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AN ordering of the set of iterative parameters of Richardson’s method for which it
becomes numerically stable is presented. The number of parameters is arbitrary.

In this paper we consider the question of the numerical stability of
Richardson’s iterative method of solving an operator equation of the first kind in
Hilbert space. This method possesses a high rate of convergence; however, its
numerical instability for problems with an ill-conditioned operator has been
revealed in practice [1-3].

It was shown in [4] that the instability of the method is connected with the
order of use of the iterative parameters, and that previously [1-3] proposed
methods of ordering the set of parameters do not remove the numerical instability,
but only decrease it.

Further investigations have shown that there exists an order and a set of
iterative parameters for which the method becomes numerically stable. This
approach was proposed in [4] and [5], chapter VIII, for the case where the
number of parameters is 1 = 2P,

In the present paper the method of ordering the parameters explained in [5] is
generalized to the case of an arbitrary number of parameters n.

In Section 1 a description is given of Richardson’s method and of the ordering
of the set of parameters for the case n = 2P, Theorems on numerical stability are
also formulated there. A detailed proof of the theorem will be given separately.
Section 2 is devoted to defining the order in the set of parameters for the case of
arbitrary n. The results of an experimental study of the numerical stability of the
method with a description of the set of parameters is presented in Section 3.

* Zh. vychisl. Mat. mat. Fiz., 12, 4, 960--973, 1972,
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1. Formulation of the problem

1. In the real Hilbert space H let there be given an operator equation of the
first kind with self-conjugate operator (A = A* > 0)

(1.1) Au = f’
where f is a prescribed, and # an unknown, element of H.

For the approximate solution of problem (1.1) we consider the implicit two-
level iterative scheme

(12)  BITP LAy =1 k=0,1,...

Thtt

with the arbitrary initial approximation vy, & H. We distinguish the family of
schemes (1.2) by the condition

(1.3) B=B*3 BE, B>0,

and we will suppose that the operators A and B are enetgetically equivalent to
the constants y, and y, [5]:

(1.4) YB<ALYB, v, >y, >0,

On the assumptions (1.3}, (1.4) the solution of the problem of the optimal set
of iterative parameters 7, is of the form (5]

—_— 1:0
T = 1+Pollh’
(15) -
pkEQRn::{cos 7, i==1,2,..,n}, k=1,2,...,1,
n

where [ ,, is a set of n elements arranged in the order in which i increases

2

_ —y
Vit ye '

Y2

i
To po—1+§1

With this choice of parameters the following estimates hold:

Iy, —ulp <g,llyo—ullp, D= A or B.

Here the norm in the energy space Hpy is defined as follows:
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lzlp = V(Dz,z2) for D*=D>0, =zeH,

Zp," i— V§

=T T ae

In order to decrease the norm of the initial error in the space H, (H B) by the
factor 1/¢ it is sufficient to take n iterations:

In0.5¢ _ |In0.5¢l
In p, 2

n=n(e§)~

The scheme of (1.2) with the set of parameters (1.5) is called Richardson’s
implicit iterative method.

2. In the study of the convergence of the method of (1.2) we have assumed
that the computational process is ideal, that is, the calculations are carried out
to an infinite number of places. However, the process of rounding the results of
the arithmetic operations introduces some errors into the solution y, at each
stage of the calculations. We will assume that the introduction of these errors is
equivalent to a perturbation of the input data of the problem - the initial approxi-
mation, the right side and the operators A and B.

Then the actual solution ?k may be regarded as the exact solution of the
problem

(1.6) B‘M+§ﬁk=ﬂ+l+

Trit That

mh-l-h kxoais--"nv

~ .
Y, given.

With this approach the problem of the computational error of the method
reduces to an investigation of the stability of the scheme (1.6) with the
N
perturbed operators A and B with respect to the initial data and right side.

The second question of the numerical stability of the method of (1.2) is the
question of the increase of the intermediate solutions Y for various orderings of
the set mn. The study of the stability of the scheme (1.6) makes it possible to
obtain an estimate for the value of the intermediate solution.

Some examples showing the effect of the order of use of the parameters 7, on
the increase of the solution and the accuracy of the method are given in [5] and
in Section 3 of this paper.
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We will suppose that the scheme of (1.6) belongs to the original family of
schemes, that is, the following conditions are satisfied:

(1.7) A=2A%>0,B=B*3BE B>0.

As a measure of the perturbation of the operators A and B we will take the
relative variation of their energy (0 {av a< 1)

(1.8) (A = X)x, x) | < a; (Ax, x), (B — BXx, x)|< a, (Bx, x).

In order to study the increase of the intermediate solutions y’k we will change
from the implicit scheme (1.6) to the equivalent explicit scheme

et = SpreZn + T 1tQrrs T Prus, =0,1,...,n—1,
(1.9) Sk+1 = E _ Tk+1C,

where
Ty = B%g};, C = B—’/ZKB—VZ’ o= E_llsz,
'lpk = B"/*z"t?h.

In order to study the numerical accuracy of the method we will consider the
problem for the error z, = ;’k -u:

— 1
BT dp=Fa—f+

Thet Trit

ﬁh.'.{ +(A - Z)u,

2o =— go — Uu.
The equivalent explicit scheme is of the form

('1.'10) Trty — @ = Sk+i (xh — (p) + Trt1Qr+1 + 'lph.H, k= 0, '1, ey n—1.,
Sk+i =FE — Th+4€,

where

@ =B%zs, C=B*IB"% @=B"%Ff—1),
o= Btw,  @=BrI(4— Du

It follows from (1.9), (1.10) that in order to obtain the estimates we require
it is sufficient to study the stability of the scheme (1.9) with respect to the

initial data and the right side.

Using the recurrence formula (1.9), we find
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A x
Zh = Tholo + ZTka,ilpj+ZTk,5\Pj, k=12 ....n
=1 j=1

(1.11)
&
Tk‘j= Hgi, Tk,kEE.

=i+t
The operator %k jis called the resolving operator from the level j to the level k.
Definition. We call the collection of parameters {rk{ stable, if positive C,,

C,, C,, perhaps depending on y,, v,, a;, @,, but independent of r, exist such that

k

R
max"Tk,oui Ci, max E Tj"Tk,_,-"< Cz, max E I!Th.jllé C..
i<heEn 1

isthegn fesheln i

For a stable collection of parameters for any k the estimates

Iz < Cilizi+ C, max I+ Co max lp;l

1k 1ajeCh

hold for problem (1.9) and

Izl < C)llzyli+ C, max l;l+ Cs max lhp;l+ (1 + C)) gl

10k 1 jeh
for problem (1.10), from which it follows that the schemes (1.9), (1.10) are stable.

3. We will now specify the order of the elements in the set I which will

generate a stable collection of iterative parameters %fk§ of Richardson’s method
Here we consider the case wheren = 2P, p > 0.

In the construction of the sequence of parameters §7k§, following [5], we will
begin from minimal 8 = 8, = #/2n and construct recursively the sets

M.(B) = {—cos B},
(1.12)
Mo (B) = M= (B) UMam (/20— B), k=1, 2,...,p.

Then

(1.13) Moo = M2 (B4).
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The following theorem states that the set mzp ordered in this way generates
a stable sequence {r,} (in formula (1.5) ;, is the k-th element of the set Jf,,).

Theorem 1

If the conditions of (1.3) and (1.4) are satisfied and the set ), is ordered in
accordance with (1.13), then if a, = a, = 0, the following estimates hold indepen-

dentlyofn (m=7j- 2% j is an odd number, k > O):

“Tm,ong.llgv m:"=112$'--s2ps

3 iz, a<— [1+ (1o, -1-]
i g

i=1
2 ‘ W7 s — — 8 Y
s Tm.z”< g {1 +(1 61.3) §2] H

where 8,, ; is the Kronecker delta. For m = 2P the following more precise

estimates hold:

2P
(1.14)  ITar < gor <1, Z oo i< 1222 o 1
— Y1 Yi

ar 4
(1.15) Z um,,u<._3_y€.

Theorem 1 expresses the fact that if in the scheme (1.6) the perturbations of
the operators A and B is neglected, the intermediate solutions are bounded in

norm (m = j - 2%).

1
s < f;_ug.,nB + [ 1+ — 5,_,.)_2_2«} ( A maxlfily_ -—g—max”u‘;’ilig_;)

Yt 1egigm 1gi<m

and for the error of the solution after n iterations we have the estimate

™ Yn 4 "
(1.16) 1, —ulls < gl —ulls + 1-9 max If; — fllg—1+ 3 maxiallg-1.

Yi  isgign igingn

Theorem 2

If the conditions (1.3), (1.4), (1.7), (1.8) are satisfied and the set I,” is
ordered in accordance with (1.13), then subject to the condition
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__ Gg+az< §

O == e S5
1""'@2 2

we have for the error of the solution of problem (1.6) after n iterations the estimate

~ q, . 1 1, p s fl e
(1.17) 17, —ulg<< Eﬁyo —uly +€ (1— M‘?n) Igiﬁﬁﬂ Pl
4 14 VC& ~ Oy ( q, '
T7E oy e e (1 7 Ve
Here

Fi =1y — ay: = 0.5y,
. 2p" 1-7g a
n T o ﬁg =

1+p2 n

178, ® {te—t
Theorem 2 expresses the numerical stability of Richardson’s iterative method
for the case where n = 2. As a,, @, » 0 the estimate (1.17) becomes the
previously obtained estimate (1.6). The estimates (1.14) given by Theorem 1
cannot be improved for any ordering of the set fmn, and {1.15) is exact in respect
of the order of smallness of £ for large n (compare with Lemma 6 of [4]).

Note. If it is assumed that ;b}- in (1.11) is of the form z;irj = T}- oVj» this
k

perturbation is equivalent to a perturbation of x, by an amount ij.
Jj-1

2. Construction of a sequence of parameters for arbitrary n

1. The idea of the construction of an order in the set )Hn is based on two
considerations: the passage from the ordered set ?sz to the specification of an
order in the set )i, ,,, and the passage from Y, to Jl,,, where k is an arbitrary
integer. (We have been informed that in [6, 7] V. 1. Lebedev gave other sequences
of parameters for any n.)

We assume that the set 3R2k has already been ordered in the way we require,
We then represent it as the following sum:

Doy = | My (Bori) = My (Bar 1) UMy (Ban2)U. . . UM, (Baraa)

izl

where for any i the element 8,, . belongs to the set
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%1
{T“’ ]=1,2,...,2k}.

We then order the set ), , as follows:

2k

Mopyr = U Mx(ﬁzh+1,i) UM, (—;“) ’

where §,, ., ; is a number close to 3,, ; of the set
» 2

2j—1
{mm J=1,2,... 2k +1, ;a&kﬂ}.
The passage from WZk to m2k+, has been accomplished.

Also, let the set Wk be ordered:

Ty = My(Brs) =M, (Br) V...UM, (Brs),

i=1

me{ L=, 1—1,2,...,k}.

Then, using formulas (1.12), we specify the order in the set mzk as follows:

Don =y M, (Baws) = U (M (Bari) UM, (e — Ber)),

=1 i=1

Bar, i =0.5Bx s, i=12,...,Ek

These considerations enable us to pass from the ordered set i, = M, (w/2),
consisting of one element, to the set mn with arbitrary n, alternating as necessary
transitions from a set with an even number of elements to a set with an odd
numb‘er and from a set of k elements to a set of 2k elements.

This procedure for ordering the set Ji ., for arbitrary n can be formalized as
follows.

We represent n as an expansion in the sum of powers of 2 with the integral
exponents k i

n=2k1+2k2+.‘.+2kf,kj\<kj-l -1,k 30.

Here t is an integral subscript. We introduce the quantities
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(2'1) 5= szi—kf 65 = ﬁzhj, ] = 1-5 23 Ty t,
n

and put k,, = -1. We notice that all the n; are odd numbers.

In order to construct the sequence of parameters we will begin with the least

B =B, =n/2n.

We form the ordered sum of sets

(2.2) M, (P) = U M g, (n:8) = M, (i) U - . - U M e, (niB),

where M,k (B) is defined recursively (j=1,2,..., )

M.(B)= {—-cos B},
(2.3)

M (B) = Morcs () U Mot (8= 8 ),

ifh, +2<khak;+ 1.

Then

(2.4) M, = M. (B).

We notice that if n = 2P, we have t = 1,n,=1,8,=1, k, = p. Then formula (2.2)
becomes

M, (8) =M, (B)

and the recurrence relations (2.3) defining M, (ﬁ) become formulas (1.12) for
n = 2P, given above. Consequently, by (2. 4) the ordering of the set 3]'( is a
generalization of the constructions for the case n = 2P,

We now explain an algorithm which enables us to order the set mn in
accordance with (2.4). It is difficult to construct the set mn directly from

formulas (2.2), (2.3); we use them to describe the ordering of mn in Theorems 1,
2.

Let 6, be a set of m integer-valued elements
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0,=16,1), 0,@),..., 0 mji
Weputn, =2n+1. Letj=1. We construct the sets
(2.5) enj= {enj (i)=9nj-i(i)1 i == 1., 2,..., n;— 1; eﬂj (n,~)=n,~},

(2.6) Bgm':{ezm (21) =4 — Gm (L), sz (21‘—-1):-"6,;1 (i), izi, 2, ey m}
m = n; 2??:3*, 4?3]', ey 0.25 (n5+1 - 1).

H

If j = ¢, the required set Gn has already been constructed, otherwise we
construct the set

2.7) Onj+,~, ={e"j+1‘“‘ (28)=2n;,, ~ Bo.5(n;,, ~) (2, anH_i 2i—1)=
Bosnyy -0 (B i=1,2,...,05 (s — 1)}
Then j is increased by 1 and the process is repeated, beginning with (2.5). As a

result the set (9n will be constructed.

Then
(2.8) sm,,={—cos By i=1,2,....n ﬁ,-=en(i)i‘-}
2n

and g, in formula (1.5) is the k-th element of the set J, .

For the case n = 2P the algorithm (2.5)-(2.7) is simplified:

= {0,(1) = 1},
Bam = {02 (20) = 4m — 0,(i), 00 (20 —1) = 0,,(i), i=1, 2,...,m)},
m=1,24,...,2"",

and after finding 62p the set mzp is constructed by (2.8). We give some examples:

0. = {1,15,7,9, 3, 13, 5, 11},
8, — {1, 17,7, 11, 3, 15, 5, 13, 9},
.= (1,23, 11, 13, 5, 19, 7, 17, 3, 21, 9, 15},
8. — {1, 31, 15, 17, 7, 25, 9, 23, 3, 20, 13, 19, 5, 27. 14, 21},
01 = {1, 35, 17, 19, 7, 29, 11, 25, 3, 33, 15, 24, 5, 31, 13, 23, 9, 27},

3. Numerical stability of the method

1. A numerical experiment is used in order to study the stability of the
sequence of iteration parameters {rk¥ constructed in accordance with the ordering
of the set J_ by formula (2.4).
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The nature of the iterative process can obviously be investigated on the
simplest model, since the nature of the process is determined by the specific
form of the operator A and its fundamental functional properties as an operator in
Hilbert space.

An experiment on a simulated problem enables us to compare the theoretical
estimates obtained for the case n = 2P in Theorems 1, 2, with the numerical results.

The simulated problem chosen is the difference approximation of the boundary
value problem

av
.___J:=f(x)’ O<$<i, U(O)=V1,
dx
(3.1) & dv
T O=vs  v=vi,  —()=w.

On a uniform grid with step h = 1/N we construct a difference scheme
approximating problem (3.1) with an error of order O (h%):

u;x;cx:f, 2h<tx<<1—2h,
i3.2) u(0) == v, s, — hu’;cxx == Vg, z=~h,
u(1) == wv;, uz, + hug o= v, =1-—Ah

The operator A corresponding to problem (3.2) is selfconjugate in the space
H of grid functions defined at the internal nodes of the grid. The scalar product
in H is defined as follows:

B

(u, v)zZu(x)v(x)h.

xa=h

Here the eigenfunctions of the operator A will be p, (x) = sin kzx and the
corresponding eigenvalues will be

}.k=—}—z;-sin‘~—§—, k=’1,2,...,N—1.

We note that J|A| =X, ~ 16/h* = 1.6 x 10° for N = 10, and [|A|| = 1.6 x 10° for
N = 100.

The choice of problem (3.2) as the object of experiment enables us to
simulate ill-conditioned operators A on a coarse grid.

The explicit iterative process (1.2) (B = E) is considered. Then with

conditions (1.4) the energy equivalence constants y, and y, are y, = A,, y, = )\N_l .
Then
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nh
§=tg*—.
€3
2. Several series of experiments were performed. In the first series the

effect of the ordering of the set ‘mn on the increase of the intermediate solutions
and the accuracy attained after n iterations were studied.

In the simulated problem (3.2) the values v, =1, v, = v; = v, = 0, f = 0 were
taken. With these initial data the exact solution of the problem is u (x) =1 - x.

Let n be a multiple of 8. The following orderings of the set mn were
considered:

® smn=UM,(2""1n)=
k=1 2n
n 3n 2n—1
M(-__)UM(—) ot )
‘\"2n "\'2n v...-UH, o )
To this ordering there corresponds the usual “inverse” sequence {r,}:
@ -0 — _cos 2k _ .
T T+ pomn’ 758 cos T, k=12,...,n;
" 2k -1 2k—1
Em”=UMi(““ 3'5), here  Mx = COS T,
k=t 2n 2n

which corresponds to the usual “direct” sequence of parameters i, };

® P=)

3

2k—-1)
b 4
1 2n
n/2 2k —1 2k —1
M1 U 3 b M
§ (o (B tom (o 1))

k=1 1]

e

this ordering corresponds to the partition of the sequence {r,} into blocks of two
elements (u,,  =— cos [k — 1)/2nlm, p,), = cos [(2k — 1)/2nl7); here and

below we use the recurrence formulas (1.12);

4 M= M, (__2.. —
k=t 2n

n/2

n 2%k—1 n 2%k—1
(2 (3
kgl( "o o n) o T M)

n/e n 2k—1 )
n
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The ordering recommended in [1] assumes, in our notation, the form

ni2 n 2k-—1
5) %=UM2(~—+ n);
Rt 2 2n
2k —1
mn ="‘C| MA ( n) ==
he=i 2?3
u/é 2k —1 2k —1
U(M,( n)UM,(n— n)U
Bt 2n 2n
n 2k—1 n  2k—1
L UM (—- )) .
M*(z on “) AT
Here the blocks have been organized to consist of four elements:
(-' cos Br, cos PBr, —sin Bs, sinPa; Pa= ikz;i—n) :
n
n/8 2k—1
(6) M, = M, ( 31:) =
k=1 2n
n/8 2k _ _
U (M( %)uma(i-.z" 1n));
hemd 2??1 4 2"4

here a block consists of 8 elements;
(7) the ordering of the set Wn in accordance with (2.4).

In order to exhibit the effect of the conditionality of the operator A on the
computational stability of the method, the calculations were carried out on the
sequence of grids k =/, &, Yo

The setting of n used was from 8 to 512 with step 8. Iterations in accordance
with the scheme (1.2) were carried out for every n and each of the orderings mn
indicated. The critical value n__ for which the actual relative accuracy did not
yet exceed the theoretical accuracy was determined, that is, the inequality

Iy, — ul
lyo—ull Erat < .

was satisfied. In the same way a determination was made of P crop for which at
some intermediate iteration the solution exceeded the maximum possible number
(10**) for representation in the computer.

The calculations showed that for the orderings (1)—(6) as n increased, there
was first a loss of accuracy, when n becomes greater than n___, and then an
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TABLE 1
h = 1/i0, & == 6.20.10—¢ h=1/i2, E = 3.004- 10+ h = 1}14, g == {.61.10—4
=] o
i q & [ ol o e
g n real » | o I € real a2l 8 In € real g
N R = 1N N ©

1 124 0.55 0.495 | 48] 24 0.732 0.729 | 48) 24] 0.839 0.773 | 40
24 0.55 0.548 1 48| 24] 0,732 0.731 | 48] 24/ 0.839 0.837 |48

2 | 24| 0.55 0.481 [ 72| 24| 0.732 0.713 | 64| 24| 0.839 0.765 | 64
16| 0.746 0.746 | 64| 16} 0.864 0.86 64| 16| 0.923 0.918 | 64

3 | 48] 0.178 0.17 88| 48| 0.366 0.364 | 80} 48] 0.544 0.376 | 80
481 0.178 0.177 | 96] 48] 0.366 0.366 | 88] 48] 0.544 0.542 |88

4 |48 0.178 0.171 1136} 40 0.47 0.42 1136 48] 0.544 0.482 128
401 0.264 0.263 [136] 40} 0.47 0.468 128 40{ 0.64 0.639 |128

5 | 88] 2.4.10-2 2.2.402/176] 96| 7.2.10-2] 5.8.10-2[168[104] 0.142 0.141 |160
104(1.08-10-2/8.68.10-3/192/104| 5.4-1072| 4.9.10-2{184/104] 0.142 0.105 176

6 [18411.95-40-41.24.10-%416[1764.48. 10-93.74. 10~-3408{17612.29. 10~2|1.98. 10-2|336
184/1.95.107%) 1.9-10-4456[176{4 .48 10-314.44. 10-3)448]1200]1 .25 10-2]  9.40-3 376

emergency stop due to an increase in the intermediate solutions.

The use of blocks of more complex structure leads to a decrease of the
numerical instability of the method, and the greater the size of a block the
greater n stop”

When the ordering (7) is used the real relative accuracy ¢, for all n did not
exceed the theoretical accuracy, which forn = 512 was given by g, = 1.4 x 1074,
3.9 107, 4.5 x 107 for b = *4q, 4, A4 The intermediate results were bounded
and the quantity

R, =max |y, (z) ]
Oegxsy
1<haln

was a monotonically increasing function of n and for large n was unchanged as
n increased, that is, it attained its asymptotic value.

The calculations showed that the ordering of fmn in accordance with (2.4) for
an n differing from a power of 2, preserved the same characteristics of computa-
tional stability of the method as in the case n = 2P,

The results are shown in Table 1, The first rows correspond to the initial
approximation
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=0,

1,
yo(x)={0 z#0

and the second correspond to y,{x) = cos {mx/2). For these approximations with
the ordering (7)

max R,==208, 427, 784 n max R,= 1.63, 2.73, 4.00

150512 1112
for b = Yo, Ay s respectively.

3. In the second series estimates were found for

n

0T, 0, Znﬂrn,jn, Zurn,ju,

Fa=t umt
where fmn is ordered by (2.4). For this the following quantities were computed:

(3.3) L= T, oyl / Nyl << 17, ll,

T
3.4 S L P . Ay AT
(34) I Efz} o Zf-gasm,,ﬁ,
=1

i=1

17,0
(3.5) I,= E o ZIIIT .

=1

For the case n = 2P in Theorem 1 it was proved that the equations in (3.3)-
(3.5) are attained if v is an eigenfunction corresponding to the minimum eigenvalue
of the problem

Ay — ABy = 0.

Here the equations

(3.6) I, =1Tsp ol = gu, 12‘”’21‘, VT sp = —— 222

and the estimate

P 4
(8.7 L= Y Ty < —.
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TABLE 2

h=1/10, £=6.29 x 107
n I, In Iy A=) I LV:
64 [8.0451.10-2 i8.0451.10-2 | 9.5968-10~% {9.5968.10~3 42.726 1.072
3.5085-10—¢ 27.471 0.6816
96 |1.6174.10~2 |1.6174.10-2 |1.0268-10-2 (1.0268.10~2 45.034 1.1297
3.6973.10—4 28.641 0.718
128  |3.2467.10-3 |3.2467.10-3 | 1.0403.402 |1,0403.10-2 47.072 1.181
3.8662.10-¢ 29.933 0.7509
192 1.308-10~4 | 1.308-10~4 | 1.0435.40-2 |1.0435.10-2 46.5 1.167
3.8184.10—4 29.57 0.7418
256 5.27-10-8 | 5.27.10-% | 1,044-10-2] 1.044.10~2 47.098 1.182
3.868.10-4 29.95 0.7513
344 6.37-10-8 | 6.37.10-8 | 1.04%4-10-2| 1.044.10-2 53.143 1.333
4.3697.10-4 33.768 0.8471
384 8.55.1072 | 8.55-10-% | 1.044.10~2| 1.044.10-2 47,225 1.185
3.8787.40-4 30.03 0.753

TBLE 3

h =1/20, €= 3.84 x 10°°
n 1, 3 I, (t —ap)in I, LY:
64| 0.75125 0.75125 | 2.5641-10-% [2.5641.10-3 62.066 0.384
3.115.10-% 39.506 0.245
96 | 0.55725 0.55725 4.564-10"% | 4.564.10-3 89,331 0.553
4.48.10-5 56.863 0.352
128 | 0.39313 0.39313 | 6.2558.10-3 [6.2558.10-8 | 113.86 0.705
5.708.40-5 72.474 0.449
192 | 0.1838 0.1838 8.4137.10-% [8.4137.10-8 | 148.04 0.917
7.42.10-8 94,234 0.584
256 | 8.3747.10-2 | 8.3747.10—2| 9.445.10-3 | 9.445.10-8 | 472.26 1.067
8.64-10-5 109.65 0.679
344 | 2.8197.10-2 2.8197.10-2| 1,002.10~2 | 1.002.10-2 | 197.03 1.22
9,88.10-5 125.4 0.777
384 | 1.7181.10-2|1,7181.10-2{ 1.013.10—2 | 1,013.10-2 | 182.23 1.129
9.136.10-5 116.0 0.718
512 | 3.5191.10-3 3,5191.10-3 | 1.027.10-2 | 1.027.10~2 | 190.66 1.184
9.56.10-8 121.37 0.752
768 | 1.4762.10—%{1.4762.10-%| 1.0307.10-2 [1.0307.10~2 | 188.18 1.166
9.43.10-5 119.78 0.742
1024 | 6.192.10-%|° 6.192.10-¢| 1.0308-10-2 [|1.0308-10-2 | 190.72 1.184
9.56.10-5 121.4 0.752
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hold. For the simulated problem of (3.2) we have y = sin 7x.

It was also proved in Theorem 1 that the estimate
"
1-¢
Vyr ="
d 2 n,j .
oot Y

holds for arbitrary n for any ordering of the set )un.

In order to investigate how all the three norms I,, I,, I, change in the
neighbourhood of n = 2P, a numerical experiment was used. To calculate these
norms it is sufficient to find

max Iy, max I, max I,
v v v

when y runs through the set of eigenfunctions of the operator A.

Calculations were carried out on the sequence of grids
The number of iterations n was specified as in the first series. It turned out that
in (3.3)—(3.5) equality was attained at the first eigenfunction of the operator A,
as for the case n = 2P, and equations (3.6) were valid.

In the process we verified that the theoretical estimates (3.6), (3.7) for
n = 2P were attained.

Some results are shown in Tables 2, 3. In the first rows the values of I, I,,
1, are given for y = sin mx, and in the second rows for comparison the values of
1,, I, are given fory = sin (N — 1)mx.

The experiments on the simulated problem considered above show that for an
n differing from a power of 2, in an ordering of the set mn in accordance with
(2.4), the same characteristics of numerical stability of the method are preserved
as for the case n = 2P, for which the theoretical estimates were obtained in
Theorems 1, 2.

The use of the ordering of mn by (2.4) is necessary for the solution of
problems with an ill-conditioned operator, for example, difference problem arising
from the approximation of elliptic equations of high order. At the same time, as
is shown by example 1, if n is not too great and the problem is not very ill-
conditioned, a simpler ordering with shorter blocks can be used.

Translated by ]. Berry
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