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1. THE set of equations of gas dynamics can be written in a variety of ways, each capable 

of direct physical interpretation. For instance, the energy equation may be written in 

the divergent form, expressing the variation of the total energy. or in the non-divergent 

form, expressing the variation of the internal energy only, or in the entropic form etc. 

These forms are equivalent in the differential form, in the sense that one can be obtained 

from the other by means of the remaining equations of the set. 

When the differential equations are solved numerically by the method of finite 

differences, it is approximated by a difference scheme. The latter may be based on any 

one of the equivalent forms of the differential equations. In particular, classical conserva- 

tive schemes are based on the divergent equations [ 11. But the equivalence property does 

not in general hold for the set of difference equations. For instance, if the non-divergent 

energy equation is used in the scheme, it cannot always be reduced to the divergent 

difference form. In the course of transformation, due to “mismatch” of the individual 

equations of the scheme, remainder terms appear, the presence of which may be treated 

as due to energy sources of a purely difference type being present in the scheme. These 

fictitious sources lead to violation of the difference analogue of the law of conservation 

of total energy. 

Similarly, the divergent difference equation cannot be transformed into the corre- 

sponding non-divergent form. In this difference scheme, when the law of conservation 

of total energy is satisfied, the internal energy, and hence the kinetic energy, balance 

is destroyed. 

The energy unbalance depends on the nature of the solution. While it is small on 

smooth functions, it can become comparable to the total energy on solutions which 

vary strongly in time and space. 

*Zh. vjchisl. Mat. mat. Fiz. 10, 3, 113-119, 1910. 
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In [2], completely conservative difference schemes, which simultaneously approxi- 

mate all the equivalent sets of differential equations, were devised for the equations of 

gas dynamics in Lagrangian co-ordinates. In particular, not only are the difference 

analogues of the basic laws of conservation - of mass, momentum and total energy (as 

for ordinary conservative schemes) satisfied for these schemes, but also the detailed 

energy balance, i.e. the balance with respect to the internal and kinetic energy forms 

individually. 

In the present paper we construct conservative difference schemes with the first 

and second orders of approximation for the equations of gas dynamics in Euler’s 

variables. 

2. The set of one-dimensional non-stationary equations of gas dynamics in 

Euler’s co-ordinates is 

i = pv, (2.1) 

(2.2) 

d p (e + 0.5~9 = +!+0.5r+$ (2.4) 

Here, I is time, r the space co-ordinate, j the gas flow density, v the velocity, 

p the pressure, p the density, and E the internal energy of the gas. 

After integration with respect to space and time, (2.2) - (2.4) yield respectively 

the laws of conservation of mass, momentum and total energy for a futed volume. 

The set of equations (2.1) - (2.4) may be written in several equivalent forms. For 

instance, the equation of motion (2.3) may be transformed with the aid of (2.2) to 

au 
pg+i,= -a;, (2.51 

which expresses the variation of the momentum of a material particle along its trajectory 

of motion. 

Using (2.2) and (2.3), the energy equation (2.4) is equivalent to the following 

relationships: 

ape aje av 
-----p-, 

at- ar ar 
(2.6) 
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P ( ~+P~($))+j(~+p~(~))=O, 
which describe the variation of the internal energy only. 

We introduce into the part of the space r, t, r. < r < rn, t 2 0, the difference 

mesh (rlr rf): ri+i = ri + hi, i = 0, I,. . . , N - I, tj+l = tj + ~5, j = 0, I,. . . . To 

simplify later working, we shall confine ourselves to the case of a uniform mesh (hi = 

= h = const, tj = z = const). We define on the mesh the velocity and gas flow density 

mesh functions vi] and ii], with values referred to the base-points (ri., tj), i = 0, 1, . . . ,N, 

and the density, pressure and internal energy mesh functions p ij, pi’ and Eim, 

with values referred to the half-integer points (ri+l/,, tj) (rr+t/, = rl + 0.5h, i - 0, i, . . . , 

A’- 1). We shah use the following index-less notation [3] for the mesh functions: 

y?;=y, yf’L y, y(U) = ay + (1 - a) y, Y (It 1) = Yh*p (2.9) 

G-Y 
----=y 

Y(-J-4)-Y 
T=Yr, 

Y-Y((-lLy_ 
t* la 7. (2.10) 

z 
N-i N-i N 

c 

Yiuih = (YY u), 
c 

yiuih = I!/, u), 
c 

Yiuih = tY7 ul* (2.11) 

i-i i=O i=O 

We have for the difference summation: 

[y, UJ = -[@] + YNUN - !,-tu0. (2.12) 

We shall make use of the following expressions for the difference differentiation 

of a product: 

(YU)l = Y (+I)& + fJyrr (YU)t = yut + UYf, (uy) t ,= y(O.“hQ + UW5)1/(, (2.13) 

and the difference identity 
yC%) = yw + (Isi - a*)zyt. (2.14) 

3. We take the following multi-parameter family of difference schemes, approxi- 

mating the set of equations (2.1) - (2.3), (2.6): 

i = Pv, (3.1) 
@IPZ) 

pt = --jr , (3.2) 

it = _&da) _ (i(UI, G) (zAUJ + &) (- 1))),, (3.3) 
r 

(pa) t = - (jbJA2)&%)), - p(%)v~) . (3.4) 

The following notation is used here for writing the derivative with weighting 

factors: 

j(Jb* %) = pWvW = [ai^p + (1 - U*)p] [U*^v + (+ - U2)v]. 

The quantities 0 G ok s 1, k = 1, 2,. . . , 7, are the parameters of the scheme, via which 
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some form of time interpolation of the terms of the equation is realised. 

To ensure a unified representation of the difference equations of the scheme, and 

of the expressions encountered below, at the boundary points we introduce two fictitious 

intervals h-r = 0 and h, = 0. Then, for instance, ~_r = y0 in (3.3) and EN in (3.4) is 

the value of the internal energy at the mesh boundary base-point i = N, etc. 

The divergence of the equations (3.2) and (3.3) implies that difference analogues 

hold for the laws of conservation of mass and momentum for a fixed volume {ro, rN}. 

The energy equation (3.4) is taken in the non-divergent form. This ensures that 

the difference internal energy balance is satisfied in the scheme: 
j2 

]P, e) I ::+ 7 
c 

( (ENj - l&j) - Aj} = 0, (3.5) 

j=j, 

Eij = ii (u1'u2~ii(Q5) , Aj = --[p(Q, or). 

Relationship (3.5) is obtained by summation over the mesh of Eq. (3.4) for 0 < i < 

< N- 1, tjl < tj < 02 and expresses the fact that the change in the internal energy of. 

the gas in a fixed volume {r". r&j is due to the total work A done by the pressure 

forces on the gas and the flux of internal energy through the boundaries of the volume 

r. and rdv. 

Let us find the change in the total energy for the scheme (3.1) - (3.4), For this, 

we transform the last term in (3.5). In view of (2.12), and recalling (2.14). we have 

where 
Aj = [p@“‘, u(‘~) ] - (I?& - Roj) + D,j, (3.6) 

r, 

The quantities p-r and PN are the pressures at the boundary base-points of the mesh 

i = 0 and i =.A? 

After multiplying (3.3) by Y 1Q7) and summing over the mesh base-points, we get 

[J&!J”‘, Jar)] = - [JQ), jJ - 6.5 [@), ($0” 02) (,@J f Jo”)},]. (3.7) T 
Applying (2.13) for difference differentiation with respect to time and replacing 

v (“) in accordance with (2.14) by ~(0.5) + (a, - u.5)rvl, we get 

u@r)jt = U(U7) (pu)* = 0,5u@r) (pu)t + 0.5v@7) (p’O%* f v(O-5$*) = 0.5(pu2)* + 

+ 0.5U(%(o~5)pt + 0*5(a7 - 0.5)TUr ((pu) * + p@%t). 

We substitute for pt in this from the equation of continuity and rewrite (3.7) as 
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[p’_a”, Zl(u7)] = - 0.5 [p, v21t + 0.5 [v(“‘)v(o.s) , jyll ad] _ 
f 

- 0.5 [I#), {j”‘l u2)(v(u4) + v(““(__l))}r] + &j, 

D2 1= -0.5(0, - 0.5)t[vt, (p) t + p(o.5bt]. 

0.5 

Further, it can be shown similarly that 
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(3.8) 

(3.9) 

On combining (3.(I), (3.8) and (3.6) with (3.5). we get the following difference 

analogue for the law of conservation of the total energy for the scheme (3.1) - (3.4): 

jzj, 

(3.10) 
J2 

AE = T (D,j + D,j + D$ + D&j) 

It is clear that this law is in general violated. The total energy unbalance AL 

accumulates in time and is of order 0 (7) on smooth solutions The unbalance AE is 

independent of the space interval of the mesh and hence cannot be reduced by making 

the interval h smaller. It is clear from the structure of the terms Dk (k = 1. 2, 3, 4) 

that the unbalance depends on the nature of the solution and may reach large values at 

discontinuities or on solutions that vary strong!y in time and space. 

To ensure that the difference law of conservation of the total energy (AE z 0, 

D, zz 0) is satisfied in our scheme, we only need to satisfy the conditions 

U6 = (53, 07 = CL = 0.5. (3.12j 

When these conditions are satisfied, the non-divergent energy equation (3.4) is 

equivalent to the divergent difference equation 

(pE) t + ~.~(I)LJ*)~ = -((i’“l’ u2)(&(mS) + 0.5v~“.5)V(o~5’(-1) j), - (p’03)(-l)v(0’5))r. 
(3.12) 

This last equation is the difference approximation ot the divergent differential 

equation (7.4). It may be obtained from (3.4) algebraically. by means of (3.1 ) - (3.3). 

In accordance with [Z] , the formal requirement for the equivalence in the differ- 

ence form of the non-divergent equation (3.4) to some divergent equation also leads to 
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conditions (3.11) and to expression (3.12), and may serve as the basis for selecting 

completely conservative difference schemes from the family (3.1) - (3.4). 

Starting from the equivalence rules, we shall require that (3.4) should also reduce 

to a difference form, approximating (2.7) and (2.8). We shall quote the results without 

dwelling on the detailed working. 

Equation (3.4) is equivalent to the difference equation 

P@$ f /101, 02) (fl) p = _ p(qp6) , v=l -cTs, (3.13) 

with the following values of the parameter us : 

05 = 0, (T5 = 0.5, oa = 1. (3.14) 

With the auxiliary condition 

crz = 0.5, 05,= D1 (3.13) 

Eq. (3.4) also transforms to 

P(‘) et + P(‘~) $ t 
( ( Jj 

+i(u1~0.5) (+ 1) (epl) + p(oa)(-$j-)r) = 0. (3.16) 

Equations (3.13) and (3.16) approximate the laws of variation of the internal 

energy for futed material particles and ensure that the corresponding difference energy 

balances are satisfied along their trajectories. 

Recall that, in the differential form, the equation of motion (2.3) was reduced by 

means of the equation of continuity (2.2) to (2.5); in the same way, in the difference 

form, under conditions (3.1 l), we can transform (3.3) by using (3.2) to 

P(O.6) o1 = -p_ (0~1 _ 6.5 (~“JI, 01.) (+i) +O.S) + +a: s ‘74,;.6)). (3.17) 
?. 

In short, conditions (3.1 l), (3.14) and (3.15) distinguish, from the seven-parameter 

family of difference schemes approximating the set of equations of gas dynamics in 

Euler’s variables, a two-parameter family of schemes which are completely conservative: 

i = pv (i(% 0.5) = p(Mv(O.~)), (3.18) 

Pt = _ iJ,““i (3.19) 

it = @ _ 9.5 (&a~ a.61 (v(as) + &‘.6) (M-1))),, (3.20) 
+ 

(pe), = - (+a, 0.6) ,(a)) _ p@),;s.@ 
P (3.21) 

(the parameter 0 d fi < 1 is free, while the parameter 4~ can only take one of the three 

values 0, 0.5, and 1). 

For the scheme (3.18) - (3.21) the difference laws of conservation of mass, 

momentum and total energy are satisfied, together with the detailed energy balance, i.e. 
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the balance with respect to the individual types of energy, internal and kinetic. In 

addition, the corresponding energy relationships hold in these schemes along the particle 

trajectories. The family of schemes (3.18) - (3.21) simultaneously approximates the 

possible equivalent forms of the set of differential equations of gas dynamics (7.1) - (2.8). 

The scheme (3.18) - (3.21) has the order of approximation O(r + h). When the 

parameters (Y = fl = 0.5, the order of approximation is 0(r2 + h). 

4. A family of completely conservative schemes similar to (3.18) - (3.21) may 

be constructed on a somewhat different pattern: 

i=p(--l)V (;‘a> 0.6) = p(a) (__1) JQ.5) ), (4.1) 

pt = _po.5), (4.2) 

i = _ #J) _ 0.5 (+a* 0.5) (-1) (y(O.5) + 7P.5) (--2)))r, (4.3) 
t 

& = _ (p 0.6) p) (-I)), _ p(B),y). (4.4) 

Here. the mesh function of the gas flow density j is referred as before to the i-th 

mesh base-point, but is defined relative to the density at the left-hand adjacent semi- 

integral point. 

Balance relations similar to those discussed in the previous section hold for the 

schemes (4.1) - (4.4). By the definition of complete conservatism, this family of schemes 

also simultaneously approximates the possible equivalent forms of the initial set of 

differential equations. The equations of motion (4.3) and of energy (4.4) may be trans- 

formed algebraically to the corresponding equivalent difference forms. For instance. by 

analogy with (3.12). 

(pE)t + 0.5(@(+1))2 = -(i(‘” o.5)(&(a) (-1) + 0.5v(0.5)v10.5)(+1)))r - (p’B)v(o.J)),. 
(4.5) 

A particular consequence of (4.5) is that the kinetic energy for the mesh cell 

[ri. ri+r ] for the scheme (4.1) - (4.4) is determined from the velocity Vi+, at the right- 

hand boundary, as distinct from the previous schemes, where the kinetic energy of a 

cell is evaluated from the velocity vi at the left-hand boundary. 

The order of approximation of the schemes (4.1) - (4.4) is O(r + h); when 

(Y = fl = 0.5. the order is O(r* + h). 

The difference schemes (3.1) - (3.4) and (4.1) - (4.4) are written on asymmetric 

patterns and therefore have the first order of space approximation O(h). By using a 

symmetric pattern. completely conservative schemes can be constructed with the second 

order of approximation 0(/r*). Using ordinary index notation, they are 

(4.6) 
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Pl$,, - 4+% Rfj (4:; + z$,) - Rp) (vi” + oj) 

71 - 2h ? (4.7) 
i 

(4.8) 

where 

RI”)=a 
p;;:,, + P;l:? p;,,,, + Pf lJ1 

2 +(I -a) 2 ’ 

$“)=a 
ei$, + eiTffF ei+,,p + 4 _,,? 

2 +(I - a) 2 . 

The individual equations of this difference scheme are clearly equal to half the 

sums of the corresponding equations of the asymmetric schemes (3. I) - (3.4) and (4.1) - 

(4.4). 

The parameter values CY = fl = 0.5 distinguish in the scheme (4.6) - (4.53) the only 

completely conservative difference scheme for the equations of gas dynamics in Euler’s 

variables. with the second CJrder of approximation with respect lo time and space 

O(? + II*). 

If through-computations of possible shock waves are required, a pseudo-viscosity 

is usually introduced into the difference scheme [4] All the above results are easily 

extended to this case: the only modification is to replace p in the equations of motion 

and energy by the sum of the gas-kinetic pressure and the pseudo-viscosity. 

5. The completely conservative difference schemes obtained in this paper give 

genuine quantitative advantages over other schemes of the same order of approximation, 

on discontinuous and strongly variable solutions. When evaluating such solutions by 

means of ordinary schemes. various unbalances arise, the magnitudes of which are 

particularly large in this case, as may bc seen from the structure of the terms Dki evalu- 

ated above. To avoid unbalance effects distorting the solution, the time step of the 

ordinary scheme has to be made too small for practical convenience. 
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In the completely conservative schemes, the unbalances are identically zero, this 

being an algebraic consequence of the initial set of difference equations and unrelated 

to the sizes of the mesh intervals. The introduction of a completely conservative scheme 

in fact leads to an increased order of approximation on strongly variable solutions. On 

smooth solutions, the completely conservative and the ordinary difference schemes yield 

virtually the same result. 

Translated by D. E. Brown 
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