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WE examine the convergence of a locally one-dimensional scheme (see [1-5)) for
solving, in a sequence of non-uniform meshes, the first boundary value problem
in an arbitrary region, and the second and third boundary value problems in
stepped regions, for the equation of heat conduction containing no mixed deriva-
tives.

It will be shown that the schemes considered are convergent in the mesh
norm of C in a sequence of non-uniform meshes at the rate O (A% In (Vo/ H,)+ =),
where 7 is the mesh time-step, V, the volume of the region G, and 4 the maximum
step of the space mesh Rp" :

h = max max %y (z;),
x,E6 1<0<p

where fi,(2;) is the mean step of R " at the base-point x, in the direction of

the coordinate axis 0X 0 = 1,2, ..., p, and p is the number of dimensions; Hx
is the minimum cell volume,

P
H =mninH @), H)= ]l
xiEG =1

The convergence rate in a non-uniform mesh is estimated in the present
paper by using both the maximum principle and the method of energy inequalities
of the n-th rank developed in [6] (see also [3]); this allows the solution of the
finite-difference problem to be estimated in the mesh norm of LG, where r is an
arbitrary integer. From this estimate, the convergence in the mesh norm of C
is obtained. If only the maximum principle and the associated theorems are
used, too low a convergence rate estimate is obtained for the scheme. When
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obtaining a priori estimates of the n-th rank, the finite-difference operators A,
corresponding to the differential operators (9/48z,) (kq (z, 1)a/0x,) (andto
homogeneous boundary conditions) would have to be negative in any non-uniform
mesh. The operators chosen in [3] do not retain their negative properties for
all regions G and meshes R 7. In the present paper, negative operators (on any
non-uniform mesh in any region), as introduced in [7], are used for Aa.

Section 1 and 2 will be concerned with constructing, and investigating the
convergence of, a locally one-dimensional scheme in a non-uniform mesh in an
arbitrary region, in the case of the first boundary value problem. In Section 3
a locally one-dimensional scheme is developed for solving the second and third
boundary value problems in stepped regions. These schemes are also uniformly
convergent at arate O(A? In(Vy/H»*) 4 1).

1. Formulation of the problem

1. THE INITIAL PROBLEM

Let = (%, 23, ..., Zp) be a point of p-dimensional space Rp, G a region
bounded in Rp with boundary I', and @ = GUT It is assumed that the inter-
section of G with a straight line through the point x & G and parallel to the axis
ox consists of a finite number of intervals. For simplicity, it will be assumed
that the intersection in question in fact consists of just one interval A = A_(x).
Weput ;=G X (0<t<T),Qr=0X(0<tLT).

Consider the following problem: find the function u(x, ), continuous in @ .,
and satisfying the equation

du e
== 2 L +fa(z,1), (2,0 0r, )
a=1
and the bhoundary and initial conditions
u(z, {) =v(zt) if zel, 0Kt (2)
u{z, 0) = uo(z), zeEa.
Here, L ,a =1, 2, ..., p, are one-dimensional elliptic operators
Lou = 9 (k (z, 1) ou ) ko(z,t) > ¢, = const >0 (3)
(Iu - axa a ] axa * o ] == Ly .

It will be assumed that the problem (1)-(3) has a unique solution, reasonably
smooth in QT. The same assumptions as in [31 will be made regarding the
smoothness of the input data, i.e. the functions k«(z, 1), fa(2z, t), a=1,2, ...,
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p, v(z, 1), uo,(x) and of the solution u = u(x, ) of the problem (1)«3).
2. THE MESH. CLASSIFICATION OF THE BASE-POINTS

The same notation as in [7] will be used. A mesh w is constructed in G and
its base-points classified in the same way as in [7].

We draw p families of hyperplanes

zg =292 i, =0, +1,..., a=1,2,...,p, xf“) >:cf°‘").
The points x; = (xf‘), RN x;il’)) of intersection of the hyperplanes will be

said to form a mesh Rph in space Rp. Points x; of the mesh belonging to G will

be called interior base-points; the set of interior base-points is denoted by w,
o=R,"1G. The set of ends of the intervals A _(x) drawn through the base-

points x & w will be called the set of boundary base-points with respect to

the direction x _ (with respect to x ) and will be denoted by Va; Ya == Yo
Uye™, wherey "and y ~, are the sets of right-hand and left-hand boundary

base-points with respect to x_, while y= |J y, Is the setof boundary base-

points. The set of interior and boundary baé_éfpoints will be termed the mesh w
in 5, ® = oly. The set of base-points lying in the interval Aa will be
denoted by Z . The set consiiting of the base(—ploiglts x &7 and of the ends
of intervals A _ is denoted by Z_. Denote by x * and x‘'o the base-points
nearest to x = ZG on its right and left, and belonging to Z. « They will be
called the neighbours of x with respect to x

x(ilu) — (xiil), . x(i“”ll, x(iail), .’l:(i“+1)

(ip)
T , TP

GaD glan), L 200,

We shall say that x & « is a near-boundary or frontier base-point if one or more
of its neighbours, with respect to any direction x , « = 1, 2, ..., p, belongs to
y. The set of frontier base-points is denoted by @, and the set of all other
interior base-points by w°, so that © = w, | o".

The distances between a base-point x &  and its neighbours 2+ & g
will be termed the mesh steps and denoted by hai, a=1,2,...,p,

hot(z) =2t —x, ke (z) = — 20", h."(x) = he~ (z(*'d).
‘he steps

Fia (x) == fig (z(ia) )= 0.5 (.’DS“H) _ x(irl)),

xX

where zlat!) are the coordinates of points of the mesh Rp" (but not of the mesh
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o), will also be introduced. Obviously, %, depends only on the coordinate x
(the index i ). At base-points x & »° we have fi, = 0.5(/i.* 4 h,7). At
frontier base-points

a

Ho 22 0.5 (hat + ha™) = h,°,

Each x &= o is associated with a volume H(x), bounded by the pieces s; of
hyperplanes orthogonal to the axes ox, and passing through the points
(e 4 x) [ 2, 20, z = R

H@) = [Th@, st =11 k).

a=1 P=1
Bea

Here and throughout, the same letters are used to denote a body and its volume,
or a figure and its area. Write o for the set of transitional base-points
&%) = G with respect to x _, and 7 o for the chain of transition base-points
%) & B, and lying in A

z(to.sa) — (xiix)’ .. x(i“"l),xg“i_o's) x(i“ﬂ)

(ip—~
< Ty ,Ml,...,xpp),

where

20209 _ 20 4 g 55 5

[»3

Each transitional base-point z°%) & &, is associated with a volume HE =
Soth.t. Denote by A the maximum mean step % o of the mesh w:

h = max max % (z;).
xiEG 1<a<<p

Finally, introduce the time mesh w _ with step 7 and fractional step 7/p:
a ) .
0, == {t,-,,a,p =1 —I—-;'r, i=01,...,Tit—-1=j,a=1,2,..., p}.

All positive constants independent of 4 and 7 will in future be denoted by the
same letter M.

3. MESH FUNCTIONS. OPERATORS

Let y = y(x) be a mesh function defined at the base-points of w. We put

!

y (1.("211))’ yA

(£13) __

y L= =yt oyl =y —y )

With transitional base-points z(*"*x) & ®,. will be associated the function



Multidimensional equation of heat conduction on non-uniform meshes 129

yxi, representing the analogue of the derivative du/dx . With the coefficients

[0
k. (x, 1) will be associated mesh functions a,t = a, (2", t). It will be
assumed that

as® = ko (2", t) + O ((ho*)?), a, = > 0. A

With the functions w, = ko (z, t)0u [ dz., a =1,2,..., p, will be associated
mesh functions W _, defined at base-points of @,: W,* = W, (£&"%, t) =
atyt ,a=1,2,...,p. Weput (xa) i, = (Xa™ — %) /Aa, where

x ’
Xa® = Yo (2**%a), ¢) is a function defined at transitional points of & o

The differential operator La will be associated with the difference operator
A

a

1 (+1g) g -1g)
A= = e LmL vV

With the functions f, we associated the mesh functions ¢4, a =1, 2, ..., p,
satisfying the approximation conditions

@ =f W)y, Tl mE=0((5)?),  pa=0(h?).  (6)

Let } be the space of mesh functions, defined on o and vanishing in y, with
the scalar product

(v,2) = 2 Hyz andnorm |y|= V(,p).

It was shown in [7] that the operators /\a, a=1,2,...,p, are self-conjugate
and negative-definite. Let the mesh functions z(x) and y(x) vanish at base-
points x  y; then,

(Aaz, y) = (2, Aay), —(Aaz, 2) = 80ll2l?, (7)
where §,=4c,/3D? and D is the diameter of the region G.

4. THE FINITE-DIFFERENCE PROBLEM AND
APPROXIMATION ERROR

The initial problem (1)<3) will be associated with the finite-difference
problem: find the mesh function y(x, 1), satisfying the conditions
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Yo = ¥’,

JCE('[);
Yo — Yoy —A
% = Adat P TS0, Y=v(Z ), TSy (8)
a=1721"'7p’ yj'HEyPy xEG)? ]=O) 1"“7]‘“;
y' = u,(z), rTEd,

where the operators A  are given by (5), and the mesh functions ac;I and ¢
satisfy the approximation conditions (4) and (5), while j, = T/7 - 1.

The accuracy of the scheme (8) is determined by the error z,=y, — u'(x,

tis),e=1,2,...,p, =y —u(z,t),j=0,1,...,j,, Wwhereyis
the solution of problem (8), and u(x, #) the solution of problem (1)-(3). Substi-
tuting Yy, = Z. u(x, {j+l)’ yj =z + u(:c, ti)s
problem

for z in (8), we obtain the
Zo = z

) T E H;
2y — 32y A )

— =AY, rzEe; =0, zevy; 9)

(1—_—'1,2,...,1), zj-HEzp’ rTE®, j=0111"'7j0;

2°=0, rE §,
where ‘[’a is the approximation error of the a-th equation of (8);

ui+1 —_— uj .
Yo=—38, — -+ A u?t L @, (10)

where ‘c)‘(x,l is the Kronecker delta, 6,1 =1, 84,1 =10 fora > 1.,

Taylor’s formula is used at the base-points x = »°. Subject to conditions
(4) and (6),

Aqui+t + @a = (Lau + fa)j+l + ('X,a);ga + 0 (h.?),

(11)
where oy -
* ou ( a l: a,
e = {(aa— ) 5z, T8 3 oz T
% [, Ou \1n . "
T oz (/»a e )J}xzx(ﬂ.sa) + Pa* = O ((ha*)?).
At frontier points of w o where fi, > 0.5 (ha* + ho™) = hy,
; * 7o - . '
At 4 g, = Lo ( LOS=LE )+ Qa = —— (L)1 +  (12)
kg e ; o
+ fgfl -+ 0 (h-‘a) = (Lau -+ fa)j-f'l + ‘qja.,
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where
v = 22 (it 0 ).
Hence
P = 0(1) for A, > h,*, Po' = O(ﬁa) for A, = A,".
Noting that

uJ'+1 —_uw ( Ju i1

T Lot

+ O0(1),
and combining (10)-(12), the error ¥ can be written as

Wo=1fn + Yu + (xa) o, + P, (13)
where

. ou i

1Pa=[—5a,1—5t—+Lau+faJ '

Yo = 0 (Fia® + 1), Yot = O ((ha?)?), Yo' =0 if zE00;

(14)

Yo' =0(1) if z&oyandliy, > k"

. =0(h,) if z & wandh, = A,".

Since ;pa—_— O(1),ea=1,2,...,p, it follows from (13) that \Pa =0,
and the finite-difference equations (8) a =1, 2, . .., p) will not approximate

the initial equation at all points x & «». However, on the solution of the initial
problem (1)(3),

P
2 ’li}a =0, e o, (15)

a=1

1.e.

P

H Z Y. |—0 as k—0, 1—0, (16)
a=1

i.e. the scheme approximates the initial problem in an over-all sense. In future,

(8 will be regarded as a composite scheme, approximating the initial problem in

an over-all sense, i.e. as an additive scheme (see {1, 2, 4] regarding over-all
approximation and composite schemes).
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2. Convergence and accuracy of the scheme
1. ISOLATION OF THE PRINCIPAL TERM OF THE ERROR

Following [1-5], the solution of problem (9), (13) and (14) will be written as

Zo = Uy -+ Na, a=12,...,p Z = v 4 7, (17)
].-——-O, 1, .« ,fo,
where the function 7 is defined, at all base-points of w, as the solution of the

problem

N — Na—y
T

i=0,1,...,jp zc=o, 1°=0fr zco.

no=n =0 a=1,2,...,p n=m, (18)

The function v then satisfies the conditions

v, — 0

vy =07, =T -—"T—M—»m——Aqva+-‘i"~a, zE W
Vg = —1), for zEVy, a=1,2,...,p vt =y, z=a, (19)
j=0,1,...,70 V=0 foren,
where
Fo= ot (Xa)s, 9"y Fa=a+ Auns. (20)

Adding Eqgs. (18) fora =1, 2, ..., p, using condition (15) and the condition
7° =0 for x = w, we get

W=0, j=01,...,j, 2=, (21)
while on intermediate layers

erws 0(r),  AgNa=0(v). (22)

P=1
From (20}, (22) and (14},
Po =0 (1 + k7). (23)

Problem (19) has thus been obtained for the function v, where the right-hand side
of each equation i »0as k>0 andr -0 at strictly interior base-points

ze o [Vl —+0 as h—>0,1—0; vg=—1,—0 as~ -0 at boundary
base-points ze=v; a==1,2,...,p.

Put
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P= (Va—Vet) [T— Aale, Vo=10, v, =",
The solution of problem (19), i.e. v, can be written as the sum
v =) 4 p® 4 v® 4 v®), (24)

where v n -1, 2, 3, 4, are the solutions of the problems

P =0, =0 V) = — 14, zey, a=1,2,...,p, (25)

i=0,1,....50 Vv®),=0 z&0;
Pv® = ", z < w; ve® =0, =zev, a=1,2,..,p, 26)
j_01 corde V=0, z=o;

P,v® = g, e w; va® = 0, zEY, a=1,2,...,p, (27)
i=0,1,...,500 v®|g=0, z=uo;
Pav(‘l).-:(xa)x»l, rzeo0, vW=0 z=y, a=1,2,...,p, (28)
i=01,...,js V@0e=0 z=o0

2. THE MAXIMUM PRINCIPLE AND BOUNDS FOR v‘"), v, 3

In [1-3], the scheme 8 was considered with operators Aa, somewhat different
from the operators considered in the present paper, in fact, the operators

1 -
A’ Y= r [az y:x:al Ay yxa]y

where A,* = 0.5(he* + h,~) at all base-points of the mesh w, were taken as
A,. The operators A’ are the same as the A defined by (5) when the set of
boundary base-points y e R, sothat h,=0.5(z Gath) _ ) = fi,*

at all base-points of w (at strictly interior base-points x = w the equation

fie = h,* always holds). The maximum principle and associated theorems
were used in /2] to obtain a priori estimates for the solution of problems (25)-(27)
with operators A,"(a=1, 2, ..., p) on a uniform mesh Rph with steps h_ =
const, a =1, 2, ..., p (the mesh w is only non-uniform at frontier points where
h,* 5= h,) . The method of obtaining these estimates was in no way connected
with the uniformity or otherwise of the mesh. Each base-point P = (x, t) of the
space-time mesh Q= {m X m,} was associated with a set of base-points
S(P) (the pattern of the scheme) and a set ' (P) = S(P)\ P (the neighbourhood
of base-point P). At each P e !}, the finite-difference equation is written in
the canonical form, while a boundary condition is imposed at the boundary
base-points P &7 = {y X .}  We consider the problem

APyyPy= D BP,Qy@Q) +F(P) fo P=Q, (29)
Qe S'(R)



134 A. A. Samarskii and 1. V. Fryazinov

y(P) =v(P) for Peo,

where A(P) and B (P, Q) are coefficients of the scheme. Introduce the norms
..o =max |y (P)}, l.o= ,
1yle.e ma |y (P)] 9]0 rgggl’y(i’)l
1Yk, = max |y(z, ¢) |
YEw
and denote by D {P) the quantity

D(P)=A(P)— X B(P.Q).
QeS8 (P)

The following theorems were proved in '2].

Theorem 1

Let A(P) >0, B(P, Q) >0, D(P) = 0. Then the following holds for
problem (29 with v(P) = 0.

tylle. e << llvlle. 3. (30)
Theorem 2

Let A(P) >0, B(P, Q) >0, D(P) >0. Then
lglle.a << IF /DI, o (31)

for problem (29) with 1 (P) = 0.

Let y(P) - 0. Then, with P & {0, X o} = Q, the summaticn in
equation (29) is actually over interior base-points only of the mesh Q& S
(PN = St (P). At strictly interior base-points P & {0’ X o} = Q°
put St (P) = S'(P). We put

D(P)=A(P)— 2 B(P, Q).
Qe S'(P)

Theorem 3

Let D(P) =0 and F(P) 0 for P=Q°, D(P) >0 with P=Q,;
A(P) >0, B(P, Q) > 0. Then

F(P) " _ (32)

1.0 << max
Pc=Q

v| D(P)
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for the solution of problem (29) with +(P) . 0.

Bounds can be found for the solutions of problems (25) and (27) by means of
Theorems 1-3. In the case of functions v(!’ and v(?’, we select the four-point
pattern

S(P) = {P = (z, tisarn), (2*'9, tias), (2, tista—1yn) ).

Equations (25) and (26) may be written in the form (29). It is easily shown that the
conditions of Theorem 1 (A(P) >0, B(P, @ ~0, D(P) - 0, and F(P) = 0, are
satisfied for problem (25). From (30), (25) and (22) (see also the bound (57) on

p. 379 of 12),

1o, o < M. (33)

The conditions of Theorem 3 (D(P) -~ F(P) - 0 for P e Q"; F(P) = ¢,
D(P) >0 whenPe=Q ; A(P)-0,B(P, Q@ ~0and v(P) - ) are satisfied for
problem (26). It turns out ﬁere that

D(P) = ¢,/ h* >0, pPe=Q,. (34)
From (32), (34) and (14) (see also the bound (58), on p. 380 of [2])

No@lle, o << M2 (35)

Finally, consider v¢3). Choose the three-point pattern

S(P) = {P = (z, t:H»a/ﬂ), (x(iia), t1+a/p)}

and write (27) in the form (29). Then,
(v@®)+alp
i3

B(P, Q) >C for P=Q, v(P) =0 for P=0.

F(P) = L yiee,  D(Py=1/t, AP)>0, (36)

The notation, here and below, is

(e =P, (VO = p,®), PP = P, ete.

From (36), the conditions of Theorem 2 are satisfied. From (36) and (31),
| (@)rerel, , < (@) e 4 TP, . (37)

Adding inequalities (37) over all indices o and j, using (23) and the condition
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19,20 =0, we obtain (see also bound (59) on p. 381 of [2])
NOlle, o < M (R* + 7). (38)

If the solution of problem (28) is considered similarly, and we note that (%) 24
= J(%,),on a non-uniform mesh, we obtain from (31):

0Ol 0 < Mh. (39)

The bound (39) is too crude, so that the method of energy inequalities of the
n-th rank must be used when finding a bound for v¢4).

3. A PRIORI ESTIMATES OF THE n-th RANK.
A BOUND FOR v

Consider v(*’ in the mesh norm of C. The a priori estimates ofithe n-th

rank obtained in [6] will be used. Introduce the functions v0= b —
n n , yo e
v="10* and write equation (28) for (v(*?) 2n, To simplify the notation, we

shall simply write v instead of v(*’. Then (see [6])

Y

n n n—1

n k
Ya—Va1 A p.+ L D) 2n-k-1 v.{»‘“kﬂ{ otaat (Vaxg)? + (40)
't h(l k=‘0

v k kR 2

_ Vg — Vg-— v
thotar g + (Lo ) = o, we= 2ot

We put

W D)2g= D ytha.  (w), = 2 o)k,

xEZ o ¢ :&(+o' 5(),)62(l
Wize=VW: 920 |2l = V(w,0),,
n-1 n-~1 v "n""k +1 & &
Ia= zn-k-x( o + ha*ae* (Vaxy)® + ha™ Ga (Vaxy)® +

k=0

Bk .
i)
(),

Equation (40) is multiplied by %, and the result summed over the chain Z:

n n
(Va, 1)2@ — (Wa-n 1)z,
T

n-1
+1a=2" (v Ka)z )z o (41)

The following bound was obtained in [7] (see also [6]) for the right-hand side
of (41):
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2| g (hadz,)za| Suf, + My @M gl (42)
[

where M, = V@2D)/¢, and D is the diameter of the region G. Using (42) to obtain
a bound for the right-hand side of (41), the result is multiplied by s ai and summed
over all the chains Z ;. We get

n n_
(vitalp 1) — (vitlo-
T

) n R n
220 < MM M2 max e . (43)
Qa

~ n n
Here, M, = max Zsa, Q, is the set of all chains Z , and »¥**/? = p,,
n 'nu Qq,
prENr =y, P = y.. We sum (43) over all a and j. Since v = v =

Oat¢=0,
2 (vreeirp" H < MM, (2°M)7 max - max [y+</p . (44)
o Js o

Next, a lower bound is obtained for the left-hand side of (44), in the same way as
in [3, 7). The 2~-th root is extracted on both sides of the resulting inequality.
As in (7], n is taken to be dependent on Hx. On strengthening the resulting
inequality, the final result is

o@D, e <M ln Yy max max | y/+*P ||~ (43)
Qa

.

where V, is the volume of G and M = const is independent of r and A. From (45)
and (14), we obtain instead of (39):

o, o << ME*1n (Vo[ H.). (46)

Finally, from (44) with n = 1 and (14),
ool << Mn?. (47)
Since |lvll << llvlle, 0¥ Vo, the following estimates in the mesh norm of L, are

obtained from (33), (35), (38) and (22):
o] < M~ lo®] << Mh?, lo®ll < M (B* 4 1), (48)

Inll <M<
4, ACCURACY OF THE LOCALLY UNIFORM SCHEME (8)
ON NON-UNIFORM MESHES

The accuracy of the scheme (8) is determined by the error z = y - u, which
satisfies conditions (9). In paragraph 1 of Section 2, the error z was written in
the form
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2o = U(‘xl) -+ ng) -+ U((xa) -+ v((zq) -+ Ya. (49)

The bounds (21}, (22) and (48) have been obtained for 7, the bounds (33) and (48)
for v{*?, the bounds (35) and (48) for v(?’, the bounds (38) and (48) for v(3?,

and bounds (46), (47) and (39) for v4’, Combining these bounds and noting (49),
the following resulis are obtained.

Theorem 4

The locally one-dimensional finite-difference scheme (8) is uniformly
convergent on an arbitrary sequence of non-uniform meshes as the mesh steps
tend independently to zero. Also,

ly —ulle, o < M[R*In (V,/H.) + 1]. (50)
If the conditions
moh? << H{z) << h?, (51)

where m, = const >0 and % = const > 0 are independent of / and 7, are satisfied,
we then obtain from (50):

ly — ulle,o << M[A*In (D ] k) +- <}, (52)
where D is the diameter of the region G,

Theorem 5

The locally one-dimensional finite-difference scheme (8) is convergent in
the mesh norm of L,(w) on any sequence of non-uniform meshes; also,

ly — ull << M(R* 4 7). (53)
Note. Similar estimates apply for problem (1}4(2}, where
d du Ju
Luu:”(‘;;;(ka%;)'%bam—qau’ kyzea>0,

and for the corresponding monotonic {2] schemes. If b, # 0 or g, < 0, the ine-
qualities (50) and (51) hold for r < 7, = const.

3. A locally one-dimensional scheme for the second and
third boundary value problems
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1. FORMULATION OF THE PROBLEM

Let G be a region consisting of p-dimensional parallelepipeds with faces
parallel to the coordinate planes (stepped region). The boundary I" of the stepped
rcgion G consists of pieces I' of hyperplanes orthogonal to the coordinate axes

, Ta=T4tU I‘a , where 1 Pand I'” . are the right- and left-hand pieces of

thc boundaryT .- 1,2, ..,p As bLfore
QT=Gx(O<t<T), O0r=GX (0<t<T,
G=G|T.

Consider the following problem: find the function v - u(x, ¢}, continuous
in Q. and satisfying the equation

_g;‘_=§‘,{aﬁ (ka(x,t)ai;‘g)Jrfu(x,t)}, (e.)=Qr, (54

a=1 &
and the boundary and initial conditions

Tk (2, 1) aa;‘
@

E(z, ) u=voE(z, 1) if 'z=Tge, (59)
0t<LT, a=1,2,...,p;

u(x,0)=uy(x) if =z =G,
where kg, 0.%, voF, o are given functions, and

ko(z,t) = ¢, = const > 0, 0.t = 0. (56)

It 1s assumed that the problem (54)-(56) has a unique and reasonably smooth
solution.

2. THE MESH. CLASSIFICATION OF BASE-POINTS. NOTATION

The mesh Rph is constructed in such a way that the pieces I’ ai of the
boundary I" belong to the hyperplanes z, = xa(‘s,) s=1,2,...,M, a =1,
2,...,p. Consider the base-point mesh @ = R,," N G. Denote by y_ the
set of @ base-points belonging to Iy, and by w? the set of the other base-
points of w. Notice that w includes all the base-points z = G (z & R,"NG),
and also the base-points belonging to the pieces I‘\F of the boundary
F(z= R, N (I‘\I‘u) It will be sald that z =7, if xE—yq and the

mtervah (x z u))EG Write Yu = Yu\Ya, where Yu—Ya U Yu )
\u = y(, U y“ , and yg*, y(, and *Ya , Yo~ arc the sets of right- and left-

.k .
hand base-points of y_ and y,. Denote by © the set of interior base-points with
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*
respect to the direction ox : 0g = 0% J Ya.

As above, after introducing the steps h " and h_ we put

0.5 (ha* + ba™)y T E 04,
Fig = { (57)

0.5h47, & Yot
Each base-point x G is associated with a volume H (x) & (3, bounded by
pieces so:—'of hyperplanes through the transitional points z**5:) = G and
orthogonal to the axes 0x s and also, in the case x & I", by the piece s(x) of
boundary I'. If a base-point x & w is a boundary base-point with respect to the
directions 0%y, 0Za, ..., 0L, , m < P, then

m
s(z)= D) ap
k=1

where
o
_ SG*, x E YG:F'
SG. = *
|3u+—3a—|. r & Ya-
I, X,
X,
A
% %] I
I I,
z, e 29
|7
I X
! Z, Lo w0 !
FIG. 1.

The volume H(x) is obtained from

0.5k st =FigSq, & Yar (58)

H(z ={
(=) 0.5 (ha*se® + ha™sa™), & 4.

In Fig. 1, A denotes a base-point belonging to the set(;/‘l, O a base-point
belonging to }3;‘, V one belonging to ;',, o one belonging to ;,’f, and x one
belonging to w?. The areas H (x), corresponding to base-points x,, x, and x,,
are also indicated:

H (z5) =1/sh* (23) hy™ (25),

H (zg) = Y [hy* (24) (hy* (z4) + hy™ (24)) + By (24) By (z4)],

H (215) = Ya (hy* (213) + 7y~ (213)) ho* (215)-
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A time mesh « with step 7 and fractional step 7/p is introduced in the same way
as before. The space-time mesh is written as Q= {® X o:.

3. THE FINITE-DIFFERENCE OPERATORS AND THEIR PROPERTIES

Denote by A o the operators corresponding to the differential operators L
(@ -1,2, ..., p). As above, at the base-points = & w,", we put
1 g _ N
Aol = (@oYx, )5, =5 | @a” _1,1___+_y__ — dg g"*i:'-‘— , TE W0 (39)
wlFe T Ro hq g

Consider the base-points r e ;}a. At base-points of ¥, up to O(h-),

9 [, Ou\ __ ou - (-0.50)
L“uzc’)_%“(k“m>~{k“(x’ t) ‘5}:(?’ 1y kg (277, 1) X (60)
ou (-0.5q) :j -}-1
X 7o (z 1) | (0.5hg7)7L
From (4) and Taylor’s formula,
- MU, (o5 u —utto
ko (27009 1) Y. (@, 1) = aq"—5=——* O((ha™)). (61)
11 &
From (55}, (60) and (61),
— (o' + vg*) — aq7Ux , o
Lou = 0B 2+0(hy) i zEva* (62)
Similarly, if z {:a“"
(o U Vo) + agtuy .
Lo = —— 0‘52(; L Ot i Sy (63)
Recalling (62) and (63),
T @ Y, — (Gau - vet) .
Aoy = —— a().élz.;r- — i Syt (6%)

Finally, consider base-points z & -§’a. We introduce weighting factors 8, = §,*
when r & v~

S N Soha” *

8’ = H 18" = 2H if z ET 2’ $a” > Sa",
65)
...7- < ] + . *
ﬁu‘ = S(}{l“ ’ 1 — 6(1- = sg;; i z= Yo s Sa” <S°‘+

(8g == 8 =1 ifs (: =s ). At base-points z < \v;i we approximate L u
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by adding expressions (59 and (64) taken with the weights 6 and 1 - O respecti-
vely. Put

| FaaFyy, — (5uty + vaF)
Al = 8T (@a¥xg )z, (1 —65%) [ : a0.5/¢;+ -

if zevy,t Using (65),

1 +,4 4t -7 =y 3 [ i "
Nl = _[{—(Sa Ga Yxg -~ Sa @a Yxy — Sa (Gaty +voh)) if = Yot . (66)

The operator L 1s associated w1th the finite-difference operator A , given by
(59), (64) and (66) Operators /\ will now be defined, correqpondmg to the
operator L _ and the homogeneouq boundary conditions (55):

N o .
(auyxa) . 2 & = 0y

~ T agFyE, — sty 5
A\uy = 0.5ha- y L E’Yﬂ.‘_i (67)

1 - *
=7 (5a*@a*Ysy — Sa@a Yx,— Sa%u™Y), T E Vot

We also introduce the function

Pas T (:30.'
~ ‘Vai — +
ba={ P g 0 FEWT (68)
< + »
QPa — ba}:’ , LASEVES

Comparison of (67), (68) and (59), (64), (66), shows that
Kay + o = Aoy + Pa.
Let H be the space of mesh functions defined on the mesh w, with scalar product

(v.2)=2yzlH,  |yl= V(v

(The summation is over the closed reglon ® = o y.) It can be shown by
direct evaluation that the operators \ in } are self-conjugate and non-positive:

(‘/\a:', y) = (Z’ A(ly)7 ( «Ys Y ) < 0. (69)

When o0,* =0, 6.t 4 0, >0 the operators A  are negative-definite. We
also introduce the norm

1Yl o= (m&;)x al ylz 0.
X, hHe



Multidimensional equation of heat conduction on non-uniform meshes 143

4. THE FINITE-DIFFERENCE PROBLEM. ACCURACY
OF THE SCHEME

The initial problem (54)-(56) may be associated with the finite-difference
problem
=y if z€;
Ya -~ Yo

- :T\uyq—}—FPG, reo, a=1,2,...,p: (70)

yj+15yp, rEo, i=0,1,...,70 Y =u,(z), zSo,
where  jo=7T/7t—1; Ag, G are given by (67) and (68).

Notice that, in each chain Z o the a-th equation of (70) connects, at base-
poinis z &y, the values of the required function y _ at two neighbouring base-
points x and x (-1 (x and x(H' @), if « Eoya* (x= ;a‘), or at base-points
of Z _ belonging to the set o o at three neighbouring base-points zi='a), z, z(*'@),
The solution of (70) is found by the pivotal condensation method in each chain
Z .. The a-th equation of (70) has to be solved in all the chains zZ o 1ncluding
those whose base-points belong to the boundary I'. For instance, with p = 2 and
the region shown in Fig. 1, Eq. (70) with o - 1 must also be solved in the chains
of base-points belonging to the intervals [z, zio), [2, 25], [3, 27], [, 6],
and with o« = 2, in the chains of base-points belonging to the intervals

Ixh 13], [121 2‘]' [I“, I;], [xw, 1911

By using Theorems 1-3 and the a priori estimates of the n-th rank, the
locally one-dimensional scheme (70) can be shown to be uniformly convergent
in a sequence of non-uniform meshes. We have

Theorem 6

The locally one-dimensional scheme (70) is convergent in a sequence of
non-uniform meshes as k - 0 and 7 > 0 to the solution of problem (54)<56); also,

by —ul, g <M R IVH) +11,  |y—u|<M (),
With condition (51),
ly —u “r?) <M [*In(D/h) + 1].

If o.* << ¢, = const <C 0, the bounds of Theorem 6 only hold when 1 < 1,
(ci, ¢:) 1is small. The note on Theorems 4 and 5 again applies.

Translated by D. E. Brown
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