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AN ordering of the set of iterative parameters of Richardson’s method for which it 
becomes numerically stable is presented. The number of parameters is arbitrary. 

In this paper we consider the question of the numerical stability of 
Richardson’s iterative method of solving an operator equation of the first kind in 
Hilbert space. This method possesses a high rate of convergence; however, its 
numerical instability for problems with an ill-conditioned operator has been 
revealed in practice [l-3]. 

It was shown in [4] that the instability of the method is connected with the 

order of use of the iterative parameters, and that previously [l-3] proposed 
methods of ordering the set of parameters do not remove the numerical instability, 
but only decrease it. 

Further investigations have shown that there exists an order and a set of 
iterative parameters for which the method becomes numerically stable. This 

approach was proposed in 141 and El, chapter VIII, for the case where the 
number of parameters is n = 2p. 

In the present paper the method of ordering the parameters explained in [5] is 
generalized to the case of an arbitrary number of parameters n. 

In Section 1 a description is given of Richardson’s method and of the ordering 
of the set of parameters for the case n = 2 a. Theorems on numerical stability are 
also formulated there. A detailed proof of the theorem will be given separately. 
Section 2 is devoted to defining the order in the set of parameters for the case of 
arbitrary n. The results of an experimental study of the numerical stability of the 
method with a description of the set of parameters is presented in Section 3. 

*Zh. ujkhisl. Mat. mat. Fiz., 12, 4, 960-973, 1972. 
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1. Formulation of the problem 

1. In the real Hilbert space H let there be given an operator equation of the 

first kind with self-conjugate operator (A = A* > 0) 

(W Au = f, 

where f is a prescribed, and u an unknown, element of H. 

For the approximate solution of problem (1.1) we consider the implicit two- 

level iterative scheme 

(I.21 B Yk+i - yh + Ayk = f, k = 0,1,. . . , n - 1, 
G+.i 

with the arbitrary initial approximation yO E H. We distinguish the family of 

schemes (1.2) by the condition 

(1.3) B = B* & /3E, p > 0, 

and we will suppose that the operators A and B are energetically equivalent to 

the constants y1 and yz [Sl: 

(1.4) YB < A ,< ~a% ~2 > YE> 0. 

On the assumptions (1.3), (1.4) the solution of the problem of the optimal set 

of iterative parameters rh is of the form [5] 

TO 
'th= 

(1.5) 
1+ POP% ’ 

k = 1,2, . . . , a, 

where Rn is a set of n elements arranged in the order in which i increases 

2 1-E 
‘Go = - 

yi +yz ’ 
PO==’ 

With this choice of parameters the following estimates hold: 

Ilu, - a\lD 6 q,llvo - 41Ds C = A or 8. 

Here the norm in the energy space H, is defined as follows: 
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llslIn = ~(Ds, r) for D’ = D > 0, x EH, 

2p** 4-l% -- 4n- l+p,2n' pi=-. 4+r'g 

In order to decrease the norm of the initial error in the space HA (HE) by the 
factor l/c it is sufficient to take n iterations: 

In 0.58 
n=n(&,zJ=----= 

Iln 0.581 

In pi 21% * 

The scheme of (1.2) with the set of parameters (1.5) is called Richardson’s 

implicit iterative method. 

2. In the study of the convergence of the method of (1.2) we have assumed 
that the computational process is ideal, that is, the calculations are carried out 

to an infinite number of places. However, the process of rounding the results of 
the arithmetic operations introduces some errors into the solution yn at each 
stage of the calculations. We will assume that the introduction of these errors is 
equivalent to a perturbation of the input data of the problem -the initial approxi- 
mation, the right side and the operators A and B. 

Then the actual solution yk may be regarded as the exact solution of the 

problem 

7, given. 

With this approach the problem of the computational error of the method 
reduces to an investigation of the stability of the scheme (1.6) with the 
perturbed operators 2 and 3 with respect to the initial data and right side. 

The second question of the numerical stability of the method of (1.2) is the 

question of the increase of the intermediate solutions yk for various orderings of 
the set ?I,. The study of the stability of the scheme (1.6) makes it possible to 
obtain an estimate for the value of the intermediate solution. 

Some exampIes showing the effect of the order of use of the parameters rk on 
the increase of the solution and the accuracy of the method are given in [5] and 
in Section 3 of this paper. 
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We will suppose that the scheme of (1.6) belongs to the original family of 

schemes, that is, the following conditions are satisfied: 

(1.7) A-=A+>o,L~*>,~,~>o. 

As a measure of the perturbation of the operators A and 3 we will take the 

relative variation of their energy (0 $cr, a, < 1) 

(1.8) I(@ - %G r> I ,< a, 6% ~1, I((3 - &G x) I \< a, (3x9 x). 

In order to study the increase of the intermediate solutions Tk we will change 

from the implicit scheme (1.6) to the equivalent explicit scheme 

(1.9) 

k = 0,1, . . . , n - 1, 

where 

In order to study the numerical accuracy of the method we will consider the 

problem for the error zk = Tk - u: 

% 
G+i - z!i 1 

+ XZk = rk+i - f + - f&+1 + (-4 - a) u, 
Th+ i TA+i 

20 = go - u. 

The equivalent explicit scheme is of the form 

(1.10) 

where 

It follows from (1.9), (1 .lO) that in order to obtain the estimates we require 

it is sufficient to study the stability of the scheme (1.9) with respect to the 

initial data and the right side. 

Using the recurrence formula (1.9), we find 
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(1.11) 

xk = ~k.OxO + c c k=1,2,...,n 
j=l j=l 

The operator $k, j is called the resolving operator from the level j to the level k. 

Definition. We call the collection of parameters irk\ stable, if positive Cl, 

C,, Co, perhaps depending on yl, yl, a,, a2, but independent of n, exist such that 

For a stable collection of parameters for any k the estimates 

hold for problem (1.9) and 

IlXbllG Cillzoll+ Cz max llcpjlI+ C, ma llqjll+ (1 + (7,) llrpll 
i4jC;k i<jszk 

for problem (l.lO), from which it follows that the schemes (1.9), (1.10) are stable. 

3. We will now specify the order of the elements in the set 81n which will 

generate a stable collection of iterative parameters irk) of Richardson’s method 

Here we consider the case where n = 2p, p > 0, 

In the construction of the sequence of parameters fr,], following [S], we will 

begin from minimal ,B = @r = 7112 n and construct recursively the sets 

M,(P) = {---cos P1, 

(1.12) 

Then 
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The following theorem states that the set ?I&, ordered in this way generates 

a stable SequemX Irk{ (in formula (1.5) & is the h-th element of the Set ‘ar[zp). 

Theorem I 

If the conditions of (1.3) and (1.4) are satisfied and the set k, is ordered in 
accordance with (1.13), then if a, = a, = 0, the following estimates hold indepen- 
dently of n (m = j -2 k, j is an odd number, Iz >, 0): 

where 6,. j is the Kronecker delta. For m = Zp the following more precise 
estimates hold: 

(1.14) 

Theorem 1 expresses the fact that if in the scheme (1.6) the perturbations of 
the operators A and B is neglected, the intermediate solutions are bounded in 
norm(m=j-2k). 

llgmll~ < +lliJ*li~ 4 [ 1 + (1 - hg,j)+] ( +ITIZll~lfifia-l + ~IIlll~Gi~iB-~) 

f i<ien 

and for the error of the solution after n iterations we have the estimate 

Theorem 2 

If the conditions (1.3), (1.4), (1.7), (1.8) are satisfied and the set ?lI,n is 
ordered in accordance with (1.13), then subject to the condition 
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ai+aa E 
a=-----<- 

1--a, 2 

we have for the error of the solution of problem (1.6) after n iterations the estimate 

Theorem 2 expresses the numerical stability of Richardson’s iterative method 
for the case where n = Zp. As CZ%, a, I* 0 the estimate (1.17) becomes the 
previously obtained estimate (1.6). The estimates (1.14) given by Theorem 1 
cannot be improved for any ordering of the set %, , and (1.15) is exact in respect 
of the order of smallness of 5 for large ra (compare with Lemma 6 of [41). 

Note. If it is assumed that $j in (1 .ll) is of the form $rj = Tj, Ouj, this 
k 

perturbation is equivalent to a perturbation of x, by an amount xuj 
j-i 

2. Construction of a sequence of parameters for arbitrary n 

1. The idea of the construction of an order in the set 8, is based on two 

considerations: the passage from the ordered set ?I&, to the specification of an 
order in the set ?l12k+1, and the passage from Y)II, to ?I’&,, where k is an arbitrary 

integer. (We have been informed that in 16, 71 V. I. Lebedev gave other sequences 
of parameters for any n.) 

We assume that the set %,, has already been ordered in the way we require. 
We then represent it as the following sum: 

where for any I the element Pzk, i belongs to the set 
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2j - 1 
----z, 

4k 
j--1,2 ,.,., 2k . 

We then order the set ?KZk+, as follows: 

where pZk+i, i is a number close to ,8zk,i of the set 

2j - 1 
2(2k+l)~’ j=l,&..., 2kf1, j+k+l . 

> 

The passage from m,, to N&+r has been accomplished. 

Also, let the set 512, be ordered: 

rm,=;M,(Pk,i)=~l(P~,~)U...uM*(Pk,k)r 
i=1 

pk,i= ‘JsZy j=l,Zy..., k}. 

Then, using formulas (1.12), we specify the order in the set R,, as follows: 

w2k=;“2(p2k.i)=; (Mi(Plk,i)U1Mi(n:-_j32k,i)), 

i=i iz* 

f%k, i = O-5@j~~ <, i = I., 2, . . . , k. 

These considerations enable us to pass from the ordered set ?lI, = M,(n/2), 
consisting of one element, to the set ?& with arbitrary n, alternating as necessary 
transitions from a set with an even number of elements to a set with an odd 
num$er and from a set of k elements to a set of 2k elements. 

This procedure for ordering the set %., for arbitrary n can be formalized as 

follows. 

We represent n as an expansion in the sum of powers of 2 with the integral 
exponents ki: 

n=2k~-t2kz+.,.+2kt,k.(k 1. j-l 
- 1, k, >/ 0. 

Here t is an integral subscript. We introduce the quantities 
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5 

(2.1) nj = c 2k1-9 , & = 22 pr, 
n 

i= 1,2 ,*‘*I t, 
i.pf 

and put kt+l = -1. We notice that all the nj are odd numbers. 

In order to construct the sequence of parameters we will begin with the least 

We form the ordered sum of sets 

where M$ (p) is defined recursively 0’ = 1, 2,. . . , t): 

M*(p) = (--cos I% 

(2.3) 

M211(B)=MEI-I(P)UMlk-1(~6j- P), 

if kj+, +2,khkj+1. 

Then 

(2.4) fDz, = iMn(Bi). 

We notice that if n = 2P, we have t = 1, n, = 1, 6, = 1, k, = p. Then formula (2.2) 

becomes 

M, f@) = Mops) 

and the recurrence relations (2,3) defining Mzp (13) become formulas (1 AZ) for 

n = 2p, given above. Consequently, by (2.4) the ordering of the set ?lI, is a 
generalization of the constructions for the case n = 2p. 

We now explain an algorithm which enables us to order the set R, in 
accordance with (2.4). It is difficult to construct the set R, directly from 
formulas (2.2), (2.3); we use them to describe the ordering of %n in Theorems 1, 
2. 

Let 8, be a set of m integer-valued elements 
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0, = if& (11, 0, (21, . . . , em fm)j. 

We put nr+r = 2n + 1. Let j = 1. We construct the sets 

(2.5) O$I,={e, (i>=O,,-I(i), 1:=1,2,-.*, lVj-_1; fj*j(TZj)u?Zjl, 

(2.6) L= (82, (2i) =4m - 8, (i>, 82m (2i--1)==8, (i), i=l, 2, . . . , m), 
m = TZJ: 2nj, 4nj, * * -9 0.25 (nj+i - 1). 

If j = t, the required set 6h has already been constructed, otherwise we 

construct the set 

(2.7) 
Onj+t-' =‘8”j+~-i (2i) = 2nj+i - OO.S(nj+,-i) (i) 9 Qnj+,-i (2i - 1) = 

8 0.5(n. ,+*-*)(i)* i=l,2,..*,0.5(nj~,-_)), 

Then j is increased by 1 and the process is repeated, beginning with (2.5). As a 

result the set on will be constructed. 

Then 

(2.8) ?I&= -COST<, i=1,2,...,n, Pi=en(i)E 
1 } 

and & in formula (1.5) is the h-th element of the set %,. 

For the case n = 2p the algorithm (2.5)-(2.7) is simplified: 

8t = {8,(l) = 1}, 

8 zm = {Bz,n (2i) = 4m - e,(i), 8,,(2i - 1) = 0,(i), i = 1, 2,. . . , mj, 

m = 1,2,4,. . 0 2P-i, , 

and after finding ezp the set k,, is constructed by (2.8). We give some examples: 

08 = (i, 15, 7,9, 3, 13, 5, II}, 

8, = {I, 17, 7, 11, 3, 15, 5, 13,9}, 

O,, = {l, 23, $1, 13, 5, 19, 7, i7, 3, 21,9, 15}, 

B,, = {I, 31, 15, 17, 7, 25, 9, 23, 3, 29, 13, 19, 5, 27. 11, 21}, 

u,* = {I, 35, 17, 19, 7, 29, II, 25, 3, 33, 15, 21, 5, 31, 13, 23, 9, 27}, 

3. Numerical stability of the method 

1. A numerical experiment is used in order to study the stability of the 

sequence of iteration parameters Irk\ constructed in accordance with the ordering 

of the set ?I& by formula (2.4). 
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The nature of the iterative process can obviously be investigated on the 
simplest model, since the nature of the process is determined by the specific 
form of the operator A and its fundamental functional properties as an operator in 
Hilbert space. 

An experiment on a simulated problem enables us to compare the theoretical 

estimates obtained for the case n = 2p in Theorems 1, 2, with the numerical results. 

The simulated problem chosen is the difference approximation of the boundary 
value problem 

On a uniform grid with step h = l/N we construct a difference scheme 

approximating problem (3.1) with an error of order 0 (h*): 

4 3.2) 

The operator A corresponding to problem (3.2) is selfconjugate in the space 
H of grid functions defined at the internal nodes of the grid. The scalar product 
in H is defined as follows: 

Here the eigenfunctions of the operator A will be pk (x) = sin km and the 
corresponding eigenvalues will be 

I+ = 
16 kslh 
-j-pP~, k=1,2,...,N-4. 

We note that \\A\\ = A,_, 1 16/h’ = 1.6 x 10’ for N = 10, and \\A\( = 1.6 x 10’ for 

iv = 100. 

The choice of problem (3.2) as the object of experiment enables us to 
simulate ill-conditioned operators A on a coarse grid. 

The explicit iterative process (1.2) (B 5 E) is considered. Then with 
conditions (1.4) the energy equivalence constants y1 and yz are yl = X,, y2 = XN_r . 

Then 
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2. Several series of experiments were performed. In the first series the 

effect of the ordering of the set gn on the increase of the intermediate solutions 
and the accuracy attained after n iterations were studied, 

In the simulated problem (3.2) the values V, = 1, 1/Z = vI = vq = 0, f = 0 were 
taken. With these initial data the exact solution of the problem is u (x) = 1 - X. 

Let n be a multiple of 8. The following orderings of the set ?‘& were 
considered: 

(1) 

To this ordering there corresponds the usual ‘inverse” sequence (rk\: 

C-9 TO 2k-1 
Zh = 

‘i + PO& ~h=-eosZn7E’ k = 1,2,. . . , n; 

Zk-f 
here pk=cos-ITt 

2n ’ 

which corresponds to the usual “direct” sequence of parameters irk{; 

(3) 

0 

u( ( 
Mi 

2k-1 

> ( 

Zk-1 
-3-c UM* 3x--------_ ; 

A=1 2n 2n 

this ordering corresponds to the partition of the sequence frki into blocks of two 
elements (p, k _1 = - cos [ (2k - 1) /2n]n, p2 k = cos [ (2k - 1) /2nh-); here and 

below we use the recurrence formulas (1.12); 

(4) 

2k-sl 
L+---5t 
2 1) 2n ’ 
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The ordering recommended in [l] assumes, in our notation, the form 

Here the blocks have been organized to consist of four elements: 

- cos Pk, cos Pk, - sin Pk, sin f3,; 

; 

here a block consists of 8 elements; 

(7) the ordering of the set ?I& in accordance with (2.4). 

In order to exhibit the,effect of the conditionality of the operator A on the 
computational stability of the method, the calculations were carried out on the 
sequence of grids h = I/,‘,, I/,? ‘4,. 

The setting of n used was from 8 to 512 with step 8. Iterations in accordance 
with the scheme (1.2) were carried out for every n and each of the orderings @., 
indicated. The critical value n act for which the actual relative accuracy did not 
yet exceed the theoretical accuracy was determined, that is, the inequality 

was satisfied. In the same way a determination was made of tz_, for which at 
some intermediate iteration the solution exceeded the maximum possible number 
(1019) for representation in the computer. 

The calculations showed that for the orderings (l)-(6) as n increased, there 
was first a ioss of accuracy, when n becomes greater than n ccc’ and then an 



154 E. S. Nikolaev and A. A. Samarskii 

TABLE1 

h = i/to, E = 6.29*1o+ 1 h = i/e, 4 = 3.004*10-4 I h = 1114. E = i.Gi*io-’ 

24 0.55 0,495 48 24 0,732 
24 0‘55 0.548 48 24 0.732 

24 0.55 0.481 72 24 0.732 
16 0.746 0,746 64 16 0.864 

48 0.178 0.171 136 40 0.47 
40 0.264 0.263 136 40 0.47 

88 2.4.10-” 2.2.10-“176 96 7.2.10- 
.04 1.08*10-“8.68.10-3 192 104 5.4. IO- 
.841.95.10-41.24.10-44161764.48.10- 
.841.95.10-* 1.9.10-44561764.48,10- 

- 

- 

0.729 48 24 0.839 
0.731 48 24 0.839 

0.713 64 24 0.839 
0.86 64 16 0.923 

0.364 80 48 0.544 
0.366 88 48 0.544 

0.42 136 48 0.544 
0.469 128 40 0.64 

5.8.10-2168104 0.142 
4.9.10-2184104 0.142 

.74.10"408176 2.29.10~! 

.44,10-8448200 1.25.40~: 

0.773 40 
0.837 48 

0.765 64 
0.918 64 

0.376 80 
0.542 88 

0.482 928 
0.639 128 

0.141 160 
0.105 176 

.98.10-2336 
9.10-3376 

emergency stop due to an increase in the intermediate solutions. 

The use of blocks of more complex structure leads to a decrease of the 

numerical instability of the method, and the greater the size of a block the 
greater n Stop_ 

When the ordering (7) is used the real relative accuracy teal for all n did not 
exceed the theoretical accuracy, which for n = 512 was given by q, = 1.4 x IO’“, 
3.9 x lo”‘, 4.5 x lo’& for h = l/1,, l/l,, “4,. The intermediate results were bounded 

and the quantity 

R n=maxlgh(z)l 
OCXCi 
fl6h6n 

was a monotonically increasing function of n and for large n was unchanged as 
n increased, that is, it attained its asymptotic value. 

The calculations showed that the ordering of m, in accordance with (2.4) for 
an n differing from a power of 2, preserved the same characteristics of computa- 
tional stability of the method as in the case n = 2p. 

The results are shown in Table 1. The first rows correspond to the initial 
approximation 
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and the second correspond to y,(x) = cos (n-~/2)+ For these approximations with 

the ordering (7) 

max R ,, == 208, 427, 784 E max R, =r: 1.63, 2.73, 4.00 
l$n<ela lSnf612 

3. In the second series estimates were found for 

n n 

11 T,/J, r: TjIlT,,jll, c II T,,jlf , 
i==i hi 

where %,, is ordered by (2.4). For this the following quantities were computed: 

(3.3) l, = IIT,, oyll / llyll d l17’, oil, 

For the case n = 2p in Theorem 1 it,was proved that the equations in (3.3)- 

(3.5) are attained if y is an eigenfunction corresponding to the minimum eigenvalue 

of the problem 

Ay - XBy = 0. 

Here the equations 

2P 

(3.6) I, = IIT,P,,ll = QZP, I, = 

c 

i-q2p 
Tj IIT,p,jll = - 

hi Y: 

and the estimate 

2P 

(3.7) I, = 
c 

4 
IIT~P,jllG -a 

31’k j=i 
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TABLE 2 

h=1/10,~=6.29x O4 

n 

64 

96 

128 

192 

256 

344 

334 

n Qn 

64 0.75125 0.75125 

96 0.55725 0.55725 

128 0.39313 0.39313 

192 0,1838 0.1838 

256 8.3747.10-2 8.3747.10-z 

344 2.8197.40-z 2.8197.10-S 

334 1.7181.10-2 1.7181.10-f 

512 3.5191.10-Z 3.5191.10-9 

768 1.4762.104 1.4762.10-4 

1024 6.192.10-' '6.192.fOf 

- 

- 

8 

1 

3 

11 

-- 

;.0451.10" 

.6174.10-z 

1.2467.10-3 

1.308.10-4 

5.27.10-e 

6.37.10-8 

8.55.10-9 

qn 

1.0451*10-2 

..6174.10-2 

1.2467.10-3 

1.308.10-4 

5.27.10-e 

6.37.10-8 

8.55.10-B 

9.5968.10-a 
3.5085.10-' 

1.0268.10-2 
3.6973.10-4 

1.0403*10-2 
3.8662.10-4 

1.0435.10-2 
3.8184.104 

1.044.10-2 
3.868.10-4 

1.046.10-2 
4.3697.10-4 

1.044.10" 
3.8787.10-4 

(i -q/u, 

).5968-10-s 

..0268.10-2 

..0403.10-2 

.0435*10-2 

1.044*20-2 

1.044.10-2 

1.044.10-2 

7?iBLE 3 

h = l/20, c= 3.84 x lo+ 

2.5641.10-3 
3.125.10-s 

4.564.10-8 
4.48.104 

6.2558.10-3 
5.708.10-5 

8.4137.10-S 
7.42.10-5 

9.445*10-s 
8.64.iO-5 

1.002.10-2 
9.88.10-5 

1.013.10" 
9.136.10-5 

1.027.10-a 
9.56.10-5 

1.0307.10-2 
9.43.10-S 

1.0308.10" 
9.56.10-5 

(i - 9,)lYl 

.5641.10" 

i.564.10~3 

.2558.10-s 

.4137.10-3 

9.445.10-8 

1.002*10" 

1.013.10-2 

1.027.10-2 

.0307.10-2 

.0308,10-2 

13 

42.726 1.072 
27.171 0.6816 

45.034 1.1297 
28.641 0.718 

47.072 1.181 
29.933 0.7509 

46.5 1.167 
29.57 0.7418 

47.098 1.182 
29.95 0.7513 

53.143 1.333 
33.768 0.8471 

47.225 1.185 
30.03 0.753 

r,v, 

62.066 
39.506 

89.331 
56.863 

113.86 
72,474 

148.04 
94.234 

172.26 
109.65 

197.03 
125.4 

182.23 
116.0 

190.66 
121.37 

188.18 
119.78 

190.72 
121.4 

LVE 

8:E 
0.553 
0.352 

0.705 
0.449 

0.917 
0.584 

1.067 
0.679 

1.22 
0.777 

1.129 
0.718 

1.181 
0.752 

1.166 
0.742 

1.181 
0.752 
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hold. For the simulated problem of (3.2) we have y = sin KC. 

It was also proved in Theorem 1 that the estimate 

holds for arbitrary n for any ordering of the set R,. 

In order to investigate how all the three norms I,, I,, f, change in the 

neighbourhood of n = 2p, a numerical experiment was used. To calculate these 
norms it is sufficient to find 

max I,, max Iz, max IS, 
P Y Y 

when y runs through the set of eigenfunctions of the operator A. 

Calculations were carried out on the sequence of grids 

The number of iterations n was specified as in the first series. It turned out that 
in (3.3)-(3.5) equality was attained at the first eigenfunction of the operator A, 

as for the case n = 2p, and equations (3.6) were valid. 

In the process we verified 
n = 2P were attained. 

that the theoretical estimates (3.6), (3.7) for 

Some results are shown in Tables 2, 3. In the first rows the values of I,, I,, 
I, are given for y = sin n3~, and in the second rows for comparison the values of 
I,, I, are given for y = sin (N - l)nX. 

The experiments on the simulated problem considered above show that for an 

n differing from a power of 2, in an ordering of the set ?& in accordance with 
(2.4), the same characteristics of numerical stability of the method are preserved 

as for the case n = 2p, for which the theoretical estimates were obtained in 

Theorems 1, 2. 

The use of the ordering of an by (2.4) is necessary for the solution of 
problems with an ill-conditioned operator, for example, difference problem arising 
from the approximation of elliptic equations of high order. At the same time, as 
is shown by example 1, if n is not too great and the problem is not very ill- 
conditioned, a simpler ordering with shorter blocks can be used. 

Translated by J. Berry 
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