НЕОБХОДИМЫЕ И ДОСТАТОЧНЫЕ УСЛОВИЯ УСТОЙЧИВОСТИ ДВУХСЛОЙНЫХ РАЗНОСТНЫХ СХЕМ *

А.А. САМАРСКИЙ

В работах [1]-[3] были найдены достаточные условия устойчивости и получены априорные оценки двухслойных и трехслойных схем с переменными (по t) операторами, заданными на абстрактном вещественном гильбертовом пространстве.

В данной работе рассматриваются двухслойные схемы (2). Показано, что для схем с постоянными операторами A и B необходимые и достаточные условия совпадают. Эти же условия являются достаточными для устойчивости в классе схем с переменными операторами A(t) и B(t). О близости достаточных и необходимых условий для схем с переменными операторами позволяет судить теорема о достаточном условии неустойчивости.

Метод исследования устойчивости, в отличие от [1], [2], основан на сведении схемы общего вида к явной схеме и последующей оценке оператора перехода для явной схемы. Мы ограничиваемся здесь изучением устойчивости по начальным данным. Ссылки на работы по устойчивости разностных схем см. в [3].

1. Пусть $\{H_h\}$ — семейство вещественных гильбертовых пространств, зависящее от параметра h, являющегося вектором некоторого нормированного пространства (например, эвклидова пространства R_N размерности N, ср. [1]-[3], |h| — норма вектора h. Рассмотрим на отрезке $0 \le t \le t_0$ сетку $\omega_{\tau} = \{t_n = n\tau, n = 0, 1, \dots, n_0, \tau = t_0/n_0\}$.

Пусть далее $y(t)=y_{n\tau}(t),\ \varphi(t)=\varphi_{n\tau}(t)$ и т.д. — абстрактные функции аргумента $t\in\omega_{\tau}$ со значениями в $H_h;\ A(t)=A_{h\tau}(t),\ B(t)=B_{h\tau}(t),\ C(t)=C_{h\tau}(t)$ и т.д. — линейные операторы, отображающие H_h на H_h при каждом $t\in\omega_{\tau}$. Разностное уравнение

^{*}ДАН СССР, 1968, т. 181, № 4, с. 808-812.

первого порядка с операторным коэффициентами

$$B_{h\tau}(t)y_{h\tau}(t+\tau) = C_{h\tau}(t)y_{h\tau}(t) + \tau \varphi_{h\tau}(t), \qquad 0 \le t = n\tau < t_0,$$

$$y_{h\tau}(0) = y_{0h\tau} \in H_h,$$
(1)

где $\varphi_{h\tau}(t)$ – заданная функция, назовем двухслойной схемой [2]. Для упрощения записи индексы h, τ в дальнейшем будем опускать.

Любая двухслойная схема может быть записана в канонической форме

$$B(t)\frac{y(t+\tau)-y(t)}{\tau} + A(t)y(t) = \varphi(t), \qquad 0 \leqslant t = n\tau < t_0,$$

$$y(0) = y_0 \in H.$$
(2)

Пусть (,) и $\|y\| = \sqrt{(y,y)}$ – скалярное произведение и норма в H. Будем писать $A = A^* > 0$, если A – самосопряженный и положительный ((Ax,x)>0 для всех $x\in H$ с $\|x\|\neq 0$) оператор; $A\geqslant B$, если ($Ax,x)\geqslant (Bx,x)$ для всех $x\in H$. Наряду с H будем рассматривать энергетические пространства H_A и H_B , состоящие из тех же элементов, что и H, с нормами $\|y\|_A = \sqrt{(Ay,y)}$ в $H_A(A=A^*>0)$; $\|y\|_B = \sqrt{(By,y)}$ в $H_B(B=B^*>0)$.

Мы рассматриваем вещественное гильбертово пространство, чтобы учесть случай несамосопряженных положительных операторов.

2. В этой статье мы изучаем лишь устойчивость по начальным данным (у. по н. д.). Поэтому рассмотрим однородное уравнение (2) при $\varphi=0$:

$$B(t) \frac{y(t+\tau) - y(t)}{\tau} + A(t)y(t) = \varphi(t), \qquad 0 \leqslant t = n\tau < t_0,$$
(3)

задан $y(0) = y_0 \in H$.

Будем говорить, что схема (2) у. по н. д., если можно указать такую вещественную постоянную c_0 , не зависящую от h и τ , что при достаточно малых $|h|\leqslant h_0$ и $\tau\leqslant \tau_0$ для решения задачи (3) с любыми $y(0)=y_0\in H$ верна оценка

$$\|y(t)\|_{(1)} \leqslant e^{c_0 h} \|y(0)\|_{(1_0)}, \qquad \text{при всех } t \in \omega_{\tau},$$
 (4)

где $\|\cdot\|_{(1)}\|$ и $\|\cdot\|_{(1_0)}$ – некоторые нормы на множестве H (ср. [1]-[4]).

Схема (3) абсолютно устойчива, если она устойчива при любых $\tau>0$ и |h|>0. Во всех сформулированных ниже теоремах схема (3) абсолютно устойчива, если достаточные условия выполняются при всех $\tau>0$ и |h|>0. Будем говорить, что: 1) схема (3) устойчива в H_A , если выполнено (4) и $\|\cdot\|_{(1)}=\|\cdot\|_{(1_0)}=\|\cdot\|_A$, где A не зависит от t; 2) схема (3) устойчива в $H_{A(t)}$, если $\|y(t+\tau)\|_{A(t)}\leqslant e^{c_0(t+\tau)}\|y(0)\|_{A(0)}$. Аналогично понимается устойчивость в H_B и $H_{B(t)}$.

3. Рассмотрим явную схему

$$x(t+\tau) = Sx(t), S = E - \tau C, 0 \le t = n\tau < t_0, x_0 = x_0 \in H$$
 (5)

с оператором перехода S; здесь E – единичный оператор, x_0 – любой вектор. Если один из операторов A или B самосопряжен, положителен и постоянен, то (3) сводится к явной схеме с операторами

$$C_1 = A^{1/2}B^{-1}A^{1/2}$$
 или $C_2 = B^{1/2}AB^{-1/2}$.

Лемма 1. Пусть $A=A^*>0$ не зависит от t и существует $B^{-1}(t)$. Тогда (3) и (5) эквивалентны при $C=C_1$, $x=A^{1/2}y$. Если $B=B^*>0$ – постоянный оператор, то (3) и (5) эквивалентны при $C=C_2$, $x(t)=B^{1/2}y(t)$ или при $C=C_2$, $x(t)=B^{-1/2}Ay(t)$ (если и A постоянен).

В самом деле, пусть $A=A^*>0$. Тогда существует $A^{1/2}=(A^{1/2})^*>0$ (см. [5]). Применяя к (3) оператор $A^{1/2}B^{-1}$, получим при $x(t)=A^{1/2}y(t)$, если A постоянен, схему (5) с $C=C_1$, так что $\|x(t)\|=\|y(t)\|_A$ и т.д.

Лемма 1 позволяет свести исследование устойчивости схемы (3) в H_A или H_B к исследованию устойчивости явной схемы (5) в H

$$||x(t)|| \le e^{c_0 t} ||x(0)||.$$
 (6)

4. Нам понадобятся определение нормы оператора S в H. $\|S\| = \sup_{\|x\|=1} \|Sx\|$ и эквивалентное при $S = S^*$ определение [5]

$$||S|| = \sup_{\|x\|=1} |(Sx, x)|,$$
 (7)

а также ряд лемм, справедливых и для операторов, зависящих от t (в предположении, что все условия выполнены для каждого $t=n au\in[0,t_0)$).

Лемма 2. $E c \pi u C = C^*$, то условие

$$\frac{1-\rho}{\tau}E\leqslant C\leqslant \frac{1+\rho}{\tau}E \text{ usu } \frac{1-\rho}{\tau}\|x\|^2\leqslant (Cx,\,x)\leqslant \frac{1+\rho}{\tau}\|x\|^2,\quad (8)$$

r de
ho > 0, необходимо и достаточно для оценки

$$||S|| \leqslant \rho, \qquad S = E - \tau C \tag{9}$$

(условия (8) и (9) эквивалентны).

Пусть выполнено (8), т.е. $-\rho E\leqslant \tau C-E\leqslant \rho E$. Отсюда и из (7) следует $\|S\|=\|-S\|\leqslant \rho$. Обратный ход рассуждений очевиден.

Л е м м а 3. Eсли $C = C^* > 0$, то эквивалентны неравенства

$$\gamma_1 E \leqslant C \leqslant \gamma_2 E$$
 и $\frac{1}{\gamma_2} E \leqslant C^{-1} \leqslant \frac{1}{\gamma_1} E.$

Лемма 4. Если $C=C^*>0$, то условия (9) и

$$C^{-1} \geqslant \frac{\tau}{1+\rho} E, \qquad \rho > 0 \tag{10}$$

эквивалентны при $\rho \geqslant 1$. Пусть C > 0 — несамосопряженный оператор. Тогда (10) достаточно при $\rho \geqslant 1$, необходимо при $\rho \leqslant 1$, необходимо и достаточно при $\rho = 1$ для оценки (9).

Лемма 4 при $C=C^*$ следует из лемм 3 и 2. Пусть $C=C^*$ и выполнено (10). Так как

$$(1+\rho)(C^{-1}x, x) - \tau ||x||^2 = (1+\rho)(Cy, y) - \tau ||Cy||^2,$$

где $y = C^{-1}x$, то из (10) следует

$$\tau \|Cy\|^2 \le (1+\rho)(Cy, y), \qquad \tau(Cy, y) \le (1+\rho)\|y\|^2.$$

Поэтому

$$||Sy||^2 = ||(E - \tau C)y||^2 = ||y||^2 - 2\tau(Cy, y) + \tau^2 ||Cy||^2 \le ||y||^2 + \tau(\rho - 1)(Cy, y) \le \rho^2 ||y||^2$$

при $\rho \geqslant 1$, т.е. $||S|| \leqslant \rho$. Если $\rho = 1$, то из $||Sy||^2 \leqslant ||y||^2$ сразу следует, что $0, 5\tau ||Cy||^2 \leqslant (Cy, y)$ или $C^{-1} \geqslant 0, 5\tau E$.

Лемма 5. Неравенство

$$C^{-1} \geqslant \gamma E, \qquad \gamma > 0,$$

эквивалентно одному из неравенств:

- 1) $B \geqslant \gamma A$ npu $A = A^* > 0$, B > 0, $C = C_1 = A^{1/2}B^{-1}A^{1/2}$ with npu $B = B^* > 0$, $A = A^* > 0$, $C = C_2 = B^{-1/2}AB^{-1/2}$;
- 2) $A^{-1} \geqslant \gamma B^{-1}$ npu $B = B^* > 0$, A > 0, $C = C_2$.

Лемма 6. Если

$$C = C_1$$
, $B = B^* > 0$, $A = A^* > 0$

или

$$C = C_2$$
, $B = B^* > 0$, $A > 0$,

то неравенства

$$\gamma_1 E \leqslant C \leqslant \gamma_2 E$$
 u $\gamma_1 B \leqslant A \leqslant \gamma_2 B$

при $\gamma_1 > 0, \ \gamma_2 > 0$ эквивалентны.

5. Для случая постоянных A и B найдем совпадающие необходимые и достаточные условия устойчивости схемы (3) в H_A и H_B . Перепишем (5) в виде

$$x_{n+1} = Sx_n$$
, где $S = E - \tau C$, $x_n = x(n\tau)$, $0 \leqslant n < n_0$, (11)

 $x_0 \in H$ задано.

T е о p е M а 1. Пусть S – постоянный оператор. Тогда условие

$$||S|| \leqslant \rho, \qquad \rho = e^{c_0 \tau}, \tag{12}$$

где c_0 – любая постоянная, не зависящая от τ и |h|, необходимо и достаточно для устойчивости схемы (11) в H.

Необходимость. Пусть схема (11) устойчива, т.е. выполнено (6) при всех $t=n\tau,\ n=1,2,\ldots,n_0$. Полагая в (6) n=1, имеем

$$||x_1|| = ||Sx_0|| \le ||\rho||x_0||$$
, $\tau.e.$ $||S|| \le \rho$.

Достаточность. Пусть выполнено (12). Тогда

$$||x_n|| = ||S^n x_0|| \le ||S||^n ||x_0|| \le \rho^n ||x_0|| = e^{c_0 t_n} ||x_0||,$$

т.е. справедлива оценка (6).

Из теоремы 1 и лемм 1-6 следуют теоремы 2-5 для постоянных $A,\,B.$

T е о р е м а 2. Пусть $B=B^*>0$ и $A=A^*$ не зависят от t. Тогда условия

$$\frac{1-\rho}{\tau}B\leqslant A\leqslant \frac{1+\rho}{\tau}B, \qquad \rho=e^{c_0\tau} \tag{13}$$

с любой постоянной c_0 необходимы и достаточны для устойчивости схемы (3) в H_B .

T е о р е м а 3. Пусть $A=A^*>0$ и $B=B^*>0$ не зависят от t. Тогда условия

$$A \leqslant \frac{1+\rho}{\tau} B$$
 или $B \geqslant \frac{\tau}{1+\rho} A$, $\rho = e^{c_0 \tau}$, (14)

необходимо и достаточно для устойчивости в H_A и H_B с $c_0\geqslant 0$ ($\rho\geqslant 1$), а условия (13) необходимы и достаточны для устойчивости (3) в H_A (и H_B) с $c_0<0$ ($\rho<1$).

T е о р е м а 4. Пусть $A=A^*>0$, B>0, A и B не зависят от t. Тогда условие

$$A \leqslant \frac{2}{\tau} B \quad u_{\pi}u \quad B \geqslant \frac{\tau}{2} A \tag{15}$$

необходимо и достаточно для устойчивости схемы (3) в H_A с постоянной $c_0=0$ (ho=1).

T е о р е м а 5. Пусть $B=B^*>0$ и A>0 не зависят от t. Тогда условие

$$A^{-1} \geqslant 0, 5\tau B^{-1} \tag{16}$$

необходимо и достаточно для устойчивости схемы (3) в H_B с $c_0 = 0$.

Заметим, что: 1) теоремы 4 и 5 доказаны в предположении несамосопряженности операторов B и A соответственно; 2) условие (16), в отличие от условий (13)–(15), неудобно для проверки.

6. Условия (13)-(15) достаточны для устойчивости схем (3) с операторами A и B, зависящими от t, если оператор A(t)>0 (или B(t)>0) удовлетворяет условию Липшица по t с постоянной $c_1>0$, не зависящей от h и τ :

$$\|((A(t) - A(t - \tau))y, y)\| \le \tau c_1(A(t - \tau)y, y)$$
 для любых $0 < t = n\tau < t_0, \quad y \in H.$ (17)

При постоянных A и B схема (3) сводится к явной схеме (5). Если A=A(t) и B=B(t), то, вводя

$$C=C_1(t), \quad x(t+ au)=A^{1/2}(t)y(t+ au), \quad \overline{x}(au)=A^{1/2}(t)y(t)$$
 при $A=A^*>0$

или

$$C=C_2(t), \quad x(t+ au)=B^{1/2}(t)y(t+ au), \quad \overline{x}(au)=B^{1/2}(t)y(t)$$
 при $B=B^*>0,$

преобразуем (3) к виду

$$x(t+\tau) = S(t)\overline{x}(t), \quad S(t) = E - \tau C(t). \tag{18}$$

Лемма 7. Пусть $A(t)=A^*(t)>0$, или $(B(t)=B^*(t)>0)$ и выполнено (17) (или аналогичное условие для B(t)). Тогда

$$\|\overline{x}(t)\| \leqslant (1+0,5c_1 au)\|x(t)\|$$
 при любых $au>0, \quad t>0,$ $\|x(t)\| \geqslant (1-c_1 au)\|x(t)\|$ при $au_1c_1<1, \quad t>0,$

ede
$$x(t) = A^{1/2}(t-\tau)y(t)$$
 (unu $x(t) = B^{1/2}(t-\tau)y(t)$).

Теорема 6. Пусть $A(t)=A^*(t)>0$ и A(t) удовлетворяет (17), а B(t)>0 — несамосопряженный оператор. Тогда условие (14) с $c_0\geqslant 0$ достаточно для устойчивости схемы (3) в $H_{A(t)}$ с постоянной $\bar{c}_0=c_0+0,5c_1$. Если $B(t)=B^*(t)>0$ и выполнено (17) для B(t), а $A(t)=A^*(t)$, то условие (13) с любым c_0 достаточно для устойчивости (3) в $H_{B(t)}$.

7. Теорема 7. Если $A(t)=A^*(t)>0$, $B(t)=B^*(t)>0$, m_O условие

$$A\geqslant rac{1+
ho}{ au}\,B$$
 для всех $t=n au\in[0,t_0)$ при $ho=e^{c_0 au^\gamma},\ c_0>0,\ 0\leqslant\gamma< M$

где γ — любая неотрицательная постоянная, меньшая единицы и не зависящая от h и τ , достаточно для неустойчивости схемы (3) в $H_{A(t)}$, если A(t) удовлетворяет (17), и для неустойчивости в $H_{B(t)}$, если B(t) удовлетворяет условию (17).

8. В [1]-[3] мы пользовались другим определением у. по н. д.: $\|y(t)\|_t \leqslant M_1 \|y(0)\|_{1_0} \quad \text{при всех} \quad 0 < t = n\tau \leqslant t_0. \tag{20}$

Нетрудно заметить, что из (4) следует (20), так как при $c_0>0$ можно положить $M_1=e^{c_0t_0}$, а при $c_0\leqslant 0$ полагаем $M_1=1$.

Теорема 8. Пусть $S=S^*$ – постоянный оператор. Тогда условие (12) с $c_0\geqslant 0$ необходимо и достаточно для устойчивости схемы (5) с $M_1\geqslant 1$ в смысле определения (20). Если S – несамосопряженный оператор, то условие $\|S\|\leqslant 1$ необходимо и достаточно для оценки $\|x(t)\|\leqslant \|x(0)\|$.

Изложенный выше метод позволяет исследовать устойчивость схемы (2) по правой части, а также устойчивость относительно возмущения операторов схемы (вычислительную устойчивость схемы).

Цитированная литература

- 1. А.А. Самарский. ДАН, 165, № 5, 1007 (1965).
- 2. А.А. Самарский. Журн. вычисл. матем. и матем. физ., 7, № 1, 62 (1967).
- 3. А.А. Самарский, там же, 7, № 5, 1093 (1967).
- 4. В.С. Рябенький, А.Ф. Филиппов. Об устойчивости разностных уравнений, М., 1956.
- 5. Л.В. Канторович, Г.А. Акилов. Функциональный анализ в нормированных пространствах, М., 1959.