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HOMOGENEOQUS difference schemes in non-uniform mashes are considered for an
elliptic equation with variable coefficients in regions of a general type and with boundary
conditions of the first kind.

Considerable attention has been paid, see e.g., [1-11], to finite-difference schemes
for elliptic equations, and notably Poisson’s equation.

The present paper considers homogeneous difference schemes in non-uniform
meshes for an elliptic equation with variable coefficients and regions of a general type
with boundary conditions of the first kind. The schemes are shown to be uniformly
convergent at a rate O (h* In(V,/I,)) where ¥, is the volume of the considered region
G, h is the maximum step in the spatial lattice R ,*:

h = max max fh.(z:),
"{EG isap
fia (:) is the mean step at the base-point x; of the lattice R," in the direction of the
oxq axis(a == 1, 2,...,p, p is the number of dimensions), and H_ is the minimum
volume of a cell,

H.=min H(z), H(z)== Hm(x,,).

xieG

The accuracy to which the initial problem is solved is determined by the errors
occurring both at the base-points of the boundary zone, and at strictly interior base-
points. The error introduced by approximation of the equation at base-points of the
boundary zone may be estimated either by means of the maximum principle (as e.g.,
in {5]), or by means of a majorant function{7]. For a uniform estimate of the error
occurring at strictly interior base-points, both the majorant function method {6, 7]

*Zh. vychisl. Mat mat. Fiz. 11,2, 385-410, 1971.
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and the Green’s function method [1] are used.

Schemes of a general type were considered on a uniform mesh for an elliptic
equation with variable, reasonably smooth coefficients, in [1], and estimates of the
convergence rate in the mesh norm of C were obtained for them by means of the Green’s
function. It was then assumed that the region boundary is a suface or curve which is as
smooth as desired. The case of a piecewise-smooth boundary containing conical points
required special investigation [7], and it proved necessary to utilize quasi-uniform meshes.

The aim of the present paper is to construct and examine homogeneous difference
schemes, approximating the Dirichlet problem for the elliptic equation with variable
coefficients

P

7, du
L = ka — _— ,
o=V (k05 )—a(@)u=—i()
ko(2) = ¢, = const > 0, g(z) =0, Z= (21, L2y...,%p),

in non-uniform meshes.

It is natural to require that the self-conjugate and negative-definite operator L
(in the case of a homogeneous boundary condition) be approximated by a finite-
difference operator A, retaining the same properties in the space of mesh functions.
Incidentally, the operator A, corresponding to the “cross” scheme, as used in {2, 5], is
not in general self-conjugate in the case of an arbitrary region, nor is it negative-definite:
a point that was overlooked in [11].

A “cross” scheme with a self-conjugate negative-definite operator A in an arbitrary
region and non-uniform is devised in the present paper. The scheme is shown to be
uniformly convergent for the case of continuous (and reasonably smooth) coefficients
and a reasonably smooth solution of the initial problem in a sequence of non-uniform
meshes, at a rate O(h*In (V,/ H.)).In the class of discontinuous coefficients, the
scheme is shown to be uniformly convergent at the same rate in one particular case.
Aspects of convergence in the mesh norms of L, and W,! are also discussed.

The method of energy inequalities of the n-th rank developed in [10] proved
suitable for uniform estimation of the accuracy (in the mesh norm of C) of the p-dimens-
ional “cross” scheme. This method enabled an estimate to be obtained for the solution
of the finite-difference problem in the mesh norm of L,», where n is any integer.

The convergence in the mesh norm of C follows from this estimate.
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1. Formulation of the problem
1. Statement of the initial problem

Let £ = (z), &2, ..., Zp) be a point of p-dimensional space Rp, G a bounded
region with boundary T, and G = G | I'. The intersection of the region G with a
straight line passing through a point x € G and parallel to an axis0z., a =1, 2,...,p,
is assumed to consist of a finite number of intervals.

Consider the following problem: to find a function u = u(x), continuous in G, and
satisfying the conditions

(1) Lu==—f(z) for x=G; u=v(z) for z& I,
where L is an elliptic differential operator containing no mixed derivatives:

" (ka(2) ;:—) ,

[<3 ]

2
Lu = L.u, L.u =
> ;

@)

k.(z) = ¢, = const > 0,
k.(z) = C*(G), f(z)= C*(G), a=1,2...,p.

A solution u(z) & C*(G) of problem (1), (2) is assumed to exist. Problems
with discontinuous coefficients k&, (z) and right-hand side f(x) will be discussed in
Paragraph 2 of Section 3.

2. The mesh

1. The lattice. Take p families of hyperplanes
i i i 7O
xa=x.§“) o=0,=41,..., a=12...,p, x;“)>xa("

() (id () . ) .
Denote by z: = (x, Y Ze ... 27 the points of intersection of these hyperplanes.

The points x; will be said to form a lattice R," in the initial space Rp,.

2. The mesh. Interior and boundary base-points of the mesh.
A mesh @ of base-points will be constructed in the region G.Points x; of the lattice
R, belonging to G will be called interior base-points of the mesh; the set of interior
base-points will be denoted by

O = ©® = {xiEGﬂRP"}.
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FIG. 1 B — for v2*; O — for vz
@®— for v+*; O — for y1~; ® — for
0y; X — for @°

Draw straight lines parallel to the coordinate axes 0oz, through the base-points
Z: € o. For simplicity, it will be assumed that the intersection of each of these straight
lines with G consists of just one interval A, = Aq(z:). The ends of this interval
will be termed the boundary base-points in the direction x o (along x4). The set of all
boundary base-points with respect to xq will be written as Yg; Y« = Yo U Ya™, where
Yo*, Yaare the sets of right- and left-hand boundary base-points with respect to xy .
Denote by Y« = vy the set of all boundary base-points y= U Ve The set of all

interior and boundary base-points will be called the mesh &, =& = o Uy (seeFig.1).

3. Chains of base-points. Consider one of the intervals A,. The set of base-points
« € o, lying in this interval, will be called a chain Jy. Denote by Jg the set consisting
of base-points x € Jy and ends of intervals 4. Following [5], denote by 2(*'a) and
{12 the base-points nearest to the base-point x € J to the right and left and belonging
to Jo. The base-points z!s) will be termed the neighbours of x with respect to xq, so

that
Gy GED G )

a—1 o+1

@)
x(+l°‘)—( sereslg—y & y Latl - xpp)

The interior base-points will be classified in detail.

4. Near-boundary base-points. We shall say that = & ® is a near-boundary base-
point with respect to xg if at least one of its neighbours with respect to xq (call it an
xq-neighbour) belongs to ya. Denote by ., the set of near-boundary base-points
with respect to xy. Three types of such base-points are possible:
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(1) if x(—la) = Y;’ x(+la) S, then res m;a;
(2) if x(+1a) = 'Y;' x(-la) = o, then z = w:a;
@) if eyl Yy, then ze el

The set of all near-boundary base-points is the sum of three sets:

)
Wy, —(l)v Umv Umva-

Denote by weq the complement of @y, up to w, so that ® == ©a | Wy, by oy
the set of near-boundary base-points with respect to all directions:

oy=|J Oy,
a=1

and w® the complement of ®y up to w, so that ® = @, U ’. Obviously, w°
consists of the base-points, all the neighbours of which are interior base-points (see Fig. 1).

5. Regular and irregular base-points. Let x be an interior base-point of the mesh
(r € ®), while &'« & @ are its xg-neighbours; either z*'a) & @, or @) < y. It
will be said that:

(a) the base-point £ € o is regular with respect to the direction xq (or xg-regular),
if both the base-points z(*'s) are points of the lattice R,";

(b) the base-point = € 0 is xy-irregular if one or both of 2&'®) or z{~'«) does
not belong to the lattice R,".

Denote by ®q, reg = 0, r the set of xg-regular base-points, by @x, trreg = Wq, 1

the set of xq-irregular base-points, and by i the set of all irregular base-
@ g P o = U 0g,r g

a=1
points (irregular with respect to at least one direction). Here, @, is the complement of
@ir Up 1o w, so that ® = o |J ®:. The base-point illustrated in Fig. 2a is x, -irregular

and x,-regular, in Fig. 2b it is x,- and x, regular, and in Fig. 2c, x,- and x, -irregular.

The base-points of Fig. 2 belong respectively to the sets y,~, 0y,* (Fig. 2a),
wvloa (DV2+ (Flg 2b): and (OV1+» m'h+ (Flg 2C)

6. The mesh steps. Consider the base-points r & @ and z*'«) & §. The
distances between them will be termed the steps of mesh « and denoted by A% If
T € W, is a regular base-point, then i} — zlia¥D __ 00 = L0 GaD)

a a N X X
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(Henceforth, z,%«), a =1, 2,...,p, isalways used to denote the coordinates of a
point of the lattice R,") In this case, the step ha® = ho*(z,) depends on just one
argument I, == Z,{'«). Let T € @q, 1r be an irregular base-point. Its distance from the
adjacent boundary base-point z{*'g} (or z{~*2} ), which is not a point of the lattice
R} will be written as hq,* (Ra.™)

Ry <ol _ U s gl Uah)

i, !
In general, the steps h,.= depend on all the arguments -72(1 1), :tgz), veay xf”) (on all the

indices iy, i3, ..., ip).

FIG. 2 FIG. 3
The steps

. {ig#1) {ig~1)
By = 0.5(z)a™ — za7)
at interior base-points * & ® will also be considered. Obviously, A, depends only on
the coordinate xq (the index iy). At a regular base-point,
fo = 05 (hat + ko).

If x is an irregular base-point, and, for example z{~*®) is not a lattice point, while z¢+'s)
is a regular base-point, then

Fio = 0.5 (@« — 2™y > i, wherefiq. = 0.5 (hf + k).

It may be mentioned that, in [11], fi, at an irregular base-point was in fact the step
... Which in general depends on all the coordinates (see Fig. 3).

To standardize the notation, we put

0t {xs“”} —als, rEonr,
o =

+ .

h’au T e ma, ir »

a

) L0 xfj“””, =
hy ==

Pigar TEZ Wg, ir -
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7. Mesh cells. Each base-point £ € o will be associated with a closed region H(x)
(the cell volume), bounded by the pieces S.* of the hyperplanes passing through the
points £0% =(2}"... 17,0.5(afe  +ale)), ol ..., o)

and orthogonal to the axes oz, (0 =1, 2,...,p).

Henceforth, the same letter will be used to denote a body and its volume, or a
figure and its area, so that

@  A@=][t d=s—]]m
a=1 Poct

Consider the chain of base-points Jg. All the base-points of this chain have identical
. i (i {o i, ) ; .. .
coordinates i ) 2, "E(alfx v xs:;-l e xgp) and distinct coordinates

« ey

xa(ion}! in = iof, i,,,z, -« - Hence the steps Fig, ﬁz, ey (I ﬁa-}-i, P ﬁp are the same
at all x € Jy. This enables every chain Jy to be associated with an area

i+p
(4) Sa =H fiy  {sa = const, for z & J,).

poea

8. Intermediate base-points. It will be convenient later if certain mesh functions are
referred to base-points of the basic mesh &, and others, such as the first difference
“derivatives” Yx, and Y= (see Paragraph 3), to intermediate points z=*%e) = (0.5 (x -
a9} x, 2 & @, The set of intermediate base-points with respect to the direction
Za, 2" G will be written as @,,. and the set of intermediate base-pointszi*"’w) & o,
lying on a straight line parallel to the oxg axis and passing through the base-point
20 = @, will be termed the chain Jg. The base-points 2£°°®) & G, nearest to the
boundary base-points z{='®) & yq,will be termed near-boundary intermediate base-points.
By anology with Paragraph 4, corresponding notation will be used for the sets of near-
boundary intermediate base-points: @,,*, @, =, ©y = @, . U, L ®, s the
complement of @y, up to &, (Bo = B+, U ). Every base-point z(="5% = @,
will be associated with a volume

H. * = s h>.

Denote by h the maximum step with respect to the spatial variables, and let us
agree to use the same letter M to denote all constants independent of A

It will be assumed that every base-point & o has at least one neighbour (with
respect to some direction § € . This can always be arranged for if the steps A,= of
the lattice R, are small enough. Denote by K'g (x) the set of xg-neighbours of
x € w belonging to w:
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o ( ) z(+1¢) : x(-la)’ Z E O,
KalZ) =
#E ) re oy,

We put . P —_—
K'(x)=| K. (z), & K'(2).

a=1i

3. Mesh functions and difference operators

Henceforth, only base-points of the basic mesh & and of intermediate meshes
B, a == 1,2,...,p. will be considered. Let z, z*'a’ be base-points of @, and
Z£%%)  base-points of an intermediate mesh @,. Let y = y(z), z= & and
v (Z'), ¥’ = ®,, be mesh functions, specified respectively in the basic mesh w and
the intermediate meshes &,. The introduction of intermediate mesh functions makes
the derivation of the finite-difference schemes clearer and less abstract, and facilitates
their investigation. We put

et = y (') p ==y ket g =y — ¥ R

The function Ve =to® = y» *(va™ = ¥y, ~), representing the difference analogue of
the derivative du / dx,, will be referred to the intermediate base-points z(*°®) & @,

The next task is to write the finite-difference approximation for the elliptic

operator L in the mesh w. As a preliminary, consider the one-dimensional analogue of
problem (1):

Lu= (ku') = —f(x), 0<z<l u(0)=w, u(l)=nv.
Let o =o0olYy, o= {z,i=1,2 ..., N—1}, Tipg > T
Y= {Ovl}°

The integro-interpolation method will be used to obtain the difference scheme. The
equation Lu = — f is integrated with respect to x from 2{ ¥ =0. 5 (z; + z;,) to
2108 = 0.5 (xi31 + Z3)
x(+0.5)
w—w” " ,
(5) — % T n S fdz, where w* = ku'|,_ ton-
x(-0.5)
Replace wt by the difference analogue
W= = a*y.*,
where the mesh function at approximates the coefficient k(x) at intermediate points
z¥°9) to the second order:

@t = k(z=°9 + O((h%)?).
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Obviously, W+ is an intermediate mesh function. Replace the right-hand side of (5) by a
mesh function ¢ (e.g., put (+95)
¢=1@), o=(1/8) [ fda
£=039)
etc., see [4, 5]). As a result, we arrive at the difference equation
Ay=—9¢ for €0,
where

1 _
Ay = (ayz); =5 (a*ys — a7yz).

The notation here is @, = (@O (2*+*)) — D (2(-°M)) [ A, where ® is any mesh
function defined in @ (with z.+"% = 0.5(zix + 2.), A = 0.5(ziss — 2i1)).

The procedure is similar in the p-dimensional case. First consider base-points
z € @, the volumes H corresponding to which belong to G. Integrating (1) over the
volume H & G, containing such a base-point x, we get the identity

p
1
(F) Z(S—gwadsa)A +'11T8de=0’
a=1 \ % g xq H
where v )
ds, = Hdz;, dH = H dx,,
pta a=1

and w, = k,0u / dg, is the xoflux. The coefficient kq is associated with a mesh
function ag such that

(7) ag* = ko (z@79) + O((hat)®), aut = 1> 0.

The mean flux (1/5,) [, Wods. through the area sy is approximated by the finite-
difference expression

Wt = Wa(s0%) = 0ty 2,

while the left-hand side of (6) is replaced by
P

2 (Wa)z where (Wa)y = (We— W)k
a==1
The term (1 / H) fufdH in (6) is replaced approximately by a mesh function

¢ (e.g., ¢ = f{x)). It is then required that the following approximation condition be
satisfied:

(8) ¢ —F(2) = g (M3, + fia)y  pd =0 ((hD)?),  fu=O(R2).

As a result, the following operator A representing the difference analogue of L is
obtained:
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D
Ay = 2 Auy,
a==1
(+14) (~14)
1 yr =y -y—y )
= ~ [ a - aa 1)
where Ay = (aay ”a) s Fig < * hi hZ

B = 0.5(zist0— 2 0+7Y).

The operator A will be defined by the same expression at the remaining mesh base-
points. We thus arrive at the difference equation

Ay = —o(2), z = o.

This scheme is the same as the well-known scheme of [4] except at near-boundary
irregular base-points, where the step fia has a different meaning, e.g., i, = fq, =
0.5 (ho* + hs.), if the base-point 2(~') is not a point of the lattice R

4. Statement of the difference problem
and error of the approximation

The initial problem (1) is associated with the following difference problem: to find
the mesh function y(x) defined in ¢, and satisfying the conditions
(9 Ay=—¢() for z€0, y=v(r) for TEY.
Here, A is the operator defined above, while the mesh functions a,*, a = 1,2,...,p,
and ¢ satisfy the approximation conditions (7) and (8).

The accuracy of the difference scheme (9) is determined by the error z =y — u,
where u is the solution of the initial problem and y is the solution of problem (9).
Substituting y =z + 4 in (9), the problem
(10) Az = —(z) for 20, z2=0 for TEY,

is obtained for z, where ¢ = Au -+ @ is the approximation error of the scheme (9).
Using Taylor’s formula under the above smoothness conditions and conditions (8), the
error Y at regular base-points can be written as

P
“p = 2 ‘P‘ay ‘Fa = (X\‘l) 360,, + 'lpa, X &= Wy,

where a=1
+ - du (KDY saf u  0° ou
a =t — k) s+ 5 —+— (b 5—
X [( )axa + 8 K 3 A +6$§< Oz, ))]x=x(_’c0.5a)+
+u5, Yo =pa+ O(h2).
From (7) and (8),

Xai = 0((hai)2)7 Yo = O(haz) for I &€ Wr.
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At irregular base-points (z & ®y:) the approximation error is obviously O(1).

For, since
- Bae Wt —Wo g
{W“)?ca = (W: - Wa)/ko: = ——'k—' == ﬁ--Lau -+
+ O (h,) = 0(1),
we have
X hac 2 ﬁut - ha
== —_—L, b)) = i [ .
Au ZJ i Lot + 0 () Lut ), == Laa+ O(h
whence

Au—La=0(1), v=0(1) for <= w.

For purposes of standardization the error will be written as

Y= Z ¥a, ‘Fa=(Xa)3¢a‘f“l’a+‘|’;»
(1)
A =Ya @) = O((hE)), Y= O(RY),
._{ 0(), z&Soq i
\Z 0, TE Oy g

In a uniform lattice R,", when, whatever the direction «
Biq = 0.5 (2™ — 2%y = consty, %o (2" ) =0,
The solution of problem (10), (11) will be sought in the form
(12) Z ==1 + U + Us,

where the functionsv,, k =1, 2, 3, are the solutions of the problem

Avk:: —?k for z& W, vk=0 for xEE'}'s
(13)

P
o=Vt Va1=0dz, Vur=%o Vas=bu
a=1

kE=1.2,3.

Asymptotic expressions for the functions ¥a (2™°?®), Pa, Y’ in the class of smooth
functions u(x), ka(x), f(x) are given by (11).
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2. A priori estimates

1. The maximum principle and majorant functions.
Auxiliary propositions

Estimates for the solution of a finite-difference elliptic equation are obtained by
using a method, based on the maximum principle, for constructing majorant functions
(see eg., [5,7].

Estimates based on the maximum principle prove effective for investigating the
accuracy of a scheme when no approximation is available at irregular near-boundary
base-points.

Let us recall some well-known results. The difference equation is L,y = —;
the boundary condition v|,==v (Lp is a linear operator) will be written as

(14) A@v(@)= X B o) +F(z) for 0,
teg’

where K'(x) is the set of base-points defined in Para. 2 of Section 1.

Lemma 1
Let
A@) >0, B(zE>0, A@— 2 B(zt)=D()>0,
=Y
(15) D(z) >0, F@)=F(x) for z of",

D(x) =0, F(z)=0for z€ 0 \0,
where w* is a set of base-points £ & w. Then, the solution of problem (14) satisfies
(4, 5]
(16) max|v|<m2x|F'(x)/D(x)|.

Lemma 1 will be used to obtain a bound for the function v3 of (13). The
expressions for A, B, D, and F in the present case are

Az)= iA,(x), Aa(x)=31—(;‘:: + Z:)

a=1

D@ =Y Da(@),

a=i
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07 xema’

D.(z) = a¥/(hEh,), z=of,  Bu(z, 29y = afi(hih,)
A, (z), xe(’)gav

(17)
P
2 B@be® =2 2 RB.(ab)vd)
g =l e o
K (2) = Q 1 Ka(2).

Note the following point. Fixing the direction xq, denote by Qu(Q.) the sets of all
chains Jy (Jo) for the direction 0%, @ = 1,2, . - +» P- Since any interior base-point
z;(z+"°=)) belongs to some chain J, (2« & J,) for the direction oxy, we have

o=y i=U Jag=..=UJp G=U Jo a=12,..,p
QF!

[ Qs @y
Hence
2Hy=ZZHy7 ZHGWQ”—'-’ZZHQLW&, a=1,2,...,p.
© Q Jax za 6& 71
Here, H == sifi; = 8h, = ... = $,h,, H,=H*=sh*, a=1,2,...,p.
Since, whatever the base-point of the given chain Jy (Ju), the area sa = II Ay

Bra

is independent of the coordinate xg, and depends solely on the coordinates 2z, &s, 2,4,
Zass, - - - » p, the last equations yield

Lemma 2

~

Qu Ja @y Qq Ja

?Hy——-Zsm(Z yhg), ZHGW1=2 sa(z W;ha}.

2. Spaces of mesh functions

Denote by 5% the space of mesh functions defined in the mesh w, with scalar
product

(y,2)= Z yzH andnom |lyll=7V(y,y), y,23.

We shall also consider the spaces s, @ = 1,2,..., P, of mesh functions defined in
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meshes &, with the scalar products

(v, w)e = ) vwH, # and norms 2] = V() 0)as v,weH,.

Gy
The following notation will be used for sums along the chains J and T with
fixed zp (B 5= a):
WD, =20y%  |¥l= V@
Jo

(18)
(0, w)y, = ,2 haow, ol = V(@ 0)5 .

Finally, we put
llylle = max|y(z)|.

3. The difference operators

Denote by 4 the operator mapping space 76 into 6, and representing the sum of
p operators Ay »
(19) A= ZAG.
=1

Every operator Ay likewise maps ¥ into H and is defined thus:

Aoz, — Qa¥ays T Wy,
= FuT _ gkt o+
(20) Aay = —— hi X3+ a:yxa — 4y y/ha L T = Wy,

— (2l + aaihl)y,  zEo,
Obviousty, on functions vanishing on 7.
Ay = —Aqy, y‘v"""' 0.
Further, let Ty be difference operators, mapping € into J8,; T Operators
mapping #. into J; and Sy operators mapping M, into H,o=1,2,...,p.
+ (£0.5,) -~
Yx,» Zz ¢ = Wy,
: : +0.5,) a
(Tap)t = (Ta) =% = 1§ _ ~
FykE, 2 ek,
y e e%. Tay 6 %q;
TW=—w; for zc0, wEH., TwSH;
(SGW):’: = (Suw)(i’o"r’a) = @ FwE’%)  tor 2 e Og,

w e Hy, Sew &= ..
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By definition of the operators Ty, Sq, Ta”, Aa it follows that
(21) Aa = Ta*SaTa-

4. Properties of the difference operators
Lemma 3

The difference operators Ty and T*y are conjugate to one another:

(22) (To'w, y) = (0, TeY)ar YyEH, weH..
Using Green’s finite-difference formulae [5], it is easily shown that
(23) (v, Taw)y , = 2 y (Taw) by = 2w (Tag) b = (0, T
Ju Ty

Expression (22) is obtained by multiplying the last equation of (23) by sy, summing
over all chains Q,(J.) and recalling (18).

Lemma 4

Operators Sy, are self-conjugate and positive-definite:
(24) (Sew, v)e = (W, Sul)o, (Saw, w)o = cillwll’.

The lemma follows from the form of the operator Sy and the inequality (7). Some
further notation is needed: we write the operator B == B\, if (BY, y) == (B.y, ¥) for
all y & J6; for instance, B = ¢, F; > 0, E where E is the unit operator, if (By, y)
= c,llyll*, where ¢, is a positive constant, and y is any mesh function defined in c.

Lemma 5

The operators 44, @ = 1, 2,..., p, are self-conjugate and positive-definite:
A, = A, =0E, A=A" =38k,
where § == 4c, / 3D*, § = &p, and D is the diameter of the region G.
The fact that Aq and A are self-conjugate follows from (19), (21), and Lemmas
3 and 4. To prove that Aq is positive-definite, write the identity

(052

y@)= 2 Ty

x'eja
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where the summation is over x' € 7(-, to &’ == 2(-°%@) Squaring this equation and
applying the Cauchy inequality to the right-hand side, then multiplying by H(x) and
summing over all base-points z & @, we get

(25) lyll* < 1 Taylla® 3D* / 4.
Using (21) and (24),
(4ay, y) = (Selay, Tay)a = cillTaylla’.
From (25) and this last inequality,

4e,
2
(e, ¥) = -1 3D yl.
From this and (19),
. 4o
(26) (Ay, y) = sliyll?, =—p.

3D?
We introduce the norm in W,'(®):

lyllw, = (Ay, y) +lyll%,

A=2 AQ_, Aasz'Tq.

On functions y vanishing on v, the norm becomes

liylizwi=5:2 Hay?ca —i—EHy‘.
Queel .;" P

8. A priori estimates of the n-the rank

where

Consider the equation

P P
(27) Av = 0, where =,Z 0., A= Z 4,

amed a=i

This will be rewritten as
-

(28) Agv = B, + F, vhere Fy — — Z(Apu — 8).

Obviously,

(29) ZF = 0.
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The further procedure is the same as in [10]. Introduce functions v(® = v, vV = p?,.
, V(™M = p?" and wrlte the equation for v*" (see [10])

(30) v(”)+—2 27 ="=1p¥n=n 4t [t * ((Tat®) +050)? 4

+ R (T®) )] = 20 (Fa+82),  m=2—1.
Multiply this equation by £, and sum over x € Jy; we get
(31) 1770 = 2" [ (07, 8e) ; ,+ (v, Fa) ],

where

(32) Iin-i) —_ Z(AC,,U(“—‘), v(n-—i))JQ +

n-2 )
+ 3 o (5 et ((F®) ) hamaa= ((Tao®)7)?)
3 ..

Here, (T ,v™M)* = ( T,v™) (+9.50)

Lemma 6
(33) v < M S

where M, = D [ 2¢, (see Lemma 1* of [10]).

1. First a priori estimate. Consider the first term on the right-hand side of (31).
Using Lemma 6.

| 2" (0", Ba)r, | <<2"(1, | 0a )y, max | o' | <
a
< 2"(1, |0a]) 1, (max | o™ "W <20 (A, [6g]) s, (MIFOPY2",
Ja

v, = 2n — 1, v(n) o vz’n'

For the right-hand side of the last inequality:
| z,|% 1 1
(84) !.'K;.'Eg;g ‘ !{ + l 2! y “"‘+'_‘='L
g q- G q:

where

g, = 2", g = 1/(1 —1/27), z,=2"(1, |04 l)Ja(2Z|/[o/q2)1/q’ ,
xy = (I} ("‘1) /2) ’Qz

so that finally:

(35) 12" (0", B) s, | << VI 4 (1, [6a ), (2M (20 — 1))F 2.
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From (31) and (35):
IS0 < (4, B ) (2 (27 — 1) 2" (0", Fo) g

this equation is multiplied by sq and summed over all chains Jq.
On strengthening the inequality, we get

(36) Y sal§ < 2M (20 — DM, max (L, | 8a])), +
Qa Qy
—%Z 5o (2'0'n, Fa) g M, = masta.
Qu ¢ Qq

Applying Lemma 2, the second term on the right-hand side of (36) can be rewritten as

N sa (@0 P, = ) 2onFoH.

Qq
Sum (36) over a from 1 to p. Recalling (29), we get
Rk {n-1) n 2™ %
(37) — sl V<L [2M, (2" — 1)) T M max max (1, | 0q])7 .
2 ;%‘ @ Qq

From (32) and the inequalities of Lemmas 2 and 5,

P P
(38) ;IZQ; Y 2;% 8q (A", U(n-n)Ju —
=2 }i (A, 20y = 2(A4pY ) > 28| Y2
o=
From (37) and (38)lwith n =1, we obtain
S 2M M,

(39) |vi<< M maxmax (1, | 6,))J . M, = l/
[+ Ka
Notice (as in [11] that

(40) o= Y @yl = DI = R

] w
where

H, = min H(x).

Combining inequalities (37), (38) and (40), and extracting the 27-th root from the

result, we get "
vl < M2 (M H )™ maxmax (1, | 6al)y
43 Yo
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where M; = 2M,, M, = &/ M,. Hence

Lemma 7
-

The solution of the problem Av = Z 0, satisfies

a=1

(41) [v o < M2"H¥" max max (1, | 8 ) _,
¢ Qq

where M is a constant independent of n and A.

2. Second a priori estimate. A bound will be obtained for the solution of the
problem

P
(42) Av = T.'ga.

Using Lemma 3 (Eq. (23)), we have
(43) 2" (U""’ Tu.‘go.)Ja == 2" ‘Tavv", ga);a-
Substituting for Tav"» in terms of Tov®™ and v (see [10], Section 2, (19)),

n—1
(44) (Tavvn)(io. ) 2 (v(ilu))vk pinvke (Tav(k))(:to.5a)
k=0

in the right-hand side of (43), we get

N=—1
n v n (+0-5g) | X (vo=vpiq)/e (k)
(45) 2 I(Tavn,ga)jr |<<2 hu+|ga “ v e R (T )Y

% | (U(+1a))vk v(vn—vku_)l‘ll .

Using Lemma 2, the following inequalities are obtained for the last two factors in
the right-hand side of (45):
/

. —_-y N V=V 4 n
(46) max v™*97 max p*n 7 = (max )RRV
Ja Ja Ja

< (M LGy
Using the Cauchy inequality, together with (7) and expression (32) for 17! we get

n—1
Z (+0.5¢) v =y n—k= — k=
(47) h§| gu+ a { ; : [v( n—k+102 Va;I(Tuv(k))(-t»o.aa)l 2( k 1)/2]/1/'“;2(1» k 1)/s<
Ta =0
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1 e k1 pnVk s
< h 2" ) g [(Ta™®)* a) X
VC1 (Z aga) {kE_o ( aqt [(Tov®)*] JG}
Ja
n—1
Ys
x (Y, 127 < lgaly VIE.
(\mz:'o V Ve
Combining (45)—(47),we obtain
noov . ) 2" (n-1)\1-1/2"
(48) | 27 (v'n, Tuga)1a|<m"ga"fa (MoIg ™"y %,
Finally, to obtain a bound for the right-hand side of (48), we use (34) after putting
2"\ gals

49 =2" gu=1/1=1/2"), =z, = ———"% (2M /q,}'®,
(49) q gz /( /2%), % V(CIMO) (2Mo/q,)

Ly = %I&n-l)/z-
The final result is

v, . n— : M M n ™
(30) | 2" (", To'8a) g | < MalG ™ + 2 l/c—"[ZI/T"- (2 —1)] X
1 1

X |ga -,

Repeating the arguments used when deriving the first a priori estimate (see (50) and
(35)), it can be seen that

(51) fv)<< Mmax max ||g¢l [|~

and
Lemma 8

The solution of problem (42) satisfies

(52) o], << M2"H 12" ax max | ga ] -
» a ,6“‘ J a
So far, n has been arbitrary. Now take an n with the following dependence on H,:
(52%) 0.51og. Vo / H, < 2" < log. V, / H.,

where ¥V, is the volume of G. From this,
22H,~ "< MInV,/H,.

Using this in conjunction with (41) and (52), we arrive at
Lemma 9

The solutions of problems (27) and (42) satisfy
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(53) {vl.<MIn(Vy/H,)max man] (1, |8a]) s s
<M

(54) I e

M1n (Vo/H ) max wax|gq I5,-
a Q(l

6. A priori estimates in the norm of W,' (w)

A priori estimates of the solutions of problems (27) and (42) will be obtained in
the mesh norm of Wy! (®).From paragraph 4 of Section 2,

(Av, v)—-L‘“vam _ZZHGU% for Vlp=0,

—~

=1 e=1

where A = ZA,,,, A, = Ty*To. We have
a=t
(55) A= cd, A = OE,
whered == 4p / 3D? Dis the diameter of the region G, and 0 << ¢, << a,F, a=1,2,
.,p. Put e =208/(1+9), then (55) gives (see also Paragraph 4 of Section 2)

(55")  (Av,v) = e(Av,v)+ (1 —e)blivl* = 5 ol w.

Consider the solution of problem (27). Form the scalar product of (27) with v. Applying
the generalized Cauchy inequality:(Av, w)* <<(A4v, v)X(Aw, w),if A=A =0
(see [12]) and the inequalities (55), we get

c:i(Av, v) << (Av, v) = (v,0) = (Av, 47'0) <

< V[(4v,v) (A~'8,0)].

From this and (55), recalling that ||A~'}} <C 1/ §, we get
Lemma 10

The solution of problem (27) satisfies

1+6
YCED g,
cd
Consider the solution of problem (42). Form the scalar product of (42) with ».
Recalling (55) and (22), we have

lollw,: <

ci(Av,v) << (Ao, v) = 2 (8ay Tav) e << (5: Hgall,,z) k Y(4v, v).

From this and (55) we have .
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Lemma 11

The solution of (42) satisfies

Iolles < — (252 (Z )"

Finally, consider the solution of the problem

Av=1v"*
with the condition that the right-hand side y'* vanishes at all regular mesh base-points:
Y* =0 for x € w;. To obtain a bound for the solution, Lemma 1 is used, after putting

®° = wi, F* = " while D is given by (17). Since D (z) = C, / h*(see (17)), we
obtain from (11):

“U“c =< hz”‘b‘”c / Cy
and accordingly,
ol < R*YVellg*lic / cu.

To obtain a bound for the solution of the problem Av = ¥* 1n the norm of W,' (),
the problem is multiplied scalarly by v and the inequality obtained above for || v ¢
is used, in conjunction with (55). We get

¢ (Av, v) < (4Av,v) = (v, 0*) < RIp*llc (1, [9*]) /e <
< hzll\b*llczZ‘ Hic, < MR||y*]| 2

.
ir

This, with (55"), yields

Lemma 12

-

The solutions of the problem Av = ¢", }* = 0 for z & ) satisfies

"
lolle < MA2IIG*Tle, ol << MBI e,
lollw, < ME | llc.

The next topics to be discussed are the convergence and accuracy of the solution
of the initial difference problem in the mesh norms of € (w), L:(®), W, ().

3. Order of accuracy of the difference schemes
1. Order of accuracy in the class of smooth coefficients

Problems (9), (10) and (13) (k = 1, 2, 3) will be written in new notation.
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Put

(56) O=9¢+ 2\7%

=1
where
01 x E (1)0.9

a;fv (x(tla))/lz§, = m;,:'-u,

agy (@) kg + agv (T h;, xS 0y,
Problems (9), (10) and (13) then become respectively

- 1
'Va=?i:

(37) Ay = @, T E o,
(58) Az=—y, &0,
(59) Av,=~¥,, zeo, k=123

Here, Wy, k =1, 2, 3, are given by (11) and (13), and the error
z =y—u=v(+v2+v3.
To obtain bounds for the functions v, &k = 1, 2, 3,Lemmas 9—11 are used, together

with the bounds (16), (39) and (51).

We will estimate v;. From (11), we have
(60) max max [ye[J < MA?,  h = hmax.
¢ Gy

Lemmas 9 and 11 are now used after putting g, = y.. From (54), (51), (60) and the
inequality of Lemma 11 we have

(61) ol << Ma*In (Vo[ H,), lodlw, << MR, o]l << MR

To obtain a bound for v,, Lemmas 9 and 10 are used, after putting 8, = ..
From (11),

(62) max max (1, | $q )], << Mh2.
o Q

a

From (39), (53), (62) and the inequality of Lemma 10 we obtain

(6?') ”U:”c < J[}.'" ln (VO/H:()» “U?.” Wll < ths “UZH < Mhz-

Finally, consider v5. The inequalities of Lemma 12 are used. Since
b4
=Y =0 for z=on  Iwle=0(1),
a=t

these inequalities give
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(64) loslle < MR, lvsllwy < MB, ol << MB
From (61), (63), (64), and (12),
(65) lzlle < M*In(Vo/H.),  lizllwy < MR, 2l << MB

Theorem 1

The error z =y — u in an arbitrary non-uniform mesh satisfies
(66) ly — ullc < MR®In(V,/H.).

Theorem 2

The solution of the difference scheme (9) is convergent in the mesh norms of L,
(o) and W.,'(.») in an arbitrary non-uniform mesh, and

{67) ly —ull < MR, |y — ullwy << MR-,

Theorem 3

Let the lattice R," be uniform with respect to each direction 2o, @ =1, 2,..., p.
Then the difference scheme (9) is convergent in the mesh norms of C(w®),L:(®) and
w,' (w)and

ly—ulle << M|E|*In (Vo[ H), ly—ul <<M|h]* lly—ulw, << M[h|>,

where
|h|? = Zfz H =ﬁ ha.

ax=i aa=q
Consider a sequence of meshes, non-uniform (as 4 — 0 ) and such that
(68) H, = m#a*, m, = const > 0, »x = const > 0.
Inequalities (65) and (67), and the inequality V, <C D? lead to

Theorem 4

With condition (68), the solution of the difference problem (9) is convergent
to the solution of the initial problem in the mesh norm of C(w). We have

(69) ly— ulle << Mh*In (D [ h).
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Notes. 1. All our results remain true for the problem with operators
L3 = Ly — qa(2)E, ga(z) =0, a=12,...,p.
In this case, the operator

Ae? = Ao+ qoE.

has to be taken as Agy.

2. Let the boundary I" be such that a sequence of meshes R,%, (as A = 0) can
be constructed, matched to the boundary I in the sense that y & R,», Then, $* = 0,
wi = & and

(70) iy —ullwy < Mh2

2. Convergence of the scheme in the class of
discontinuous coefficients

Let the coefficients &, (z), a = 1,2, ..., p,and the function f{x), have discon-
tinuities on a finite number of non-intersecting surfaces =,, s=1,2,..., K. The
problem may then be stated as follows: to find the function ¥ = u(x), continuous in the
closed region G , and satisfying the equation and boundary condition

(71) Lu= —f(x) for re6\(|Z)=0,

n=v(z) for z=1T, =

while on the surfaces X, s == 1, 2, ..., K, it satisfies the conjugation conditions
Y4
9 VAN
(72) [uly =0, [Zk u cos(ns,xa):{ -0, s=1,2,... K.
s ,,,a=1' 6:1:(1 zs

Here, [v(z)]:, = v*(2) — v (z) denotes the differerce between the limits of
p(x) on opposite sides of Zg, while ng is the normal to Zs.

It will be assumed that problem (71) — (72) has a solution, i.e., there exists
n=u(z) € QNG), k. = Q)NG),f(x) € QM(G) (Q™(G) is the class of

functions having piecewise smooth n-th derivatives in G ). This problem was investigated
in detail in [13, 16].

Some further classification of base-points is required. It will be said that a base-
point * & oy, if the corresponding volume H(x) intersects at least one of the surfaces
Zs. Denote by wp the complement of wy up to w, so that

o = 0z {J we.

It will be said that an intermediate base-point x(*°%) & ®;, 4, if the corresponding
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volume H,* = H, (2" #)intersects at least one of the surfaces Zg

Denote by ®q, u, the complement of &z, cup to &, so that

Do = (T)}:,oc U G)Q,a.
The convergence of homogeneous schemes of the type (9) will be examined. Let the

coefficients ao*, a=1,2,..., p, satisfy the approximation condition (7) at the base-
points z(E"%e) & &, ,. At base-points x(£°°2) &= &y, , it will only be required that

0<e < at
For instance, we put
(73) ot = 0.5 (kot (2°70) 4 ko= (zE)) for 2@ & B
(an* = ko (x**) if k,* = k.=, the surfaces =5 do not pass through base-points
p g po
ri*’sa)) At base-points r = @, the function ¢ == @(z) is assumed to satisfy

the approximation condition (8), while when x & wz it is merely assumed to be
bounded by a constant independent of the mesh w. For instance, it can be assumed that

everywhere
(74) ¢=05(f"+17) for v o.
The initial problem (71), (72) will be associated with the difference problem
(75) Ay=0 forr=o,
where 4 and ® are given by (19), (20), and (56). The problem

(76) Az= Y for z € v,

is obtained for the error z = y — u, where ¥ is the approximation error:
an V= —-Adu+®=Au+¢q.

1. Convergence in the mesh norm of W,'(w). While an arbitrary disposition of
the surfaces Zg, s = 1, 2, . . . , K, relative to the mesh w base-points will be assumed,
the treatment will be kept reasonably simple by confining the proof of the convergence
of scheme (75) to regions G composed of p-dimensional parallelepipeds with boundaries
parallel to the coordinate planes (stepped regions).

To transform the expression (77) for the approximation error, the identity (6)
is subtracted from (77), yielding

(78) ZP‘X(LQ -+ 6,
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where

AE=afut — 1 S w(;-dsf, =g 1«3 fad.

¢ sy .y

Obviously, under our assumptions regarding the coefficients a.*, and ¢.
O(h), =)= By, O(h), Z&E wg,
a9 = { g =0 °
o{1), =0 E Bz g, o(1), T < ws.

To obtain a bound for the solution of problem (76) — (79), the function z is
written as

(80) z=uvi 1 vy
where v; and v, are the solutions of the problems
(81) Av, = —0 for z € o,
£
(82) Av, = — ZTa*xa for zTEo.
a=1

Lemmas 10 and 11 are used to find bounds for v, and v,, Recalling (80), we obtain

(83) lzlwy <M ||e||+2nxauu).
From (79), -
(84) 1ol < Myh,  lyalle << My

From (83) and (84) we obtain
Theorem 5

The scheme (75) in the class of discontinuous coefficients is convergent to the
solution of problem (71), (72). We have
(85) Hy — u”w;‘ = MV}L-

Notice that, though the bound (85) is extremely crude, it proves the convergence of
homogeneous schemes, the coefficients of which can be evaluated from very simple
expressions, e.g.,

@, = 0.5 (ky* (2E50) 4 k= (205w) ),
¢=05(/"(z) + [ (x)).

In the case of an arbitrary region also, a bound with the accuracy of (85) holds
for the scheme (75) in the class of discontinuous coefficients.
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2. On uniform convergence. When discussing whether the scheme (75) is uniformly
convergent in the class of discontinuous coefficients, the treatment will be confined to
one particular case. It will not be assumed that G is a stepped region.

£,

©

P I

/

L FIG. 4

5

Consider the problem (71), (72) with p = 2, with the following assumptions:
(a) the coefficients ko, o= 1, 2, and f have just one line of discontinuity Z;,

(b) the line X, is such that a sequence of meshes w (with A - 0) can be constructed,
matched to the line X, in the following sense: any line Cy, parallel to a coordinate axis
0Xg, @ = 1, 2, and passing through a base-point x € w, cuts £; only at base-points of w,

(c) every straight line Cy cuts the curve £, at just one point (see Fig. 4).

It should be said at once that assumptions (a)and(c) are made merely in order to
simplify the treatment.

The same assumptions as in paragraph 1 are made regarding the existence and
smoothness of the solution and coefficients of the problem. The base-points r & & 1 £,
divide the curve X, into arcs of lengths 04, G, ..., On. The mesh is chosen in such a
way that

(86) |Gics — o:| << Mh max o

The convergence of the scheme discussed below will be considered on the basis of a
sequence of meshes ¢ matched with ¥, and satisfying condition (86).

Take the scheme (75) in which the coefficients a.” and the function ¢ are given
by the elementary expressions
(87) Aot = ko (&%), @ =0.5(f"(z) 4 f~(2)).

The error z = y — u satisfies (76) with right-hand side  given by (77). Using a Taylor
expansion, the approximation error Y can be written as
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2
(88) "p =Z lP'a, IIIG = Ta*xa + ‘lp(l + "pa.y

a=1

where, with condition (86),

(89) Yo = {O(ﬁaZ)’ e

0(hs), r e 3,

0 I s o
) : Yyt = O((hyt)?).
e {0(1), z=on * ((~e®)")

As before, the error z is written as a sum
(90) z2=1uv,+ v. 4+ v
where v, is the solution of problem (76) with right-hand side — 2 (Xa)" = 2 To'Ya,

a=1
v, is the solution with right-hand side Z Yo, and v; is the solution with rlght-
4 a=1
hand side ¢* = Z‘ Y.*. Bounds can be found for v, v;and v; by means of
a=1

Lemmas 9 -- 12 and (39) and (51). From (89), (51), (39), (53),(54) and the inequalities
of Lemmas 10 and 11,

lolle << MA*In(Vo/ H,), loall < MA?,
”Uh”Wzl < _)l,[hz’ k = 11 2-

As regards v;, the following is obtained from (89) and the inequalities of Lemma 12,
as in the case of continuous coefficients:

lvalle << Mb2, llosll < MR {vsllwy << MR

Note. If condition (86) is not satisfied, then in (89) Yo = O (1) for z = 3, and the
following bounds are obtained for v, :

lvylle < MhIn (Vo /H,), ol < Mh

Combining the bounds for v, v, and v, and recalling (90), we arrive at
Theorem 6

The solution of problem (75), (87) is convergent on a sequence of meshes w,
matched to the curve Z; on which the problem coefficients are discontinuous, and
satisfying conditions(a),(b)and (c), to the solution of problem (71), (72). When condition
(86) is satisfied,
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ly—ulle < MR*In (Vo [ H,), lly—ul << Mp?,
ly — ullw, << MA,
while when conditions (86) and (68) are satisfied,
ly — ulle < ME*In (D] ).
Notes. 1. Let the mesh & be matched with the boundaries Z4...Z« of discontin-
uvities in the case of p 2 2 dimensions. Then,
ly—ulle < Mhln (Vo /H ), Ny—ullwy << Mb,
while when condition (68) is satisfied,
ly—ullc << Mhln (D/h).
2. If the mesh @ is not matched with the line (or surface, if p > 2) of discontinuity,

it is possible to show in a number of particular cases, with additional conditions on the
mesh steps and their ratios, that

ly—ullc < MyhIn (Vo/H ),
while if (68) is satisfied,
ly—ulle << MYh1n (D] h).
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