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IN [1] where the regularization method has been discussed, we made use
of theorems on the sufficient stability conditions, and on the a priori
estimates for two-layer and three-layer schemes. In the present paper we
shall give the proofs of these theorems.

Let {HN} be a sequence of real unitary spaces, {yN,T(t)} a sequence
of abstract functions yy .(t) of a discrete argument t & GT with values
in Hy, where 51 = {tj =jr, j =0, 1, ..., jo} is a mesh over the inter-
val 0<Ct <ty with a step v. We shall consider linear two-point (three-’
point) operator equations, connecting the points yN,T(t + 1) and YN,T(t)
(the points yy (t + 7), yy (1), yy ¢(t = 7)) of the space dy. It is
natural to call these equations two-layer (three-layer) operator-differ-
ence schemes.

The starting point for these investigations is the canonical form of
describing schemes. We shall consider a set of two-layer schemes
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Here y(t) = yy (t) is the required function t & o} oy, 1(t) is a given
abstract function t & w; with values in Hy; yo and y, are given vectors
from Hy; A(t) = Ay L(t), B(t) = By (1), R(t) = Ry ,(t) are linear

(additive and homogeneous) operators, mapping Hy into /ly.

By introducing some very general assumptions as to the operators of
the scheme (for example, that B and A are positive, that A is self-
adjoint for (0.1)), we shall separate out from the set all possible
schemes of an initial family of two-layer schemes (IS-2) and three-layer
schemes (IS-3).

Following [2, 3] the stability of the schemes will be defined as the
property of equal-degree continuity with respect to N, v of {yN (t)}
with respect to the input data {ey +(t)}, {yy (00} and {yy, T(1)3

The problem is formulated as follows: sufficient information is to -be
revealed with respect to the operators of this scheme to make the scheme
stable.

The necessary and sufficient stability conditions of two-layer schemes
(Section 2) and the sufficient stability conditions of three-layer
schemes (Section 3) are found. These conditions isolate classes of stable
schemes. The sufficient stability conditions have a simple form, for
example

(By’ y)N > OST(Ay, y)N for (01)1 (03)
(Ry, y)n = 0.25(4y, y)~ for (0.2), (0.4)

where (,)y is a scalar product in Hy.

In studying the stability of actual difference schemes, approximating
equations of mathematical physics, it is necessary to reduce the scheme
to the canonical form (0.1) or (0.2), to introduce the space of mesh
functions Hy, to ascertain whether the scheme belongs to IS-2 or IS-3,
and finally to verify that the sufficiency conditions (0.3) or (0.4) are
satisfied.

The method used here to derive the a priori estimates is based on
some elementary theorems of functional analysis and on energy inequal-
ities. It is a natural development of the energy method of obtaining
a priori estimates, used by many authors in studying the stability of
specific difference schemes for differential equations of mathematical
physics, and also for the difference analogues of these equations.
Examples of this are, for example, the papers [4 - 23] and others
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{these papers contain references to other work).

Space does not permit a survey of this work. We shall make only one
remark. The general tendency in the development of a priori estimates is
to try to obtain a solution of the difference problem with the strongest
possible norm through a right-hand part which has the weakest possible
norm. This is important for investigating the rate of convergence of
schemes for equations with discontinuous coefficients, over non-uniform
meshes, etc.

As an example we mention the paper [8] where, for an implicit scheme
approximating a Sobolev type equation, the author has obtained an esti-
mate of the solution y in a mesh norm W,! through |in HLz’ at first re-
presenting the right-hand part in a divergent form ¢ = divy n, where
div, is the difference analogue of the operator div. This norm, as
follows from Section 1, is identical with the nomm “ ¢ Ha'1=‘3(A‘ lp, 9)
in the energy space Hk'l in the case of a conservative or divergent

operator A = T*ST when S = E (see [10]). The estimates | yllwzl through
” n]}Lz have been obtained for the difference elliptic problem in [9 -
10], the estimates ilyllw 1 and 1lyilc‘through I]nIILg have been ob-
tained in [18], and the estimates !ly “C through !Yn HLx in [24] (for

the one dimensional problem). In [16] for weighted schemes, being differ-
ence analogues of parabolic and hyperbolic types of equations, estimates
have been obtained containing a right-hand part in a norm of the kind
||A‘1¢ ” + [|A‘]m H. etc. The simplest a priori estimates for the Rote
scheme, approximating the abstract Cauchy problem, are given in [25].

Some a priori estimates for operator-difference schemes in a Hilbert
space are given in [3, 26].

The basic results of this paper are given in Sections 2 and 3; Section
1 contains auxiliary material used in Sections 2 and 3, and also some
a priori estimates for operator equations of the I kind Ay = o.

1. Introduction

Before turning to the theory concerning the stability of evolutionary
(two-layer and three-layer) schemes we shall outline the necessary
mathematical apparatus and demonstrate the applicability of the energy
method "for obtaining the a priori estimates, using the example of
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equations of the I kind Ay = ¢, where A is a linear operator defined in
a real unitary space. The a priori estimates obtained in Sections 2 and

3 are of independent interest for the theory of difference approximations
to the boundary problems for elliptical equations.

1. SOME INEQUALITIES AND IDENTITIES

Let Hy be a real unity space with a scalar product (,)y and norm
[[xlly = (x, %)y, Ay & linear (homogeneous and additive) operator, de-
fined over Hy, where N takes integer positive values. In the general

case N = (N, Ny, ..., N,) is a composite index, i.e. the set of integers
Ny, Ng, ..., Ny, Ny > 0 where m is finite. The condition N — co means that
all Ns-<n, s =1, 2, ..., m We shall consider the sequence of spaces

{ily} and of operators {Ay}. Whepever N is arbitrary, the subscript N
will be omitted.

We shall need some elementary inequalities (x and y are arbitrary
vectors from ) [27 - 29]:

1) the triangular inequality
iz + gl <2l + Nyl (1)
2) the Cauchy inequality
[(z,9) | < l=lliyll; (2)
3) the generalized Cauchy inequality
(Az, y)? < (4z,2) (4y, ), (3)

or
Az, g) | < Nzlelylle, llzlle=7(dz, ), (3

where A is an arbitrary non-negative ((Ax, x) =0 or A =) selfadjoint
operator;

4) the inequality

%t < (iw )'( é wat ), (4)

a=1
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where A4, Uy are arbitrary non-negative numbers;
5) the e-inequality

jab| < 8a2+—4—tb2, (5)

where a, b, € > 0 are arbitrary numbers.

In addition, we shall use the following properties of linear operators
(see [27 - 29]).

Let X and Y be linear normed spaces with the norms “ . “ 1 and n . Hg
respectively, and let A be a linear operator from X into Y. In order that
the inverse operator A-! should exist and be linear (as the operator
from Y into X), it is necessary and sufficient that a constant § > 0
should exist such that for all x = X

I Azllz = dlizlls. 6)
Here the following estimate is valid
la-ti< 1/ M

For the proof of this theorem see [27 - 29].

All subsequent lemmas and theorems refer to linear operators 4 in a
real unitary space f1.

We shall use the same notation as in [1] (x, y are arbitrary elements
from H, § and c, are positive numbers):

A is non-negative, 4 >0, if (Ax, x¥Y>=0;

A is positive, A > 0, if (Ax, x) > 0 for all x # 0;

A is positive definite, A>8E, if (Ax, ») =8| x | %

A is semibound from below, A= -~c.f, if (Ax, Dz -cllx %
A is selfadjoint, A* = A, if (Ax, y) = (x, Ay).

Here £ is a unit operator.

Let us formulate a number of elementary lemmas. For the sake of com-
pleteness we shall also give their proofs.

Lemma 1.1

If A is a positive definite operator
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A=>3E, (8)

the following inequalities are valid

IAzl? = 8 (Az, ), (9
Azl = 6zl (10)
nA-1 < 1/ 8. (11)

From (2) and (8) it follows that: (Az,z) << llAz|lzil <<

lAz|l (1/78)Y (Az,«). After cancelling out by N (Ax, x) we obtain (9).
The inequality (10) follows from (9) and (8):llAzil%>= 0(4z, z) = 8%(z?;
the inequality (11) follows from (10) and (7).

Thus, the positive definite nature of the operator A is sufficient
for the boundedness of the inverse operator AL

Lemma 1.2
If A > 0 and the condition
| Az |2 << A(Az,z), A>0,1tor all ze&H, (12)

is satisfied, the inverse operator A-! is positive definite

-1 —
A >—E. (13)

Indeed, since A > 0  therefore A~! > 0. Putting z = Ay, y = A~x and
using the condition (12), we obtain Jlz|2 = lAyiR < A(4y, y) =
A(A-1x, %), i.e. A1 >=(1/0)E. Hence in view of Lemma 1.1 it follows
that. 14z| = (1/A)llzll. comparing with (7), we find || 4 || < A. Condi-
tion (12) indicates the boundedness of A.

Lemma 1.3

If A®* = A is a linear bounded and non-negative operator,

l4zl? < 141l (Az, ). (14)
The proof of this lemma is given in [33].
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Lemma 1.4

Let A* = A, A > 0. Then for any y and ¢ from H the following inequal-
ities are satisfied

()| < lylle Hcpha , (15)

!(y,q:)l eliyl ?‘+ hfplla-i (16}
where ¢ > 0 is any number, and
ﬂyua == V(Ay’ y)a “CP“a" = V(A_*P, CP)-

Indeed, (v, ¢) = (A~lp, Ay) = (Ay, A-lp). We apply inequality (3'):
[(7,9) | = (Ay, A™¢) < llylallA-tolla = ligllall®lla™, since ||A-1qlle? =
(A~'9, @). Imequality (16) follows from (15) and (5).

Lemma 1.5

If A is an arbitrary linear operator, for any v, u & H the following
identity is valid

(4v, v) -+ (Au, v) ="2(A0t+u), v+u) + (A —v), v--u). (17)

Indeed, (A(v + u), v+ u) + (A(lv ~ u), v —u) = [(Av, v) + (Av, u) +
(Au, v) + (Au, W] + [(Av, v) - (Adv, W) - (Au, v) + (du, )] =2[(4v, )+
(Au, w)].

Remark 1. If A = A* 5 0, (17) can be written in the form

1 1
folle? +lule? = —lv + ulla? -+ —z—itv — ulfa?, (18)

o]

Lemma 1.6
1If A*=A
(Av, u) = Yi(A(v +u), v+u) —i(d(v—u), v—u), v, ucsH (19)

The lemma is proved by analogy with Lemma 1.5, if it is noted that
(AH., v) = (Avr u)o

Lemma 1.7

IfA*=A
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(A(v+u), v—u) = (A(v —u), v+u) = (4Av, v) — (4u, u). (20)
Lemma 1.8

If A* = 4,
(A/v —u), v) = 1,{(4v, v) — (4u, u)] + Yo (A(v —u), v — u). (21)
To prove (20) and (21) it is sufficient to write down the expression

for (A(v +u), v - u) and, respectively, for (A(v — u), v — u) and to
take into account that (Au, v) = (4v, u).

Lemma 1.9

For any linear non-negative operator (4 =>0) and any u, v
(A(v —u), v—u) <2[(4y, v) + (44, v)]. (22)

Indeed, in view of Lemma 1.5 we have (A(v — u), v — u) = 2[(4v, v) +
(Au, w)] - (A(v + u), v +u) <2[(4v, v) + (Au, u)] since (Ax, x) =0
for any x = v - u.

Remark 2. If A* = A > 0, (22) can be written in the form

lo—ul® < 2{ivle®+ Il 2.3 (2%

2. A priori ESTIMATES FOR THE EQUATION Ay = ¢

Let us consider a sequence of equations of the I kind
Anyn = PN, ON E Hy, (24)
where Ay is a linear operator, mapping Hy into Hy.

The problem (24) is well-posed [27], if for any N=N,: (1) its
solution exists for all ¢y  Hy, (2) there is such a positive number M
independent of N that

lywlla,) << Miloxlle, » (25)
where ”'"uN)and”'”(zN) are some norms for the set Hy.

In what follows we shall consider unitary real spaces Hy (generally

speaking of infinite dimensions) with the scalar product (,)y and norm
" x HN =(x, x)y. If Ay* = Ay > 0 it is possible to introduce over the
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set fy a scalar product (Ayx, y)y and a norm }Ix ”“N = J(ANx, 2y, 1.e.

to consider the energy space HQN. In order not to complicate the

terminology, we shall say that over HN we introduce the norm
I-Nayy II- ey ete. for example llzlty = lzlly, [zlley) = lzllay ete.

Below we shall prove a number of simple theorems about the stability
of equation (24). It is assumed that all constants occurring in the
a priori estimates are independent of N. The index N will now always be
omitted and instead of (24) and (25) we shall write

Ay = o, (26)
Tyl << Mgl 27)

Theorem 1.1

1f
m
A= 4a, A’=4:>0, a=1,...,m,

o===i

then to solve equation (26) the following estimate is valid
m m
2 2
S liyla, < D) lgllazs, (28)
o=1 a=1

where ¢, are arbitrary vectors from //, satisfying the normalization con-
dition ¢; + ... t o, + ... T o, = o,

9l =(ay.y),  lollis=(43 @uga), e@=12,...,m. (29)

Multiplying (26) in a scalar fashion by y, we obtain the basic
identity

Substituting here ¢ = ¢; + ... + ¢, and using the estimate l(¢a, i<
“ YII ” P ” ~1 (Lemma 1.4) and then the inequality (4), we obtain

(28). We note that from (30) and Lemma 1.4 the estimate ||y ||, < [ o |/,-2
immediately follows.

Theorem 1.2

Suppose we are given the operators A and Ay* = Ag > 0. If the in-
equality
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(4y, ¥) = c1(Awy, y) = callyllatwheree, > 0; (31)
is satisfied, to solve equation (26) the following estimate is valid

I¥lles < — ol (32)
Indeed from the identities (30), (31) and (15) it follows that
il yled Ik 1yl 2. erlylo <Pl
Theorem 1.3
Let A =Ay +4,, where Ay* = A, > 0 and
| (4iz,z) | < y(doz,2), O<y<l, z=H (33)

Then for the solution of equation (26) the following estimate is valid

ylle. < “‘P“a;h (34)

1—v
Proof. From the identity (Agy, y) = (9, ¥) - (A4yy, ¥), Lemma 1.5 and
(33) follows |ylt<|@l-Iyk, + viyk? or (1 — M9k < {0k,
Theorem 1.4
let A =A; +A,, where Ay* =A; > 0 and
4wl <+vlldewll, O0<y<i1, yesH (35)
Then for (26) we have the estimate
e (36)
We multiply (26) in a scalar fashion by Agy: (Agy + Ay, Agy) = (9.4py)

or fAwl2 = (9, Aoy) — (Aiy, Aoy). Taking into account (2) and (35), we

find 'JAoyl2 << liglllldoyll + vIlAoyli2%. Cancelling out by I Ay ||, we obtain
(36).

Remark. From Theorem 1.3 and 1.4 follow ¢ priori estimates in the
mesh norms W,! and Wy2 for the solution of the first difference boundary
problem for schemes of an increased order of accuracy, approximating the
Poisson equation in a p-dimensional parallelepiped (p < 4). These
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estimates have been obtained in [30, 23]. In the given case y = (p—1)/3,
where p is the number of measurements.

3. CONSERVATIVE OPERATORS

Let H and H, be two real unitary spaces with the scalar product (,)
and (,] respectively. Consider the linear operators T, S, T*, where T
maps H into H,, S maps H; into H,, T* maps H, into H. The operators T
and T* are mutual conjugates, so that

(Ty, vl= (y, T*v) tor sny vy<H veH. (37)

Operators of the kind
A = T*ST, (38)
given over H will be called conservative (divergent) [3]. The operator
A is selfadjoint, (Ay, z) = (y, Az) if the operator S is selfadjoint

(Sv, w] = (v, Swj, v, we H,.

Indeed, (Ay, z) = (T*STy, z) = (y, T*S*Tz), y, 2 =[], From the
identity

(4y, y) = (8Ty, Ty} (39)

it can be seen that A is positive definite if

(Sv, v] = cillv]’, wherelv]fP= (v,v], veH, >0 (40y

ITyl|=callyll, c2>0 (41)
Theorem 1.5

If SZ c,f and there is an inverse operator (T*)-! then for the solu-
tion of equation (26) with the operator (38) the following estimate is
valid:

IT9I< - 1Tl (42)

This theorem follows from Theorem 1.2, if we remember that

A = cido. where dg = T*T, A" = A,, (43)
and consequently
lylg2=1T"Ty, ¥) =Tyl 1.e Ny, =Tyl
le W;;l = (479, @ =TTV, O =1T" V79I 1.e 19y =1(T*791
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Let us consider the case of a "multidimensional™ conservative oper -

ator
P

A= D] T, 84Ty, {44)
a«€, f=1

which is the analogue of the elliptical difference operator in the space
p of measurements. If Soﬁ = SGBSW, the operator

P
A= DT, S T Heres, =5, (45)

a=1

can be interpreted as the analogue of the operator div,(k grady) not
containing mixed products. Let A, (x =1, 2, ..., p) be a space with the
scalar product ( .]a and norm il vlla = ¥(v, vls, and To, Sep, To* be linear

operators while 7& operates from H into /1, Saﬁ operates from Hb into
H, and T.* operates from H  into H and the following conditions are
satisfied:

(Tay, vle = (y, Ta'v), veH, v e Hy

Condition (40) is replaced by the condition of positive definiteness
of the matrix operator S = QSGS):

» P
D) Sagtpr 2ala > N7,lly? for any 2, € H,. (48)

a«, B==1 a==1l

Theorem 1.6

If condition (46) is satisfied and there exist inverse operators
(Te" ™Y « =1, 2, ..., p, then for the solution of equation

P
Ay= D T SuToy=9, y9EH 47
o, f=1

the following a priori estimate is valid:

D r
ST 1,2 <§ DT 9, 1l (48)

& =1 a=],

where ¢ are arbitrary vectors from H, satisfying the normalization con-
dition

G+t Q.. 0=

The theorem follows from Theorem 1.2, if the proof of Theorem 1.1 is
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taken into account and we take

4
AO:ZAW Aa=T1‘T A4, =4 (49)

a’ 3 a-
a=s]

Indeed, condition (46) when v, = T,y gives

k4 14 »
(A, )= D (T SeqTa¥ V= Sugle¥ To¥la> a1 DI Teulla?= &1 (Aoy, v.)
a, B=1 a, B=1 a=1

On the other hand, we have

(9, ¥} = (4y, y),
((Plli y) < i Qa ”a‘;‘ | Y “aa,

p p
@ 9= 2@ < 21 9%l 1Y,

a==1 a=1

where

19 ua_1=n (T 0llge Ny, =1 To¥lly.

Then using inequality (4), we obtain
» 1y » /s
(@ y)<[§‘,il%lli_l] [Zuyu.fa] .
a=1 x a=1

Hence and from the inequality

r
e (doy, yr=c1 N Tyl 2 <(4y, ¥)=(@, ¥)

a=1

the estimate (48) follows.

Remark 1. Theorems 1.5 - 1.6 are proved without assuming the self-
adjoint nature of operator A.

2. From Theorems 1.5 - 1.6 follow the a priori estimates in the norm
Wyl for the difference analogues of the elliptic equations and sets of
equations.

3. The analogue of Theorem 1.5 and 1.6 for selfadjoint elliptic equa-
tions have been obtained in [9, 10, 18].

4, Theorems 1.5 and 1.6 make it possible to estimate the rate of con-
vergence in the norm W,! of difference schemes over non-uniform meshes



184 A.A. Samarskii

for elliptic equations and sets of equations.

In order to use Theorems 1.1 - 1.6 in the theory of difference schemes
it is at first necessary to introduce the corresponding spaces of mesh
functions (depending on the structure of A) and to study the properties
of the operator A in these spaces.

2. Classes of stable two-layer schemes

1. TWO-LAYER SCHEMES

Let {5/32N} and {3311‘1} be sequences of normed linear spaces, wp =
{tj =jr, =0, 1, ..., jo} a mesh over the interval 0t <ty with
the step v = #y/jo; Ay = An,<(t), By = By (t) etc. linear (additive
and homogeneous) operators mapping 33,V into RB,¥; yy .(t) an abstract
function of the discrete argument t & w, with values in %Y and
oy, (t) & function of t & w, with values in BV,

A two-layer scheme is a linear operator equation relating two points
yN,x(t + 1) and yy .(t) of the space Bi":
B(t)y(t+1) =C@O)y(t) +19(), t=o, y0) =By, ()
where ¢(t) is a given function, o, = {tj, 0<j < jol.

The dependence of the functions y and ¢ and also of the operators on
7 and V will not be indicated, separating out only the dependence on t.
We shall agree to relate the operator to the "lower layer* t = t]-, which
is convenient to describe the scheme in an index free form.

Any two-layer scheme can be described in the canonical form

yt+v—y()

B(t) . +AMDy ()= o). (2)
Below we shall use the notation
t =1, t+7v=tj, t—1v =1, y=y() =1y,
I=y(tn)=y™, J=y", ys=y:y= y(t+?——y(t),
y—9_y@B—y(—r) §—13

1
Y7 = - T , Yy = o =7(yz+y;),
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1 — 2y + 9
Ya = W—yp)= L%J— A=A(@),
; iy
A=A4(t— - == .
(t—r1), 4; :
It is easily noted that ¥ = ys, i = ys.
Equation (2) can also be written in the form
1 i
B TV gy — g, ()
T

Using the notation introduced above instead of (2) and (28) we write
Byi+dy=g¢, t€0, y(0)=un (3)

A definition of the well-posed nature of the scheme (3) is given in
[1]. We shall discuss in more detail the concept of stability. The de-
finition of stability does not relate to the actual scheme (3) with
fixed N, v, but to a family of schemes corresponding to all possible
values of N and +. Thus, we consider a sequence of solutions {YN T(t)}
of problem (3), corresponding to the input data {¢N T(t)}and {yN T(0)}
The stability of the scheme (3) signifies that it is equally continuous
(with respect to N and 7) as far as the solution of equation (3) is con-
cerned relative to the right-hand part and the initial data.

Let Il-llay and [l-liey) be the norms in %B,Y and $B,¥. Usually B,V
and $B,Y consist of the same vectors (mesh functions) and they differ
only in their norms. The norms may be functions of ¢, so that

flley=1N"llg, on -l =1l-lle,n, and so on (the subscript N is omitted).

The scheme (3) is called stable [2, 1], if there are numbers Ny > 0,
Tg > 0, and numbers #; > 0, ¥y > 0, My’ =20, independent of T and N, so
that when » < vy and N>>N; the following inequality is satisfied for
the solution of equation (3):

by ¢4 o, o <M1y (0, o + Ma Dax lo () e, e + (%)
-+ M, max ||cpt-
o<t <t

Here we do not attempt to give a completely general definition of sta-
bility, but only a definition which is to be used in this paper.

Examples of norms, which are functions of ¢, are supplied by the
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energy norms related to the operators of the scheme (3) (see point 4):

Iy + Dla o=y +2)law =V (AQ@)y ¢ + 1), y(t+ 7)),
ly (¢ + ) lla, n = ly (@ + ) o,
or

1" ey =19k = V(49,9), |y b;=10l= V(BY, ).

As to the dependence of |[-llyy on t, sometimes we shall not indicate
this, but shall write instead of My, simply |y#l, = I7lla, unless
this can be misunderstood.

It is convenient to study the problem of stability with respect to
the initial data and with respect to the right-hand part separately, i.e.
to consider the problem

By: + Ay = 0, I = o y(0) = yo, (3a)
Byi+Ay=9, t=o, y0) =0 (3b)

The solution of problem (3) will be represented in the form of a sum
y =% + y where ¥ is the solution of problem (3a), and y is the solution
of problem (3b). In view of the triangular inequality

lyll < 17w -+ 171w, (5)

Therefore from the stability of the problems (3a) and (3b) follows
the stability of (3). The scheme (3) is stable with respect to the
initial data if the following estimate is valid for the solution of
problem (3a)

iy (4 ) g, o < My (0) g, o; (6)

and it is stable with respect to the right-hand part if the following
estimate is valid for (3b)

1y + Do, n < Mz max [@(¢) e, ) + My" max | @7 (), ). M
ot <t o< 't
If scheme (3) is stable with respect to the initial data over any
interval [t/ =jt,t+ 1= (j+ 1)7], i.e.
My + O llg o< Milly (&), 9, =8 =0, (8)

it is stable with respect to the right-hand part [2]; so that for the
solution of problem (3b) the following estimate holds:
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H

ly (¢ + 1) e o < M1 Rl (@) lle, o) (9)
t'==0
with the condition that the norms |-l and | -]ly) are coordinated as
follows:
e lle o = 1B ()@ (D) llg. o- (10}

The proof of this theorem will be given by the method of superposition
(by the Duhamel method). Let Y(t, t') = Yi.J pe the solution of the
problem

%“B(“{Y(” )= YL+ A Y (L1)=0wen ! <1; (11
Y(t’, t/) [ O. B(t/)Y(t/ +T, i,) —_ (p(tl), (12)

i.e. Y(t' + 71, t") =B-Yt")o(t"). Then the solution of problem (3b) can
be represented in the form

t—t
y@t)y= Nt¥ (1), (13)
/==
This can be seen if we substitute (13) into (3) and take into account
(11) and (12). In view of condition (8) we have
Y+ 4D a0 S MY 7, )y, 0 = MlIB- () o (') lg, ¢y =
= Mille(t)ile.

Using the triangular inequality, we obtain

i

Nyt +0)llg, o< Z‘ 1Y (4t ) e, o << My D TlieE) e, oy

t=0 a0

The coordination condition of the norms {(10) limits the field of
applicability of this theorem, since for the theory of difference schemes
it is important to estimate y with the strongest possible norm through a
right-hand part in the weakest possible norm.

The fundamental problem of the theory is to formulate the sufficiency
conditions for the stability of difference schemes.

If B-! exists, from (1) it follows that
g} = B-1Cy - 1B-1¢.
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Hence it can be seen that scheme (3) is stable if there exists B-!
and

I1BCIl < 1 + e, (14)

where ¢; = const. > 0 is independent of 7 and N. Here the estimates (8)
and (9) are valid.

Condition (14) signifies that B~YC is uniformly bounded with respect
to the norm by the number 1 + c,7v, with respect to N, 7. In general B
and C (B and A) are unbounded, or non-uniformly bounded operators with
respect to N, r. What properties are to be possessed by the operators B
and C for this condition to be satisfied? in answer to this question can
be obtained in a testable form by considering the scheme (3) in a real
unitary space 1.

2. THE INITIAL FAMILY OF SCHEMES

Let fy be a linear real system, Ay = Ay (1), By = By (1), Cy =
Cy,(t) etc., be linear operators, mapping Hy into fly for each t & ;.
Over the linear system Hy we shall introduce a scalar product and a norm
(the subscript N will be omitted):

(v, v)andllyll = V(y, v),
(¥, V)awy = (A(H)y, v)andlly (¢ + ) lloy = V(¥ (t 4+ 7), y{t + 7)) o,

(, V)oy = (B()y, v)andlly(t + D) llowy = V(@ (¢ + 1), y@C+))oew ete.

where A(t), B(t) are selfadjoint positive operators. To estimate the
right-hand part ¢(t) we shall use the norms li¢(f)llg = e (),

o ()l = 1B- (D)o ) I, lo(d) lle = le () lamw = V(A @) 9 (?), @(t))etc.

We shall consider the same initial family of two-layer schemes (IS-2)
as in [1], assuming that the following conditions are satisfied:

1) A = A(t) is selfadjoint, positive and Lipschts-continuous with
respect to t:

A (1) = A(t) >0, (15)
(A7, VW |< (dy, y) or (Ay, y) < (1 + ) (y, ), 4 = A(t — 1),
(16)

cy = const. » 0 is independent of t and N;
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2) B = B(t) is positive B(t) > 0.
We note that the operator B(t) does not have to be selfadjoint. The

condition B(t) > 0 is ensured by the solvability of the scheme (3),
since when B > 0 the inverse operator B~1 exists.

3. ENERGY IDENTITIES AND INEQUALITIES

Using the obvious identity

1, 1, 1, T
y=50+N—50—v=5@+—75.9 (17)
we rewrite equation (3) in the form
(B--0514)y: + 054 (y + y) = o. (18)

Scalar multiplying (18) by 2vy, = ﬁ(y-——y):

2v((B—0.5t4)ys y:) + (A(y +y), ¥y —y) = 2v(g, 9. (19)
Since A is a selfadjoint operator, therefore in view of Lemma 1.7,

(A@+y), 9—y)= (49, 5)— (Ay, ).

After substituting this expression into (9) we obtain the basic energy
identity for the two-layer scheme:

20{(B — 0.514) y1, y1) + (4y,¥) = (4y, y) + 2u(p, y1). (20)

mmmmmmwmmmtA=A+puﬁﬁ=ﬁ+m@wmwnw
(20) in the form

2‘[{((B—-— O,5TA) Yt yt) + % =4 + T(At—y» y) + VA ((P’ yt): (21)

where
E=8(t+7)=(49,9), &=€1t)=(dy,p), 22)

% is the "“energy" of the operator A. Using condition (16), we obtain
the energy inequality

20((B—05tA)yr,y0) + & < (1 + ex0) & -+ 2e(g, ). (23)

In studying the stability of the scheme (3) we shall start out from
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the energy identity (21). Depending on the conditions imposed over B and
A the term 2v(9, y,) can be evaluated by various methods. Let us indicate
some of these (see Lemma 1.4):

T
2t| (9, 91) | < 2eellyell® + - lloll%, (24)

T
2T| (9, y1) | < 2ve(By:, y1) -l—;'(B_1 P, P) when B* =B, (25)

where ¢ = const. > O is any number.
We shall use the following
Lemma 2.1

If A*(t) = A(t) > 0, for any v(t), ¢(t) & H we have the following
inequality

o A T -
21 (9, ») = 27(9, ;) << 21 (9, D)7 + e (4v, v) + —8—(A o7, @) (26)
We use the identity
2t(g, 1) = 2v(g, v); — 2t(e7 V), (27)
whose validity can easily be seen:
27(‘1),7})[—27((?;" V)= 2((P1 13)—2(cf>, U)—-Z(CP——(‘]/), U) =
=2(9, v — ) = 27(9, v,).

Using for the estimate'21|(¢;,v)| Lemma 1.4, we obtain (26). In particu-
lar, when v = y we have

219, Y < 2(9, ) —2(%, ¥) + 21e(4y, 1) + — (A 705 @) (28)

Substituting into (21) the estimates (24) - (26), (28), we obtain the
various energy inequalities.

We shall use the difference analogue of Grunwal's lemma to solve the
inequalities.

Lemma 2.2

Let & () and f(t) be two non-negative functions defined over the
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mesh {ti=Jt, j=s5+1,...,js, s=0,1}, and let the inequality

t

&Et41) <o Z & () + (2. ¢o > 0, t=s1,(s+1)r,....
#==(g+A)T

be satisfied. If f(t) is a non~decreasing function (f(t + )= f()), we
have

& (bt 1) < e'f(2).

If f(t) is an arbitrary non-negative function, we have

& (£ 4 1) < F(2) + coest D (1),

t'=st

Lemma 2.3
If f(t)==0 and & (st) = 0, from the inequality

g+ <U+o)&@) +1f(t), =s1,(s+1)7..

we have the estimate

‘s

14
g (t+ 1)< et X Tf(t).

t'==3T

The proof of Lemmas 2.2 and 2.3 are given for example in [11, 16].

4, SUFPICIENT CONDITIONS OF STABILITY AND
a priori ESTIMATES

Theorem 2.1
If the condition

B = 051t(1 — ¢7) A4, (29)

is satisfied, where c¢; = const. > 0 is independent of v and of N, the
scheme (3) is stable when

T < 10, To<<liy

and the following estimate is valid for the solution of problem (3):
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ly (¢ 4 1) oy < Milly (0) o + M- max lo (@) Nomen + (30)
ot/

+ My max llg:(t') a7
o<trt

where My, My, My’ are positive constants, depending only on c;, c¢3, and
to .-

Proof. Let us return to the identity (21). Condition (29) and Lemma
1.7 give

21((B — 0.5t4) yr, y2) = —i(Ayy, yr) = —2cr[ (4, y) + (4y,9)].
We substitute this estimate into (21):

(1 — 2~7) (A7, 7) < (1 + 2a17) (Ay, y) + 2e(o, o). (31)

1. Stability with respect to the initial data. Putting ¢ = 0 and
taking into account that 4cjyt < 1 we obtain for the problem (3a) the in-
equality

{1 —2em)&(t+1) < (14 2em) (1 +cr) & (1) < (1 +2(c1 4 c2)1) & (1),
Et+1) << (1 +4(ci+c)t)&(t) whent >0, (32)

2
E)<(1+4(ci+c2)1)ly(0)llow wnen ¢ =0.

Hence we find & (t + 1) << exp [4(c1+c2)t] 1 y(0) I5)s 1.e.

Iyt + )l < Myl y(0) llaywhereMs = exp [2(c1 +c2)t].  (33)

2. Stability with respect to the right-hand part. To solve the prob-
lem (3a) instead of (32) we obtain the inequality

(1 — 2c17) (A(0)y (z), y (7)) < 2(9(0), y(v))- (34)
We substitute into (31) the estimate (26):
(1 —2cv) (47, <A + 2(c1 +e&)1)(4y, ¥) +2(9. §) —
—2($, ) + '2_3'(‘4 Yo7, @p)-

Then taking into account the Lipschits-continuity of A(t) and choosing
e so that 2(c; + €)1 < 1, we obtain

(=208 + 1)< +2(c+cate)V)EE) + (35)
+2(@(), y(' +N—=2(9(* —7), y () + 5 (A'qut) @7 ('),
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since (1 +2(c; + e)T)(1 + ¢cg1) =1 4 [2(cy + &) + cglT + 2(cy + €)TeaT<
1 +2(cy +cg + e)r when 2(c; + &)1 < 1.

We sum (35) with respect to t’ =T, 27,
(34) and use Lemma 1.4:

..., t, take into account

o 1 _
2(9, D)< &b + E;‘(A g, @),

Choosing €; = Y%, we arrive at the inequality

t
ER+1)< e &)+ D), =0,
t'=t
where

2 t
D(1) = 4(A1 9,0) +— 2 (A=) p(t'), (),

C‘0=4(201+Cz+8).

Now using Lemma 2.2 and choosing € such that 2(¢; + &)1 < 1 we find

i
& (t+ 1) << D(2) + coect D) 1D ().

=0
Hence we obtain directly

Iy (¢ + ) oy < Mo max | @ (¢) fosry + My" max [ @ (') fa-ary,  (36)
o<t'<t o<t' <<t

where y = y is the solution of problem (3b). From (33) and (36) in view
of (5) we obtain the estimate (30). Theorem 2.1 is now proved.

Theorem 2.2

If the condition
B = eE 4 0514, e > 0, 37y

is satisfied, to solve problem (3) the following a priori estimate holds:

t

1 1y
ny(t+r>na<t><Mi[uy(0) ||a(0)+ﬁ27)(2 g (1)) ] . (38)

Proof 1. When ¢ = 0 inequality (23) gives
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E+1) << (1+e0)&(E) wheni>0,
&(t)y<<(1+ cat)lly(0) ”;(0) vhent = 0.

Hence tollows & (t + 1) << et (v) < ely(0))2,, , i.e.

fly (¢ + O llawy < Milly (U llaw,  where My = exp (0.5¢c2t0). (39)
2. When y(0) = 0 we have
eyt + 8¢+ < L+ em) &) + 2v(e, 1),

..%f“y(’r) 2 4 8’(1) = 2(@(0)71/(7))'

We substitute into this inequality estimate (24) and obtain
EW+Huyy<s<(1+ cat)é’(t’)—}» o)1z when ¢ >0,
g < 2—"8 lp(0)l2 whent = 0.

Summing with respect to ¢’ =1, 2v, ..., t and using Lemma 2.2, we
find

gt+1)< Ma Z () Iz, (40)

==
From (39) and (40) we obtain (38).

Note 1. It may appear that scheme (3) belongs to I8-2 for sufficiently
small T 1o’ and sufficiently large N 2N,'. Then Theorem 2.1 is valid
when 1< 1o* and N ==Ny', where 1¢* = min{v,, To'), and Theorem 2.2 is
valid when T =< Ty and N > N;’'. In order not to complicate the discussion,
we shall assume that scheme (3) belongs to the initial family 1S-2 for
any T and N. In view of the foregoing, this does not lead to any loss of
generality.

2. Theorem 2.2 remains true if 4 = Ay + A, where Ay(t) satisfies
(15) and (16), and A;(t) is a non-selfadjoint operator, subordinated to

Ag(t):
TA By I < eall ¥ Hageen

where c3 = const. > 0 is independent of T and N. Then in (38).instead of
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Iyl we nave [y I,

Condition (29) separates out from the class IS-2 the class K of
stable schemes. Schemes satisfying condition (37), obviously belong to
K.

5. ON THE NECESSARY CONDITIONS OF STABILITY

We have now found the sufficient wconditions of stability (29) of
scheme (3) from IS-2. Let us now consider the problem of the necessary
conditions of stability with respect to the initial dats in the norm

H Yy ”(1) = ” y Ha We separate out from IS-2 the class of schemes K,
satisfying some additional requirements: B is a selfadjoint operator,
B* =B, A and B are independent of t.

Theorem 2.3

For the stability of any scheme (3) from the class K; with respect
to the initial data it is necessary that condition (29) should be
satisfied.

Proof. Let the scheme (3) from K; be stable with respect to the
initial data, i.e. let such a number ¥; > 0 exist, independent of T and
of N, that for the solution of problem (3a) the inequality || y(t) ||, <
M1” Yo Ha is satisfied for all t & w,, and in particular

iy (to) la << Millyolla lo = Jot) (41)

Since the operator A is positive and selfadjoint, an operator Ax,\=
(A%)* 5 0 exists. Now we rewrite the scheme (3a) in the form ARy =
(E - 1A%B-14%)4%y and put
= Ay, =A%y, €= ARB4™M, (42)
Then scheme (3a) is transformed into the explicit scheme
24+ Cr =0, or s= (E —1C)z, x(0) =zo  zo= A"y, (43)

Inequality (41) takes the form

(o) | << Millzol, since {zll = liyla. (44)

Then using the equation z = (E —1C)z, we find z(tp) = (E' — tC)%x,,
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lz(to) | = I(E — tC)%zoll. Hence and from (44) it follows that

I(E — tC)5ll = I|IE —Cll << My, i.e. IE — 1Cll << Myt = My,

For any M, one can find a number. ¢y > 0, independent of v and of N, such

that the inequality MlT/to'él + 2¢y7 is satisfied. For this it is suffi-
cient to put, for example, c, = (1/2t¢)M, 1n M,. Thus, from (44) we have

lE —aCll <14 2¢. (45)

In view of & well-known theorem of functional analysis [28].HE —1C| =

max | ((E —1C)x, z) |when [z} = 1, since E —1C = (E —1C)". There-
il

tore | ((E —1C)z,z)| << (1 + 2esmllzll?,
~(142et)E < E—1C < (14 2a1)E. (46)

Hence we find E = 0.51C/ (1 + c1t). Since C* = C, therefore C-t =
0.5 tE/ (1 + ¢y7) or

0.5t
Cz, 2,
(Clz,z) = T fon ——— ||z}

Substituting (42) here, we obtain

(By,y) = (Ay, ¥) = 0.57(1 —ev) (Ay, y),

0.5t
14+ ¢
i.e. condition (29) is satisfied. The theorem is thus proved.

Let us now examine the class of schemes K, (see Section 6), which is
separated from IS-2 by the additional requirement that B(t) = B*(t). For
schemes from Ky the following statement can be made (it is proved by
the same method as Theorem 2.3): let the scheme (3) from K, be stable

with respect to the initial data. Then one can find such vectors y = [
for which the following condition is satisfied

(By, y) > 0'51’(1 _C1TV) (Ay’ y)’ 0 < Y < 17 > Oa (46,)

where ¢, and y are independent of T and of N.

FProm this assertion it follows that the condition
(Bzx,z) < 0.5t(1 — civ?) (Az,2) for a1l 2= H (47)
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is sufficient for the instability of the scheme (3) from Kj.
We remark that condition (46°), satisfied for all y e J when y = 1,
is the same as the sufficient condition of stability (29)
6. THE CASE OF A SELFADJOINT OPERATOR B(t)

In defining the initial family IS-2 we have not assumed the self-
adjoint nature and continuity with respect to t of the operator B(t).

Let us now comsider another initial family IS-2* of schemes (3), de-
fined by the requirements:

1) B*(t) = B(t) > 0;

2) B(t) is Lipschits-continuous with respect to t with the constant
Ca,

[(Bry, )| < es (By, y); (48)
3) A*(t) = A(t) =0,
Here we do not require the continuity of A(t) with respect to ¢.

For schemes belonging to IS-2*, we can obtain a priori estimates in
the norm

ly(t+Dla o=yt + D) len=V Byt +1),y(+ 1))

First we shall give the energy identity. For this we multiply equa-
tion (3) in a scalar fashion by 2Ty:

2t(Byny) + 2v(4y, y) = 2(p, ¥). (49)

Using Lemma 1.7 when ip =— V2(§-+-y),zz== Vg(é-—-y) and Lemma 1.8
when v = ?, a = vy, we find

(Ay, 9) =A@+ 1), 5+ D —Ye(A@ —y), §—y) = (50)
e FR TS PARS
2v(By., ) = ©(BY, #) + *(By, y)— v.(Bry, y)- (51)

Substituting (50) and (51) into (49), we obtain the energy identity
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By, i)+ * [(Bytv Yr) —%(A?!t, yt)J 4 %‘(A G+y§+y= (52)
= (By, y) + T (B7y, y) + 27(9, §)-

Hence it can be seen that the expression in square brackets is non-
negative when

B> —21A. (53)

Under this condition, from identity (52) we have the inequality

191 + 319 +yl* <A + )]yl + 2¢ (e, 9), (54)

if we take into account that(By, y) = (Ey, Y+ 1 (Bry, 1<
(1 +17¢3) (éy, y) = (1 4+ 7cs)|y[y® 1n view of condition (48). We rewrite
(54) in the form

B+ 5 Tlylt + 9+ y (O <A+ am B0+ 25(@ 9. 10, ()

where
Et+v) =]y + e =19> (56)
Theorem 2.4

If the scheme (3) from IS-2* satisfies condition (53), to solve
problem (3) we have the following a priori estimate:

t e
ly (¢ + ) oy < Milly (0) oy + M- [ ET”(P(':/) ”bz”‘(t'):l , (57)
t'=0
where M; > 0, My > 0 depend only on &, and to,ll@ 2., = (B9, ).

Proof. Since A >=8, from (55) it follows that

E(U+7) < (L4 cen)&@) + 2t(e(t),y(t+ 1)) whent>0. (58)
1. Stability with respect to the initial data. If ¢ = 0, we have
@+ )<+ et <e 8 (1) < e |y (0) oy since &(D)<Iy(0)o-

Hence for (3a) we have the estimate
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I y(t -+ T) "b(t) Myl y (O) "b(O), where M1 = exp (0 562to) (59)

2. Stability with respect to the right-hand part. Let y(0) = 0. Then
equation (3) when t = v takes the form

By(z) = 19(0).
Multiplying this by y(r) we ootain
& (1) = 1(e(0), y(7)).

Substituting into (58) the estimate 2v (g, 7)< ve(BY, §) + ——(B‘lqp, ),
we obtain

(1—1e)8 ' +1)<(1+1e) 8 (t') + % @ (') [Py-st-) When ¢’ >0,

A —1)8 (1) < 2 1900 wes ¢ =0,

where 0 < e < 1/7.

Hence by summing with respect to t' =0, +, ..., t we find

¢

’ ___1____ ’ 2_l
Z}Té”(tH- ( mgorncp(t)ub (-

Using Lemma 2.2 and choosing ¢ from the condition for minimizing #,’,
we obtain

#(+0<—TT

E@+1)s My Z llp (2 ”b " (60)

t'=0

where M’ depends only on ¢, and t,. Unifying (59) and (60), we obtain
(57).

Theorem 2.5

If the scheme (3) from IS-2* satisfies the conditions

B=05t(1+¢€)d, A(t) >0, (61)
where ¢ > 0 is any number, the following a priori estimate is valid:
s
1t 4 o < Ml (0) o+ M5 | Sello (¢ W] (62)

t'=0



200 A.A. Samarskii

Proof. It is sufficient to find the estimate for the problem (3b).

Taking into account that y = 0.5(y +y) + 0.5(y — y), and using Lemma
1.4, we have

27(@,‘1))"—‘—7(@,g—l—y)—*—f(q),y—y), .
27(9, 9) <5 T(19 + vl + [96-) + Selyelt + 5o 1@ B when £>0.

Since A< (2/7) B, we haver (p(0), y(v)<YaT(4(0)y(v), y(v)+
H(AOWPO) KON (B(0)y (), ¥ (N+7[(0) i) =5 B(3) +Tho (Ol

We substitute this estimate into (55)

108+ % vkt = ot lud? | <A+ wlyl + 3¢ (14 7)ok
BEADN<AT B+ 55 (147 )10k wnan >0,
M < 2|90 iy when ' = 0. (63)
Using Lemma 2.3, we obtain (62).

Note 1. If the operator B is constant, i.e. is independent of ¢, in
(57) and (62) we have to put M, = 1 so that for the scheme (3a) we ob-
tain the estimate

Tyt le <Ny ls or yittile < yile. (64}

Note 2. An estimate of the solution of problem (3a) with respect to
the norm ” y]|b in a finite dimensional case has been used [31, 32] to
study the convergence of two-layer iterative schemes for the solution
of sets of algebraic equations Av = ¢. The spectral method was used to
obtain the estimate

Tyittlle < pllyills (65)

under double-sided restrictions on the operator B of thne form

vyA<B<vyd, v>0 1v.>0 (66)
and the value

_ G (67)
Y1+ ¥2 '
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has been found, at which the minimum of p is reached, equal to

Pmin = v . (68)
Y1+ y2

The same result can be obtained on the basis of Theorem 2.3 without
assuming that H is finite dimensional.

Indeed, assuming y(t;) =,pfv(tj). t; = jT, we obtain for v the problem

1_
pBu +Av =0, v(@)=y©0), A=Ad——"B8
T
The .conditions pB3> 0.5 T4, A >0 give
" A<B<—_"-a (69)

— A< B<

1+p 1—0p
Equating (69) to (66), we ascertain that the minimum of p is reached
when

T T

= Y1,
1+p 1—p

3 ’Yz.

Hence (67) and (68) follow.

7. A priori ESTIMATES FOR A WEIGHTED SCHEME

Consider the single-parameter family of schemes (weighted schemes)

yt+Ay+(1—0)y) =9, t=ao, y(0) =y, (70)

where A(t) is a positive linear operator. The stability of the scheme
(70) depends on the choice of the real parameter o.

In order to use Theorem 2.1 and 2.2, we write the scheme in the
canonical form (3)

(E+otd)y:+A4y=9, i(€aw, ¥y(0) =y  B=E+ o4,
(71)
using the identity oﬁ + (1 — 0)¥ = y + oty,.. Since A(t) > 0, the in-

verse operator A-! exists. Applying the operator A~! to equation (71),
we obtain

B = A-! 4 o1k, A=E, ¢ = A~ (73)
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In deriving the a priori estimates we shall use (70) in one of the
forms (T1) or (72).

Theorem 2.6

If A*(t) = A(t) > 0 and

1 1

— T T 2 3 74
5 Al (74)

O = O, Oy =

the scheme (70) is stable and the following estimate is valid for the
solution of the problem

ly ¢+ DN<Iy (O] + Mz max | A™ (') @ ()| 4 My’ max | (A™ (¢ ) o (¢')) |,
o<t o<t <t (75)
where M, and M, depend only on t,.

Note 1. The requirement that A(t) should be selfadjoint can be re-
placed by the requirement (see [34])

d Az |2 << A(4z, z), =zeH. (76)

The theorem remains true when
1 4

6>=0p T=——m—, (17)
2 TA

since from (76) it follows that A-! Z(1/A)E (Lemma 1.2).

Note 2. When o >=0.5 the estimate remains true for any selfadjoint
operator A(t) > 0.

Note 3. If A(t) is a non-negative operator, in (74) we must formally
put 1/ ]| Al =0 so that o>=0.5.

Note 4. If A(t) = A*(t) > O and the condition that A(t) is Lipschits-
continuous is satisfied with respect to ¢, the estimate (38) is valid
when

1 1—
6> 0= —— . 0<e<L (78)
2 T4l

Theorem 2.7

If A(t) = A*(t) > 0 and condition (78) is satisfied, for the solution
of problem (70) we have the a priori estimate
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¢ s
v+ <y O+ 5 [ Sele@)itw ] (79)

V( e
Using the identity (20) for the scheme (72) with A= E:

2 ((B — 05tA) g, yo) + Nyl =1yl + 2t(p, ), 9= A"

Taking into account that from o > o, we have B-0574 >eA-l, since

B—0.574 = eA‘1+(1—e) A1+ (6—0.5)TtE>edt +
[(1_3) ot (3 0. 5)] S ea,
we obtain
2ve (A~tyys, ) + IYlI2 << Iyl + 2e (A1, ys).

Substituting here the estimate following from (1.3) and (1.5),

- ¢ ~ T _
2t (47, y) << 2t (A7yy, yo) + %% (47, 9), (80)
we have

T
HE<iylP + —2—Bllq>lli—"
Hence (79) follows.

We write the weighted scheme (70) in the form (E + ovd)y =

(E - (1 - o)td)y + 1p and find y = (E + ov4)~(E — (1 — o)td)y+
1(E + otA)~Yp. Hence we obtain

1yl < I(E + otd)(E — (1 — o)) I y Il + Tl (E + otd) il llgll.
(81)

Let ¢ = 0. Then from Note 1 of Theorem 2.6 we have
I(E + otd)"(E — (1 — 0)1d) il <1 when o =1 —1/74, (82)

if ||[Az|l2 << A (Az,z). From condition (76) it follows that

E >—Z—A, E + 0t = (0 — 0e)TA + 0.5t4 + eE -+
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+(1—¢) (E——Z—A),},O.STA—FSE> eE

when
1 1 — & ]
O = Oe, 0'a="§‘“‘ A (78
and consequently (Lemma 1.1),
1 .
HE 4+ otd) Ul << — (83)

£

Substituting (83) and (82) into (81), we see that the following
theorem holds.

Theorem 2.8

1f conditions (T76) and (78') are satisfied, for the solution of prob-
lem (70) we have the estimate

i
v+ < Iy Ol +— Sello(@)ll. (84)
=0

If A(t) > 0 is an arbitrary selfadjoint operator, when 022 0.5 esti-
mate (84) is valid with e = 1,

Note 5. Let A(t) be semi-bounded from below, A(t) > —c,E, ¢, =const,> 0,
Then when 0.5 <o <<1, T<< 7y, Tp < 1/2 ¢, we have the estimate
$

Tyt + DI Milly @) 1+ M2 D) <llo ()], (85)

e

where M, and M, depend only on ¢, and tg.
The proof of this theorem will be omitted.

Theorem 2.9

Let A » 0 be a constant operator and o 2 0.5. Then for problem (70)
we have the estimate

|4y (¢ + DI<| 4y (O] + Ms max | o ()| + My maxer (1)), (86)

where My > 0, M;" > O depends only on ty.
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We rewrite (71) in the form

(E+ (6 — 05)14)y: +054(y + y) = ¢ (87)
and scalar multiply (87) by 2vdy, = 24(Y - »):

2t(Ays, yr) + 212 (0 — 0.5) || Aye 2+ | Ay 12 = [ Ay |12 + 2¢ (e, ye).

If ¢ = 0, it follows immediately from this

TAy(t+ 1)l <1 Ay(0)]  when 0 = 0.5.

We transform

27 (¢, Ay) = 27(q, A9); — 27 (er, Ay) < 2v(p, AP +
+ et Ay + — o7 | when ¢ >0,

so that
27(Ay,, y) +1 49 < (L + 1) | Ay [P + o [ + 21 (9, A7)

After this the argument is the same as in the proof of Theorem 2.1
when y(0) =0,

Vote 6. It is not required that operator A be selfadjoint. If
”Ax!|2 < A(Ax, x), Theorem 2.9 is valid when o >0y, oy =% - 1/7A. If
A = A* the following estimate holds

i

i
Ay (¢ + DI IO + — ) wlop(t)la*

=0

Note 7. Theorem 2.9 remains true for an operator A(t) which satisfies
the condition

Ayl < coll Ay .

A priori estimates of the kind (86) for multidimensional two-layer
schemes, approximating the heat conduction equations, have been obtained
in [23]:

3. Classes of stahle three-layer schemes

1. THE INITIAL FAMILY OF THREE -LAYER SCHEMES

Let us consider the set qf three-layer schemes
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Bys+ Ry, +4Ay=9, O0<i=o, y0) =y, y(v) =y, (1)

where yq and y; are arbitrary vectors from H; B, R and A are linear
operators from H into H.

The initial family of three-layer schemes I1S-3 is specified by means
of the following conditions (cf. [1]):

1) A*(t) =A(D), A(t) > 0;

2) R*(t) = R(®), R(t) > 0;

3) A(t) and R(t) are Lipschits-continuous with respect to t with con-
stant c,, independent of T and N.

The requirements for the operator B(t) are formulated in the course
of the discussion. The basic estimates are obtained without assumptions
about the selfadjoint nature of B(t) and its continuity with respect
to t.

2. ENERGY IDENTITY

An energy identity, corresponding to scheme (1), is used to verify
the a priori estimates. Taking into account that

we rewrite scheme (1) in the form
By, +*(R—ad)y;, +7/A4(F + Y =9 (2)

We scalar multiply (2) by 2173;? = "(?/x -+ y?) = j— y and taking into
account that ty; =y, —y;
20 (By,, yp) + (R —14) (g, — yp), ¥+ ) + )
+ 1/2("}1 (y + .”7)) .1? '“"7?) = 27((}), ytu)'
We shall use

Lemma 3.1

If A and R are selfadjoint operators, we have
(A@ -+, 0—9) = (49, §)— (49, 9), (4)
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((‘R - 1/2A)(yt - yg—)s yg + y}') = ((R - l/zA)yw yt}_((R - 1/2‘4)?;—{7 ?}{)- (5}

This lemma is a consequence of Lemma 1.6, if we put v =79 + ¥,
u=y-—Yyand v=y,—y; &=y, y; (replacing A by the operator
R-%A).

We add and subtract on the right in (3) (4y, y), after which we use

Lemma 1.5 when v =g, u=yand v=y, u=7%

(A(F+ 9. 7—9) = (44, §) + (Ay, 1 — [(4y, v) + (43, 9)] =
=Y%(A@G+ 9 I+y)+EG—y) =y —
— (AW + 9 y+ P+ A y—9), y— I,

80 that

AE+D, 93— ="L1AG+y). §+y)+(4y, y)] — (6
=Y A+ ),y + 1)+ T (Ayr, v

Substituting expressions (4) and (6) into (3), we obtain

2v (Byg Y+ MA@ +y), 0+ y)+ (R —sd)y, yi)} =
== {1/4 (A (y + ?}): Y + ?) + T2 ((R—lfdA) Yrs y?)} + 2t ((p’ y?)‘

The operators A and R depend on ¢, so that

A = A(1), R = R(t), t=1;
Now we make use of the fact that

(A () v, v) = (Av, v) + (A — A)v, v) = (4v, v) + T (4., V).

As a result we obtain the basic energy identity for a three-layer
scheme

'2T(By§,yf)+$z$+rp+2't((p, ys) (7
where A
8=+ v iy + TRy w),  w= T
v . . R )
E=Y AW+ y+ ¥+ (R—Yd)yyr, yp),  y;= yr v

F =" (A (y + ), y + §) + (B — Ay, yp)- )
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Identity (7) holds for any three-layer scheme if it is assumed that
A(t) and R(t) are selfadjoint operators.

The operators A(t) and R(t) are, according to the conditions,
Lipschits-continuous with respect to t. Therefore the following estimate
holds:

| F|< e + Yora®® (Ay;, 97)- 9)
Indeed,
|FI<E (A @+, y+ 9 + v Ry yy) +
+ Yavs (A, yp) = 008 + Yaou®® (Ayy, yp)-
If R - % A = R satisfies the condition

(B —YeA)ey, ) | < ca (B —Ysd)y, y),

instead of (9') we obtain the estimate
I1F| < 026 9”)

From now on we shall assume A(0) = A(t), R(0) = R(71).

3. ON THE WELL-POSED NATURE OF THE SCHEME

The well-posed nature of the scheme (1), by analogy with Section 2,
signifies that it is solvable and stable. We write (1) in the form

(B + 2tR)y = ®(y,¥,9),

where ¢ depends on ¢ and on thé already-known vectors y, 9. Hence it can
be seen that the scheme (1) is solvable, if an inverse operator
(B + 21R)-! exists. For this it is sufficient that

B + 2R > 0. (10)
Condition (10) is satisfied in particular when
B=0.
We shall say that scheme (1) is stable with respect to the initial

data and with respect to the right-hand part, or simply that it is
stable, if numbers 79 > 0 and Ny > 0 exist such that when T<Jv, and

N >N, ror the solution of problem (1) we have one of the estimates:
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o ¢+ Do, o <Mify (V) oo + M 3 max | @ () o 1), (11)
Ty & + a0 <My (O fao + My max (1) |, vy + My’ max @ () e,
o<t/ <t o<t'<ct
(12)
where || * 1(1) is a norm of the kind
Iyt + e =lg +0+yOIn+lyE+D—y@® i, (13)
l-llag W-llwys -l  are some norms over the linear system dy (depending,

generally speaking, on t), and My, My, 3’ are positive constants, in-
dependent of T and N.

If (11) or (12) are satisfied for any v and N, scheme (1) is called
absolutely stable (and it is assumed of course that scheme (1) belongs
to I8-3 for any T and V).

Let us now turn to the sufficient conditions for the stability of
scheme (1) from IS-3. For convenience the solution of problem (1) will

be represented in the form of the sum y = ¥ + ¥, where y is the solu-
tion of the problem

By + TRy +Ay=0, 0<i€o., yO) =y, y(@)=u, 1,

and y is the solution of an inhomogeneous equation with the homogeneous
initial conditions

By; +vRyz + Ay =9, 0<tco.,, y(0)=0, y(t)=0. (1p)

5. SUFFICIENT CONDITIONS FOR STABILITY.
A priori ESTIMATES

In deriving the a priori estimates we shall start from the identity
(7). We note first of all that

&>, g+ yli when B >1/,4, (14)
A 1 — B . ) ]
R R N R R PR AP (14
1—
> 9+ YR+ (9B 1Y) when B > 1520,
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where g9 > 0.

We shall use everywhere the norm

ly(t 4+ ) llg, 5= ||!;||(1)=]’($(t+r)), (15)
where & ({4 1) = & is determined by formula (8).
Theorem 3.1

Let the following conditions be satisfied:

B> —ord, (16)
1 »
R>2T"4, (17)

where gy = const. > 0, ¢; = const. > 0 is independent ~f T and N. Then
the scheme (1) from IS-3 is stable for sufficiently small < To(cy)
and for the solution of problem (1) estimate (12) holds, in which

| - Il (1) is defined by formula (15),

lo)le,n =7YA ) (#), 0) = lo@) ey or lele = e, (18)

My, M, and My’ depend only on c¢,, cg, tg, eg and T < 1/4 ¢,

Proof. We use condition (16). For this we need Lemma 1.9, in view of
which

(Bup, vg) > — et (4o, v;) > — 201 [(4v, v) + (49, §)).

A
Substituting here v = y + y we shall have

20(Byp. ¥p) =5 BU+¥r G+ > (19)
>—at[(A@+y), §+y)+ (A + ), y+ DI

Noting that

1 N 1 1
8> 71y + il + ety wen R>ZT%4,

(20)
and using estimate (9°), we obtain

2
IF1\<\C2<1+8—0)$- (21)
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We substitute (19) and (21) into (7):

—ard@+n g+ +d<(t+a(t+2))et (2)

+at(A(y+ ). v+ ) + 2v(e, y;)-
1. Stability with respect to the initial data. Let ¢ = 0. Using (20)
and formula (16) from Section 2, we shall have

1—4der) < 1+ (l+2/e)1)8 + ben(l+ce)@ < (14 1) &,
(23)

where c,’ = 2cq9(4 + 1/ey) + 4c,, while 4ciT < 1. From (23), by analogy
with paragraph 5 Section 2, we obtain

E(M+) S ME(T), 1<t T0<1/he, (24)
and M;’ depends on ¢, ¢y, g9, tg and T(. From (24) we have
Nyt + ) llg, o < Milly(x) g, o) (25)

2. Stability with respect to the right-hand part. Let y(0) = t(r) =0.
Then e(7) = 0, Using Lemma 21 when v = ? + v we estimate

2v (9, y3 )="1(9, (F + ¥)7) <T(P, § + ¥y + (26)
, . 1
+eaAy+9, v+ 9+ —@;(A‘IW, o7),

where e; > 0 is an arbitrary number. Since (Av, v) <<(1 + co1)(4v, v)
we have

—ev( 4@+ g+ +E<(1+a(1+ 1) <)é -
T+ e) (I at) (A (y+9), y + ) + e (A"w, LT (@, 4+ y);
Using (20) and assuming that 4(e, + ¢i)T < 2, we obtain
(1—4am) <A+ )&+ (@, 7+ v)— @, y+7) +—4~—~1(A“¢,, 97, (27)

where cy’' = c9(3 + 2/gg) + 4(e, *+ c¢;). This inequality is solved by
analogy with inequality (23). Repeating the reasoning of Section 2.5 we
obtain

&t + 1)< max [My(A2 ()@ (L), 9 () + My (A2 ()@ (2), @7 (2 )1 (28)

o<t <t



212 A.A. Samarskii

Here it is assumed that ¢(0) = ¢(1), so that ¢;(T) = 0. From (24) and
(28) we have (12) when T 7o, Tg < 1/4 ¢y,

Note 1. If instead of (16) B is non-negative:
B =0,

Theorem 3.1 holds for any v > 0. This can be seen if in (23) and (27) we
put ¢, = 0.

Note 2. From (15) it follows that scheme (1) is stable with respect
to the right-hand part in the norm

2 ,
ly (¢ + D) oy = By (¢ + Dllace + Ny () ooy (29)
Estimate (28) remains true if instead of & (t+ 1) we substitute (29).

Note 3. The solvability condition B + 2tR > 0 is satisfied when
<" ¢y, since B4+ 2tR > (1 + & — 2cit)14 /2.

Theorem 3.2

For scheme (1) from IS-3 let the conditions (17) and
B = dE, & = const > 0, (30)

be satisfied where E is a unit operator.

Then for the solution cf problem (1) we have the estimate (11), in
which |y (¢ + t)ll4, s is defined by the formulae (15) and (8), while

”w”a)== "w”;

the constants ¥ ; and M, depend only on c,, €4, 8 and t,.

1. Stability with respect to the initial data. In view of B=38EF we
have

208 y; P+ 8 <1 + e (1 + 2/20) 7) 8 + 2 (9, y3)- (31)

When ¢ = 0 it follows from here that

E(+) < (14 c2(142/e)7) & () < M1 (1),
(32)

ly (@ + )l o < Milly () g, o).
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2. Stability with respect to the right-hand part. We substitute the
estimate 2t(¢,y?) < ZTGHy?“Z—F (t/28) llgliz into (31):

o 2 T
B<(t+a(t+ 2)c)8+s510p (33)
We apply Lemma 2.3 to (32):

t

E(t+1)<Ms X vl ()] , (34)

=t

Combining the estimates (32) and (34), we obtain (11) with llpile ==
lloli. The theorem is thus proved.

6. SCHEMES WITH CONSTANT OPERATORS A and R

From the proof of Theorems 3.1 and 3.2 it can be seen that these
theorems remain true when

R =44,

if the operator R=R-Y%4is Lipschits-continuous with respect to t
(see (9")).

Let us now consider the case when A and R are constant operators.
Putting ¢y = 0 in (23), (27) and (33), we obtain

(I —4e1) E<< (1 +401)8, (23")
(1 —4er0) 8 <UL + 4o+ ) DE + (9§ +4)— (0. y ) + 5o (A T0)
27)
E<8 + golof, (33
where
E=19 +yly = Yo +yg + 2yl oy = (E—"Y:d)v,v),

while A and R are independent of t.
From these inequalities it can be seen, for example, that we have
Theorem 3.3

Let A and R be independent of t and
B > 07 R > 1/4A-
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Then for the solution of problem (la) the following estimate is valid
ly @t + o)l < Ny () . (35)

1f B>>8E, where § = conust. > 0, for the solution of problem (1) the
following inequality is satisfied

! "
Iy +Do<<|y®ly + 5 V(Zﬁ) [2 Tl )“2] . (36)

7. A priori ESTIMATES FOR THE WEIGHTED SCHEME

The following weighted schemes occur very often in practice

ys+ Ay @D =g(t), O<t€w, y0) =y, yk) =y,
where (

youo = gy + (1 —oy — o)y + 00y, A= A(t) >0.

Here o, and o, are real numbers on whose choice the stability and accu-
racy of the schemes depend.

Let us reduce scheme (37) to the canonical form (1). Using the
formulae

v

y—y+17y¢—y+ Yy + Yoty y=y—"hwy; + Yoty
we find
Yiou 9 = y 4 (0 — 03) vy + 0.5 (01 + 0a) VY- (38)
Substituting (38) into (37) we obtain

(E + (01— 02)TA) y; + 0.57% (01 + 02) Ay;; + Ay =9,
¥ (0) = yo, y(T) =1 (9)

A comparison of (39) with (1) gives
B =E+ (01 — a2)74, R = 05(0; + a3)A.
Since A > 0, therefore A-! exists. Applying A-1 to (39):

By; +vRy, +Ay=9, o=4", yO =y, y@=y. (40)

where
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B=A4"t + (0‘1 — Gg)TE, A= 0.5{01 + Uz}E, 2{ == [, 't’d)

The schemes (39) and (40) are obviously equivalent to scheme (37).
Scheme (39) (or (37)) belongs to IS-3, if A = A(t) is selfadjoint,
positive, and Lipschits-continuous with respect to ¢t and o + o4 > O.
Scheme (40) belongs to IS-3 if A = A(t) > 0, oy + 09 > 0, since the

operators A=FEand R=0. 5( 0, + 0y)E are constant and selfadjoint;
in this case the operator 4, and comsequently B = A-1 + (o3 ~ og)TE
are not selfadjoint. Depending on the properties of the operator 4 we
can use the general Theorems 3.1 and 3.2 for scheme (37) in the form
(40), or in the form (39) (see Section 2.7),

For the solvability of scheme (37) the inverse operator (B + 2tR)-! =
(E + 20ytA) -1 must exist. Since E = A [|All, therefore E 4 20yt4 =

(1/ 1Al + 201t)A > 0 when 01> —1/2t]A[[ and scheme (37) is solvable
when ¢; >>0. It is easy to note that

HE 4+ 201t4)~1l <1 when o1 =0, (42)
since E + 201A>>E when o; >0.
Theorem 3.4
Scheme (37) is stable and we have:

1) the a priori estimate (12) for any r > 0 and

1
11 =19+ e+ (20— Ve, ela=lol, ()

if the following conditions are satisfied

A(t) =4(t) >0, A (1) Lipschits-continuous (44)
with respect to ¢,
oy - 02 == 0.5, Oy = Og; (45)

2) the estimate (12) with ilyll(i)?determinable according to formula
(43), and llolley = liglla—*, if the conditions (44) - (45) are satisfied,
and oy + 02 == 0.5, 01 = 02 — 1 /1llAll — 41, oy = const = 0, 7 << 1o(cy)
is sufficiently small {7, = when c¢; = 0).

The first statement follows from Theorem 3.2, and the second from
Theorem 3.1, if we apply them to weighted schemes in the cgnonical
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form (39).

If the scheme (37) is symmetrical, i.e. oy = oy = o, for its stability
it is sufficient that o >%.

We show that a weighted scheme is stable in another norm without
assuming that the operator A(t) is selfadjoint and Lipschits-continuous
with respect to t.

Theorem 3.5

If A(t) > 0, when (45) holds scheme (37) is stable and the following
a priori estimate is valid:

1y +0)lg <y (Mg + max (Mo 472 (¢ ) @ ()] + M| (47 ()0 () D,
o<t (46)

where My > 0 and My" > O depend only on tg,
by e+ O, =190 = Valg +yP+ (252 —v) viwp. @)

In order to prove this we apply Theorem 3.1 to scheme (40) with the
constant operators A =FE and R = 0.5(0y + g9)E when ¢; = 0.

Theorem 3.6

If the conditions of Theorem 3.5 are satisfied we have for scheme
(37) the a priori estimate

t
1yt + D) <lylg, + V2 (01 + 02) 'Z‘J T )]

Scheme (37) is stable with respect to the initial data. For scheme
(40) the identity (7), when ¢ = 0, takes the form

?’f) =y ”?'1')' (49)

2v(By;, ;) +

9]
Since B = A1+ t(0y — 02)E = A~* > 0, therefore
1915 <lylg

and consequently

Iy () "('1') <ly (tl) "(T) when T <t <t (50)
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Let us now consider problem (40) when y(0) = 0, y(1) = 0. Its solu-
tion will be sought in the form of a sum

y()= ¥ (v, (51)

=1

where Y(t, t') as a function of t satisties the homogeneous equation
(37) and the initial conditions

Y('+71, V) +200A() Y (V' +1, V) =20(), Y, ¢) =0 (52)

Substituting (51) into (37) and using the equation for Y(t, t') and
condition (52), we ascertain that (51) is a solution of problem (37).
When t = 0 and t = T, as can be seen from (51) and (52), we obtain
y(0) = y(v) = 0. For the function w(t) = Y(t, t') according to (50), we
have the estimate

1Y@, )l <<IY (41, )y for fixed  ¥'<<IL. (53)

From (52) we find Y (¢ 4, t') = 2(E + 20174)~@(#'). Since oy > 0,
therefore according to (42), we have

1Y+, )1 < 2lo()l. (54)
In view of the initial condition Y(t’, t') = 0 and
Y (¢ 5 Oy = e Y (v 0+
e A (RS .} JUER ROT
17+ 7 Ol = Y 05+ o] ¥ (¢ + %, )], (55)

Substituting (55) and (54) into the right-hand part of the inequality

I—= t—t

ly @Ol < 2 Y 8 1) g, < 2 Y (¢ + 7, 1)y,

t'=t t'=1

we obtain an estimate for the solution of problem (37) when y(0) =
y(1) =0:

ly(t+ Vg < V(o1 +02) X t]o ()] (56)

t’'=<

Combining (50) and (56), we arrive at (48). The theorem is proved.
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Theorem 3.7
If A(t) = A*(t) > 0 and

a>o— iy, ata>th  eSOl] 7)

then for the scheme (37) the following a priori estimate is valid:

9 (¢ + Dl <ly @)l + V(2>[Z LTG0V SN

It is of course sufficient to prove this theorem when y(0) = y(7) = 0.
We write for scheme (40) the identity

2eByp. 1) +10 s = 1ol + 2@, vt hwhered = 4. (59)

Substituting here the estimate (80) from Section 2 for 2v(A-lg, y;) and
assuming that B = A-1 4 (01 — 02)TE = eA~t whenoi == 02 — (1 —¢) /1llAll

we obtain
A T -
191 <1yl + 55 (470, @).
Hence (58) follows.

Thus if A(t) is selfadjoint and Lipschits-continuous with respect to
t, we have for scheme (37) the a priori estimates with respect to the
norm (43). If, however, A(t) is an arbitrary positive operator, the
estimates are valid with respect to the norm (47). Then the requirement
that A(t) be selfadjoint (with Lipschits-continuity for t) enables us
to obtain the estimate for ”yHGS through (l¢lla—, while l|yllgy is esti-

mated, according to Theorem 3.1, through[l@lle— and [l@5ll..
Theorem 3.8

Let A > 0 be a constant operator and oy >>09, o} + 09 Z%. Then for
the scheme (37) we have the estimate (12), where
c o
Myt + 0, = (ot

= Yul A5 + ) + — ) @ Ay P, (50)

ilplle = llgll, and My = 1, M, > 0 lepend only on to-
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Scalar multiplying (39) by 2vAy; and reasoning in the same way as in
paragraph 4 of the present section, we obtain the identity

sv(Ayp, ue)+2(on—o) [ Ayp P+ 13y = [y’ + 27 (9, Ays). (61)

When o = O we have immediately Il ¥ ln << Il ¥ llo). Substituting the esti-
mate

. . ] T
20(9, Ayp) =21(9, 4@+ y)<T(0, 4G + 9 +elylp, + o locl
into (61), we have

. . . 1
1oy <A +e)lyl, + (@ A@+9)— (@ Ay + ) +vle P
(62)
Hence, by analogy with paragraph 5 of this section, we obtain the
required estimate, if we take into account that

He, 4@+ ISTell 4@ +p<2ol

Io <Mld k) + 21l

The fact that the operator A is selfadjoint is not utilized. The
theorem remains true for 4 = A(t) if |4yl << cﬂLin. If A* = A> 0,
we have estimate (11), where ol = loll.

8. A priori ESTIMATES FOR A THREE-LAYER SCHEME
OF THE SECOND TYPE

Let us now consider a three-layer scheme in the second canonicasl form

Y + Ry, + By, +Ay=9, O0<t=o.,, y0) =y, ¥(T)=mn.

The energy identity (7) in this case takes the form o
2v(Byp, yp) H191 =1y > + vF + 2¢(9, vy, (64)

where F has the form (8), and
192 = *allg -+ yha? + (R — ud) g, y2) + lyall® (65)

Hence it can be seen that liyil.2 == Yully + ylla + lly.li2 when R > 1/,4.

Theorem 3.9
Let the conditions B==0, R* = R > 0, A* = A > 0 be satisfied, and
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let A and R be constant operators and R > % A. Then for the scheme (63)
we have the a priori estimate .

Iy + L <ly@L+eVeo[ I le@)P] (66)

t'=1

Proof. Since A and R are independent of t, we have F = 0. When ¢ = 0

identity (64) takes the form |yll.2 < llyll.2 i.e. for problem (63) when,
¢ = 0 we have the estimate

Ny -+l < lly@) 1. (67)

Let y(0) = y(1) = 0 and consequently {y(t)ll. = 0. We transform
(o, yp) =70, y, +y)<ve(yl+ I%NzH— o<

<re (gl ify{2)+ 55 Clol.

Substituting this estimate into ||ylls® << Jyll.2+ 2v(p, ys ), we obtain

(A —w)lyl2 <A+ ) |yld + o Tl 0P

Choosing & = % t, we arrive at the estimate
t

lyt+0E<eto 2 vlo ) (68)

t'=v

Combining (67) and (68), we arrive at the inequality (66).

Using the techniques developed earlier it is easy to obtain an
analogous estimate for the case of variable operators A(t) and R{t). We
remark that for the scheme (60) Theorems 3.1 and 3.2 are valid.

Translated by G.R. Kiss
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