
A FINITE-DIFFERENCE METHOD FOR THE SOLUTION OF 

ONE-DIMENSIONAL NON-STATIONARY PROBLEMS IN 

MAGNETO-HYDRODYNAMICS* 

A. A. SAMARSKH, P. P. VOLOSEVICH, M. 1. VOLCHINSKAYA and 
S.P.KURDYUMOV 

Moscow 

(Received 8 December 1967; revised 9 April 1968) 

1. Introduction 

IN theoretical investigations of a number of applied problems in magneto-hydra 
dynamics (various types of MHD-generators, problems of astrophysics etc.) there 

is particular interest in the study of interaction processes between a compressible 
electrically conducting gas and a magnetic field for arbitrary Reynolds numbers 
Rem and the magnetic interaction parameters R, = W/&p, where H is the 

magnetic field strength and p the pressure. In this case and in physical experiments 

an important role is played by the investigation of mathematical models which take 

into account mainly the non-linear relations between the non-stationary processes 

of magneto-hydrodynamics. In the one-dimensional approximation numerical 
methods also enable us not only to study the quantitative sides of the processes, 
but also to establish a number of new qualitative regularities. Thus the use of 
numerical methods for equations of magnetohydrodynamics, taking into account 
complex non-linear dissipative processes, has made possible the solution of a 

number of actual physical problems 11-61. In [6l a new physical phenomenon is 
described, the so-called T-layer effect - a high-temperature, electrically- 
conducting, self-sustaining layer of gas, arising at a definite part of the mass due 
to Joule heating. 

The present paper describes numerical methods of solving the equations of 

magneto-hydrodynamics which, are specifically used in the study of the T-layer 
phenomenon. It is assumed that the thermal and electrical conductivity may be 

arbitrary functions of the temperature and density. The method and its computer 
programs enable us to solve a large group of problems with various combinations 
of boundary conditions and equations of state of the material. It is also considered 

* Zh. ujvzhisl. Mat. mat. Fiz. 8, 5, 1025-1038, 1968. 
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that the medium studies can consist of regions with various strongly changing 
physical parameters. Real physical viscosity is not taken into account. 

The magnetohydrodynamic set of equations is solved by the method of 

finite differences. The method foe solving hydrodynamic and heat-conduction 
equations (without a magnetic field) developed by A. N. Tikhonov and A. A. 
Samarskii in 1952, is basically assumed. 

Implicit conservative difference schemes, which are ~~ondition~ly stable, 
are considered. The conse~ativeness of the difference schemes is essential 

if we consider discontinuities in the solution (contact and shock waves),because 
it ensures the convergence of the difference schemes if discontinuities are 
present. 

The method is applicable for the solution of multi-regional problems with 

strongly varying physical parameters for the medium. In this case the difference 

scheme requires high reliability in the sense of stability with respect to local 

dis~ptions of mono~nicity. 

The method of successive recursions for the solution of hydrodynamic and 

heat-conduction problems (without a magnetic field), in whose development 
N. N. Kalitkin took part, has been used since 1958. A similar method was put 
forward independently in [71. 

The method of solving the rn~e~~~~~ic equations put forward in 

this paper was invented in 1962 and was first made public at the third Riga 
conference on rn~e~hy~~~ics in 1964. 

The authors wish to express their thanks to A. N. Tikhonov for his interest 
and V. Ya. Gol’din and N. N. Kalitkin for their valuable advice. 

The authors are indebted to D. A. Gol’dina, for programming the calculations 

for the ma~et~hy~~yn~ic equations for the computer by the method described 
in this paper, and also to V. N. Ravinska and A. A. Ivanov, who helped with 
various parts of the protein and in carrying out the numerical work. 

2. The differential and difference equations of 
magneto-hydrodynamics 

1. Let t be the time, H the magnetic field strength vector u the velocity, 
p the density of the substance, p the pressure and t the internal energy. The set 
of equations of rn~e~~~~~ics taking account the non-linear electrical 
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and thermal conductivity in the absolute system of Gaussian units takes the form 

w 
% 

~+(vV)V=-V~/P-[H~O~H]/~~~, -g-+di~r(pv\sO, 

G (pv2/2 + PE -/- Hz/h) = - div q, 

q=pv(v2/2) i-~-i-p/p) + fHivH]J/4n-vY,[HrotH)/4n,+~, 

(2-f) 
dH/& = rot[vH] - rot(v,rotH), W = -xVT, divH = 0, 

where vm = cZ/ 4770 is the magnetic viscosity and c the velocity of light. 

The electrical and thermal conductivity, cr and 3c respectively, are non- 
linear functions of the temperature T and density p and satisfy the conditions 
da / dT 2 0, dx / aT 2 0. The internal energy and pressure are functions of 

the density and temperature. 

2. We shall denote the ~ylindric~ or Cartesian ~ordinates by r, #, z. Let 

the one-dimensional motion of the medium be directed along the Eulerian r-axis. 
We shall assume that in the plane case a non-zero component. H, of the vector 
H may exist in the direction of motion and components H, and H, perpendicular 

to the direction of motion. From the equation div H = 0 we have H, = H,* = const 

in the plane case and H, = 0 in the case of axial symmetry. We shall denote 

the corresponding components of the velocity v by ur, uP and uZ. 

We now introduce into the direction of motion r a Lagrange mass coordinate 
X, connected with r by the formula dx = pP-idr, where v = 1 corresponds to the 

plane case and v = 2 to the case of axial s~et~. 

3. The solution of (2.1) is sought in the bounded region 0 6 x4 1 where 
x: = 0 is the left-hand boundary of the plane medium or the centre of axial 
symmetry and x = 1 is the outer boundary of the medium. 

For the gas-dynamic values on each of the boundaries we may be given either 
the speed or the pressure as arbitrary functions.of time. 

For the energy equation we may be given the temperature T or the thermal 
flux W on the boundary. 

For the magnetic field equations on each of the boundaries x = 0 and x = I 
we may be given either the components of the field vector N, and HZ or the 
functions 
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0 = pv, 
a p-i~~) aHz 

ax ’ 
y = v p-1 - Pm ax 

in the form of arbitrary functions of time. 

The components of the magnetic field vector on the boundaries x = 0 and 
x = 1 can also be determined from the additional equations for electronic circuits. 

If contact discontinuities are present in the medium (regions with different 
physical parameters) junction conditions are added to the system (2.1) and the 
boundary conditions: the continuity of the thermal flux to the left and right of 
the discontinuity and the continuity of the temperature give 

WJI = WII, T, = T,. (2.2) 

In addition, if u # 0 we require the continuity of the functions Q and ‘4 to the left 

and to the right of the contact discontinuity and the condition for isomagnetism 

At the initial instant t = 0 the components of the vectors v and H are given, 
and also the density ~(0, 1.4 (or the radius r(0, x)) and the temperature T(0, 3~). 

4. The system (2.1) is solved by the method of finite differences. A non- 

uniform network urn, z = {(xi, tj)} is constructed in the region G = 1(x, t)l. We 

shall denote the steps of the network om T in space and time by L% = %+I - zi, 
rj-i = tj - lj-i We replace the functions under consideration by corresponding 

network functions. The values of the functions for the speed, the coordinate r 

and the thermal and magnetic fluxes uTi j, VT ij, V, /, 7-f) IV+, @j, Yyij will 

be related to the “integral” (nodal) point of the network (x,P~. The difference 

values of the function for the density, pressure, temperature, internal energy and 

the strength of the magnetic field #p$, &j, T$, E$. Hgj, Hz ij will be related to 

the r semi-integral" point of the network (xi+llJ, tj), rare si+lb = 0.5(si-+ %+i) 

the middle of the mass interval mi. For simplicity we shall use only integral indices 
for the network functions. We shall use the notation iiii = xi+~ - Xi-Ib = 0.5 

(rni + nQ_i) - The change from the set of differential equations to the set of 

difference equations at the internal points of the network 0 < xi < xN = E is made 

by replacing the derivatives with respect to x by twesided (central) differences, 
and at the boundary points x = 0 and x = 1 by one-sided (left-hand or right-hand) 
differences. 
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The equations of motion (for the plane case v = I), and also the continuity 

and energy equations are considered in a divergent form, i.e. in the form of 
balance equations. Therefore in writing the corresponding difference equations 
it is natural to use the integro-interpolation (energy) method, by means of which 

the conservative difference schemes of [9-121 are constructed. The conservative 
ness, which ensures the convergence of the difference schemes with continuities, 
is very essential for obtaining discontinuous solutions (contact and shock waves). 

The set of difference equations approximating to (2.1) takes the form 

j i-l vq - VTi 

+l = & (TI [G” (Pi+- Pi)]j + (1 - rl) [r? (Pi_l - P&i-l) - (2 4) 

* 17-l (Ht,, + HiJ2 / (PC1 + Pi) 4 -I- 

(1 - y1) (Hpyl+NI(: )2,(& _I- pi-‘) rj-‘1, 

IT1 (H2i - HZi-l)j + (1 - rl) (H*i - H*i_l)i-‘]) (2.5) 

rij _ p 

+I 
= y2v,,j+(fr-- y2)vJ;‘, pzj = ~m~/(& - I;v), (2.6) 

&ii - &!-f 

+f =~[Y3(Pi-_Pi+i)j+(l-YJ)(Qi-qQi+r)'-*~ (2.7) 1 

Hj;, -Hi;’ Hrq 
ri-1 = yjpPf(u*i+l - V,i)j + (1 - r4) pf”l (Uric1 - vZi)j-ll + Gw 

$ [T4Pii (pi+l - vi)’ + (1 -_~)f$l( Vi+l-Yi)j-l], 

where 

pi = Pi + (HTJi2 + H.zi2)/~~, Ei = f?i + i(Vr, + V,i+1)2+ 

@“pi + Vv i+,)2+ fVzi + Vzifi j21/8+ fHcp; + .Li,i”)/8npi, 

Qi = ‘12(Pi-~+J’i)riv-’ vr i-%[(Hqi_, +Htpi)vtgi+ 

(Hz i_-l + Hz i) yl + Ni -t; Wi, 
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&=_C 4; (&pi + qw, O&i<N--l, 

yl, yZ, ys, y4 are “weight” factors (constants). 

The difference equations for the components of the velocity ul, and magnetic 
field H, are written in a corresponding way. I 

i 

The constants yl, yZ, y3, yd in the system (2.4M2.8) have different values 
depending on the choice of difference scheme. If yt = 0, y2 = 1 on the assumption 

that the difference value for the speed uj is related to the intermediate time 
layer (xi, l?), we have an explicit “cross” scheme. If y = H we have a 
symmetrical implicit scheme and if yi = 1 an implicit leading scheme. 

5. The difference formula for the “magnetic flux” \I, takes the 

Y’i = J$ &-- HZiJ, 

form 

(2.9) 

where k, i = Pe5kJ~‘kJ~/ (k!t;)mi_f + klT)mi) , k(y)= kz (pi-i, Ti_1) is the 

coefficient of magnetic viscosity of the region to the left of the contact 

discontinuity, and k,$+-+, = k,((pi, Si) to the right. The expressions for the 

function Qi and the integral flux Ni are of the same form. In the derivation of 

the formula of form (2.9) possible discontinuities of the conductivity at the 
contact discontinuity and the junction conditions (2.3) are taken into account- 

The difference formula for the thermal flux W is considered in the form 
Wi = ki(Xi-i - IX<), where E = TaX/ a is a step function of the temperature 

[9, 131, and ki is of a form similar to (2.91. The linearization of the thermal 

flux with respect to the function 2 enables us to calculate accuractely the 
temperature wave font on coarse space networks in the case where the thermal 
conductivity x is a function of a high power of the temperature (x - P-‘). The 
possibility of linearization of the thermal flux with respect to the temperature T 
al80 occurs. 

3. The method of direct calculation of the shock waves 

1. In many magneto-hydrodynamic problems of practical interest discontinuities 
solutions, i.e. shock waves, may exist. 

If 9 < ~7 < 00 the shock waves are isothermal aud isomagnetic (on the assumption 
that their frontal structure is not taken into account), i.e. the temperature and 
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strength of the magnetic field on the front of the shock wave are continuous, but 
the flux discontinuous !14l. 

In the case where the medium is not a thermal conductor (x = 0) and has 

an infinite electrical conductivity (o = m), some types of shock waves exist which 

differ from one another in their physical properties [Bl. 

The method under consideration assumes that it is possible to calculate the 

shock waves directly without an explicit choice of the discontinuity front. 

For this, by analogy with ordinary gas-dynamics [15, 161, we introduce an 
artificial viscosity mechanism (the socalled “pseudoviscosity”), which serves 
to “smear” the shock waves. 

The forms of viscosity may be different. 

On the right-hand side of the equation for the component of the velocity 
u, and in the energy equation (see equations (2.4) and (2.7) ) instead of the 
function Pi we consider the function G i = Pi + o i where w is a function of the form 

w = - Yorni f+p (p/P)“-P’/a ( a(p;:) 1 N x 

[ 

d (P-‘u,) 

xp dx 
- vi I a (P-Q,) 

dX III +--i)(w+i)* 

(Cdl) 

If p = 1 formula (3.1) corresponds to the so-called quadratic viscosity and if 

p = 0 to the linear viscosity, which is analogous to the second physical viscosity. 
From (3.1) it follows that if u1 = 1 in the region where a(rv-i~r) / ds > 0, the 
viscosity o = 0, i.e. outside the shock wave zone there is no viscosity. The 
choice of the coefficient 2/O depends essentially on the character if the motion 
of the medium being studied and is made by 
details of the choice of viscosity see [171). 

Besides viscosity of the form (3.1) we 
the form [181 

numerical experiments. (For more 

use a combined viscosity which has 

With large speed gradients it is the same as the quadratic viscosity and with 
small gradients it is the same as the linear viscosity. 
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FIG. 1. 

In the case when u = M (a frozen magnetic field) and HrO + 0 the set of 

equations of motion and equations of the magnetic field is hyperbolic. In this 
case for the direct calculation of the magnet+hydrodynamic discontinuities 
we also require to introduce artificial viscosities into the equations for the 

components of the velocity u9 and uz and into the equations for the magnetic field. 
It must be noted, however, that with the introduction of pseudoviscosities into 
the magneto-hydrodynamic equations the conditions of evolution of the magneto 
hydrodynamic discontinuities must first be satisfied. 

By analogy with ordinary gas dynamics we chose viscosity terms of the form 

(3.3) 

(3.4) 

In the corresponding difference formulae we add to the right-hand side of equation 
(2.5) a term of the form (I/?&) ( ojzi- w~~_~) and if Y = 0 we add a term of the 
form 
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FIG. 2. 

to the right-hand side of equation (2.8). 

Reasonable values for the numerics coefficients of viscosity v,,’ , vo”, po’ , 

po” in formulae (3.3) and (3.4) are chosen from numerical experiments and depend 
on concrete solved problems. 

2. We now give an example of a calculation on a computer of rapid magneto 

hydrodynamic shock waves for the case u = 00 (a frozen magnetic field), 

H,, # 0, x; z 0, HIQ SE 0, UT = 0. The plane case is considered. Calculations 

are carried out by the implicit difference scheme for ?I = yz = 1, y3 = y4 = I,$. 

For simplicity an expression for the pressure of the form p = const p is used. 
The results of a comparison of the numerical solutions with the analytical solutions 
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are given in Figs. 1 and 2. Here the continuous line denotes the analytic 
solution, the dot-dashed line the numerical solution with viscosities of the 
form (3.3), (3.4) and (3.1) for ~1 = 1, and the dashed line the numerical solution 

without consideration of the viscous terms in the field equation. 

The space network for the calculation was uniform and 50 mass intervals 
mi were given. 

The comparison given in Figs. 1 and 2 confirms the satisfactory accuracy 
of the calculations. 

The series of calculations shows that the combined viscosity (3.2) possesses 

a definite advantage as compared with other forms of viscosities. 

4. An iterative method for successive recursions 

1. The set of difference equations (2.4@.8) is solved by the implicit 
difference schemes, taking into account the dissipation of energy due to electrical 

and thermal conduction, using the successive sweep method. 

The idea of the method is to reduce the separate equations of the set to 
second-order difference equations and to apply the well-known sweep method 
1191 successively for their solution. 

Implicit difference schemes for the equations of gas-dynamics with heat 

conduction (without magnetic field) were used by I. M. Gel’fand, 0. V. Lokutsiev- 
skii and V. F. D’yachenko in 1957. The corresponding set of difference equations 
was solved by the matrix sweep method. 

In the successive sweep-method only a one-dimensional sweep is used 
for threepoint difference equations. 

The order of the calculations in the separate equations of the set (2.4)-(2.8) 

may be different. The following sequence of calculations was chosen. 

On each j-th layer the energy equation (2.7) is first solved on the assumption 
that the magnebhydrodynamic quantities are known (sweep with respect to 7’). 
Then the set of gas-dynamic equations (2.4)-(2.6) is solved for a known 
temperature and fixed magnetic values (sweep with respect to u) and finally 
the set of equations for the diffusion of the magnetic field (see equation (2.8) ) 
for known temperature and hydrodynamic values (sweep with respect to H). 
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Each separate sweep is calculated until the condition of convergence is 
satisfied. A single calculation of the first two sweeps (with respect to T and u) 
forms one cycle of a small loop. All three sweeps (with respect to T, u and H) 
form one cycle of a large loop. Each small loop is inside a large one and each 
large loop is calculated up to the given number of cycles. 

Experiment showns that to satisfy the required accuracy two cycles of the 
small loop and two cycles of the large loop are suffkient. From a large number 
of numerical calculations it follows that the maximum number of iterations for 
the calculation of each separate sweep does not exceed three or four. 

2. We shall dwell in more detail on the method of solving the energy equation. 

Let us assume that on the j-th time layer the hydrodynamic values aud also 
the strength of the magnetic field and magnetic flux N are known. 

We linearize the function sj = e(oj, Z’j) by Newton’s method, i.e. we put 
it in the form 

sj = E (~@+“) = &(x(4) + 

where ‘z = Ta/o, #@I = X(+0 - IX@), s is the number of the iteration. 

Substituting (4.1) in (2.7) we obtain the following second-order difference 
with respect to the function X:(*+1): 

(4.1) 

equation 

(4.2) 

where the coefficients a?‘, by’, ?andg? depend on the function T\“‘, and also 
on ui, pi and Hi. The solution of equation (4.2) is found from the known sweep 
recurrence formulae. 

On the assumption that the hydrodynamic and thermal values are fixed, the 
equation for the diffusion of the magnetic field is a linear second-order difference 
equation in H, and Hz and is solved by the sweep method with respect to the 
functions Hoand H, without iterations. 

Calculations have shown that in the case u = 0 for values of 0 or near zero 
the calculation of the equations for the diffusion of the magnetic field by the 
sweep method with respect to the function H leads in a number of cases to 
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unsatisfactory results. Similar difficulties encountered in the calculations , are 

noted in f51. The fact is that if u = 0 the derivatives d(rv-iHg)/r3x and aHZ/3x 

are zero and the fluxes 0 and \I’ becomes indeterminant. In a physical sense the 

functions @ and V have in this case a finite value. The indeterminancy of the 

type 010 arising in the difference equation for the diffusion of the magnetic field 

leads to a bump and in a number of cases to a significant distortion of the solution. 

In 1201 the method of flux sweep is put forward. In the case of the equation 

for the diffusion of the field by the sweep method the fluxes Cp and Y are first 

determined and then the field H. In the flux variant of the sweep method the 

functions 0 and Y are calculated more accurately than in the case of the ordinary 

sweep method with respect to H, which is very essential. 

At the present time the flux sweep method is used both for the solution of the 

equation for the diffusion of the magnetic field and also for the solution of the energy 

equation for any range of variation of the values of the electrical conductivity 

O,< ~4 M and thermal conductivity 0 < 7c < 00. Now the authors together with 

N. N. Kalitkin, L. M. Degtyarev, A. P. Favorsk and Yu. P. Popov, propose to 

consider the equations of the magnetic field in the divergent form, i.e. in the form 

and in the energy equation to explicitly choose the term denoting the Joule effect, 
i.e. to consider it in the form 

(44 

where Q = (o / 8~) (y + @) is the Joule heating of the electric current, and 

F = - (1/4n) [ r”-iH&& / dx + (~~a (rv-‘fi,) / as) ] of the Lorentz force. 

Equations (4.31 and (4.41 are equivalent to the equations for the diffusion of 
the magnetic field and energy in the system (2.1). 

We cannot possibly dwell on a detailed justification for the proposed changes 

in the calculation of the equation for the diffusion of the magnetic field and energy 

equation. 

5 . Analysis of the stability of the set of difference equations 

The problem of investigating the stability of the complete set of difference 

equations (2.4)~(2.8), taking into account all the dissipative terms, is very 

complicated. Questions of the stability of parabolic equations are investigated 

quite fully in 19-121. Experiment shows that the greatest restriction on the time 
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step must be imposed in the iimiting case vm = 0 and x = 0, i.e. when the set 
of equations is hyperbolic. 

Analysis of stability, carried out by the spectral method [151 for the case 
vm z 0, x = 0, v = 1 on the assumption of the validity of the equations for 
the state of an ideal gas fp = p J (y - 11, where y is the ratio of the specific 
heats), leads to the following results (for more detail see [2131. 

1. The implicit leading scheme (yi = l), the symmetrical scheme (yi = %) 
and also the implicit scheme (ri = y2 = 1, y3 = yc = */2) are unconditionally 
stable. 

2. The condition for stability of the explicit “cross” scheme (yt = O7 ~2 = 
773 = y4 = l)P is of the form 

where c+~ is the fast rn~ne~~~dyn~ic speed of sound ISI, q = l/p. 

Condition (5.1) is a generalization of the well-known ordinary gas-dynamic 
Courant condition for the set of difference equations of magnet&ydrodynamics. 

Experiment shows that in a number of problems the quantity c+ = c (p, p, Hz) 
may be large and consequently the condition for stability (5.1) may substantially 
restrict the step in the time T. Therefore it is inadvisable in practice to make 
use of explicit schemes for the equations of magneto-hydrodynamics. 

3. We now consider implicit schemes similar to that considered in [?I for 
ordinary hydrodynamics. For the solution of the difference equations cited in 
[‘?‘I the successive sweep method is also used. In practice such schemes correspond 
to one cycle of successive sweeps in the leading scheme (see Section 4, para. 1). 

The analysis carried out for the case H, = 0 shows that, independently of 

the order of the application of the successive sweeps, any such scheme is 
inconditionally stable only if the condition 

H2PJ.c < (1 - Y/%9 
(5.2) 

is satisfied or 

p Eg 2(1 -&f), RH = EP / 8np. 
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If 

or Y > 2(1 -RH) (5.3) 

the condition for stability takes the form 

(5.4) 

If H 3 0 the conditions for stability cited in [7l follow directly from the conditions 

(5.2) and (5.3). 

If H f 0 and particularly in the case R, , > 1, i.e. for a wide class of practically 

interesting problems, the difference scheme considered in this section is scarcely 

more economic (in the sense of rapidity of speed of c~c~ation) than the leading 

scheme, since a definite constraint on the step of the form (5.4) is required for 
stability. In addition it must be noted that in the approximation of a set of 
~ffe~n~i~ equations by such schemes divergence in time in the equation of motion 
and the energy equation i.e. the conservativeness of difference schemes is violated. 

Numerical experiments show that when dissipative terms for thermal conductivity 

and finite conductivity are present in the medium an ~~ndition~ly stable 
implicit difference scheme, obtained with values of the weight factors 771 = y2 = 1, 

y3 = y6 = '/2, is the most advantageous both in accuracy and economy, i.e. an 

implicit leading difference scheme for a set of ~er~lic equations of motion and 

continuity and a symmetrical implicit scheme for a set of parabolic equations for 

the energy and the diffusion of the magnetic field. 

6. Comparison of numerical solutions with automodelling 

The evaluation of the accuracy of the above numerical methods of solving 

the set of equations of rn~ne~hy~~~ics was carried out e~riment~ly 

by the solution of a large number of model problems. To verify the method 
difficult problems were chosen with strongly varying physical parameters and 
essentially non-linear processes. 

As an example we shall consider the automodelling plane problem of the 
motion of a gas in front of a piston in a magnetic field with non-linear heat 
conduction and conductivity E221. It is Assad that the speed of the piston 
and the temperature on it vary according to a power law with respect to the time 

(UNlH, 7’ N P(+l))and the axial magnetic field given on the piston is constant: 

HZ = const < 0. 1; front of the piston the gas is considered with initial 
conditions 
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i 

a. 5 c 
I___-. 1 

0 f. 0 :‘c 

FIG. 3. FIG. 4. 

c (r, 0) = 0, T (r, 0) =: 0, p(r, 0) = Pd. H(r, 0) = const>o. 

The thermal conductivity ?c and electrical conductivity ~7 depend on the 
temperature and density in accordance with a power law: 

x = ~~$“*cp-oo, o = oO’T*lp-al, 77&o :> 0, I?/,1 i 0. (6.1) 

For definite relations between the constants n, Z, m,, m,, o,, and o1 the problem 
is considered to be automodelling. 

Figures 3 and 4 give comparative graphs of the relation between the 
dimensionless temperature T / z$W-1) (see Fig. 3) and density p/& (see Fig. 4) 

and the dimensionless coordinate r/uotn (Here uO and p1 are dimensional constants). 
The continuous lines in Fig. 3 and 4 depict the automodelling solution, and the 
circles and crosses the corresponding values of the numerical solution at 
various instants t. The calculation by means of the set of equations (2.4M2.8) 
began with t = 0 (with zero and constant initial data), and then an entry into the 
automodelling system was effected. 

In spite of some “exotic” initial and boundary conditions substantial non- 
linearity of the electrical conductivity (o - T%) and thermal conductivity 

(x - T5). is introduced into theautomodelling problem. 
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The calculation is carried out by the successive sweep method using the 
implicit scheme with y1 = y2 = 1, y3 = y4 = H. The circles in Figs. 3 and 4 
correspond to the instant t = t,, at which the perturbing wave (temperature wave) 
is packed on 9 mass intervals of the network, the horizontal crosses to the instant 
t = t2 at which the temperature wave embraces 14 mass intervals, and the 
diagonal crosses correspond to the instant t = t3 with 24 mass intervals of the 
~twork in the ~mperat~ wave zone. 

The numerical solution shows that entry into the automodelling system is 
accomplished fairly quickly and accurately. 

A large number of practically important rn~~hy~~~~ic problems were 
computed by the above method. The discovery of the new physical phenomenon - 
the socalled T-layer effect (temperature layer) 161- by means of calculations 
on a computer serves as one of the striking examples of the effective use of 
numerical methods in magneto-hydrodynamics. The essence of the T-layer 
phenomenon lies in the fact that in a compressible medium with defined conditions 
a local, comp~~ively narrow, zone of increased temperat~e and electrical 
conductivity may arise which represents a self-sustaining and stable macro- 
formation. The T-layer effect produces substantially new peculiarities in the 
behaviour of a plasma: 

Firstly, the inaction of the plasma with the magnetic field is increased 
many times. Thus low-temperature plamsma can effectively interact with a 
magnetic field by means of the T-layer despite low conductivity; 

Secondly, because of the T-layer the magnetic field can play the role of a 
catalyst, enabling comp~~ively cold plasma to ~~sfo~ its energy into 
radiation intensively. 

It must be noted that the numerical solutions carried out in the study of the 
T-layer effect stimulate the formulation of physical experiments. The analysis 
of c~c~~ions enables us to indicate the range of variation of the physical 
parameters for which physical experiment can lead to positive results. 

Translated by H. F. Cleaves 
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