
NUMERICAL METHODS OF SOLVING ONE-DIMENSIONAL 
NON-STATIONARY GAS-DYNAMIC PROBLEMS* 

Yu. P. POPOV and A. A. SAMARSKII 

Moscow 

(Received 24 March 1976) 

A DESCRIPTION is given of difference schemes for systems of one-dimensional non-stationary gas 
dynamic equations, constructed on the basis of the principles of conservativeness, complete 
conservativeness, and homogeneity, and permitting coarse meshes to be used. A comparative 
analysis of various methods of solving difference schemes representing systems of non-linear algebraic 
equations is presented. It is shown that Newton’s iterative method permits the use of meshes with the 

greatest time steps. 

1. Introduction 

Many problems of modern science and technology include as a basic element the equations of 
gas dynamics. These equations are non-beg, and at the present time the only efficient and universal 
methods of solving them are numerical methods based on the use of high-speed computers. 

In actual problems of practical interest the equations of gas dynamics are as a rule complicated 
by the ~troduction of ad~tion~ factors, such as, for example, elec~oma~etic fields, thermal and 
electrical conduction processes, chemical reactions, radiation etc. The development of algorithms 
for the solution of such complicated systems of equations presents considerable difficulties, and their 
realization requires a large amount of computer time. Therefore the development of efficient methods 
of solving the gas dynamic equations numerically, which would permit the use of “coarse” difference 

meshes, is of great importance. 

We explain the problems existing here and possible methods of solving them by the example of 
a system of homogeneous non-stationary equations of gas dynamics in Lagrangian mass coordinates. 
For the case of plane symmetry this system of equations has the form [ 1,2] 

dV dP 
-=--> 
at ds 

8X 
- = v, 
(3t 

(1.1) 

(l-2) 

(1.4) 
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P=w, u, &=&((p, T). 

121 

(1.5) 

Here t is the time, x is the Eulerian variable, p is the density of the medium, s (ds=pdx) 
is the Lagrangian mass coordinate, v is the velocity, p is the pressure, E is the internal energy, and 
T is the temperature of the gas; the derivatives with respect to time are Lagrangian. 

Relations (1.5), closing the system of equations, are the equations of state; their form is 
determined by the properties of the medium considered in a specific problem. 

2. Homogeneous completely conservative difference schemes 

In the solution of problems of gas dynamics by the method of finite differences the continuous 
medium is replaced by some discrete model, and accordingly, the system of differential equations 
by some difference scheme. The difference scheme approximating the original system of differential 
equations may be constructed non-uniquely. Therefore some preference criteria are necessary which 
will enable us to choose from the family of permissible schemes the schemes possessing the best 

characteristics. 

At the present time a number of general characteristics exist (conservativeness, complete 

conservativeness, homogeneity etc. [2] ), which make it possible to construct for Eqs. (l.l)-( 1.5) 
schemes correctly yielding solutions even on coarse meshes, when the approximation is practically 
lost. These principles are (mainly) of a qualitative nature, they have a theoretical justification for 
the linear case and are confirmed by practical calculations for non-linear problems. 

The application of these principles enables us to construct for the system of equations 
(1 .1)-(1.5) the following one-parameter family of difference schemes: 

(2.1) 

xi=u(o.5) 
1 (2 .a 

(l/p) 1=v,(“‘5), 

( 
E + z+w(+1) 

4 > 
=- <p.‘“’ uP.5’) 11, 

! 

P=P (P, T), e=a (p, T) . 

(2.3) 

(2.4) 

(2.5) 

For simplicity the scheme is written on the uniform mesh Q={ (si, tj), i=O, 1,. . , N; i=O, 1, . . , 
si+i=Si+h, tj+i=tj+‘tI, h, T = const are the mesh steps. The mesh functions x = xi i, v = vi’ are 

referred to the nodes of the mesh (Sip ti); the functions p=&_,.. p=pz$,2, e=ei!+.l/z, T= TJ& 
to the “half-integral” points (Si+s, ti), where si+c,,=sii-h/2. The parameter OGSI is 

arbitrary. In the formulas of the scheme (2.1)-(2.5) the following subscriptless notation is used 

]2,31: 
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y= y,‘, y= Yi:%, y ’̂ yi”, Y (*I) =yL, 

Y (+1)-Y y_ = Y-Y C-1) 
yq= h 7 J 

y = i-y 
h’ L7’ 

Y*=0.5(yfY(-W, y’“‘=q+ (1-a) y. 

(2 -6) 

In the scheme (2.1)-(2.5) the laws of conservation of momentum and energy are satisfied. 
This follows from the divergent form of the difference equations (2.1) and (2.4), which in fact 
express the laws indicated for one mass interval of the mesh h after one time step r. The corresponding 
integral conservation laws are obtained by summation over the mesh of Eqs. (2.1) and (2.4) for 
O<i<N, j,=Gj_(jz. 

The law of conservation of mass is automatically satisfied in the scheme because of the use 

of Lagrangian mass variables. 

The internal energy balance is also satisfied in the scheme (2.1)-(2.5). Indeed, from the 
energy equation (2.4) taking into account (2.1)-(2.3) we can obtain the relations 

(2.7) 

which express this balance for one cell of the mesh. The difference equations (2.7) approximate the 

differential equations 

d& de a 1 at=-p-$ dt=-p-$- 7 7 
( 1 

(2.7’) 

which are consequences of Eqs. (1 .1)-(1.4) and reflect the fact that the internal energy of the gas 
is changed because of the work of the pressure forces. 

The equations of the scheme (2.2), (2.3) imply the natural equation 

11 P=iX,, 

or, after summation over the mesh, 

N-i 

c h _. 
- = ZN’40~. 

i-0 d+‘l* 

The relations (2.8), (2.9) approximate the equations 

1 ax M as -=- 
J 

-=x(MJ)-x(0$), 
P as’ oP 

(2.8) 

(2.9) 

(2.10) 

which follow from (1.2), (1.3) and express the so-called law of conservation of volume (M is the 
mass of the gas considered in the problem, arriving on unit area of the transverse section) [ 1,2] . 
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Therefore, the scheme (2.1)-(2.5) possesses the property of complete conservativeness 

[2,4]. In it are satisfied not only the difference analogs of the fundament~ laws of conservation 
(of mass, momentum, and energy), but also the additional relations (2.7), (2.9, the need for 
whose observance is dictated by physical considerations. 

We note that scheme (2.1)-(2.5) simulates relations (2.7’), (2.10) for any values of the mesh 
steps h and r. Schemes which are not completely conservative possess such a property only in the 

asymptotic sense as z-+0. The violation of the property of complete conservativeness leads to 
the occurrence in the scheme of various sources of energy of difference origin, whose power is 
proportional to the mesh step 7. On coarse meshes for large values of r these sources are significant 
and may considerably distort the solution [2]. 

In practice in the scheme (2.1)-(2.5) instead of the divergent difference equation of energy 
(2.4) one of the equations (2.7) equivalent to it is often used, and instead of the continuity 
equation (2.3), the more compact form (2.8). 

The approximation error of the scheme (2.1)-(2.5) is 0 (d-h') and o(rz+hZ) for the 

particular case of the parameter u = 0.5. 

To ensure homogeneity of the scheme, that is, the possibility of straight through 
calculation of shock waves without the explicit isolation of the wave front in the mesh, the 
pseudoviscosity W [2,5] is introduced into the scheme in the form of an addition to the pressure 
p. The presence of p~udo~scosity in the scheme does not violate its complete ~on~rvati~ness. 
The corresponding difference scheme is identical with (2.1)-(2.5) if the pressure p in Eqs. (2.1) 
and (2.4) is replaced by the complete pressure #=p+ 6~. 

In the solution of actual problems the difference equations (2.1)-(2.5) are supplemented 
by a difference approbation of the boundary and initial conditions. 

3. An explicit completely conservative scheme 

The difference scheme (2.1)-(2.5) is a system of non-linear algebraic equations in the values 
of the mesh functions. The number of equations in the system is determined by the number of 
mesh nodes in the spatial variable and may be considerable (30 to 200). Therefore in the general 
case the solution of such a system represents an ~de~ndent problem. 

In order to analyze the theoretical aspect of the question we confine ourselves to a consideration 
of only the isothermal approximation. In this case the energy equation is replaced by the relation 

T=To=const, 

which noticeably simplifies the problem. We also note that the use of the method of successive 
pivotal condensations [2,8] splits the complete system of equations (2.1)--(2.5) into parts, solved 
separately; then in the dynamic part the equations for the isothermal case in fact occur. 

The difference scheme (2.1)-(2.5) in the isothermal approximation, taking into account (2.8), 
reduces to the form 

(3.1) 
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51=v(o.5) 
I (3.2) 

(Up) I=Us(o.5) , (3.3) 

p=B(p). (3 *4) 

Here and below the bar above the functions p, p, indicating that they refer to the half-integral 
points of the mesh, are omitted. 

As the equation of state (3.4) we will consider the equation of state of an ideal gas 

p=czp. (3.4’) 

where c is the isothermal speed of sound. 

With the particular value u = 0 in (3.1) we obtain the so-called explicit completely 
conservative scheme [2]. Equation (3.2) of this scheme is not explicit, its right side contains the 

values of the mesh function of velocity from the top time layer vf+’ : However, this scheme can 
be solved explicitly without difficulty. Far this we have to consider Eqs. (3.1)-(3.4) in the sequence 
in which they are written. Then from Eq. (3.1) for the known values of the mesh pressure function 
pii we determine the velocity on the (j + 1)th layer vj+‘; then from Eq. (3.2) we determine 

x?’ , from Eq. (3.3) the function pi j+1 
2 

, and from Eq. (3.4) the pressure prl. 

The scheme described, attractive from the algorithmic point of view, is stable in the acoustic 
approximation only when the condition [2] 

z<Kh’, (3.5) 

is satisfied, where K is some constant. Then the computational errors may increase with time, but 
not more rapidly than eKrj3. 

The stability condition (3.5) imposes on the mesh step r a constraint which is rigid and 
unnatural for hyperbolic equations. It does not permit the use for calculations of a mesh with a 
coarse time step, and therefore it does not make it possible to realize the advantages possessed by 
completely conservative schemes over other schemes, since these advantages emerge on coarse 

meshes. 

4. The simplest iterative process 

For the parameter values 020.5 the scheme (3.1 j(3.4) is unconditionally stable [2,7]. 
However, in this case it has not so far been possible to solve the resulting system of difference 
equations explicitly. This system of algebraic equations is non-linear, therefore we have to use 

various iterative methods to solve it. 

Here the value of any mesh function y on the top layer is defmed as follows: 
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‘+i= Yl ]im y,Ikl, 
k-cc 

(4.1) 

where k is the number of the iteration. It is natural that actual calculations are limited to a fmite 
number of iterations ko, using as a practical criterion of the convergence of the iterations some 
condition of the form 

1 y:h+i’ -ylk’ldEilyfk11+E2, i=O, 1,. . . , N. (4.2) 

Here e1 is the relative accuracy, ~2 is some small number which ensures correct “operation” 
of the criterion (4.2) in the particular case y,lkI = 0. 

Naturally, an iterative process does not always converge. The conditions for its convergence 
generate certain constraints on the time step of the mesh. We consider the nature of these 

constraints. 

We turn to the simplest iterative process for the scheme (3.1)-(3.5) (“explicit iteration”), 
putting (I = 1 to be specific. The values of the mesh functions at two adjacent iterations the k-th 
and (k t I)-th are here connected as follows: 

[k+il 
-Vf 

Ikl [kl 

Vi Pi -Pi-t 
=- 

h ’ (4.3) 
IT 

rr+t1 
Xi 

-xi’ 
= 0.5 (V,‘k+~‘+v;) ) (4.4) 

z 

1 
[A+11 [k+il 

Xi+, -xi 
-= 

o:k+‘i h ’ 
(4.5) 

[k+il Ik+tl 

Pi =c2pi . (4.6) 

In exactly the same way as in the case of the explicit conservative scheme considered in 
section 3, the system of equations (4.3)-(4.6) is solved explicitly at each iteration: from (4.3) we 
determine ~~[k+lI , from (4.4) we determine xilk+‘l and so on. 

As the “zeroth” iteration yi IO1 is usually taken as the value from the preceding time layer y!. 

It is shown by analysis [2] that to a linear approximation the process described converges 
only if the inequalities 

T=GTKi2’“, (4.7) 

are satisfied, where T,=h/cp is the quantity occurring in Courant’s well-known stability condition 
z< zx, constructed for the “cross” scheme [ 81. 
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Therefore, when the simplest iterative process is used the condition that the iterations 
converge generates a fairly strong constraint on the mesh step T, although the original scheme is 
absolutely stable. 

5. Newton’s iterative method 

To solve the difference equations of the gas dynamic scheme (3.1)-(3.4) we can use Newton’s 
iterative method, which possesses a rapid rate of convergence. Applying the usual procedure to the 
system of non-linear algebraic equations (3.1)-(3.4) [2,9], we arrive at each iteration k = 1,2, . . . 

at a system of linear equations 

dv+or6p;=--f,, 6x--o.5T6v=- j?, 

6p-cVp=Q. 

In (5.1) the quantity 6y is the difference between the values of the mesh functiony in 
adjacent iterations the (k t 1)th and the k-th: 

6y=6y Ik+il_ Ik+ll -y -y[h'. 

The remaining mesh functions in (5.1), namely ~,fi, f2, f3, are c&dated at the k-th 
iteration: 

Ikl Ik’ 

(5.1) 

(5 -2) 

(5.3) 

We note that because of the linearity of Eqs. (3.1), (3.2) we have ~i’?=f,‘~‘=O for IcS 1. 

The system (5.1) is linear in the unknown increments 6y. Eliminating from (5.1) the functions 
6p, 6p and 6x, we can reduce this system at each node of the mesh to a linear difference equation 

of the second order in Sv: 

~v-o.50~2(C~p~6v,)7=-f,+0~~C~p2(f3- (f&J I;, 

or, in subscript form, 

A~fi~,_~--C~G~~+B~G~~~~=--F~~ i=l, 2.. . . , N--l. (5.4) 

The coefficients of Eq. (5.4) depend on the number of the iteration and are calculated by the 

formulas 
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The system of three-point equations (5.4) can be solved by pivotal condensation [3] at each 

iteration. 

The stability conditions of the pivotal condensation A,>O, B,>O, Ci>Ai+B, are here 
satisfied. The iterative process is continued until some convergence condition, for example of the 
form (4.2), is satisfied. 

6. Convergence conditions of Newton’s iterative method 

We substitute in the system of linearized equations (5.1) in place of the right sides fp, p = 1,2, 
3, their expressions from (5.3) and then subtract from each equation the corresponding value of 
the original system (3.1)-(3.4).We obtain 

Au+orAps=O, Ax-0.5~Av=O, 

As,+ 
[k+il 

- 
WI 1 

__+‘=0, 
(6.1) 

(,lkl)” p p 
Ap - c2Ap = 0. 

Here Ay=Ayl”+‘l=y[k+‘l___g is the difference between the value of the mesh function y 
at the (k t l)-th iteration and the solution 3 = y i+l. We note that this notation differs from the 
notation Sy encountered above (see (5.2)). 

The system (6.1) unlike (5.1), is unsuitable for practical calculations, but is convenient for 
theoretical discussions. After eliminating from (6.1) the increments of all the functions except 
Ap, we can transform this system to the second-order equation: 

where 

(If 2(Cz;k’)Z)Z:k+i1 _ (&rkl)2 (&!z”+ $:“) = - (:;l’ ) 
t 

i=] 3 1-Y..*, N- 1, 

(py = 0.50 ( +y2 (p$y. 

(6.2) 

If to be specific we confine ourselves to problems where on the boundaries modes of 
variation of pressure with time are defined, then as boundary conditions we have to supplement 
Eq. (6.2) by the relations 

[k+ll 
20 = 0, zAh+ll = 0, k = 0, 1,. . . . (6.3) 

For an inhomogeneous equation (6.2) with homogeneous boundary conditions (6.3) the 
maximum principle holds [2,3] , which implies the corollaries 

Here 

(6.4) 

(6.5) 

IIz[k’l(c = maxIzi[” I. 



128 Yu. P. Popov and A. A. Samarskii 

The inequality (6.4) means that in the iterative process the approach to the solution $ 
goes from below. After many applications condition (6.5) reduces to the form [2] 

(6.6) 

where 

It is obvious that the iterative process converges if q< 1. 

If as the zeroth iteration we take the values of the mesh functions from the preceding j-th 
time layer, as is usually done in practice, then the condition of convergence of the iterations can 
be written as follows: 

(6.7) 

rI=l/p. is the specific volume. 

Condition (6.7), being sufficient, is obtained for the non-linear case (in the linear approximation 
the Newton process converges after one iteration) and has an extremely general form, depending 

on the nature of the solution. However, it is obvious that for any solution condition (6.7) can be 

satisfied by decreasing the mesh step T. 

For solutions strongly varying with time the constraints on r will be strict. 

7. Estimation of the rate of convergence of the iterations 
for the shock wave problem 

We will explain the constraints to which the general condition of convergence of the 
iterations (6.7) leads in the problem of a shock wave, “blurred” by viscosity. This example is 
important for applications, since in actual calculations, in order to ensure the possibility of straight 
through calculation of shock waves without the explicit isolation of their fronts on the mesh 
artificial viscosity is introduced into the scheme. This viscosity o occurs as an addition to the 
gas-dynamic pressure p. The linear viscosity has the form 

o=--vpadas, (7.1) 

v is the viscosity coefficient. 

The solution of the problem of the structure of the front of an isothermal shock wave in a 
viscous medium is known (see, for example, [ 1,2] ). It is usually described by the ordinary 
differential equation 

(7.2) 
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Its solution is 

129 

rl(5) = q,+Kv, exp 1 1 ‘(‘~“) ]5){ I+Kexp[ ‘(‘%“) ] 5)’ 

where c=s-‘Dt is a self-similar variable, D is the mass velocity of the shock wave front, no, n1 
are the values of the specific volume ahead of the wave and after it respectively, and K is an 
arbitrary constant. The value of no is specified, the value of n1 is defmed in the isothermal case by 
the formula q,=~.~p~/D~=,a~~~, where a=mJDc 2 is the ratio of the mass speed of sound 
m=cpo 1 to the mass speed of the shock wave front. Figure 1 shows the solution of the problem 

of the structure of the shock wave in Lagrangian mass coordinates at a fuced instant. This solution 
enables us to estimate the values of the norms of the functions occurring in the convergency 

condition (6.7): 

(7.3) 

FIG. 1. 

After substituting the relations (7.3) in the condition of convergence of the iterations (6.7) 

the latter is reduced to the form 

E=-$<rzQ(a)=na_ 
1-a’ ’ (7.4) 

where rRi= h / (cP~) is the quantity calculated by Courant’s stability condition for the parameters 
behind the shock wave front, a=m / D, O-CaGl, is the characteristic intensity of the shock 

wave, and n is the number of mass intervals of the mesh on which the shock wave front is blurred. 

Therefore, the siie of the maximal step r depends on the strength of the wave (on the value 

of the parameter a). Strong shock waves with a+0 require a small step; for the calculation 
of weak waves, close to acoustic (a+ I), there are practically no constraints. 

It is seen that the convergence conditions of the Newton method are noticeably less strict 
than in the method of simple iterations considered in section 4. 
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8. Results of numerical calculations 

The estimates obtained above of the step 7 permissible for convergence of the iterations are 
confirmed by numerical calculations. As a test problem we considered the classical problem of a piston 
moved in a gas with constant velocity, as a result of which a shock wave arises. 

In the calculations we consider a finite mass of gas O<s<M, bounded on the left at s = 0 
by the piston, whose velocity is given: 

u(0, t) =u. (8.1) 

and on the right (s = M) by a fwed wall: 

u(M, t) -0. (8.2) 

The quantity M is chosen to be so large that the shock wave mode is successfully formed. The 
calculation is continued until the shock wave front reaches the right boundary. The initial state of 
the gas was of the form 

p(s,O)=po=l, p(s,O)=po=O.25, u(s,O)=uo=O, OcstM. (8.3) 

All the reasoning applies to the isothermal case, the speed of sound (see (3.4’)) c = 0.5. 

A comparative analysis of various schemes was carried out on the example of a version of the 
problem, where the velocity of the piston (8.1) was U = 0.75. Then, as follows from the Hugoniot 
relations, the speed of the shock wave front D = 1, and the gas parameters behind the front have 

the following values: 

pi=4, q,=O.25, pi=l, c,=O.75. 

In calculations in the region 0.~ < <~%1?,M=3to7,auniformmeshwithsteph=O,lwas 

introduced. The time step 7 of the mesh was varied. 

To ensure the possibility of a straight through calculation of the shock wave in the scheme 
the linear viscosity (7.1) with coefficient v was introduced, so that the wave front was blurred on 
n mesh intervals: 

4v 

n= Dh(qo-qi) * 
(8.4) 

For v=O.O5 (this is the value of the viscosity coefficient used in the calculations) and D = 1 

we have n = 2.6. 

Figure 2 shows the results of a calculation (the velocity profiles at two consecutive instants) 
of the piston problem, obtained by the explicit scheme (3.1)-(3.4), (I = 0, for various values of the 7 
step. For ~=0.03, ~=-c/z~,= 0.6 the solution goes well (Fig. 2,a), for 2=0.04, E=O.8 
the profile of v behind the wave front becomes “spiky” (Fig. 2,b). For larger values z”‘GK~=O.O~, 
E-1 the developing “bump” completely distorts the solution (Fig. 2,~). Therefore, the use of the 
explicit difference scheme in this problem is efficient only for a value of the mesh step TGTxir EG1. 
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V 
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-fO 

u 
?.D 2.0 3.0 s 

b FIG. 2 

lisfort=1.2,j=40;2isfort=2.4,j=8;3isfort=l.2,j=30;4isfort=2.4,j=60; 
5 is fort = 0.5,j= 10; 6 is for t = l,j= 20. 

Figure 3 gives the results of the calculation of the same problem by the purely implicit scheme 
of (3.1)--(3.4), u = 1, using an explicit iterative process (see section 4). For 2=0.015, g=O.3 
(see Fig. 3,a) the solution goes satisfactorily, for ‘~0.0175, g=0.35 (see. 3,b) the velocity 
profile acquires a pronounced “spiky” nature. We note that already for some values of r the 
iterations converge badly. Jn the calculations the number of iterations per step was restricted to the 

value ku = 30 for r = 0.015 and ku = 100 for r = 0.0175. Neverthele~ this number of iterations 

was insufficient to satisfy the convergence condition (4.2) with the relative accuracy e,=IO-‘. 

0 
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FIG. 3 

~~fort=1.2,j=80;2isfor~=2.4,j=160;3isfort~0.5,j~60;4isfort~2.1,j=120; 

5 is fort = 0.4,j= 20; 6 is fort= 0.8,j=40. 
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When the step size T is increased further, for example for T=0.02, ~~0.4 (see Fig. 3,c), 
it was not possible to reproduce the solution by means of this algorithm. 

Therefore, we obtained experimentally the constraint on the mesh step 

T<O.3T,,, EGO.3, 

on the satisfaction of which the algorithm satisfactorily gives the solution of the piston problem. 
We recall that the condition of convergence of the iterations obtained above theoretically for the 
acoustic case, has the form 

V 

0.5 KT!L 

I 2 3 

V 
l? 

I. 0 2.0 3.0 - 
a 

-. - 
< 

LYYJrYLk 

__\y.--y’-., 
0.5 - 0.5- 

4 5 6 
\ 1, 1;‘. 

7 8 

9’\,& \ \ 

1 ‘1 0 1.; ‘._ , 
1.0 2.0 3.0 0 2.0 3.0 s 

b C 

FIG. 4 

1 is for t = 0.4, j = 40; 2 is for I = 1.4, j = 140; 3 is for t = 2.4, j = 240; 4 is for t = 0.8, j = 4; 
5isfort=1.6,j=8;6isfort=2.4,j=12;7isfort=0.6,j=1;8isfort=1.2,j=2;9isfort=1.8, 

j=3;10isforr=2.4,jZ4;11isfort=3,j=5. 

Figure 4 gives the results of calculations performed by the purely implicit scheme of (3.1)-(3.4), 
u = 1, using Newton’s iterative method for the following values of the step T : T=O.OI, E=O.12 
(see Fig. 4,a); 2=0.2, g=4 (see Fig. 4,b); z=O.6, E=12 (see Fig. 4,~). 

We note that the step 7 = 0.6 is coarse, in this calculation the wave front passes in one time 
step through six mass intervals of the mesh. Nevertheless the solution is reproduced satisfactorily 
and the number of iterations per step is small (k = 2 for 7 = 0.01, k = 3 for 7 = 0.02, k = 4 for 
7 = 0.6). 

FIG. 5 

1 is for t = 0, j = 0; 2 is for t = 2.4, j = 4; 3 is for t = 5.4, j = 9. 
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A drawback of the last series of calculations is the oscillations which the functions undergo 
near the piston. The oscillations are observed only for a fairly large value of the mesh time step 
for ~20.3, E>S (see Fig. 4,~). They occur in time from step to step with decreasing amplitude. 
These oscillations are a consequence of the “first shock” which the piston produces at the initial 
instant, moving a considerable distance in one step for such large values of r. This is verified by the 
results of the calculations shown in Fig. 5. Here the values of all the parameters are the same as for 
the calculations in Fig. 4,c, except for the initial data: for Fig. 4,c they are given by Eqs. (8.3), for 
Fig. 5 they are the smooth distributions corresponding to the “blurred” shock wave, advanced to 
t = 0 from the piston after 10 mass intervals. As is obvious from Fig. 5, the further motion of the 
shock wave for t > 0 is not accompanied by oscillations of the functions near the piston. It is 
obvious that we would have obtained the same result if the piston had acquired the velocity U 
gradually, and not acquired it instantaneously at t = 0, as occurred in the given calculations. 

Another type of oscillation which is observed in calculations with coarse values of 7, is the 
wavelike distribution of parameters behind the shock front (see Fig. 4,5). The amplitude of this 
wave increases with r, at thi same time the wave dies away with distance from the front to the 
piston. The distance between the maximum and the minimum in the profile formed behind the 
shock front (half the wavelength) equals the number of mass intervals of the mesh which the front 
traverses in one time step (for Figs. 4,c and 5 this number equals six intervals). 

The reason for the occurrence of these oscillations is the discrete nature of the medium 

(difference mesh) through which the shock wave moves. 

9. Approximation viscosity 

A characteristic detail of the series of calculations shown in Fig. 4 is the features of the 
blurring of the shock wave front. For small values of r the effective width of the wave front in the 
calculations is the same as the value (3.4) obtained for the exact solution. However, as r increases 
this width grows, although the value of the viscosity in (7.1) remains unchanged (see Fig. 6, which 
shows profiles of the specific volume and viscosity in the steady shock wave obtained in calculations 
for various values of 7). 
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FIG. 6 

a is for r = 0.1, b is for r = 0.2, c is for r = 0.35, d ‘is for r = 0.7. 

To explain the cause of this phenomenon we represent the difference equation of motion 

of the scheme 
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u* = - gi”’ , g=p+o 

vt=- (g’“.5’+ (o-0.5) ‘6g&. 

(9.1) 

(9.2) 

Here we have used the difference formula [2] 

r/=)=&P’+ (cl--B) Tyf. 

It is obvious that for any value of u the scheme of (9.2) has the second-order approximation 
0 ( r2+ltz) with respect to the point (Si+l/,, tjsl,,). 

We may consider formally that the difference equation (9.2) approximates with second order 
the differential equation 

dV a dg -=-- 
at as ( gf(u-o.5)z~ . 1 

This equation corresponds to a continuous medium, where, besides the usual viscosity o there also 
acts some additional viscosity 

I3 = (a-0.5) zdgldt. 

The coefficient of this viscosity depends on the parameters of the discrete medium u and 7, where 
as r+O the additional viscosity Q.becomes vanishing small 

The quantity ti may also be regarded as a term of order O(r) of the error of approximation 
$=O(z+h2) of the ordinary differential equation of motion 

adat=-aghb 
by the difference equation (9.1). 

Thus, W , causing additional dissipative properties of the medium, is part of the so-called 
approximation viscosity [lo] , that is, the characteristic viscosity of the scheme. 

For a scheme with (I = 1, which is also considered above, we have W= -0.52 if&/& 

In the problem of the structure of the front of an isothermal shock wave, where the viscosity 
W generates additional blurring of the wave, the viscous’terms w and G can be represented by 

means of the exact solution of (7.2) in the form 

Therefore, for the problem considered the function Q=o-l-W may be regarded as some 

total viscosity 
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which is linear and possesses the effective coefficient 

o=v+o.5 xIYT& 

This coefficient depends on q, but for estimation we can use also some mean value 

where f is some effective value of the specific volume q tGTiG~o. ft follows from (8.4) that the 
width of blurring of the wave front by the total viscosity R, will be defmed by the formula 

(9.3) 

As is obvious from (9.3), as t-+0 the quantity rT is identical with the classical value 

(8.4), which follows from the exact solution of the differential problem of the structure of the 
shock wave front. As r increases the width of blurring increases linearly. 

Calculations confirm this result. Figure 7 shows the variation of F (r) obtained experimentally 
as a result of processing a series of calculations, some of which are represented by circles. Here the 
values of the parameters are as follows: 

D=1, 2’=0.05, h==O.l, Q=l, TJ, =0.25. 

FIG. 7 

The experimental points in Fig. 7 lie well on the straight line (4.3) with WI.5. This is 

natural, since calculations show that the action of viscosity is a maximum in a region with nNI.5 

(Fig. 6). 

Therefore, because of the presence of approximation viscosity, the sufficient condition for 
the convergence of the iterations (7.4) obtained above must contain, instead of the fmed width 
of blurring of the shock wave front, the quantity T(r) increasing with T. 
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This, and also the fact that the condition of convergence of the iterations (7.4) is of a 

sufficient nature, permits the use in practice of meshes with steps r noticeably exceeding the 

maximum value prescribed by the inequality (7.4). 

It must be mentioned that all the reasoning in section 9 is of an approximate nature, since it 

is based on Eq. (7.4), obtained for scheme not taking viscosity into account, while viscosity is 

present in the calculations. 

In conclusion the authors thank N. N. Tyurina for performing the numerical calculations. 

Translated by J. Berry 
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