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WE examine the convergence of a locally one-dimensional scheme (see 11-51) for 

solving, in a sequence of non-uniform meshes, the fist boundary value problem 

in an arbitrary region, and the second and third boundary value problems in 

stepped regions, for the equation of heat conduction containing no mixed deriva- 

tives. 

It will be shown that the schemes considered are convergent in the mesh 

norm of C in a sequence of non-uniform meshes at the rate 0 (h’ In (V. / H,) + 7)) 

where r is the mesh time-step, V, the volume of the region G, and h the maximum 

step of the space mesh R h : 
P 

h = max max fia (xi), 
+Gl<a,<p 

where A, (Zi) is the mean step of Rph at the base-point xi in the direction of 

the coordinate axis OX~, a = 1, 2, . . . , p, and p is the number of dimensions; H* 

is the minimum cell volume, 

H. = minH (5i), H (xi) = ij fia (4. 
Xi& cl=1 

The convergence rate in a non-uniform mesh is estimated in the present 

paper by using both the maximum principle and the method of energy inequalities 

of the n-th rank developed in 161 (see also 131); this allows the solution of the 

finitedifference problem to be estimated in the mesh norm of L , where n is an 

arbitrary integer. From this estimate, the convergence in the m2e”sh norm of C 

is obtained. If only the maximum principle and the associated theorems are 

used, too low a convergence rate estimate is obtained for the scheme. When 

*Zh. u:cchisZ. Mat. mat. Fiz., 11, 3, 642457, 1971. 
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obtaining a priori estimates of the n-th rank, the finite-difference operators A,, 
corresponding to the differential operators (a / 8~~) (,& (z, ‘t) d f 8~~) (rind to 
homogeneous boundary conditions) would have to be negative in any non-unifornl 
mesh. The operators chosen in !31 do not retain their negative properties for 
all regions G and meshes Rs”. In the present paper, negative operators (on any 
non-uniform mesh in any region), as introduced in r71, are used for 14~. 

Section 1 and 2 will be concerned with cons~ucting, and investigating the 
convergence of, a locally one-dimensional scheme in a non-uniform mesh in an 
arbitrary region, in the case of the first boundary value problem. In Section 3 
a locally onedimensional scheme is developed for solving the second and third 
boundary value problems in stepped regions. These schemes are also uniformly 

convergent at a rate O(h* in{ V0 /H*) + z) . 

1. Formulation of the problem 

1. THE INITIAL PROBLEM 

Let Z==(fi, X2, ..*, z,) be a point of p-dimensional space RP9 G a region 

bounded in RP with boundary l?, and C = G U l? It is assumed that the inter- 

section of G with a straight line through the point x E G and parallel to the axis 
oxQ consists of a finite number of intervals. For simplicity, it will be assumed 
that the in~rsection in question in fact consists of just one interval A (x= A,(x). 

WeputQ,=GX (O<t<.?‘),&=GX (O<t<T). 

and 

Consider the following problem: find the function U(SC, t), continuous in Qr, 

satisfying the equation 

the boundary and initial conditions 

Here, L,, a = 1, 2, . .., p, are one-dimensional elliptic operators 

L,u = -g- ( k, @, f) -&) 9 ku (2, t) 2 cl = const > 0. (4 
a a 

It will be assumed that the problem (lf-f3f has a unique solution, reasonably 

smooth in aT. The same assumptions as in [31 will be made regarding the 
smoothness of the input data, i.e. the functions kc, (x, 2)) fa (z, t), a = 1, 2, . . . , 
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p, v (5, 2), u,,(z) and of the solution u = U(X, t) of the problem (l)_(3). 

2. THE MESH. CLASSIFICATION OF THE BASE-POINTS 

The same notation as in [71 will be used. A mesh 0 is constructed in 5 and 

its base-points classified in the same way as in I71. 

We draw p families of hyperplanes 

za=&, i,=O,_tl,..., a=1,2 )...( p, xp>zy). 

The points xi = (z$), . . . , xzp)) of intersection of the hyperplanes will be 

said to form a mesh Rph in space Rp. Points xi of the mesh belonging to G will 

be called interior base-points; the set of interior base-points is denoted by o, 

w = Rph 0 G. The set of ends of the intervals Au(x) drawn through the base- 

points x E o will be called the set of boundary base-points with respect to 

the direction xc( (with respect to x~) and will be denoted by YG Y= Tz Ya+ 

u Ya-9 where y,’ and ywU are the sets of right-hand and left-hand boundary 

base-points with respect to xa, while Y = u Ycl is the set of boundary base- 
a-=-i 

points. The set of interior and boundary base-points will be termed the mesh o 

inG, G =ouy. The set of base-points lying in the interval Aa will be 

denoted by Za. The set consisting of the base;ppipts x E Q, and of the ends 

of intervals A, is denoted by Ea. Denote by x a and x(-l a) the base-points 

nearest to x E z, on its right and left, and belonging to Za. They will be 

called the neighbours of x with respect to xG: 

,p,) 
ZZ 

(,W 
1 , . * * 7 

5(ia_ll, Z(iafl) 
a-1 a 

, .pa+d ,W) . 
a+1 ‘...’ p 

We shall say that x E w is a near-boundary or frontier base-point if one or more 

of its neighbours, with respect to any direction x,, a = 1, 2, . . ., p, belongs to 

y. The set of frontier base-points is denoted by wy, and the set of all other 

interior base-points by a’, so that o = o, U 0’. 

The distances between a base-point x E w and its neighbours dAia) E a 

will be termed the mesh steps and denoted by ha’, a = 1, 2, . . . , P, 

j&&+ (5) = 5(fi,) - x, h,-(z) = J: - A-‘a), IL,+ (5) = ha- (d+‘a’). 

The steps 

& @) = fi, (Q’ ) = 0.5 (JJa+l) - z(ja-1)) ) 

where +-t-i) are the coordinates of points of the mesh R h (but not of the mesh 
P 
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w), will also be introduced. Obviously, h, depends only on the coordinate X, 

(the index i,). At base-points x E w” we have A, = 0.5 (h,+ f h,-) . At 

frontier base-points 

Ii, 2 0.5(&+ + ha-) = fi,*. 

Each x E w is associated with a volume H(x), bounded by the pieces ,?a’ of 

hyperplanes orthogonal to the axes ox, and passing through the points 

(~+*‘a) + 5) / 2, ~(*‘a), t E R,*: 

H (4 = fi k (4, Szf = fi tip(x). 
a=1 p=1 

b=ba 

Here and throughout, the same letters are used to denote a body and its volume, 

or a figure and its area. Write oa for the set of transitional base-points 

X(f”.sJ E G with respect to xg(, and 2, for the chain of transition base-points 

~(*O.~ar E 13, and lying in A : a 

where 

.$,*0.5) 
a = zy & 0.5h,‘. 

Each transitional base-point x(*~JJ E 6& is associated with a volume Hf= 

sa*h,*. Denote by h the maximum mean step fia of the mesh CC): 

h = max max A,(sJ. 
“iEG 1qr,<p 

Finally, introduce the time mesh (tiT with step 7 and fractional step T/P: 

0, = 
1 

tj+a/p = tj +a~, j = 0, I,..., T/t - 1 = jo, a = 1, 2 ,..., p . 
P I 

All positive constants independent of h and T will in future be denoted by the 

same letter M. 

3, MESH FUNCTIONS. OPERATORS 

Let y = y(x) be a mesh function defined at the base-points of c:. We put 

With transitional base-points x~*“.‘J E 6,. will be associated the function 
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y ‘, representing the analogue of the derivative au/&,. With the coefficients 

kz?r, t) will be associated mesh functions a,t = u,(&~.‘z), t). It will be 

assumed that 

ua* = k, (~(+‘.“a), t) + 0 ( (Iz,+-)~), aa.+ z Cl > 0. (4) 

With the functions u’, = l,za(.z, t)au / dxa, a 

mesh functions Wa, defined at base-points of 

a% yza, a=l, 2, . . . . p. We put (x=) ;z 

xa* = Xa (#O.Q) , t) is a function defined 

= 1, 2 * * t P7 will be 

0,: & = H’,(&~.5a!, 

associated 

t) = 

f (xa’ - xa-) / A,, where 

at transitional points of da. 

The differential operator LQ will be associated with the difference operator 

A : a 

1 
hry = (K+ = k y 

(+l,) _ y y _ y(-‘a) 

’ (5) 
1 

h,+ -‘, h,- I 
With the functions f, we associated the mesh functions da, a = 1, 2, . . . , p, 

satisfying the approximation conditions 

cpx = f%’ + (P.1) ga + IL /-Lx’ = 0 ((hl*)2), EL3 = 0 (i&2). (6) 

Let x be the space of mesh functions, defined on z and vanishing in y, with 

the scalar product 

(Y, z) = ~HYZ and norm II Y II = V/(Y, v)- 
0 

It was shown in 171 that the operators Aa, a = 1, 2, . .., p, are self-conjugate 

and negativedefinite. Let the mesh functions z(x) and y(x) vanish at base- 

points x E y; then, 

(&J, Y) = (z, AaY) t - (~4 2) 3 6ol1412, 

where & = 4c, / 3D2, and D is the diameter of the region G. 

4. THE FINITE-DIFFERENCE PROBLEM AND 

APPROXIMATION ERROR 

The initial problem (l)_(3) will be associated with the finite-difference 

problem: find the mesh function y(x, t), satisfying the conditions 
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yo f I/j, XE a; 

Ya - Ye-1 
7 

= &Yy, + cpm, 3E@, Yz = y (“tr, tj+l), 5 E yz; 0) 
a = 1, 2, . . . ) p, y’+’ = y,, Lx= Q, j=o, 1, . . . . jo; 

Y0 = &l(z), s=l3, 

where the operators Aa are given by (9, and the mesh functions aa’ and do: 

satisfy the approximation conditions (4) and (5), while i0 = T/r - 1. 

The accuracy of the scheme (8) is determined by the error .za=ga - ~‘(5, 

tj+i), U=l, 2, . . ..p. Zj=yj-u(Z, tj),j=O, 1, . . . . io, where y is 

the solution of problem (8), and U(X, t) the solution of problem (l)-(3). Substi- 

tuting y, = Z, + u (2, tj+l), yi = zj + u (5, t3), for z in (8). we obtain the 

problem 

zo = zj, 5E 8; 

& - Z&l 
r 

= nzza $ Y,, 2 Cz 0; 21 = 0, z E y; (9) 

a=l, 2, . . . . p, zj+l ~ 
ZP, a:EG, j=o, 1, . . . ( jo; 

zO=O, x=0, 

where Pa is the approximation error of the a-th equation of (8); 

(10) 

where 6, , is the Kronecker delta, 6,,, = 1, 6,, i = 0 for a > 1.. 9 

Taylor’s formula is used at the base-points x E 0’. Subject to conditions 

(4) and (6), 

where 

At frontier points of wy, where tz, > 0,5(ha+ + ha-) E ha*, 

1 ,+‘pz = + (L,u)j+l + (12) 
LX 

+ p + 0 (Iii) = (Lu + fa)j+l + $z*, 



Hence 

$z’= O(1) for ti, > tt,*, &’ = 0 (A,) for Fz, = A,*. 

Noting that 

and combining (lo)-(12). the error YQ can be written as 

and 

$01 = 0 (W + z), x2- = 0 ((ha”)2), I#~* = 0 if 5 E 6&O; 

(14) 

$t = 0 (1) if x E q,and&, > A,‘; 

$,*= O(fi,) if x E orand& = A,‘. 

Since & = O(l), a = 1, 2, . . . , p, it follows from (13) that Ya == O(l), 

the finite-difference equations (8) n = 1, 2, . .., p) will not approximate 

the initial equation at all points x E I~). However, on the solution of the initial 

problem (l)_(3), 

(15) 
a=1 

i.e. 

a=i 

i.e. the scheme approximates the initial problem in an over-all sense. In future, 

(8) will be regarded as a composite scheme, approximating the initial problem in 
an over-all sense, i.e. as an additive scheme (see [l, 2, 41 regarding over-all 

approximation and composite schemes). 
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2. Convergence and accuracy of the scheme 

1. ISOLATION OF THE PRINCIPAL TERM OF THE ERROR 

Following 11-51, the solution of problem (9), (13) and (14) will be written as 

& = UC4 + rc&, a= l,Z,...,p, .d = t,G + $, (17) 

j = 0, 1, * 0 . ) jP, 

where the function 7) is defined, at all base-points of W, as the solution of the 

problem 

qo = $l 
rln - Q-1 = a 

z Q iL* a=$,2 ,*.., p, r++l s qp. (18) 

j=O,I,~.~,jO, zEw, rjO=O for zEG. 

The function u then satisfies the conditions 

DO ziz$* 5 E w, 
va-va-i 

z 
=&Oa+ Fctv SEW; 

vu = -qa for xEy, a=& 2, .._,p, $+i = -vv,,zE(3, (19) 

j=O,$,. . * * , lo, v*=o for XEGj, 

where 

K = $, + (XLZ) ;.& + G’, $a = $\c’a. + &%. (20) 

Adding Eqs. (28) for a = I, 2, . . . , p, using condition (15) and the condition 

71’ = 0 for x E 0, we get 

q’ = 0, j = 0, 1, . . . ) jo, XEQ, (31) 

while on in~rmedia~ layers 

TJa. = z i $p = O(2), harla=O (r)s 

f-1 

From GO), (22) and (141, 

(22) 

+$kG = 0 (z + fZ‘2). (23) 

Problem (19) has thus been obtained for the function v, where the right-hand side 

of each equation ‘I’ CI -+ 0 as h + 0 and r + 0 at strictly interior base-points 

z E 0”; IIW * 0 as h+O,~+0; u~=-~~+O as 7 +O at boundary 

base-points r E v; a = 1, 2, _ . . , p. 

Put 
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P,v = (va - v,_t) IT - A&, vo = vj, v, Es vj+i. 

The solution of problem (191, i.e. u, can be written as the sum 

v = VP) + VP) + UP) + VP’, (24) 

where UC”), n 1 1, 2, 3, 4, are the solutions of the problems 

P&(l) = 0, LEc!Jw; v,(l) = - Tlr, 5 E y, a=l,2 ,...p P, (25) 
- 

j = 0,1, . . . 1 j#J, v(1) It=0 = 0, SEW; 
P,v@) = $a’, x f!z w; v,(2) = 0, 5 E y, a = 1, 2, . . .( p, 26) 
j = 0, 1, . . . , jo, v(3) jlzO = 0, x&i; 

P,v(3) = ij,, xE:o; v,(3) = 0, XEY, a=1,2 v..., p, (27) 

j=O,l,..., jo, v(3) I+() = 0, X&i; 

Pa@) = (Xa);zt. X E 0; z&t*) = 0, XEy, a = 1,2,. . . , p, (28) 

j = &I, . . . , jo, v(4) It=0 = 0, x&i. 

2. THE MAXIMUM PRINCIPLE AND BOUNDS FOR u(l), II(‘), uc3) 

In [131, the scheme 8 was considered with operators Aa, somewhat different 

from the operators considered in the present paper, in fact, the operators 

A=‘$/ = +- [ux+y:, - k-y;,], 
x 

where h,’ = 0.5(Iz;+ + h,-) at all base-points of the mesh w, were taken as 

A a. The operators A’ c[ are the same as the Aor defined by (5) when the set of 

boundary base-points y E R,” so that h, = O.~(X(Y~+~?-Z~~-~)) = h; 

at all base-points of w (at strictly interior base-points x E cd” the equation 

h, = ha* always holds). The maximum principle and associated theorems 

were used in 121 to obtain a priori estimates for the solution of problems (25)-(27) 

with operators Aa’ (a = 1, 2, . . . , p) on a uniform mesh Rph with steps h, = 

const, a = 1, 2, . . ., p (the mesh o is only non-uniform at frontier points where 

h; # h,) . The method of obtaining these estimates was in no way connected 

with the uniformity or otherwise of the mesh. Each base-point P = (x, t) of the 

space-time mesh Q = {o X or} was associated with a set of base-points 

S(P) (the pattern of the scheme) and a set S’ (P) = S(P) \ P (the neighbourhood 

of base-point P). At each P E 3, the finitedifference equation is written in 

the canonical form, while a boundary condition is imposed at the boundary 

base-points P e9 = {y X a} We consider the problem 

BOY= 2 B(P,Q)Y(Q)+F(P) for PEQ, (29) 
QES’(W 
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y(P) =v(P) for PEG, 

where A(P) and B(P, Q) are coefficients of the scheme. Introduce the norms 

II Y IL o = max ly(z, t) 1 
2x3s 

and denote by D (PI the quantity 

D(P)=A(P)- 2 B(P:Q). 

The following theorems were proved in ‘21. 

Theorem 1 

Let A(P) > 0, B(P, Q) > 0, D(P) 3 0. 

problem (29) with v(P) = 0. 

Theorem 2 

Let A(P) > 0, B(P, Q) > 0, D(P) > 0. 

IlYlle,o < ll~/m4,, 

for problem (29) with I/(P) G 0. 

Then the following holds for 

(30) 

Then 

(31) 

Let y(P) z 0. ‘Then, with P E {Q,, X mr} E 52, the summation in 

equation (29) is actually over interior base-points only of the mesh Q E S 

(P) n Sz = s (I-‘). At strictly interior base-points P E {a0 X o,} 3 !2’ 

put St (P) = S’(P). We put 

D(P) = A (I’) - 2 B (P, Q). 

Theorem 3 

Let 6(P) = 0 and F(P) = 0 for P E Sz”, B(P) > 0 with P E CL,.; 

A (P) > 0, B(P, CI) > 0. Then 

IIY Ilc,s? Gpy*x _F ’ 
i i Y D(P) (32) 



for the solution of problem (29) with r](P) 0. 

Bounds can be found for the solutions of problems (25) and (27) by means of 

Theorems l-3. In the case of functions UC*) and UC*), we select the four-point 

pattern 

Equations (25) and (26) may be written in the form (29). It is easily shown that the 

conditions of Theorem 1 (A(P) > 0, B(P, Q) ‘_, 0, D(P) 0, and F(P) = 0, are 

satisfied for problem (25). From (30), (25) and (22) (see also the bound (57) on 

p. 379 of 121), 

lIU(‘)llC, n d Mr. (33) 

The conditions of Theorem 3 (n(P) -= F(P) _ 0 for P E V’; F(P) = $a*) 

n(p) > 0 when P E R ; A(P) 2 0, B (P, Q) ,O and I’(P) = 0) are satisfied for 

problem (26). It turns out h ere that 

D(P) > Cl I IL2 > 0, P E Q,!. (34) 

From (32), (34) and (14) (see also the bound (58), on p. 380 of t2l) 

(35) 

Finally, consider u(j). Choose the three-point pattern 

S(P) = {P = (5,4+a/p), (z(*‘a), h+cz,,)} 

and write (27) in the form (29). Then, 

(uW)j+a/, 
F(P)= ‘5 + $j+wp, D (P) = l/z, -4(P)>% (36) 

B(P, (,) IIC for PES2, v(P) =0 for PEO. 

The notation, here and below, is 

From (36), the conditions of Theorem 2 are satisfied. From (36) and (31), 

II (?I(“)) J+a/pJIr, u < )I (0)j+(a--l)‘*‘/(C, o + rllgj+aipl(C, 0. (37) 

‘Idding inequalities (37) over all indices n and j, using (23) and the condition 
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lA”‘I I 
1 0 = 0, we obtain (see also bound (59) on p. 381 of 121) 

II V(3)II c,P<~J4(h2+~). (38) 

If the solution of problem (28) is considered similarly, and we note that (%a) Ga 

= 3 (ha), on a non-uniform mesh, we obtain from (31): 

II V(“)ll e. P G Mh. (39) 

The bound (39) is too crude, so that the method of energy inequalities of the 

n-th rank must be used when finding a bound for uc4). 

3. A PRZORZ ESTIMATES OF THE n-th RANK. 

A BOUND FOR uc4) 

Consider nc4) in the mesh norm of C. The a priori estimates of the n-th 

rank obtained in [6] will be used. Introduce the functions v”= U, L = v2 ,**a, n 11 
v = v2 and write equation (28) for (vc4’) 2n. To simplify th,? notation, we 

shall simply write u instead of uc4). Then (see 161) 

n n 

Va - Va-1 

z 
-&A++ 2 y-k-1 v;*-~k+l {h,‘aa+ &,)a + (40) a. 

k-0 

+ ha-aa- (ii&, )” + ( ia ;“““’ )‘} = 2%3 (Xa)ga, vk = 2k -- 1. 

We put 

(Y, z)Z, = =G Yzfia- tv7 w)za 
a 

II Y llza = d(Y? Y)Za* Ilwllz, = 

” -"k+l 
nji = $ p-k-1 ( vaLa , 

ha+aa+ (:L,)’ + ha-~a-(~Ga)a 4 
k=o 

Equation (40) is multiplied by h, and the result summed over the chain 2,: 

(41) 

The following bound was obtained in 171 (see also 161) for the right-hand side 

of (41): 
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(42) 

where M, = \/(2D)/c, and D is the diameter of the region G. Using (42) to obtain 

a bound for the right-hand side of (41), the result is multiplied by .s,’ and summed 

over all the chains Z,. We get 

Here, M, = max xsa, Qa is the set of all chains za, and Zj+alp z G- 
@. 

* Qa 
Uj+(r-i)lP E u”,_,, $+lp z x~. We sum (43) over all a and j. Since u = uc4) = 

0 at t=O, 

(44) 

Next, a lower bound is obtained for the left-hand side of (44), in the same way as 

in 13, 71. The 2”-th root is extracted on both sides of the resulting inequality. 

As in 171, n is taken to be dependent on H*. On strengthening the resulting 

inequality, the final result is 

/I d4) llc, p < M In -$ max max 11 xj++ //- 
. j,a Qa Zz’ (45) 

where V, is the volume of G and M = const is independent of r and h. From (45) 

and (14), we obtain instead of (39): 

II u’“)II c. p G MW In (v,/H.). (46) 

Finally, from (44) with n = 1 and (14), 

Since Ilull < II 4L, PV’VO, the following estimates in the mesh norm of L, are 

obtained from (33), (351, (38) and (22): 

Ilal Q MT, lIzA2)ll sg Mh”, 

Il~ll d MT. 

IIa < M(h” + T), (48) 

4. ACCURACY OF THE LOCALLY UNIFORM SCHEME (8) 

ON NON-UNIFORM MESHES 

The accuracy of the scheme (8) is determined by the error z = y - u, which 

satisfies conditions (9). In paragraph 1 of Section 2, the error z was written in 

the form 



138 A. A. Samars kii and I. V. Fryatinov 

The bounds (211, (221 and (48) have been obtained for q, the bounds (33) and (48) 

for u(‘), the bounds (35) and (48) for u (2), the bounds (38) and (48) for u(3), 

and bounds (46), (47) and (39) for u c4). Combining these bounds and noting (49), 
the following results are obtained. 

Theorem 4 

The locally one-dimensional finite-difference scheme (8) is uniformly 
convergent on an arbitrary sequence of non-uniform meshes as the mesh steps 
tend inde~ndently to zero. Also, 

IIY - UII C,D <MM[n”ln (V,IH*) -+I. (50) 

If the conditions 

where m, = const > 0 and x = const > 0 are independent of h and 7, are satisfied, 

we then obtain from (50): 

IIY - 41 c, 8 < M[h2 In (f3 I h) + T], 

where D is the diameter of the region G. 

Theorem 5 

The locally o~edi~nsional finite-difference scheme (8) is convergent in 
the mesh norm of t,(w) on any sequence of non-uniform meshes; also, 

II!/ - 41 < il/J(h2 + z). (53) 

Note. Similar estimates apply for problem (l)-(2), where 

and for the corresponding monotonic I21 schemes. If h, k 0 or q, < 0, the ine- 
qualities (50) and (51) hold for T< ~~ = const. 

3. A locally one-dimensional scheme for the second and 
third boundary value problems 



1. FORMULATION OF THE PROBLEM 

Let G be a region consisting of p-dimensional parallelepipeds with faces 

parallel to the coordinate planes (stepped region). The boundary I of the stepped 

region G consists of pieces I‘,of hyperplanes orthogonal to the coordinate axes 

o.x,, r, = ra+ lJ ram, where I ‘,’ and 1-i are the right- and left-hand pieces of 

the boundary I‘,, ._ 1, 2, . . . , p. .Zs before, 

QT=Gx (O<t<T), Q,=CX (O<t<T), 

C=Gl_lr. 

Consider the following problem: find the function II u (x, f), continuous 

in G), an1 satisfying the equation 

and the boundary and initial conditions 

-T-k,(x,t)-g- - 5& (x, t) u = va+ (5, t) if * x E rdc, (55) 
a 

O<t<T, a=1,2,...,p; 

u (x, 0) = u0 (x) if x E?Z, 

where k,, crai, vat, fa are given functions, and 

k,(x, t) > cl = const > 0, ocr* > 0. (56) 

It is assumed that the problem (54&(5(i) has a unique and reasonably smooth 

solution. 

2. THE MESH. CLASSIFICATION OF BASE-POINTS. NOTATION 

The mesh Rph is constructed in such a way that the pieces I‘=’ of the 

boundary I belong to the hyperplanes x, = x=(‘“, ’ , s = 1, 2,. . . , M, a = 1, 

2 ,...? p. Consider the base-point mesh B = Rph n C;, Denote by y, the 

set of w base-points belonging to I‘,, and by (,J: the set of the other base- 

points of W. Notice that (f~oI ’ includes all the base-points x E G (x E RphnG), 
and also the base-points belonging to the pieces r.E\I’r, of the boundary 

I’(xER,~~ (!i’\lY,-J)_ It will be said that x~-y~, if xEya and the 

intervals (x, x (tla) ) E g. Mrite ;a = ya\$a, where ia = ia’ U {a_, 

+n I= G,,+ lJia-, and ;U+, ia+ and b,, ia- arc the sets ofright- and left- 

hand base-points of g, and ,‘,. Denote by (.j a the set of interior base-points with 
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rcspuct to the direction OX~: Ok = oao U ;.. 

AS above, after introducing tile stops hat and h -a we put 

0.5 (h,f + ha-), XEwt, 
A, = 

0.5h,T, s&f (57) 

Each base-point x E ?? is associated with a volume H(x) E G, bounded by 

pieces s’of hyperplanes through the transitional points x(*O.~R) E G and 

orthogonal to the axes oxa, and also, in the case x E I, by the piece s (4 of 

boundary I. If a base-point x E w is a boundary base-point with respect to the 

directions oxa,, oxa?, . . . , o,+,,, m < p, then 

s(z)= &,,, 
k=l 

where 

SIG, 5 (2 ;2, 
sa = 

1 isa+ --sa-1, s&x. 

FIG. 1. 

The volume H(x) is obtained from 

H(x)= 
0.5h,+s,* z A,so, 2E1;lar 

0.5 (h,+s,+ + ha-sa-), t&a. 
(58) 

In Fig. 1, A denotes a base-point belonging to the set T ;, 0 a base-point 

belonging to q,+, V one belonging to F ;, q one belonging to F1+, and x one 

belonging to 0:. The areas H (3~1, corresponding to base-points x3, x, and x1, 

are also indicated: 
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A time mesh w with step r and fractional step r/p is introduced in the same way 
as before. The space-time mesh is written as 9 = {Q X 0~1. 

3. THE F~~~TE-~~FF~RE~CE OPERATORS AND TAPER PROPERTIES 

Denote by 14~ the operators corresponding to the differential operators L, 

(tr 1, 2, *.*, p). As above, at the base-points 5 E oao, we put 

(+la) _ 

aa+ y Y _Y 
ha+ - aa - Pa’ , x E 833,‘). (59) 

ha- 1 
Consider the base-points x E {a. At base-points of “y,‘, up to Ofh-,f, 

L,u = -& a (ha%) G [k,(X, t) g (4, t) -12a(Xf-0.5a)~ t)X 

x g (x(-o.5a) , t) ] (0.5&-)-'s 

From (4) and Taylor’s formula, 

j., (x(-o.5a) , t) g X( O 5a a ( - -I ) 1) -_ a,- l4 - u(-la) 
k-x- 

+ 0 ((ha-)?* 

From (55), (60) and (611, 

Lau = 
- &+u + vat) - aa%, 

0.5&- 
+O(?z,‘) if 5 rZia+. 

L&L = 
--. (~~3 + vu-j f aa%, 

0.5&’ 
+0(/z,+) if X (Z ia-. 

Recalling (62) and (63), 

(60) 

WW 

(63) 

(64) 

Finally, colsider base-points x E ;T~. We introduce weighting factors 8, = 6,* 

when ,f E y,y.=: 

(6; =-_ 6,- =,I if s$ -- s i). .U base-points x E yik we approximate LQU 



if 5 E ;,%*. Using (65), 

1 
~~CIY = H (%+G+y:, - - S,-U,-y~, -- Sa (s&y + Y, k)) if : tE+Vaf , (66) 

The operator La is associated pith the finite-difference operator ~ja, given by 

(59), (64) and (66). Operators Aa will now he defined, corresponding to the 

operator La and the homogeneous boundary conditions (55): 

f (~oYxajjz,7 F S-h; 

\ 
-& (sa+aa+Yi, - s&-&-y;,- s,s,+y), II: E ;a+. 

We also introduce the function 
i. 

‘Pa, IEZWat 

(Pa = 

1 

(pa-- yak o -t 
0.5haT: ’ 

XEya-, 

SaYa- + 

(Pa-_-v 
*+ 5 E ]:a-. 

Comparison of (67), (68) and (59), (64), (66), shows that 

(67) 

(68) 

Let H be the space of mesh functions defined on the mesh (0, with scalar product 

(Y, 2) = ~YzH, 

(The summation is over the closed repion 9 = o U y.) It can be shown by 

direct evaluation that the operators .ja in H are self-conjugate and non-positive: 

(&, Y) = (2, &y>, 

When ~2 > 0, ocr+ + err- > 0 the operators Aa are negativedefinite. We 

also introduce the norm 

l/Y II = V/(Yt Y). 



4. THE FINITE-DIFFERENCE PROBLEM. ACCURACY 

OF THE SCHEME 

The initial problem (54)-(56) may be associated with the finitedifference 

problem 

y. E yj if J:EQ; 

Ya -- Ya-1 
z 

= Tlaya + $a, s&i a=1,2,...,p; 

- 
Y 

jtl _= 
YP, 5 E 0, j=o,i ,...) jo, Y0 = uo (4, ZEG, 

where jo=T/T---ll;&,@, are given by (67) and (68). 

Notice that, in each chain Za, the a-th equation of (70) connects, at base- 

poinis x E yG the values of the required function y, at two neighbouring base- 

points x and x (-la) (x and x(+ia)), if z E;,+ (x E Ga-), or at base-points 

of Za belonging to the set wa, at three neighbouring base-points ti-‘a), x, ~(+*a). 

The solution of (70) is found by the pivotal condensation method in each chain 

Za. The a-th equation of (70) has to be solved in all the chains Za, including 

those whose base-points belong to the boundary I. For instance, with p = 2 and 

the region shown in Fig. 1, Eq. (70) with n = 1 must also be solved in the chains 

of base-points belonging to the intervals 1x1, xm], [x2, ~a], [x3, xr], [Q,, x6], 

and with a = 2, in the chains of base-points belonging to the intervals 

r51, 231, [x2, at1. [%~*I, [x1*, x*L 

By using Theorems l-3 and the a priori estimates of the n-th rank, the 

locally onedimensional scheme (70) can be shown to be uniformly convergent 

in a sequence of non-uniform meshes. We have 

Theorem 6 

The locally onedimensional scheme (70) is convergent in a sequence of 

non-uniform meshes as h -t 0 and T + 0 to the solution of problem (541456); also, 

With condition (51), 

l/y - qc,J3 ~JI[~~21n(D/h) + T]. 

If oaf < c1 = coust. < 0, the bounds of Theorem G only hold when r < r. 

(c,, cz) is small. The note on Theorems 4 and 5 again applies. 

Translated by D. E. Brown 
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