrete model approximating the initial mathematical problem (for example,

the construction of a difference scheme), and the development of a compu~tional algorithm for sob

ing the equations;
3) the creation of a program for realizing the computational algorithm;
4) calculations and analysis of information;
5) analysis of rhe results, comparison with the physical experiment, revision and improvement of

the physical model, and if necessary, repetition of all the stages from the beginning.
These items 1) - 5) describe one cycle of a computational experiment. If the purpose of the study

152 I/. Ya. Kaqmv, D.A. Koryagin and A.A. Samarskii

of some physical process is its optimization (that is, finding and creating conditions for which the
process proceeds optimally with respect to some characteristic parameters), then the performance of
the compu~tional experiment requires the repetit~t~on of the given technological cycle until the result
sought is attained. From the programming point of view a computational experiment is characterized

by the fact that for every physical model for the purpose of establishing a connection between the
physical experiment and the computational experiment it is necessary to solve a large number of

versions (varying the defining parameters of the problem) and also to change (refine) the physical
model itself. This feature (the “multivariable” and “multimodel” nature) of a computational experi-

ment manifests itself in repeated changes in the program realizing the computational algorithm, these
changes affecting both the structure of the program as a whole, and also the individuai fragments of

the program realization of the algorithm.
In fact the development of a program for a computational experiment develops into the creation

of a Iarge-scale programming system (with a volume of 10’ -lo6 instructions), characterized by a large

number of components and a variety of their interactions. Obviously the only realistic way of provid-
ing a computational experiment with programming facilities permitting programs to be rapidly collect-

ed and the computational algorithm and physical model to be simulated, consists of the use of the
modular programming principle combined with the development of system facilities. The fruitfulness

of the modular principle of programming is ensured by the important fact that the description of the

same physical processes occurs in different complex problems. Moreover, different physical processes

are often described by the same equations. For example, the same equations describe such processes

as diffusion, thermal conductivity, and magnetization. The difference between the processes is revealed

only by the physical meaning of the coefficients of the equations and the unknown function. Con-

sequently, in the optimal choice of a set of mathematical and physical moduli their number may be

less than the number of physical problems solved with their aid.
In this connection it is appropriate to turn our attention to fact b), which is the result of previous

efforts of the programmers and gives a basis for optimism. Up to the present time there has been

accumulated in applied programming and is being supplemented at an increasing tempo, a considerable

stock of programming aids, that is, various mathematical methods and algorithms for the solution of
individual problems described in programming languages. In a number of cases these programming aids
have been well checked, documented and are widely available. As an example we can cite the national

state stock of algorithms and programs [2] and two international stocks of physical programs: the
library of the Queen’s University of Belfast (Northern Ireland) f31 and the library of reactor programs
at Ispre (Italy). The existence of a fairly complete stock of programming aids enables us to pass to a

qualitatively new level in applied programming. Now we can and must put on the agenda of the day

the question of the creation of an extensive program service of individu~ classes of applied problems,
or considering the question more widely, of individual sections of applied activity. This service must

be so complete that the development of a particular program of a given class, characterized either by
the large number of moduli used, or by their great complexity and the possibility of multiple variation,

the variety of their interactions, or the aggregate of all these factors, would no longer be a unique

problem, but would represent merely one of the working aspects of a specific applied activity.
It is quite obvious that this formulation of the question assumes the use of adequate system

facilities, which we have already mentioned when speaking about the program provision of a computa-

tional experiment. And now we consider fact c), concerning the possibilities of existing system facili-
ties from the point of view of modern applied programming. The fact is that the system facilities

developed up to the present time, despite their practical bias, were as a rule oriented toward some
“generalized” user. Of course, this assured them of an extremely wide application, but at the same time

led to the position where from the point of view of each specific applied activity they were not entirely
adequate. In other words, the possibilities realized by the system facilities were determined by taking
into account general and not specific applied interests. The more the sphere of applied programming
was extended and its methods perfected, the more it was found that the services guaranteed by the
universal system facilities (for example, debugging facilities), were insufficient for the successful
execution of the operations, and afso, which is more characteristic, the use of these facilities for special
purposes (in particular, editing, modification and sampling of programs) involved laborious operations.
In our view this consequence of separatism, characteristic of the developments of applied and systems
programming, has at the current stage become a drag on the development of computer applications

connected with the solution of complex problems.

5. This reasoning enables us to draw the conclusion that one of the principal directions of work

in modern programming must be the creation of problem-oriented programming systems, ensuring

adequate coverage of some applied activity. Without claiming to determine the package uniquely, and
also taking into account the existence of other definitions, we would like to explain in rather more
detail the terms used here [41.

We first note that every specific applied activity involves two factors. Firstly, the subject domain

(that is, that to which the labour of the progr~er is directed), representing the totality of applied

problems solved by him, and secondly, the discipline of the work, that is, the totality of methods and
rules accepted in processing, debugging and using programs. Adequacy of coverage means a sufficient

completeness of facilities used in the course of a specific applied activity. In other words, both the

range of models serving as material for the assembly of programs from a given subject field, and also
the range of facilities for storing, editing modules, assembling programs and performing other types of

work undertaken in the given applied activity must be sufficiently complete. In the general case the
adequacy of coverage must be considered in time, that is, every variation in the applied activity must
be taken into account by including in the package new applied or system programs. Therefore, we can
speak of the “dynamic” adequacy of coverage.

If specific components of program provision are interpreted as indications of individual qualifica-
tions which the computer satisfies, then it is impossible not to acknowledge that at the present time

the level of factual applied qualifications of the majority of computers is below the level of their

potential applied qualifications, that is, it does not correspond to the rich score of applied programs of
which we have already spoken. The fact is that unfortunately present applied programs are as a rule not

supplemented by corresponding system possibilities, which hampers their use.

It follows from what was said above that the basic problem of the package problem at the present
time must be regarded as the raising of the level of applied qualification of computers by the use of the

methods of system programming based on the stores of applied programs already existing and being
added to.

6. Organizationally a packet of applied programs may be represented as consisting of two parts:

the functional and system contents.

The functional content reflects the specific subject field of the package and includes, for example:

the aggregate of modules used in the construction of programs for solving problems of a given
subject field;

a collection of standard computing schemes whose defining modules consist of the solution pro-

gram of some typical problem;

a collection of descriptions reflecting various functional and pro~am”operation~ characteristics

of the modules and standard computing schemes present in the package.
The requirements on the form of representation and organization of the elements of the functional

content are usually established in the determination of the system facilities of the package.

The system content is the administrative organ of the package, reflecting the discipline of work
with the package. The system content may for example include the following components:

the assignment language - the means of communication of the user with the package;
archives - the system of storage of the elements of the functional content and subsidiary inform-

ation of the package;
the monitor - the totality of program facilities securing the operational possibilities of the

package.
It should be noted that the system content can to a certain extent be invariant to the subject field,

that is, the system content developed for some subject field may be easily adaptable for other subject

fields.
7. The development of a package of applied programs involves the solution of a number of

problems of which the following seem to us to be the most important.
The first problem, whose solution precedes the actual development of the package, consists of

the definition of its problem orientation. Essentially, this problem reduces to the solution of two
questions; the definition of the subject field, that is, the class of problems for which the given program
pa&age is intended, and the discipline of work with the package. The functional content of the pack-
age must be developed SO as to ensure sufficiently complete material for the creation of programs from

1.54 V. Ya. Karpov, D.A. Ko yagin and A. A. Samankii

this subject field, and the system content must ensure the operations undertaken in its types. The

totality of constructive elements and constructive facilities of the package also guarantees the raised

qualification of the computer mentioned above.
Scarcely the least important problem encountered in the development of a package is the choice

of its architecture, that is, the external form of the package, presented to the user. The architecture of
a package is primarily reflected in the external specifications of its possibilities and in the description

of the input language or languages. The successful solution of this problem ensures the efficient

functioning and simple use of the package. Obviously, immediately after determining the architecture
it is necessary to consider in detail and establish the fundamental principles of documentation of the

package.
To exhibit the various types of moduli as constructive elements at all stages of functioning of the

package, a modular analysis of the algorithms used in the given subject field, and also investigations of

the general structure of the package must be carried out. Here we consider it necessary to emphasize

that the concept of “module” can obviously be defined only as applied to a specific package. This

concept in fact reflects the method of assembling programs assumed in the package, and therefore one
can scarcely adhere to the traditional understanding of the module as some functionally completed

program unit. The efficient realization of the principles of construction of programs from modules
involves a variety of methods and facilities for the formal descritpion of the semantics and syntax of

the modules. It must be mentioned that so far very few practically applicable solutions in this direction

have been obtained.
The developers of a package must determine the collection of system facilities ensuring its efficient

functioning. After this it is necessary to investigate the methods of realization of these facilities on the

basis of the established operational security of the computer. It is essential that in the solution of these
questions the simplicity of use and introduction of the package be taken into account, since practice

shows that the degree of adoption of a system development is mainly decided by these factors.
A characteristic feature of modern advanced programming systems is the possibility of an inter-

active relationship with them, or as it is also usually expressed, the possibility of using them in a dialog

mode. This mode of intercourse with the package is extremely promising, especially if it is considered

that in some applied problems the dialog mode is the only practically applicable method of controlling
a data-processing process. In this connection it is necessary to study the general principles of inter-
action of the user with the package of applied programs, to investigate the specific nature of the

solution of problems in the dialog mode and determine its effect on the structure of the package. The

results then obtained can be used for the development of specific languages of intercourse with the
package and of system facilities for arranging the dialog.

Even the incomplete enumeration of the elements of the functional content of a package made

above enables us to judge that it is practically impossible to attain a high degree of organization of
work on such an extensive basis of data without corresponding means of information provision. In the

creation of information provision it is necessary to investigate the means of describing the subject

fields of the packages, the descriptions of the modules, including those for lexical purposes, and the
descriptions of the computational environment in which the package is used. Considering that the use

of information services always involves certain expenditures of time and storage, it is necessary to

give special attention to the optimization of the information provision. Without detailing the possible
approaches to the realization of an information service, we would nevertheless like to indicate that the

use in it of only the means for a simple information search is obviously insufficient for the main-
tenance of such an extensive and dynamically variable basis of data as the functional content of a
package.

We have already remarked that the fundamental problem of the package problem is improving
the level of the applied qualification of the computer. Directly connected with this statement is the
investigation and development of methods of automatic program construction based on a mathematical
model of the problem to be solved, descriptions of the semantics of the module of the functional
content and descriptions of the physical relations existing in the given subject field. In our view a
completely automatic method of assembling programs should not be attempted. A more realistic and
practical solution is a compromise in which the assignment of the package is formulated using both

the facilities of the procedural description (that is, explicitly defining all the data and the transform-

ations to be carried out on them), and also the facilities of non-procedural description (that is, taking

Problems of mathematical physics 155

into account only the initial data and the final aim of some fragment of the process). With this

approach the user can indicate to the computer exactly “what and how” it has to do. Moreover, he can

present to it some independence in the choice of the method of solving individual subproblems, that is,

assign to the package the automatic construction of individual parts of the program.

8. In ending the discussion of the individual aspects of the package problem, we would like to

emphasize that the fundamental factor in the arrangement of operations on a package is the obligation

to participate in the solution of each particular problem (in any case at the stage of formulating the

problem and compiling the technical assignment to the program of the corresponding component of

the package) of both the applied and systems programmers. Only with this approach is it possible to

attain an organic interaction of the functional content with the system facilities and ensure high

operational characteristics of the package.

In conclusion we would like to make the following observation. At the present time the package

problem is living through the initial stage of its development. In a whole series of already existing

program developments, which can be referred to this problem, the absence of a unified terminology,

a difference in approaches and in understanding of the problems arising in the creation of the package

of applied programs is observed. It therefore appears to be extremely urgent to require the definite

isolation of the group of topics constituting the package problem, and the establishment of a unified

terminology. We hope that this paper has enabled a definite step in this direction to be made.

Translated by J. Berry

REFERENCES

1. SAMARSKII, A.A. General questions of modular programming for problems of mathematical physics. In:

International Conference in “Structure and organization of packages of programs”. Subjects of reports. (Mezh-

dunar. konf. “Struktura i organizatsiya paketov programm”. Tezisy dokl.) “Metsniereba”, Tbilisi, 1976.

2. The principal locations of the state stock of algorithms and programs (Osnovnye polozheniya o gosudarstvennom

fonde algoritmov i programm), VTs Akad. Nauk SSSR, Moscow, 1971.

3. The CPC Program Library. Computer Pbys. Communicarions, 1,473-476, 1969.

4. GORBUNOV-POSADOV, M.M. KARPOV, V.Ya., KORYAGIN, D.A., KRASOTCHENKO, V.V. and SAMAR-

SKII, A.A. An approach to the automation of the programming of a numerical experiment. In: International

conference “Structure and organization of packages of programs’: Subjects of reports. (Mezhdunar. konf.

“Struktura i organizatsiya paketov programm”. Tezisy dokl.) “Metsniereba”, Tbilisi, 1976.

