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WE SHALL be concerned in this paper with aspects of the numerical solution of 

non-self-conjugate boundary value problems such as occur when determining 

electric current or temperature fields in a medium with anisotropic electrical and 

thermal conductivity [1]. By using a variational approach we are able to carry 

over the most important properties of the operator of the initial problem to the 

approximating difference operator. We devise a divergent second-order difference 

scheme for the divergent positive-definite operator of the initial boundary value 

problem. The scheme has been employed for the numerical solution of a number 

of concrete physical problems. 

C 

FIG. 1. 

1. To find a function u ( x  1 , xz ) ,  continuous in a closed rectangular region 

(see Fig. 1) with boundaryF  = F~ + F  z +T1 +3/2 (T~ = A B ,  3/2 = CD, F~ = AD,  

F 2 = BC) ,  and satisfying at interior points of G the equation 

*Zh. vychisl .  Mat. mat. Fiz . ,  10, 6, 1409--1418 (1970). 
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alu -- -- ~'~xxO ( k ~xl ) O~ ( k ff--'~ff2 ) __ 0~ (r ~--~Ux~ ) + O~ (r if--fin) 
(1) 

(2) 

with the boundary conditions 

/~ - - -  0 on Viand'~z, 

k OU Ou au= Oxz--r~-zl=O o .  rla.drs, 
k(x,, xz) ~ c: > 0, c, ~ const. 

The quadratic form 

LkOx,) + kox,)  J dx,ax, 

(3) 

(4) 

(5) 

is positive definite: 

(6) 
q 

In the class  of reasonably smooth coefficients k and r, and functions u, 
satisfying (3) and (4), the differential expression (2) specif ies a linear positive 
definite operator (~, which is self-conjugate only when r -= 0. A discussion of the 
existence and uniqueness conditions for the solution of problems (1)-(4) may be 
found in [2]. 

2. There is a close connection between boundary value problems of the type 
(1)-(4) and variational principles for describing continuous media [3], so that it 

seems natural to use a variational approach [4], based on determination of the 
solution by means of integral identities, when devising an appropriate difference 
scheme . 

Let C~ ~ be the family of functions twice continuously differentiable inside 
G and satisfying the boundary conditions (3). A function u e C~ a~ will be a 

solution of problem (1)-(4) when and only when, whatever the v e C~ a~, we have 
the identity 

¢~(u, v ) = l u  , v ] - - ( I  ' v ) = O ,  (7) 

[ u, v] -~ Z (u ,  v) dxldx2,  (8) 

( O~ Ov) (Ou Ov Ou Or, 
Ou av ---O-~x2 -~- r Ox2) . (9) 1 (~, ~) = a: aTx~ ax~ + a:~:~ aT;x~ ax, Ox~ 
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The truth of this statement follows from the first Green's formula 

D B 

S ~ v J l u d x ,  d x ~ = [ u , v ] _ ! v (  k Ou Ou ( k  Ou r OU ~ 

(i0) 
and the arbitrariness in selecting v ~ CI (2). In turn, we can use (7) as a definition 

of the generalized solution of problem (1)-(4). 

3. It is a typical feature of the present problem that the operator (~ is 
positive definite and divergent. It is natural to demand that the difference ana- 

logue A of (~ have the same propertiea We shall use (7)-(9) as our starting-point 
when devising the operator for the difference boundary value problem approxi- 
mating the problem (1)-(4). 

We construct in the rectangle G -  (0 <~ xa<~ la, a = 1, 2) the mesh 

~ ----" {x,~, ~ ithi, xz~, " -  izh; i~, --'-- O, t ,  . . . .  , N¢,, h~, --. la /N2,  a ~ t,2} 

with steps h 1 and h 2 in the x~ and x 2 directions. 

The integral bilinear form [u, v] will be approximated by the difference 
expression 

Nt--1, Nt--1 

[u, vlh -= ~ (Ia)i,i, hl  h2. 
il~o, i~O 

(il) 

There are various ways in which [u, v] can be approximated. But we shall only 
consider those which satisfy the following natural requirements: 

(1) the local approximation of the bilinear form I (u, v) by the difference 
analogue I~ (u, v) is of the second order on smooth functions: 

I (u, v) - -  Ih (u, v) ----- 0 (h~), h = m a x  (hi, h2); 
a=l ,2  

(2) the quadratic form [u, u] h is positive: 

(12) 

In, u]h > O, u ~ O. ( t3 )  

The bilinear difference functional (11) defines the operator A by means of 
the identity 



90 L.M. Degtyarev 

Nt-1 ,  N~ 

[U, V]h = (V, A~)h = ~ ~i, vAuhlh2, 
i , = 0 ,  i s=0  

t, i 2 =/= 0, N2, 

~i, = 0.5,  i 2 = 0, N2, 

04) 

which is the difference analogue of Green ' s  formula (10). The  conjugate  operator  
A* is def ined s imilar ly:  

N ~--1, Nj  

[ U, V ]h =- (U, A* V)h = ff-a ~¢t, uA*vhth~. 
i t=0 ,  i~=0 

The  difference operators  A and A* thus obtained are defined on any mesh 
funct ions y which s a t i s fy  the boundary condit ion y = 0 at the mesh base -po in t s  

belonging to "y~ and 3/2, and they are divergent .  The  pos s ib l e  cons t ruc t ion  of 

d i f ference  schemes  on the ba s i s  of the integral  identi ty (7) was  examined in [5, 6]. 

The  fol lowing approximation of l(u, v), sa t i s fy ing  (12) and (13), will  be  used:  
1 

t 
In (u, v) ~ -~- ki,i, ~ [(u~,v~,)i,. i ~  ~ (u=,v=,)i,+~.i,] + 

I f=0 
1 

+ ri, i, ff_.a [(ux,)i,+a, i, (Vx,)i. ~ - -  (ux,)i,, i,+~ (vx,)i,+a, i,I. 
a ,  [~=0 

In accordance  with (1.4), we obtain the following expres s ions  for A: 

1 t 
Av = -- Y~ (k_v~)~ + T (p_v~, + p.v~,) - . ~  

Q = I  

at interior points ,  

Ay = - -  (k y;~,)~, + 

on the part of the boundary 

Ay = - -  (k._y~,)=,- 

(q-y;~, .~- q+yx,) ( i5)  

2 _ l 
k y;~,-- q-YL h2 (ry~  + r+y~,) ( i6)  

F1,  and 

k+Y~" - -  q+Y=" + h2 (r-YL }- r+yx,) (t 7) 

on the part of the boundary F 2 ; here,  p = Or/Oy, q = Or/Ox. The  meaning of 
the notat ion ~r_, ~:+, ~:-, ~:+ for the funct ions ~(x)  (~:(x) is one of the coef f ic ien t s  
k, p, q or r) will  be c lear  from Fig.  2. 

The  difference analogue of the ident i ty (7) is 

oh(v, w)=[v, w]h-(l, w)~--- 0, (18) 
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where 

(I, w) - 
N,--I, N2--1 I 

it~l),  i , : 0  a - -0  

defines the difference solution y. Finding this solution is equivalent to solving 

the finite-difference boundary value problem 

A u : / ,  19) 

where the operator A is given by (15)-(17). Let us consider  the properties of A. 

i 

~÷ 
Yi#z 

I 
I 

FIG. 2. 

Notice that A, l ike the differential  operator (~, is posi t ive definite:  

(y, Ay),, ~ ~llull-'. 6 > 0, 

where ~ = const is independent of h. 

(2o) 

Let Ao = (A + A*)/2  be a self-conjugate,  and A, = (A - A*)/2  a skew- 

symmetric operator, such that A = A0 + A,.  

The operators Ao and A, have the same region of definit ion as A. Also,  A o 

is posi t ive  definite,  

(y, Aoy)~ = (y, Ay)~ >~ 611.~112, 
so that we can introduce the norm 

II[trlAo = I/ (y, Aoy). 
From (15)-(17), 

N,, Nr--1 

Y u.~ = hlh2 k_ (y ,)~ -~- 
tit=l,/,=1 

N~--I, Nj ~ N,  

~, k- (y~,)2 -~-7  -t- (2i) 
i t = l ,  i2=I  " := 

+ k_(y~,)~=N,1 }. 
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The rate of convergence of the solution y of the difference problem to the 

solution of problem (1)--(4) may be estimated by means of the error 

z ----- y - -  u. (22)  

Substituting y = u + z in (19), we obtain the error equation 

a z  --- , ,  (23)  where 

* = 1 - -  Au - -  ( s ~ u ) ,  - -  Au 

is the error in approximating the differential operator t~ by the difference operator 

A on the solution u. If the initial problem has a reasonably smooth solution u, the 

local approximation error ~ (in a uniform metric) is 0 (h2); this follows because 
the bilinear form [u, v] is approximated to 0 (h 2) by the difference analogue 

[u, vlh. 

Hence 
Ilzll~0" = (A0z, z)~ = (Az ,  z),, ~--- (4 ,  z)~. 

Using the inequality of [7], 
(4 ,  z)~ ~< 11¢11~7'11zlt ~0 

and, recalling (24), 

Ilzlla0 ~-." 11411A7'. 

Since Ao >I ~ E (E is the unit operator) is positive definite, 

(24) 

(25) 

(26) 

whence A°-t ~ 6 - tE '  

II, li2a7'= (Z0- '¢ ,  ¢ )  ~ 8 - 1 ( , ,  4 )  = 6-'1[¢11 ~. (27) 

Using (27) and (26), we get the following a priori bound for problem (23): 

IlzllA0 ~< 6-'/211,11. (28) 
Since 110 II = O(ha) and ~ > 0, the convergence rate of the difference scheme in 
the mesh norm I~ must be 0 (h2). 

4. Iterative schemes based on the method of alternating directions were used 

for the numerical solution of (19). For this, A was written as the sum of two one- 

dimensional operators A1 and A a: 

A = At -J- A2. 

Two iterative schemes, namely, the longitudinal-transverse scheme (LTS) of 

[8] and the Douglas-Rachford (SDR) scheme [9], were compared from the point of 
view of the number of iterations needed to achieve a given accuracy. The compu- 

tations were performed with a fixed iterative parameter 7". It is clear from Fig. 3, 

which refers to the solution of (19) with k = r = 1, that the LTS (curve 1) converges 

after fewer iterations than the SDR (curve 2) whatever the value of 7.. Figure 4 



Problems of eIectrodynamics 93 

shows the r e su l t s  of so lv ing  (19) with s t rong ly  s p a c e - v a r i a b l e  c oe f f i c i e n t s  k = 1, 

r = a s in  "yx s in  3/y + b, a, b and 3 / are c o n s t a n t s .  It is  ev iden t  tha t  e ach  scheme 

has i ts  own c r i t i c a l  7-,, beyond which  the i t e ra t ions  d iverge;  the  7-, for the  SDR 

(curve 2) is  greater  than for the LTS (curve 1). Th i s  r e s t r i c t ion  of the parameter  

~r with s t rong ly  va r i ab l e  coe f f i c i en t s  comes  from the fact  that  the  opera tors  A1 

and A 2 c e a s e  to have a de f in i t e  s ign ,  in s p i t e  of thei r  sum be ing  pos i t i ve -de f in i t e .  

The  curve of the number of i t e ra t ions  aga in s t  ~- has  a p l a t eau  in the  c a s e  of the  

SDR. Th i s  fact  f a c i l i t a t e s  s e l e c t i o n  of the opt imal  i t e r a t ive  parameter  and 

e n a b l e s  fewer i t e ra t ions  to be used with the SDR than with the LTS.  

5. R e s u l t s  of the numerica l  so lu t ion  of some t yp i c a l  problems are given 

below,  for purposes  of i l l u s t r a t i on  and not with any at tempt  at c o m p l e t e n e s s .  

ZOO 
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FIG.  3. 
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The different types of two-dimensional effect in the boundary zones of the 

magnetic field or close to the electrodes [1] are of great interest. Several exact 

solutions are available for elementary cases in this region. But the scope for an 

analytic approach is limited even when we confine ourselves to a very simplified 

discussion of problems in which the conducting liquid has given fixed parameters. 

In the general case of variable coefficients, numerical solution is the only 

practical possibility. 

Consider the flow of an electrically conducting medium with constant 

velocity v ( v ,  = 1, v 2 = 0) and constant conductivity a = 1. 

The flow takes place in a flat channel - o ~  x 1 ~< ~, 0 ~<x 2 ~< 1 with 

parallel walls (see Fig. 5); the walls consist  of a perfect dielectric, except for 

the pieces - 0 . 5  <~ x ~ 0.5 occupied by ideal electrodes. A fixed potential 

difference U = 0.7 is maintained between the electrodes. The magnetic field is 

fixed and equal to H = 1 in the electrode zone, while outside this zone it falls 

exponentially to the power 2. The Hall parameter f] = 3 H. 

By solving this problem numerically, the electric current distribution may be 

plotted, see Fig. 5, and integral energy characteristics such as the plasma power 

and electrical efficiency etc. may be found. A series of such computations is 

described in [10], aimed at discovering the influence of the magnetic field and 

electrode spatial distributions, and Hall parameter etc., on the current distribution 

and the integral energy characteristics of a magneto-hydrodynamic channel. 

Ionization instability in a low-temperature magnetized plasma is of great 

interest to physicists as well as engineers. With certain assumptions, the mathe- 

matical description of this phenomenon amounts in essence to solving the set of 
equations 

ax~ z O.T1 ~ , z  ax~ 
0 ( H  a~ 

ax~ o~ a.r I 

H 04)_ 
~ OX 2 

=o,  

at = 7 ~  ~ - t- \ax~,/  j 

(29) 

where n is the electron density per unit volume, and a = n / y  is the electrical 

conductivity. A typical feature mathematically is the strong dependence of ~ on 
n, which means that the coefficients in Eqs. (29) are strongly dependent on the 
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space coordinates. Numerical solution of the problem provides both a qualitative 

picture and quantitative information on the process whereby the experimentally 

observed strata originate and develop. Figure 6 shows n = 1 level lines of the 

electron density at the instant t = 1.8 when the strata are developing strongly 

with a Hall parameter i~ = 10 H. The region (stratum) n > 1 is shaded. The vector 

field of the electric current density is represented by arrows. There is a marked 

tendency for the current to bunch round the strongly ionized stratum. The geometry 

of the problem is clear from Fig. 6. The boundary ABCD of the region is perfect 

dielectric, except for the ideally sectionalized electrodes ab and cd, on which the 

normal component of the electric current has a given fixed density: /x a = - ~ x  1 = 

= - 1 .  At the initial instant t = 0 the electron density is fixed at n = 1. The con- 

nection between the temperature T and the electron density was provided by 

Saha's formula. Electron collisions with ions and neutral atoms were taken into 

account. As the process develops, the electron density and electric current 

distributions cease to be regular and recall the turbulent picture observed experi- 
mentally. 

FIG. 5 

A more detailed analysis of the results obtained by a numerical solution of 
such problems will be found in [11]. 

As a third example, consider the numerical solution of the two-dimensional 

problem of the entry of a supersonic conducting gas flow into a magnetic field. 
The phenomenon is described by the equations of magnetohydrodynamics. The 

required stationary solution is obtained by integration of the non-stationary set of 

equations. The following statement of the problem will be discussed.  Given a 

channel of fixed cross-section d = 1. The magnetic field is spatially distributed 
as follows: 

1, x l ~ > O ,  

H = e~5.,. ' - ~  0. d '  l , 
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FIG.  6. 

The  region in which the problem is so lved  wil l  be bounded by the s e c t i o n s  

xT = + 1.5 ( see  F ig .  7). At the channe l  entry ( sec t ion  x T = - 1 . 5 ) w e  are given a 

supe r son i c  gas  flow with the  fo l lowing parameters :  d e n s i t y  p = /30, tempera ture  

T = To, v e l o c i t y  u = u o  p re s su re  p = Po, and a d i a b a t i c  cons t an t  "y = 1.12. The  

conduc t iv i t y  is  de termined by the caes ium add i t ive  e l ec t ron  d e n s i t y ,  and ca l cu -  

l a ted  from S a h a ' s  formula 

5 = z 0 \  T o /  \ P0 i --T I '  1'0 " 

The  main d i m e n s i o n l e s s  pa ramete r s  cha rac t e r i z ing  the flow are the Mach number 

M and the parameter  RM of hydromagnet ic  in te rac t ion .  T h e s e  have the va lue s  

M = 2 . 9 2  and RM = 0.5 in the s e c t i o n  xl = - 1 . 5 .  The s t a t i ona ry  va lue s  of the  

s p a t i a l l y  d i s t r ibu ted  parameters  are shown in F ig .  7. The  ra t io  of the  parameter  

va lue  on the l eve l  l ine to i t s  va lue  at the entry c r o s s - s e c t i o n  is given• See [12] 

for more d e t a i l s .  The  current  vor tex  that  a r i s e s  when the conduc t ing  gas  en te rs  

the  magnet ic  f ie ld  is s e e n  in F ig .  7. The  e x i s t e n c e  of such  a vor tex  is  fami l ia r  [1] 

from the so lu t ion  of the problem when the gas motion is s p e c i f i e d  in advance ,  

i . e . ,  in the approximat ion  RM << 1. 

The  trend of the  l eve l  l ines  in F ig .  7 r e ve a l s  that  s u b s t a n t i a l  braking  and 

c o m p r e s s i o n  towards  the  ax i s  occur when a supe r son i c  conduc t ing  gas  flow en te rs  

a magnet ic  f ie ld  with RM = 0.5. The var ia t ion  of the  flow parameters  l e a d s  in turn 

to  s t rong damping of the e l e c t r i c  current in the region of the f ixed magnet ic  f ie ld  

with xl > O. 
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