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1. A STUDY of the processes that occur when a heavy-current radiating discharge 

takes place in a plasma involves the solution of the set of equations of magnetic 

radiation hydrodynamics (MRHD). In general, a solution can only be obtained by 

using numerical methods. Examples of such solutions may be found e.g., in [1-3].  

While the use of self-modelling solutions in this problem involves serious 

restrictions imposed by the self-modelling conditions, it nevertheless enables 

individual qualitative aspects of the process to be investigated, and the type of 

dependence of the process on problem parameters such as the electrical and 

thermal conductivity, discharge current etc. to be revealed. 

In the present paper we examine self-modelling solutions in which the mass 

of plasma in the discharge is time-independent. It is shown that self-modelling 

solutions of this type only exist when the thermal conductivity is fairly high. The 

lower limit of the range of thermal conductivity variation within which the self- 

modelling solution exists is determined in some particular cases.  

A T-layer [4] is shown to exist under certain conditions in the self- 

modelling solutions. The influence on its structure of the heat conduction process 
is examined. 

Analysis of the self-modelling solutions is supplemented by computer 

evaluations for the complete set of equations of MRHD, in both the self-modelling 
and 'almost self-modelling' ranges of parameter variation. 

* Zh. vychisl. Mat. mat. Fiz., 10, 6, 1447-1457 (1970). 
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The most detailed attention is paid to self-modelling modes in which the 
total energy as well as the mass of the plasma is time-independent. The fact that 

the energy is fixed derives in the present problem, not from the fact that the 

system is conservat ive,  but from the equality of the energy fluxes entering and 
leaving the system. 

It may be noted that the self-modelling solutions obtained in this paper 

provide a good test  for checking the accuracy of numerical methods for solving 

the system of equations of MRHD. In particular, they were used in [3] when 

developing and refining numerical methods. 

2. We shall  examine the separation in vacuo of the plasma formed by 

electr ical  fusion of a wire, and its interaction with the magnetic field of the 
natural currents (see Fig. 1). The approximation of non-linear heat conduction is 

used for the heat transfer processes .  

/ / 

( 

FIG. 1. 

We assume that the length of the plasma filament is much greater than its 

diameter, and that there is axial symmetry; the problem is considered in the one- 

dimensional non-stationary approximation for an infinite cylinder. 

Using Lagrange mass coordinates and the absolute Gaussian system of units, 

the relevant set  of equations of magnetohydrodynamics is [5] 
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Here, t is the time, r is Euler's variable, p is the density of the medium, 

x (dx = prdr) is the Lagrange mass variable, v is the longitudinal component of 

velocity, p is the pressure, ~ is the internal energy, T is the plasma temperature, 

He is the azimuthal component of the magnetic field strength, Ez is the axial 

component of the electric field strength, Jz is the electric current density, a and 

K are the electrical and thermal conductivities respectively, Q is the Joule heat 

evolved per unit mass, W is the heat flux through one radian of azimuth, R is the 

gas constant, 3 / is the adiabatic exponent, and c is the velocity of light in vacuo; 
the time derivative is Lagrangian. 

The simplest form of the equation of state is used. 

The solution of the problem will be sought for a cylinder of unit height in 

the region t >/0, 0<~ x ~< M, where M = ;*pr  dr = const is the mass of plasma in 
the discharge per unit height of plasma 9/ilament and per radian of azimuth, and 

r.(t) is the radius of the plasma-vacuum boundary. The boundary conditions for 

(2.1) are as follows: at the centre, with x = 0, the symmetry conditions are 

v(O,t)  = 0 ,  H,(O, t )  = 0 ,  W ( O , t )  = 0 ,  (2.2) 

while to the right of the plasma-vacuum boundary, with x = M (r = r. (t)) 

p(M,  t) = O, t t , (M ,  t) = 2I ( t )  / cr, (t) ,  T(M,  t) = O; (2.3) 

l(t) gives the variation with time of the total current in the discharge. 

In the general case of MRHD, when the medium has non-linear heat 

conduction properties, the temperature on the material-vacuum boundary is non- 

zero. The condition T (M, t) = 0 is the limiting case,  ensuring the absence of 
heat flow from the vacuum into the system. 

Other types of right-hand boundary condition are possible for the heat 

functions, e.g., W(M, t) = 0, corresponding to the case of electronic heat con- 

duction, or W(M, t) = acT4: when the plasma filament radiates like a black body 
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(~, is the Stefan-Boltzmann constant). The latter condition leads to additional 

restrictions in the self-modelling conditions obtained below. 

To obtain the self-modelling solution, we consider the asymptotic stage in 

the plasma separation, when the influence of the initial data is no longer felt. 
Here, the initial diameter of the plasma filament can be neglected as compared 

with its dimensions at the asymptotic stage, and accordingly, the initial plasma 

density may be assumed infinite. This enables the number of definitive parameters 

in the problem to be reduced° 

The electrical and thermal conductivities are assumed to be power functions 

of the temperature and density; to achieve greater generality when deriving the 

self-modelling conditions, explicit dependences of the conductivities on time are 

also introduced: 

a ~ (JoTh°p-%t "o, × = ×0T~'P -q'tn'.  (2 .4)  

It will also be assumed that I (t) is a power function: 

I ( t )  ----- lot  m. (2.5) 

The case of fixed current, rn = 0, is treated in detail below. 

We shall seek the self-modelling solution of the set of equations (2.1), in 

which all the functions can be written in the form F ( x ,  t )=  Fo f ( s ) t  '~/, where Fo 
is a dimensional constant, s = x / M  is the self-modelling variable, proportional 

to the mass variable, and f ( s )  is a dimensionless function of the self-modelling 

variable. Self-modelling solutions of this type were investigated in [6, 7]. 

Analysis shows that the self-modelling conditions reduce in this case to 

satisfying certain relationships between the problem parameters, i.e., the powers 

in (2.4) and (2.5): 

m - t - l =  2 k 0 - k i - - n 0  2 k l - - l - - n  1 
= (2.6) 

2 (ko -~ t) + 2qo 2(k~ @ qi) 

It also follows from (2.6) that, if we assume fixed relationships (2.4) satisfying 

the second of equations (2.6), a solution with self-modelling properties can be 

guaranteed by a suitable choice of the current law (the quantity m in (2.5)). 

For instance, if the current is increasing, m > 0, and there is no time 

dependence in (2.4) and (2.5) (no = n~ = 0), the self-modelling conditions (2.6) 

lead to the inequalities 
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qo ~ --0.5, qt ~ --0.5. 

This means that the electr ical  and thermal conductivities should increase with 
the density,  whereas the reverse is usually true in practice. Actually, the 

dependence is quite weak, and its most serious influence is felt close to the 

plasma-vacuum boundary. This type of dependence on the density can here be 
modelled by the fact that, c lose to the vacuum boundary, the conductivit ies both 
decrease  more rapidly than T k° and T kl respectively.  

If the constants  M, R and Io are se lec ted  as the definitive parameters (with 
independent dimensions), and conditions (2.6) are sat isf ied,  the required functions 
can be written in the form 

v (x ,  t) = I0 t", 

p (x, t) MS  = - -  8 (s) t -~ ("+~), 
Io ~ 

r (x ,  t) = Io t~÷l, 

r (x, t) 
"= M R "  

p ( x ,  t) = M ~ ( s ) t  -2, H¢(x ,  t) = " ~ M h ( s ) t - ' ,  

i 
E~ (x, t) = c Io~ (s) t ~-1, W (x, t) = Io ~ M  o) (s) t m-~, 

M ~ t_(l+2m ) (~ (x,  t )  = C" -fro ~ (~ (S) , × (x,  t) = R M x ( s )  t -1, 

M 
]z (x ,  t) = c -~o ~ (s) t -(~÷~). 

(2.7) 

These  expressions reveal how the various functions, in the self-modelling 

mode, depend on the problem parameters and time. For instance,  the electr ical  
res i s tance  Rpz of the plasma per unit length of filament may be found from 

R ~ = 2n  ~r dr = --~-- 
0 

(Ro is a dimensionless quantity). This implies that, in the self-modelling mode, 

the res is tance  of the separating plasma decreases  with time, but is independent 
of either the plasma mass M, the type of material (R),  or the variation of the 
current Io (m). 

The total  energy contained in the volume occupied by the plasma is given by 
M 

f( e (t) = 2 n  e + 0 . 5 y  2 ~, 8n t ) ]  d x  = eo Io 2 t 2m (2.8) 
0 
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(e o is  a d i m e n s i o n l e s s  cons tan t ) .  

When the se l f -mode l l i ng  cond i t ions  (2.6) are s a t i s f i e d ,  the equat ions  of 

MRHD (2.1) reduce to a se t  of ordinary d i f fe ren t i a l  equa t ions  for the dimension-. 

l e s s  funct ions  a ,  /3, ~, f, h, h, 0 ,  w: 

~h - , ( m ÷ l ) z ,  z~'_ 6z' ~=~;'I, 

. ( X h ) '  = 5 n ~ - ,  (Xo))' = 2m [~ ~(~ y - - t  / - -  2 (m ÷ 1 )  -8 i 6 

o~ --~X6/', ~ = I6, ~ = o0/~6 ~, × = ×0/~,6-~,. 

(2. !}) 

The prime deno tes  d i f fe ren t ia t ion  with r e s pe c t  to the se l f -mode l l ing  va r i ab le  s. 

The  d i m e n s i o n l e s s  cons t an t s  ao and K o are given in terms of the parameters  

M, Io and R, and ao and K o r e s p e c t i v e l y ,  by 

(~'~o = Oof2o (k°+q~+l)/~lk°42q°+1Rk°, 

Uo - X0lo 2 (k,+q,)/Mk,+~q,+l Bk~+l. (2.1c3) 

The  boundary cond i t ions  (2.2), (2.3) can be wri t ten in the  se l f -mode l l ing  

form as  
a(0)-----0, h ( 0 ) = 0 ,  + ( 0 ) = 0 ,  (2.11) 

6(1) = 0 ,  ~ ( l ) h ( l )  = 2 ,  1(t) = 0 .  (2.12) 

3. We s h a l l  conf ine  our future a n a l y s i s  of the se l f -mode l l i ng  so lu t ions  to 

the  c a s e  of f ixed current  (m = 0). 

Here,  under the extra  a s sumpt ion  that  ko = qo = 0, the so lu t ion  may be 

ob ta ined  in a n a l y t i c a l  form. In th is  c a s e  the e l e c t r i c a l  and thermal  c o n d u c t i v i t i e s  

are 
(~ ~ ao t - ' ,  × ~ ×0Th'P-~'t -('+2q~). (3.1) 

The  t ime-dependences  of o and K in (3.1) are ex t remely  a r t i f i c i a l  from the 

p h y s i c a l  s t and-po in t .  But computa t ions  of the se t  (2 .9 ) - (2 .12)  show that  the main 

q u a l i t a t i v e  fea tu res  of the so lu t ion  ob ta ined  in th is  e l ementa ry  pa r t i cu la r  c a s e  

are r e t a ined  in more genera l  c i r c u m s t a n c e s ,  given r e a sona b l e  va lue s  of the  

c o n s t a n t s  ko,  qo, no, k l ,  q , ,  n , .  

Obvious ly ,  when the d i s cha rge  current is  f ixed in the se l f -mode l l i ng  so lu t ion ,  

the  to ta l  p lasma  energy,  and hence  any quant i ty  with the d imens ions  of energy,  

must be  t ime- independen t  by vir tue of (2.8). The  cons tan t  energy condi t ion  is  a l s o  
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satisfied in the self-modelling solutions of the problem on a strong explosion in 

the atmosphere obtained in [8, 9], where the energy released at the initial instant 

remains fixed throughout the future process. In our problem of an electric discharge 

in a plasma, constant energy is achieved, not by the system having conservative 
properties, but by the balance between the electromagnetic energy entering the 

system, and the energy dissipated in work against the forces of the magnetic 

field, plus the energy leaving the system in the form of heat flux. Non-trivial 

self-modelling solutions of this kind are clearly impossible in ordinary gas 

dynamics. Their existence depends on the presence of supplementary external 

sources of energy such as Joule heat. 

Integration of (2.9) subject to the condition (3.1), m = 0, and say ql > - 1 ,  

leads to the following expressions for the dimensionless functions of velocity co, 

pressure/3, magnetic field strength h, temperature f, density ~ and heat flux co 

in terms of the dimensionless radius A: 

h= x, . (3.2) 

/ = IA [(B - -  I) Z,.~ + ~21 (~,.~ - -  ~)q,+~}~/(k,+q~÷~), 6 = ~/-~, 

where 

A = 4fro (q~ + 2) gq'+~ ~,4 (q,+~) , B = _ t ql + n~o~, ~ " 

h 
The relationship s = f~/3f-lA dA gives the connection between the dimensionless 

radius and the self-modelling variable. The dimensionless radius A, of the 

plasma-vacuum boundary is found from the condition for the plasma mass to be 

constant: 

t = ~-  L d~, = rt~ 4Al(k'+q'+l) (B - t) L. 2 -5 L 2 L dk. (3.3) 
0 * 0 

The electric field strength and current density are constant in this solution: 

q~ .n~0~,. 2 '  ~ = cr°qD = : t~"  " (3.4} 

It follows from (3.2) that the pressure is a monotonically decreasing 

function of the radius, while h increases with h. The temperature f is not necess-  

arily a monotonic function of h. The position hmax of its maximum is given by 



/t h e a v y  current  d i s charge  in a p l a s m a  137 

t 
~'2nax --2~*~-- ~c70 ' (3.5) 

while  the  maximum of f is  

k l ÷ q , + l  [ t /max= [  o(ql + 1) q̀ +'] U(kt+ql+l) 

For  the tempera ture  maximum to occur  ins ide  the range 0 < h max < h . ,  we must 

have 
t 1 

_ _  / 

2n~0 <" ~..2 (3.6) 

It fo l lows from the e x p r e s s i o n  for f(h)  in (3.2) that  the  so lu t ion  is meaning-  

ful ( f (h)  /> 0) throughout the range 0 4  )t ~ ) t .  only when B >/ 1 or 

ql -!- 2 1 (3.7) 
i~'2 ~ 2ql ~ 3 n~0 " 

Comparing (3.6) and (3.7), we can now conc lude  that  the  tempera ture  is  not 

in fac t  monotonic in the so lu t ion;  i ts  maximum l i e s  ins ide  the in te rva l  (0, h . )  when 

2n~o < ~'*~ "~ 2ql -f----3 n~o ' 

or what amounts  to the same thing, 

2ql  -~ 3 '  
(3.8) 

2 where Re,c. = 47Took is  the magnet ic  R e y n o l d ' s  number, eva lua t ed  from the 
va lue  of the  ve loc i t y  of the p lasma-vacuum boundary and i ts  d i s t a n c e  from the 

cent re .  When Re,~ ~<2, the temperature  maximum is a lways  reached  on the ax i s ,  

and f (h)  is  a monotonica l ly  d e c r e a s i n g  funct ion.  When P,e~ > 4 (ql + 2)/(2ql  - 3), 

the s e l f -mode l l i ng  so lu t ion  becomes  mean ing le s s .  

It can  be seen  from the above  i nequa l i t i e s  that  the c h a r a c t e r i s t i c  magnet ic  

R e y n o l d ' s  number must be high if the tempera ture  re la t ion  is  to have non- 

monotonic proper t ies  ( e x i s t e n c e  of a T layer)  in the so lu t ion  of the heavy  current  

d i s c h a r g e  problem. This  conc lus ion  ag ree s  with the cond i t ions  obta ined  in [4, 6] 

for the e x i s t e n c e  of a T layer .  

Cons ide r  the dependence  of the se l f -mode l l ing  so lu t ion  (3.2) on the thermal  

conduc t iv i ty .  We sha l l  f i rs t  take  the s i m p l e s t  c a s e ,  when K is tempera ture-  and 

dens i t y - i ndependen t  (kl = ql = 0, K - K 0 t - l ) .  We can find h .  e x p l i c i t l y  from (3.3): 
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~ . 2  _ _ _  2 exp  ( % x o )  - -  i 

3 ~ o  exp CI4 X~o) - -  ~'/~ 

From (3.7), a s e l f -mode l l ing  so lu t ion  only e x i s t s  in th is  c a s e  when 

Yo > ~o, =0. 

Condi t ion  (3.8) for non-monotonic tempera ture  re la t ions  can be rewri t ten  as  

×ol = O, ×o~ - -  4 1 n 2 "  ( 3 . 9 )  

When "~" K o ~ Koa, the tempera ture  maximum occurs  at the  cent re .  

Now cons ide r  the s i m p l e s t  c a s e  of non- l inear  thermal conduc t iv i ty :  k, = 1, 

q, = O, ~ =  K o T t - ' .  Working s imi la r  to the above  again  l eads  to the inequa l i t y  

(3.9) with Ko, = 4/7r and Koa = 4/7r(1 - 2/702;  when Ko < Ko, , the  se l f -  
model l ing  so lu t ion  becomes  m e a n i n g l e s s ,  s i n c e  a region with nega t ive  tempera-  

ture appea r s  in it. When K o > K~o, , the d e p e n d e n c e  of the se l f -mode l l ing  so lu t ion  

on K~o, is as  shown by the curves  of F ig .  2 ~o =0.U2,  kl = 1, ql = 0). As Ko 
i n c r e a s e s ,  the temperature  maximum fa l l s  and moves c l o s e r  to the ax i s .  As 

K o ~ o% f (O)=  1 / 3 7 T .  

0 ~Y 

LZ7 

f 
~.I f - ' ~  1 

EO 

Z.O 

ZO 

/ZY~ 

? 
0.2 /.0 

FIG.  2. FIG.  3. 

To sum up, it  has  been found in two s imple  par t i cu la r  c a s e s  that  the  range 

in which a se l f -mode l l ing  so lu t ion  is p o s s i b l e  has  a lower l imit  K~, . A n a l y s i s  

of the  so lu t i on  (3.2) shows tha t ,  as  the index kl i n c r e a s e s ,  i . e . ,  a s  the thermal  

conduc t iv i ty  becomes  more non- l inear ,  the nature of the  so lu t ion  remains  un- 

changed ,  whi le  the va lue  of Ko, i n c r e a s e s .  
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4. Under more general assumptions than conditions (3.1), derivation of the 
self-modelling solution of the problem of plasma separation in a vacuum amounts 

to numerical solution of the ordinary differential equations (2.9) subject to the 

conditions (2.11) and (2.12). Computations show that the main qualitative features 

of the self-modelling solution remain the same as in the particular cases examined 

analytically above. As an example, Fig. 3 shows typical distributions of the 

required dimensionless functions over the self-modelling variable, obtained by 

computations for the problem with the parameter values ko = 3 / 2 ,  qo = O, kl = 1, 

q, = 0, Ko= 1.5, ao = 0.2. 

Here, the plasma conductivity a ~, and the current density ~:, are no longer 

constant; the maximum of ~co inc ides  with the maximum of the temperature f. 

By considering the dependence of the solution on the parameter K o , it can 

be shown that, in this case also, there are two characteristic values K~ol and ~oa 
of the thermal conductivity. The self-modelling solution only exists when 

No > "Kol; the temperature profile is non-monotonic with respect to s in the range 

Kov ( K 0 ( Ko~ , and the maximum occurs at the centre when Ko~> Koa. 

MR 
T - -  

o3z~ 

A 0.! 

Y 0 ~ 5  

/ 

I 5  

LO 
. f  

f 

f 

/OH 
E 

S 0 
I 0 ZOO ~'00 

FIG. 4. FIG. 5. 

In short, even when the self-modelling conditions (2.6), obtained from 

ordinary dimensional analysis,  are satisfied, the self-modelling solution does not 

exist for all values of the thermal conductivity K~o, even though the latter does not 
appear formally in the conditions (2.6). 

5. The self-modelling solutions plotted here were obtained by numerical 

solution of the full set of equations (2.1). For this purpose, the set of differential 
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equations was approximated by a homogeneous, completely conservative difference 
scheme, which was solved by the method of successive pivoted condensations 

[10-12]. The boundary states were realized in accordance with (2.2) and (23)  
The initial conditions were specified in the form of arbitrary functions of the x 

coordinate, no,'. the same as the self-modelling profiles. This numerical solution 

of the problem, with the same parameter values as in Fig. 3, is shown in F i g  4 

for ~ol < K'~o < ~c~. The temperature profiles are drawn at success ive  instants, 
with intervals between them such that the amount of electromagnetic energy 

entering the plasma during one interval is always the same; the amount entering 

in the initial interval is equal to two. Here, (MR/I~)  T (x, O) = O. 1, m = O. 

In time, the solution moves into the self-modelling mode. 

Figure 5 shows the time-variations of the different types of plasma energy 

in the dimensionless form: 

the internal energy 

the kinetic energy 

I 

o 

31 

1 i K = ~o 2 0.5~,'-dx 
0 

and the magnetic energy 
M H 2 

f ~ d:c. H = io ~ 8rip 
0 

As t increases, the values of these quantities, and also the total energy, tend to 

their values in the self-modelling solution. 

The set (2.1) was also solved numerically in the 'almost self-modelling' 

region, i.e., when conditions (2.6) are satisfied but the thermal conductivity has 

low values: ~o < ~ol. The solutions here were not in fact of the self-modelling 
type, and the behaviour of the flow parameters ceased to remain within the frame- 

work of relationships (2.7). A solution which is not self-modelling is of an 

essential ly non-stationary type; the appearance and development of a high- 

temperature T layer are observed, together with various other phenomena that 
usually accompany this, such as the formation of a shock wave, travelling along 

the axis, over-all braking of the gas, and pinching of the plasma filament etc. 

[3, 4]. 
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On combining the facts obtained from an analysis of the self-madelling 

solutions and the results from numerical computations in the 'almost self- 

modelling' region, various conclusions can be drawn regarding the influence of 

the thermal conductivity on the processes occurring in a heavy-current discharge 

plasma. When the thermal conductivity is low (6o ~< K~o~), a high-temperature 
7-layer appears and develops in the plasma. The solution here is not at all of 

the self-modelling type. For instance, the gas temperature increases in the 
T-layer, whereas it falls in the central region. 

When KJol ' Ko < ~'~2, the influence of the thermal conductivity is already 
strong enough to produce a particular kind of T-layer stabilization as a result of 

the out-flow of heat: the temperature of the entire mass of gas varies with time 

according to the same power law. 

A high thermal conductivity destroys the T layer, the temperature is found 

to have only monotonic properties in the solution, and its maximum is located on 

the axis. 

6. A special  feature of the analytic solution obtained in Section 3 may be 

mentioned. The temperature maximum appearing in this solution (in both the self- 

modelling and the 'almost self-modelling' regions) cannot be called a T-layer in 

the full meaning of the word, since here go = n o t  -1 is temperature-independent, 
while a condition for the appearance of such a layer is the existence of consider- 

able non-linearity: d in a / d T  ~ O. The classical  scanning is also absent in this 

case, since the plasma conductivity becomes quite small as t increases, while 

the current density becomes constant over the radius. 

Nevertheless, the temperature has a pronounced maximum. Tile existence 

of this maximum is explained by the dependence of the Joule heat per unit mass 

on the density: Q = ~2/~o~. 

In the present problem, due to the strong separation, the density ~ falls on 

approaching the plasma-vacuum boundary, and the Joule heat correspondingly 

increases. This behaviour of Q leads to the appearance of a temperature maximum, 

though the position of it is not the same as that of the Joule heat maximum, due 

to the heat conduction processes. 

There is thus a certain limiting point at which the T-layer effect degenerates; 

this point corresponds to the absence of feedback between the gas-dynamical and 

electromagnetic processes (the electric conductivity is independent of the thermo- 

dynamic state of the medium)° 
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If, however, the conductivity is a function of the temperature, this type of 
inhomogeneous state  can become fundamental for development of the T-layer. 
Thus, in addition to the familiar skin effect and overheating instability,  a further 
poss ib le  mechanism of T-layer initiation may be seen.  

The authors thank L.M. Degtyarev and A.P. Favorskii  for useful d i scuss ion ,  
and A.A. Ivanov and V.N. Ravinskii  for performing the numerical computations.  

Translated by D.E. Brown 
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