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SOME QUESTIONS FROM THE GENERAL THEORY
OF DIFFERENCE SCHEMES

A. A. SAMARSKIl

One of the rapidly developing branches of modern mathematics is the the-
ory of difference schemes for the solution of the differential equations of mathe-
matical physics. Difference schemes are also widely used in the general theory of
differential equations as an apparatus for proving existence theorems and investi-
gating the differential properties of solutions. But here one is primarily interested
only in the asymptotic (for & —0) properties of the difference approximations.

The theory of difference schemes has a number of special problems.

In the final analysis, of greatest importance from the point of view of
numerical analysis is the determination of algorithms permitting one to obtain a
solution of a differential equation on an electronic computer with a prescribed
accuracy in a finite number of operations. One encounters in this connection
the question of the quality of an algorithm, i.c. the manner in which the accur-
acy of the algorithm depends on 1) the amount of information on the original
problem, and 2) the amount of computation (viz. the machine time spent in
solving the problem with a prescribed accuracy). Experience with computers has
stimulated the formulation of a number of special (for the theory of difference
methods) problems: 1) the determination of the achievable order of accuracy of
difference schemes for various classes of problems, 2) the construction of schemes
for the solution of a wide class of problems with a certain guaranteed accuracy,
3) the construction of schemes giving increased accuracy in narrower classes of
problems, 4) the development of methods for investigating the stability and con-
vergence of difference schemes, 5) the formulation of general principles for con-
structing stable difference schemes and economizing the amount of computations
(economical schemes), and others.

In the present article we dwell only on a circle of questions connected with
such fundamental notions of the theory of difference schemes as stability and
approximation.

The main purpose of the article is to show how the results of the general
theory of difference schemes can be used to formulate principles for constructing
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difference schemes of a prescribed quality. This approach requires forsaking a de-
tailed description of the structure of difference operators for concrete classes of
differential equations and presenting the theory in the language of functional
analysis. The difference schemes that are analogs of the nonstationary differen-
tial equations of mathematical physics are treated in this connection as difference
(with respect to the variable z) equations with operator coefficients defined in an
abstract space (of any number of dimensions). The difference schemes for elliptic
equations are treated as operator equations of the first kind. It should be empha-
sized, however, that the indicated notions of schemes have a much more general
meaning.

In §1 we give an account of the general theory of stability of two- and
three-level operator difference schemes in Hilbert space. The study of stability is
carried out independently of that of approximation for families of admissible
difference schemes. Here we obtain necessary and sufficient stability conditions
and corresponding a priori estimates. The sufficient conditions distinguishing
classes of stable schemes are in the form of easily verifiable linear operator ine-
qualities. Simple rules are formulated for verifying the stability of schemes of a
particular form. To investigate the stability of two-level schemes we employ a
method that is more sensitive than the energy method.

The stability theory is used to formulate a general principle for regularizing
difference schemes in order to obtain stable schemes of a prescribed quality.

In §2 the theory of iterative methods for solving the equation Au = f,
where A € (H - H) is a linear operator in a Hilbert space H, is treated as a
branch of the general theory of stability of operator difference schemes. Our
main concern is with obtaining effective estimates for the rate of convergence of
the iterations and with choosing optimal iterative parameters. We consider a
class of implicit schemes with a factored operator B on the upper level of the
form B=(F + wR,)(E + wR,), where E is the identity operator, w > 0 is
a parameter and R, and R, =R} are adjoint or “triangular” (with a triangu-
lar matrix) linear operators. A formula for the parameter « is obtained from
the condition that the number of iterations be minimized.

An estimate of the rate of convergence for the method of minimal correc-
tions is obtained in the case when A is a nonselfadjoint operator, and others.

In §3 we consider the total approximation method as a constructive method
for obtaining economical difference schemes for the multidimensional equations
of mathematical physics. The notion of an additive scheme is introduced as a
system of operator difference cquations that approximates the original differen-
tial equation in the total sense. Two quite general heuristic methods (proposed
earlier by the author) for obtaining additive economical schemes are discussed.
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The additive schemes required a new technique for investigating convergence and
a new type of a priori estimates that take into account the definition of the
property of approximation.

The absence of a comparative analysis of the works of different authors
(such an analysis would have required a substantial increase in the size of our
article) is compensated to a certain extent by a rather cxtensive bibliography.

We have not had the chance to discuss the works on difference methods of
an applied character, although such works best illustrate the possibilities of differ-
ence methods and are a constant source of stimulation for the formulation of new
theoretical problems.

§1. General theory of stability of difference schemes

1. The basic a priori characteristics of a difference scheme are the error of
approximation and the stability. By the error of approximation of a scheme one
usually means the residual that arises upon substituting the solution of the
differential equation into the difference equation. The stability of a difference
scheme is defined as the property of continuous dependence of the solution of
the difference problem on the input data (on the initial and boundary data and
on the right side of the equation). In contrast to the case of a differential equa-
tion this continuity must be uniform relative to the admissible mesh widths. For
a linear scheme the existence of stability implies the satisfaction of an a priori
estimate of the solution of the difference problem in terms of the input data. In
this case stability and approximation imply convergence of the difference scheme,
the order of accuracy (rate of convergence) of the scheme being determined by
the degree of approximation. The estimation of the degree of approximation is
generally (see §3) a comparatively simple problem, while the investigation of
stability involves significant difficulties and is the central problem of the general
theory of difference schemes.

The first rigorous' definition of the notion of stability of difference schemes
was given by V. S. Rjaben’kil and A. F. Filippov [1]—{3]. The general questions
of stability theory have been subsequently considered in [4] —[22].

One of the basic methods of investigating the stability of difference schemes
consists in the application of the Fourier transform to difference equations. The
stability conditions in this connection are given in the form of various restrictions
on the spectra of the scheme operators (or on the spectra of the Fourier trans-
forms of these operators). Of relevance here, for example, are {4]—[15]. This
approach to the study of stability has a number of distinguishing features: the
Cauchy problem is normally considered, an assumption is made concerning the
connection beiween the mesh widths of the schemes with respect to space and
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time, the requirements on the smoothness of the coefficients of the corresponding
differential equation are often excessive. Many stability criteria (such as, for
example, in [6], [10], [12], {13]) cannot be readily used directly in the investi-
gations of concrete difference schemes. '

In the majority of papers in this direction the investigation of stability and
convergence is carried out in the space of solutions of the differential equation,
which does not correspond to the actual state of affairs since the solution of the
difference problem is in fact a mesh function. The connection between stability,
approximation and convergénce in spaces other than the original space (in factor
spaces) is discussed in [23], [24].

In [19]—[21] spectral methods are used to obtain necessary conditions for
the stability of two-level difference schemes with boundary conditions of general
form.

The stability of concrete schemes has been successfully investigated with the
use of the energy method, which frees one from the need to carry out a detailed
study of the spectral properties of the difference scheme operators (see, for
example, [251—[301). This line of attack was initiated with the well-known
paper of Courant, Friedrichs and Lewy [32]. The difference analogs of Sobolev’s
imbedding theorems [31] are also used.

2. The basic problem of stability theory is the derivation of suificient
stability conditions that are readily verifiable in the case of concrete schemes.
Effective sufficient conditions for the stability of difference schemes with opera-
ators defined in an abstract Hilbert space have been obtained in [34]--[36].

Let us proceed to a presentation of some of the results of this theory. We
first note that the stability of a difference scheme is an intrinsic property that
does not depend on the approximation of some differential equation. It is there-
fore natural to study stability independently of approximation.

Difference schemes (which are analogs of the nonstationary problems of
mathematical physics) are defined by us as difference (with respect to the vari-
able ) equations with operator coefficients defined on abstract Hilbert spaces
H, (which are analogs of spaces of mesh functions depending on the mesh
width %). No assumptions are made concerning the structure of the scheme
operators. The original family of schemes is defined only by the requirements of
positiveness and, possibly, selfadjointness of the scheme operators.

The following problem is posed: distinguish the class of stable schemes
belonging to the original family. It turns out that sufficient conditions for the
stability of (two- and three-level) schemes have the form of lincar inequalities
between the scheme operators and are readily verifiable.

Difference schemes are usually expected to 1) appoximate to within a
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certain degree the original equation, 2) be stable, and 3) minimize (in some
agreed-upon sense) the number of arithmetic operations required to determine
the solution of the difference problem with a prescribed accuracy (in the case of
one-dimensional equations of, for example, parabolic type a scheme is said to be
economical if the number of operations required to determine the difference solu-
tion is proportional to the number of mesh points used in this connection). As
was noted above, the convergence of a scheme is a consequence of stability and
approximation. The indicated requirements compete with each other, and their-
simultaneous satisfaction is a difficult problem.

Once we have classes of stable schemes, it is natural to seek in these classes
schemes of a desired quality. This can be done, since writing the schemes in
canonical form permits one to distinguish the operators (regularizers) responsible
for stability. By taking advantage of the arbitrariness in the choice of R and
varying R so as to remain in the class of stable schemes, we can construct
schemes of a desired quality. A general method for regularizing schemes is pre-
sented in [34].

Thus the proposed theory of stability of difference schemes bears a con-
structive character.

The question of what information is needed on the scheme operators in
order to render a correct judgement concerning the existence of stability is investi-
gated.

A method employed in the study of stability is that of reducing an implicit
scheme to an explicit one and estimating the norm of the translation operator of
the explicit scheme. This method is more sensitive than the energy method and
permits one to obtain coincident necessary and sufficient stability conditions in
the case when one of the scheme operators is nbnselfadjoint.

We proceed to a presentation of stability theory for two-level schemes
133]--[36].

3. Let {H,} be a set of real Hilbert spaces depending on a parameter A,
which is a vector with norm |#!> 0 of a certain normed space. We introduce
on a segment 0 < ¢ <7, a uniform (for the sake of simplicity) net w_ =
{t, =k, k=0,1,-"° , kg, kg7 = t,} with mesh width 7=1r,/k,. Let
Apr () By (t), Ry (), Cp (1), etc. be linear operators mapping H, onto
H, for each value of the parameter r, € @, let y, (), v, (t;), F, (6,
etc. be abstract functions of ¢, € w, with values in H, and let Yo, hr and
Y1 nr be arbitrary vectors of H,. For the sake of simplicity the notation in
the sequel will not, as a rule, indicate the dependence of the operators, func-
tions and vectors on k and 7.

By an m-level difference scheme is meant an (m — 1)th order difference
(with respect to ¢ = t,) equation
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m—2

Byt + )= ch(t)y(t—kr)—l—F(t), where { =sv>(m—2)T,
k—p

with operator coefficients and m — 1 initial conditions obtained by prescribing
the vectors »(0), y(7), * * = , y((m — 2)7).

We will consider here only two-level (m = 2) and threelevel (m = 3)
schemes. An important role will be played in the sequel by the canonical forms
of these schemes.

A two-level scheme is

B IR0 4 syt =e@), 0<t=k<u,

. (1)
y(O) =y €H,.
A three-level scheme is
—T)—y(t— —2 Syt —
B (t) Yy {t T) 21:.! (t T) ‘l' tzR (t) Yy {t +— T) y‘[(:) Yy ( T)
|- A () y () = o), 2)

0t =kv<ts, yO)=uyo. Y@ Y1, Yo W& Hp.

Schemes (1) and (2) are difference analogs of the following abstract
Cauchy problems for first and second order equations:

Bt Au =] (1), o<i<ty,  u(0)=u,
.‘J’Q%—l—.ﬁ’%—j—ﬂu:}‘(t), 0t <ty u (0) = u,,

du
@ 0) = u,.

In order to take into account the case of positive and nonselfadjoint oper-
ators B in (1) and (2) we consider here a real Hilbert space H. An analogous
stability theory for schemes in a complex Hilbert space H is developed in [37].

4, Varying h and 7, we obtain a set {y,, (£)} of the solutions of
problems (1) and (2). Stability for schemes (1) and (2) is defined as the property
of uniform in (#, 7) continuity of {y, (f)} relative to the input data
{ ¢,,(0)} and { y, (0)} (and { y,,,(7)} in the case of (2)). We will assume that
schemes (1) and (2) are solvable for any input data, i.e. that there exist inverse oper-
ators By ! for (1) and (B, +27R,)™! for scheme (2). Let us give a definition of
stability for the two-level scheme (1). The solution of problem (1) is the sum of
the solutions of the problems
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B et a0, k=0,1,..., k—1, ycHy (la)

T

Bkgjﬁ%__yt'{‘ﬂkyk:%u k=0,1,..., ko— 1, y,-= 0. (1b)

‘Suppose H, is any normed linear space. We will say (see [36]) that scheme
(1) is stable with respect to the initial data in the norm | » !l(lh’ xy If there

eXists a constant ¢, not depending on the choice of 7,h and y, such that
the solution of problem (1a) satisfies the inequality

"yk"(lh, Ky Q._Pkillyoﬂ(lh, 0)> k=12, ..., (3a)

for any y, €H,, where p = eo” and 1- "(1,,,7:) is a norm in H, depend-

ing possibly on k.

Scheme (1) is stable with respect to the right side if there exists a constant
M, >0 not dependingon h,7 or ¢, such that the solution of problem (1b)
satisfies the a prior estimate

ol .
ka "(Ih,_h‘) s M2 o??gk Hq)f u(gh, e’ k.= 1: 21 ey (Bb)

for all ¢, € H,,, where 1 - H(Z;,J) is a norm in H, depending on j.

It is usually required that a scheme be stable for sufficiently small 7 < 7,
and |kl < hg, where 7, and h, are constants not depending on either k¥ or
the input data. Scheme (1) is said to be conditionally stable if it is stable when
some relation between 7 and k holds. If on the other hand scheme (1) is
stable for any 7>>0 and 21> 0 (hy = 7, = <) it is said to be absolutely
stable.

The definitions of stability given above do not assume that H, is a Hilbert
space.

Scheme (1a) is often written in the form y,,, + S, ¥, where S, =
E — 1B 'A, is the translation operator from the kth level to the (k + 1)th
level. It follows that

yk = Tkyl)s Tk = S,.._.IS,‘_Q. ' e lS']_Sn,
where T, is the solving operator, so that

" Yx |l(1h' 3] < Th‘ " " Yo “(lh' 0)*
Scheme (1a) is stable if

1Tl < pF = e <eslo = M,y for ¢y > 0.
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Thus the stability of scheme (1a) implies the boundedness of its solving operator.

The basic question is the following: What properties must the operators
A, and B, have in order to ensure the stability of scheme (1)7 An answer to
this question can be obtained in the case when H, is a Hilbert space.

5. Ib conjunction with a basic space H, we will consider energy spaces
Hj, consisting of the same vectors as in A}, but having scalar products (y, v),
= (Dy, v) and norms Wyl =+/(Dy, y), where D = D* >0 is a positive self-
adjoint operator in H, (D >0 means that (Dx, x) >0 forall x#0 in H.).
The operator D can depend on ¢,: D = D, = D(¢t;).

We will say that scheme (1a) is 1) stable in H,, if (3a) is satisfied with
i “(1,,,1:) = |- "(1,,,0) =11, ie.if -

lyelp < p¥| Yoy, 0 = & (D does not depend on tk)';
and 2) stable in Hp  if

i ¥k th < p*yel, (D depends on t,).

In the case of two-level schemes the norms -+ l, and B &5 (D=4 or
D = B) are natural. We will write B 2 v4 if (Bx, x) 2 y(Ax, x) forall x €
H,, where v isa constant.

6. The original family of schemes (1) is defined by the conditions

B.>0, Ag== Ay forall k=01,... k—1,

ie. B, is a nonselfadjoint operator. We first consider the case of schemes with
constant (i.e. not depending on k (on ¢,)) operators A and B:

ykul—
T

B ?ff"_l—Ayk:: ' k= 07 1-$-‘-vk‘0_"1’ yDEHh- (la*)

It is assumed everywhere in the sequel that scheme (1a™) belongs to the original
family, ie. B> 0,4 = A".

THEOREM 1. Suppose A > 0. Then the condition
B> 3 A @

is necessary and sufficient for the stability with p=1 (cq =0) in H, of
scheme (1a%), i.e. for the satisfaction of the estimate

nyk H,igi!yﬁﬂj'
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THEOREM 2. Suppose B = B™ > 0. Then the conditions

l—epcagiierp (5)

T T

forany p >0 (for A > 0) are necessary and sufficient for the stability of
scheme (1a*) in Hy (in H,).

REMARK 1. If 4 >0 and p 2 L, condition (5) is equivalent to the ine-
quality

B>; =4 %

In particular, when p=1 we get 2B> 714,

REMARK 2. It is.nowhere assumed that the operators A and B are
commutative.

If A and B are commutative, conditions (5) are necessary and sufficient
for stability in H,, HA 2 Hsz’ etc.

7. Suppose 4, = A(t,) and B, = B(t,) are variable operators. We will
say that A, > O is Lipschitz continuous in ¢, if

J((A— A x, )| < ot(Agar, 2) forall e H, and k=1,2,...,

where ¢, = const > 0 does not depend on 7 or h.

THEOREM 3.- Suppose Ay > 0 and is Lipschitz continuous in t,. Then
the condition
T

Bk>1+pzlk, p = ev* forall k=0,1,...,k,—1,

with ¢, 2 0 is sufficient for the stability of scheme (la) in H 4, with ¢, =
¢o + ¢ /2

1Ys-ila, << 0% Yol anr P = e

THEOREM 4. Suppose B, = B} and is Lipschitz continuous in t,. Then
the condition
1 - 14¢ =
-T_p By Ay <= B forddl k=0,1,...,ky — 1
with ¢y 2 0 is sufficient for the stability of scheme (la) in Hp,  with ¢y =
co +¢,/2, i.e. for the satisfaction of the estimate

—i _ -
”ykﬂ."Bh_(p || -‘/ﬂﬂu.,' p=e".
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Let us write scheme (1) in the form

y N _yn' h]
(E 4+ tRy) =1-— 4 Ay = ¢4, By =FE+th, G

where E is the identity operator. Then the condition 2B, > 74, will be
satisfied if

. 1 1 o
Ry > olPdy, 0§=-._,-‘--—m—“, k=0,1,2,.... (D)

The index k& in the stability conditions will be dropped in the sequel. It follows
from (7) that the condition 2R >4 is also sufficient for the stability of scheme (1).

ExaMpLE 1. Consider the weighted scheme

Yeer — Yk

— - 1 A (oY1 4+ ( —0)y) = @4,

)
k—__O'i? .- .,lﬂu""‘i, yﬂ&llhr

where ¢ is a parameter (the weight factor) and A4 = A(z,) > 0. Reducing
scheme (8) to the canonical form (1) or (6), we find that B =FE + 074 or
R=0A. If A= A" and estimate (5) holds, it follows by virtue of (7) and
Theorem 4 that scheme (8), when ¢, = 0, is stable for ¢ 2 og‘). If A#)>0
is a nonselfadjoint operator, we first apply the operator 4~! > 0 to (8) and
then reduce the result to the canonical form (1a) with B=A"14+01EA=E
and make use of Theorem 1, from which it follows that scheme (8), when ¢, =
0 and A(f) >0 is even any nonselfadjoint operator, is stable in H, with p =
1 for o2 %.

8. Conditions (4), (5) and (5*) ate sufficient for the stability of scheme
(1) with respect to the right side in the corresponding norms. Thus estimate (3b)
holds with

Iyl = L5 =V By, B); Nolley = liglls - = VB9, 9)

for (7) or with
il = lWlla =V (dy. ) llgle =V (AB %9, B ¢)

for (5%). Of importance for the theory of difference schemes are estimates of the
solution of the problem in I, or Hy in terms of the right side taken in a
possibly weaker norm. Such norms are llgo!a) = IIthIA_ ; in HA_l or the

negative norm gl 5y = sup [I(p, x)!/Uxl,] (the functional norm), an analog of
which is widely used in the general theory of differential equations. For example,
we have
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Tueor®a&5.. If the conditions of Theorem 4 are satisfied, the solution of
problem (1b)satisfies the estimate

._“'1_‘! “], ©)

i
If on the other hand 2R > A, then scheme (1b) is stable in H A, and estimate
(3b) holds with ol 5y = )= loll, | yl n= = lyl,.

"yk+1"A < M, max [“(PJ" -1 II

We note that estimate (3b) holds with
Flagn =Py, 0 = Mo, o =1,

for the weighted scheme (8) when yo =0, 0> % and A(®) =A%) > 0.

9. Let us now consider the three-level scheme (2). We will assume that
B(?) is a nonselfadjoint operator, R(t) = R¥(t)> 0 and A(H)=4"@n) > 0.
These conditions define the original family of schemes.

The stability of scheme (2) with respect to the initial data is expressed by
inequality (3a). But by the norm By, +1“(1,,, k) one should understand a func-

tional depending on y, and y,.,, and defined when p =1 by the equality

1
[ Yyn |l?1h. k) = Z'(Ak(ykﬂ + Ye)s Y1+ Vi)

) (10)
+ ((Rk -"Z"Ak) (Yrr = Yi) Y1 — yk) .
(An expression for the norm when p # 1 can be found in [38].)
We cite a theorem on the stability of scheme (2).
THEOREM 6. Suppose A and R are constant operators, B 2 0 and
|
R>4. (11)

Then scheme (2) is stable with respect to the initigl data with p = 1, so that
the solution of problem (2) when ¢ = 0 satisfies the a priori estimate

1Yk, <IVal (12)

where Y, | is defined by formula (10). Under these same conditions the solu-
tion of problem (2) when ¢ # O satisfies the estimate

— @,
IIY"*'IH(I )N HYlﬂu + M, max [“‘PaﬂA-l n ”L_J, (13)

where M, does not depend on 1hi or .
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REMARK 3. If B=28E, 6§ > 0 and 4R > A, the following estimate holds
in place of (13):

WYiesilly,y <1Yily,, + Mo m?xk“qn,ﬂ (14

Consider the threelevel scheme

— 2yx - Yy Vi1

(E+vR) En= T 4 g P20 4 gy~ @Y

which is in the second canonical form. It is obtained from (2) by formally re-
placing 72R by E + 72R. The condition 4R > A is sufficient for the
stability of scheme (2*) with p = 1 in the norm IIYI(  + Where

YH?L‘)_quﬂ Ko - iykﬂ yk‘r for ﬂcp“m ol (15)

ExampPLE 2. Consider the three-level weighted scheme

Yoo "B | Aoy, (A — 00— o)k + sy ) =0, (16)

where 4 > 0. We apply A~ ! to scheme (16) and reduce the resultant equation
to the canonical form (2) with operators

B=4" + (GI - 0'2)1:E1 R= 1/2 (01+02)E: A -E.

Since R and A are selfadjoint constant operators, it follows from Remark 3
that scheme (16) is stable for any nonselfadjoint 4 =A4(1) >0 if o, = 0,,
g, + 0, > %.

EXAaMPLE 3. The weighted scheme

yk-’-l_— zyﬁ -+
Tl

Y 1 + A (G1¥5, + (1 — 61— S) Yy + Goliy1) = 0. an

where 4 = A* > 0, reduces to the canonical form (2*) with operators

R=-G-£'%EA, B:(GI_GS)'I:A.

The conditions R + E/r2> % A4, B> 0 are satisfied for ¢, 2 0,, 0, t0, >4
10. From the preceding we obtain simple rules for verifying the stability of

concrete schemes: 1) reduce the difference scheme to the canonical form (1)

or (2) and thereby determine the operators B, 4 or B, R, A; 2) introduce the

space H, of mesh functions (depending on the structure of the scheme operators)

and investigatc the basic properties (positiveness, selfadjointness, ctc.) of the



GENERAL THEORY OF DIFFERENCE SCHEMES 277

scheme operators as operators on H, ; and 3) verify the satisfaction of the suf-
ficient stability conditions indicated above. If the sufficient stability conditions
are satisfied, the given scheme belongs to the class of stable schemes and the a
priori estimates obtained for two- and three-level schemes of general form can be
used.

The stability of multilevel schemes has been considered by A. V. Gulin in
[38]. Here it is shown in particular that the sufficient conditions obtained in
[35] for the stability of three-level schemes are also necessary in the case of con-
stant operators. The following necessary and sufficient stability conditions are
found:

Y nea by <0 Yl p = e,

where | - II( 1,) is an analog depending on p of the norm (10). These condi-
tions have the form of linear operator inequalities connecting not only 4 and
R butalso B when p# 1.

11. The stability theory presented above bears a constructive character and
can be used not only for investigating the stability of concrete schemes but also
for consiructing new schemes of a prescribed quality. This possibility is connect-
ed with the fact that 1) the writing of schemes in the canonical form (1) with
B=E+ 1R (see (6)) or (2), (2%) permits one to distinguish the operators R
(regularizers) responsible for stability, and 2) the sufficient stability conditions,
R>04,A or 2R > A for two-level schemes and 4R > 4 for three-level
schemes, impose weak restrictions on the arbitrariness in the choice of the regu-
larizers R.

If the given scheme (1) is unstable it can always be replaced, by varying
only the operator R, by a stable scheme with the same operator A.

Once we have classes of stable schemes, it is natural to seek in these classes
schemes of a desired quality satisfying the additional requirements that they 1)
approximate the original equation to within a certain degree, and 2) are
economical. The requirement that they be economical usually means in the case
of the nonstationary problems of mathematical physics that the number of arith-
metric operations used to solve the difference problem must be proportional to
the number of mesh points used.

Basically, the method of regularization consists in passing from an original
(for example, an explicit) scheme to another scheme of a desired quality by
varying the operator R (and possibly also the operators 4 and B).

Since the stability conditions have the form of energy inequalities, viz.
(Rx, x) 2 0y(Ax, x) for (6) and (Rx, x) > (Ax, x)/4 for (2), it is natural to
choose as R operators of as simple a structure as possible that are energetically
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equivalent (semisimilar (see [39]) and equivalent with respect to the spectrum
(see {50])) to the operator A. Suppose A and A, are energetically equivalent,
ie.

Vido <A < yohy, 2 > 71> 0. (18)

Choosing R = 04,, we obtain a stable scheme (6) for ¢ & 0,7, or a stable
scheme (2) for 0> 7v,/4.

It should be noted that various forms of energetically equivalent operators
are used in the theory of approximate methods of solution of differential equa-
tions and systems of algebraic equations (see, for example, [49] —[53]).

We indicate some examples of the choice of a regularizer R.

1) R = ok, where E is the identity operator, ¢ 2 6,141l for (6) and
g > 1 Ab/4 for (2).

2) R=0A, or R=0A,, where A, and A, = A] are adjoint
(“triangular™) operators, A, = 4, + A,,

5 >(1 — ?W%'h) 7, for(6)and 5>—+7, for(2).

3) R is chosen so that B =E + 7R for (1) and B +21R for (2) are
factorized operators that are representabie in the form of a product of a finite
number of operators of simpler structure:

p P
B=Tl(E +1R.) for(1)and B4 2eH = [[(E+vRa) for (2).
a=l a=1
These schemes will be called factorized schemes. The following two special

.cases will be considered.

a) The R,,a=1,**-,p,are positive, selfadjoint and pairwise commuta-
tive operators. lere a factorized scheme (1) is stable, for example, under the
condition Ry =ZXh_, R, > % A. For if scheme (1) with B=FE + 1R, is
stable, the factorized scheme with B =TI2_, (E + 7R) is also stable since
B>B.

b) p=2,R=R, +R,,R, =R}. Here a factorized scheme is stable
when 2R = A.

The methods employed in practice to obtain stable schemes for concrete
problems can be regarded as elementary examples of regularization. Thus the
explicit scheme of Du Fort and Frankel {40] for the heat equation belongs to
the clags of stable schemes (2) with B=E, R = oF and ¢ > lAl/4, while
the symmetric schemes of V. K. Saul'ev [41] belong to the class of stable
schemes (6) with R =04, or R=o04,, A=A, and 4, + 4, = A.
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These schemes are obtained from explicit schemes by means of transformations
corresponding to the introduction of elementary regularizers (the identity operator
or triangular operators). The economical methods of alternating directions (schemes
with a splitting operator in the terminology of [42]; for the literature see [42]
[48]) are based on the use of factorized schemes with the R being pairwisc
commutative or “almost commutative” (in the case of equations with variable
coefficients) difference operators that correspond to elliptic operators containing
derivatives only with respect to the variable x, (“one-dimensional” operators).

The general principle of regularization permits one to obtain new absoluiely
stable economical factorized schemes for the basic equations of mathematical
physics with variable coefficients {34]. Elliptic difference operators with con-
stant coefficients are chosen as the regularizers R for this purpose. For example,
an elliptic difference operator with a diagonal block matrix, the blocks of which
are also diagonal matrices, is chosen as R in the case of a system of parabolic
cquations with mixed derivatives in a p-dimensional parallelepiped. A two- or
three-level factorized scheme is then constructed. The process of solving the
difference equations is reduced to the successive application of a standard three-
point (in the case of second order equations) sweep algorithm.

Especially good opportunities for regularization are afforded by the use of
three-level schemes, since in this case it is possible to preserve second order
accuracy in 7 (R is multiplied by 72). In the case of two dimensions absolutely
stable factorized schemes of accuracy O(r2 + h2) are obtained for parabolic
cquations with discontinuous coefficients when the lines of discontinuity are
parallel to the coordinate axes. We note that the regularization of three-level
schemes is generally carried out by varying not only the operator R but also
the operator B (this is the case, for example, under certain methods of factori-
zing the operator B + 27R).

To each operator 4 there can be put in correspondence a large number
of operators of simpler structure that can be used as regularizers for two- and
threc-level schemes. The compliation of a catalog of regularizers and the choice
of the best regularizers is an important problem of the theory of difference
schemes. For various elliptic operators it is possible to use one and the same
regularizer R. This makes it possible to create standard programs for solving
classes of problems. In this connection the algorithm for determining the solu-
tion at a new level is not changed, but the concrete form of the operator 4 of
the problem is taken into account in calculating the right side.

12. Until now we have considered the stability of schemes (1) and (2)
relative to the right sides and the initial data. In the case of an actual compuia-
tional algorithm for solving problem (1) (or (2)) the presence of rounding errors
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means that one is actually finding the exact solution not of equation (1) but of
an equation with perturbed operators B, A4 and o, ¥o- Thereforc the notion of
stability must be widened. Clearly, by the stability of an actual scheme one
should understand not only the continuous dependence of the solution on ¢

and y, but also its continuous dependence on IE — BY and N4 — ANl. The
method employed by us above for estimating the norm of the translation oper-
ator of an equivalent explicit scheme in conjunction with the energy method
permits one to obtain a priori estimates expressing the (uniform in 2 and 7)
stability (coefficient stability) of the solution of problem (1) relative to the oper-
ators of scheme (1). It has been determined that for this to be the case a scheme
must have a certain “reserve of stability”. In particular, scheme (1) has coefficient
stability when 2R = A.

§2. [terative schemes

1. The theory of iterative methods for solving the equation

Au =f, | 1)

where A is a linear operator defined on a real Hilbert space #, is a branch of
the general theory of stability of difference schemes.

Tterative schemes are written in the same canonical form as difference
schemes for evolution equations.

A two-level (one-step) iterative scheme has the form

ByOrsy — Yty YAV =f, k=0,1,2,-++, yo €Hy, (2)

where k is the iteration number, y, is the iteration of number k, 7, >0
is a parameter and B, is an arbitrary operator having an inverse Bp!. If
B, = E, scheme (2) is explicit; if B, # E, it is implicit. Since the solution u
of equation (1) satisfies (2), the error 2z, =y, — u satisfies the homogeneous
equation

B, ‘”’*;t;i’f+,4z,,—_-o, k=0,1,2,.. . 2=y —u (3
The estimation of the ratc of convergence of the iterations in scheme (2) reduces
to the derivation of a priori estimates expressing the stability of scheme (3) with
respect to the initial data.

The original family of schemes (2) is defined by the conditions

A = A* >0, By = B* > 0.

The implicit scheme (3) is equivalent to the explicit scheme
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‘xk'l'l = 'Sk"'lxh" }l = 0, 1, ey Sk+1 = E - Tk-rlckr
L Al L (4)
Ck::: 231}144.2, xszzzk,
where S, ., is the translation operator. Hence
Tp = T‘nx(h .T-n. = Sn‘s'ﬂ. i R Sl: _)
)
bo | <SITwlllxwf,  loed =2,
where T, is the solving operator of scheme (4). Thus
22l << @alzl,  dzaly < @ulzol,, - if [T.)<q.. (6

The iterations converge in H, if g, — 0 as n -—co. The norm of the oper-
ator 7, depends on the B, and 7., which should be chosen from the so-
lution of the problem of determining infl| 7.}l or inf g,,. The basic problem of
the theory of the iterative schemes (2) reduces to an estimation of the norm of
the solving operator of an equivalent explicit scheme and a choice of the iterative
parameters {7, ,} and operators {B,} from the minimum condition for this
nOrM.

Only the bounds of operators or the equivalence constants of the scheme
operators are used in the theory of iterative methods. All of the results obtained
by spectral methods are naturally obtained by estimating the norm of the solving
operator with the use of the definition of the norm of an operator function. The
finite dimensionality of the space H, is nowhere uscd in this connection.

2. In the case of “stationary” schemes with constants B, .; = B and

T3y =T
Bz’m_zk-]-llz =0 k=0,1,2, Zo=Yo—uU=H
———+ Az, =0, =0,1,2,..., o = Yo SHy. (7)

the translation operator S = K — 7C is a constant, /, = S" and the problem
of determining infll 7, reduces to the problem of minimizing the norm of S
The solution of this problem is well known [60]; in fact, if ¥, and vy, are
bounds of the operator C such that

NHE < C<1E, Te22T1 > 0, (8)

then inflS | is achieved when 7 =17, = 2/(y, + 7v,) and is given by the
relations

i
ot

—

1+

E=0 n=2_.

=1’ T

inf|S|=1E —1Cl=p0, po=
>0

Jxt

In addition the estimate
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:i Zn |ip‘{ p?olllzl);ips D=A or D=5, (10)
holds for scheme (7) if '

1B <A<T,B, (11)

since conditions (8) and (11) are equivalent when C = A®B~14%* or C=
B~%AB™"% (see [36]).

The method of reducing the implicit scheme (7) to an explicit scheme per-
mits one to prove the computational stability of scheme (2) with 7 =17,. The
choice of the operator B affects not only the number of operations needed to
calculate a single iteration but also the number ng(e) of iterations, where ¢ >0
is the prescribed accuracy of the iterations. It is therefore natural to choose B
from some admissible family of operators so that 1) the ratio § = v,/y, is
maximized (p, is minimized) and 2). B is an economical operator {the num-
ber of operations needed to solve the equation By = ¢ for any ¢ € H is mini-
mal in some sense, for example, with respect to an order relative to ¢ for £ 0).

In constructing B one usually starts from an operator R = R* (see [39],
[49] —[53]) that is energy equivalent to 4 and B:

R AL R, eg > e >0, (12)
WB<RKHB, m>m>0. (3)

Then inequalities (11) with y, = cﬁrl and vy, = c2-)°«2 are valid. We represent
R in the form of a sum R =R, + R,, where R, and R, =R} are disjoint
(“triangular’’) operators and consider the factored operator

B =(E + oR)(E + oR,), B= B* >0, (14)

where w > 0 is a parameter. The numbers "?? and ';io depend in this case

on the parameter ¢, which should be chosen so that the ratio £ =1v,/y, =
€,7,/¢3¥, Of, what is the same thing (since ¢, and ¢, do not depend on ),
the ratio ¥,/¥, = f(w) is maximized [49]. We have

THEOREM 7. Suppose R, = RY,R=R, +R, and

R>8E, |RuzP >+ ARz, 2, A>8>0. (15)
Then the formulas
o 5 - 5 Tt 2V 8
o —— T ——— — = " = le
YT 7 A = 1+ V7 =g 19

are valid when © = 21\/5 A.
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Knowing 7, and ¥,, we find 7; =¢,¥;, 75 =C,Y, and 74 =
2/(y, +v,). The following estimate of the number ny(e) of iterations as
n = 0 holds:

ny(e) - O (%ln%).

In practice one often applies factorized operators of the form
B = (E + &R, (E + w4Ry), (17)

where R, and R, are commutative selfadjoint operaiors. An optimal choice
of the parameters w, and w, from the condition that ¥,/y, be maximized
can be made without difficulty in this case.

3. We now consider the iterative schemes (2) for equation (1) in the case
when A4 > 0 is a nonselfadjoint operator and

B = B* > 0. (18)

The equation for the error z, =y, — u is equivalent to the explicit
scheme

xk-r1=Sxk, k=0,1,2,...,S"~=E—tC, %EHh, (19)

where C=B"%AB™" and x, = B¥*z,,s0 that lx, Il = iz, lp. Bearing in
mind this connection between the explicit scheme (19) and the implicit scheme
(7) for the z,, we can confine ourselves to a study of the explicit scheme (19).

Suppose
C>nkE, C? >% E or |CzP<1:(Cz,z) forall 2z H,. o)
(ra >11>0).
Then the estimate ,
ISISVY1—¢, =1 (1)

T2
of the norm of the translation operator holds when 7 = 1/y,. This estimate is
rough, as can be seen from the example of scheme (7) with B =E + wA and
7 = 2w. Suppose

A >E, |Az|f < A(Az, z), A>8>0. (22)

The estimate

. —Vn 8
ﬂSﬂ{; 1+.V~—1]—.' T]—--A—‘
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was obtained in [49], whereas formula (21) implies

1—n
lISI<]/1—+—:-

In order to improve the estimate it is necessary, following [S1], to dis-
tinguish the symmetric and skewsymmetric parts of the operator C:
C=Co+C,  Co=5(CAC) C=a(C—C).
THEOREM 8. Suppose
T < G TLE, |G [< 18, Te 2T >0, 12 >>0. (23)
Then, when

— Yol —x?) .2 Y _1—% (4
T 1+ xpe » where TO—TI+T2‘ % V:rl'\i'g_!_-rg, po_‘l'i-ﬁ’( )

one has the estimate

. \ N . .= - Q K
inf[ S}<|E —tC]< o, where p - 21X 1, (25)

which when k =0 (C = C™) goes over into the estimate
hS i< 9o (26)
when 1 = 7,; i.e. estimate (25) is unimprovable.

In [51] approximate formulas have been obtained for T and 7 in the
case when H, isa finite-dimensional complex space with a scalar product and

C=Co+iCy, Co= ReC - ¥4(C--C), C,=ImC = 5(C — ).

Conditions (23) are equivalent to the conditions (cf. [50], [51])
"B A< 1aB, (B, Aun)<1a(Bz, x), zeH, @0

where A, = %(4 + A%) and A, = %4 — 4%).
Suppose R =R*>0 and

aR< A< Rt (R 4y, Ay)<E(Ry, y), e > > 0. (28)

If ¥,B <R <7,B, then inequalities (27) hold withy, = ¢;v,,i =1, 2,3,
€3 > 0. The factorized operator (14) can be taken as B,

4. The application of the iterative methods described above assumes a
knowledge of the constants <y, 7v,, v and ¢, c,. In those cases when these
constants are known inexactly or in general are unknown a priori it is expedient
to make use of a variational iterative method such as the method of steepest
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descent or the method of minimal residuals.
We first note that any iterative method

Yy —Y
B k41

o -+ Aysz, k=0,1.,..., yoEHhs (29)

-3

can be interpreted as a method of corrections:
Ypar =2 Yy — Ty, wy == B7lr,, re = Ay, ~f, (30)

where r, is a residual and w, is a correction.
If A=4%>0 and B=B">0, we can calculate 7,,, by making
use of the following formula from the method of steepest descent:

(Wi, Tx) (3 1)

Vet = (g, wy)

This method converges in f/, at the same rate as scheme (29) when 7 =171, is
constant (see [59]). |

If 4 > 0 is a nonselfadjoint operator, we apply the method of minimal
corrections. The calculations are carried out according to formulas (30) with

(Awy, w5)

V1 = By, duy) (32)

The equation Au = f is equivalent to the equation
1 1

- L
Cv=¢, v=B%u, C=B *AB ®, ¢=DB %y, (33)

which can be solved by the method of minimal residuals proposed by M. A.
Krasnosel'skil and S. G. Krein [60]:

LS
2

Lyt == Lpp — rk“l'l;:k’ ;."'k = ka — P, T&'*l o= M . (34)
FCry i
By taking (33) into account, we can readily obtain (30) and (32) from (34). It
therefore suffices to carry out all of the arguments for (34). If C=C*>0
and v,E < C < v,E, the following estimate holds for (34):
: i..

n — _ T
icxﬂ—_(p,l\{po llcxo - cpua po - Tl'_ » E-—— T:!- . (35)

iy

In the case of a nonselfadjoint operator C we have

THEOREM 9. Suppose C is a nonselfadjoint operator, C = Cy + C, and
conditions (23) are satisfied. Then the following estimate holds for (34):

1€z, — | < ™[ Cao — o, (36)
where p = (p, + k)/(1 + xpy).(2)

(1) The case of a selfadjoint € = C” has been studied in [60].
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The proof of this theorem makes use of the following

LEMMA. Suppose C is a nonselfadjoint operator with bounds <y, and
Yy > Y > 0,50 that v, E < C<v,E, and for some 1,> 0

iE—<C|<p, where p,<1. (37)
Then, if
1—p2
T P < T (38)
the inequality
(Cz, 22 > (1 — p?)| Cz | «P? (39)

holds for all x € H,
PrRoOOF. Conditions (38) imply
el — 2t4(Cx, 2) + BCR < o [lall”,
T |ICalP < 2, (C, 2) — (1 — p%))id?

and

2 (Cz, 7)[ 2P B
el <z T, ITF [(cz, 5 (Cz, 2 zF] (40)

where ¢ = (1 — p2)/27,.

- Let us consider the function ¢(a) = a — qa?, where o = lxI?2 H(Cx, x) €
[1/7;, 1/v,], and find its maximum. The point &, = q/2 is contained in the
closed interval [1/y,, 1/y,]. Therefore max ¢(e) = o(tr,) = q/4, and con-
sequently

2 1t 1
E(p(a)< 2T*q - i ‘_'92 .
But this together with (40) implies (39).

We proceed to the proof of Theorem 9. From (34) we find that

m_— P~

Friy =T 'tkﬂ(.rk,

| FenlB=} T4 P — 2%es (Cris T3) + Tha [ Cr, '2:[1 "Eiuk_]
b rieedB=} e ket (Crys 7)) + T | Cre] P IG T | k“

By virtue of the lemma the expression in brackets does not exceed 1 —
(1 - PE) = ﬂfs ie.
Iresall<< o, 1 7ully (Fall << 07 fFall.
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But p_ =p when 7, =7, which implies (36). The theorem is proved.
REMARK. If the conditions C> v, E and C~! >4, 1E are satisfied,
the estimate

IIan-—(Pﬂ<En];ng -~ 9|,

where p =+/1 — £ and &= 1,/v,, holds in place of (36).

The variational iterative methods with a factorized operator B have been
applied by a number of authors (see, for example, [54] -[56]).

In the case of a nonselfadjoint operator A the factorized operator (14) can
be chosen as B. The computational use of formulas (31) and (32) does not re-
quire a knowledge of the constants ¢,, ¢, and c¢5.

5. The operator B is sometimes given in explicit form and is sometimes
constructed as a result of applying some {intrinsic) direct or iterative method. An
example is provided by the so-called two-stage method (see [50], [50a], [S51],
[58]), which we formulate as the method of correctness. The correction wy is
calculated by solving the equation

Rw= ry, ry=Ay;—f (41)

either by a direct method (in which case B = R) or by an iterative method with
solving operator T,,, IT,, Il < g < 1, under the zero initial conditions: w(® =0,
It is determined as the mth iteration: w™) =w,,so that w — w, = T, w,
where w is the exact solution of equation (41). Substitutingw =(E — T, ) tw,
into (41), we get Bw, =r,, where B=R(E - T,)" . If T, =T,, and

T, and R are commutative, we get B =B" >0 and ';1 =1-gq, ;2 =1+
q (see [50], [S51]). The iteration y, ., can be calculated by using scheme (30)
with a constant parameter 7 =7, when 4 = 4™ >0, and with 7 =7 when
A#A*, A=A, + A, (see (24)) if the constants ¢,, ¢, and c; are known,
so that

Ty = (1 — @y, Yo = {1 + @)z, 13— (1 + g)cs.

If the constanta ¢,, ¢, and c¢; are not known or are defined inexactly,
it is expedient to use the two-stage method of steepest descent (7., is calcu-
lated by formula (31)) when 4 = A*. As formula (32) shows, in the case of a
nonselfadjoint operator 4 # A™ the two-stage method of minimal corrections
requires the successive solution with the use of the inner iterations 7, of the
two equations

Rw = ry, WO =0, w,=uwm,

RU = Awk’ v(o) == O‘ ()k == v(m).

(42)
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The correction w = w(™} is first found, after which the second equation is
solved and v, = B~ '4w, is determined as the mth iteration: v(™) =y, . Here
B=R(E - T,)" . Knowing w, and B~!Aw,, we can calculate the parameter
Tg 41 Dy formula (32). Theorem 9 implies the validity of estimate (36), in which
one should put

=61 — ¢), T2 = c(l + 9 vs=1¢5(1 + 9. ¢ > 0.

The requirement that R and 7,, be commutative is a very strong restriction
and substantially contracts the domain of applicability of the two-stage methods.

6. We now consider three-level (two-step) iterative schemes for solving the
equation Au = f, where 4 = A¥* > 0. A siationary iterative scheme can be
written in the canonical form

Yier1— Vi
B[————-—-k 121; f + ?‘(yml"‘“zyk—l-yk—l)]'l—Ayk =f, k=1,2,..., (43)

in which y, €H, and y, €H, are arbitrary given vectors. Here 7> 0 and
k >0 are iterative parameters.

Alternatively the first approximation y, can be calculated by using the
two-level scheme

—Ya _ 2
B To +Ay0_ ! to—'l’lf'l'i- (44)

For z,. =y, —u,where u is the solution of problem (1), we have from
(43) and (44) the scheme

B [ Bppy — Fx-1 __|_ % (zk+1_zzk + zk—l)] —|- Azk = 0, ko= 1., 2, ‘g

A
zl=y1—ueﬂh, Zoﬂyo—uf_“f”n- (43*)
If y, is determined from (44), then

B Z1— &g + ‘420 - 0, 1:0 — 2[(‘]’1 —I— Tﬂ)' 30 (."_._: Hh. (44*)

To

We will assume that
A=A‘>0, B:B'>0, ]
B< AL T,B, 1o =71 > 0.

The optimal values of the parameters 7 and x can be obtained from the general
theory of stability of three-level schemes (2) in §1 with R =«B.

(45)

THEOREM 10. The solution of problem (43*)when 7=17,, Kk =K, where
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(46)

. 1 1
T = m' Wy = Z‘(T:I. +T2)s

satisfies the estimate
@“7)

S lj(lpl) <etla ||(1p.)'

where
___1*--ﬁ E__T_l

M= TEve T

1
E2 ll?lp,) =7 ({(4— T1B) (Zna1 = P12a)r Zner + P1%n)

-—|—- % ((TQB — 4 ) (z.n+1 — p]_zﬂ,)l Zp+l ™ plzﬂ)'

This same theorem also holds for problem (43%)—(44™). We note that
Kz, 111, ) is generally a seminorm by virtue of formula (45).

If B = E,scheme (43) is said to be explicit. The elxplicit three-level scheme
(43)—(44) was considered in [52] —[57] and [3], [41]. It was written in the form
(for the equation Cv =1y)

Ter1 = (1 + o) (E ~ 00y —axyy + (1 +a) %9, k=1,2,...
Zy = (E — 1oC) 20 + o9, 1B C<1.E, C=C" (48)
1>1>0, To = 2/(T1 + T2).
2,

The following estimate was obtained in [52] for a= p7:
i—pf
n=152s"°1 q‘nzp?‘l_!"i‘ an' (49)
"I'p]_

“xn_ D.rI(: inlxo_v!l’

Here v is a solution of the equation Cv = ¢.
Reducing (48) to the canonical form (43), we get

L S po e Ay = =1
i T X s = T —a =,

i.e. the same valuesof 7, and K, asin Theorem 10. But the rate of convergence

in the metric of H,, is worse.
The implicit scheme (43) can be reduced to the explicit scheme (48) with

1 1 X .
.1:,,=Azym C=A*B14°2, ¢=A23'1f

or with 1 11 1
2AB 2’ ‘P=B Ef
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For C wehave v, E < C<17,E. Usingnow estimate (49),for 7=7, and x =
K, we get that either

D |olp<@alzl,, D=4 or D=B, (50)
if y, is calculated according to the two-level scheme (44) with 74 = 2/(v, +7,),

or

2) Hzn HD< (pﬁq'n-l-l + q‘n)ll Zy HD + Qn'-lllzl HD' (Sl)

if y, isan arbitrary vector,zy =y, —u and z, =y, —u
7. The factorized operator (14) can be taken as the operator B. When ¢, =
¢, =1 (R =A4) Theorem 8 implies

gt 2V7 pl___1-vz=w+m—vm
BtV 1+VE Vit Va+Vern
The number n4(e) of iterations satisfies the folloWiﬁg asymptotic relation as
n->0:

1 1
_'rln's'-
2V2 v

In the case of a two-level scheme with the same operator B

ny (8) =

no(e) =~ —i—-—]n—!- .

e

If A isthe Laplace difference operator, then n = O(#?) and

{ l
= Q(—=1In—
n©)=0 (55 iny)
for a three-level scheme with the factorized operator (14).
The indicated scheme is applicable for the Dirichlet difference problem in an
arbitrary domain of any dimension.
Any three-level scheme can be formulated as a method of corrections:

Y = (4 + )y ay— Owy,, a= 5, 0= 12—;a=70 (14-a),

k=1,2,.. .

Ky - 7

T T2
4

where w, =B~ r, isacorrectionand r, = Ay, — f is a residual.
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Let us formulate a two-stage three-level method. The correction wy. is found
as a result of solving the equation

Rw=r,

by the iterative method with solving operator 7, IT,, § < ¢ <1, under the zero
initial approximation: w(®) = 0, so that Wy = w(™) and B=R(E - Tm)_l.
The number of iterations in this case satisfies the estimate

1 i
ng (8) == 0 (“_,.E_ ln‘é‘) ' (52)
where
- 611 - q
S = aiTe

In [51] a two-stage method was employed for an equation of elliptic type
with variable coefficients. An alternating direction scheme was chosenas T,,. It
was noted that the number of iterations was less than in the case of a two-stage
two-level scheme. As can be seen from (52), an application of three-level schemes
permits one to weaken the dependence of the rate of convergence on the ratio
¢,/c,, which is very important in the case of an elliptic equation with strongly vary-
ing coefficients.

A two-stage three-level variational iterative scheme was considered in [58].

§3. Total approximation method

1. In §§1 and 2 our main attention was directed to a study of the stability
of difference schemes. A second important characteristic of a-difference scheme,
which establishes a connection between it and the original differential equation, is
the error of the approximation. The sense in which the given scheme approximates
the original problem governs 1) the choice of the method of investigating the accur-
acy of the scheme and 2) the type of a priori estimates expressing the stability with
respect to the right side.

In the course of developing the theory of difference schemes a review was
made of the approximation criterion. Thus, by studying the rate of convergence of
homogeneous difference schemes in the class of discontinuous coefficients, it was
determined [61], [62] that the local error of the approximation (or of the
approximation 1n the mesh norm C or L,})is not an adequate index of the accur-
acy of a scheme. A scheme was constructed (for the equation (ku") —qu =
— f(x)) which on an arbitrary nonuniform net does not approximate the differen-
tial equation at any point but has second order accuracy {63].

The error of the approximation should be understood in some integral or
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total sense, i.e. one should estimate the error of the approximation in negative (weak)
norms that take into account its indefinitc (with respect to sign) or divergent
character (see [61] —[66]). Let us explain this by an example. Suppose given a
difference equation 4y = ¢, where A € (H, > H,), H, is a Hilbert space and

A =A% > 0. The following exact estimate holds for it: lyl, = ||np||A _qle.
the solution y in H, can be expressed in terms of the right side ¢ in HA_I.

If, say, 4 > v4,, ¥ > 0,and A4, = Ag > 0, we obtain instead of an exact equal-

ity the estimate lyl 4, < II.pIIA__l /. Suppose H, is the space of mesh func-
Ag
tions defined on w, ={x;=ih,i=0,1,+++ ,N;h =1/N} and equal to zero

for i =0, N, and suppose Agy =— y,,. Then

N
1y o
Ly E;A. = (2 (¥, i)'zh) is the analog of the norm in W3,

N—1
(@] le_l [2 B \ 2 h‘Pk) is the analog of the norm i W;l.

=1 k==t11

For nonstationary difference schemes, as was indicated in §1, the solution
in H, can be estimated in terms of lpl, + “lﬂr_ IIA_I. A weakening of the

approximation requirements (foresaking local approximation of a desired order)
permitted us to substantially extend the domain of application of homogeneous
difference schemes.

A priori estimates for concrete two- and three-level schemes having the
property of total approximation of elliptic operators can be found in [26], [29],
[64].

2. The notion of approximation played an important role in the develop-
ment of the theory of economical methods of solving nonstationary problems of
mathematical physics for the equations

S
ai

P Lut/(z t),

where L is an elliptic operator and x = (x,, ***,x,) is a point of a-p-di-
mensional domain G = G + I with boundary I, as well as for the correspon-
ding systems of equations {(when # and f are vectors).

Let wy, ={x;} be anetin the domain G andlet w ={z;=j7} bea
net on the segment 0 <7 <¢,.

By an economical scheme one usually understands an unconditionally stable
scheme such that the number of operations required to determine the solution is

- Lu L+ f(2, 1), 0t <t,
(D
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proportional to the number w, = Eh X ccTJ,,. of mesh points used. This means
that O(N) operations, where N is the number w, of mesh points, are re-
quired to pass from the jth level to the (7 + 1)th level; in other words, there
must be (1) operations at a single mesh point. The basic algorithmic idea of
all of the economical methods consists in the writing of difference operations
such that the process of solving them reduces to the successive application of
standard algorithms (for example, the one-dimensional sweep algorithm) with the
expenditure of O(N') operations.

All of the two level (using for the determination of y/*! only the value
of ¥/ at the preceding level) economical methods can be written in the form

x—1
Bofraln = ) C,oyitbip - FiP a=1,2,..., p, (2)
=0

where the y/+®/P o =1,++ p — 1, are intermediate values and the B, and
Cap are linear difference operators acting on y as a function of x € w,, while
each of the equations B, y/T®/P =y, with a known right side can be solved
with the expenditure of O(N') operations (the operators B, are called econom-
ical).

The first economical methods for solving the heat equation in the casc when
G is a rectangle were proposed by the American mathematicians Peaceman,
Rachford and Douglas [67] —{69].

Various economical methods have subsequently been considered for typical
problems of mathematical physics by Baker and Oliphant [72], Douglas and
Gunn [48], Saul’ev [41], Bagrinovskil and Godunov [70], Janenko [71], [73],
D'jakonov [42], Fijazinov [81] —[83], Andreev' [84], Hubbard {94, [95] and
others.

The economical methods are referred to by various names, for example,
the alternating-direction implicit method [67] —[69], the decomposition method
{71], the partial step method {[73], the splitting operator method {42], the
locally one-dimensional method [75], additive schemes {76] and the total
approximation method. This terminology, while possibly transient and reflecting
the individual approaches of the various authors to the construction and inter-
pretation of the structure of the economical methods, affords a view of the
various characteristic features of these methods (many of which coincide with
respect 1o the algebraic structure).

From the point of the general theory it is expedient to differentiate the
economical methods on the basis of the method of investigating them and, in
particular, the notion of approximation. It should be emphasized in this con-
nection that in most cases the method of investigation also determines principles
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for the construction of economical schemes. The following two approaches are
used for the investigation of economical algorithms.

1) The method of eliminating the intermediate values y/t®/? « =1,
s+« p — 1, and reducing system (2) to an equivalent scheme “in whole steps”

BYYY 4 Ay @)

T

with a factorized operator B =B, «++ B,. The properties of stability and
approximation of an economical method (2) are verified for the factorized
scheme (3). From this point of view the system (2) is interpreted as a method
of realizing a factorized scheme.

2) The total approximation method, on which we dwell at length in this
section.

The first approach, viz. the replacement of system (2) by an equivalent
factorized scheme, has been applied in many papers ([67] —[69], [71], [73] and
others). One can obviously start from a factorized scheme that is stable and
approximates a multidimensional differential equation and solve the difference
problem by using an algorithm of form (2) with economical operators B, (see
[42], [72], [74], [45] and others).

A general method for constructing stable factorized schemes was indicated
in §1 (see {34]). Economical factorized schemes can be obtained by choosing
varibus economical difference operators, depending on the actual problem, as the
R,.

The requirement that probleins (2) and (3) be equivalent can be satisfied
with the use of a special method of assigning 1) boundary conditions for the inter-
mediate values y/¥%/P aq=1,++-,p — 1, as well as 2) the right sides F/T%/P,
This was first pointed out by D’jakonov [88] (see also [76], [77]). Also, the
elimination (without inverting the operators B,) of the y/**/? aq=1,--+,
p — 1, requires in a number of cases the pairwise commutativity of the operators
B, and C,z;. We note that in a number of papers (see [67]—[69]) the econom-
ical algorithms are written so that the intermediate values can be eliminated with-
out imposing additional restrictions on the scheme operators.

Finally, a factorized scheme (2) with operator B = B, +- - B, is stable
only under the condition of commutativity or “almost commutativity” of the
selfadjoint operators {B,}.

A very interesting economical method (the splitting method [71]) has been
proposed by Janenko for the multidimensional heat equation

P
P _ 0u
% == uz_-l»"l La”, u==u (xs t)s £ = (xlt e xp)" I"“u a2 (4)

ax,
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The natural multidimensional weighted scheme

p

=¥ A+ (=) A= DAuha~Le ()

a=],

is replaced by the system of homogeneous difference equations

-1 a—1
walp - I 5 =
i R =Aa(cyi”f”+(1—c)y ’ ) =42,....p,

or
Boyiraid = Coyite-ir B, = F — gtA,, Ca=E+{1—0s)TtA.. ()

The case when L, is an arbitrary differential operator containing derivatives
only with respect to x, (the fractional step method) has been subsequently con-
sidered in [73].

System (6) can be reduced by the elimination method to the factorized
scheme

P P
T Bayirt =[] Coy?, ®)

=] o+,

which does not coincide with the original scheme (5) and approximates equation
4).

The requirement that the factorized scheme (8) and system (6) be equivalent
leads to the same difficulties as those discussed above. In particular, the passage
from (6) to (8) is possible if the operators A, are commutative (for (6) this
means that G is a parallelepiped). Difficulties have also arisen with the
assignment of right sides for equations (6) in the case of an inhomogeneous equa-
tion (4).

In all of the papers [67] —[73], [42] —[44] only domains of a special form
(G is a p-dimensional parallelepiped) were considered. Among them it is obvious
that the algorithms of [68], [69], [71] could also be used (upon formulating them
more precisely) in the case of a domain G of more complicated form. It has
turned out that the restrictions on the form of G connected with 1) the notion
of approximation for the methods of {68], [7 1]- and 2) the requirement of equiva-
lence of (2) and (3) can be removed by introducing a new notion of scheme (the
additive scheme) involving an approximation of the differential equation in a
weaker sense (in the total sense) [75]. The renunciation of the classical notion of
approximation and its replacement by the weaker condition of total approxima-
tion have substantially broadened the opportunities for constructing econornical
schemes and have permitted one to obtain economical additive schemes for a
significantly wider class of linear and nonlinear problems of mathematical physics.
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We proceed to a formulation of the notion of total approximation.

3. Let H, be a normed linear space, let «w; ={ti =j7,j=0,1,°"°,
jo} be a net with mesh width 7 on the interval 0 <?<{,,and let C4,
D, g A, 8> B, etc. be linear operators from H, into H, that depend on A,
7 and possibly € w, .

An n-evel difference scheme was defined in §1 as a difference (with re-
spect to the variable ¢) equation of (n — 1)th order:

> Calt)y(t;—Bv) =F(t;), (n— )<t <1, (9)

80

with operator coefficients and the n — 1 initial condiiions
yO)y =y, ¥(V)=y1,..., y((n—2)1) =1y, o

We introduce a wider class of schemes.

An n-level composite scheme with period m (of order m) is a system of
difference equations

m n—2
D Cap () 4 (E5 4+ Bry= D) Dag(t;)y (t; — Bv) 2 fa(t), (10)
b—=1 =0

where a=1,-+- ,m and (n — 1)1 <¢; <1,, with operator coefficients and
the given initial values y(k7), k=0,1,** ,n -- 2 (the number of levels is
determined by the number of initial conditions). Here #; takes the values

t; ={(n—1)7v 4 kmr, k=0,1l,..., j=n—14+km

In order to find y(t’- +m1) = Viym, Where f; = (m + n — 1)1, it is necessary
to solve a system of m equations with the operator matrix C = (Cap) of
order m X m,

When m =1 the composite scheme (10) goes over into the ordinary n-
level scheme (9). When n = 2 we obtain a two-level composite scheme with
period m (which we denote by S(2, m)):

D Caplt;) y(t; + BT) = Dagy () + 7o (t5),
8=1 )

(11)
a=1,2,...,m, y(0) =y,

It is convenient for what follows to introduce the notstion yf ta/m —
Vj+a and to replace 7 by T/m.
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Scheme (11) can always be written in the canonical form

,:'+afm _ yif(a—l.)fm

m
SIS hgpim et a=d,.m,

=0 (12)
i=0,4,..., y(0)=1y,.

It will be assumed below that scheme (12) is solvable and that the inverse
operator B~! exists. The stability of a composite scheme is defined by analogy
with §1. We require, in particular, the following definition of stability. We will
say that scheme (12) is stable if the a priori estimate

| w72 "{1) << Myl yo .uuo) + M%né;".‘x; 2 |resi ”(2) o

x=1

is satisfied for any y, and ¢/*®/™ where the positive constants M, and M,
do not depend on h, 7 or the choice of y, and ¢/**/™ ang [ - Ity =
tely,) and e llepy =MW ko, ) are certain norms on H,.

4. In order to introduce the notions of accuracy and approximation for
§(2, m) it is necessary to consider a Banach space H,, of the solutions u =
u(t) of the original continuous problem (cf. [49]). Suppose there exists a lin-
ear operator P, from M, into H, suchthat u, = Ru€H, if u€H,
and the norm compatibility condition

limjP,u =|u
lhl-rl!f o " L

is satisfied, where |+, isthe normin H,. Let {»/} be the solution of
problem (12) and let u(r), £ € [0, £,], be the (continuous) solution of the
original problem. The nearness of ¥/ =y, () to u(z) is characterized by the
quantity Uz}l where z/ =y] — ul. Substituting y/¥e/m = Ffe/™ +
u{,:'“{ ™ = u,(t; + o/mr), into (12), we get for z{:'“/ ™ the same system of equa-
tions (12) with right sides ¢+ /™ = g where Y/ is the error of approximation at
the equation of index « of (12) at the solution .

A composite scheme (12) whose error of approximation is defimed as the
sum ’

Y=w%+Y4...+ ¥, (14)

of the errors of approximation for the individual equations will be called an
additive scheme and denoted by AS(2, m). An additive scheme AS(2, m)
approximates the original continuous problem if
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maxfil, ->0 for |h[-+0, v—0. (15)

t-em,.

We represent ¢, in the form of a sum

b: btyy sothat 3§, -0, (16)

a=1

The total approximation condition (15) will be satisfied if

maXH\p;(tj)"(?h}—*O for |k]|—0, t—0 and a=1,2,...,m. (A7)
t=

We establish a connection between the properties of stability, approximation and
convergence for AS (2, m).

THEOREM 11. Suppose an additive scheme has the properties of stability
and approximation, the following “smoothness’ condition for the solution u =
u(t) is satisfied:

m=1 m m

S 4u( 3 B1,)], < a8)

=1 f=1 k=8-+%1
where My = const > 0 does not depend on 7 or h, and v, = u,(0). Then
the scheme converges and the following estimate holds for it:

f+1

L — fewy

< Mzogﬁ;[z 1 et v 2 u 2 A“p( i B—I‘E"(t’v)} L)] )

a=]1 B:=1 k=841

Effective a priofi estimates can be obtained under weak restrictions on the
scheme operators in the case when H, is a real Hilbert space.

THEOREM 12. Suppose A, =0, B is a constant operator and the foliow-
ing conditions are satisfied:

B=RB"'">0, (20)

D (Auglp, B} >0 forany EeesH, a=1,2,...,m (21)

a, Bﬂl

Then the following estimate holds for the solution of problem (12):

172, <l wolp + Mz max [ﬂ 2 tP"””“||B_,+V_ 2 j o +im B-.]. (22)

a=]
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where
Iy“B = (By: ¥), Ilqjﬂg-u = (B—I(P! P).

COROLLARY. An additive scheme (12) converges in Hg if yo = u,(0)
and the conditions of Theorem 12 and the following total approximation condi-
Hons are satisﬁed

max jvaim 0 ' h 0’ 0 frajm = qpiy)

max 2 [rerm | << Mo,

0 j<jo o1
where the positive constant M, does not depend on T or h.

REMARKS. D

v 0, ] 2wl =00af+w,
a=1

where k& > 0,1 > 0, and the conditions of Theorem 12 are satisfied, then
AS(2,m) convergesin Hy at the rate of O(IkF + rk'), where k, =
min(k, 1/2). ‘

2) If, in addition, the smoothness condition (18) is satlsfied with Il - II(2)
- HB ;- then AS(2, m) converges at t.he rate of O(lhl' + 7 2), where k, =
min(k, 1).

5. The process of solving problem (12) is simplified if 4 = (4,p5)isa
lower triangular matrix (4,, = 0 for §> a), so that

jrofm __ , dt(a—1}{m - H =
BY L ZAaBy ™ (23)

The passage from the jth level to the (j + 1)th level is effected by successively
(from « to a+ 1) solving the equations

Bay"r“’“‘ - q)m Bﬁ =B +'1:A.am

i+ =L *—1 G —
®, = By m—"UZAaBJJB"m*Tq) m
p=0

for =1, «++ ,m, which can be written in the form
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a—1
yiram = 3V S, oyivhim 4 g Fy, «=1,2,...,m. (24)
=0

In this case A4S(2, m) has a lower triangular translation operator matrix
S =(S, ﬁ). These AS(2, m) with a triangular matrix (Saﬁ) or (A,p) will
be called triangular additive schemes.

It is not difficult to check that all of the economical algorithms of form
(23) that correspond to two-level factorized schemes and can be interpreted as
composite schemes belong to the family of triangular additive schemes and have

the total approximation property. We indicate some special cases of triangular
additive schemes (cf. [68], [71]):

Agg = A,0,3, Oap = 0, ==B. (25)

Aog = 6Aapbap + (1 — 6) Aabury, g,
Aap = %‘ Aaﬁa.?s + ‘12" Aa—lau—l. B+ (26)

For scheme (25), for example, condition (21) of Theorem 12 is satisfied if
Ay, y)=0 forall yEH,, a=1,*+*,m.

Additive schemes with a diagonal matrix (4,4) will be called locally one
dimensional.

6. A basic question is the following: How can one construct additive
difference schemes of a given order of accuracy?

The following method for constructing additive schemes, that guarantees
total approximation, was proposed in [75].

Consider the equation

S = Lu+/(zb),

(27)
x -: (xl, - ,.rp)GG, tEI_O, to], u.(x, 0) = uO(x).

Suppose the operator L acting on # as a function of x can be repre-
sented in the form of a sum of operators L, of simpler structure (for example,
“one-dimensional” operators, i.e. operators containing derivatives only with respect
to x,):

r
L= D L, (28)
&=1

We represent f in the form of a sum
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p
[= 210 (29)
a—1
and rewrite equation (27) in the form
P
D) Pau—0, (30)
a=1

where P u=p~'3ufdt — L u-f,.

We introduce on the segment 0 <7 <1, the net w, ={f =j7,j=0,
1,+*+,j,} with mesh width 7. Each mesh is divided into p equal parts by
introducing the points ., ., =(/ +ofp)r, =1, ,p— 1.

Instead of equation (30) we will solve on [z;, £, ] the system of equations

- —

Py =0 for t=A,, where Ay = (t” 3_1<t-’{§t5_*_~a_) . (31)
P )

a=1,2,-.-gp!
which are connected by the conditions

D(a) (t;H-a_—E) = v(a_”(tﬁg—"l) , a=23,..., P, U(n (tj) =P (tj),
: r

?

where v(t;) = v,5() and v(0) = u(0) = u,,.

Each of the equations P,y = 0 is solved on its own interval A,.

If each of the equations P v, =0 is approximated in the ordinary sense
by a (two-level) difference scheme with mesh width 7/p, we obtain the following
system of difference equations for determining »/*!, given y/:

Moy, =0, a=1,2,...,p, Yy =1L (32)

We show that the composite scheme I, - I, >« -+ >[I, approximates
equation (30} in the total sense if each of the schemes (32) approximates the
corresponding equation of (31) in the ordinary sense, i.e. if at any sufficiently
smooth function the quantity

\Fa == Huu}r;m!p —— (Pau);‘ﬂ;p (33)

tends (in some norm) to zero as 7> 0, |kl = 0.
The error of approximation at the solution u = u(x, ) of equation (30)
for the scheme [, is obviously equal to

Y, = Hau}';*“f?’ -~ (P u)jreir 4 Y.

Taking into account that (P, u)/**/P = (P, u)/*% + O(r), we get ¥, =
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Jaa + ¥, where ¥ =¥, + O(r) and \l:a =P u) %,
Hence by virtue of equation (30) Z¥y,, = 0, and the total error of approxi-

mation for the additive scheme (32)
P

CEDY 2 %, = z iy (34)

=1
tends to zero as |k} > 0 and 7 0, since the ¢ ’* have this property.

Thus the additive scheme (32) approxnnates equation (27) (in the total sense)
if each of the schemes (32) approximates the corresponding equation of (31) in the
ordinary sense (on a net with mesh width 7/p).

This follows from the fact that the system of differential equations (31)
approximates the multidimensional equation (27) in the total (integral) sense.

In fact, the error of approximation for the equation P,v(,), =0 at the solu-
tion u = u(x, £} of equation (27) is the residual ¥_(¢) =P u(f), where t €A,
SmcePu (P, u)f+%+0(r) for IG[ +1] we get W -\P +\If , where

Y, =(@Puyt#% and ¥ =0(). Hence
»

M Wg=0, ¥e= Z ¥, ¥, =0(x),

a =1 U;"'I.
i.e. the additive system of differential equations (31) approximates equation (27)
with first order in 7.
Clearly the total error of approximation for system (31) can be determined by
analogy with (34) as

P. tirafp

v= 2L ¥, di
@--1 P oa-t
J+ —

It is not difficult to note that the analogs of the above arguments remain

Valid, so that £:
J+e/p

k4
¥=32 S ¥ dt = 0 (v).
a=1

t.

From the stability of system (31) and the total approximation we obtain the con-
vergence of the solution of problem (31) to u(x, 1).

It should be emphasized that the total approximation for (32) and (31) at
sufficiently smooth solutions of problem (27) is guaranteed by the satisfaction of
conditions (28) and (29): the operator L isthesum L, + -+« + L, =L and the
right side f is the sum f; + " +fp =f.

The question of the neamess of the solutions of probléms (27) and (31) has
been studied by Janenko [89]. He considered the Cauchy problem in the hatf-
space kx1<oo, t>0Q for the system of equations
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(@ ty=Liz,t, D)u+[(z,1),  ulz,0)=u(z), (33

where u(x, t) and f(x, r) are vector functions of a vector argument, and

L(x, t, D) is a lincar differential operator whose coefficients depend on x and ¢

It was assumed that L is representable in the form (28) and the Cauchy problem
(35) was replaced by the composite Cauchy problem (31) in the particular case f, =
f{p. By making use of the property of total approximation implied by condition
(28) and interpreting it as the property of weak approximation of the coefficients of
the differential equation the author proved that

[v(z, t)—ulz, t)]— O(1)

(under the condition of sufficient smoothness of u(x, 1)).

7. The technique indicated above of constructing additive schemes with a
guaranteed approximation has subsequently been used to obtain economical schemes
for many of the linear and nonlinear problems of mathematical physics (see [75],
[76], [78], {451, [901, [91], [92]).

The total approximation method has permitted the extension of modified
algorithms [68], [71] to the case of an arbitrary domain as well as the determination
of a number of new homogeneous economical additive schemes for the linear and
quasilinear equations and systems of equations of mathematical physics.

In this regard it became apparent in connection with a study of equations (27)
with operators L, depending on ¢ that one must alter the composite system of
differential equations approximating a multidimensional equation.

In {79] the following abstract Cauéhy problem was considered in a Banach
space B:

S ABu=1, 0<t<ty, u(0)=u,u B, (6)

where A(f) is a linear operator with an everywhere dense in B domain of definition
that is representable in the form of a sum

P
A = D A1), (37)
x =l
and wu(t) and f(¢) are abstract functions of ¢ € [0,¢,] with valuesin B.
The uniform net w, ={t;=jr,j=0,1,%+,j,} with mesh width 7 is
introduced on the segment 0 <t <¢,. Problem (36) is replaced by the system
of Cauchy problems
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L -+ "41”(1) = f1(t), t et t_-;.i.l-l? Yy (t))= v(tj)!
dv 38
—D 4 A, =3 (1), tE [t b, Uy (8) = ¥y (£, (38)

dv
(=) — —
2 T A“v(a)"" 1. (®), A LT P Yta) (£5) = Vg (B35)s

dv
(»)
a tdwe=lt),  tEl bl v ) = ve-0(.,)

and it is required that
v (t.fq-'l.) =.Up) (tfl-l): j= 01 1: “euy .fo — 1-; [ (0) == Uy

The question of the proximity of the solutions of problems (36) and (38) was
investigated. We indicate the main results.

DIf Ay) and Ag(l"), a#B,0,8=1,+-+,p, are commutative:
AL(VA(E") = AJ(E)AL() forany £, 1" € [0, 1], then when f=0 the
equality

v (tj) =i (t_f) (39)

holds forall j=0,1,-+-,j,.

If f# 0 itis possible to select fp when f, =f, =<+ = p—1 = 0 in
such a way that (39) will be satisfied.

2). If A, and A, arc noncommutative and the solution u(f) of problem
(36) satisfies a “smoothness™ condition of the form

lAedpu|< M,

where [l - | is the norm in B and M = const > 0, then under condition (29)

lv(t) —u(t)]=0(v) (40)

forall j=1,°++,j,.
The following question arises: Is it possible to construct a system of partial
Cauchy problems such that
|vF — wi| = O (x?). 1)
We write by convention the composite Cauchy problem (38) in the form of a
chain: A; » A, » -+~ A . Consider now the symmetric chain

! 1 1 1 1
?"41 = .. —*Tc/{phl+“2‘0/4p_yio4p'+%ﬂp‘1—y sen E-Ai_
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or

_1?.,41—»...—)- Apay—> Ap = Ap_l—r-...—r-%ﬂl.

But this composite Cauchy problem (under an appropriate choice of the f, and
some additional “smoothness” conditions on u, and f) is such that estimate
(41) is valid (see [72]).

The idea of symmetrization was developed by 1. V. ¥rjazinov, who con-
structed and investigated a number of symmetrized additive schemes for equations
of parabolic type in graduated domains composed of p-dimensional parallelepipeds
(see [83]). Another symmetrization method has been applied to obtain econom-
ical schemes in the case of the equations of acoustics [93].

Let us show that the chain of Cauchy problems (38) approximates problem
(36) in the total sense.

We put 2., (1) = vo)(H) — a1 for @=2,3,+--,p, 24)(8) = vy(®) -
u(t), and write the equations for the 2z,

Az,
’ z(“)=l|ﬁ¢' tj<t<tj+1‘l 0f-=1,2,. e Py
o=y Ore=23.p gy=d = 20)-

The right side Y, is the error of approximation of equation (36) by the equa-
tion of index « of (38) in the class of solutions u = u(r). Clearly, ¥, (¢) =
@ - A @Ou*! for a>1 and Y, () =f,() - A (t)u(t) du/dt We
represent w in the form v, (f) = wf'“ +0(r) or Y, =P, + ¥, where
¥, = (f, — S 1 du/dt)"“, where §, , is the Kronecker delta. If
fi+-- +fp f,then

| e =0 and hi¢a“ﬂ‘[\i¢;\]=

o =1 ax=] a=1

i.e. problem (38) approximates problem (36) in the total sense,

The main difficulty in constructing O(r2) additive schemes is the assign-
ment of boundary conditions for the intermediate values y/*%/? (this problem
does not arise under an abstract formulation); in order to satisfy the requirement
of O(r®) total approximation it is necessary to introduce corrections to the
natural boundary values.

The method described above for constructing economical additive schemes
with a preliminary construction of the composite differential Cauchy problem (38)
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and a suitable choice of the operators A, followed by a difference approxima-
tion of each of the equations (38) is also very practical and is commonly used
as a heuristic technique for obtaining economical additive schemes (see, for
example, [72], [83], [55]). Let us citc an cxample.

Consider the case when A =3[ | A,; and the matrix (A,g) is sym-
metric. We represent (A, ) in the form of a sum of two triangular matrices:

(Aap) = (Aap) + (Az3), =0 for B>a, Aup=0 for B<a,
Ar = Al 2= s Maxs Aag = A7 + A3

and introduce the operators

'-4-&:-2”4;5" for 9"'7‘—'1:2!°"lp‘
b=l
2p 2p
Jza: 204;:011—3,2})11—5 for 05‘—‘P—1'-1,....2p, A: Z'A'a-'
=i a=1

Following this we.construct the chain A, > A, =+ ++ > A, of problems
(38) and approximate each operator A, by a difference operator A, depen-
ding on A(u7) and defined in a normed linear space B,. As a result, we obtain
the following triangular additive scheme:

2p ~

+ Hmyiraa"zp + 2 ﬂaﬂyﬁ(x—l}!ﬁp — (P.}.rlfﬁ]?,
s a=1,2, .. 2p,

yj+ /iy yj-r(z—],)fzp

T

where Zaﬁ =Ayg for a=1,+++,p and Zag = A t1—a2pr1-p fOF
a=p+1,+-+,2p. If B, isa Hilbert space and the matrix A4 = (Aap) is
nonnegative, then the conditions of Theorem 12 are satisfied and the a priori
estimate (22) holds for the triangular additive scheme.
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