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THE problem of the numerical stability of two-level and three-level iterative 

processes in solving the linear operator equation of the first kind Au = f in 

Hilbert space is considered. 

One of the problems of the theory of iterative processes is that of 

obtaining quantitative characteristics enabling methods of different structure to 

be compared. In theoretical investigations the criterion of comparison of 

methods by the number of iterations, on the assumption that all the iterations are 

carried out exactly, is most often used. 

However, in a practical computational method the process of rounding the 

results of arithmetical operations introduces some errors into the solution at 

each stage. This fact leads to the necessity to compare iterative methods by 

their numerical accuracy. 

In the present paper this characteristic is considered for two-level (simple 

iteration) and three-level (semi-iterative Chebyshev and stationary) iterative 

processes. The numerical stability of Richardson’s method was investigated in 

[l-31. 

In the investigation it is assumed that the introduction of a rounding error is 

equivalent to a perturbation of the input data of the iterative scheme, This 

approach, which enables the problem of the numerical accuracy of the method to 

be reduced to a study of the stability with respect to the input data of some 

perturbed problem, was used in [4] when considering an abstract scheme of a 

two-level iterative process. 

The estimates obtained (Theorems 1, 3, 5) prove the numerical stability of 
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the iterative schemes considered. It is shown that the coefficients in the 

estimates depend only on the dimensionless parameter t = y1/y2, where y, and 

yz are the limits of the spectrum of the operator A or constants of equivalence of 

the operator A and a second operator B of the iterative scheme. 

1. Two-level iterative schemes 

1. In a real Hiibert space H let an operator equation of the first kind with a 

linear selfconjugate operator A be given (A :H + H, A = A* + 0) 

(l.lf Au = f, 

where u is an unknown and f is a specified element of H., 

Let B be an easily reversible operator satisfying the conditions 

(1 *a B=B*>PE, y$<A,(y,B, yl>O,/?<O, 

where y1 and yz are constants of energy equivalence of the operators A and B 

(see [21, ch, VIII). 

For an approximate solution of problem (1.1) we consider an implicit two- 

level iterative scheme with the constant parameter 7 > 0 and arbitrary y0 G H: 

0.3) B bk+l - yk)/’ f Ay, = f, k = 0, 1,. . . . 

With the assumptions of (1.2) the optimal value of the parameter is [21 

(1.41 7 = 70 = 2 / (y1 + y*). 

The following estimates then hold: 

where II l IID is the norm in the energy space H, defined as follows: //xljg = 

(Dx, z> % for D = D* > 0, p. = (1 - t)/ (1 + ~$1, 5‘ = y1 / yz. In order to decrease 

the norm of the initial error Z, = y0 - II in H, (H,) by the factor l/r it is 
sufficient to perform n > n (c, 0 iterations, where 

n(f,f)= inc/inp,= ln(l/f),i2t. 

The scheme (1.3), (1.4) is called an implicit method of simple iteration. In 
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addition to the estimate (1.5), expressing the convergence of the iterative 
process, it is easy to obtain estimates of the stability of the right side of the 
scheme (1.3), (1.4): 

llynlls G po”llyolls + [ (1 - PO”) / Yil IlfllB-‘, 
IIYnlla =G P0”ll%llA + (1 + pen) llfllA-l* 

2. The estimates obtained above imply the convergence and stabiiity of the 
right side of an ideal numerical process. For a practical process it is necessary 
to investigate the stability with respect to the input data of some perturbed 
scheme, taking rounding errors into account. 

It may be considered that the introduction of rounding errors is equivalent 
to a perturbation of the initial approximation, the right side and the operators 
A and 3 of the iterative process (1.3). Then the actual solution Tk may be 
regarded as the exact solution of the following problem: 

IlgAl B G po”Ilr/ollB + [ (1 - PO”) 1 Y11 IlfllB-‘7 
llynlla =G QonllYolla + (1 + PO”) IlfllA-‘~ 

Assuming that the scheme (1.6) belongs to the original family of schemes, 

that is, conditions (1.2), or 

are satisfied, we investigate its stability. 

AS a measure of the perturbation of the operators A and B we will take the 
relative change of their energy (0 < a,, a2 < 1) 

(1.8) j 6 - Alx, x> j 6 a, (Ax, xl, j CC; - Blx, xl j 6 az(Bx, xl. 

We consider the scheme (1.6) with perturbed initial data, assuming that the 
iterative parameter r is defined by formula (1.4) in terms of the unperturbed 
values of yt and yzS 

Theorem 1 

If conditions (1.2), (1.7), (1.8) are satisfied and 

a = (a, + a,),‘(1 - a,) 6 0.55, 

the scheme (1.6) with the parameters (1.4) satisfies the estimates 
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where 

g, = yi - ayz 3 0.5y,, p = (1- E) i (1 + E) < 0.5(1 $_Qid, 

1 = (E - a) I (I+ a) 3 g I 3 for ot < 0.5g. 

It must be emphasized that in the estimate (1.9) the coefficient of the 

perturbation G on the right side does not exceed a quantity proportional to 

1./t (‘6the conditionality number of the iterative process”), 

To prove the theorem we consider a problem for the error zk = Fk - u and 
pass to an equivalent explicit scheme, following [21: 

Xkk+i - ;rp = S(G - 9) + ,c~ik+i +$A+$, k = 0, 1,. . . , 

x0 given, S=E-0% 

Here we have adopted the notation 

(1.10) $A = 8-‘lli&. ,tp = IT'lliT-'(A - ;r)u. 

Solving for xk a difference equation of the first order, we find 

k-l 

&-cp=3k(z&p}+ 
E 

~j(Zqk- j + $k- j) 1 

3-o 

+ max llg,ll + (1 + IISIIA) Ilqll, 
~=GSk 

We first estimate the norm of the operator S. 

Lemma 1 

If the conditions of Theorem 1 are satisfied the following estimate holds 
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Indeed, by (1.2), (1.7), (1.8) we have 

c = e*, yi*E < C G ytE, y,* = y*(l- a*) I(1 + a), 
~,=‘Vz(l+a,)/(l-aaz) =Y*(l+d, 

where a = (a, + a,>/ (1 - a,). We note that r,,T2 - 1 = p” = p0 + a (1 + P,). We 
introduce the constant T1 < ye, putting 

7% = ( 1 - PI /To = yi - uyz < yi** 

Then y? -t T2 > T1 + T2 = Z/T,, and consequently, 

The lemma is proved. We note that if al = a, = 0, Lemma 1 implies that 

(1.11) \\sl/ -S pot s = E - TC, c = 8-“As-‘/‘. 

We now estimate [\#\I in terms of known quantities. 

Lemma2 

Let 4 = ‘ii” x-‘(A - A), where u is the solution of problem (1 .l). If 
conditions (1.2), (1.7), (1.8) are satisfied, we have 1\~#111 < (a,G,) jjfjl ';;-I. 

Indeed, 

l/q11 = llpp’(A - .x)Pfll G llF2(P - Lqml IIB-‘VI, 

and hence it is sufficient to estimate the norm of the selfconjugate operator 

Because of the assumptions of the lemma the chain of inequalities 

is satisfied, and 

\ ((P - A-*)x, x) j ,< a,(z-k, x). 
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From this we obtain 

The lemma is proved. 

The statementzf the theorem follows from Lemmas 1 and 2 when the 
inequality 1 -“p >, c is taken into account. 

Theorem 1 asserts that the iterative process (1.3), (1.4) is numerically 

stable and retains the theoretical rate of convergence if the perturbations of the 
right side and of the operators of the problem are quantities of order o (c). 

2. Three-level iterative schemes 

1. For the approximate solution of problem (1.1) we consider an implicit 
three-level iterative scheme of standard type [2]: 

(2.f) &Jr+l = Wk+* (B - ‘GA) yk + (1 - @kf*) B-1 + =Mf, 

k = $2, . * . , 

(2.2) Byi = (B-d)Yo+4 

with an arbitrary yO E H and the parameters r and jw,{. 

We first consider the numerical stability of the iterative process (Z.l), (2.2) 
with the constant parameters r and w (the stationary method). 

Considering that A and B satisfy conditions (1.2), we put (see [21) 

r = 70 = 2 / (yt + y2), tik = CO, = 1 + pt2, k = 2, 3,. . . , 

(2.3) p1= (1 - \lE)/ (1 + $9, E = y1Iy2. 

Passing from Q.l), (2.2) to the equivalent explicit scheme, we obtain 

(2.4) xk+r = ~~+rsx~ + (1 - ~~+r)~~_r + r~~+r45, k = 1, 2, 
. . . , 

(2.5) 
XI=SXg+7#,S=E-7C,XO-given, 

where xk = A”rk, C = C, = A”B”AY’, # = CA’“f, or xk = B”y,, C = C, = B-” 

AB-“, 4 = B-“f. 
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Below we require an explicit representation of the solution of problem (2.4)‘ 

(2.5). Let # = 0, xj and xjtl be given. Then the representation 

(2.6) xk= Pik UA-’ , [ a- ($)(S -~-f$)-2.,-j(~)~J, 

holds for the solution of (2.4), where h > j, and T, (t} and U, (f) are Chebyshev 

polynomials of degree k of the first and second kinds: 

Uk (t) = 
sin ( {k + 1) arccos t) 

ItI <I, maxIUk(t)l =k+i. 
sin (arccos t) ’ 14=z1 

Putting j = 0 in (2.6) and taking account of (2.5), the estimate IIS// < p0 and the 

equation p0 = 2pr/(l + pl’), we verify the validity of Theorem 2. 

Theorem 2 (see [!?I) 

If conditions (1.2) are satisfied, the iterative process converges and the 

following estimate holds: 

2. The problem of the numerical stability of the iterative scheme (2.1), 

(2.2) is formulated as follows: Investigate the stability with respect to the 

input data of the perturbed scheme 

If the conditions (1.2), (1.7), (1.8) are satisfied and 

a = (a, + a,)/(1 - a*)< o.st, 

the estimates 
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hold for the scheme {2.7), (2.3), where 

To prove the theorem we consider the problem for the error zr, = Fk - u and 

pass to the equivalent explicit scheme 

xk+i - q = %,.i~bh - 9) + (1 - ok+,) bk--L - q) 

+ 70k+i(pk+i + qlk+i, 

(2.8) 
xi-fp=3S(x, -9) +npi$_h k = 1,2,. . . , 

where xk, $‘, #&, $‘k, 4 are defined in (1.10). 

We represent xk as the sum xk = uk + xk, where xk is the solution 
following problem: 

z;;wk+i - cp = WfJ(& - cp) + (1 - Ok++) (L-i - q?), 

k = 1, 2,. . . , 

&-ql=qzj;uo-(p), 50=20. 

Using (2.6), we obtain 

of the 

(2.9) & - q = pik auk-i(-$)~+Th(~)](r,-y;). 
For uk we obtain the following problem 

vk+l = @k+&++ + t1 - %+i) vk-, + z&tk+lsp,,, + ,,,,k+,, 

k= 1,2,..., 

vi = -ql + qh, uo = 0, 

k 
the solution of which will be sought in the form uk= 

c 
Yk,j. Then for fixed 

j=0 

j=O,l,..., Y . is the solution of the homogeneous problem 
k-1 
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Here we have introduced formally o1 = 1. Using (2.6), we find 

and consequentIy, 

k--i 

(2.10) ok = 
c 
j-0 

To complete the proof of the theorem it remains to estimate the norms of the 

operator polynomials Uj (g /p,> and Tj (g/p,). 

We introduce the following notation: 

Lemma 3 

If the conditions of Theorem 3 are satisfied, the following estimates hold: 

II Tk (S / PO) II < @Ci =z fs?, IlU,(S/ PO) ll < (k + G-“7 

ti u, ($/&,)‘!?/&,ll < (k + 1) @j:@+‘) , p, G pi + Ya(l + pi) < 1. 

Indeed, since 1131 pail <“P i PO = PcJ-” < ctWil we have 

tfTk(g/ PO) 11 < yk(; / PO) = (r&*-y = qk-i < PI-*, 

Iluk(mp,)~~ < ET*:l(pO-f)- I]"[T,2(pR-')- I]-‘A 

-_ (I _ pyf*) 
> (1 - pt”) -’ &-k G (k + I) pi-f 

We also have 
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The lemma is proved. 

Using Lemma 3 and formula (2.9), we obtain the estimate 

Also, by Lemmas 3 and 1, 

k--i 

j=o 

co 

(j + l)p,j=(l -pi)-” 
j=O 

Then taking into account the equation 

(2.12) 7Wk = r&r, = (1 - pX/yr, 

we find from (2.10) that 

Theorem 3 is proved. 

3. We now consider the numerical stability of the semi-iterative Chebyshev 

method (2.1), (2.2) with the set of parameters 161 

z = To = 21 (yi+YZ), @h = 4(4- ~02~k-i)-‘, 

(2.13) ai = 2, 1% = 2,3,.,. s 

If we use the notation 

qk = T,-‘(l/P,) = 2prk 10 + p12k)l 

we obtain for tik the representation 
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(2.14) 

2 

Wk PO 
. --T,-i (l/p,)Tk-“(l/P,) = (2/q,)(@&.i) = 

(1 + P,z)(l + p,“k-l))/(l f Pi2k). 

This implies that 

lim ok = I+ pi2 = ~sd 2 = tii > wz > . . .> ok > . . . > o,>$, 
k-tea 

and hence the method of (2.1)-(2.3) is a limiting case of the scheme (2.1), (2.2), 

(2.13). 

A representation, similar to (2.6) of the solution by an equivalent explicit 

scheme (2.4), (2.5) with 4 = 0 holds for the method of (2.1). (2.13): 

(2.15) gk = gh [uh-j-S(+) (% _L--)+,,qJg. 

This implies the following theorem, 

Theorem 4 

If the conditions (1.2) are satisfied, the iterative process (2.1), (2.2), (2.13) 

converges and the following estimate holds: 

Therefore, the schemes (2.1)-(2.3) and (2.1)‘ (2.2), (2.13) converge at the 

same rate. 

4. The problem of the numerical stability of the Chebyshev iterative process 

reduces to the problem of obtaining estimates of the stability of the explicit 

scheme (2.8), (2.13). The following theorem holds. 

Theorem 5 

If the conditions (1.2), (1.7), (1.8) and 

a = (a, f a,),‘(1 - a,)< OS<, 

are satisfied, the estimate 
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holds for the scheme 

the PI are defined in 

(2.7), (2.8), where 4, = q,/Tn 4 2;: /(l t. p,2n), ?, and 
(2.11). 

Theorem 5 is proved in the same way as Theorem 3. Taking into account 

(2.1-1), (2,15), we obtain instead of (2.9), (2.10) the following representations: 

&-(o= %Tk @! Pa) (G- cp) , 
k-l 

Uk = c qk/qk-j uj(slpO) (z@k-_j(pk-j + $k-j) 
j=O 

k-1 

= c uj(3/po) f t2z/ipO) (qk/qk-j-l)i(Fk-j + qk/qk-j&k--j]. 

1-O 

The estimate of Theorem 5 follows from Lemma 3 and the inequalities 

q,/qk_j ,< pi0 + P,“>, qk/qk_j_1 < ‘Jpj’*t j < k _ 1. 

It remains to estimate Fn. 

Lemma 4 

When the conditions of Theorem 5 are satisfied the following inequality 

holds : 

The inequality (2.16) is equivalent to the following: 

@12n - p,zn > ( 1 - ;I*? b 0. 

Since 04 a < O.S[, we have Fl< 1, T1 < p,. The lemma is proved. Theorems 

3, 5 assert that the iteration processes (2.1), (2.3) considered with the choices 

of parameters (2.3) and (2.13) are numerically stable and retain the theoretical 

asymptotic rate of convergence, if the perturbation of the right side and of the 

operators of the problem is a quantity of order o (5‘). 
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Theorems 1, 3, 5 imply that a two-level (simple iteration method) and the 

three-level (semi-iterative Chebyshev and stationary) iterative methods may be 

referred to a single class of numerical processes which are numerically stable in 

the energy spaces H, and H, (compare with Richardson’s method [l-31). 

3. Stability with respect to the parameters y1 and yz 

We consider the effect of the inaccurate specification of the input informa- 

tion, that is, of the constants yr and yz on the rate of convergence of the itera- 

tive processes, assuming that all the calculations are performed accurately. 

Instead of the exact values of yr and Y2 in (1.2), let certain approximations 

T1 and T2 be known. We introduce the following notation: 

%=2/($+vz), ‘&J= (l-;)l(l+g), 

;;;= Cl-I%J/<1+l/~, 

&i=2;1”/(I+;;iz”), ET = q I j%. 

Then the iterative parameters for the two-level and three-level schemes are 

selected as follows. For the method of (1.3) r =?,,, for the stationary method of 

(2.1), (2.2) T GO, Ok = 1 + ;I* h = 2, 3,. . . ; for the semi-iterative Chebyshev 

method r =? o, mk = 4 (4 - F02 ~~_r)-‘, k = 2, 3,. . . , ak = 2. 

Let 

It is obvious that the estimate (1.5) and the estimates of Theorems 2, 4, in 

which p, p1 and q, are replaced by TO, F, and T,, are valid for the case ?I< 
,I, 

Yll Y z > Y2’ We introduce the following quantities: 

PO’ = &60/p, Pl’ = P,'/[l+ v (1 - PO’2) I, qn* = 2p;“l(l+ pi’““), 

Pl = pi /pi*, Qn = gn/ qn’. 

Since hall & max II - Toti = p and FO< F, we obtain as in Lemma 3, 
Y,G~=zYZ 

lP’,(S/;JII s (Q-‘<.@*I)“, IIu,_r (s/~,)s/iY,~~~n(~l*)-~. 

Therefore, instead of the estimate (1.5) and the estimates of Theorems 2, 4, the 

following inequalities hold, respectively: 



Two-level cmd three-level iterative methods 153 

lly, - uli, G pin ( 1 - pi2 
1+ - 

1+ p,” 
n Ify, - UIID, 

(3.1) IlVn - UllD < QlAlyo - UIID, D = A or R. 

It is obvious that if F > 1 the iterative methods may diverge. We assume that 

the condition F < 1 is satisfied. Then p1 < 1, since pz > To, and consequently, 

p? > ‘ir. By anatogy with Lemma 4 we obtain 

Since F < 1, the iterative methods converge. It follows from the estimates (3.1) 

that in the case considered there may be a sharp decrease in the rate of conver- 

gence in comparison with the case where y, and yz are known accurately. 

As an example we consider the case where the condition i;” < 1 is satisfied. 

Let 

?1= (1 -e dy,, 72 = y2, a > 0, 

Then direct calculations give 

p= I-(I-a)E 
l+(l+a)g 

=p,11+2a~2/[1--a5-(1+a)~2]} 

pi = 
1-,‘[(lfa)~l 
l+Jw+a)El 

=pi[i--2aY’~(1-lq)-’ 

x[l+v’(l+a)]-‘~l+l’[fl+a)~]~-‘]~ppi(l --al%), 

Here p0 = (1 - o/(1 + [), pt = (1 - d[)/(l + \l~$), <= y,/y2. This implies that 

for the two-level method the asymptotic rate of convergence is preserved even in 

the case where a = 0 (1). For the preservation of the asymptotic rate of conver- 

gence of three-level iterative schemes it is necessary that a be a quantity of 

order o (6). 

Translated by, J. Berry 
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