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WE SHALL be concerned in this paper with aspects of the numerical solution of
non-self-conjugate boundary value problems such as occur when determining
electric current or temperature fields in a medium with anisotropic electrical and
thermal conductivity [1]. By using a variational approach we are able to carry
over the most important properties of the operator of the initial problem to the
approximating difference operator. We devise a divergent second-erder difference
scheme for the divergent positive-definite operator of the initial boundary value
problem. The scheme has been employed for the numerical solution of a number
of concrete physical problems.
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1. To find a function u(x, , x,), continuous in a closed rectangular region G
(see Fig.1) withboundary I' = I + L +7% +% (%, = 4B, 7y, = CD, T, = AD,
[, = BC), and satisfying at interior points of G the equation
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stu=1, (1)

7] du 0] du a ou 7] du
Au ax,("az;)—az,("m)‘ba( azz)+6x,( ) ©

with the boundary conditions

2=0 on Y1and Ya, (3)
du ou
au—ka—xz—rax =0 on rlandrz, : (4)

k(z, ) > ¢, >0, ¢, = const.

The quadratic form

Gu\?  (du
(u,u] = SGSk [(a—xl) (63: ) ] dxydz, (5)
is positive definite:
[u, u] = 8¢(u, u), 8= const >0, (4,v) = SS uvdrydr,. (6)
G

In the class of reasonably smooth coefficients k and r, and functions u,
satisfying (3) and (4), the differential expression (2) specifies a linear positive
definite operator ({, which is self-conjugate only when r = 0. A discussion of the
existence and uniqueness conditions for the solution of problems (1)—(4) may be
found in [2].

2. There is a close connection between boundary value problems of the type
(1)—(4) and variational principles for describing continuous media [3], so that it
seems natural to use a variational approach [4], based on determination of the
solution by means of integral identities, when devising an appropriate difference
scheme .

Let CZ be the family of functions twice continuously differentiable inside
G and satisfying the boundary conditions (3). A function u € C|? will be a
solution of problem (1)—(4) when and only when, whatever the v € C/?', we have
the identity

q)(uy v)= [uv v] (v v)=0, (7)
lu,v] = SS I(u,v) dzydx,, (8)
G

du o du ou @ ou d
]uv_k< R Ju gv _ou ov
(. 2) 0x, 0z, dxy 6;52) (6x2 dxy, 0z, 0xz,)" ()
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The truth of this statement follows from the first Green’s formula
" D . B
SSV'A”d%dzz = [u,v] — S v (k—é—li— — riu—)dxl —\. v (k Ju _ rﬂ) dz,
G t .Tz Ty :4 x
(10)

and the arbitrariness in selecting v € C,*'. In turn, we can use (7) as a definition
of the generalized solution of problem (1)-(4).

3. It is a typical feature of the present problem that the operator @ is
positive definite and divergent. It is natural to demand that the difference ana-
logue 4 of ( have the same properties. We shall use (7)—(9) as our starting-point
when devising the operator for the difference boundary value problem approxi-
mating the problem (1)—(4).

We construct in the rectangle G = (0 <x,< [, a = 1, 2) the mesh
On= {Zu, = Lhy, T, =ish; io=0,1,....,Nq b =la/Ng, a =12}

with steps h, and A, in the x, and x, directions.

The integral bilinear form [u, v] will be approximated by the difference
expression
Nl—ll Nl—'l

w,vlh= 2D )i Py b, (11)

i1==0, i1=0

There are various ways in which [u, v] can be approximated. But we shall only
consider those which satisfy the following natural requirements:

(1) the local approximation of the bilinear form I (u, v) by the difference
analogue I, (u, v) is of the second order on smooth functions:

I (u,v) — I (u,v) =0 (h?), h =max (h,,hk,); (12)
a=1,2
(2) the quadratic form [u, ul, is positive:

[, u],>0, us&0. (13)

The bilinear difference functional (11) defines the operator A by means of
the identity
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Ni~1, N»

[, 0]y = (v, Adu)y = D) w;,vAubyhy, (14)

i3=0, 1,=0
{ 1, iy =0, Ny,
=105, i,=0N,,

which is the difference analogue of Green’s formula (10). The conjugate operator
A¥ is defined similarly:
N1, N,
[, v]n=(u, A°V)y = D)  %y,ud"vhih,.

4,=0, i3=0

The difference operators A and A* thus obtained are defined on any mesh
functions y which satisfy the boundary condition y = { at the mesh base-points
belonging to ¥, and ¥, , and they are divergent. The possible construction of
difference schemes on the basis of the integral identity (7) was examined in [5, 6].

The following approximation of I(u, v), satisfying (12) and (13), will be used:

1 1
Ih (u- 21) = '_2' kinis 2 [(u’xxvxa)iu i (u'xnvx:)iﬁa,i:] +
a=0

1
Fris 2 [ediso, iy @xin, itp — (Uxi, i3 (Vxy)ivia, ]
o, p=0

In accordance with (14), we obtain the following expressions for A:

S 1 , 1
Ay == D (b )ey+ 5 (PYs, + D) — o (@, +0%)  (45)

a=1
at interior points,
Ay = — (k L2 h - 1
y=—Cy)e +5-ky, —qy: — 5— ¥z +rys) (16)
hg 2 3 h2 1
on the part of the boundary I',, and

2 1
Ay = — (k_yz )e, — —,;;—k*yx, — Y + Ty Yz, ) (17)
on the part of the boundary I',; here, p = 9r/dy, q = dr/dx. The meaning of
the notation £_, £,, €7, £ for the functions £(x) (&(x) is one of the coefficients

k, p, g or r) will be clear from Fig.2.

The difference analogue of the identity (7) is

Ou(y, w)=[y, wh—(f, w)r=0, (18)
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where 1 Ni—1, N—1 1

(f’ w) = 4_ 2 Z fi1+a. it Wi,-m, it h]h2

i1=20, i5=0 a=0

defines the difference solution y. Finding this solution is equivalent to solving
the finite-difference boundary value problem

Ay =1, (19)
where the operator A is given by (15)—(17). Let us consider the properties of A.
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FIG. 2.

Notice that A, like the differential operator (, is positive definite:

(v, Ay)w = 8llylle. 6> 0, (20)

where & = const is independent of A.

Let 4, = (A + A¥)/2 be a self-conjugate, and 4, = (4 — A%)/2 a skew-
symmetric operator, such that A= A, + A,.

The operators A, and A, have the same region of definition as A. Also, A,
is positive definite,
(¥, Aoy)n = (y, Ay)» = ollyll?,

so that we can introduce the norm

lglas =¥ (y, Aop).
From (15)—(17),

Niu Ne—1 N.,—1, Na
IR = ke D ko )+ D K@)+ ——2 [k Uz )0+ (1)
=1, is=1 =1, fp==1 =1

+ k_(y3)i=n] }
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The rate of convergence of the solution y of the difference problem to the
solution of problem (1)~(4) may be estimated by means of the error

I=y—u (22)
Substituting y = u + z in (19), we obtain the error equation
Az = .
where ¥ (23)

V= f—Au = (Su), — Au
is the error in approximating the differential operator @ by the difference operator
A on the solution u. If the initial problem has a reasonably smooth solution u, the
local approximation error ¢ (in a uniform metric) is O (h?); this follows because
the bilinear form [u, v] is approximated to O (h?) by the difference analogue
[u, vls.

Hence

|,z“A02 = (Aﬂz1 Z)h = (AZ, Z)/. = (‘P, Z);,. (24)
Using the inequality of [7],
(¥, 2)n < Ipllallzll o, (25)
and, recalling (24),
lzila, < llpllace : (28)

Since Ao 2 8 E (E is the unit operator) is positive definite,

whence 4,7 < 67'E,
I [Par= (A, ) < 87 (w, ) = 8~'lIwll" (27)
Using (27) and (26), we get the following a priori bound for problem (23):
lizll 4y << 8", (28)

Since ||/ || = O(h2) and § > 0, the convergence rate of the difference scheme in
the mesh norm W, must be O (h?).

4. Iterative schemes based on the method of alternating directions were used
for the numerical solution of (19). For this, A was written as the sum of two one-
dimensional operators A, and 4,:

A=4,+A..

Two iterative schemes, namely, the longitudinal-transverse scheme (LTS) of
[8] and the Douglas—Rachford (SDR) scheme [9], were compared from the point of
view of the number of iterations needed to achieve a given accuracy. The compu-
tations were performed with a fixed iterative parameter 7. It is clear from Fig. 3,
which refers to the solution of (19) with & = r = 1, that the LTS (curve 1) converges
after fewer iterations than the SDR (curve 2) whatever the value of 7. Figure 4
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shows the results of solving (19) with strongly space-variable coefficients k = 1,
r=asinyx sin Yy + b, a, b and 7y are constants. It is evident that each scheme
has its own critical 7, , beyond which the iterations diverge; the 7, for the SDR
(curve 2) is greater than for the LTS (curve 1). This restriction of the parameter

T with strongly variable coefficients comes from the fact that the operators A,
and 4, cease to have a definite sign, in spite of their sum being positive-definite.
The curve of the number of iterations against 7 has a plateau in the case of the
SDR. This fact facilitates selection of the optimal iterative parameter and
enables fewer iterations to be used with the SDR than with the LTS.

5. Results of the numerical solution of some typical problems are given
below, for purposes of illustration and not with any attempt at completeness.
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The different types of two-dimensional effect in the boundary zones of the
magnetic field or close to the electrodes [1] are of great interest. Several exact
solutions are available for elementary cases in this region. But the scope for an
analytic approach is limited even when we confine ourselves to a very simplified
discussion of problems in which the conducting liquid has given fixed parameters.
In the general case of variable coefficients, numerical solution is the only
practical possibility.

Consider the flow of an electrically conducting medium with constant
velocity v(v, = 1, v, = 0) and constant conductivity ¢ = 1.

The flow takes place in a flat channel ~0o < x, € =, 0 €x, €1 with
parallel walls (see Fig.5); the walls consist of a perfect dielectric, except for
the pieces - 0.5 € x <€0.5 occupied by ideal electrodes. A fixed potential
difference U = 0.7 is maintained between the electrodes. The magnetic field is
fixed and equal to H = 1 in the electrode zone, while outside this zone it falls
exponentially to the power 2. The Hall parameter { = 3H.

By solving this problem numerically, the electric current distribution may be
plotted, see Fig. 5, and integral energy characteristics such as the plasma power
and electrical efficiency etc. may be found. A series of such computations is
described in [10], aimed at discovering the influence of the magnetic field and
electrode spatial distributions, and Hall parameter etc., on the current distribution
and the integral energy characteristics of a magneto-hydrodynamic channel.

Ionization instability in a low-temperature magnetized plasma is of great
interest to physicists as well as engineers. With certain assumptions, the mathe-
matical description of this phenomenon amounts in essence to solving the set of

equations
4 (L ‘7‘1?),, 9 (L "‘4’).- 9 (i 0“’)
dx, s Ory /) = 0ry \ 5 O, ™ dory \ov 9z, /|
' d < H 8y ) -0
T Bx, \ov dr, )

where n is the electron density per unit volume, and ¢ = n/v is the electrical
conductivity. A typical feature mathematically is the strong dependence of v on
n, which means that the coefficients in Eqs. (29) are strongly dependent on the
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space coordinates. Numerical solution of the problem provides both a qualitative
picture and quantitative information on the process whereby the experimentally
observed strata originate and develop. Figure 6 shows n = 1 level lines of the
electron density at the instant ¢ = 1.8 when the strata are developing strongly
with a Hall parameter ! = 10H. The region (stratum) n > 1 is shaded. The vector
field of the electric current density is represented by arrows. There is a marked
tendency for the current to bunch round the strongly ionized stratum. The geometry
of the problem is clear from Fig. 6. The boundary ABCD of the region is perfect
dielectric, except for the ideally sectionalized electrodes ab and cd, on which the
normal component of the electric current has a given fixed density: Jz, =Yz, =
= —~1. At the initial instant ¢t = 0 the electron density is fixed at n = 1. The con-
nection between the temperature T and the electron density was provided by
Saha’s formula. Electron collisions with ions and neutral atoms were taken into
account. As the process develops, the electron density and electric current
distributions cease to be regular and recall the turbulent picture observed experi-
mentally.
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A more detailed analysis of the results obtained by a numerical solution of
such problems will be found in [11].

As a third example, consider the numerical solution of the two-dimensional
problem of the entry of a supersonic conducting gas flow into a magnetic field.
The phenomenon is described by the equations of magnetohydrodynamics. The
required stationary solution is obtained by integration of the non-stationary set of
equations. The following statement of the problem will be discussed. Given a
channel of fixed cross-section d = 1. The magnetic field is spatially distributed
as follows:
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The region in which the problem is solved will be bounded by the sections

x, = 11.5 (see Fig.7). At the channel entry (section x, = —1.5) we are given a
supersonic gas flow with the following parameters: density 0 = p,, temperature
T=T,, velocity u = u, pressure p = p,, and adiabatic constant 7y = 1.12. The
conductivity is determined by the caesium additive electron density, and calcu-
lated from Saha’s formula

S i N O D )
= (7o) (&) e | = (7= 7))

The main dimensionless parameters characterizing the flow are the Mach number
M and the parameter R), of hydromagnetic interaction. These have the values

M =2.92 and Ry = 0.5 in the section x, = —1.5. The stationary values of the
spatially distributed parameters are shown in Fig. 7. The ratio of the parameter
value on the level line to its value at the entry cross-section is given. See [12]
for more details. The current vortex that arises when the conducting gas enters
the magnetic field is seen in Fig. 7. The existence of such a vortex is familiar [1]
from the solution of the problem when the gas motion is specified in advance,

i.e., in the approximation Ry < 1,

The trend of the level lines in Fig. 7 reveals that substantial braking and
compression towards the axis occur when a supersonic conducting gas flow enters
a magnetic field with Ry = 0.5. The variation of the flow parameters leads in turn
to strong damping of the electric current in the region of the fixed magnetic field
with x, > 0.
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