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IN [ll where the regularization method has been discussed, we made use 
of theorems on the sufficient stability conditions, and on the a priori 

estimates for two-layer and three-layer schemes. In the present paper we 
shall give the proofs of these theorems. 

Let {HN} be a sequence of real unitary spaces, {y,~,~(t)) a sequence 
of abstract functions ?/~,*(t) of a discrete argument t E & with values 
in HN, where & = {tj = iT, i = 0, 1, . . . , .io) is a mesh over the inter- 
val 0 <t < to with a step T. We shall consider linear two-point (three-’ 
point) operator equations, connecting the points Y~,~( t + T) and ,yNIT(t) 

(the points )$l,T (t + ~1, ,yN,T(t), .yN,T(t - 1)) of the space iiN. It is 
natural to call these equations two-layer (three-layer) operator-differ- 
ence schemes. 

The starting point for these investigations is the canonical form of 
describing schemes. We shall consider a set of two-layer schemes 

B(t) 
Y(t+q-Y(t) 

+A(qYw=w. 0 < t = tj < to, 
r 

and a set of three-layer schemes 

B(q Y(t+z)--(t--t) 
22 +w (y(t+t)-- 2y(t)+y(t---I)+ 

+A(t)Y(t)= cp(t)J Y(O) = Yo, Y(T) = Yl. Yo, Yl E HAT. 

(0.1) 

(0.2) 

* Zh. uychisl. Mat. mat. Fiz. 7. 5, 1096 - 1133, 1967. 
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Here y(t) = y,y,r(t) is t_he required function t E &; cpN,_Jt) is a given 
abstract function t E oT with values in RN; .ye and .yl are given vectors 
from RN; A(t) = AN,v(t), B(t) = RN,v(t), R(t) = RN,v(t) are linear 
(additive and homogeneous) operators, mapping RN into 1%. 

By introducing some very general assumptions as to the operators of 
the scheme (for example, that B and A are positive, that A is self- 
adjoint for (O.l)), we shall separate out from the set all possible 
schemes of an initial family of two-layer schemes (IS-2) and three-layer 
schemes (IS-3). 

Following [2, 31 the stability of the schemes will be defined as the 
property of equal-degree continuity with respect to N, T of {ye (t)) 
with respect to the input data &pN,T(t)), (~N,~(O)) and {.~N,~(T) ‘T . 

The problem is formulated as follows: sufficient in format ion is to .be 
revealed with respect to the operators of this scheme to make the scheme 
stable. 

The necessary and sufficient stability conditions of two-layer schemes 
(Section 2) and the sufficient stability conditions of three-layer 
schemes (Section 3) are found. These conditions isolate classes of stable 
schemes. The sufficient stability conditions have a simple form, for 
example 

(BY, Y) N > 0.5v(A!/, Y) N for (0.11, 

(fly, y)N > 0.25(&, y)N for (0.2)~ 

where (, )N is a scalar product in HN. 

(0.3) 

(0.4) 

In studying the stability of actual difference schemes, approximating 
equations of mathematical physics, it is necessary to reduce the scheme 
to the canonical form (0.1) or (0.21, to introduce the space of mesh 
functions HN, to ascertain whether the scheme belongs to IS-2 or IS-3, 
and finally to verify that the sufficiency conditions (0.3) or (0.4) are 
satisfied. 

The method used here to derive the a priori estimates is based on 
some elementary theorems of functional analysis and on energy inequal- 
ities. It is a natural development of the energy method of obtaining 
a priori estimates, used by many authors in studying the stability of 
specific difference schemes for differential equations of mathematical 
physics, and also for the difference analogues of these equations. 
Examples of this are, for example, the papers [4 - 231 and others 
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(these papers contain references to other work). 

Space does not permit a survey of this work, We shall make only one 
remark. The general tendency in the development of a priori estimates is 
to try to obtain a solution of the difference problem with the strongest 
possible norm through a right-hand part which has the weakest possible 
norm. This is important for investigating the rate of convergence of 
schemes for equations with discontinuous coefficients, over non-uniform 
meshes, etc. 

AS an example we mention the paper bl where, for an implicit scheme 
approximating a Sobolev type equation, the author has obtained an esti- 
mate of the solution y in a mesh norm W, 1 through 11 TJ 11 L,, at first re- 

presenting the right-hand part in a divergent form CJJ = divh n, where 
divh is the difference analogue of the operator div. This norm, as 
follows from Section 1, is identical with the norm 11 o Ila-1=4(A-1p, cp) 

in the energy space flA_1 in the case of a conservative or divergent 

operator A = ‘I’*23 when S = E (see [lo]). The estimates II Y [Iw,l through 

11 TJ l]L2 have been obtained for the difference elliptic problem in 19 - 

101, the estimates 11 N 11 g2i and /I Y /c through 11 rl 11~~ have been ob- 

tained in [181, and the estimates 11 Y l/c through 1l.q II L, in E24l (for 

the one dimensional problem). In [Ml for weighted schemes, being differ- 
ence analogues of parabolic and hyperbolic types of equations, estimates 
have been obtained containing a right-hand part in a norm of the kind 
II A% II + II A% II, etc. The simplest a priori estimates for the Rote 
scheme, approximating the abstract Caucby problem, are given in 1251. 

Some a priori estimates for operator-difference schemes in a Hilbert 
space are given in [3, 261. 

The basic results of this paper are given in Sections 2 and 3; Section 
1 contains auxiliary material used in Sections 2 and 3, and also some 
a priori estimates for operator equations of the I kind AN = 9. 

1. Introduction 

Before turning to the theory concerning the stability of evolutionary 
(two-18yer and three-layer) schemes we shall outline the necessary 
mathematical apparatus and demonstrate the applicability of the energy 
method *for obtaining the a priori estimates, using the example of 
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equations of the I kind Ay = qt. where A is a 
a real unitary space. The a priori estimates 
3 are of independent interest for the theory 

linear operator defined in 
obtained in Sections 2 and 
of difference approximations 

to the boundary problems for elliptical equations. 

1. SOME INEQUALITIES AND IDENTITIES 

Let 11~ be a real unity space with a scalar product (, )N and norm 

/I x lilv = 4 (x, x)#. A, a linear (h~ogeneous and additive) operator, de- 

fined over HN, where Ntakes integer positive values. In the general 

case N = (N,, A$, . . ., N,) is a composite index, i.e. the set of integers 

NI, 4’2, . . . > n&r N, > 

all N, + co, s = 1, 2, 

(ilN) and of operators 
will be omitted. 

D where m is finite. The condition N -( co means that 

..,, m. We shall consider the sequence of spaces 

&$, Whenever N is arbitrary, the subscript N 

We shall need some elementary inequalities (x and y are arbitrary 
vectors from M [27 - 291: 

1) the triangular inequality 

Ifr f yll <‘!I~11 + MI; 

2) the Cauchy inequality 

(I! 

1 (2, y) 1 < Ml Ml; 

3) the generalized Cauchy inequality 

or 

1 (At, Y) I < II x !lc II Y IL, II 5 II, = 1 (Ax, xf , (3’1 

where A is an arbitrary non-negative ((Ax, x) > n or A 2 0,) 1 selfadjoint 
operator; 

4) the inequality 

(4) 



Classes af stable schenres 

where ho, u, are arbitrary non-negative numbers; 

5) the s-inequality 

where a, b, f > 0 are arbitrary numbers. 

In addition, we shall u&e the following properties 
(see [27 - 291). 

of linear operators 

Let x and Y be linear normed spaces with the norms 
respectively, and let A be a linear operator from X into Y. In order that 
the inverse operator A-1 should exist and be linear (as the operator 
from Y into X), it is necessary and sufficient that a constant 6 > 0 
should exist such that for all x E X 

IId a 

Here the following estimate is valid 

iW-ili < 

For the Proof of this theorem see [27 

All subsequent lemmas and theorems 
real unitary space Ii. 

sl141. 

- 291. 

175 

refer to linear operators A in a 

We shall use the same notation as in [ll (x, .Y are arbitrary elements 

from N, 6 and c* are positive numbers): 

A is non-negative, A>O, if (Ax, x>> 0; 

A is positive. A > 0, if (Ax, n) > 0 for all x f 0; 
A is positive definite, A&X, if (Ax, X) >s/] x 11’; 

d is semibound from below, A >-c&, if (Ax, x)2 -c* II x II 2; 
A is selfadjoint, A* = A, if (Ax, y) = (x, Ay). 

Here E is a unit operator. 

Let us formulate a number of elementary lemmas. For the sake of com- 
pleteness we shall also give their proofs. 

If A is a positive definite operstor 
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A 3% (8) 

the following inequalities are valid 

IAsll” > d (klz, z) ( 

lM4l a Slbll, 

:!lA-‘II 4 1 / 6., 

From (2) and (8) it follows that: (AZ, 5) < llAr!/llril <’ 

IIAsll(ll~G)~(~~,~). After cancelling out by d(Ax, x) we obtain (9). 
The inequality (10) follows from (9) and (8):IIk#.> o(k, x) 2 6211412~ 
the inequality (11) follolnls from (10) and (‘7). 

Thus, the positive definite nature of the operator A is sufficient 
for the boundedness of the inverse operator A-‘. 

Lemma 1.2 

If A > 0 and the condition 

II As II2 < A(ds, .r), A > 0, ror all 2 G H, (12) 

is satisfied, the inverse operator A-’ is positive definite 

Indeed, since A > 0. therefore A-l > 0. Putting z = A.y, y = A-% and 

using the condition (12). we obtain ]lr112 = ll&ili < ‘A(&, Y) = 
1\(A”r x), i.e. A-‘>(l/A)E. Hence in view of Lemma l-1 it follows 
that ih-i41 2 (1 /A) lbll. c omparing with (7). we find 11 A 11 <A. Condi- 

tion (12) indicates the boundedness of A. 

Lemma 1.3 

IP A* = A is a linear bounded and non-negative operator, 

llAzl12 Q IIAII (A& XI - 
The proof of this lemma is given in [331. 

(14) 
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lenma 1.4 

Let A* = A, A > 0. Then for any N aud cp from Ef ‘* ” ** * ’ * izne xollowing inequal- 
ities are satisfied 

(45) 

where E > 0 is any number, and 

Ilyila = W% Yl, Ilq&P = r’(A-:rp, 9) * 

Indeed, (Y, cp> = (A-lcp, A-y) = (AN, A- ‘cpj . We apply inequality (3 ‘) : 
I (Y,TCP) I = (~~,A-‘qp) < Il~ll~llA+~lI~ = !iyllatl~lla-~, since ll~-l(p11,2 = 

(A-‘9, 0). Inequality (16) follows from (15) and (5). 

Lemma 1.5 

If A is an arbitrary linear operator, for sny V, u E H the following 
identity is valid 

(A 12, u) + (AU, IE) ='/z(Af~+~j, c+@) +'/z(A(u - ~1, u--u). 117) 

Indeed, (A(v t u), v t U) t (A(v - u), v - ~1 = [(Av, v) ’ (Av* U) ’ 
(Au, v) t (Au, u,] t [(Av, VI - (Au, u) - (Au, ~1 + (Au, 41 =~[(AK u)+ 

(Au, 41. 

Remark 1. If A = A* > 0, (17) can be written in the form 

(W 

If A* = A 

(Au, u) = w4~+4, UfU) -“/1(A(u-u), u-u), u, ,rJE:N* (19) 

The lemma is proved by analogy with Lemma 1.5, if it is noted that 
(Au, u) = (Au, 4. 

Lemmu 1.7 

If A* = A 
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WV + u), u - u) = (A(u - u), u + u) = (Au, u) - (Au, u). (20) 

Lemma 1.8 

If A* = A, 

(Aiu -u), VI = i/2[(Av, v) - (Au, u)] + V2(A(u - u), u - u). (20 

To prove (20) and (21) it is sufficient to write down the expression 
for (A(v t 4, v - u) and, respectively, for (A(v - u), v - u) and to 
take into account that (Au, v) = (Av, u). 

L.??mfna I-9 

For any linear non-negative operator (A 20) and any u, u E ii 

t-+-u), u -u) G 2[W, u) + (Au, 41. (22) 

Indeed, in view of Lemma 1.5 we have (A(v - 14, v - u) = 2 [(Av, v) + 

(Au, u,] - (A(u + 4. v + u)QkA v, v) + (Au, u)l since (Ax, x) 30 
for any x = v - u. 

Rernurk 2. If A* = A ‘, 0, (22) can be written in the form 

II v - u IIn? G 2 [II v II,2 + II u IIrr21. (23) 

2. A priori ESTIMATES FOR THE EQUATION Ay = 9 

Let us consider a sequence of equations of the I kind 

ANYN = (PN, TN = HN, 

where A, is a linear operator, mapping UN into HP 

(W 

The problem (24) is well-posed [271, if for any N>Nc: (1) its 
solution exists for all 9~ E HN, (2) there is such a positive number M 
independent of N that 

ibNhi,, < Mii~Nll~2N ), 

where 1-I * Ii and11 * II are some norms for the set r!,v. 

(25) 

In what follows we shall consider unitary real spaces HN (generally 
speaking of infinite dimensions) with the scalar product (,)A! and norm 

11 x 1 IN = J (x, X)N. If AN* = AN > 0 it is possible to introduce over the 
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set HE a scalar product (Ap, y)~ and a norm 11 x /I,, = J(AHz, X)N, i.e. 

to consider the energy space I&,. In order not to complicate the 

terminology, we shall say that over i$,~ we introduce the norm 

II - ll~fN~, II + ll(2Nj etc. for example ll~ll?N) = IlSll N ., ll~ll~2N) = Ilsll~-,l etc. 

Below we shall prove a n~ber of simple theorems about the stability 
of equation (24). It is assumed that all constants occurring in the 
u priori estimates are independent of N. The index N will now always be 
omitted and instead of (24) and (25) we shall write 

Theorem 1.1 

If m 

A=xA, Aa’=Aa>O, a=l,...,m, 

then to solve equation (26) the following estimate is valid 

where ‘pee are arbitrary vectors from IJ. satisfying the normalization con- 
dition ‘pl + . . . + q’a t . . . t Qa = Q, 

Multiplying (26) in a scalar fashion by .Y, we obtain the basic 
identity 

&A Y) = (~7 Y)* (30) 

Substituting here a, = Q~ f . . . t Q~ and using the estimate j (cp,. yf f < 

IIY& IiQaiI%- 1 (Lemma 1.4) and then the inequality (41, we obtain 

(28). We note that from (30) and Lemma 1.4 the estimate II N lla% II Q /la-l 
immediately follows. 

Theorem 1.2 

Suppose we are given the operators A and Ao* = A0 > 0. If the in- 
equality 
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(-4, Y) > ci(doy, y) = c~~~Y~~a~,whereCi > 6 (31) 

is satisfied, to solve equation (26) the following estimate is valid 

lblla~ G -J Il~lltQ. (32) 

Indeed from the identities (30), (31) and (15) it follows that 

clll’Ylkp~ll~‘Plk-~IIYRa,~ 1.e. cl~YIEcp~~(p~lao-~~ 

Theorenl 1.3 

ktA=Ao +Al, whereAe*=Ao>Oand 

I(d,w)1 sy(dov), (ky< 1, z=H. (33) 

Then for the solution of equation G?6) the following estimate is .valid 

Proof. From the identity (Aey, y) = (0, .y) - (Aly, y), Lemma 1.5 and 

(33) follows ~Y~a~~~~-l~Y~~~~Y~~ or @--Y)lY&f MS*-1. 

Theorem 1.4 

Let A = A, + A,, where Ae* = A, > 

ll.&gii < yildo~ll, 0 

Then for (26) we have the estimate 

ti and 

c:y< 1, y EH> (35) 

We multiply (26) in a 

or ll&vi12 = (cp, &d - 
find ‘IAoYI!~ G Ii(p.li IMovil 
(36). 

lModl sq$ iidi. (36) 

scalar fashion by Aq: fAOy + A1y, AOy) = bp,AOy ) 

(diy, day). Taking into account (2) and (351, we 

f yi!Ao~ll’. Cancelling out by 11 AON 11, we obtain 

Remc6rk. From Theorem 1.3 and 1.4 follow a priori estimates in the 
mesh norms W,’ and W’, 2 for the solution of the first difference boundary 
problem.for schemes of an increased order of accuracy, approximating the 
Poisson equation in a p-dimensional parallelepipsd (p < 4). These 
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been obtained in [30, 231. In the given case y = (p- 1)/3, 
number of measurements. 

3. CONSERVATIVE OPERATORS 

Let H and H, be two real unitary spaces with the scalar product (, ) 
and (,I respectively. Consider the linear operators T, S, T”, where T 
maps H into N1, S maps 11, into HI, T* maps H1 into H. The operators T 
and T* are mutual conjugates, so that 

(0. 4 = (Y? TV for any Y c-z H, v E H,. (37) 

Operators of the kind 

A = T’ST, (38) 

given over H will be called conservative (divergent) [31. The operator 

A is selfadjoint, (Ay, z) = (y, At) if the operator S is selfadjoint 

(Sv, W] = (v, SW], v, WEHi. 

Indeed, (AN, z) = (T*STy, z) = (y, T*S*Tz), .y, z s ii. From the 

identity 

(&, Y) = WY, Td (38) 

it can be seen that A is positive definite if 

(SV, U] 2 cl II ~]1~, where! “]I” = (v, 4, v EH,, ci > 0; (46) 

II TY ] \ > ~2 II Y II, c2 > 0. (41) 
Theorem 1.5 

If S 2 c1E and there is an inverse operator (T*)-’ then for the solu- 
tion of equation (26) with the operator (38) the following estimate is 
valid: 

(43 

This theorem follows from Theorem 1.2, if we remember that 

A > c,Ao. where.Ao = T’T, Ao* = Ao, (43) 

and consequently 

IIY ll,a = iT*Ty, Y) = II Ql12, i. e I!Y II,,= II Qll: 
II cp I$ = (-403. cpl= P1 (T’P% cp) = II (T’)lfPl!s. 1. e II T ll,_1 = II (~‘PPII. 

0 
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Let us consider the case of a “multidimensional” conservative oper- 
ator 

which is the analogue of the elliptical difference operator in the space 
p of measurements. If Sa = &_,.$aa, the operator 

can be interpreted as the analogue Of the Operator diVh(k gradh) not 
containing mixed products. Let Ho (a = 1, 2, . . . . p) be a space with the 
scalar product (, I, and norm ilulL = ~‘(0, z&, and T,, LB, Ta* be linear 

operators while Ta operates from H into Ha, Sap operates from Hp into 
Ha and To* operates from Ha into II and the following conditions are 
satisfied: 

condition (40) is replaced by the conditi~ of positive definiteness 
of the matrix operator S = (S&: 

$ K&‘~,la>Cl &A~ for any v,z E H,. ,(46) 
a, 891 a=1 

Theor-em 1.6 

If condition (46) is satisfied and there exist inverse operators 
(Ta’)-l, a = 1, 2, . . ., p, then for the solution of equation 

P 

the following a priori estimate is valid: 

where ‘pc are arbitrary vectors from H, satisfying the normalization con- 
dition 

The theorem follows from Theorem 1.2, if the proof of Theorem 1.1 is 
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taken into account and we take 

&= &,, A, = T; T,, A,*= A,_ (4% 
aa1 

Indeed, condition (46) when V, = T,y gives 

(.3Y, Y)= 5 ( Ta’SapTBy, y) zz $j (~$‘~y, Tllyl, > ‘3 5 11 T,yl~aa = cl tAoy* y-) 
a, f3=1 a, ,a=1 

On the other hand, we have 

(cpl Y) = (‘+A Y), 

a=1 

where 

II ‘P, IQ= II G”,*PP,II,~ Ilyll,, = II Tayll,. 

Then using inequality (41, we obtain 

0% Y)d iilcp IV- [ a=l OL aJ* [ &Y’q’~ 

Hence and from the inequality 

+A (AoY, Y) = CI 5 II T,YII a2 d (AY, Y) = (cp, y) 
a=1 

the estimate (48) follows. 

Remark 1. Theorems 1.5 - 1.6 are proved without assuming 
adjoint nature of operator A. 

the self- 

2. From Theorems 1.5 - 1.6 follow the a priori estimates in the norm 
Wzl for the difference analogues of the elliptic equations and sets of 
equations. 

3. The analogue of Theorem 1.5 and l-6 for selfadjoint elliptic equa- 
tions have been obtained in [9, 10, 181. 

4. Theorems 1.5 and 1.6 make it possible to estimate the rate of con- 
vergence in the norm wzl of difference schemes over non-uniform meshes 
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for elliptic equations and sets of equations 

In order to use Theorems 1.1 - 1.6 
it is at first necessary to introduce 
functions (depending on the structure 
of the operator A in these spaces. 

in the theory of difference schemes 
the corresponding spaces of mesh 
of A) and to study the properties 

2. Classes of stable two-layer schemes 

I. TWO -LAYER SCHEMES 

Let (~33~~) and {&N} be sequences of normed linear spaces, & = 

{tj =.iT, .i = O, 1, os,s* .io) a mesh over the inte’rval 0 <t <to with 

the step T = to /ja; A N = AN,r(t), BN = BN,%(t) etc. linear (additive 

and homogeneous) operators mapping $‘&N into .BSrN; y~,~(t) an abstract 

function of the discrete argument t G 07 with values in %@ and 

q~,~‘(t) a function of t E oT with values in BP. 

A two-layer scheme is a linear operator equation relating two points 
.)‘N,+ + T) and N,,+) Of the Space .siN: 

B(t)y(t +r) = WY(~) + w(t), t= Qh, Y(0) = YoE SIN, (1) 
where q(t) is a given function, oT = {tj, O&j < .jo). 

The dependence of the functions y and 9 and also of the operators on 
-r and N will not be indicated, separating out only the dependence on t. 

We shall agree to relate the operator to the “lower l&veP t = tj, which 
is convenient to describe the scheme in an index free form. 

Any two-layer scheme can be described in the canonical form 

w Y(t+z)---(t) 
z 

+4t)Y(q=cp(t). 

Below we shall use the notation 
t = $9 t + z = tj+1, t - r = tj-1, Y - Y(4) = Y’, 

g = Y(t,.+J = Yi+l, 4j = Yj-1, Y&XL Y (t + r) - y.(t) 
z 7 , 

(& =Y_a= Y(t)-Y(t----z) 
r lr 3 

,.=9--& 
t -=+YtfY& 22 
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A=A(t-T), A,= A+. 

It is easily noted that I& = & #t= it. 

Equation (2) can also be written in the form 

Bj’ ’ yi’~w ‘I+ Ajyi = cpj. (2’) 

Using the notation introduced above instead of (2) and (28) we write 

BYt-i-AY=s t = 0% Y (0) = Yo. (3) 

A definition of the well-posed nature of the scheme (3) is given in 
[l]. We shall di scuss in more detail the concept of stability. The de- 
finition of stability does not relate to the actual scheme (3) with 
fixed i?, T, but to a family of schemes corresponding to all possible 
values of iV and T. Thus, we consider a sequence of solutions {yN,T(t)) 

of problem (31, corres~nding to the input data {~~,~(t)~d ~y~,~(O)}. 
The stability of the scheme (3) signifies that it is equally continuous 
(with respect to N aud T) as far as the solution of equation (3) is con- 
cerned relative to the right-hand part and the initial data. 

Let 11 .!l(iN) and 11 -IipNj be the norms in BIN and BzN. Usually $jiN 

and 32” consist of the same vectors (mesh functions) and they differ 

only in their norms. The norms may be functions of t, so that 

II * Ii(f) = II - iltf, t), II f llf2) = II * 11~2, 0. and so on (the subscript N is omitted}. 

The scheme (3) is called stable E2, 11, if there are numbers IV;, > 0, 
TO > 0, and numbers 14, > 0, M2 > 0, @ 2) 20, independent of r and N, so 
that when ‘P <SO and NaNe the following inequality is satisfied for 
the solution of equation (3): 

Here we do not attempt to give a completely general definition of sta- 
bility, but only a definition which is to be used in this paper. 

Examples of norms, which are functions of t, are supplied by the 
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energy norms related to the operators of the scheme (3) (see point 4): 

Ily(~+~)ll(l,t,= IIY(t+T)Ila(t)=)l(A.(t)Y(.t+~), Y(t+w, 

ily(t + T) 110, t) = Ily(t + t)Ilb(t), 

or 

ilY’+‘ll~j=ll??llU= V(A$lv 5)~ II Yj+‘Ibj = II 9 lb = VtB8,O). 

As to the dependence of II -II(t) on t, sometimes we shall not indicate 

this, but shall write instead of n@‘li, simply IIyi+$ = Iii/la, unless 

this can be misunderstood. 

It is convenient to study the problem of stability with respect to 
the initial data and with respect to the right-hand part separately, i.e. 
to consider the problem 

Byt+&=O, t E WT, Y(O) = YO, (3rd 

Byt+Ay=cp, t E a, y(0) = 0. (3bJ 

The solution of problem (3) will be represented in the form of a sum 
,y = .i; t 7 where ,y is the solution of problem (3a), and :Y is the solution 
of problem (3b). In view of the triangular inequality 

IlYllCi, G Ily”ll(l, --I- 11511(1,. (5) 

Therefore from the stability of the problems (3s) and (3b) follows 
the stability of (3). The scheme (3) is stable with respect to the 
initial data if the following estimate is valid for the solution of 
problem (3s) 

iiY(i + 4 Illi, t) G’~+fiIly(O) 11~1, a); (6) 

and it is stable with respect to the right-hand part if the following 
estimate is valid for (3b) 

11Y (t + r) Rl. t) e M 2 O~tazt II ‘P (0 lkz, t’) + Ma’ o~;2, II ‘pr (1’) Ika, us (7) 

If scheme (3) is stable with respect to the initial data over any 

interval [t’ = j’T, t + ‘t = (j + l)~], i.e. 

lly(t + T) II& t) G Jfillg(q hi, t’), t 2 .f z 0, (8) 

it is stable with respect to the right-hand part [31; so that for the 
solution of problem (3b) the following estimate holds: 
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ll y (t + T) I$*, f) 4 Ml i: dcp (i’) 42, t3 

v=o 

with the condition that the norms II*II (2) and 11 e II(i) are coordinated as 
follows: 

G-P(t) Il(2, t) = w-*(~);cp(q II@, 1). 0% 

The proof of this theorem will be given by the method of superposition 
(by the Duhamel method). Let Y( t, t ‘1 = Yjaj’be the solution of the 
problem 

Yft,t')]+A(t)Y(t,t')= 0 wi,ent’<t; (11) 

i.e. Y(t’ + 1, t’) = B-‘(t ‘)cp(t ‘1. Then the solution of problem (3b) can 
be represented in the form 

t--r 

This can be seen if we substitute (13) into (3) and take intO aCCOUd 

(11) and (12). In view of condition (8) we have 

I!Y(1 + 2, t’) Ila, t) < MiIIY(f + 7, t’) iI& f’) = Jfiw-‘(Q?J(f) lh, t’) = 
= Mlcp 0’) ih t7. 

Using the tri~gular inequality, we obtain 

wt + 4 lh, 0 G i IIW +x, t’) II& t) < Jfi i: zllq(f) ll(2, v). 
t’=O f’=O 

The coordination condition of the norms (10) limits the field of 
applicability of this theorem, since for the theory of difference schemes 
it is important to estimate .y with the strongest possible norm through a 
right-hand part in the weakest possible norm. 

The fundamental problem of the theory is to formulate the sufficiency 
conditions for the stability of difference schemes. 

rf B-l exists, from (1) it follows that 

; = B-‘Cy -+ ztl-‘cp. 
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Hence it can be seen that scheme (3) is stable if there exists B-l 
and 

IIB-‘Cl1 < 1 + ccc, (14) 

where cl = con&. > 0 is independent of 7 and N. Here the estimates (8) 
and (9) are valid. 

Condition (14) signifies that .B-% is uniformly bounded with respect 
to the norm by the number 1 + CUT, with respect to 8, T. In general B 
and C (B and A) are unbounded, or non-un~fo~ly bounded operators with 
respect to #, f. What properties are to be possessed by the operators B 
and C for this condition to be satisfied? \n answer to this question can 
be obtained in a testable form by considering the scheme (3) in a real 
unitary space II. 

2. THE INITIAL FAMILY OF SCHEMES 

Let ii, be a linear real system, AN = A~,~(tl, B# = B~,~(tl, Cg = 
C~,~(t) etc., be linear operators, mappi~ l?j+~ into 11~ for each t E Q+ 
Over the linear system HN we shall introduce a scalar product and a norm 
(the subscript N will be omitted): 

(Y, u) andll!/ll = 7%~ Y), 
(g, u)a(t) = (A(~)!A ubdllY(t + ~.)Ilo(t) = 1’(& + r), Y(t + ‘dh(t,, 

(Y, u)a(t)= (B(t)& +khdtIY@+~)Ilb(t) = li(Y@t-+, &+T))b(t) etti.8 , 

where A(t), B(t) are selfadjoint positive operators. To estimate the 

right-hand part p(t) we shall use the norms l~~(~}ll~2) - l~~(~)ll, 

IIT (G l(2) = ~~~-~(~)~(~) II, !IqJ(i) tt(n) = ll~(~)~~~-ltf) = fl(A-*(l)rp(t),~(1?)etc. 

We shall consider the same initial family of two-layer schemes (IS-21 
as in cl], assuming that the following conditions are satisfied: 

1) A = A(t) is selfadjoint, positive and Lipschts-continuous with 
respect to t: 

A’(f) = A.(i) > 0, (15) 

w, Y, 01 I =G 02(&f, Y) or (Ay, gt G (1-t w)bb, Y), A=A&--+, 
(36) 

cr = const. > 6 is independent of v and N, 
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2) B = B(t) is positive B(t) > 0. 

We note that the operator B(t) does not have to be selfadjoint. The 

condition B(t) > 0 is ensured by the solvability of the scheme (3), 
since when B > 0 the inverse operator B-’ exists. 

3. ENERGY IDENTITIES AND INEQUALITIES 

Using the obvious identity 

Y=5(8+Y)--((B-Y)=$(k+Y)--;.Yt, (17) 

we rewrite equation (3) in the form 

(B -- 0.5d)y, + 0.5A cy + y) = cp. (W 

Scalar multiplying (18) by 2~2~~ = “z(y - y) : 

2z( (B - 0.5TA)Yb Yt) + (A (i+ Y), i - Y) = 2+, Yt). (19) 

Since A is a selfadjoint operator, therefore in view of Lemma 1.7, 

(A (B + $4, B - Y) = (4, B)- (Ay, y). 

After substituting this expression into (9) we obtain the basic energy 

identity for the two-layer scheme: 

27(@ - 0.5-cA)~,, it) + (hi y^) = 64~1, Y) + 2~((p, yt). (20) 

Taking into account that _4 = 2 + (11 - A-) = A + WIT, we rewrite 

(20) in the form 

2-c ((B - Oy5r-4) it, YJ + b = 8’ + z (A,y, Y) + 22 (cp, yt), (211 

where 

@= a(t + z) = (-49, #), 8=3(t) = (2% y), (22) 

his the “energy” of the operator A. Using condition (16), we obtain 
the energy inequality 

22 ( (B - 0.5rA) it, a) + g < (1 + c2~) 8 -t 2r (cp, Yt). (23) 

In studying the stability of the scheme (3) we shall start out from 
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the energy identity (21). Depending on the conditions imposed over B and 
A the term 21(q, .yt) can be evaluated by various methods. Let us indicate 
some of these (see Lemma 1.4): 

2rl (rp, Yt) I < 2dYtlP + 2 lldl2, (24) 

2~ I (Cp, Yt) 1 G 2~3 (BY,, it) -I- G,(B-l up, CP) wheq B’ = B, (25) 

where E = const. > 0 is any number. 

We shall use the following 

Lemma 2.1 

If A*(t) = A(t) > 0, for any v(t), g(t) E R we have the following 
inequality 

~T((P+ nt) = ~z((P, aF)<2v(cp, d)T +rs(Ao, 0) + ;(A-91, ‘pr). (26) 

We use the identity 

2r (cp, &, = %p, & - 2+JJ~, u), (27) 

whose validity can easily be seen: 

2~(cp,ir),--222(cp,-, 0) =2@, iq-2($, v)-2(cp-44 v) = 

= 2 (cp, G - v) = 22 (cp, 00. 

Using for the estimate ‘2~1 (qpi, v) I Lemma 1.4, we obtain (26). In particu- 
lar, when v = y we have 

2t((P, ?4!)< 2 (99 3) - 2 <i, zd + 2W4, y) + (281 

Substituting into (21) the estimates (24) - (26), (281, we obtain the 
various energy inequalities. 

We shall use the difference analogue of Grunwal’s lemma to solve the 
inequalities. 

Lemma 2.2 

Let 8 (i) and ,f(t) be two non-negative functions defined over the 
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mesh {tj = lx, i = s, 8 -f- 1, . s . , je, s = 0,1}, and let the inequality 

8 It + t) <co i ‘Gtp (f) + f@r, : co > 0, t =sz,(s+1)z,..,. 
f'==(s+i)7 

be satisfied. If f(t) is a non-decreasing function (f(t + v)>.f(t)), we 
have 

8 (t.+ z) < e”o’f(t), 

If ,f(t) is an arbitrary non-negative function, we have 

8(t+z)<f(t)+coecof &f(f). 
f'=sf 

Lemnm 2.3 

If f(t) > 0 and 8’ (,5-c) = 0, from the inequality 

w’+4 s (i+LOwytj -kTf(t’), f=m,(S+qT ,.,., 

we have the estimate 

The proof of Lemmas 2.2 and 2.3 are given for example in ill, 161. 

4. SUFFICIENT CONUITIONS OF STABILITY AND 
(I priori ESTIMATES 

Theorem 2.1 

If the condition 

B > 0.52(1 -- cic)d, 
(29 

is satisfied, where c - const. 
scheme (3) is stable ihen 

> 0 is independent of -r and of N, the 

and the following estimate is valid for the solution of problem (3): 
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(30) 

where Ml, M,, M1’ are positive constants, depending only on cl, ~2, and 

to. 

Proof. Let us return to the identity (21). Condition (29) and Lemma 
1.7 give 

2q (B - 0.5’tA)yt, Yt) > --#(Ayt, Yt) > -2CiT[ (Ay: yi + (&A y) I. 

We substitute this estimate into (21): 

1. Stabi1it.y with respect to the initial data. Putting 9 = 0 and 

taking into account that 4~1~ < 1 we obtain for the problem (3a) the in- 
equality 

(1 - 2~7) 8 (t + T) < (1 + 2~2) (1 + c2r) 8 (1) < (1 + WI + c2)?) 8 (q, 

8’ (t + z) < (1 + 4(ci f 02)~) 8’ (t) when t > 0, (32) 

8 (T) < (1+ 4(s + c2)4 II!@) IL, when t = 0. 

Hence we find EP-(t i- t) < exp [4(~1+~2)~1 II Y(O) II”,,,,, i.e. 

II Y(l + T) II=(t) < Mf 11 y(0) IIa(o),wherefifl = exp [2(c1 i- c2)tol. :(33) 

2. Stability with respect to the right-hand part. To solve the prob- 
lem (3a) instead of (32) we obtain the inequality 

(1 - &r) (A(O)Y($, Y(r)) < 2(V(O), Y(T))” 

We substitute into (31) the estimate (26): 

(34) 

(I-2c12)(@, !I)\<(1 + 2(cl+ e>~)(b/, Y) + 2(% !I)-- 

- 2 (@, Y> + ; (A-‘% cpr)* 

Then taking into account the Lipschits-continuity of A(t) and choosing 
E so that 2(cl + E)T < 1, we obtain 

(1--cmqt’+2)<(1 f2(c1+ca+s)V(t’)+ (35) 

+ 2 (9 (t’), Y (t’ + 0 - 2 (cp (t’ - T>, Y (0 + & (A-$ (0, rp,-(0, 
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since (1 + 2(ci + e)-r)(l + ~~7) = 1 + [2(c1 + E) + CJT + 2(cl + E)TC~T< 

1 + 2(cl + c2 + E)S when 2(ci t ~)-r < 1. 

We sum (35) with respect to t’ = T, 2-r, . . . , t, take into account 
(34) and use Lemma 1.4: 

2 (cp, !I>< 68 + $ (A-‘% cp>, 
Choosing E 1 = %, we arrivi at the inequality 

where 

i! b 0, 
t’=r 

m(t) = 4(A-‘Qrp) +,” i: (A-‘(f)W’),rp(f)), 
v=r 

Now using Lemma 2.2 and choosing E such that 2(cl t E)T < 1 we find 

$(t+r)QD(t)+c@‘~ zaqt’). 
t’=O 

Hence we obtain directly 

where .JJ = 7 is the solution of problem (3b). From (33) and (36) in view 
of (5) we obtain the estimate (30). Theorem 2.1 is now proved. 

Theorem 2.2 

If the condition 

B a EE + 0.5zA, E > 0, (37) 

is satisfied, to solve problem (3) the following a priori estimate holds: 

Ily(i + T) IL(f) < Mi [ (38) 

Proof 1. When 9 = 0 inequality (23) gives 
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4f(t -j-T) d (1 + f2T)iR(t) wheni > 0‘ 

~(2)~(1+CzZ)ll~(O)II~~o~ .vhent=O. 

Hence r0110ws 8 (E + z) S et8 (%I Q et0 Ii y&O ll~o , i.e. 

llY(C + 2) Ilaft) G dills Ilato,, where ~VI = exp (0.5cd0). (39) 

2. When y(O) = 0 we have 

We substitute into this inequality estimate (24) and obtain 

8 (z) < 2 lltp(0) II2 when t’= 0. 

amine with respect to t ’ = t, 21, . , . , t and using Lemma 2.2, we 
find 

t 

8 (t + T) 4 $M;d z IIT II27 
v=o 

From (39) and (46) we obtain (38). 

Note 1. ft may appear that scheme (3) belongs to IS-2 for sufficiently 
small -r& ~0’ and sufficiently large N ~-N~', Then Theorem 2.1 is valid 
when T 4 TO* and N &No ', where TO* = min(ve, TO‘), and Theorem 2.2 is 
valid when T&TO* and i?>E,‘. In order not to complicate the discussion, 
we shall assume that scheme (3) belongs to the initial family IS-2 for 
any T and .N. In view of the foregoing, this does not lead to any loss of 
generality. 

2. Theorem 2.2 remains true if A = A0 + Al, where Aoft) satisfies 
(15) and (16), and AI(t) is a non-selfadjoint operator, subordinated to 
Ao(t): 

II 4, (t! y II G Q II Y ILaw, 

where c3 = const. > 6 is inde~~dent of T and fv. Then in (38) .instead of 
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II Y If, we have II N I/a0. 

Condition (29) separates out from the class IS-2 the class K0 of 
stable schemes. Schemes satisfying condition (371, obviously belong to 
K 0. 

5. ON THE NECESSARY CONDITIONS OF STABILITY 

We have now found the sufficient conditions of stability (29) of 
scheme (3) from IS-2. Let us now consider the problem of the necessary 
conditions of stability with respect to the initial data in the norm 

1f.Y I&Ii = II .Y II,. We separate out from IS-2 the class of schemes K,, 

satisfying some additional requirements: B is a selfadjoint operator, 
B* = B, A and B are independent of t, 

Theorem 2.3 

For the stability of any scheme (3) from the class K1 with respect 
to the initial data it is necessary that condition (29) should be 
satisfied. 

Proqf. Let the scheme (3) from Kl be stable with respect to the 
initial data, i.e. let such a number Ml > 0 exist, independent of v and 
of N, that for the solution of problem (3a) the inequality If ,y(t) IIn < 

4 II No Ilo is satisfied for all t 6 oT, and in particular 

lly(to) IL f ~~~li~oli~ (20 = ioq W) 

Since the operator A is positive and selfadjoint. an operator Ax = 
(A%* > 0 exists. Now we rewrite the scheme (3a) in the form Ax.; = 

(E - TA~B~A~)A~.~ and put 

Then scheme (3a) is transformed into the explicit scheme 

Xt+CX=O, or B= (E-~zC)s, x(O) = $0, zo = A'$. (43) 

Inequality (41) takes the form 

Ilx(t0) ll < Millz0lf, since ild = liylh. (44) 

Then using the equation i = (E - zc)z, we find s(to) = (El- zC)kq, 



196 A.A. Samarskii 

IIs II = II(E - Tc)“zo11. Hence and from (44) it follows that 

II (E - rC) jell = III? - ~Clljo < M,, i.e. ilE - &II f Mp = Mizlto. 

For any MI one can find a number. c 1 > 0, independent of 7 and of N, such 

that the inequality II, T/to.&l + 2 c 1-r is satisfied. For this it is suffi- 

cient to put, for example, cl = (1/2to)M1 In MI. Thus, from (44) we have 

jJE - d?il < 1 + 2~. (45) 

In view of a well-known theorem of functional analysis [281 .llE - $11 = 

max j((E---‘GC) 2, x) 1 when \I~11 = 1, since E - TC = (E - TC) l . There- 
II x il 

fore 1 ((E - d) 2, cc) 1 < (1 -t 2ci~l15112, i.e. 

--(I + 2ciz)E < E -TC < (I + 2cit)E. (461 

Hence we find E > 0.5&/ (1 + ciz). Since C* = C, therefore C-t 2 

0.5 rE/ (1 + c17) or 

Substituting (42) here, we obtain 

i.e. condition (29) is satisfied. The theorem is thus proved. 

Let us now examine the class of schemes K2 (see Section 61, which is 
separated from IS-2 by the additional requirement that B(t) = B*(t). For 
schemes from Kz the following statement can be made (it is proved by 
the same method as Theorem 2.3): let the scheme (3) from K2 be stable 
with respect to the initial data. Then one can find such vectors .y E I! 
for which the following condition is satisfied 

(BY, Y) > 0.5~(1 -cl+‘) CAY, Y), O<Y<l, ci > 0, (46’) 

where c I and y are independent of T and of N. 

From this assertion it follows that the condition 

(Bx, Z) < 0.52(1- CITY) (Az,z) for all z E H (47) 
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is sufficient for the instability of the scheme (3) from K2. 

We remark that condition (46’1, satisfied for all .y E 9 when y = 1, 
is the same as the sufficient condition of stability (29) 

6, THE CASE OF A SELFADJO~NT OPERATOR B(t) 

In defining the initial family IS-2 we have not assumed the self- 
adjoint nature and continuity with respect to t of the operator B(t). 

Let us now consider another initial family IS-2* of schemes (3), de- 
fined by the requirements: 

1) B*(t) = B(t) > 0; 

2) 8(t) is Lipschits-continuous with respect to t with the constant 
c!z* 

I Pi_ YI Y) I < c2 (&I, Yk (48) 

3) A*(t) = A(t) 20. 

Here we do not require the continuity of Aft) with respect to t. 

For schemes belonging to IS-2*, we can obtain a priori estimates in 
the norm 

First we shall give the energy identity. For this we multiply equa- 
tion (3) in a scalar fashion by 27-q: 

WQ/t,*y> + 2T(&, y*, = W% y^>. (491 

Using ymma 1.7 when f~? = */,(y^+- y), II = ‘/z(; -y) and Lemma 1.8 

when v = ,y, a = y, we find 

I& 9) = “/4 (A (9 + Y), B + y) - l/4 (A (3 - y), g - y) = (50) 

Substituting (50) and (51) into (491, we obtain the energy identity 
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m $1 + f2 [(BY,, yt) -+(AY,, Y,)] t -;-(A (9 + y), 9 + y) = (52) 

Hence it can be seen that the expression in square 
negative when 

BaGA. 

brackets is non- 

(53) 

Under this condition, from identity (52) we have the inequality 

if we take into account that (By, y) = (by, y)+ z(&y, y)< 

(1 +w~jY, Y)= :I -l-zc2)IIyllr,* in view of condition (48). We rewrite 

(54) in the form 

~(t+z)+~zIY(t+z)+Y(t)ll,(,,~(l+c,z)l(t)+2t(~,Q). t>o, (55?, 

where 

8 (t + r> = II Y (1f r) II&) = II 5 llb2. (56) 

Theorem 2.4 

If the scheme (3) from IS-2* satisfies condition (531, to solve 
problem (3) we have the following a priori estimate: 

where M, > 0, M, > 0 depend only on f2 and to. 11 CP II”,-, = (B-‘%T)* 

Proof. Since A >O, from (55) it follows that 

8(l+~) < (1 i- CZT)&‘(~) -I- 2~(cp(l),y(t+~)) .tihen t> 0. (58) 

1. Stability with respect to the initial data. If 9 7 0, we have 

%(t + r)< (1 + Czf)Zf(t) < erzt8W < @z4 II Y (O)IFcq, since a(T)611 Y(0) Ilkol' 

Hence for (3a) we have the estimate 
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11 y (t + T) 11 b(t) < Mi 11 y (0) 11 b(o), where Mi = exp (0.5czlo). (59) 

2. Stability with respect to the right-hand 

equation (3) when t = T takes the form 

By (7) = Tcp (0). 

Multiplying this by ,v(~) we ootain 

8 (r) = r(cp(O), y(r)). 

part. Let ~(0) = 0. Then 

Substituting into (58) the estimate 2z(cp, @)<re(B#, 9) + :(B-$, cp), 
we obtain 

(1 - -) 8 (t’ + q < (1 + zcz) 8 (t’) + f Z 11 cp (t’) //%-l(t,) when t’ > 0, 

wneti t’ = 0, 

where 0 < E < l/r. 

Hence by summing with respect to t ’ = 0, -r, . . . , t we find 

Using Lemma 2.2 and choosing E from the condition for minimizing ‘M2 ‘, 

we obtain 

where M2’ depends only on c2 and t ,,. Unifying (59) and (60), we obtain 

(571. 

Theorem 2.5 

If the scheme (3) from IS-2* satisfies the conditions 

B > 0.5~(1 + &)A, A(t) > 0, (61) 

where E > 0 is any number, the following a priori estimate is valid: 

Ilg(t +r) Ilb(t, 6 Milly(0)iib(O) + M2 [ ,&~(t’) ,~&t11” , (62) 

t,=o 
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Proof. It is sufficient to find the estimate for the problem (3b). 

Taking into account that y^= O.j(y^ + y) + 0.5(i - y), and using Lemma 
1.4, we have 

Since A < (2/~) B. we havez(cp(O), Y(~))f1/o(40)YW Y(Wt 

~(~-1(f9?o)~ (P(waz (B (0) Y (a Y (~))+dl cp(0)ll&0, 

We substitute this estimate into (55) 

if (r>< 2% I( cp(O)ILpq when t’ = 0. (63) 

Using Lemma 2.3, we obtain (62). 

Note 1. If the operator B is constant, i.e. is independent of t, in 
(57) and (62) we have to put M, = 1 so that for the scheme (3a) we ob- 
tain the estimate 

Note 2. An estimate of the solution of problem (3a) with respect to 
the norm II N I I b in a finite dimensional case has been used [31, 321 to 
study the convergence of two-layer iterative schemes for the solution 
of sets of algebraic equations Av = 0. The spectral method was used to 
obtain the estimate 

II Yj+i Ilb G p II Yj Ilb t651 

under double-sided restrictions on the operator B of tne form 

and the value 
yi-4 < B G yz4 Yi > 0, Yz > 0, (66) 

2yiya 
t=-, (67) 

Yi + Y2 



has been found, at which the minimum of p is reached, equal to 

The same result can be obtained on the basis of Theorem 2.3 without 
assuming that H is finite dimensional. 
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Pm*n = yz. 
vi + Y2 
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Indeed, assuming y(tj) =,Pju(tj), tj = jv, we obtain for v the problem 

pBvt + iiv = 0, u(O) = Y(O), if=A- 
i--P 
__ B. 

t 

The conditions pB’> 0.5 TA”, i >O give 

t-A<B< 
‘T 

.-AA. (‘3 
i+P i-P 

Equating (69) to (66), we ascertain that the minimum of p is reached 
when 

z r 
__ = yi, 
i+P 

- = yz. 
1-P 

Hence (67) and (68) follow. 

7. A priori ESTIMATES FOR A WEIGHTED SCHEME 

Consider the single-parameter family of schemes (weighted schemes) 

Yt+&Y+ (i--)Y) =cpt t E Or, Y (0) = Yo, (70) 

where A(t) is a positive linear operator. The stability of the scheme 
(70) depends on the choice of the real parameter u. 

In order to use Theorem 2.1 and 2.2, we write the scheme in the 
canonical form (3) 

(E+ o=I)Yt+AY = cp, t = Or, Y (0) = Yo, B=EfaA, 
(71) 

using the identity oi + (1 - o)Y = y + ozyl.. Since A(t) > 0, the in- . 
verse operator A-’ exists. Applying the operator A-’ to equation (71). 
we obtain 

BYt+AY =cp, 2 E 01, Y (0) = yo; (72) 

B = A-’ + mE, 2f = E, cp = A-@. (73) 
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In deriving the a priori estimates we shall use (70) in one of the 
forms (71) or (72). 

Theorem 2.6 

If A’(t) = A(t)’ > 0 and 

1 1 
a>uo, a)=--- 

2 ~IlAll + 
(741 

the scheme (70) is stable and the following estimate is valid for the 
solution of the problem 

bV + r)U< II Y(O)U + M2 J”=)IA-‘WP(~‘)~~ + M2’~~~~~ll(A-‘(t’)-cp(t’))tll, 

(75) 
where M, and M, ’ depend only on to. 

Note 1. The requirement that A(t) should be selfadjoint can be re- 
placed by the requirement (see [341) 

dl AZ II2 G A(& 31, XEH. (76) 

The theorem remains true when 

c > co, ,=.1-1’ 
2 ZA ’ 

since from (76) it follows that As1 P(1 / AZ (Lema 1.2). 

(771 

Note 2. When u 36.5 the estimate remains true for any selfadjoint 
operator A(t) > 0. 

Note 3. If A(t) is a non-negative operator, in (74) we must formally 
put 1 / 11 A 11 = 0 so that ~26.5. 

Note 4. If A(t) = A*(t) > 0 and the condition that A(t) is Lipschits- 
continuous is satisfied with respect to t, the estimate (38) is valid 
when 

1 l--e 
CT>&=-- O<e<l. (73) 

2 X’ 

7’6eorem 2.1 

If A(t) = A*(t) > 0 and condition (78) is satisfied, for the solution 
of problem (70) we have the a priori estimate 
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we 

we 

(E 

Ily(t+z)II G IlY(o)Il+- y;2e) [ &lq(t’) lhl]‘” . 
t’-0 

(7% 

Using the identity (20) for the scheme (72) with 1 = E: 

a( (a - 0.5.d) yt, yt) + 11 i II2 = II y II2 + 26 ~4, 6 = A-9. 

Taking into account that from u aa, we have 23 - 0.5 ~2 >&A-l, since 

2i - 0.5~2 = &A-l + (I- 8) A-l + (a - 0.5) zE > ~‘4-1 f 

+ (1 
[ 

1 
-8),,+ (Q -0.5) E>EA-l, 

1 
obtain 

2~e(A-~y~, yt) + II&l2 G lIdI + WA-%, yt). 

Substituting here the estimate following from (1.3) and (1.5), 

Hence (79) follows. 

We write the weighted scheme (70) in the form (E + o-rA)q = 

- (1 - a)-rA)y t ~9 and find i = (E + OTA)-~(E - (1 - 0)~A)y-l 

-r(E + crrA)‘lcp. Hence we obtain 

II; II d II (E + ~TA)-*(E - (1 - o)d) II II y II + zll (E + ozA).-,~i IId. 
(81) 

Let q = 0. Then from Note 1 of Theorem 2.6 we have 

ll(E+mA)-‘(E- (I-44ii <1 wtlerlrJ>‘h-l/rA, (82) 

if llAz112 < A (As,z). From condition (761 it follows that 

E>+-A, E+~crtA=(cs - IJ,)TA + 0.5zA + EE + 
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when 

and consequently (Lemma 1.1). 

~~(~+~A)-l~l GA 
E (831 

Substituting (83) and (82) into (811, we see that the following 
theorem holds. 

Theorem 2.8 

If conditions (‘76) and (78’) are satisfied, for the solution of prob- 
lem (70) we have the estimate 

If A(t) > 0 is an arbitrary selfadjoint operator, when o7,0,5 esti- 
mate (84) is valid with E = 1. 

Note 5. Let A(t) be semi-bounded from below, A(t) p -c$, c* =const.> o. 
Then when II. 5 Go G 1, ~G.70, ~~ < I/2 c* we have the estimate 

t 

where iK, and Mz depend only on c, and to. 

The proof of this theorem will be waitted. 

Theorem 2.9 

Let A > 0 be a constant operator and (r7 0.5. Then for problem (‘70) 
we have the estimate 

where Hz > 0, #z ’ > 0 depends only on to. 
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We rewrite (71) in the form 

(E-t (o - 0.5)%d)y, + 05d (“y -+ y) = rp 1871 

and scalar multiply (87) by hAyt = 24(? - .Y>: 

Wbt, a) + .W(a - 0.5) II Ayt II2 + II & II2 = II dy II2 + h(rp, yt). 

If cp = 0, it follows immediately from 

11 &(t + r) II d il dy (0) 11 

We transform 

this 

when o 3 0.5. 

so that 

After this the argument is the same as in the proof of Theorem 
when y(O) = 0. 

Vote 6. It is not required that operator A be selfadjoint. If 

2.1 

Ih I 2 G A(Ax, x1, Theorem 2.9 is valid when u 2 a,-,, a0 = % - l/-rA. If 
A = A* the following estimate holds 

t 

Note 7. Theorem 2.9 remains true for an operator A(t) which satisfies 
the condition 

” 
I/ A2/ iI d c? II AY II. 

A priori estimates of the kind (66) for multidimensional two-layer 
schemes, approximating the heat conduction equations, have been obtained 
in [231: 

3. Classes of stable three-layer schemes 

1. THE INITIAL FAMILY OF THREE-LAYER SCHEMES 

Let us consider the set qf three-layer schemes 
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By; + ~2fQ,-,+ 4.i = cp, 0 < t E WT, m = Yo, YW = Yi? (1) 

where y6 and y1 are arbitrary vectors from H, B, R and A are linear 
operators from H into H. 

of 
The initial family of three-layer schemes IS-3 is specified by means 
the following conditions (cf. f.111: 

1) A*(t) =A(t), A(t) > 0; 

2) R*(t) = R(t), R(t) > 0; 

3) A(t) and R(t) are Lipschits-continuous with respect to t with con- 
stant c2, independent of T and N. 

The requirements for the operator B(t) are formulated in the course 
of the discussion. The basic estimates are obtained without assumptions 
about the selfadjoint nature of B(t) and its continuity with respect 
to t. 

2. ENERGY IDENTITY 

An energy identity, corresponding to scheme Cl), is used to verify 
the a priori estimates. Taking into account that 

we rewrite scheme (1) 

BY; + 

We scalar multiplY 

y= ??+!I ITa 
---rYilt 2 

in the form 

r2 (’ - l/‘&j Yif + ‘I& (d $- Y) = ‘P* (2) 

(2) by 20~; = z (yt + yT) = ,$ - 4 and taking into 
account that zyrt = y1 - yF: 

2qByp, y,)‘i-~2((K--/zA)(yl-yi), yt+yrJ+ 

+1/&qg+;), ?+4)=2q% Y,.). 

We shall use 

(3) 

Lmna 3.1 

If A and R are selfadjoint operators, we have 

(A (6 + 9, B - “y) = (A??, $I-- (A57 $1, (4) 
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This lemma is a consequence of Lemma 1.6, if we put u = 8 f 5, 

U=:lJ---- b and ti = yt - Yi, u = yt + Yi (replacing A by the operator 

R - %A). 

We add and subtract on the right in (3) (A.y, .y), after which we use 

Lemma 1.5 when u = ZJ~ u = y and v E y, u = jj 

(A Ir?l -I- ih .4 - id = N&k 8) + (41, y)] - [(Ay, y) + (A$, @)I = 
= l/z t(A (8 + Y), 5 -t- y) + (A(# - y), 9 -+)‘t - 

-l/2 [(A (Y + Ch Y + 9 + (A (y - jj), y - $)I, 

so that 

(A (9 + $1, jr - 2) = ‘1~ I(A tB + $2 9 + Y) + ~2(A~t, ydl - XQ 
- ‘1~ I( A fu -i- ii), Y A- id -I- 2% +Y;;, yi)L 

Substituting expressions (4) and (61 into (3). we obtain 

The operators A and R depend on t, so that 

A = A(t), R = R(t), t = tj. 

Now we make use of the fact that 

(A (t) u, u) = (.&I, u) + ((A - &u, v) = @v, v) -i- z f+, 4. 

As a result we obtain the basic energy identity for a three-layer 
scheme 
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Identity (‘7) holds for any three-layer scheme if it is assumed that 
A(t) and R(t) are selfadjoint operators. 

The operators A(t) and R(t) are, according to the conditions, 
Lipschits-continuous with respect to t. Therefore the following estimate 
holds : 

Indeed, 

I F I < 4 (2 (y + 3, Y + 3) + z2c2 (&r yr) + 

+ 1/4z2c2 &, yr) = c28 + l/2c2r2 (Ayyi_, yi_). 

If R - ‘/4 A = i satisfies the condition 

I (CR - ‘lr~)i-y, !I) I < c2 (@ - l/44 Y, ?I), 

instead of (9’) we obtain the estimate 

Iq < c8. (9”) 

From now on we shall assume A(O) = A(r), R(O) = fi(-r). 

3. ON THE WELL-POSED NATURE OF THE SCHEME 

The well-posed nature of the scheme cl), by analogy with Section 2, 
signifies that it is solvable and stable. We write (1) in the form 

where 0 depends on Q and on the already-known vectors N, $. Hence it can 
be seen that the scheme (1) is solvable, if an inverse operator 
(B + 2lR)-1 exists. For this it is sufficient that 

B + 2tR > 0. (10) 

Condition (10) is satisfied in particular when 

B > 0. 

We shall say that scheme (1) is stable with respect to the initial 
data and with respect to the right-hand part, or simply that it is 
stable, if numbers TO > 0 and NO > 0 exist such that when ~g’-re and 
N>No tar the solution of problem (1) we have one of the estimates: 
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where \I l 11 f 1) is a norm of the kind 

Ilu(t+dlii2j= IIUv~~+.t~+Y~t~ll~12,)+ll~(t+a)-~y(t)Il~rl, (131 

II - II( II * ll(i?h II - lb) are some norms over the linear system a~ (depending, 

generally speaking, on t), and Edl, &, .Ys’ are positive constants, in- 
dependent of v and N: 

If (11) or (12) are satisfied for any T and N, scheme (1) is called 
absolutely stable (and it is assumed of course that scheme (1) belongs 
to IS-3 for any t and ~9. 

Let us now turn to the sufficient conditions for the stability of 
scheme (1) from IS-3. For convenience the solution of problem (1) will 

be represented in the form of the sum N = 7 + 7, where y is the solu- 
tion of the problem 

By! + z2Ryrt + Ay = 0, O<tEo,, Y (0) = Yo, Y(T) = Y11 (la) 

and 7 is the solution of an inhomogeneous equation with the homogeneous 
initial conditions 

5. SUFFICIENT CONDITIONS FOB STABILITY. 
A priori ESTIMATES 

In deriving the a priori estimates we shall start from the identity 

(7). We note first of all that 

8 > ‘14 114 -t Y [E when R > ‘/aA, (14) 

WI 
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where a0 > 0. 

We shall use everywhere the norm 

Ily(t -t r) II& t) = 11~11~1, = I’(8 (t + T)), 

where 8 (2 + T) = g 

Theorem 3.1 

Let the following 

(15) 

is determined by formula (8). 

conditions be satisfied: 

B > -ciz2A, (16) 

I+ eo 
R>---- 

4 Ay 
(IV 

where EO = con&. > 0, cl = const. > 0 is independent ni ‘I and N. Then 
the scheme (1) from IS-3 is stable for sufficiently small T<TO(C~) 
and for the solution of problem (1) estimate (12) holds, in which 

II l II ( 1) is defined by formula (151, 

Ilq~(l) ll(2, t) = I(A-‘(+t(t),rp(t)) = Il~(~)Il~-*(t) or lldl(2) = lIdI,-I, (18) 

Ml, & and & depend only on cl, c2, to, “o end T < l/4 cl. 

Proof. We use condition (16). For this we need Lemma 1.9, in view of 
which 

(Bq, u~)>-cIz~(Au~, q)> -22~1 [(Au, u) + (AS, ij)]. 

A 
Substituting here v = N + .v we shall have 

2WYf7 Y;)=+w~+Y)p (B+Y),-) > i19) 

> - CI~ [(A (9 + Y), 9 + Y) + (A (Y + iI/), y + 31. 

Noting that 

19>~II~+~llh+$~o~~ll~~l~ when R > 4 ‘+‘,,A , W) 

and using estimate (9’1, we obtain 

(21) 
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We substitute (19) and (21) into (7): 

- ClT (A (d + Yh 9 + ?A + 8 < (1 + c2 (1 + $) T) 8 + (22) 

+cl~(4Y+ kh Y + ii) + 2r(qp, y;). 

I. Stability with respect to the initial data. Let 9 = 0. Using (20) 

and formula (16) from Section 2, we shall have 

(1 -4c& < (1 + Ct(l + 2/EOb)8 + 4W(l + c27)8 < (1 + C2’T)%, 

(23) 

where c2’ = 2c2(4 + l&J + 4c,, while 4c11 < 1. From (23), by analogy 

with paragraph 5 Section 2, we obtain 

a0+z.) <k&?(z), r G ‘to, To < 1/ 4ci, 24) 

and Ml’ depends on cl, c2, Ed, to and TO. From (24) we have 

2. Stability with respect to the right-hand part. Let y(O) = t(t) ~0.. 

Then E(T) = 0. Using Lemma 21 when v = 3 + y we estimate 

where E 1 > 0 is sn arbitrary number. Since (Au, u) ,=G (1 + c2r)(AVv, u) 

we have 

--1r(A(g-tY),g+Y)+~d(1+s(1+ t,+ -,- 

+ T@l+ cdP+ c2M (Y + id, y + g+ 

Using (20) and assuming that 4(f 1 + C~)T < 2, we obtain 

where c2’ = c*(3 f 2/E()) + 4(E1 + cl). This inequality is solved by 
analogy with inequality (23). Repeating the reasoning of Section 2.5 we 
obtain 

a(t +r)\( mar [li?z(A’(t’)cp(t’), q(f)) + K(Ael(f)qy(f), q(t ill. (28) 

o< v<t 
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Here it is assumed that q(O) = 9(-r), so that q-;-(r) = 0. From (24) and 

(28) we have (12) when T 6~0, TO < l/4 cl’. 

Note 2. If instead of (16) B is non-negative: 

R > 0, 

Theorem 3.1 holds for any T > 0. This can be seen if in (23) and (27) we 
put Cl = 0. 

Note 2. From (15) it follows that scheme (1) is stable with respect 
to the right -hand part in the norm 

IIY (t + T) IL, = IIY (t + &t, + lb(t) Il.“(t) (29) 

Estimate (28) remains true if instead of & (t+ Z) we substitute (29). 

Note 3. The solvability condition B + L!TR > 0 is satisfied when 
T < ‘/. c 1, since B + ~TR 3 (I+ eo - 2ClZ)ZA /2. 

Theorem 3.2 

For scheme (1) from IS-3 let the conditions (17) and 

B 2 6E, 6 = const > 0, 

be satisfied where E is a unit operator. 

(30) 

Then for the solution of problem (1) we have the estimate (ll), in 

which II& + .t) ll(i, t) is defined by the formulae (15) and (81, while 

II&U = lhil; 

the constants Ml and M, depend only on c2, Ed, 6 and to. 

1. Stabi1it.y with respect to the initial data. In view of B>6E we 
have 

2T6llY; ll”+k(i +cz(i fV%) z)6,++22(cp, yp). (31) 

When 9 = fi it follows from here that 

a@+%) G (1 + cz(i +~/Eo)z)&((~) G M#((z), 

(32) 

IllG + 7) Ilk f) d Mlll!/(~) Ihi, 0). 
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2. Stabi1it.y with respect to the right-hand part. We substitute the 

estimate Zt(q, Yp) < 2z611yp IIz+ (‘t./26)Ilq# into (31): 

k(MjW $, ++&IIwl12. 

We apply Lemma 2.3 to (32 1: 

(33) 

Combining the estimates (32) and (341, we obtain 
!Iqli. The theorem is thus proved. 

6. SCHEMES WITH CONSTANT OPERATORS A and R 

From the proof of Theorems 
theorems remain true when 

3.1 and 3.2 it can be seen that these 

if the operator i = R - ‘/ A is Lipschits-continuous 
(see (9 ‘9). 

(349 

(11) with lk&, = 

with respect to t 

Let us now consider the case when A and R are constant operators. 

Putting c2 = 6 in (23), (27) and (33), we obtain 

(I - 4ClZ) d< (1 + 4c,z) 8, (23’) 

(1 - 4w9 8 <(I + 4 (El + Cl9 r9a + (rpl B + Y9 -(k Y + ii9 + &w’~m) 
(27 1 

e 
8d 8 + &li’pil’. (33’) 

where 

8 = II B + Y II& =: l/4 II B + Y 5 + T2 II Yt lr9 7 

while A and R are independent of t. 

11 u IE = ((R - l/J9 v, 4, 

From these inequalities it can be seen, for example, that we have 

Theorem 3 -3 

Let A and R be independent of t and 

B > 0, R 2 %A. 
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Then for the solution of problem (la) the following estimate is valid 

Ily(t + z) II(l) < II!/(r) 110:. (35) 

If B>tjE. where S = const. > I), for the solution of problem (1) the 
following inequality is satisfied 

(36) 

7. A priori ESTIMATES FOR THE WEIGHTED SCHEME 

The following weighted schemes occur very often in practice 

Y”t+Ay(wl~*)=rp(t), 0 < 2 E or, Y(O) = Yo, Y(T) = Yl, 
where (37) 

y(@* Up) = oty” + (1 - CJi - uz) y + o& A = &i(t) > 0. 

Here al and a2 are real numbers on whose choice the stability and accu- 
racy of the schemes depend. 

Let us reduce scheme (37) to the canonical form (1). Using the 
formulae 

9 = Y + zyt = y + ;yr -I- 1/2+&t, B = y - ll2q; + ?3t2yi, 

we find 
ym, a = y + (01 - e2) TY t” + 0.5 (al+ 02) r2Y$ 

Substituting (38) into (37) we obtain 

(E + (al - 02) TA) y,” + 0.522 (01 + (~2) 4; + AY = cp, 

Y (0) = YOl Y (4 = Yl* 

A comparison of (39) with (1) gives 

B = E + (a, - cre)d, R = 0.5(0, + cr2)A. 

Since A > 0, therefore A-’ exists. Applying A-’ to (39): 

By; + z2EyG + Ay = ‘p, c&z A-19, Y(O) = YO? Y(T) = Yl. 

where 
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The schemes (39) and (40) are obviously equivalent to scheme (37). 
Scheme (39) (or (37)) belongs to IS-3, if A = A(t) is selfadjoint, 
positive, and Lipschits-continuous with respect to t and al t u2 > 0. 
Scheme (40) belongs to IS-3 if A = A(t) > 0, crl + o2 > 0, since the 

operators 2 = & and f? = 9.5( or + u2)E are constant and selfadjoint; 
in this case the operator A’, and consequently i = A-’ t (aI _ uB)-rE 
are not selfadjoint. Depending on the properties of the operator A we 
can use the general Theorems 3.1 and 3.2 for scheme (37) in the form 
(40), or in the form (39) (see Section 2.7). 

For the solvability of scheme (37) the inverse operator (B t 2?R)-i = 

(E + 2u11A)-’ must exist. Since E 2 A / [IAll, therefore E + 2crizA > 

(I/ llA[l -j- 2oi-c)A > 0 when oi > --1/ 2zllA][ and scheme (37) is solvable 

when al 20. It is easy to note that 

tl (E + 2oizj4) --*I1 ,( 1 iwhefi oi > 0, (42) 

since E + 2apA& E when crl 20. 

Theorem 3.4 

Scheme (37) is stable and we have: 

1) the a ,priori estimate (12) for any T > 0 and 

fl;lt;, = 
/ a + 02 -$/i+ Yl12-+ y--y- 

1 
--g ~211yflla2, 

> 
tIcpIt@)= ttg, (43) 

if the following conditions are satisfied 

A(t) =A+(t) >o, A (I) Lipschits-continuous 

(Ti f 02 a 0.5, 
with respect to t, 

ui 2 (32; 

(441 

(45) 

2) the estimate (12) with il&s?determinable according to formula 

(43). and k#\k) = kpl!.-‘, if the conditions (44) - (45) are satisfied, 

and of + 02 3 OS, 31 > o2 - I/ ~IlAtl - W, cl = const go 0, z d T,,(c~) 

is sufficiently small (T* = a, when c I = 0). 

The first statement follows from Theorem 3.2, and the second from 
Theorem 3.1, if we apply them to weighted schemes in the canonical 
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form (39). 

If the scheme (3‘7) is symmetrical, i.e. al = u2 = u, for its stability 
it is sufficient that og%. 

We show that a weighted scheme is stable in another norm without 
assuming that the operator A(t) is selfadjoint and Lipschits-continuous 
with respect to t. 

Theorem 3.5 

If A(t) > 0, when (45) holds scheme (3’7) is stable and the following 
a priori estimate is valid: 

II Y tt +T) II(i) < II Y (‘1 II(i) + max (MS II 4-l (0 cp (t’) I+ Jf2’lj (A-’ (0 ‘P @‘Jk II), 
o<v<t (46) 

where M2 > 0 and M2 ’ > 0 depend only on to, 

II Y (t + ‘) lk, = II 9 $7) = ‘14 II 9 + Y Ila + (‘* - l/d) I? 1 Yt (rA. (47) 

In order to prove this we apply Theorem 3.1 to scheme (40) with the 
constant operators i = E and R” = 0.5(q + u2)E when c r = 0. 

Theorem 3 -6 

If the conditions of Theorem 3.5 are satisfied we have for scheme 
(37) the a priori estimate 

II Y tt + r, II& <II ?dT)ll(i, + 1/12 to1 + ‘2)) 22 ’ II Cp tt’) II* t’=T 

Scheme (37) is stable with respect to the initial data. For scheme 
(40) the identity (T), when q~ = 0, takes the form 

Since B = A-i + z(a, - az)h 2 A-1 > 0, therefore 

II 9 I[& G II Y l(i) 
and consequently 

(49) 

(50) 



Let us now consider problem (40) when 
tion will be sought in the form of a sum 
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y(0) = 0, *y(7) = 0. Its solu- 

y(t) = 2zY(t, f), (51) 
t’=r 

where Y(t, t ‘1 as a function of t satisfies the homogeneous equation 
(37) and the initial conditions 

Y(t’+z, i’) +2aid(t!)Y(1’+7, 1’) =29(f), Y(f, t’) = 0. (52) 

Substituting (51) into (37) and using the equation for Ylt, t’) and_ 
condition (52), we ascertain that (51) is a solution of problem (37). 
When t = 0 and t = T, as can be seen from (51) and (521, we obtain 
,y(O) = ,y(~) = 0. For the function w(t) = Y(t, t’) according to (501, we 
have the estimate 

!Y(t, 1’) llc7J d ilyp’ + T, t’) llci) for fixed t’ < 1. (53) 

From (52) we find Y (1’ -j--r, i’) = 2(E + 2owl)-irp(t’). Since al > 0, 
therefore according to (421, we have 

IIW’ + r, f) II < w#) II. (54) 

In view of the initial condition Y(t’, t’) = 0 and 

y (t’ + z7 t’) IIrij = ‘/4 II ’ (t’ + z7 t, 11’ + 

+ pp- I/,) 11 Y (t’ + z, t’)(l2 = qq Y (t’ + z, t’$ 

II Y (t’ + r, t’) Ilfi, = f (0.5 (01 + a) II y (t' + f, 0 II. (55) 

Substituting (55) and (54) into the right-hand psrt of the inequality 

f--s t--r 

II Y tt)ll(i) C ,zT a II ’ ltl “) 116) f *zT ‘II ’ tt’ + ‘9 t’) ll(i)t 

we obtain an estimate for the solution of problem (37) when y(0) = 
y(v) = 0: 

Combining (50) and (56), we arrive at (48). The theorem is proved. 
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Theorem 3.7 

If A(t) = A*(t) > 0 and 

l--E 
%>02- qp,, > 01 -I- c2 > l/a, =(O,Q, (57) 

then for the scheme (3’7) the following a priori estimate is valid: 

It is of course sufficient to prove this theorem when *y(O) = y(r) = 0. 
We write for scheme (40) the identity 

Substituting here the estimate (80) from Section 2 for &(A-$, yp) and 

assuming that i = A-’ •i- (ai - oz)~E > &A--* when UI > 02 - (I- e) /rll~ll 

we obtain 

Hence (58) follows. 

Thus if A(t) is selfadjoint and Lipschits-continuous with respect to 
t, we have for scheme (37) the a priori estimates with respect to the 
norm (43). If, however, A(t) is an arbitrary positive operator, the 
estimates are valid with respect to the norm (47). Then the requirement 
that A(t) be selfadjoint (with Lipschits-continuity for t) enables us 
to obtain the estimate for Ilyll,ij through Il$IIa-l, while JIyllo, is esti- 

mated, according to Theorem 3.1, through flv(pIIa-l and Ilcp~lla-~. 

Theorem 3.8 

Let A > 0 be a constant operator and al >q, al + (~2 T”. Then for 
the scheme (3’7) we have the estimate (12), where 

YIY(t+~)ih,=113b,=‘/4nA(Q+~)ll~+ (o+-1/4)~2//A~#, (60) 

d~~~~2~ = Ikpll, and Jft = 1, M2 > 0 depend only on t,,. 
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Scalar multiR~i~ (39) by 2-cpiyy and reasoning in the ssme way as in 
paragraph 4 of the present section, we obtain the identity 

When 9 = 0 we have immediately 11 i If(i) G I/ Y /l(f). Substituting the esti- 
mate 

into (61), we have 

Hence, by analogy with paragraph 5 of this section, Be obtain the 
required estimate, if we take into account that 

The fact that the operator A is selfadjoint is not utilized. The 

theorem remains true for A = A(t) if llATyII < c211A~II. If A* = A > 0, 

we have estimate (II), where llcpll~a = ftcpi!, 

8. A priori ESTIMATES FOR A THREE-LAYER SCHEME 
OF THE SECOND TYPE 

Let us now consider a three-layer scheme in the second canonical form 

~~+~~fiy~+By; +A~=(P, O<tfZ% Y(O) = Yo, v(z) = 51. 

(63) 

The energy identity (‘71 in this case takes the form 

2% (&V; 9 Yt” > -+ !I B L2 = I/ Yll.2 + -cF + 2% (VP, Y$> 

where F has the form (8), and 

IIiII*2 = ‘Mif YlL2 + z”( (R - VrA)yt, !A) + II&P. (651 

Hence it can be seen that !I&.~ 2 i/,lli + y11,2+ llyti]2 when n 2, i/d. 

Theorem 3.9 

Let the conditions B 20, R* = R > 0, A* = A > 0 be satisfied, and 
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let A and R be constant operators and R & % A. Then for the scheme (63) 
we have the a priori estimate 

(66) 

Proof, Since A and R are independent of t. we have F = 0. When cp = 0 

identity (64) takes the form [j&.2 < Ilyll*z, i.e. for problem (63) when, 

9 = 0 we have the estimate 

IlY(~+qll. < IIY(% (67) 

Let yw = y(7) = 0 and consequently ![z~(r)lf, r= 0. We transform 

Substituting this estimate into lly^11.2 < tlyll .2 + 2~.('q7, yy ), we obtain 

(1 --s)IMl,af(~ + ~eNYll,a + 

Choosing E =: % to we arrive at the estimate 

cabining (67) and (68), we arrive at the inequality (66). 

Using the techniques developed earlier it is easy to obtain an 
analogous estimate for the case of variable operators A(t) and R(t). We 
remark that for the scheme (60) Theorems 3.1 and 3.2 are valid. 

Translated by G.R. Kiss 
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