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1. IT was shown in Ill that the usual difference schemes, also including 
conservative ones, have defects: they infringe the energy balance relations. 

A class of schemes called completely conservative, which are free from 
this defect, exist. These schemes satisfy not only the difference analogs of the 
fundamental laws of the conservation of mass, momentum and total energy (as 
for ordinary conservative schemes), but the detailed energy balance is also 
valid, that is, the balance with respect to the individual forms of energy: internal 
and kinetic. 

Completely conservative difference schemes may be obtained, for example, 
by means of a well-known integrodifferential method [2] when a formal selection 
rule is observed. The essence of this rule is as follows. In gas dynamics the 
equation of the energy, for example, can be written in different forms: divergent, 
describing the variation in time of the total energy, nondivergent, expressing 

the variation of the internal energy, and entropic. In differential form these 
types are equivalent, that is, they reduce to one another by means of the other 

equations of the system. 

But in the difference form this equivalence property does not in general hold, 

and is valid only for completely conservative schemes. In other words, completely 
conservative difference schemes simultaneously approximate the possible equi- 
valent form of the original differential system of equations. 

In this paper we consider difference schemes for magnetohydrodynamics in 
Lagrangian coordinates for the case of one spatial variable. Completely 
conservative difference schemes with the first and second order of approximation 

are constructed. 
--- 

* Zh. vychisi. Mat. mat. Fiz., Xl. 4, 990-998. 1970. 
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234 Di[fercnce schemes for magnetohydrodynamic equations 

2. A system of one-dimensional plane non-stationary equations of magneto- 
hydr~ynami~s in the absence of the lo~itudin~l component of the magnetic 
field in Lagrangian mass coordinates has the form [31 
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Notation: f is the time, r is an Eulerian variable, p is the density of the 

medium, n(dx = pdr) is a Lagrangian mass coordinate, u is the longitudinal 
component of the velocity, p is the gas pressure, e is the internal energy, D is 
the electrical conductivity of the medium, H, E are the transverse mutually 

perpendicular components, of the magnetic and electric fields, respectively, 1 
is the electric current density, F is the Lorentz electromagnetic force, and Q 
is the Joule heat. The time derivative is Lagrangian. 

The system of equations of magnetohydrodynamics can be written in several 

equivalent forms possessing direct physical significance. Thus, the energy 
equation (2.7) taking equation (2.3) into account can also be represented in a 
non-divergent form, expressing the variation of the internal energy: 

de 

dt=-P?z p a (-1-, 4-Q. (2.Q 

Moreover, equation (2.71, using (2-D-(2.5), can be reduced to the divergent form 

; & + 0.5u2+ 
( 

g)=-&[(P+;) u]+i( E), (2% 

describing the variation of the total energy. 

The differenti~ equations (2.7142.9) are equivalent in the sense that they 
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are reduced to one another by means of the remaining equations of the system. 

In the equation of motion (2.1) the Lorentz force F can be recorded in 
divergent and nondivergent forms, which are also equivalent: 

IN a Ii.2 
~=--r-&. --&- . 

P ( 1 (2.10) 

In a numerical solution by the method of finite differences the system of 

differential equations is approximated by some difference scheme. The difference 
scheme can be constructed on the basis of any of the equivalent forms of the 
differential system. In particular, the construction of the usual conservative 
schemes is based on the divergent equations. 

We formulate a difference scheme approximating the system of magnetohydro- 
dynamic equations in the form (2.1M2.7). 

For this, in the part of the xt-space considered, we introduce the difference 
net {Xi, 13, k+i = Xi + I?&<, i= 0, 1, . , , , N - 1; tj+’ = tj + Zj, j = 0, I, . , . 

For simplicity we will consider the net uniform (mi = m r const, 7-j = r = const),’ 
although all the results obtained below are also valid for the case of non-uniform 
nets. 

We define the net functions on the net, the values of the net functions 

of the velocity D i, Eulerian variable rij, electric field intensity E,‘, current 

density I j and Lorentz factor force F;j will be referred to the nodes of the net 

(xi, tj), and the values of the net functions of the density pij, pressure pij, 

internal energy fij, magnetic field Hij, electrical conductivity oi; and Joule 

heat Qij to the middles of the mass intervals (Zi+st t’), xi+% = Xi + 0.5~2. 

Below, following 141, we will use the following index-free notation which 
will be convenient for calculations 

d-y 
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Y(-l-1)--Y ;=y Y-UC---1) 
z 

1, 
m M 

= Y,, (2.12) 

N-I N-I N 

61 40 to 

For the summation of differences the following rule holds: 
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[Y, 4 = -kg, ~1 i- YNUN - Y-IUO. (2.14) 

The formula 

(Y*U)t = iur + UYt, (2.15) 

will be used in calculations for the difference differentiation of a product with 

respect to time, and the difference identity 

y(O1) = y(d2) + (‘0, - ct!)zyt. (2.16) 

will also be used. 

3. We consider the following multiparameter family of difference schemes 

approximating the equations of magnetohydrodynamics: 

ut = -py)+ F, 
rt = v’q 

(3.9 
(3.2) 

H,=4n I 
pt--1) ’ 

(3.4) 

(3.5) 

I = a(-1)E; (3.6) 
w 

Et = - pWdu~) + Q, Q= tp(L, ,fjY~d. (3.7) 

Here 0 < ok < 1, k = 1, 2, . . . , 8, are the parameters of the scheme, 

enabling the specific form of the tune interpolation of the corresponding terms 
of the equations to be chosen. 

In order to obtain a unified notation at the boundary points of the net for the 
equations of the scheme, and also for the difference formulas encountered below 
we introduce two fictitious uet intervals m_, = 0 and mN = 0. Then, for example, 

in (3.1) we must understand by P_~ and pN the values of the pressure net function 
at the boundary nodes, whereupon equation (3.1) itself still applies for i = 0 and 
i = N. 

Obviously, for the scheme (3.1M3.7) the law of conservation of mass is 
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satisfied automatically because of the use of the mass coordinates. In this 

case, instead of it, it is necessary to require the satisfaction of some relation 

for the volume 

which by [ll is valid for 

(Tg = oz. (3.8) 

The use in the difference scheme of the nondivergent energy equation 

ensures the satisfaction of the internal energy balance 

h 
Ej2-,V!=tiJ= Ai+Bj, (3.9) 

jzj, 

Ej=[E, 1), A j = - [p), dyd) , Bj=[Q, 1). 

The relation (3.9) is obtained by summation over the net of equation (3.7) for 

O<i<N--l,j,,(j<‘iz and expresses the fact that the variation of the 

internal energy of a fixed mass of gas IX,, ~~1 occurs as a result of the total 

work of the pressure forces on the gas A and the Joule heat B. 

In the scheme (3.1Lt3.7) we calculate the variation of the total energy. 

Using (2.14) and (2.16) we transform the expression for A: 

Aj = - (pm, $q = [p?‘, Ucns,] - R’ + D,‘, (3.10) 

where 

Rj = pp)vyy _ p~$5’v’R”‘, D,i = (G 6 - 01) T [pit, Y@S)]. 

After multiplying equation (3.1) by u 
(06) 

, summing it over the net and taking 

account of (2.16) we obtain 

[p?‘, &a] - [F, u(G)] = - [U@“), vt] L- - 0.5 [(z+, $1 + D,‘, (3.11) 

D2j = (0.5 - o&[vt2, I]. 

WC also transform the electromagnetic terms: 
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Here we use the difference equations for the electromagnetic field (3.4)-(3.5). 

Starting from formula (2+15) for the difference differentiation of a product, 

it is possible to verify the validity of the difference identity 

which after replacing the time derivatives in accordance with (3.3) and (3.4) can 

be rewritten in the form 

Taking into account the last relation, we continue the chain of t~~sformations 

(3.12): 

Bringing together all the results in (3.91, we obtain the difference analog of the 

law of conservation of the total energy for a fixed mass lx,, xN] in the time 

interval [tjl, @] : 

(3.13) 
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It is obvious that this law is not satisfied in the general case. The unbalance 
of the total energy AE accumulates with time and for smooth solutions is of order 
O(r). But for discontinuous and strongly varying solutions, as follows from the 

structure of the terms D,j, the unbalance may become significant and considerably 
distort the nature of the solution. 

It is noteworthy that the unbalance is independent of m the step of the net, 
and hence cannot be decreased by thickening the spatial net. 

The presence of unbalance of the total energy in the scheme considered is 
connected with the nondivergence of the energy equation (3.71. However, the use 
in the scheme of the divergent equation, for example, in the form 

& + 0.5U2 + - ;;) tC I [ (p’u”)(_l)+ H(-$l) ) u(@]x + (3.14) 

( 

Hr(@ ( - 1) EC@ 

4n ) x 

ieads to similar difficulties. When the law of conservation of the total energy 

is satisfied in such a scheme, the detailed energy balance, that is, the balance 
for the separate forms of energy, will be violated. Thus, the balance for the 
internal energy has the form 
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F,j= (a, - 0.5)2 [G, vxt)* n.i=_[F+ g,;, d0.j. 

In the general case m Z 0, which testifies to the bad approximation in 

the scheme for the internal energy. This defect of the scheme is no less danger- 

ous than the violation of the law of conservation of the total energy. For example, 
in a number of calculations this has caused the appearance of such a non-physical 
effect as a decrease in the temperature of a certain mass of gas in the compress- 
ion stage in the presence of Joule heating. Such phenomena are particularly 
inadmissible in the calculation of problems involving functions strongly depend- 
ent on the temperature, like the electrical conductivity, thermal conductivity, etc. 

In order to ensure, in the scheme (3.1M3.7) the observance of the difference 

law of conservation of the total energy /u!C E 0, D,j = 0 in (3.13), and in 
the scheme with the divergent equation (3.14) the observance of the balance of 
the internal energy hE E 0, &,j E 0 in (3.151, it is sufficient to satisfy 
the conditions 

06 = (3% u4 = 03 = 0.5, 07 = 0.5, os = 04, (3.16) 

Here both schemes are equivalent, equation (3.7) reduces algebraically to 
the divergent equation (3.14) and conversely. 

It is also obvious that the equation (T, = u3 ensures the algebraic equivalence 
of equation (3.7) to the difference equation 

which approximates the differential equation (2.8). 

The conditions (3.16) uniquely define the difference form of the Lorentz 
force F. This expression approximates the divergent differential form in (2.10) 
and ensures the observance in the scheme of the difference analog of the law of 
conservation of momentum. 

The divergent difference expression for the force (3.16) can be transformed 
to the nondivergent form 

F=-0.25 [ (--&) (H+H(-l))+~‘B+b(-l))] 7 
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which approximates the nondivergent relation in (2.10). 

Therefore, the conditions (3.8) and (3.16) select from the eight-parameter 

family of difference schemes (3.1)-(3.7), approximating the system of equations 
of magnetohydrodynamics, a two-parameter family of schemes (with the free 
parameters a and @)_ which are completely conservative: 

1 
t i 

- =u (0.5) 

.P t 
x 3 

t= PE, 

E(P), 

(1) 

For the family of schemes (I) not only the fundamental difference laws of 

the conservation of mass (volume), momentum and total energy are valid, but also 
a number of additional balance relations, the necessity for the satisfaction of 

which is dictated by physical considerations, for example, the detailed balance 
of energy, that is, balance with respect to the separate forms of energy - internal, 
kinetic, magnetic. The scheme (If simul~neously approximates the possible 
equivalent forms of the system of differential equations of magnetohydrodynamics. 

The scheme has the order of approximation o(r t ml; for the parameter values 
a = 6 = 0.5 the order of approximation equals O(r’ + ml, 

4. A family of completely conservative schemes, similar to the family (I), 
can be constructed by using a somewhat different difference approximation of 
the Joule heat in the energy equation (3.71: 

Q = ( I(+11 
P 

,)“hb(+l). 
Here the conditions of complete conservation (3.161 are preserved, and the 

energy equation (3.7) is equivalent to the following divergent equation: 

( E + 0.5z9(+1)+ G) t=- [(p’“‘+- ~p)~~o.,,].+(~~~.~~(~),.. 

Here another form of the ~~oximation of the kinetic energy is used. 

This family of schemes also has the order of approximation O(r 
a = /3 = 0.5 the order is o(r2 + m), 

t m), and for 

The schemes constructed are recorded on unsymmetric patterns and hence 
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have the first order of approximation with respect to space. By using a symmetric 
pattern it is possible to obtain completely conservative schemes with the second 

order of approximation: 

Et = 

Here the notation y* = 0.5(y + y(-1)) has heen used. 

The nondivergent energy equation in the scheme (11) is transformed alge- 
braically to the following divergent form: 

- I( #’ + I!!$) u(o.5)], + ( “fI,““), . 

The value of the parameters a = p = 0.5 select from the family (II) the only 

completely conservative difference scheme for the equations of magnetohydro- 

dynamics with the second order of approximation Ok2 + m’). 

5. Completely conservative difference schemes approximating the system 

of equations of magnetohydrodynamics were realized in the calculation of a heavy 
current discharge in a plasma [5l. The processes generated in the plasma as the 
result of the discharge through it of a battery of capacitors were considered in the 

problem. As was shown by the calculations, a complex magnetohydrodynamic flow 
with large spatial gradients and sharp time variations of the parameters is produced. 

When this problem was computed by the usual implicit schemes with a non- 
divergent energy equation [6l an unbalance of the total energy was observed, which 
in different versions amounted to 2030% of the total energy of the system. This 
led to a physically absurd result: the energy emitted from the system in the form 
of optical radiation up to the end of the process ‘exceeded the initial store of 
energy contained in the battery of capacitors. 

The application of completely conservative schemes removed this defect. 

6. Iteration methods are usually used for solving a system of implicit equations, 
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the iteration process being continued until a given accuracy or a given number of 
iterations is reached. In practice this means that instead of the assumed differ- 
ence scheme some other scheme is realized, depending on the method of solving 
the difference equations. Generally speaking, this scheme does not possess the 
property of complete conservation and is even not conservative. Hence in real 
calculations the unbalances will already not be accurately equal to zero. Their 
value depends on the number of iterations performed and may be used as an indi- 

cation of the “iterability” of the scheme. 

Because in completely conservative difference schemes the corresponding 
divergent and nondivergent difference equations are algebraically equivalent, 
it is a matter of indifference from the point of view of the satisfaction of the 
balance relations which particular form of the equation is used in the scheme. 
However, in practice it is more convenient to use the iess laborious nondivergent 
equations. 

Translated by J. Berry 
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