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SOME QUESTIONS FROM THE GENERAL THEORY 

OF DIFFERENCE SCHEMES

A. A. SAMARSKII

One of the rapidly developing branches of modern mathematics is the the­
ory of difference schemes for the solution of the differential equations of mathe­
matical physics. Difference schemes are also widely used in the general theory of 
differential equations as an apparatus for proving existence theorems and investi­
gating the differential properties of solutions. But here one is primarily interested 
only in the asymptotic (for ft-*0) properties of the difference approximations.

The theory of difference schemes has a number of special problems.
In the final analysis, of greatest importance from the point of view of 

numerical analysis is the determination of algorithms permitting one to obtain a 
solution of a differential equation on an electronic computer with a prescribed 
accuracy in a finite number of operations. One encounters in this connection 
the question of the quality of an algorithm, i.e. the manner in which the accur­
acy of the algorithm depends on 1) the amount of information on the original 
problem, and 2) the amount of computation (viz. the machine time spent in 
solving the problem with a prescribed accuracy). Experience with computers has 
stimulated the formulation of a number of special (for the theory of difference 
methods) problems: 1) the determination of the achievable order of accuracy of 
difference schemes for various classes of problems, 2) the construction of schemes 
for the solution of a wide class of problems with a certain guaranteed accuracy,
3) the construction of schemes giving increased accuracy in narrower classes of 
problems, 4) the development of methods for investigating the stability and con­
vergence of difference schemes, 5) the formulation of general principles for con­
structing stable difference schemes and economizing the amount of computations 
(economical schemes), and others.

In the present article we dwell only on a circle of questions connected with 
such fundamental notions of the theory of difference schemes as stability and 
approximation.

The main purpose of the article is to  show how the results of the general 
theory of difference schemes can be used to formulate principles for constructing
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difference schemes of a prescribed quality. This approach requires forsaking a de­
tailed description of the structure of difference operators for concrete classes of 
differential equations and presenting the theory in the language of functional 
analysis. The difference schemes that are analogs of the nonstationary differen­
tial equations of mathematical physics are treated in this connection as difference 
(with respect to the variable t) equations with operator coefficients defined in an 
abstract space (of any number of dimensions). The difference schemes for elliptic 
equations are treated as operator equations of the first kind. It should be empha­
sized, however, that the indicated notions of schemes have a much more general 
meaning.

In § 1 we give an account of the general theory of stability of two- and 
three-level operator difference schemes in Hilbert space. The study of stability is 
carried out independently of that of approximation for families of admissible 
difference schemes. Here we obtain necessary and sufficient stability conditions 
and corresponding a priori estimates. The sufficient conditions distinguishing 
classes of stable schemes are in the form of easily verifiable linear operator ine­
qualities. Simple rules are formulated for verifying the stability of schemes of a 
particular form. To investigate the stability of two-level schemes we employ a 
method that is more sensitive than the energy method.

The stability theory is used to formulate a general principle for regularizing 
difference schemes in order to obtain stable schemes of a prescribed quality.

In §2 the theory of iterative methods for solving the equation Au = f, 
where A G (tf -> t f  ) is a linear operator in a Hilbert space tf , is treated as a 
branch of the general theory of stability of operator difference schemes. Our 
main concern is with obtaining effective estimates for the rate of convergence of 
the iterations and with choosing optimal iterative parameters. We consider a 
class of implicit schemes with a factored operator В on the upper level of the 
form В =  (E 4- gjR  j ) (E +  coi?2), where E  is the identity operator, со >  0 is 
a parameter and R t and R 2 =  R  j are adjoint or “triangular” (with a triangu­
lar matrix) linear operators. A formula for the parameter со is obtained from 
the condition that the number of iterations be minimized.

An estimate of the rate of convergence for the method of minimal correc­
tions is obtained in the case when A is a nonselfadjoint operator, and others.

In §3 we consider the total approximation method as a constructive method 
for obtaining economical difference schemes for the multidimensional equations 
of mathematical physics. The notion of an additive scheme is introduced as a 
system of operator difference equations that approximates the original differen­
tial equation in the total sense. Two quite general heuristic methods (proposed 
earlier by the author) for obtaining additive economical schemes are discussed.
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The additive schemes required a new technique for investigating convergence and 
a new type of a priori estimates that take into account the definition of the 
property of approximation.

The absence of a comparative analysis of the works of different authors 
(such an analysis would have required a substantial increase in the size of our 
article) is compensated to a certain extent by a rather extensive bibliography.

We have not had the chance to discuss the works on difference methods of 
an applied character, although such works best illustrate the possibilities of differ­
ence methods and are a constant source of stimulation for the formulation of new 
theoretical problems.

§ 1. General theory of stability of difference schemes

1. The basic a priori characteristics of a difference scheme are the error of 
approximation and the stability. By the error of approximation of a scheme one 
usually means the residual that arises upon substituting the solution of the 
differential equation into the difference equation. The stability of a difference 
scheme is defined as the property of continuous dependence of the solution of 
the difference problem on the input data (on the initial and boundary data and 
on the right side of the equation). In contrast to the case of a differential equa­
tion this continuity must be uniform relative to the admissible mesh widths. For 
a linear scheme the existence of stability implies the satisfaction of an a priori 
estimate of the solution of the difference problem in terms of the input data. In 
this case stability and approximation imply convergence of the difference scheme, 
the order of accuracy (rate of convergence) of the scheme being determined by 
the degree of approximation. The estimation of the degree of approximation is 
generally (see §3) a comparatively simple problem, while the investigation of 
stability involves significant difficulties and is the central problem of the general 
theory of difference schemes.

The first rigorous definition of the notion of stability of difference schemes 
was given by V. S. Rjaben'kil and A. F. Filippov [1] —[3]. The general questions 
of stability theory have been subsequently considered in [4 ]—[22].

One of the basic methods of investigating the stability of difference schemes 
consists in the application of the Fourier transform to difference equations. The 
stability conditions in this connection are given in the form of various restrictions 
on the spectra of the scheme operators (or on the spectra of the Fourier trans­
forms of these operators). Of relevance here, for example, are [4 ]- [1 5 ] . This 
approach to the study of stability has a number of distinguishing features: the 
Cauchy problem is normally considered, an assumption is made concerning the 
connection between the mesh widths of the schemes with respect to space and
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time, the requirements on the smoothness of the coefficients of the corresponding 
differential equation are often excessive. Many stability criteria (such as, for 
example, in [6] , [10] ,  [12] ,  [13]) cannot be readily used directly in the investi­
gations of concrete difference schemes.

In the majority of papers in this direction the investigation of stability and 
convergence is carried out in the space of solutions of the differential equation, 
which does not correspond to the actual state of affairs since the solution of the 
difference problem is in fact a mesh function. The connection between stability, 
approximation and convergence in spaces other than the original space (in factor 
spaces) is discussed in [23], [24].

In [19]—[21] spectral methods are used to obtain necessary conditions for 
the stability of two-level difference schemes with boundary conditions of general 
form.

The stability of concrete schemes has been successfully investigated with the 
use of the energy method, which frees one from the need to carry out a detailed 
study of the spectral properties of the difference scheme operators (see, for 
example, [25] —[30]). This line of attack was initiated with the well-known 
paper of Courant, Friedrichs and JLewy [32]. The difference analogs of Sobolev’s 
imbedding theorems [31] are also used.

2. The basic problem of stability theory is the derivation of sufficient 
stability conditions that are readily verifiable in the case of concrete schemes. 
Effective sufficient conditions for the stability of difference schemes with o p e r ­
ators defined in an abstract Hilbert space have been obtained in [34] — [36].

Let us proceed to a presentation of some of the results of this theory. We 
first note that the stability of a difference scheme is an intrinsic property that 
does not depend on the approximation of some differential equation. It is there­
fore natural to study stability independently of approximation.

Difference schemes (which are analogs of the nonstationary problems of 
mathematical physics) are defined by us as difference (with respect to the vari­
able t) equations with operator coefficients defined on abstract Hilbert spaces 
Hh (which are analogs of spaces of mesh functions depending on the mesh 
width h). No assumptions are made concerning the structure of the scheme 
operators. The original family of schemes is defined only by the requirements of 
positiveness and, possibly, selfadjointness of the scheme operators.

The following problem is posed: distinguish the class of stable schemes 
belonging to the original family. It turns out that sufficient conditions for the 
stability of (two- and three-level) schemes have the form of linear inequalities 
between the scheme operators and are readily verifiable.

Difference schemes are usually expected to 1) appoximate to within a
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certain degree the original equation, 2) be stable, and 3) minimize (in some 
agreed-upon sense) the number of arithmetic operations required to determine 
the solution of the difference problem with a prescribed accuracy (in the case of 
one-dimensional equations of, for example, parabolic type a scheme is said to be 
economical if the number of operations required to determine the difference solu­
tion is proportional to the number of mesh points used in this connection). As 
was noted above, the convergence of a scheme is a consequence of stability and 
approximation. The indicated requirements compete with each other, and their* 
simultaneous satisfaction is a difficult problem.

Once we have classes of stable schemes, it is natural to seek in these classes 
schemes of a desired quality. This can be done, since writing the schemes in 
canonical form permits one to distinguish the operators (regularizes) responsible 
for stability. By taking advantage of the arbitrariness in the choice of R and 
varying R so as to remain in the class of stable schemes, we can construct 
schemes of a desired quality. A general method for regularizing schemes is pre­
sented in [34].

Thus the proposed theory of stability of difference schemes bears a con­
structive character.

The question of what information is needed on the scheme operators in 
order to render a correct judgement concerning the existence of stability is investi­
gated.

A method employed in the study of stability is that of reducing an implicit 
scheme to an explicit one and estimating the norm of the translation operator of 
the explicit scheme. This method is more sensitive than the energy method and 
permits one to obtain coincident necessary and sufficient stability conditions in 
the case when one of the scheme operators is nonselfadjoint.

We proceed to a presentation of stability theory for two-level schemes 
[33] - [36].

3. Let {Hh} be a set of real Hilbert spaces depending on a parameter A, 
which is a vector with norm Ift I >  0 of a certain normed space. We introduce 
on a segment 0 <  / <  r0 a uniform (for the sake of simplicity) net u>r =

— Ат, A = 0, 1, - * * , A0, A0t = r0) with mesh width r  =  t j A0 . Let
Rhr^k)> CftT (tk), etc. be linear operators mapping onto 

Hh for each value of the parameter tk E  coT, let VhT(tk), y hT{tk\  ^ т(^ ) ,  
etc, be abstract functions of tk E cbT with values in Hh and let y 0hT and 
y x hT be arbitrary vectors of Hh . For the sake of simplicity the notation in 
the sequel will not, as a rule, indicate the dependence of the operators, func­
tions and vectors on h and r.

By an m-level difference scheme is meant an (m — l)th  order difference 
(with respect to t -= tk) equation
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m—2

В  (0  у (f +  г) =  ^ C k(t)y ( t  — k x ) - \-F ( t) t where i =  s t  >  (m — 2) t,
ft—о

with operator coefficients and m — 1 initial conditions obtained by prescribing 
the vectors y (0), y(j), * * * , y((m — 2)r).

We will consider here only two-level (m =  2) and three-level (m — 3) 
schemes. An important role will be played in the sequel by the canonical forms 
of these schemes.

A two-level scheme is

» ( i ) v{‘ + t Y  » (0  +  Л ( 0 » (0  =  <p(0 . 0 « t = - i t < t„,

у (0) =  У о€Я л .
(О

A three-level scheme is

J3 у (f —- т) у (£ — t)  ̂ x^B  (t ) ^ ^  ^  у 't)
2t

■I л  (*)?(*) =  *(0 ,
0 < J  =  & r < f o, y ( 0 ) =  y0t y ( r )  ylr ^o. У1 & Я Й.

(2)

Schemes (1) and (2) are difference analogs of the following abstract 
Cauchy problems for first and second order equations:

+  A u  =  f { t ) r w(0) =  «o,

=  0 < f < f 0, и ( 0) « в в ,

4 H °) =  мь

In order to take into account the case of positive and nonselfadjoint oper­
ators В  in (1) and (2) we consider here a real Hilbert space H. An analogous 
stability theory for schemes in a complex Hilbert space H  is developed in [37].

4. Varying h and r , we obtain a set {yhT{t)} o f the solutions of 
problems (1) and (2). Stability for schemes (I)  and (2) is defined as the property 
of uniform in (h, r) continuity o f {yftT(f)} relative to the input data 
{ V>AT(0)} and { j ftT(0)} (and { yhT(r)} in the case of (2)). We will assume that 
schemes (1) and (2) are solvable for any input data, i.e. that there exist inverse oper­
ators# ^ 1 for (1) and (Bk +  2 TRk)~ l for scheme (2). Let us give a definition of 
stability for the two-level scheme (1). The solution of problem (1) is the sum of 
the solutions of the problems
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к — 0 , 1 , . . ко - i , УоСЕЯь, (1а)

BTt k+1x k + А кУк-Щ * к  =  0 , 1 , .  . . , ко - 1, У ■)---■ 0 . (1Ь)

Suppose Hh is any normed linear space. We wilt say (see [36]) that scheme 
( 1) is stable with respect to the initial data in the norm II • if there

exists a constant cQ not depending on the choice of r ,  h and y 0 such that 
the solution of problem (la ) satisfies the inequality

IIУ it b /t, m ^  Pfc 1 Уо floh, o) i к =  i ,  2,........  (За)

for any y 0 where p = ec°T and I*  ^  is a norm in Hh depend­

ing possibly on k.
Scheme (1) is stable with respect to the right side if there exists a constant 

Af2 >  0 not depending on й, т or <pfc such that the solution of problem (lb ) 
satisfies the a priori estimate

I M М г шах 1<рД * - 1 , 2 ,
OCjCfc ' h n

(3b)

for all €  tffr, where B* B̂2 ^  is a norm in Hh depending on j.
It is usually required that a scheme be stable for sufficiently small r  <  r 0 

and l f t l < h 0, where r 0 and h0 are constants not depending on either к or 
the input data. Scheme (1) is said to be conditionally stable if it is stable when 
some relation between r  and h holds. If on the other hand scheme (1) is 
stable for any т >  0 and IAI >  0 (hQ — r 0 =  *») it is said to be absolutely 
stable.

The definitions of stability given above do not assume that tf ft is a Hilbert
space.

Scheme (la ) is often written in the form +  Sky k, where Sk =  
E - r B k lA k is the translation operator from the £th level to the (k -f l)th  
level. It follows that

У к — Т кУо, . .  S\Sxi,

where Tk is the solving operator, so that

II ю ^  i T к 1II Уо 1(,Л1 „)•

Scheme (la ) is stable if

] F fc lK p*  =  -  A/i for c0 0 .
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Thus the stability of scheme (la ) implies the boundedness of its solving operator.
The basic question is the following: What properties must the operators 

A k and Bk have in order to ensure the stability o f scheme (1)? An answer to 
this question can be obtained in the case when Hh is a Hilbert space.

5, In conjunction with a basic space Hh we will consider energy spaces 
HD consisting of the same vectors as in Hh but having scalar products (y, v)D 
=  {Dy, u) and norms IIу  llD =  \f(Dy, y ), where D =  D* >  0 is a positive self- 
adjoint operator in Hh (D >  0 means that {Dx, jc) >  0 for all x  Ф 0 in Яй). 
The operator D can depend on tk : D — Dk =  D(tk).

We will say that scheme (la) is 1) stable in HD if (3a) is satisfied with

11 ’ W * )  =  11 '  =  11 ’ i e - if '

l^jr Id <  p* Ц tfo 9 * *  {£> does not depend on f t );

and 2) stable in HD if

< p ’C4% o 1!/} (D depends on t*).

In the case of two-level schemes the norms U • 11̂ and & * (D =  A  or 
D =  B) are natural. We will write В > yA  if (Bx, x ) > у (Ax, л:) for all x  €  
Hh, where 7 is a constant.

6. The original family of schemes (1) is defined by the conditions

>  0, A k — A fc for all Л — 0 , 1 , . .  ., Л0 — 1,

i.e. Bk is a nonselfadjomt operator. We first consider the case of schemes with 
constant (i.e. not depending on Л (on tk)) operators A and B:

B —:'x - -  +  Ay* == 0 , A’ -•= 0 , 1 -------A0 — 1 , y0 e  f f h. Oa*)

It is assumed everywhere in the sequel that scheme (la* ) belongs to the original 
family, i.e. В > 0, A — A*.

Theorem 1. Suppose A > 0. Then the condition

n  >  \  x A (4 )

is necessary and sufficient for the stability with p =  1 (c0 =  0) in HA o f  
scheme (la*), i.e. for the satisfaction o f  the estimate

M a < ! . v o i.r
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Theorem 2. Suppose В =  В* >  0. Then the conditions

Ц л д < ^ < 1± г в  (5)

for any p >  0 (/or A  >  0) are necessary and sufficient for the stability o f 
scheme ( la* ) in HB (m HA ).

Remark 1. If A >  0 and p >  1, condition (5) is equivalent to the ine­
quality

* > i h A - (s ' }

In particular, when p — 1 we get 2B >  tA.
Remark 2. It is nowhere assumed that the operators A and В are 

commutative.
If A  and В are commutative, conditions (5) are necessary and sufficient 

for stability in Hh, H 2, H 2, etc.
Л. В

7. Suppose A k = A{tk) and Bk =  B{tK) are variable operators. We will 
say that Ak >  0 is Lipschitz continuous in tk if

A it-i)x * x ) K ciT (-4 *-i:r' fora11 and к  =  1, 2 , . . . ,

where Cj =  const >  0 does not depencf on т or h.

Theorem 3. Suppose A k > 0 and is Lipschitz continuous in tk. Then 
the condition

Пк > г ^  л ю P e'-0'  for all к =  0 , 1, . . . ,fc0 -  1,

with cQ >  0 is sufficient for the stability o f scheme (la ) in HA^ with c0 — 
c0 + c 1/2:

l l ^ k k < P ^ o l U ,  P = e " - T.

Theorem 4. Suppose Bk —  Bk and is Lipschitz continuous in tk. Then 
the condition

L l £ / j  <  for all * = 0 ,1 ...........*0 - l
T ь

with c0 >  0 is sufficient for the stability o f scheme (la ) in HB with c0 — 
c0 +  c j 2, i.e. for the satisfaction o f the estimate

l l ^ i l L  < p  il Уо i L  pК ”
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Let us write scheme ( 1) in the form

(E  -J- t / ? k) —— ------ b A ky — фк, Hk =  E  -f- T /ffct (6)

where E  is the identity operator. Then the condition 2Bk > тАк will be 
satisfied if

1 1
2 T|]Afcir

A- —- 0 , 1, 2 , (7)

The index к in the stability conditions will be dropped in the sequel. It follows 
from (7) that the condition 2R > A  is also sufficient for the stability of scheme (1). 

Example 1. Consider the weighted scheme

У-к+\  Jk- 4 Л ( о у Ь 1 -1“ (1 — б ) ^ )  =  Фк.

к — 0 11» ■ • •, A'o — 1 , Уц £г-. П f,.,
(8)

where о is a parameter (the weight factor) and A = A(tk) >  0. Reducing 
scheme (8) to the canonical form ( 1) or (6), we find that В *  Ё  +  от A or 
R = a A. If A “  A* and estimate (5) holds, it follows by virtue of (7) and 
Theorem 4 that scheme (8), when yk =  0, is stable for a >  If A(tk) >  0 
is a nonselfadjoint operator, we first apply the operator A ~ x >  0 to (8) and

л / v
then reduce the result to the canonical form (la ) with В — A~ + отЕ, A = E  
and make use of Theorem 1, from which it follows that scheme (8), when $k =
0 and >1(0 >  0 is even any nonselfadjoint operator, is stable in Hh with p =
1 for о >

8. Conditions (4), (5) and (5*) are sufficient for the stability of scheme 
(1) with respect to the right side in the corresponding norms. Thus estimate (3b) 
holds with

III/Da) =  №11 М Ы  =  M b  1 =  У  ф)
for (7) or with

M l m  =  !1фН(г) = У ^ ( Л й “ 1ф, £ _1ф)

for (5*). Of importance for the theory of difference schemes are estimates of the 
solution of the problem in HA or HB in terms of the right side taken in a 
possibly weaker norm. Such norms are II ф 8̂  =  IMI^ _ i in Я  i or the

negative norm ll<pll(2) “  sup 1Кф> х )1/в х 11̂ ]  (the functional norm), an analog of 
which is widely used in the general theory of differential equations. For example, 
we have
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Тшхшещ5 ^1 / the conditions o f Theorem 4 are satisfied, the solution o f  
problem {Ibysatisfies the estimate

for the weighted scheme (8) when y 0 — 0, o >  Vi and A(t) =  A *(/) >  0.
9. Let us now consider the three-level scheme (2). We will assume that 

B{t) is a nonselfadjoint operator, R(t) =  R*(t) >  0 and A{t) =  Л*(г) >  0. 
These conditions define the original family of schemes.

The stability of scheme (2) with respect to the initial data is expressed by 
inequality (3a). But by the norm + one should understand a func­

tional depending on y k and y fc+1 and defined when p = 1 by the equality

(An expression for the norm when p Ф 1 can be found in [38J.)
We cite a theorem on the stability of scheme (2).

Theorem 6. Suppose A and R are constant operators, В >  0 and

Then scheme (2) is. stable with respect to the initial data with p = 1, so that 
the solution o f problem (2) when p = 0 satisfies the a priori estimate

where II Ук 11 is defined by formula (10). Under these same conditions the solu­
tion o f problem (2) when tp Ф 0 satisfies the estimate

I f  on the other hand 2R > A, then scheme ( lb ) is stable in t iA and estimateк
(3b) holds with II ~  IMI > — llyll^.

We note that estimate (3b) holds with

I! ^  fc+i tfib, ft) -  { У к+i  +  У к ) *  У н +1 4- У  к) (Ю)

r > { a . (11)

i r l i(lit)< i y 1 ||(V , (12)

where does not depend on \h i or t.
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Remark 3. If В > 8Е, 5 >  0 and 4R > A , the following estimate holds 
in place of (13):

Consider the three-level scheme

(14)

+  У*+г —  +  В  _|_ Аук -= фк. (2*)(E

which is in the second canonical form. It is obtained from (2) by formally re­
placing t2R  by E + т 2R. The condition 4R > A is sufficient for the 
stability of scheme (2*) with p =  1 in the norm II *y where

I r f o H  for Яч>|д а - Ц ф 1- ( 15)

Example 2. Consider the three-level weighted scheme

^ +l2x ~ ~  ^  “Ь (1 — — 0a) Ук +  ^

where A >  0. We apply A t  1 to scheme (16) and reduce the resultant equation 
to the canonical form (2) with operators

В — A~x 4- (ax — o<i)xE, R =  7 * ( a i + a t)E, Л  -.E.

'V
Since R  and A are selfadjoint constant operators, it follows from Remark 3 
that scheme (16) is stable for any nonselfadjoint A —A{t) >  0 if o1 > o2,

ffi +  °2 >
Example 3. The weighted scheme

JLi— —---- —  -f- A (<з2yk-il +  (1 — 0i — Зг)Ук +  GiVk-i) =  (17)

where A — A* >  0, reduces to the canonical form (2*) with operators

Я =  S -± ^ .4 , В  =  (<5j--- 6g) XA.

The conditions R  +  if /r?  >  % A, В >  0 are satisfied for аг > o2, +  <?2 >11
10. From the preceding we obtain ample rules for verifying the stability of 

concrete schemes: 1) reduce the difference scheme to the canonical form ( 1) 
or (2) and thereby determine the operators B, A or B, R, A ; 2) introduce the 
space Hh of mesh functions (depending on the structure of the scheme operators) 
and investigate the basic properties (positiveness, selfadjointness, etc.) of the
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scheme operators as operators on Hh ; and 3) verify the satisfaction of the suf­
ficient stability conditions indicated above. If the sufficient stability conditions 
are satisfied, the given scheme belongs to the class of stable schemes and the a 
priori estimates obtained for two- and three-level schemes of general form can be 
used.

The stability of multilevel schemes has been considered by A. V. Gulin in 
[38]. Here it is shown in particular that the sufficient conditions obtained in 
[35] for the stability of three-level schemes are also necessary in the case of con­
stant operators. The following necessary and sufficient stability conditions are 
found:

|Г » ..« (1Р> « Р “ lo l lop ) .  p =  « v .

where II * 11̂  j is an analog depending on p of the norm (10). These condi­
tions have the form of linear operator inequalities connecting not only A and 
R  but also В when p Ф 1.

11. The stability theory presented above bears a constructive character and 
can be used not only for investigating the stability of concrete schemes but also 
for constructing new schemes of a prescribed quality. This possibility is connect­
ed with the fact that 1) the writing of schemes in the canonical form ( 1) with 
В =  E  +  t R  (see (6)) or (2), (2*) permits one to distinguish the operators R 
(regularizes) responsible for stability, and 2) the sufficient stability conditions,
R > QqA or 2R > A for two-level schemes and 4R >  A for three-level 
schemes, impose weak restrictions on the arbitrariness in the choice of the regu­
larizes R.

If the given scheme (1) is unstable it can always be replaced, by varying 
only the operator R, by a stable scheme with the same operator A.

Once we have classes of stable schemes, it is natural to seek in these classes 
schemes of a desired quality satisfying the additional requirements that they 1) 
approximate the original equation to within a certain degree, and 2) are 
economical. The requirement that they be economical usually means in the case 
of the nonstationary problems of mathematical physics that the number of arith- 
metric operations used to solve the difference problem must be proportional to 
the number of mesh points used.

Basically, the method of regularization consists in passing from an original 
(for example, an explicit) scheme to another scheme of a desired quality by 
varying the operator R (and possibly also the operators A and B).

Since the stability conditions have the form of energy inequalities, viz.
(Rx, x) > o0(Ax, x) for (6) and (Rx, jc) >  (Ax, x)/4 for (2), it is natural to 
choose as R  operators of as simple a structure as possible that are energetically
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equivalent (semisimilar (see [39]) and equivalent with respect to the spectrum 
(see [50])) to the operator A. Suppose A and A 0 are energetically equivalent,.
i.e.

Yi^o < -4  <  у2A 0, Ya >  Yi  >  0- ( 18)

Choosing R  ~ o 4 0, we obtain a stable scheme (6) for a > v0y2 or a stable 
scheme (2) for a > 72/4 .

It should be noted that various forms of energetically equivalent operators 
are used in the theory of approximate methods of solution of differential equa­
tions and systems of algebraic equations (see, for example, [49] —[53]).

We indicate some examples of the choice of a regularizer R.
1) R — oE, where E is the identity operator, о ^  oQ\\A II for (6) and 

a > MB/4 for (2).
2) R = oAt or R = o 4 2, where A t and A2 = A* are adjoint 

(“triangular”) operators, A 0 =  А г + A 2,

— f f j ] )  Ъ  fo r '(6) and з >  у  7 2 for C2)-

3) R  is chosen so that В =  E  + tR  for (1) and В 4- 2тR for (2) are 
factorized operators that are representable in the form of a product of a finite 
number of operators of simpler structure:

p p
В =  £ [ (E  -f- t R a) for (1) and В  -J- 2 rR  =  [E -f- 'f^ a )  for (2).

a = l  a—1

These schemes will be called factorized schemes. The following two special 
.cases will be considered.

a) The Ra, a =  1, * • * , p, are positive, selfadjoint and pairwise commuta­
tive operators. Here a factorized scheme (1) is stable, for example, under the 
condition R0 =  R a > ¥lA. For if scheme (1) with В =  E +  tR 0 is

Ли»
stable, the factorized scheme with В — П^ _ 1 (E +  tR) is also stable since 
B > B .

b) p = 2,R  = R t + R 2, R 2 = R*> Here a factorized scheme is stable 
when 2R > A.

The methods employed in practice to obtain stable schemes for concrete 
problems can be regarded as elementary examples of regularization. Thus the 
explicit scheme of Du Fort and Frankel [40] for the heat equation belongs to 
the class of stable schemes (2) with В — E, R  =  oE and о >  II ,411/4, while 
the symmetric schemes of V. K. SauTev [41] belong to the class of stable 
schemes (6) with R  =  aAx or R  =  aA2> A f  = A 2 and A j +  A 2 — A.
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These schemes are obtained from explicit schemes by means of transformations 
corresponding to the introduction of elementary regularizes (the identity operator 
or triangular operators). The economical methods of alternating directions (schemes 
with a splitting operator in the terminology of [42]; for the literature see [42] 
[48]) are based on the use of factorized schemes with the R a being pairwise 
commutative or “almost commutative” (in the case of equations with variable 
coefficients) difference operators that correspond to elliptic operators containing 
derivatives only with respect to the variable xa (“one-dimensional” operators).

The general principle of regularization permits one to obtain new absolutely 
stable economical factorized schemes for the basic equations of mathematical 
physics with variable coefficients [34]. Elliptic difference operators with con­
stant coefficients are chosen as the regularizers R for this purpose. For example, 
an elliptic difference operator with a diagonal block matrix, the blocks of which 
are also diagonal matrices, is chosen as R  in the case of a system of parabolic 
equations with mixed derivatives in a ^-dimensional parallelepiped. A two- or 
three-level factorized scheme is then constructed. The process of solving the 
difference equations is reduced to the successive application of a standard three- 
point (in the case of second order equations) sweep algorithm.

Especially good opportunities for regularization are afforded by the use of 
three-level schemes, since in this case it is possible to preserve second order 
accuracy in т {R is multiplied by t 2 ). In the case of two dimensions absolutely 
stable factorized schemes of accuracy 0{t2 + h2) are obtained for parabolic 
equations with discontinuous coefficients when the lines of discontinuity are 
parallel to the coordinate axes. We note that the regularization of three-level 
schemes is generally carried out by varying not only the operator R  but also 
the operator В (this is the case, for example, under certain methods of factori­
zing the operator В + 2тR).

To each operator A there can be put in correspondence a large number 
of operators of simpler structure that can be used as regularizers for two- and 
three-level schemes. The compilation of a catalog of regularizers and the choice 
of the best regularizers is an important problem of the theory of difference 
schemes. For various elliptic operators it is possible to use one and the same 
regularizer R. This makes it possible to create standard programs for solving 
classes of problems. In this connection the algorithm for determining the solu­
tion at a new level is not changed, but the concrete form of the operator A of 
the problem is taken into account in calculating the right side.

12. Until now we have considered the stability of schemes (1) and (2) 
relative to the right sides and the initial data. In the case of an actual computa­
tional algorithm for solving problem ( 1) (or (2)) the presence of rounding errors
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means that one is actually finding the exact solution not of equation ( 1) but of 
an equation with perturbed operators B, A and (p, y 0. Therefore the notion of 
stability must be widened- Clearly, by the stability of an actual scheme one 
should understand not only the continuous dependence of the solution on 
and y 0 but also its continuous dependence on US -  Bl and \\A -  A II. The 
method employed by us above for estimating the norm of the translation oper­
ator of an equivalent explicit scheme in conjunction with the energy method 
permits one to obtain a priori estimates expressing the (uniform in h and r)  
stability (coefficient stability) of the solution of problem ( 1) relative to the oper­
ators of scheme (1). It has been determined that for this to be the case a scheme 
must have a certain “reserve of stability*’. In particular, scheme ( 1) has coefficient 
stability when 2R > A.

§2. Iterative schemes

1. The theory of iterative methods for solving the equation

Au = / ,  (1)

where A is a linear operator defined on a real Hilbert space H, is a branch of 
the general theory of stability of difference schemes.

Iterative schemes are written in the same canonical form as difference 
schemes for evolution equations.

A two-level (one-step) iterative scheme has the form

^kO*fc + i “  Ук^тк+1 АУк “ /> к ~  0, 1, 2, * * * , * > €  H (2)

where k  is the iteration number, y k is the iteration of number к, r fr+1 >  0 
is a parameter and Bk is an arbitrary operator having an inverse Bk 1. If 
Bk = scheme (2) is explicit; if Bk Ф E , it is implicit. Since the solution и 
of equation ( 1) satisfies (2), the error zk = y k -  и satisfies the homogeneous 
equation

В k —-i.1 ------- A zk =  0 , к =  0 , 1, 2 , . ,  ., zq — Уо — и. (3)
Mm

The estimation of the rate of convergence of the iterations in scheme (2) reduces 
to the derivation of a priori estimates expressing the stability of scheme (3) with 
respect to the initial data.

The original family of schemes (2) is defined by the conditions 

A =  > 0 ,  B k ^  B k* >  0.

The implicit scheme (3) is equivalent to the explicit scheme
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-4 + 1

where 5fc+1

— £ — 0 , 1 , . . . ,  *S&+j - E —

C fr =  Л  2 2 ,  4  =  ^  2 4 »
is the translation operator. Hence

4  — ■* « 4 )

14  К II r j l lk o j! ,

7\г “  ^  П 1-------^ 1»

4 'I в  [I 4  II д»

(4)

where Tn is the solving operator of scheme (4). Thus

II xn | Чп II xo I!» 3 4  Ia I z° Ha ’ if [j I Qn- (Ф

The iterations converge in ИA if qn —► 0 as n —► The norm of the oper­
ator Tn depends on the Bk and r fc+1, which should be chosen from the so­
lution of the problem of determining inf|[7^|| or inf qn. The basic problem of 
the theory of the iterative schemes (2) reduces to an estimation of the norm of 
the solving operator of an equivalent explicit scheme and a choice of the iterative 
parameters {тк + x} and operators {Bk} from the minimum condition for this 
norm.

Only the bounds of operators or the equivalence constants of the scheme 
operators are used in the theory of iterative methods. All of the results obtained 
by spectral methods are naturally obtained by estimating the norm of the solving 
operator with the use of the definition of the norm of an operator function. The 
finite dimensionality of the space Hh is nowhere used in this connection.

2. In the case of “stationary” schemes with constants Bk + 1 = В and

4 + i  = r :

В — ------- A zk =  0 , £ — 0 , 1 , 2 , . , . ,  z0 =  yQ и H  h, (7)

the translation operator S — E — iC  is a constant, In -  S n and the problem 
of determining inf tl Tn II reduces to the problem of minimizing the norm of S. 
The solution of this problem is well known [60]; in fact, if y x and y2 are 
bounds of the operator C such that

Г1Ж С < Т а # ,  Та> Ti>  0 , (8)

then inf 115II is achieved when r  =  t 0 =  2j{yx +  y2) and is given by the 
relations

inf|U9|| =  \ E  — T0C|| =  po, Po =  , I  =  } ' .  t<,= - 4 - .  (9)
->o 1 . % ’ * Тг Ti t * Тг
In addition the estimate
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33» Id <  Р? l zo ]D, D -  A or D =  B t (10)
holds for scheme (7) if

(H )

since conditions (8) and (11) are equivalent when C =  AVlB ~ 1A V2 or C = 
ВГ*АВ~*  (see [36]).

The method of reducing the implicit scheme (7) to an explicit scheme per­
mits one to prove the computational stability of scheme (2) with r  =  t0. The 
choice of the operator В affects not only the number of operations needed to 
calculate a single iteration but also the number n0(e) of iterations, where e >  0 
is the prescribed accuracy of the iterations. It is therefore natural to choose В 
from some admissible family of operators so that 1) the ratio £ =  7 |/y 2 is 
maximized (p0 is minimized) and 2). В is an economical operator (the num­
ber of operations needed to solve the equation By = ф for any ip E H  is mini­
mal in some sense, for example, with respect to an order relative to £ for £ -► 0).

In constructing В one usually starts from an operator R =  R* (see [39], 
[4 9 ]-[5 3 ])  that is energy equivalent to A and B:

c17? < ^ < c 3fi, c2 > Cl> 0 , ( 12)

Га#. T2 > T i > ° -  (13>

Then inequalities (11) with 7 j =  cxy x and y2 =  c2y2 are valid. We represent
lb

R  in the form of a sum R  =  R i +  jR2, where R t and R 2 =  R \  are disjoint 
(“triangular”) operators and consider the factored operator

B =  (E +  a R J iE  -г <o*s), В  =  В* >  0, (14)

where со >  0 is a parameter. The numbers y^ and 72° depend in this case 
on the parameter со, which should be chosen so that the ratio £ =  y 1 ly 2  “  

Ci 7 i / c272 or, what is the same thing (since and c2 do not depend on со), 
the ratio 74/72 =  /(со) is maximized [49]. We have

Theorem 7. Suppose R 2 -  R*, R -  R x + R 2 and

R  > « £ ,  | > 1 д  (Дат, x), Д > « > 0 .  (15)

Then the formulas

Ti -
6

2 (i +  V^) ’ T2 =
6

4 * V
Ti _  2 У Т  
7* i  +  V T ’ n =  <16)

are valid when со =  2/ч/*Д.
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Knowing and 72, we find y 2 =  y2 = сгЧг To "
2/(7 j +  72). The following estimate of the number л0(е) of iterations as 
n -► 0 holds:

In practice one often applies factorized operators of the form

В  =  (Е +  a l R 1)(E  +  о ,й , ) ,  (17)

where R % and R 2 are commutative selfadjoint operators. An optimal choice 
of the parameters озг and co2 from the condition that yx/72 be maximized 
can be made without difficulty in this case.

3. We now consider the iterative schemes (2) for equation (1) in the case 
when A >  0 is a nonselfadjoint operator and

В  =  В* >  0. (18)

The equation for the error zk = y k -  и is equivalent to the explicit 
scheme

^itti =  A =  0 , 1 , 2 , .  . i  =  E xCt Xq £  ffj,, (19)

where С =  В~'ЛАВ~^  and xk =  B ^zk , so that II -  \zk Нд . Bearing in 
mind this connection between the explicit scheme (19) and the implicit scheme 
(7) for the zk , we can confine ourselves to a study of the explicit scheme (19). 

Suppose

С > Х ! Я ( or |C a rp < T , (C a : ,  x) for all x ^ H h.

C b > r i > 0 ). }

Then the estimate

| 5 | < У 1 ^ Т .  S =  £  (21)

of the norm of the translation operator holds when r = l/y2. This estimate is 
rough, as can be seen from the example of scheme (7) with В = E + coA and 
r  =  2cc. Suppose

Л > 6£ ,  | Л х | г < Д ( Л ж 1 ж). Д > 6 > 0 . (22)

< v\- V r i
+ W A 1

The estimate
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was obtained in [49], whereas formula (21) implies

m < Y  r + n ’

In order to improve the estimate it is necessary, following [51], to dis­
tinguish the symmetric and skewsymmetric parts of the operator C;

С = С 0 +С, ,  C0 --“ •{C-l C'), С, =  -1-(С-С*). 

Th e o r e m  8. Suppose

T i#  < C „ < T S£ ,  II с ,  К  Гз, T2 > T i > 0 , r , > 0 . (23)
Then, when

T#(i — xs) ,
T =  - г  -Й 5 Г  ’ ****  To “ ■Tl +  T2 ’ X — 1r*

ТПТ* +  T|
1 —$

p0 — 1 -1-1 ’
(24)

one has the estimate

inf [ S K I  Я -  t C ] <  p, where p -  <  1, (25)

which when к = О (С =  C*) goes over into the estimate

li S  j| po (26)

when т — r 0 ; Le. estimate (25) is unimprovable.

In [51] approximate formulas have been obtained for T  and p in the 
case when Hh is a finite-dimensional complex space with a scalar product and

C =  C0 -r /Cl , C0 =  Ke C-= ‘/.(C-.-C*), C£ — ImC — -|т(С — C).

Conditions (23) are equivalent to the conditions (cf. [50], [51])

3 i i ) < r s ( / b ,  j:), г е Я /м (27)

where A 0 — ЩА +  A*) and A x — 14(4 -  Л*).
Suppose Я =  R* >  0 and

А ^ С ъ Н ,  ( / Г М ^ ,  у), < * > * > 0 . ( 2 8 )

If y xB < R  < y2B, then inequalities (27) hold withy^ = , i = 1 ,2 ,3 ,
c3 >  0. The factorized operator (14) can be taken as B.

4. The application of the iterative methods described above assumes a 
knowledge of the constants 7 S, 72, 7з and cx,c 2. In those cases when these 
constants are known inexactly or in general are unknown a priori it is expedient 
to make use of a variational iterative method such as the method of steepest
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descent or the method of minimal residuals. 
We first note that any iterative method

B yJ a ^ J L  +  A yk =  f ,
TJf-l

к —

can be interpreted as a method of corrections:

Ук+1 — У к — W7* — f t~ l r

0 , 1 , . . . ,  Уо €= Hfo > 

к. гк =  ^ У к ’- / .

(29)

(30)

where rk is a residual and wk is a correction.
If A — A * >  0 and В = B* > 0 , we can calculate r fc+ j by making 

use of the following formula from the method of steepest descent:

fe+1 ”  (АЩ,Щ)
(31)

This method converges in HA at the same rate as scheme (29) when т =  t q is 
constant (see [59]).

If A  >  0 is a nonselfadjoint operator, we apply the method of minimal 
corrections. The calculations are carried out according to formulas (30) with

—  (Awk'
Awk) ' ** *

The equation Au = f  is equivalent to the equation

Ci) =  f ,  v =  B * u , C =  B  2 4 в '  2 , ф = 7 ?  • / .  (33)

which can be solved by the method o f minimal residuals proposed by M. A. 
Krasnosel'skiT and S. G. Krein [60]:

xk+i ^  xk -  7h =  Cxk -  <p, r m  == . (34)
I! Сгк I. *

By taking (33) into account, we can readily obtain (30) and (32) from (34). It 
therefore suffices to carry out all of the arguments for (34). If С =  C* >  0 
and у гЕ  <  C <  y2E, the following estimate holds for (34):

|C j v -< pK p ; |C 3 » - < p |, p0 =  | ^ - | t i  =  (35>

In the case of a nonselfadjoint operator C we have

Theorem 9. Suppose C is a nonselfadjoint operator, C = C0 + Cj and 
conditions (23) are satisfied. Then the following estimate holds for (34):

1 Cxn — ф I <  p* I Cxо — ф ||, (36)

where p =  (pQ +  k)/(1 + кр 0) .( 1)

(l)T he case of a selfadjoint С =  C* has been studied in [60].
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The proof of this theorem makes use of the following

Lemma. Suppose C is a nonselfadjoint operator with bounds and 
72 >  7i >  0, so that 7 XE  <  С <  42E, and for some >  0

Then, i f

( E  — i C | < p „  where p# <  1.

1 — pa

(37)

T i <  * < T a . (38)

the inequality •

holds for all x  G H.

(Cx, г )г > ( 1  — p J ) |C * |4 * P (39)

Proof. Conditions (38) imply

IM P- 2x„(Cz, s) +  t5 |M P  <  p* IWI*. 

a  ||Сз|р <  2t,(Cx, * ) - ( ! -  p2)||*|p

and

i1 Cx 11a f-JLfJP
*c  1 1* iie L(c*. *) — ? I * r  1

(c*, *)2J * (40)

where q ~  (1 -  р2)/2т ф.
Let us consider the function \p(ei) — a -  qa2, where a =  llxll2/(Oc, лг) G 

( l /72 , 1/7j J , and find its maximum. The point 0̂  =  q}2 is contained in the 
closed interval [ l /72, I /7 J . Therefore max *p(a) =  <^a0) =  qj4, and con­
sequently

At 1
^ * ( “ ' < 5 5 1

1
- P 2 ■ 

*
But this together with (40) implies (39).

We proceed to the proof of Theorem 9. From (34) we find that

r k+i  =  r k -  rkrlCrh;

I^ + iil2= l^ ft I2 — (Crk, r ft) +  T L x i C ^ i '2 -  [ 1 -

By virtue of the lemma the expression in brackets does not exceed 1 —
(1 -  P t)  =  P i .  i-e-

lFi»-ilKp.i|r»ii, IWI <  p;  w .
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But pm — p when Tt = f~> which implies (36). The theorem is proved.
Rem ark . If the conditions C > y YE  and C ~ l > y 2 lE  are satisfied, 

the estimate

lC x n ~ 4 > l< 9 nlC xQ-q > i

where p. — \Л  -  £ and £ — 7 j /72, holds in place of (36).
The variational iterative methods with a factorized operator В have been 

applied by a number of authors (see, for example, [54]—[56]).
In the case of a nonselfadjoint operator A the factorized operator (14) can 

be chosen as B. The computational use of formulas (31) and (32) does not re­
quire a knowledge of the constants clt c2 and c3.

5. The operator В is sometimes given in explicit form and is sometimes 
constructed as a result of applying some (intrinsic) direct or iterative method. An 
example is provided by the so-called two-stage method (see [50], [50a], [51],
[58]), which we formulate as the method of correctness. The correction wk is 
calculated by solving the equation

R w ^ r k, rk =  A y k — } (41)

either by a direct method (in which case В =  R) or by an iterative method with 
solving operator Tmt Vrm 0 <  q <  1, under the zero initial conditions: =  0.
It is determined as the mth iteration: so that w — wk = Tmw,
where w is the exact solution of equation (41). Substituting w = (E -  Tm)~l wk 
into (41), we get Bwk -  rk , where В =  R(E -  Tm)~ l . If Tm = T*  and 
Tm and R are commutative, we get В = B* > 0 and 7 j =  I — q, y2 = 1 + 
q (see [50], [51]). The iteration y k +1 can be calculated by using scheme (30) 
with a constant parameter т =  т0 when A — A* >  0, and with т =  f  when 
А Ф A *, A = A0 + A j  (see (24)) if the constants clr c2 and c3 are known, 
so that

Г, =  (1 — q)ct , T2 =  (1 +  q)Cz, Гз =  (1 +  Я)сз-

If the constanta cv  c2 and c3 are not known or are defined inexactly, 
it is expedient to use the two-stage method of steepest descent (jk + l is calcu­
lated by formula (31)) when A = A*. As formula (32) shows, in the case of a 
nonselfadjoint operator А Ф A the two-stage method of minimal corrections 
requires the successive solution with the use of the inner iterations Tm of the 
two equations

R w  =  r k ,

R v  -- A  w k ,

=  0, w k =  t d m) ,  

i?(o) — 0, v k ~-
(4 2 )
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The correction wk =  is first found, after which the second equation is 
solved and vk — B~ 1Awk is determined as the mth iteration: v m̂  ̂=  vk . Here 
В =  R(E -  Tm) ~ 1. Knowing wk and B~lAwk , we can calculate the parameter 
тк + 1 by formula (32). Theorem 9 implies the validity of estimate (36), in which 
one should put

Ti=:C1{l — ?)* T2 =  ct {i +  q), Ts =  ^st1 +  ?)» cs >* 0 .

The requirement that R  and Tm be commutative is a very strong restriction 
and substantially contracts the domain of applicability of the two-stage methods.

6. We now consider three-level (two-step) iterative schemes for solving the 
equation Au = / ,  where A = A* > 0. A stationary iterative scheme can be 
written in the canonical form

В  ^ feTlgT Й * 4~ х(Ук-i - i 2ун +  ~h A y k =  / ,  к = 1 , 2 , , . . ,  (43)

in which y QEHh and у ,  € Я Й are arbitrary given vectors. Неге t > 0 and 
к >  0 are iterative parameters.

Alternatively the first approximation у  j can be calculated by using the 
two-level scheme

В Vl— У 9 
To

+  A yQ — / , t o  =
2

Ti — n
(44)

For zk —y k -  u, where и is the solution of problem (1), we have from 
(43) and (44) the scheme

В  [ 4 ** 2Г*  1 +  M +  zit-i)] 4- A zk — k  “  1* 2, • - * >

Zx =  yi — u e r / / h ,  (43*)

If y t is determined from (44), then

В  +  .4 *  0, r ,  =  2/(Tl +  Га), *0 с з  //„ . (44*)To
We will assume that

л =  л - > 0 ,  »  =  B - > 0 ,  1
r , » < 4 < r 2S ,  T a > r i > 0 .  J

The optimal values of the parameters r  and к can be obtained from the general 
theory of stability of three-level schemes (2) in § 1 with R = кВ.

Theorem 10, The solution o f  problem (43*) when т =  тг, к =  к , ,  where
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Ti =
V m T  x‘ '  4 f r » +  ’’»)• (46)

satisfies the estimate

(47)

where

l  =  T1
”  1 4 - У Т  ’ 5 t* ’

I zn+l l](lPl) r i B) (zn+1 piZn)f Zn+1 +  P!Zn)

+  ■j’ ((Ta^ -4) (zn+i Pizn}> zn+i Pizn)*

This same theorem also holds for problem (43*)—(44*). We note that 
K + i\ Pl j is generally a seminorm by virtue of formula (45).

If В ~ E , scheme (43) is said to be explicit. The explicit three-level scheme 
(43)—(44) was considered in [52] —[57] and [3], [41]. It was written in the form 
(for the equation Cv = ip)

jffc+i =  ( i  +  a){E  — t0C )xk — carfr_, - f  (1 4- а ) тьф, ft — 1 , 2 , . . .  
=  ( E — TqC )xq -j- Тоф, C — C*,

Yi Ya T0 =  2/(tT 4" Yz)*
(48)

The following estimate was obtained in [52] for a = p\ :

I k n — * > ]< ? „  К  — v l  n  =  1 ,2 -------

Here и is a solution of the equation Cv -  ip.
Reducing (48) to the canonical form (43), we get

1 -f- cc
t ==T = « t « КтГГг

=  T1, X
1

2to 4 (Г1 -ГГ2) = x a

i.e. the same values of тг and Kj as in Theorem 10. But the rate of convergence 
in the metric of Hh is worse.

The implicit scheme (43) can be reduced to the explicit scheme (48) with
i _i_ l

xn ~  J1 Уп% C =  A  3 1Г1А \ Ф =  A  2 B - i/
or with x i 1

r n В ynt С = В 2 A B  8 , Ф •

(Яcq11
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For С we have 7 1£ ' < C < 72£'. Using now estimate (49), for t ~ t1 and к — 
к |  we get that either

0  l 2n | D< ? « l zo|D, D =  A or D — B, (50)

if y t is calculated according to the two-level scheme (44) with t0 =  2/(7j +  72), 
or

2) 1 z» 1D <  (Po<fn+i +  ?») | lD +  <7« -11 S0. (51)

if y t is an arbitrary vector, z0 - y Q - u  and z x = y 1 -  u.
7. The factorized operator (14) can be taken as the operator B. When c t — 

c2 =  1 (R = A) Theorem 8 implies

t - T i - _ 2j5 L . l - V T  тП+Уч-УТу^
6 т* i + W  ”  1 - i -  V T  y r + T | + y T F n :

The number n0(e) of iterations satisfies the following asymptotic relation as 
17 0:

. £

In the case of a two-level scheme with the same operator В

n0 (e) i 1 1In —
4 \Tx\ 6

If A  is the Laplace difference operator, then 17 = 0(k2) and

«„(e) =  0 ( Tlf | „ i )

for a three-level scheme with the factorized operator (14).
The indicated scheme is applicable for the Dirichlet difference problem in an 

arbitrary domain of any dimension.
Any three-level scheme can be formulated as a method of corrections:

Уьг 1 =■= (1 +  a ) y k-  ayk~  0m;*, a  =  pj, 0 =  L t ? = * 0( l + a )f

yt Tr +  ТГа b. __ 1 9 *1 ■ 1  t * ' ■ ■ *1

where wk = B ~ lrk is a correction and rk =  Ayk -  f  is a residual.
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Let us formulate a two-stage three-level method. The correction wk is found 
as a result of solving the equation

Rw = rk

by the iterative method with solving operator Tm , 9 Tm I <  q <  1, under the zero 
initial approximation: =  0, so that wk = w and В — R(E — Tm) ~ 1.
The number of iterations in this case satisfies the estimate

In [51] a two-stage method was employed for an equation of elliptic type 
with variable coefficients. An alternating direction scheme was chosen as Tm> It 
was noted that the number of iterations was less than in the case of a two-stage 
two-level scheme. As can be seen from (52), an application of three-level schemes 
permits one to weaken the dependence of the rate of convergence on the ratio 
cxfc2, which is very important in the case of an elliptic equation with strongly vary­
ing coefficients.

A two-stage three-level variational iterative scheme was considered in [58].

1. In § § 1 and 2 our main attention was directed to a study of the stability 
of difference schemes. A second important characteristic of a difference scheme, 
which establishes a connection between it and the original differential equation, is 
the error of the approximation. The sense in which the given scheme approximates 
the original problem governs 1) the choice of the method of investigating the accur­
acy of the scheme and 2) the type of a priori estimates expressing the stability with 
respect to the right side.

In the course of developing the theory of difference schemes a review was 
made of the approximation criterion. Thus, by studying the rate of convergence of 
homogeneous difference schemes in the class of discontinuous coefficients, it was 
determined [61], [62] that the local error of the approximation (or of the 
approximation m the mesh norm C or L2) is not an adequate index of the accur­
acy of a scheme. A scheme was constructed (for the equation (kur)' -  qu —
—  /(*)) which on an arbitrary nonuniform net does not approximate the differen­
tial equation at any point but has second order accuracy [63].

The error of the approximation should be understood in some integral or

(52)

where
ci 1 - q
c l f 'M  '

§3. Total approximation method
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total sense, i.e. one should estimate the error of the approximation in negative (weak) 
norms that take into account its indefinite (with respect to sign) or divergent 
character (see [61] — [661)- Let us explain this by an example. Suppose given a 
difference equation Ay — where A  E (Hh -*■ Hh), Hh is a Hilbert space and 
A = A* > 0. The following exact estimate holds for it: M U  — I >̂1 _ i i Le. 

the solution у  in HA can be expressed in terms of the right side in

If, say, A > yA0, 7 >  0, and A Q — A$ >  0, we obtain instead of an exact equal­
ity the estimate liyiU <  llipll . . j / 7 - Suppose Hh is the space of mesh func-0 A q

tions defined on =  {xt =  ih, i =  0, 1, • * • ,N \h  = 1 fN} and equal to zero 
for i — 0, N , and suppose A 0y  — -  y xx . Then

к  i f

[9 ;Ue =  ( 2  (Ух, i)2h j  is the analog of the norm in

N - l  ЛГ- i   ̂ t/j
||q> j j =  Г 2  A ( 2  AqjfcV] * is the analog of the norm m 

Ao Li=i 4 = t+ i '  J

For nonstationary difference schemes, as was indicated in § 1, the solution 
in HA can be estimated in terms of +  lly>_ . A weakening of the

approximation requirements (foresaking local approximation of a desired order) 
permitted us to substantially extend the domain of application of homogeneous 
difference schemes.

A priori estimates for concrete two- and three-level schemes having the 
property of total approximation of elliptic operators can be found in [26], [29], 
[64].

2. The notion of approximation played an important role in the develop­
ment of the theory of economical methods of solving nonstationary problems of 
mathematical physics for the equations

- - Lu  -j- /  (x, £}, L) t <d foi 

^  — Lu-\- j ( x ,  t ),
(1)

where L is an elliptic operator and x = (x1( * * • , xp) is a point of a^-d i­
mensional domain G — G + Г with boundary Г, as well as for the correspon­
ding systems of equations (when и and/are  vectors).

Let озн =  {лс,.} be a net in the domain G and let toT =  {tj =  /т} be a 
net on the segment 0 <  t <  f0.

By an economical scheme one usually understands an unconditionally stable 
scheme such that the number of operations required to determine the solution is
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proportional to the number coftT =  X созт of mesh points used. This means 
that 0(N) operations, where IV is the number of mesh points, are re­
quired to pass from the /th  level to the ( /  +  l)th  level; in other words, there 
must be 0(1) operations at a single mesh point. The basic algorithmic idea of 
all of the economical methods consists in the writing of difference operations 
such that the process of solving them reduces to the successive application of 
standard algorithms (for example, the one-dimensional sweep algorithm) with the 
expenditure of 0(N ) operations.

All of the two level (using for the determination of y?+1 only the value 
of y 1 at the preceding level) economical methods can be written in the form

a—1
Д,»*™"- =  2  +  F>*г№, a -  1, 2 , . . . .  p, (2)

£■=0

where the yi+^fP t a  — 1, • • * , p — l, are intermediate values and the Ba and 
Cap are linear difference operators acting on у  as a function of x  €  while 
each of the equations Bay i+a*p = <pa with a known right side can be solved 
with the expenditure of 0(N ) operations (the operators Ba are called econom­
ical).

The first economical methods for solving the heat equation in the case when 
G is a rectangle were proposed by the American mathematicians Peaceman, 
Rachford and Douglas [67] — [69].

Various economical methods have subsequently been considered for typical 
problems of mathematical physics by Baker and Oliphant [72], Douglas and 
Gunn [48], Satd'ev [41], Bagrinovskil and Godunov [70], Janenko [71], [73], 
D'jakonov [42], Frjazinov [81]—[83], Andreev [84], Hubbard [94, [95] and 
others.

The economical methods are referred to by various names, for example, 
the alternating-direction implicit method [67]—[69], the decomposition method 
[71], the partial step method [73], the splitting operator method [42], the 
locally one-dimensional method [75], additive schemes [76] and the total 
approximation method. TTiis terminology, while possibly transient and reflecting 
the individual approaches of the various authors to the construction and inter­
pretation of the structure of the economical methods, affords a view of the 
various characteristic features of these methods (many of which comcide with 
respect to the algebraic structure).

From the point of the general theory it is expedient to differentiate the 
economical methods on the basis of the method of investigating them and, in 
particular, the notion of approximation. It should be emphasized in this con­
nection that in most cases the method of investigation also determines principles
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for the construction of economical schemes. The following two approaches are 
used for the investigation of economical algorithms.

1) The method of eliminating the intermediate values y i +alp, <* =  1,
• • •  , p  — 1, and reducing system (2) to an equivalent scheme “in whole steps”

=  (3)
T

with a factorized operator В — Bi • • • Bp . The properties of stability and 
approximation of an economical method (2) are verified for the factorized 
scheme (3). From this point of view the system (2) is interpreted as a method 
of realizing a factorized scheme.

2) The total approximation method, on which we dwell at length in this 
section.

The first approach, viz. the replacement of system (2) by an equivalent 
factorized scheme, has been applied in many papers ([67] —[69], [71], [73] and 
others). One can obviously start from a factorized scheme that is stable and 
approximates a multidimensional differential equation and solve the difference 
problem by using an algorithm of form (2) with economical operators Ba (see 
[42], [72], [74], [45] and others).

A general method for constructing stable factorized schemes was indicated 
in § 1 (see [34]). Economical factorized schemes can be obtained by choosing 
various economical difference operators, depending on the actual problem, as the 
Ra.

The requirement that problems (2) and (3) be equivalent can be satisfied 
with the use of a special method of assigning 1) boundary conditions for the inter­
mediate values у?+а*р , a  =  1, *** , p — l , a s  well as 2) the right sides F t+afp, 
This was first pointed out by D'jakonov [88] (see also [76], [77]). Also, the 
elimination (without inverting the operators Ba) o f the y I+0lfp, a — 1, * • ■ , 
p — 1, requires in a number of cases the pairwise commutativity of the operators 
Ba and Cap. We note that in a number of papers (see [67] —[69]) the econom­
ical algorithms are written so that the intermediate values can be eliminated with­
out imposing additional restrictions on the scheme operators.

Finally, a factorized scheme (2) with operator В  =  Bt • * * Bp is stable 
only under the condition of commutativity or “almost commutativity” of the 
selfadjoint operators {/?a }.

A very interesting economical method (the splitting method [71]) has been 
proposed by Janenko for the multidimensional heat equation

a  VI 0?ЦLau, u =  u{x, t ) ,  x - ( x l9. . . 1xp)t (4)
a —1 “
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The natural multidimensional weighted scheme
V

H— JL =  Л(о»;-‘ +  (1 — a)y’), Л = 2 ^ , Л а ~ ^ «  (5)
T a = l

is replaced by the system of homogeneous difference equations

f i / p - f  (1 — <j)y P ) t «--= 1, 2 , .  . .  , Pi (6)
p  (  i+  -

-------- ~ ------- =  Л а \o yJ'

or

IKyhaip — CayM*-Wp, Bz =  E  — <зтЛа, C* ~= £  +  (l  — o) tA*. (7)

The case when La is an arbitrary differential operator containing derivatives 
only with respect to x a (the fractional step method) has been subsequently con­
sidered in [73].

System (6) can be reduced by the elimination method to the factorized 
scheme

П Р « » М  =  П С ^ ,  (8 )
■з=1 а+1

which does not coincide with the original scheme (5) and approximates equation

(4).
The requirement that the factorized scheme (8) and system (6) be equivalent 

leads to the same difficulties as those discussed above. In particular, the passage 
from (6) to (8) is possible if the operators are commutative (for (6) this 
means that G is a parallelepiped). Difficulties have also arisen with the 
assignment of right sides for equations (6) in the case of an inhomogeneous equa­
tion (4).

In all of the papers [67] - [ 7 3 ] ,  [42]-[44] only domains of a special form 
(G is a /^-dimensional parallelepiped) were considered. Among them it is obvious 
that the algorithms of [68] , [69], [71] could also be used (upon formulating them 
more precisely) in the case of a domain G of more complicated form. It has 
turned out that the restrictions on the form of G connected with 1) the notion 
of approximation for the methods of [68] ,  [71]. and 2) the requirement of equiva­
lence of (2) and (3) can be removed by introducing a new notion of scheme (the 
additive scheme) involving an approximation of the differential equation in a 
weaker sense (in the total sense) [75]. The renunciation of the classical notion of 
approximation and its replacement by the weaker condition of total approxima­
tion have substantially broadened the opportunities for constructing economical 
schemes and have permitted one to obtain economical additive schemes for a 
significantly wider class of linear and nonlinear problems of mathematical physics.
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We proceed to a formulation of the notion of total approximation.
3. Let Hh be a normed linear space, let wf =  {tj =  /т , j  =  0, 1, * • • , 

/0} be a net with mesh width т on the interval 0 <  t <  t0, and let Ca p } 
Dap, Aap? B, etc. be linear operators from Hh into Hh that depend on h, 
т and possibly t  €  озт .

An и-level difference scheme was defined in § 1 as a difference (with re­
spect to the variable t) equation of (n — l)th  order:

l

P-0

with operator coefficients and the n — 1 initial conditions

1/(0) =  У 0 . У  (t) =  У 1 .........  У  ((« — 2)T) =  t/n„2.

We introduce a wider class of schemes.
An «-level composite scheme with period m (of order m ) is a system of 

difference equations
m n—2

2  C ^ ( t j)y(.ti +  ? X ) =  2  D. f ( t j ) y ( t l - 9 x )  +  U { t l), (10)
J3-1 p=o

where a  =  1, • • • , m and (n — l ) r  <  tj <  tQ, with operator coefficients and 
the given initial values y (kr)t к = 0 , 1, * • • , n -  2 (the number of levels is 
determined by the number of initial conditions). Here t}- takes the values

tj -  (n — l ) t  +  Amt, к — ОД, . . ,  , j =  n — 1 +  km.

In order to find y(t- + m r )  =  У}+т > where tj — (m + n — l ) r ,  it is necessary 
to solve a system of m equations with the operator matrix C — (Ca p) of 
order m X m.

When «2 =  1 the composite scheme (10) goes Over into the ordinary n- 
level scheme (9). When и =  2 we obtain a two-level composite scheme with 
period m (which we denote by S(2, m));

m
2  Ca${tj)y{tj  +  (^ ) =  -^aoy(^j) +  /a(^j)>

£>=l
(11)

a  =  1, 2 , . .  . ,  wi, ^ ( 0 ) =  yQ.

It is convenient for what follows to introduce the notstion yJ+a/m =  
and to replace т by r/m.
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Scheme (11) can always be written in the canonical form

А — {pi+aM (

1 =  0 ,1 .........  у (0) =  j/o-

It will be assumed below that scheme (12) is solvable and that the inverse 
operator B ~ 1 exists. The stability of a composite scheme is defined by analogy 
with §1. We require, in particular, the following definition of stability. We will 
say that scheme (12) is stable if the a priori estimate

m

is satisfied for any y 0 and t where the positive constants M x and M2
do not depend on ft, т or the choice of y 0 and and I • H(i) —
I * and 11 • ll(2j =  II • are certain norms on Hh.

4. In order to introduce the notions of accuracy and approximation for 
S(2, m) it is necessary to consider a Banach space # 0 of the solutions и = 
u(t) of the original continuous problem (cf. [49]). Suppose there exists a lin­
ear operator Vh from 7/0 into Hh such that uh =  Phu E Hh if и e  H0 
and the norm compatibility condition

lim fP ftttlL  = |u |o

is satisfied, where 11 * Sl0 is the norm in H0. Let {y^} be the solution of 
problem (12) and let ы(г), t E  [0, f0] , be the (continuous) solution of the 
original problem. The nearness of y^  =  y ft(ty) to u{tj) is characterized by the 
quantity Hz'II, where z'" = yj^ -  u^. Substituting =  z ^ “ /r” +

+  cJтт), into (12), we get for z ^ a^m the same system of equa­

tions (12) with right sides where ^  is the error of approximation at
the equation of index a  of (12) at the solution u.

A composite scheme (12) whose error of approximation is defined as the
sum

4> =  4>1 +  * » + • • ■  +  ( l4 )

of the errors of approximation for the individual equations will be called an 
additive scheme and denoted by AS(2, m). An additive scheme AS(2, m) 
approximates the original continuous problem if

a  — 1 , . .  . ,
(12)
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m a x l ^ L  - >0 for | A | * 0 ,  t - > 0 .  (15)

We represent фа in the form of a sum

m

■Ф«: M’a +  C  80 * *  2  - 0- ^
a = 1

The total approximation condition (15) will be satisfied if

m a x l ^ V y L  — 0 for |f c |— 0, t - * 0  and a  =  1 ,2 .........m. (17)

We establish a connection between the properties of stability, approximation and 
convergence for AS  (2, /я).

Theorem 11. Suppose an additive scheme has the properties o f stability 
and approximation, the following “smoothness” condition for the solution и =  
u{t) is satisfied:

^  Л/о, (18)

where M0 = const >  0 does not depend on т or A, and y 0 — uh{0). Then
the scheme converges and the following estimate holds for it:

l i f t 1 - 4 * ' f a

m m—l  m m

<  AT, m ax [ 2  K ; ( t , f c , +  * S  |  S  A aJ  £  * 4 < * , ) ) L ]  •

Effective a priofi estimates can be obtained under weak restrictions on the 
scheme operators in the case when Hh is a real Hilbert space.

Theorem 12. Suppose A a0 = О, В is a constant operator and the follow­
ing conditions are satisfied:

£  =  £ * >  0 , (20)
m
2  (4 * f£ p t£ a )> °  for any £ « ^ H , l t a  =  1 ,2 ..........in. (21)

«, £=i

Then the following estimate holds for the solution o f  problem (12):
тп m

№М 1д<1Ы в +  Л/з max [1 2  +  V *  2  * (22)
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where

I  у  b  =  VTW 7V),  M B - .  =  V  < p ) .

Corollary. An additive scheme (12) converges in HB i f  y 0 -  иА(0) 
and the conditions o f Theorem 12 and the following total approximation condi­
tions are satisfied

m ax
m

1 2  r *
a=l Щ-» 0 for [ A | —>-0, t —*>0

m *
max 2

<x—=i
where the positive constant MQ does not depend on т or h.

R emarks. 1) If

У о ^ Щ
m

(°). S s  ч>«
a —1 Б -1

0 ( | Л | Ч т ‘ ),

where к  >  0, / >  0, and the conditions of Theorem 12 are satisfied, then 
AS(2,m)  converges in HB at the rate of 0(\h \l + t*1), where k t = 
min (A, 1/2).

2) If, in addition, the smoothness condition (18) is satisfied with II * 11^ =
H • Й _ I ,th en  AS”(2, m) converges at the rate of 0{\к\{ +  т*2), where k2 — в
min(fc, 1).

5. The process of solving problem (12) is simplified if A = (Aap) is a 
lower triangular matrix (Aa^ =  0 for /3 >  a), so that

2  Aaiy
. .  ft . .  a2+—Г J-H —

P=0
(23)

The passage from the /th  level to the ( /  +  l)th  level is effected by successively 
(from a  to a  + 1) solving the equations

B ayir«t™ =  Ф ,f Ba = В -f t Atta,

3+a-I a—1

® . ■-= в ?  m -  x 2 Тф
• t a -ГГ ТП

P=o

for a  =  1, • * • , /я, which can be written in the form
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«-1
у1" 1” =■ 2  -I- tF „

P=o
a  =  1, 2 , .  . . ,  m. (24)

In this case AS(2, m) has a lower triangular translation operator matrix 
S =  {Sap). These AS(2,m)  with a triangular matrix (Sa^) or ( 4 ^ )  will 
be called triangular additive schemes.

It is not difficult to check that all of the economical algorithms of form 
(23) that correspond to two-level factorized schemes and can be interpreted as 
composite schemes belong to the family of triangular additive schemes and have 
the total approximation property. We indicate some special cases of triangular 
additive schemes (cf. [68], [71]):

^«p — A  a6ap,
(

1 ,*  =  P,
0,cc=£p. (25)

A a$ я  О^арбарН- (1 — О) ^а6<к-1,р,

а р -----гр А  аб<хЗ -) р  А  а- |6 а-1 , $•
(26)

For scheme (25), for example, condition (21) of Theorem 12 is satisfied if 
(A ay , y) > 0 for all y<=Hh, a = 1, • * ■ , m.

Additive schemes with a diagonal matrix (4 a 8 ) will be called locally one 
dimensional.

6. A basic question is the following; How can one construct additive 
difference schemes o f a given order of accuracy?

The following method for constructing additive schemes, that guarantees 
total approximation, was proposed in [75].

Consider the equation

~  — Lu f  (я, £),

(xi , . . .  , J?p) €5 G, 1 6  [0, ift], и (x, 0) =■ Uq (я ).
(27)

Suppose the operator L acting on и as a function of x  can be repre­
sented in the form of a sum of operators La of simpler structure (for example, 
“one-dimensional” operators, iл . operators containing derivatives only with respect 
to xa):

L  =  2  /,«. (28)
a - I

We represent /  in the form of a sum
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2 / « ( * . 0  (29)
a —1

and rewrite equation (27) in the form

2  1 \*  -  0 , (30)
a= 1

where Pa u = p ~ l bu(bt -  Lau -  f a .
We introduce on the segment 0 <  t <  f0 the net cor  =  {tj =  /т, /  =  0,

1) * * * »70 } with mesh width r. Each mesh is divided into p equal parts by 
introducing the points = ( /  + а/р)т, й =  1, * * ■ , p — 1.

Instead of equation (30) we will solve on [f/> */+il the system of equations

^at>(«) =  0 for t e  Да. where Д a =  (t ^  a \ ,  (31)
\ J-r—  }

which are connected by the conditions
a  I* 2, p)

у
(« -! )

д 2 ,3 , .  • .  i pi pd) f t )  ” v (*))•

where v(tj) =  and u(0) =  ы(0) =  u0.
Each of the equations PaV(a) =  0 is solved on its own interval Aa .
If each of the equations Pav ^  =  0 is approximated in the ordinary sense 

by a (two-level) difference scheme with mesh width r/p, we obtain the following 
system of difference equations for determining y I+l, given y*:

Па£(а) =  л  =  1» 2 , ------p , y(p) (32)

We show that the composite scheme IIj -► П2 Пр approximates
equation (30) in the total sense if each of the schemes (32) approximates the 
corresponding equation of (31) in the ordinary sense, i.e. if at any sufficiently 
smooth function the quantity

^ й =  П  A ' aip- ( p aut ^

tends (in some norm) to zero as т -* 0, Iftl -> 0.
The error of approximation at the solution и = u(x, t) 

for the scheme Па is obviously equal to

%  =  UaU^/P  -  {Pu)£«iP +  ЧГа.

Taking into account that (Pa, u.y+a/p — (Ра , « ) '+w +  O(r), we get фа =

(33)

of equation (30)
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Фа + К>  where К  = У а + ° i T) 311(1 Фа =  (Pau)l+Yt'О
Hence by virtue of equation (30) = 0, and the total error of approxi­

mation for the additive scheme (32)

*  2  ^  =■- 2 t ;  (34)
u=i a —i

tends to zero as \h\ -*■ 0 and т -> 0, since the have this property.
Thus the additive scheme (32) approximates equation (27) (in the total sense) 

if each of the schemes (32) approximates the corresponding equation of (31) in the 
ordinary sense (on a net with mesh width r/p).

This follows from the fact that the system of differential equations (31) 
approximates the multidimensional equation (27) in the total (integral) sense.

In fact, the error of approximation for the equation Pau(a) = 0  at the solu­
tion u ~ u {x , t )  of equation (27) is the residual Pau(t)} where t £ Д а .
Since Pau =  (Ра«У+у? + 0(t) for t e  [t]S tf + l ] , we get , where
Фв ~  (РаиУ+1А and =  0(r). Hence

V p  p

2  4 - .  =  o , т  —  2  * '«  -  2  v* =  o(x),
a =i a= i a=i

i.e. the additive system of differential equations (31) approximates equation (27) 
with first order in r.

Clearly the total error of approximation for system (31) can be determined by 
analogy with (34) as

P. *j+a/p

Y = 2 . - f  5 'V“d t-т
“ ■4l «-*

It is not difficult to note that the analogs of the above arguments remain 
valid, so that f

V-HOt/P

* - ‘ ‘ , .Tli+ у
From the stability of system (31) and the total approximation we obtain the con­
vergence of the solution of problem (31) to u(x, t)..

It should be emphasized that the total approximation for (32) and (31) at 
sufficiently smooth solutions of problem (27) is guaranteed by the satisfaction of 
conditions (28) and (29): the operator L is the sum L 1 +  * * * +  Lp =  L and the 
right side /  is the sum f x + ■ • * + fp = f.

The question of the nearness of the solutions of problems (27) and (31) has 
been studied by Janenko [89]. He considered the Cauchy problem in the half­
space br 1 <  t >  0 for the system of equations
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(x, t) ----- L (.X( t ,  />) a  +  /  (jf, *), u (*. ° )  =  “ о И .  (35)

where u(xt t) and fix,  f) are vector functions of a vector argument, and 
L{x, t, D) is a linear differential operator whose coefficients depend on x  and /.
It was assumed that L is representable in the form (28) and the Cauchy problem 
(35) was replaced by the composite Cauchy problem (31) in the particular case f a — 
flp. By making use of the property of total approximation implied by condition 
(28) and interpreting it as the property of weak approximation of the coefficients of 
the differentia) equation the author proved that

\ v { x , t )  — u{x,

(under the condition of sufficient smoothness of u(x, /))■
7. The technique indicated above of constructing additive schemes with a 

guaranteed approximation has subsequently been used to obtain economical schemes 
for many of the linear and nonlinear problems of mathematical physics (see [75], 
[76], [78], [45], [90], [91], [92]).

The total approximation method has permitted the extension of modified 
algorithms [68], [71] to the case of an arbitrary domain as well as the determination 
of a number of new homogeneous economical additive schemes for the linear and 
quasilinear equations and systems of equations of mathematical physics.

In this regard it became apparent in connection with a study of equations (27) 
with operators La depending on t that one must alter the composite system of 
differential equations approximating a multidimensional equation.

In [79] the following abstract Cauchy problem was considered in a Banach 
space В :

4- . 4 ( t ) u  — f( t ) ,  0 < « < « , , ,  !i(0) =  u„, « , g 8 ,  (36)
(It

where A(f) is a linear operator with an everywhere dense in В domain of definition 
that is representable in the form of a sum

p
- ( ( | ) = 2 л ( о .  <37>

3 —1

and u(t) and f{t) are abstract functions of t £  [0, / 0] with values in B.
The uniform net coT =  {tf- =jT,j =  0 ,1 , • * • , / 0} with mesh width т is 

introduced on the segment 0 <  t < t0. Problem (36) is replaced by the system 
of Cauchy problems
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dv i
ИГ +  t е  [tjf vn i{t3) =  v щ ,Я-1' (l>
dv

(?)
dt iA^v^  / 2 (0» y(2)^i)

(38)

dv(«)
dt “h  Л аи{а)=  f a ( 0 »  t  £  [* j, ^ +1I , (* /)  “  ( f j +1)fj+iJ » (*-1)v

rfy, 4
~ d t Ь  ^ р У ( р ) — / p ( ^ ) .  i  ^ J+ l] t  % > ) ( * / ) “  У(Р-1) ( ?/ +  1 )

and it is required that

® (*m ) = -® (p ) (* ы )»  /  =  0» * , —n /0 —  1 ; v  (0 ) =  щ .

Hie question of the proximity of the solutions of problems (36) and (38) was 
investigated. We indicate the main results.

1) If Aa (ff) and A^(i"), а Ф 0, a, fJ =  1, • * * , p, are commutative: 
Aa(t')Ap(t”) — Ap(t")Aa(t') for any t \  f  G [0, t0] , then when /  =  0 the 
equality

* (*J> =  и Vi) (39)

holds for all /  =  0, 1, ■ • • , / 0.
If f  Ф 0 it is possible to select fp when f y =  f 2 = * * * = / p -1  =  0 in 

such a way that (39) will be satisfied.
2). If Aa and Ap are noncommutative and the solution «(f) of problem 

(36) satisfies a “smoothness” condition of the form

В i4ntA$u I ̂  Af,

where II • D is the norm in В and M =  const >  0, then under condition (29)

= 0(x ) (40)

for all /  =  I , • * * , / 0.
The following question arises: Is it possible to construct a system of partial 

Cauchy problems such that
I®*— »*| =  О ( t 2). (41)

We write by convention the composite Cauchy problem (38) in the form of a 
chain: Ax -»■ A2 Ap. Consider now the symmetric chain

• ■ . —"K -  A 1
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or

i
■> Лг A v

But this composite Cauchy problem (under an appropriate choice of the f a and
some additional "smoothness” conditions on u0 and / )  is such that estimate 
(41) is valid (see [72]).

The idea of symmetrization was developed by I. V. Frjazinov, who con­
structed and investigated a number of symmetrized additive schemes for equations 
of parabolic type in graduated domains composed of p-dimensional parallelepipeds 
(see [83]). Another symmetrization method has been applied to obtain econom­
ical schemes in the case of the equations of acoustics [93].

Let us show that the chain of Cauchy problems (38) approximates problem 
(36) in the total sense.

We put z(a){t) = for a  =  2, 3, * * - , p, z(a)(0  =  v(a)(t) -
u(t), and write the equations for the z ^ ;

dz(a*
' h A a z(a) =  *|\x* t ^  £j+li ~  ■ 1 Pi

ZU) =  Z(a-1) for a  =  2, 3, . . . .  p,  zfv  =  zf, zg* =  zi+1, z (0) =  0.

The right side фа is the error of approximation of equation (36) by the equa­
tion of index a  of (38) in the class of solutions и = u(t). Clearly, фа(0  =  
f a(i) ~  Aa(t)ui+1 for a >  l and ^ x(f) =  f t (t) -  At (/)«(*) -  dujdt. We 
represent фа in the form ipa(0  — Ф ^ 1 +  0(т) or фа = фа + \p*, where 
фа — ( fa -  Aau -  &a idufdt)**1, where l is the Kronecker delta. If 

Л  +  '  * ‘ +  fp = Л then

2  'Ф* — ^  1 2  'Фа |
a= i “=1

2 + : i -  ° W .

i.e. problem (38) approximates problem (36) in the total sense.
The main difficulty in constructing 0{t2) additive schemes is the assign­

ment of boundary conditions for the intermediate values у*+а/р (this problem 
does not arise under an abstract formulation); in order to satisfy the requirement 
of 0 ( t 2 )  total approximation it is necessary to introduce corrections to the 
natural boundary values.

The method described above for constructing economical additive schemes 
with a preliminary construction of the composite differential Cauchy problem (38)
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and a suitable choice of the operators A a followed by a difference approxima­
tion of each of the equations (38) is also very practical and is commonly used 
as a heuristic technique for obtaining economical additive schemes (see, for 
example, [72], [83] , [55]). Let us cite an example.

Consider the case when A  =  A a(J and the matrix ( A a(J)  is sym­
metric. We represent ( A a<J)  in the form of a sum of two triangular matrices:

(Л<**) =  (-Abfi) (Л аг£), =  0 for P >  ct, J l 'p =  0 for (3 <  a ,

—■ ТГ X j , "1“

and introduce the operators
a

■Ae ~  2  fo r ~  1 » 2 , . . .  , p,
b =  L
ap 2p

tA a ~  2  2pU-3 for Й ”  P T  1» • . . t =  7 , lA-CL.
b=*  a = i

Following this we .construct the chain Aj -> A2 -► * • ■ -*■ A2p of problems 
(38) and approximate each operator Aa ^ by a difference operator A a@ depen­
ding on Ь(ит) and defined in a normed linear space Bh. As a result, we obtain 
the following triangular additive scheme:

У?+«/вр_yj-r^-D/ip
it

v>
+  +  2  =  q>Jr>ra'’,

a~ i
ct “  1, 2,

where for a = I , " - , P  and =  ^ Jp  + r-a .ap  + t - ^  for
a  — p  +  1, * * ■, 2p. If Bh is a Hilbert space and the matrix A ~ (Aap) is 
nonnegative, then the conditions of Theorem 12 are satisfied and the a priori 
estimate (22) holds for the triangular additive scheme.
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