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HOMOGENEOUS difference schemes in non-uniform mashes are considered for an 

elliptic equation with variable coefficients in regions of a general type and with boundary 
conditions of the first kind. 

Considerable attention has been paid, see e.g., [l-l 1 ] , to finite-difference schemes 
for elliptic equations, and notably Poisson’s equation. 

The present paper considers homogeneous difference schemes in non-uniform 
meshes for an elliptic equation with variable coefficients and regions of a general type 
with boundary conditions of the first kind. The schemes are shown to be uniformly 
convergent at a rate 0 ( h2 In ( V,/U,) ) w h ere Ve is the volume of the considered region 
G, h is the maximum step in the spatial lattice Nlth: 

%X(X+) is the mean step at the base-point xi of the lattice Rph in the direction of the 
oxoaxis(a= 1, 2,..., p, p is the number of dimensions), and H, is the minimum 
volume of a cell, 

The accuracy to which the initial problem is solved is determined by the errors 
occurring both at the base-points of the boundary zone, and at strictly interior base- 
points. The error introduced by approximation of the equation at base-points of the 
boundary zone may be estimated either by means of the max~um principle (as e.g., 
in [5] ), or by means of a majorant function 171. For a uniform estimate of the error 
occurring at strictly interior base-points, both the majorant function method 16, 7] 

*Zh. vychisl. Mat mat. Fiz. 11, 2, 385-410, 1971. 
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and the Green’s function method [l] are used. 

Schemes of a general type were considered on a uniform mesh for an elliptic 

equation with variable, reasonably smooth coefficients, in [l] , and estimates of the 

convergence rate in the mesh norm of C were obtained for them by means of the Green’s 

function. It was then assumed that the region boundary is a suface or curve which is as 

smooth as desired. The case of a piecewise-smooth boundary containing conical points 

required special investigation [7] , and it proved necessary to utilize quasi-uniform meshes. 

The aim of the present paper is to construct and examine homogeneous difference 

schemes, approximating the Dirichlet problem for the elliptic equation with variable 

coefficients 

3 

Lu = 
c 

a 

G 
a=, 

l&(x) zci= 

in non-uniform meshes. 

( kc+)- q(s)u = -f(s), 
a 

const > 0, Q(Z) > 0, 5 = (Sl, x2,. . . , XI,), 

It is natural to require that the self-conjugate and negativedefinite operator L 

(in the case of a homogeneous boundary condition) be approximated by a finite- 

difference operator A, retaining the same properties in the space of mesh functions. 

Incidentally, the operator A, corresponding to the “cross” scheme, as used in [2, 51, is 

not in general self-conjugate in the case of an arbitrary region, nor is it negative-definite: 

a point that was overlooked in [ll] 

A “cross” scheme with a self-conjugate negativedefinite operator A in an arbitrary 

region and non-uniform is devised in the present paper. The scheme is shown to be 

uniformly convergent for the case of continuous (and reasonably smooth) coefficients 

and a reasonably smooth solution of the initial problem in a sequence of non-uniform 

meshes, at a rate O(hZ In (V, / H,) ). In the class of discontinuous coefficients, the 

scheme is shown to be uniformly convergent at the same rate in one particular case. 

Aspects of convergence in the mesh norms of LZ and WZ1 are also discussed. 

The method of energy inequalities of the n-th rank developed in [lo] proved 

suitable for uniform estimation of the accuracy (in the mesh norm of C) of the pdimens- 

ional “cross” scheme. This method enabled an estimate to be obtained for the solution 

of the finite-difference problem in the mesh norm of Lzn, where n is any integer. 

The convergence in the mesh norm of C follows from this estimate. 
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1. Formulation of the problem 

1. Statement of the initial problem 

Let x = (51, x2, . . . , z,) be a point of p-dimensional space Rp, G a bounded 

region with boundary I’, and cS= G U l’.The intersection of the region G with a 

straight line passing through a point x E G and parallel to an axis oza, CI = 1, 2,. . . , p, 

is assumed to consist of a finite number of intervals. 

Consider the following problem: to find a function u = u(x), continuous in c, and 

satisfying the conditions 

(1) LU = --f(x) for 2 E G; u = Y (IT) for 5 E I’, 

where L is an elliptic differential operator containing no mixed derivatives: 

E 

Lu = 
c 

L,u, L&4=$ 
a ( 

k,(z) g) , 
CL 

(I=, 

(2) k&r) > cl = const > 0, 

k, (4 E C3 (C), fW= qa a = 1,2, . . . , p. 

A solution U(X) E c’(G) of problem (l), (2) is assumed to exist. Problems 

with discontinuous coefficients k, (5) and right-hand side fix) will be discussed in 

2. The mesh 

1. lYhe lattice. Take p families of hyperplanes 

Paragraph 2 of Section 3. 

5, = 3~: J i, = 0, * 1, . . . , a = 1,2, . . . , p, Xiia ) > x,(‘~ -li 

Denote by Z, = (dl(i’), 52(ia), . . . xfp’) the points of intersection of these hyperplanes. 

The points xi will be said to form a lattice RPh in the initial space Rp. 

2. l%e mesh. interior and boundary base-points of the mesh. 
A mesh ah of base-points will be constructed in the region E.Points xi of the lattice 

Ri,“, belonging to G will be called interior base-points of the mesh; the set of interior 

base-points will be denoted by 
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FIG. 1 w - for Yz+; Cl- for Yz-i 
0 - for yi+; 0 - for yi-; @ - for 

WV; X - for 0’ 

Draw straight lines parallel to the coordinate axes ox, through the base-points 

zi E or. For simplicity, it will be assumed that the intersection of each of these straight 

lines with G consists of just one interval A, = A ,z (a) m The ends of this interval 

will be termed the boundary base-points in the direction xo(along xo). The set of all 

boundary base-points with respect to xo will be written as TV; % = ya+ U ya-, where 

l’a+, Yarare the sets of right- and left-hand boundary base-poinis with respect to xo. 

Denote by*yh z y the set of all boundary base-points ,, = 
,!Ji yaS 

The set of all 

interior and boundary base-points will be called the mesh ~j, = a = o U y (see Fig. 1). 

3. Chains of base-points. Consider one of the intervals A,. The set of base-points 

x E o, lying in this interval, will be called a chain Ja. Denote by To the set consisting 

of base-points x E Jo and ends of intervals Ao. Following [5], denote by #‘a) and 

ti-‘a) the base-points nearest to the base-point x E .& to the right and left and belonging 

to JQ. The base-points x(*‘~) will be termed the neighbours of x with respect to xo, so 

that 
(i a_i) (iz-+i) (i 1 

a+i 

+‘,J = ($) a (i p) 

,***, G-1 ,5 ,x,+1 ,...,xp 1. 

The interior base-points will be classified in detail. 

4. Near-boundary base-points. We shall say that x E w is a near-boundary base- 

point with respect to xo if at least one of its neighbours with respect to xcr (call it an 

xo-neighbour) belongs to y=. Denote by ova the set of near-boundary base-points 

with respect to xo. Three types of such base-points are possible: 
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(1) if &la) E y;, ~(+~a) E 0, then z E o;,; 

(2) if z(+ra) E rz, &-la) e o, then x E a:,; 

(3) if lc(+l”) E y;, &la) E yi, then z E 6.1:~. 

The set of all near-boundary base-points is the sum of three sets: 

UPa = 09, + u 09; u ga * 

Denote by W the complement of oy, up to W, so that o = oa U wp cI by CO? 

the set of near-boundary base-points with respect to all directions: 

and w” the complement of ~9 up to w, so that o = oy IJ w”. Obviously, w” 

consists of the base-points, all the neighbours of which are interior base-points (see Fig. 1). 

5. Regular and irregular base-points. Let x be an interior base-point of the mesh 

(5 E 0)) while &‘a) E G are its xo-neighbours; either ~(*‘a) E 0, or ~(*‘a) E y. It 

will be said that: 

(a) the base-point x E o is regular with respect to the direction xo (or x,-regular), 

if both the base-points A*‘A are points of the lattice Rph; 

(b) the base-point IC E 01 is x&regular if one or both of IC(*‘a) or ~%-‘a) does 

not belong to the lattice Rp”. 

Denote by oU, reg = tea, I‘ the set of xo-regular base-points, by Or, trr~ z (-k, 1~’ 

the set of xa-irregular base-points, and by(,,,r = b Oa,,r the set of all irregular base- 

a=1 

points (irregular with respect to at least one direction). Here, mr is the complement of 

air up to w, so that o = :elIr U o,.The base-point illustrated in Fig. 2a isxr-irregular 

and x2-regular, in Fig. 2b it is x1- and x2-regular, and in Fig. 2c, x1- and x2-irregular. 

The base-points of Fig. 2 belong respectively to the sets tiop,-, o,,+ (Fig. 2a), 

@VI 7 O WY*+ (Fig. 2b), and ov,+, ql+ (Fig. 2~). 

6. The mesh steps. Consider the base-points x E ~7 and x(*‘Lx) E 8. The 

distances between them will be termed the steps of mesh W and denoted by h,*. If 

x E ma, r is a regular base-point, then hz = ~!a+~) _ ~:a) , h; = #J _ ,p,-l) 
cx ‘II * 
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(Henceforth, zz~‘J, IX = 1, 2,. . . , p, is always used to denote the coordinates of a 
point of the lattice R?“.) In this case, the step k* = h,+(z,) depends on just one 
argument za = &@a). Let J: E @a, lr be an irregular base-point. Its distance from the 
adjacent boundary base-point a$+‘& (or ti-‘~J ), which is not a point of the lattice 

R yhz will be written as k,,+ (haLI-) 

@* <.Y) _ zz=’ ) j&i, <zfcE’_ $4). 

In general, the steps h 
(6) w 

@.* depend on all the arguments or , xz , 
@PI 

*.*, XP (on all the 

indices ir, iz, . . . , ip). 

a 

FIG. 2 FIG. 3 

The steps 

at interior base-points x E ,w will also be considered. Obviously, R, depends only on 
the coordinate xo (the index h). At a regular base-point, 

A a = 0.5 (h;F + h,-) . 

If x is an irregular base-point, and, for example ti-!‘Xf is not a lattice point, while ~+‘cx) 
is a regular base-point, then 

fi, = 0.5 (~(ai~~‘) - ~sf@) ) > fi,,, where&, = 0.5 (hi + iz&). 

It may be mentioned that, in [l 1] , ti a at an irregular base-point was in fact the step 
fi,,:which in general depends on all the coordinates (see Fig. 3). 

To standardize the notation, we put 
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‘7. Mesh cells. Each base-point 5 E w will be associated with a closed region I!(x) 

(the cell volume), bounded by the pieces s2 of the hyperplanes passing through the 
points $(io.5a) =(~~1)...~(iU-1),0.5(5hi,*l)+~(~)), ,y;;l) ,,.., xFP)) 

a-1 

and orthogonal to the axes 08~ (a = 1, 2,. . . ,p>. 

Henceforth, the same letter will be used to denote a body and its volume, or a 

figure and its area, so that 

Consider the chain of base-points / o, All the base-points of this chain have identical 

coordinates zfl), zrz), . . . , ~:T;I) , ~YT;I) , . . . , xzp) and distinct coordinates 

~~(‘a)~ i, = L’, iazI . - . Hence the steps k, &, - . . , f&-s. ha+,, . . . , ft, are the same 

at all x E Jrr. This enables every chain Ja! to be associated with an area 

ifP 

(4) .sa = 

I-I 
fEp (s, = constr* for 5 E JJ). 

S#k 

8. Intermediate base-points. It will be convenient later if certain mesh functions are 

referred to base-points of the basic mesh W, and others, such as the first difference 

“derivatives” ?/xX and !G, (see Paragraph 3), to intermediate points ~(+‘.~a) = 0.5 (X + 
Jii”**q; f, .?- j: E &J. (+I : The set of intermediate base-points with respect to the direction 

&* ,$I 1.” i<*) E Gwill be written as 3,. and the set of intermediate base-pointsz[“.‘J E orL, 

lying on a straight line parallel to the uxo axis and passing through the base-point 
&k”.‘ai E (;, n, will be termed the chain Ja. The base-points ~(+“~‘a) E a,, nearest to the 

boundary base-points #‘a) E yG,will be termed near-boundary intermediate base-points. 

By anology with Paragraph 4, corresponding notation will be used for the sets of near- 

boundary intermediate base-points: ‘iijyz ‘, 6, =-, Q, (_= ii,, U-1. IJ B, z-e) a,’ is the 

complement of QY, up to 07, (6, = &, kJ 0,‘). Every base-point &” ‘2) E (;j, 

will be associated with a volume 

H,’ = s,h,+-. 

Denote by h the maximum step with respect to the spatial variables, and iet us 

agree to use the same letter M to denote all constants independent of h. 

It will be assumed that every base-point 5 E o has at least one neighbour (with 

respect to some direction ‘5 +SZ 0. This can always be arranged for if the steps h,z of 

the lattice I?,,” are small enough. Denote by Kfa (x) the set of xo-neighbours of 

x E w belonging to w: 
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3. Mesh functions and difference operators 

Henceforth, only base-points of the basic mesh W and of intermediate meshes 

&, a = 1,2, . . . ) p. will be considered. Let 2, ~(*“a) be base-points of W, and 

a3*0.5a) base-points of an intermediate mesh Q,. Let y = y(z), o E a and 

v&‘) , 5’ E al, be mesh functions, specified respectively in the basic mesh W and 

the intermediate meshes Q,. The introduction of intermediate mesh functions makes 
the derivation of the finitedifference schemes clearer and less abstract, and facilitates 
their investigation. We put 

ye&) = y (XWJ) y=+=, (y(+‘c&)- y) /Is,+, y, --= (y - y%‘)/h,-. 

The function V= EC:,+ = yx m’ ( va- = y,,-), representing the difference analogue of 

the derivative du / &rat will be referred to the intermediate base-points ~(*‘.~a) E 6,. 

The next task is to write the finitedifference approximation for the elliptic 
operator L in the mesh o. As a preliminary, consider the onedimensional analogue of 
problem (1): 

Lu = (ku’)‘= --f(x), 0 < x < I, u(0) = vi, u(2) = VS. 

Let 
CJ = ouy, 0 = (Xi, i = 1, 2, . . . , fV - I), xi+1 > xi. 

Y = We. 

The integro-interpolation method will be used to obtain the difference scheme. The 
equation Lu = - f is integrated with respect to x from z$*-o~) s 0.5 (xi + IC~_~) to 

Z{+“.5) E 0.5 (Xi+1 + Xi) : 
‘ 

(5) 
w’ - w- 1 

x(+0.5) 

=-_ 
ii A s wf = Ix,rC+,,sj_ 

Replace by difference 

IV* a*yz*, 

the function approximates coefficient at points 
to second 

a* + O( 
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Obviously, W+ is an intermediate mesh function. Replace the right-hand side of (5) by a 

mesh function cp (e.g., put (+0.5) 

etc., see 

where 

[4, 51). As a result, we arrive at the difference equation 

AY = -9 for 5 E 0, 

AY = (UYZJ-, = + (a’y: - a-y;). 

The notation here is 0; = (@(ti+‘.‘)) - @(~-“.“)) ) /A, where @ is any mesh 

function defined in Z.3 (with z,(*“.‘) = O.~(Z~*~ + xi), fii = 0,5(~~+~ - xi-r)). 

The procedure is similar in the p-dimensional case. First consider base-points 

x E 61, the volumes H corresponding to which belong to I?. Integrating (1) over the 

volume H E c, containing such a base-point x, we get the identity 

W ii ($swads,)A +&SfdH=O. 
a=1 

sa %a Ii 

where 
IfP P 

ds, = 
II 

dx8, dH = 
II 

dx,, 

@#a a=, 

and wa = k,du / dx, is the xo-flux. The coefficient, ko is associated with a mesh 

function a, such that 

(7) a,” = k, (x’*“.““‘) + 0 ( (ha*) “) , ua* > ci -> 0. 

The mean flux (1 / sJ Jba wadsa through the area so is approximated by the finite- 

difference expression 

w,+ E W, (xW9) = ucr*yX,*, 

while the left-hand side of (6) is replaced by 
P 

2 (W,);.,where (W,);a = (% - W&I&. 
LX=1 

The term (1 / H)J,fdH in (6) is replaced approximately by a mesh function 

cp (e.g., p = f(x)). It is then required that the following approximation condition be 

satisfied: 

(8) cp - f (J;) = i (@a)& + j&z), I2 = 0 ((W), /Ii, = 0 (E?Z). 
a=1 

As a result, the following operator A representing the difference analogue of L is 

obtained: 
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Ad=(ayxa);a=g _ a- y - y(-lJ 
a h- ’ 

where a .- 

The operator A will be defined by the same expression at the remaining mesh base- 

points. We thus arrive at the difference equation 

AY = -3(x), 2 E 0. 

This scheme is the same as the well-known scheme of [4] except at near-boundary 

irregular base-points, where the step A, has a different meaning, e.g., h, = ft,, = 

0.5 (ha+ -I- Is,.), if the base-point z(-‘u) is not a point of the lattice RPh. 

4. Statement of the difference problem 
and error of the approximation 

The initial problem (1) is associated with the following difference problem: to find 

the mesh function y(x) defined in W, and satisfying the conditions 

(‘3) AY=-+(p(~) for ZEa, Y=Y(J) for XEy. 
Here, A is the operator defined above, while the mesh functions a,*, a = I,& . . . , p? 

and cp satisfy the approximation conditions (7) and (8). 

The accuracy of the difference scheme (9) is determined by the error z =_Y - u, 

where u is the solution of the initial problem and y is the solution of problem (9). 

Substituting y = z + u in (9), the problem 

PO) &=--$(z) for 5Ee.r, z=O for XEy, 

is obtained for z, where $ = hu + cp is the approximation error of the scheme (9). 

Using Taylor’s formula under the above smoothness conditions and conditions (8), the 

error 4 at regular base-points can be written as 

where 

From (7) and (8), 

XGf = O( (/r,,*)l), $)a = O(&‘) for Z E Wr. 
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At irregular base-points (z E 0~) the approximation error is obviously o(1). 

For, since 

+ O(fi,) = W), 
we have 

Al&= 
p fi,. c -$-L,u + 0(&J = Lu + 

ft ha a* - 
Lau + O(h), 

w=i Q 2 fta 
a=1 

whence 

Au-Lza=O(1), tb=O(i) for EEOir. 

For purposes of standardization the error will be written as 

in a uniform lattice RplL, when, whatever the direction a! 

ft oL -_ 0.5 (,y) - ~3-l)) = const,, xa (d*“-6a) ) = 0. 

The solution of problem (lo), (11) will be sought in the form 

02) 2 = Vi + 62 + V3) 

where the functions r.& k = 1, 2, 3, are the solutions of the problem 

AVk = --k for zE% vk=o for xEzr, 

k = 1,2,X 

Asymptotic expressions for the functions x~(x(*‘.~~)), *a, $a* in the class of smooth 
functions u(z), I&(S), f(s) are given by (11). 
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2. A priori estimates 

1. The maximum principle and majorant functions. 
Auxiliary propositions 

Estimates for the solution of a finite-difference elliptic equation are obtained by 
using a method, based on the maximum principle, for constructing majorant functions 
(see e.g., [5, 71. 

Estimates based on the maximum principle prove effective for investigating the 
accuracy of a scheme when no approximation is available at irregular near-boundary 
base-points. 

IA us recall some well-known results. The difference equation is Lhv = -9; 
the boundary condition v 1 v = Y (Lh is a linear operator) will be written as 

(14) 

where K’(x) is the set of base-points defined in Para. 2 of Section 1. 

Lemma 1 

Let 

A (4 > 0, B ($9 E) > 0, A(x)- 2 B(z,E)=D(z)>& 
EET 

(15) D(Z) > 0, F(Z) = F(Z) for Z E O*, 

D(J) 2 0, P(C) = 0 for X E O\O*, 

where o* is a set of base-points 2 E CO. Then, the solution of problem (14) satisfies 

]4, 51 

(16) maxlvl< mutxIF*(x)iD(z) I. 
0 

Lemma 1 will be used to obtain a bound for the function v3 of (13). The 
expressions for A, B, D, and F in the present case are 

A(x) = &L%(r), A&)=$(g+E) 
a = W=i 
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Note the following point. Fixing the direction xo, denote by o=(@) the sets of all 
chains Jo po) for the direction oak:,, a = %2, . . . , P- Since any interior base-point 
Z< (a3*“.5a)) belongs to some chain J, (a3 *“.3a) E ya) for the direction ox,, we have 

o= u Jr= iJ Js=...= yJP* _ &= U J,, a=%,2 ,..., p. 
Q1 Qt 0 9” 

Hence 

XHll=C&&, ZH,W,=~r,H,W,, u=i,z,...,p. 
0 Qa Ja % 30 XL 

Here, H = s*k& = s&z = . . . = sphp, H, = .&* = s&*, a = 1,2, * . . , p. 

Since, whatever the base-point of the given chain Jar pa), the area S, = n & 
P+a 

is independent of the coordinate xo, and depends solely on the coordinates sI, rz, x,_,~~ 

a&it, - * * 9 xP, the last equations yield 

Lemma 2 

2. Spaces of mesh functions 

Denote by 39 the space of mesh functions defined in the mesh o, with scalar 

product 

(Y, 2) = c !PH and norm ll~ll= )/(Y, Y), y, z&A%. 
@ 

We shall also consider the spaces %,, a = 1,2, . . . , P, of mesh functions defined in 
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meshes t), with the scalar products 

(D, W), = 2 VWH, B ano norms I/u /lcf = I/(% D)a, 

*a 

The following notation will be used for sums along the chains Ja and Jill with 

fixed xe (p # a) : 

Finally, we put 

llyllo = max 
0 

IYWL 

3. The difference operators 

Denote by A the operator mapping space 8 into 8, and repre~nt~g the sum of 
p operators Acw: v 

(19) A = 
YJ 

A,. 
a=i 

Every operator Ao likewise maps JC into X and is defined thus: 

\ 

&j’,, - @&4X,? St%, 
-7 

(20) Aay -_ __ $ x F U$& - &!~~, 2 E @& 

- (4/h: + GK) Y, XEeJ”,,. 

Obviously, on functions vanishing on 7. 

A,y = -A&, ylv=O. 

Further, let To be difference operators, mapping % into aEe,; Ta operators 

mapping Z, into 8; and So operators mapping 8, into ,%,,,a = 1,2, . . . , p. 
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By definition of the operators T,, s,, T,‘, A, it follows that 

(21) A, = T,*S,T,. 

4. Properties of the difference operutors 

Lemma 3 

The difference operators Tel and T* cx are conjugate to one another: 

(22) (Ta’w, y) = (w, T,y)(r, y E GE, w E 9&z. 

Using Green’s finitedifference formulae [5] , it is easily shown that 

(23) (y, T~,w)J a = 2 y (Tk.4 fi, = 2 w (T,y) h, = (w, T,Y)~~. 

Ja J, 

Expression (22) is obtained by multiplying the last equation of (23) by ~a, summing 

over all chains Qlz( ga) and recalling (18). 

Lemma 4 

Operators Sa are selfconjugate and positivedefinite: 

(24) (Saw, U)C = (w, suV)ar (Saw, w)a z cIlIwllcc2. 

The lemma follows from the form of the operator & and the inequality (7). Some 

further notation is needed: we write the operator B > B,, if (By, Y) 2 (B,y, Y) for 

all Y E %; for instance. B > c,E > 0, E where E is the unit operator, if (By, y) 
3 c, /I y/j’, where cl is a positive constant, and y is any mesh function defined in w. 

Lemma 5 

The operators A,, w = 1, 2,. . . , p, are self-conjugate and positivedefinite: 

A, = A,* > SE, A = A’ -a 66, 

where 6 > 4c, / XY, 6 = 6p, and D is the diameter of the region G. 

The fact that Ao and A are self-conjugate follows from (19). (21), and Lemmas 

3 and 4. To prove that & is positive-definite, write the identity 

x,_x(-o.5,) 

Y(s)= 2 11, (T,y)-, 
X’E - Ja 
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where the summation is over x’ f To to z’ = .~(-‘.~a). Squaring this equation and 

applying the Cauchy inequality to the right-hand side, then multiplying by H(x) and 
summing over all base-points 2 E Q, we get 

(25) l!yl12 d l!Taylla” 302 I4. 

Using (21) and (24), 

&& Y) = (S,T,y, T‘zy), > c*ll~dIIcs’. 

From (25) and this last inequality, 

From this and (19), 

(~61 (A& y) 3 Sllyll”, 

We introduce the norm in Wzl (w) : 

II!/ll~: = f&f, ~)fllfAl”, 

where 

On functions y vanishing on 7, the norm becomes 

Consider the equation 

(27) Av = 6,wheM =I ’ 6,, A = k-4=. 
c 
cz=i a-1 

This will be rewritten as 
i-+P 

@3? A,v = 0, + F,,where F, = - 
c (Aa@ - w . 
Pqw 

Obviously, 
P 

(29) c F, = 0. 
tZ=i 
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The further procedure is the same as in [IO]. Introduce functions u(O) = V, ~(‘1 = $, . 

. . * , VW = vzn and write the equation for ufl (see [IO]) 
n-1 

(30) &A”) + +r( 2~-R-~U”n-“A+l[h,+u~+( (TaUy+o%l)2 + 
(L kc0 

+ l&-a,- ( (T,d”))( -+a) yl; = 2vn (F, + 0,) ) Vk = 2’L - 1. 

Multiply this equation by fi, and sum over x E Ja; we get 

(31) rP-” = 27 (UVn, &)J ,+ (ZYn, &)J ,I, 

where 

(32) a 
p-*) 

= 2(&d*-‘), u(-J))Ja + 

n-2 

+ c 2n-k-l ( vvn;;+’ 
) ha+aa* ( (T,v(k)) ‘)“f ha-a,- UT,vc’))-)2) 

k=0 J, 

Here, (T,vQ) f G ( j’,vW) (-@W. 

Lemma 6 

(33) y(“, < jg f+s) \ 0.x 3 

where M5 = D f 2c, (see Lemma I* of [lo] ). 

1. First u priori estimate. Consider the first term on the right-hand side of (31). 

Using Lemma 6. 

1 2n(~Yn, %)~,I<2”(2, l%I)r,mjnxl~‘nIS 

< zn (1, 18, I)& (7:x ] dn) I)‘“‘“” ; 2” (1, / $1) Ja (M,l~-1))1-“2*, 

yn = 2” - 1, UP) ‘- g”* 

For the right-hand side of the last inequa~ty: 

(34) ,x,.,i<y+y* ++;= 1, 
0 

where 

Ql = zn, (12 = l/(1 - v2y, x1 = 2” (1, ) 0, ~)J,(2~~,/qz)1’q’ 9 

x2 = (r:;“-” q2/2p; 

so that finally: 
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From (31) and (35): 

this equation is multiplied by s, and summed over al1 chains Jo- 

On strengthening the inequality, we get 

(36) lf,r s,l~-') & [2&I, (2” - -1)]2”-1M, max (1, ) 8, j)jna + 

Qa Q, 

-t c sa (fv-53, &)J,~ M, = max: 
tc c 

sa. 

Qa Qa 
Applying hnma 2, the second term on the right-hand side of (36) can be rewritten as 

c 
sa (2?.+!, F,)Ja = 

z 
, 2”vWaH. 

QU 0 

Sum (36) over IX from 1 to p. Recalling (29), we get 

1’ 

(38) rc s,k-1) > 2-p r s, (AalP), 7F))Ja = 
a=1 Qa a=1 Qa 

P 

-_ 2 r , (Aau(“-l), v (n-1)) = 2 (Ao(“-l), u(ll-l)) ~ 26 /) v(n-l) /,a. 

a=1 

From (37) and (38) with n = 1, we obtain 

Notice (as in [I 1) that 

where 

H, = min H(z). 

Combining inequalities (37), (38) and (40), and extracting the 

result, we get 

2n-th root from the 
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where Mz = 2Mo, M, = 0 / M,. Hence 

Lemma 7 
L 

The solution of the problem Au = 
c 

9, satisfies 
CL=1 

(41) )I v Ijc < MznH: “” max rnoy (1, 10, I)J a, 
a 

where M is a constant independent of n and h. 

2. Second a priori estimate. A bound will be obtained for the solution of the 
problem 

P 

(42) Au = c 
T;g,. 

a=1 

Using Lemma 3 (Eq. (23)), we have 

(43) 2" (Vvn, Ta*ga)J. = 2" (TaVYn, ga)sa. 

Substituting for T,vV n in terms of T,@) and v (see [lo], Section 2, (19)), 

n-1 
(44) (T,v~~)(*O~W = 

r 
(~~+~a~)YkVv~-"k+~(~av~~~)~f~~~a~ 

k=o 

in the right-hand side of (43), we get 

(45) 2" 1 (TavY", ga)7a I& 2"z ha+ 1 gb+o"') 1% &-Vk+1)'2\ (Tau(k))+[ y 

?a k=O 

x IF (+la))Yk v(Yn-Yk+1)/2 1 . 

Using Lemma 2, the following inequalities are obtained for the last two factors in 
the right-hand side of (45): 

(46) 

using 

(47) 

max v(+hd”k max v(vn-‘&l)/2 = (max v(n))(“k+(Yn-“k+1)/2)/2n < 

Ja Ja Ja 
< (MO@;-l))li’llm 

the Cauchy inequality, together with (7) and expression (32) for I;-1 we get 
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Combining (45)-(47),we obtain 

(48) l 2* (u”“, Ta*ga)j, j < ) IIgajFa (M~lh"_l))l~l'Zn. 

Finally, to obtain a bound for the right-hand side of (48), we use (34) after putting 

(49) !?I = 2”, q’L = i/(1 - l/2”), 51 = 
2”IlgallJa 
v (Wo) 

(2M ,q ) 

0 2 1/q’, 

x9 = q*Ily'/2. 

The final result is 

(50) 1 zn (UYn9 Ta*ga)Ja I,( 1/a&?-1) + 2 

X llga Ifa- 

p&(21/$ (2~-i)llc1x 

Repeating the arguments used when deriving the first a priori estimate (see (50) and 
(35)), it can be seen that 

(51) 

and 

II * II G M m:X m;x II ga ka 

a 

Lemma 8 

The solution of problem (42) satisfies 

(52) 1) v Ilc < M2"H;"" my TX jl ga ll- - 
la 

a 

So far, n has been arbitrary. Now take an n with the following dependence on H,,: 

(52’) 0.5 log, Vo / H, < 2” < logz I’,, / H., 

where Ve is the volume of G. From this, 

2”H,-G” < A4 In V, /‘I?,. 

Using this in conjunction with (41) and (52), we arrive at 
Lemma 9 

The solutions of problems (27) and (42) satisfy 
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6. A priori estimates in the norm of W, 1 (w) 

A priori estimates of the solutions of problems (27) and (42) will be obtained in 
the mesh norm of Wsi (0) .From paragraph 4 of Section 2, 

(AU, U) = 2 11 Tav [a* = f’$ r, Htidz, for v IY = 07 
a=1 a=1 - Oa 

P 

where A = 
c 

A,, A, = T,*T,. We have 

a=, 

(55) A > c*A, A > cSE, 
where6 = 4p / 3D2, Dis the diameter of the region G, and 0 < c, 4 aaft a = 1,2, 

. . . , p_ Put E = d 1 (1 t- b), then (55) gives (see also Paragraph 4 of Section 2) 

(55’) (Au, v) 2 e(Av, v)+(1 - e)Sllvll” = ~ u 1”61l II 
2 
w,’ . 

Consider the solution of problem (27). Form the scalar product of (27) with u. Applying 
the generalized Cauchy inequality:(Av, w)’ Gjtlv, v)x(Aw, ru),if A = A’ > 0 
(see [12]) and the inequalities (55) we get 

c1 (Au, u) < (Au, U) = (u, 0) = (AU, PO) < 

< li[ 6% u) (A-‘% e>]. 

From this and (55), recalling that IIA-‘il < 1 / 6, we get 

Lemma IO 

The solution of problem (27) satisfies 

II4Iw; SG 1(1 + *) [I811 * c 6 
1 

Consider the solution of problem (42). Form the scalar product of (42) with V. 

Recalling (55) and {22), we have 

c, (Au, v) cg (Au, v) = 

From this and (55) we have 
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Lemma 11 

The solution of (42) satisfies 

Finally, consider the solution of the problem 

AZl=Q’ 

with the condition that the right-hand side J/* vanishes at all regular mesh base-points: 

J/* = 0 for x E wr. To obtain a bound for the solution, Lemma 1 is used, after putting 
o* = wlr, F* = $*,while D is given by (17). Since D(z) 2 C, / h2(see (17)), we 
obtain from (11): 

llullc & h’!!J$‘llc i Cl 

and accordingly, 

To obtain a bound for the solution of the problem Au = IP’ m the norm of WZ’ ((I)), 
the problem is multiplied scalarly by Y and the inequality obtained above for livI1 c 
is used, in conjunction with (55). We get 

This, with (55’), yields 

Lemma 12 

The solutions of the problem Au = Q’, I#,* = 0 for CC E err satisfies 

The next topics to be discussed are the convergence and accuracy of the solution 
of the initial difference problem in the mesh norms of C (0) , Lz (to)-, IV,’ (w) . 

3. Order of accuracy of the difference schemes 

1. Order of accuracy in the class of smooth coefficients 

Problems (9), (10) and (13) (k = 1, 2, 3) will be written in new notation. 
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Put 

where 

1 
y, = - 

ha 
i 

lz$v (5 (*la))/hh, 

u;v (x(+la))lh;z + 
Problems (9), (10) and (13) then become 

(57) Ay = CD, L E 0, 

(58) AZ = -$‘, 2 E 0, 

(59) Auk = -Vfrk, 2 E 0, 

5 E_ al;;, 

a,v (x’-‘a’)/h,, SEmia. 
respectively 

k = 1,2, 3. 

Here, v,,, k = 1, 2,3, are given by (11) and (13), and the error 

2 = y - u = v1 + vz + vs. 

To obtain bounds for the functions vk, k = 1, 2, &Lemmas 9-l 1 are used, together 

with the bounds (16) (39) and (51). 

We will estimate vr . From (1 l), we have 

(60) max max II Xa Ii Ja G M@, h = A?,,,. 
a 

qa 

Lemmas 9 and 11 are now used after putting g, I x~. From (54), (51), (60) and the 

inequality of Lemma 11 we have 

(BZ) llvlllC < Mh”In (V,lH,), IIULIIW,1 < -Mh2, IlUill < mzZ. 

To obtain a bound for v2, Lemmas 9 and 10 are used, after putting 0, = qCla. 

From (1 l), 

(62) max max (1, 1 $a I) J J < MP. 
a vu 

From (39) (53) (62) and the inequality of Lemma 10 we obtain 

(G) IIvJC < M/:.“ln (V,/H,), IIVPII w,1 6 Mh”, llvzll < Mh”. 

Finally, consider v3. The inequalities of Lemma 12 are used. Since 

$* = A$%* = 0 for 2 E Or, ll$*llc = O(l), 
CL=i 

these inequalities give 
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From (61), (63), (64), and (12), 

(65) l~~~~~~~llh~ln(V~/II.), 

Theorem 1 

The error z = y - u in an arbitrary non-uniform mesh satisfies 

(66) Ily--llc~~Mh21n(V~lH.). 

Theorem 2 

The solution of the difference scheme (9) is convergent in the mesh norms of L, 
(0) and W2?(:j)) m an arbitrary non-uniform mesh, and 

(67) II y - ull < m2, lly - I.&,’ < ilZh”‘2. 

Theorem 3 

Let the lattice RPh be uniform with respect to each direction za, a = 1,2,. . . , p. 

Then the difference scheme (9) is convergent in the mesh norms of C (.o) ,Lf (co) and 

Wz’(ojand 

IIY--II~=Z~~~~~~~ (voIW, Iv - 41 < MjhI’, Ily - 4iw, < M[hl”,‘z, 

where 

lhl’=r,h& H=fifr.. 

Cr=1 a-1 

Consider a sequence of meshes, non-uniform (as h -+ 0 ) and such that 

(‘68) H, 3 mohx~‘: m. = const > 0, x = const > 0. 

Inequalities (65) and (67), and the inequality V, < Dp lead to 

Theorem 4 

With condition (68), the solution of the difference problem (9) is convergent 

to the solution of the initial problem in the mesh norm of C(o). We have 

(69) Ily- ullc < Mh’ln (D/h). 
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Notes. 1. All our results remain true for the problem with operators 

L,e = L, - !7a(s)E, &S(z) 2 0, u = 1, 2,. . . ( p. 

In this case, the operator 

Aaq = A, + q8. 

has to be taken as Aa. 

2. Let the boundary r be such that a sequence of meshes Rph, (as h + 0) can 

be constructed, matched to the boundary r in the sense that y E R,h. Then, 9’ = 0, 

O1r = 0 and 

(70) Ii y - u lltvz~ < Mh2. 

2. Convergence of the scheme in the class of 
discontinuous coefficients 

Let the coefficients k, (CC), a = 1,2, . . . ) p, and the function fix), have discon- 

tinuities on a finite number of non-intersecting surfaces Z,, s = 1, 2, . . . , K. The 

problem may then be stated as follows: to find the function u = u(x), continuous in the 

closed region c , and satisfying the equation and boundary condition 

(71) Lu = -f(z) for z E G\( ; 8,) = Q, 

U=V(T) for XEI’, 
Sr;i 

while on the surfaces Ij, 3’ == 1, 2, . . . , K,it satisfies the conjugation conditions 

(72) 

P 

blxs = 0, Tz ,ka$ A 
cos (n,, 2,) 

I 
= 0, s=1,2 ,..., K. 

a a=i % 

Here, [u(z)]~~ = v+ (5) - v- (5) denotes the difference between the limits of 

v(x) on opposite sides of Es, while ns is the normal to 2s. 

It will be assumed that problem (‘71) - (72) has a solution, i.e., there exists 

IL = U(X) E @“j(C), k, E @“j(C), f(x) E Q(“)(G) (Q(“)(G) is the class of 
functions having piecewise smooth n-th derivatives in c). This problem was investigated 

in detail in [13, 161. 

Some further classification of base.-points is required. It will be said that a base- 

point 5 E elr, if the corresponding volume H(x) intersects at least one of the surfaces 

Es. Denote by OQ the complement of WE up to w, so that 

(1) = (!,X u GJ’Q. 

It will be said that an intermediate base-point &” %) E Oz, rr, if the corresponding 



134 A. A. Samarskii and I. V. Fryazinov 

volume H,* = Ha(~(~ce.s,))intersects at least one of the surfaces & 

Denote by QQ, U, the complement of Qr, ,up to fhj, so that 

- _ 
&=WX,Z iJ a,, a. 

The convergence of homogeneous schemes of the type (9) will be examined. Let the 

coefficients G*, a = 1, 2: . . . , p, satisfy the approximation condition (7) at the base- 

points J;(*“.5a) E Q,, GL. At base-points &’ ‘a’ E G,, G it will only be required that 

0 < ci < a,*. 

For instance, we put 

(73) a,* = 0.5 (k,+(&@.“d) + k,-(z(+0’5d)) for ~@@*~a) E Uo 

(a2 ==: k,(d(f0.5a)), if k,+ = k,-, the surfaces Zs do not pass through base-points 

~$~.~a)) At base-points J: E ,my the function V = rp(s) is assumed to satisfy 

the approximation condition (8), while when x E mr it is merely assumed to be 

bounded by a constant independent of the mesh o. For instance, it can be assumed that 

everywhere 

(74) Cp = 0.5(f+ + f-) for T E (0. 

The initial problem (71), (72) will be associated with the difference problem 

(75) Ay = CD for Z E 0, 

where A and @ are given by (19); (20), and (56). The problem 

(76) AZ=--'I' 

is obtained for the error 

(77) Y=-Au 

for 5 E 0, 

z =y - u, where \k 

+cD=Au+cp. 

is the approximation error: 

1. Convergence in the mesh norm of Wz ' (0). While an arbitrary disposition of 

the surfaces Es, s = 1, 2, . . . , K, relative to the mesh w base-points will be assumed, 

the treatment will be kept reasonably simple by confining the proof of the convergence 

of scheme (75) to regions G composed of pdimensional parallelepipeds with boundaries 

parallel to the coordinate planes (stepped regions). 

To transform the expression (77) for the approximation error, the identity (6) 

is subtracted from (77), yielding 
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where 

x&=aJ+ - 
a 

Obviously, under our 

(79) 1 O(h), 
x2= O(l), 

To obtain a bound for 

written as 

(80) z = VI + 712, 

assumptions regarding the coefficients a,‘, and cp. 

the solution of problem (76) - (79), the function z is 

where V, and v2 are the solutions of the problems 

(81) AU,=---8 for XEO, 

u 

(82) Au, = - 
c 

T,‘x~ for t E w. 

a=l 

Lemmas 10 and 11 are used to find bounds for v, and v2, Recalling (80), we obtain 

(83) Ilsllrr~,’ < M ’ Ilellf z Il~mll,,) . 
a=1 

From (79), 

(84) IelI < Mih, Ilxalla < Mfh. 

From (83) and (84) we obtain 

Theorem 5 

The scheme (75) in the class of discontinuous coefficients is convergent to the 

solution of problem (71), (72). We have 

(85) Ily - UIIw2’ < Jfp. 

Notice that, though the bound (85) is extremely crude, it proves the convergence of 

homogeneous schemes, the coefficients of which can be evaluated from very simple 

expressions, e.g., 

&‘rf z.z 0.5 (I&+ (~WW) + k,- (@“.‘a)) ) ) 

v = @5(f+(z) + f-(x)). 

In the case of an arbitrary region also, a bound with the accuracy of (85) holds 

for the scheme (75) in the class of discontinuous coefficients. 
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2. On uniform convergence. When discussing whether the scheme (75) is uniformly 
convergent in the class of discontinuous coefficients, the treatment will be confined to 
one particular case. It will not be assumed that G is a stepped region. 

s ,’ 

FIG. 4 

Consider the problem (71), (72) with p = 2, with the following assumptions: 

(a) the coefficients &, (Y= 1, 2, and f have just one line of discontinuity & , 

(b) the line Ci is such that a sequence of meshes w (with h + 0) can be constructed, 
matched to the line Cr in the following sense: any line C,, parallel to a coordinate axis 
ox&, 01 = 1, 2, and passing through a base-point x E w, cuts Zr only at base-points of w, 

(c) every straight line Co cuts the curve C, at just one point (see Fig. 4). 

It should be said at once that assumptions(a) are made merely in order to 
simplify the treatment. 

The same assumptions as in paragraph 1 are made regarding the existence and 
smoothness of the solution and coefficients of the problem. The base-points 5 E Q fl zi 
divide the curve Zi into arcs of lengths oj, (52, . . . , on. The mesh is chosen in such a 

way that 

(86) ~fJ~+~-tri~~iWhKIiaXCTi. 

The convergence of the scheme discussed below will be considered on the basis of a 
sequence of meshes Z matched with Zi and satisfying condition (86). 

Take the scheme (75) in which the coefficients out-L- and the function ip are given 

by the elementary expressions 

(87) a,*=Ic,(z(*O.Sa’), rp=0.5(fC(s) +f-(5)). 

The error z = y - u satisfies (76) with right-hand side \1! given by (77). Using a Taylor 
expansion, the approximation error $ can be written as 
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where, with condition (86), 

(89) $a = o(h ) 

{ 

O(fia2), ZEO\Z, 

a 7 z E& 

5 E Or, 
X0 * = O( (h,*)y. 

5 E wlr, 

As before, the error z is written as a sum 

(90) 2 = vi + v:! + v3, 

P P 

where or is the solution of problem (76) with right-hand side - 2 (x,Jgar 2 Ta*xa, 

P Cl=1 -1 

v2 is the solution with right-hand side 
E 9 6% and v3 is the solution with right- 

P LX=, 

hand side $* = 
z 

\Cla’. Bounds can be found for vl, v2 and v3 by means of 
a=i 

Lemmas 9 -- 12 and (39) and (51). From (89), (51), (39), (53),(54) and the inequalities 

of Lemmas 10 and 11, 

Ilvkllc < Mh21n(Vo/H,), IIVAII < Mh2, 

IIvkllw*~ < .m2, k = 1,2. 

As regards v3, the following is obtained from (89) and the inequalities of Lemma 12, 

as in the case of continuous coefficients: 

llvallc 6 Mh’, IIv3ll < Mh2, Ilv3IIwyl < Mh3'2. 

Note. If condition (86) is not satisfied, then in (89) $a = 0 (1) for x E E, and the 

following bounds are obtained for vr : 

II vi IIc < Mh In (VO IH,), II vi II G Mh. 

Combining the bounds for v ,, v2 and v3, and recalling 

Theorem 6 

(90), we arrive at 

The solution of problem (75), (87) is convergent on a sequence of meshes w, 

matched to the curve Cr on which the problem coefficients are discontinuous, and 

satisfying conditions(a),(b)and(c),to the solution of problem (71). (72). When condition 

(86) is satisfied, 
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while when conditions (86) and (68) are satisfied, 

l/y - ullc G AfP In (D I h). 

Notes. 1. Let the mesh W be matched with the boundaries Xi.. . ZX of discontin- 
uities in the case of p 2 2 dimensions. Then, 

IIY- u IIc G Mhln (V,lH ), II Y - u llWl’ G Mh, 

while when condition (68) is satisfied, 

II y- u IIc G MhIn (D/h). 

2. If the mesh W is not matched with the line (or surface, if p > 2) of discontinuity, 
it is possible to show in a number of particular cases, with additional conditions on the 

mesh steps and their ratios, that 

IIY--ullc GVhIn(Vo/H ). 

while if (68) is satisfied, 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

IIY--ullc ~MMllhln(D/k). 

REFERENCES 

BRAMBLE, I. H., H~BARD, B. E. and VIDAR, T. Convergence estimates for essentiaIIy 
positive-type discrete Dirichlet problems, &f&r. cornput., 23, 108, 695-709, 1969. 

MIKELADZE, Sh. E. Numerical integration of elliptic and parabolic equations, Izv. Akad. Nuuk 
SSSR, Ser. matem,, 5, 1, 57-74, 1941. 

WASOW, W. and FORSYTHE, G. E. Finite-difference methods for partial differential equations, 
Wiley, 1960. 

TIKHONOV, A. N. and SAMARSKH, A. A. The equations of mathematical physics (Uiavneniyu 
maremuticheskoi fiziki), Nauka, Moscow, 1966. 

SAMARSKII, A. A. Lectures on the theory of ~nitediffe~n~ schemes (Lektsii po teorii 
rusnos~nykh skhemf, Chap. IV, VTs Akud, Nauk SSSR, Moscow, 1969. 

GERSCHGORIN, S. A. FehIerschiitzung fiir das Differenzverfahren ziir Liisung partieIlen 
Differentialgieichungen, 2. angew. Math. and Mech., 10, 4, 313-382, 1930. 

VOLKOV, E. A. A non-uniform mesh method for fiiite and infinite regions with conical points, 
Differents. ur-niyu, 11, 10, 1358-1373, 1966. 

ANDREEV, V. B. On uniform convergence of some difference schemes, Zh. vjbhisl. Mat. mat. 
Fiz, 6, 2, 238-250, 1966. 



Finitedifference schemes for solving the Dirichlet problem 139 

9. G~ENSp~, D. Lectures OR the numerical solution of linear singuIar and non&near differen- 
tial equations, Univ. of Michigan, New York, 1968. 

10. SAMARSKII, A. A. A priori estimates for the solution of the difference analogue of a parabolic 
differential equation, Zh. vj&hisl. Mat. mot. Fiz., 1, 3, 441-460, 1961. 

11. SAMARSKII, A. A. Logically homogenous difference schemes on nonuniform meshes, 
Zh. vychisl. Mat. mat, Fiz., 3, 3, 431-465, 1963. 

12. KANTOROVICH, A. V. and AKILOV, G. P. Functional analysis in normed spaces 
~Funkt~~nal’~yi anal& Y n~~~vQ~~y&h pros~n~vQkh), Fizmatgiz, Moscow, 1959. 

13. IL’IN, V. A. On the solvability of the DirichIet and Neumann problems for a linear elliptic 
operator,DokZ. Akod, Nauk SSSR, 1961, 137, 1, 28-31. 1961. 

14. IL’IN, V. A. and SHISHMARIV, V. A. A potential method for Dirichlet and Neumann 
problems when the equations have discontinuous coefficients, Siberskii matem Zh. 2, 1, 
46-58, 1961, 

15. OLEINIK, 0. A. Solution of the basic boundary vahre problems for second-order equations 
with di~on~uous coefficients, Dokl. A&d, Nmrk, SSSR, 124, 6, 1219-1223, 1959. 

16. LADYZHENSKAYA, 0. A. and URALTSEVA, N. N. Linear and quasi-linear elliptic 
equations (Lineinye i kvazilineinye umvneniya ellipticheskogo tip@, Nauka, Moscow, 1964. 


