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THE problem of the numerical stability of two-level and three-level iterative
processes in solving the linear operator equation of the first kind Au = f in
Hilbert space is considered.

One of the problems of the theory of iterative processes is that of
obtaining quantitative characteristics enabling methods of different structure to
be compared. In theoretical investigations the criterion of comparison of
methods by the number of iterations, on the assumption that all the iterations are
carried out exactly, is most often used.

However, in a practical computational method the process of rounding the
results of arithmetical operations introduces some errors into the solution at
each stage. This fact leads to the necessity to compare iterative methods by
their numerical accuracy.

In the present paper this characteristic is considered for two-level (simple
iteration) and three-level (semi-iterative Chebyshev and stationary) iterative

processes. The numerical stability of Richardson’s method was investigated in
[1-3].

In the investigation it is assumed that the introduction of a rounding error is
equivalent to a perturbation of the input data of the iterative scheme. This
approach, which enables the problem of the numerical accuracy of the method to
be teduced to a study of the stability with respect to the input data of some
perturbed problem, was used in [4] when considering an abstract scheme of a
two-level iterative process.

The estimates obtained (Theorems 1, 3, 5) prove the numerical stability of
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Two-level and three-level iterative methods 141
the iterative schemes considered. It is shown that the coefficients in the
estimates depend only on the dimensionless parameter £ = y,/y,, where y, and
y, are the limits of the spectrum of the operator A or constants of equivalence of

the operator A and a second operator B of the iterative scheme.

1. Two-level iterative schemes

1. In a real Hilbert space H let an operator equation of the first kind with a
linear selfconjugate operator A be given (A:H->H, A= A* > 0)

a.n Au =,
where u is an unknown and { is a specified element of H.

Let B be an easily reversible operator satisfying the conditions
1.2) B=B* 3 BE, y3<ALyB, ».>0,8<0,

where y, and y, are constants of energy equivalence of the operators A and B
(see [2], ch. VD).

For an approximate solution of problem (1.1) we consider an implicit two-
level iterative scheme with the constant parameter 7 > 0 and arbitrary v, € H:

(1.3) BOpyy —vp)/ 7+ Ay, =f,k=0,1,....
With the assumptions of (1.2) the optimal value of the parameter is [2]

1.4) T=1o=2/(y:+ ¥

The following estimates then hold:

(1.5) ly, —ul, < pellyo~uly D=AorB,

where || * || is the norm in the energy space H, defined as follows: x|/, =
©Ox, )" forD=D*>0, po=1 =€)/ 1 +&),E=y,/y, In order to decrease
the norm of the initial error 2, = ¥, — « in H, (H,) by the factor 1/¢ it is
sufficient to perform n 2 n (¢, ) iterations, where

nie, &) =Ine/Inp,=In(1/e)/ 2¢.

The scheme (1.3), (1.4) is called an implicit method of simple iteration. In
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addition to the estimate (1.5), expressing the convergence of the iterative
process, it is easy to obtain estimates of the stability of the right side of the
scheme (1.3), (1.4):

“yn”3< Po"llyollﬂ+ [(1 - 100") /'Yi]HfHB_’v
”ynHA =< pon“yonA + (1 -+ pon) Hf”A—j-

2. The estimates obtained above imply the convergence and stability of the
right side of an ideal numerical process. For a practical process it is necessary
to investigate the stability with respect to the input data of some perturbed
scheme, taking rounding errors into account.

It may be considered that the introduction of rounding errors is equivalent
to a perturbation of the initial approximation, the right side and the operators
A and B of the iterative process (1.3). Then the actual solution S’\k may be
regarded as the exact solution of the following problem:

Nyalls < pa™llyslls + [ (1 — po™) 7 vi I,
Nyalla < o™ llyolla + (1 -+ pa™) A"

Assuming that the scheme (1.6) belongs to the original family of schemes,
that is, conditions (1.2), or

a.n A =A*>0,B =B*>BE, 30,
are satisfied, we investigate its stability.

As a measure of the perturbation of the operators A and B we will take the
relative change of their energy (0 < a,, a, < 1)

~ il
(1.8) H(A ~ A)x, x)| € a,(Ax, x), [ (B - B)x, x)|< a,(Bx, x).

We consider the scheme (1.6) with perturbed initial data, assuming that the
iterative parameter r is defined by formula (1.4) in terms of the unperturbed
values of y, and y,.

Theorem 1
If conditions (1.2), (1.7), (1.8) are satisfied and

a="{a, +a)/ (1 —a)<0.58,

the scheme (1.6) with the parameters (1.4) satisfies the estimates
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19— ulg <0™y0— uly + (1 —p" [1&‘1225 Ifi — 7lg-
(1.9) + (18) max Jw; . + Lo (1 -+ Bl [

where

i =y: — @y, = 0.5y,, p=U1—8)/U+E <05 +0p),
E=(—a)/(1+0a)>E/3 for a<OS5E

It must be emphasized that in the estimate (1.9) the coefficient of the
perturbation & on the right side does not exceed a quantity proportional to
1/& (“the conditionality number of the iterative process”).

To prove the theorem we consider a problem for the error 2, = ’;k — u and
pass to an equivalent explicit scheme, following {2]:

$k+1—fp=g($h—q3)+’C‘(Pk+x+‘\ph+1, k=0, 1,....
z, given, S=E —«C.

Here we have adopted the notation
x, = Bbz,, C=B-%4B-* q@.=B"%(f.—1),
(140)  $=B*m. ¢=BrI(4— Du.
Solving for x, a difference equation of the first order, we find

h—q
o=@ =8z — )+ Y Flrgn,+uy),

Fe=0
Nzl << USI* Nzl +[ (1 — 13I%Y /(1 — 151) ] (= max Il
ik
+max Il + (4 + 1314 g,

1<k

We first estimate the norm of the operator S.
Lemma 1
If the conditions of Theorem 1 are satisfied the following estimate holds

o

IST<p <1,
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Indeed, by (1.2), (1.7), (1.8) we have

C = C’, 'Yx*E < C é sz, 'Yi‘ = Y!(i - ai) l, (1 + az)s
ye=v:(1+ )/ (1 — o) = y.(1 4+ 0),

where a = (a, + a,)/ (1 — a,). We note that r&'l -1= ;')\J =pot+all +p,). We
introduce the constant ;7! <y, putting

Yi=(1—=0) /%=1y, —ay. < y,".
Then y* + 7,27, + ')72 = 2/r,, and consequently,

||§]|< max |1 —tt|=max(l — Ty, Toye — 1) = p.
ARSI

The lemma is proved. We note that if @, = a, = 0, Lemma 1 implies that
a.11) ISl € pos S=E —7C, C = B VA8

We now estimate ||| in terms of known quantities.
Lemma 2

Let ¢ = B% A *(A — A), where u is the solution of problem (1.1). If
conditions (1.2), (1.7), (1.8) are satisfied, we have ||¢| < (@./y ) |f] -

Indeed,
loll = |1B*A-(A — D)A-'fl < [B*(A~' — A~") B*|| | B-"{],
and hence it is sufficient to estimate the norm of the seliconjnugate operator
BH@AT-A™B"

Because of the assumptions of the lemma the chain of inequalities
—a)d<d< 1+ w)d,
1—a)d'<A'<(1+aq)d?,

—‘Cl.qu:—'i = gui —At a;Z",

is satisfied, and

LA™~ Ay, x)] € an (A7, ).
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From this we obtain
[ (B (A~ — A~) Bz, 2) | < a(C'z, 7) </ Wi(2, 7).
The lemma is proved.

The statement of the theorem follows from Lemmas 1 and 2 when the
inequality 1 — p > £ is taken into account.

Theorem 1 asserts that the iterative process (1.3), (1.4) is numerically
stable and retains the theoretical rate of convergence if the perturbations of the
right side and of the operators of the problem are quantities of order o (£).

2. Three-leve!l iterative schemes

1. For the approximate solution of problem (1.1) we consider an implicit
three-level iterative scheme of standard type [2):

(2.1) Byri = or(B—1d) s+ (11— ©Orst) Y1+ T@ref,
=1,2,...,
(2.2) By, = (B—tA)yo+ 1f

with an arbitrary y, & H and the parameters r and {wk}.

We first consider the numerical stability of the iterative process (2.1), (2.2)
with the constant parameters 7 and w (the stationary method).

Considering that A and B satisfy conditions (1.2), we put (see [2])

r=1e=2/(y.+ v wk=wm=1+p,2,kz2,3,...,
(2.3) pr=QA =vVE/ A +VE, € =yi/y,

Passing from (2.1), (2.2) to the equivalent explicit scheme, we obtain

2.4) Xty = Opay X + (1 = @py IXp g +T0p b, k=1, 2,

(2.5) X, =8x,+ 1, S=E — C, x, — given,

where x, = A%y, C=C, = A¥B 'A%, ¢ = CA"f, orx, =B%,, C-C,-B "
AB™%, ¢ = B™%f.
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Below we require an explicit representation of the solution of problem (2.4),
(2.5). Letg¢ =20, X; and Xity be given. Then the representation

, S Zipt S Z; S Z;
@ =t [ven () G ) - () 5]

(4

holds for the solution of (2.4), where £k 3 j, and Tk (t) and Uy, (¢) are Chebyshev
polynomials of degree k of the first and second kinds:

T, (t)= cos(k arccos t), It <1, max | Tx(1) | =1,

=t

sin(arccos t) i<t

Uh(t):‘

Putting j = 0 in (2.6) and taking account of (2.5), the estimate ||S| < p, and the
equation p, = 2p,/ (1 + p,*), we verify the validity of Theorem 2.

Theorem 2 (see [S])

If conditions (1.2) are satisfied, the iterative process converges and the
following estimate holds:

1—0p:
Iy, —ul, < p,® (1+ = 12

n)lly‘,-—-ulln, D=4 o B.

D1
2. The problem of the numerical stability of the iterative scheme (2.1),
(2.2) is formulated as follows: Investigate the stability with respect to the
input data of the perturbed scheme
B = owa(B— 4) Bt (1 — oOad) Por + T@rssfars + Drvny
(2.7) Bji= (B—tAD)Jo+1f1 + T Fo given
Theorem 3
If the conditions (1.2), (1.7), (1.8) are satisfied and

a = (a, + az)/(l - GZ)Q 0-5‘5)

the estimates
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1o — uly <P (14 525 ) o — wly + (1 — V (el

X [(1/v1) Jmax 15— Flgm + 1/§) max ;-] +
20,

+ 2 [ he (142 )]llan-n

hold for the scheme (2.7), (2.3), where

Pr<pr+val +p)<l.

To prove the theorem we consider the problem for the error z, = ;k -y and
pass to the equivalent explicit scheme

Tppr — @ = Opp18 (T — @) + (1 — 0ass) (Tay — )
+ TOr+1Pr+1 + \th+1,

(2.8) xi_(9=g(%“‘“({))+"7¢1+\p1, k=1,2,...,
where x,, §, gﬁk, U, ¢ are defined in (1.10).

We represent X, as the sum X =Up + ;k’ where Ec—k is the solution of the
following problem:

Topr — P = (Dh+u§(97k“‘cp) + (1 — @ns) (Eh—i—q‘),
k=12 ...,
3—'51——([)=S(.'fo—‘(p), foxxg.

Using (2.6), we obtain

o L - e T e

For U, we obtain the following problem
Uhyt = Qa1 S0, + (1 — Ont1) Ukt - TOne Qryg + P,
E=1,2,...,

Uy =T, + P, Dy == O,

R
the solution of which will be sought in the form v, = ZYM_ Then for fixed
=0

i=0,1,..., Yk i is the solution of the homogeneous problem
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Yig, ;= 03418 Y, 5+ (1 — @ar1) Yo, kEZ=1] +1
Yj—H‘ § == T4+ + ‘pi—i—h Y-"»j == 0.

Here we have introduced formally w, = 1. Using (2.6), we find

Yuy= Pr—j—i Ui—i=1(8/00) (v@s11 Pias T Yir), Yur=0,
and consequently,

R—1i
Up= pﬁU,-(S/p(,) (T©p—j Prg -+ ¢k—j)-
(2.10) ;

To complete the proof of the theorem it remains to estimate the norms of the
operator polynomials U, /py) and T, (S /po)

We introduce the following notation:

ge=@')/5= (1~Eo)/(1"*%0)350:“/(1—%—0‘_‘%)’

A1) = (1 —YE) [ (1 +VE), =20/ (1+0);

b
-

where p, = p,/p 1
Lemma 3

If the conditions of Theorem 3 are satisfied, the following estimates hold:

TS /o)l S @ < o™, U8/ po) Il < (k+ Do,
10 (8/00) 870l < (k+ 1)p, *7, (<o +Vall+p)<t.

-

p
Indeed, since I8/ poll <,B [ po= 50" = p+7, we have

I7:(8/ p) Il < Tu(p/ p0) = Ta(po™") = G < pu—™
MW (870 < (1031 (50" ) — 114 [ T2 (py=") — 1]

b

- 2(R+1)

=(1—p, YA —pS) pr< (b + 1)

We also have
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_ 011"‘51 911—61 1—V§ —
=t (U+py 2 . B 175y
01 = pu ( 01) 5. 1+ 0, 5 1+o, 15 7%, &

=Ya(1-VE)/[V1+a—-E) —Yal<Va.

The lemma is proved.

Using Lemma 3 and formula (2.9), we obtain the estimate

1__ 2

kel lx, — ol
|

Also, by Lemmas 3 and 1,

kz-: Piin.(S’/po) " < 2 G+ 1)pd = (1 —p,)

<(1—p) 22 (1 =V (a/E)

Then taking into account the equation
(2.12} Twy = T, = (1 - Px)z /)/u
we find from (2.10) that

ol < (1 — ¥ (a/8))—*[ (1/y;) max Il + (1/€) max hp,1].

1<k 1<i<kh

Theorem 3 is proved.
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3. We now consider the numerical stability of the semi-iterative Chebyshev

method (2.1), (2.2) with the set of parameters [6]

T=10=2/(Y£+'Y2), m’*=4(4—“002(ﬂk_1)"‘,
(2.13) we=2 k=23....

If we use the notation
-1 _ k/ 1+ p.2%
quTk (l/po)—2p1 ( + P )r

we obtain for w, the representation
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2

Tk-l (l/Po)Tk“l (I/Pu) = (2/q,) (qk/Qk-l )=

wk‘
o

2.14
@19 A+ D+ 2 D) /(4 o0,

This implies that

limﬁ)&z1+912=ﬁ)w‘and2=®1>(ﬂz>...>ﬁ)k>...>mw>1,

h->oo

and hence the method of (2.1)-(2.3) is a limiting case of the scheme (2.1), (2.2),
(2.13).

A representation, similar to (2.6) of the solution by an equivalent explicit
scheme (2.4), (2.5) with ¢ = 0 holds for the method of (2.1}, (2.13):

(- 2o (2)%]
(2.15) m’kz%[Uk—j—t(-g)(z: "rs ~\0.) a0,

This implies the following theorem.
Theorem 4

If the conditions (1.2) are satisfied, the iterative process (2.1), (2.2), (2.13)
converges and the following estimate holds:

Iy, —ull, <a,ly,—ull,»D=AorB.

Therefore, the schemes (2.1)—(2.3) and (2.1), (2.2), (2.13) converge at the

same rate.

4. The problem of the numerical stability of the Chebyshev iterative process
reduces to the problem of obtaining estimates of the stability of the explicit
scheme (2.8), (2.13). The following theotem holds.

Theorem 5

If the conditions (1.2), (1.7), (1.8) and

a=(a,+a,)/ (1 —ay)< 0.5,

are satisfied, the estimate
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1o — uly <gal¥o—ulz + (1 — V(@B @y, max |f; — ..
+ (1/8) max Jwilz) + Qou/v) (4 + a1l

holds for the scheme (2.7), (2.8), where Eun - qn/gn <2pM /A4 Flm), a’n and
the p, are defined in (2.11).

Theorem 5 is proved in the same way as Theorem 3. Taking into account
(2.14), (2.15), we obtain instead of (2.9}, (2.10) the following representations:

Tp— @ = Qka(S/po) (370“(9),

h—1
Ur = E Gu/ Gh-; U,-(S‘/po) (T(J)h—j(p}z—j + Pr—j)

h—1
=Z‘ UJ(S/pn) [ (217/4)0) (Qk/Qh—j—i)(ph_j + qk/qk.ﬁﬂpk_j].

==

The estimate of Theorem 5 follows from Lemma 3 and the inequalities
9,/94.; < pl A +p.Y), U/ Gpojoy S 2007 f<k -1

It remains to estimate q_n.

Lemma 4

When the conditions of Theorem 5 are satisfied the following inequality
holds:

(2.16) q,<2p A v
The inequality (2.16) is equivalent to the following:
(;‘lzn _ plzn)( 1 - ';12n) > 0.

Since 0 a < 0.5¢, we have p,< 1, py < p,. The lemma is proved. Theorems
3, 5 assert that the iteration processes (2.1), (2.3) considered with the choices
of parameters (2.3) and (2.13) are numerically stable and retain the theoretical
asymptotic rate of convergence, if the perturbation of the right side and of the
operators of the problem is a quantity of order o (£).
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Theorems 1, 3, 5 imply that a two-level (simple iteration method) and the
three-level (semi-iterative Chebyshev and stationary) iterative methods may be
referred to a single class of numerical processes which are numerically stable in
the energy spaces H, and H_ (compare with Richardson’s method [1-3]).

3. Stability with respect to the parameters y, and v,

We consider the effect of the inaccurate specification of the input informa-
tion, that is, of the constants y, and y, on the rate of convergence of the itera-
tive processes, assuming that all the calculations are performed accurately.

Instead of the exact values of y,; and y, in (1.2), let certain approximations
’)\/1 and ')\72 be known. We introduce the following notation:

H=2/F+¥%), po=0—E/U+E),
po=(—7Y8)/(U+7E),
=20 (140, E=%/%

Then the iterative parameters for the two-level and three-level schemes are
selected as follows. For the method of (1.3) 7 =7, for the stationary method of

@1), 22)r=T0 w, =1+ p,"k=2,3,...; for the semi-iterative Chebyshev
method 7 =7, w, =404 - Ff)\'oz wp Y R=2,3,...,0,=2
Let

p= max [1— %],
Nt

It is obvious that the estimate (1.5) and the estimates of Theorems 2, 4, in

which p, p, and q_ are replaced by po ps and §,,, are valid for the case y1 <
Y1, Y2 3 y.» We introduce the following quantities:

P =00/B,  p =0 1V (1= ") ], ¢ =20,/ (1 + ™),
Pr=0:1/0"  Tu=§nlq:".

~

Since ISl << max |1 — %fl =p and 'ﬁo< p, we obtain as in Lemma 3,

<V

IT, S/l < @)™ < @) U, S/ 0S8/ poll<n(p®™.

Therefore, instead of the estimate (1.5) and the estimates of Theorems 2, 4, the
following inequalities hold, respectively:
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ly, — ulls << p™llyo — ulln,

Iy <p,” =8 Vig,— il
Ilyn—u pép, (1+mn) Yo — Ulip,
(3.1) I|yn —ullp, < énllyo — u”n, D=A or B.

It is obvious that if p > 1 the iterative methods may diverge. We assume that
the condition p’ < 1 is satisfied. Then p, <1, since pJ > p'o, and consequently,
pX> 'f)ul. By analogy with Lemma 4 we obtain

g, <2 +p,™)

Since p < 1, the iterative methods converge. It follows from the estimates (3.1)
that in the case considered there may be a sharp decrease in the rate of conver-
gence in comparison with the case where y, and y, are known accurately.

As an example we consider the case where the condition p < 1 is satisfied.
Let

Yi={+a)yy, yp=y, a>0.
Then direct calculations give

1—(1—a)t 2 e )
m—po{1+2a§/[i af (1+(L)§ ]}

= po(1+ 208,

_ _1-7Y[(1ta)E] B eyt
91—14‘]/[(1"*‘(1)5] "’Pi“ 20 VE( VE)

XMU+TU+) 1 U +V[ U +a)ED 1= p, (1 —aVE),

p=

o= Y1 —8 + V(@) Pt +V[(1+a)El}
=~ 91[1'*‘27((13)]-

Here po=(1 =&/ A+ &), p,= 1 = VE/ (A + VE), £ = y,/y,. This implies that
for the two-level method the asymptotic rate of convergence is preserved even in
the case where a = O (1). For the preservation of the asymptotic rate of conver-
gence of three-level iterative schemes it is necessary that a be a quantity of
order o (£).

Translated by, J. Berry
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