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WE examine the possibilities of tr~sforming or regul~izing schemes in 
such a way that the n8w schemes are stable and satisfy auxiliary require- 
ments as regards accuracy and economy. 

Difference schemes are treated as operator equations in real linear 
normed space [l, 23. Two- and three-layer schemes are discussed in real 
Hilbert space (more precisely, in unitary space, since no use is made of 
completeness). Stable schemes are classified. Schemes are written in a 
canonical form that enables stability operators, or what will be termed 
regularizers, to be introduced. Sufficient conditions for stability only 
weakly restrict the arbitrary selection of these stability operators. By 
varying the regularizers but remaining in the class of stable schemes, 
economic SCh8meS of bounded order of accuracy c8n be obtained. 

All the regularization schemes discussed have in common the use of 
energy-wise equivalent (en. eq.) operators as regularizers (similar oper- 
ators are employed in linear algebra [31, see also 14, 161). 

All the schemes familiar in the literature can be treated as schemes 
obtained from natural explicit schemes by means of some regulartziation 
procedure, 

We only need to mention the widely used implicit schemes. As a rule, 
the same operator is taken (as regularizer) on the upper as on the lower 
layer (or on a smooth pax% of it). 

Another type of regularization is typified by the explicit three- 
layer rhombus scheme [51 (the Dufort -Frankel scheme) and the asymmetric 
two-layer scheme of V.K. Saul'ev Cd for the equation of heat conduction. 

* Zh. vychis 1. Mat. ntat. Fit. 7, 1, 62 - 93. 1967. 
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Both have the following characteristic properties: (1) the schemes are 
unconditionally stable, (2) explicit formulae are used for computation, 
and (3) the order of approximation Is lower than for conventional ex- 
plicit schemes. The rhombus scheme is obtained from the absolutely un- 
stable Richardson scheme by replacing ,yij by 0. 5(yijt1 t .~ij-~). SUrPrlSe 

Is expressed in Wasow and Forsythe’s book [51 that such a slight modif ica- 
tion should transform an absolutely unstable into an uncondi!ionally 
stable scheme. It will be shown in 5 3 of Section 3 below that trans- 
formation of a Richardson to a rhombus scheme is equivalent to introduc- 
ing an elementary type of regularizer. The type of regularizer for the 
asymmetric scheme is described in 9 4. Multidimensional analogues of 
these schemes can be used as iterative schemes for solving elliptic equa- 
tions with variable coefficients in arbitrary regions [Al. 

Our theory of the regularization of difference schemes starts with 
sufficient conditions for stability and a priori estimates for two- and 
three-layer schemes in real Hilbert space (Theorems 1 - 4). These 
theorems will be proved in a later paper. 

A general principle for regularization of two- and three-layer schemes 
is laid down in Section 3, using similitude operators. Some examples of 
selecting en. eq. operators for 2nd order elliptic operators are given 
in Section 4. The regularizer I? must be arranged in each specific case 
so as to simplify the inversion of the operator to the upper layer and 
retain the required order of approximation. 

Factorized schemes (FS), i.e. those in which the operator is repre- 
sented on the upper layer as the product of a finite number of operators 
(factorized), are considered In !$§ 4 and 5. 

Numerous interesting papers have appeared in recent years on economic 
difference methods for solving multidimensional problems of mathematical 
physics. e.g. by Peaceman, Reckford, Douglas, Baker, Oliphant, V.K. 
Saul’ ev, N.N. Yanenko, E.G. D’ yakonov, S.K. Godunov and V.B. Andreev 
(the necessary references may be found in [2, 5 - 111. In spite of differ- 
ences in approach, in symbolism and terminology (method of alternating 
directions, splitting method, scheme with splitting operator), many of 
the difference schemes proposed by these authors have the following in 
common : after reduction to the canonical form, the resulting schemes are 
factorized, and by definition, approximate to the initial differential 
equation. The domain of variation of the space variables xl, x2,. . . ,xp 
is a p-dimensional parallelepiped. 

A large number of economic FS for the equations and systems of equa- 
tions of mathematical physics have been investigated by E.G. D’ yakonov 
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(see e.g. [9, 141, the latter with a list of references). The initial 
schemes approximating the differential equations and considered by 
D’yakonov were two- and three-layer FS of a special type, which he 
termed splitting operator schemes. These schemes were shown to be stable 
and convergent under some auxiliary restrictions (a fine mesh, smooth 
coefficients, conditions beyond the natural conditions of ellipticfty on 
the matrix of coefficients of the space operator when mixed derivatives 
are present, etc. ). It was noted in [21 that these restrictions need to 

be removed in the case of equations with discontinuous coefficients, and 
in particular, the question of the applicability of FS (splitting 
schemes) investigated. V.B. Andreev has proposed two- and three-layer FS 
for parabolic equations with mixed derivatives, stable under a natural 
parabollcity condition. 

Paragraphs 4 and 5, which represent a development of [2, 101, give a 
general method for constructing FS by regularization of an initial 
scheme, whose regularizer is the sum of a finite number of operators: 

R= &,. Sufficient conditions for stability of the FS are given in 
-1 

the form of conditions on the operators R,, which distinguish the class 
of stable FS. This class includes the fsmily of fsmlliar FS (including 
schemes with a splitting operator). 

The FS is shown to be stable on any sequence of meshes provided the 
initial scheme has this property, and in addition, c:,) is a system of 
mutually commuting selfadjoint positive operators. This leads to an ex- 
tremely wide class of unconditionally stable FS. 

By using the en. eq. operators described In Section 4, a family of 
unconditionally stable economic FS is obtained for parabolic and hyper- 
bolic equatl.ons and systems of equations with variable, and even dis- 
continuous, coefficients. For instance, in the case of a system of para- 
bolic equations with mixed derivatives, the regularizer is a difference 
elliptic operator with a diagonal matrix and constant coefficfents. The 
solution of a difference problem then amounts to successive application 
of the formulae of one-dimensional successive substitution [91. The re- 
sulting FS are stable whatever t and h under natural parabolicity con- 
ditions, and are convergent in the class of discontinuous coefficients 
(provided the coefficients have discontinuities of the 1st kind on hyper- 
planes parallel to the coordinate hyperplanes). By selecting special 
mesh sequences ah(k) 1121, schemes csn be obtained with the accuracy 
O(h* + t) and O(h2 + t2) (three-leyer schemes) in the class of discon- 
tinuous coefficients. Only second order equations In x1, . . . , x,, are 
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considered here. The theory of FS (see Section 3) is also applicable to 
higher order equations (this is obvious, e.g. in the case of periodic 
boundary conditions). 

Every difference operator il can be associated with at least one en. 
eq. operator of simpler structur& which can be used as a regularizer 
for two- and three-layer schemes. Computational practice should benefit 
considerably from the compilation of a list of regularisers and rules 
for selecting the best. The same regularizer csn be used for various 
elliptic operators, thereby enabling a standard program to be used for 
solving classes of problems. The program for finding the solution on a 
new layer remains unchanged, while the specific form of the problem 
operator is allowed for when computing the right-hand side. 

Regularization methods can be used to construct economic universal 
algorithms for stationary problems, or more exactly, for the equations 
of the first kind 

4u = f, 

where A is a linear selfadjoint, positive definite operator on N. Classes 
of two- and three-layer iterative schemes with one or more relaxation 
parameters are considered here. The general stability theorems of Section 
2 ensble the optimal relaxation parameters and convergence rate esti- 
mates to be obtained. These latter results will be described in a sepa- 
rate paper. 

1. Schemes in abstract spaces 

1. SCHEMES AS OPERATOR EQUATIONS 

Difference schemes will be considered as operator equations In 
abstract spaces. Let (!&I, V = 1, 2, . , .I be a sequence of linear normed 
spaces, representing the analogue of the spaces of mesh functions de- 
fined on a sequence of meshes in Cuclidean space (finite- or infinite- 
dimensional). In the interval 0~ t gt o, introduce the mesh & = {ti = 

.jT, j = 0, 1, ***, .i(), 7 = t o/j01 with mesh interval T. Let ,yN(t) be an 
abstract function of the argument t with values in rfs, so that, with 
fixed t = .j~ E &, ,yE(t) is a point (vector, element) of space ‘fg. We 

shall be concerned througho~ with linear operators -1 (t), 8(t), R(t), 
S(t) etc. (in general, unbounded), depending on the parameter t t, & 
and mapping Y,v into (YN for each t G or. In general, all operators de- 
pend on N and T. so that e.g. .4 = ,? (V, T; t); the arguments Y, T willbe 
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omitted when no confusion can arise. 

Let .5, S,, S,, . . ., C,_, be linear operators given in “r,. By analogy 
with [131, we shall describe as an r-layer (r-point) linear scheme an 
operator .Tquation O,y.yi+i = .S,yi + szyYj-1 t . . . + S,_,,yj-r+2 + I’j+l, .j 2 
r - 1, Y’ = ,y(tj’) E ‘f!v, connecting the values of y(t) E !!!v on the r 
layers t = tj_,+l, . . . . t = tj+l. The initial values are given for .j = 
0, 1, . . . , r - 2. 

Only two- and three-layer schemes will be discussed. 

2. CANONICAL FORM OF TWO-LAYER SCHEMES 

First take the ordinary two-layer scheme 

Hyj+’ = Cyj + r(pj+l, j = 0, 1, . . . , cp = q(t) E HN for t E Or. (1.1) 

The init is1 condition 

y”=.y(O) = YoEHiv. 

is given for j = 0. We introduce the notation 

y3+1 = ; J* Yj= y(t)= Y, Yt = 
yj+i - Yj = Y--Y 

z T 

and rewrite (1.1) as 

BY=CY+W, 0 < t E 02, y(O) = yo. 

Substituting ,y = y + T.yt, and putting R = C t 4, the two-layer scheme 
is obtained in the canonical form 

Byt+&=cp, 0 < t E Or, 

Writing the operator 13 as the sum 

the second canonical form 

yt + TRyt + AY = cp, O<‘tEOT, 

is obtained. 

B = E + TR, 

Y (0) = Yo. (1.2) 

Y (0) = Yo* (4.3) 
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3. CANONICAL FORMS OF THE THREE-LAYER SCHEME 

Three-layer schemes connect the values of the required function 
Y(t) E “I (t E 7&) on 7 layers t = tj+l, t = tj, t = tj_1. Consider any 
linear three-layer scheme 

B&+1 + Bzyj + B3yj-f = @, j = 1, 2,. *., (1.4) 

where 9, = R, (V, 
on Il:\i. 

1; t) (s = 1, 2, 3, t = tj are linear operators given 

The following index-less notation will be used in future: 

i = yj+l, Y = y(t) = Yj, YY=y(t - z) = y-7 y, = ;(i-Y,, 

YT =$(y-Y), 

Y, = iit Yi = it7 Yf'+(Yt+yi)=*p 

YG = + (Y, - Yi) = $ (y^- 2Y + i). 

A three-layer scheme (1.4) can be written in the canonical form 

By 1 + T~RY~, + AY = cp 0 z\<teo,, (1.5) 

where R, 1’1 and 4 are linear operators from Y into .il. 

For substituting 

in (1.4) and denoting 

(Bi-Bs)%=B, Bi +Bz+B3 = A, f (Bi + B3) = R, 

(1.5) follows. 

The scheme (1.5) is written with t = T, 21, . . . . The initial condi- 
tions .y (0) = .yo, Y (7) = y1 or ,yt(0) = Yo, .yOt .yo8 .yr G ‘f must be given 
for t = 0 and t = T. 

Note. If a three-layer scheme is written for a first-order differ- 
ential equation in t. only the initial condition y(0) will be given. To 
find ,y(t), either the initial equation with t = 0 is employed, or a 
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two-layer scheme (see [I.oI) of the type L1yt + 1y = p for t = 0. since 
,y = y(0) is known, it can be assumed in this case that yt(‘W (,vt(W = 
R-l(ql - 1~0)) is given. 

The problem to he considered is thus 

BY; ++RY~+AY =cp, T<tEG:, Y (0) = Yo, Y, (0) = GJ 
or Y (z) = yl, (1.6) 

where y = y(t), G = y(t + l), .G = y(t - 7). 

Formally replacing 129 by F t ~~8, we get the second canonical forr! 
of the three-layer scheme 

yii + z2Ryii + BY; + AY = cp, o<=q, y (0), y (t)d’iven. (1.7) 

4. SOME CONCEPTS OF THE THEORY OF DIFFERENCE SCHEMES 

By analogy with [l, 1.31, the following concept of correctness of a 

difference scheme can be introduced. 

The introduction of different norms into a linear set ‘! produces 
different normed spaces consisting of the same elements. The solutions 
of prdblems (1.2) and (1.6) and the right-hand side ‘P will in general 
be regarded as elements of distinct spaces that differ only in their 
norms. Let II * Ilw, II - 11~2); . . . be norms on the linear set H. 

Problem (1.2) is correctly posed (scheme (1.2) is correct) if numbers 

701 VO can be indicated such that, for T <TV, S>,Vo: 

(1) a solution of problem (1.2) exists for any y. E ‘1 and .p(t) E ‘!, 

t E 0-r; 

(2) the solution of problem (1.2) is a continuous function of y. and 
9 uniformly with respect to V and T; the function may be, for instance, 

Ily(t> II(i) < ~illY~ll(i) + Jf2max lb(t) II(Z). (1.8) 
WY 

Here, and throughout what follows, ‘I,, M,, i!, cl, c2, . , , are posi- 
tive constants, independent of T and V. 

If the solution of problem (1.2) depends continuously (uniformly with 
respect to V, T) on ,yyo, 9, the scheme is said to be stable with respect 
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to the initial data and with respect to its right-hand side. More 
stringent conditions may be imposed on the stability of the right-hand 
side: the solution of problem (1.2) depends continuously on qt(t) as 
well as on p(t). The following definition of correctness will therefore 
be used below: 

Scheme (1.2) is correct, if, for T&T,, and VaV,, 

(1) problem (1.2) is solvable, whatever ,yO E I, p(t) E /, 

(2) 

k/(t) II(i) < 4 ll~ollw + M 2max Ilq(t) II(Z) + Mz’ max llcpt (t) II(w, 
07 UT 

where if2 ‘2 3 is independent of V and T. 

Generally speaking, II -II(z) and II * 11(2*) are different norms. 

(1.9) 

A similar concept of correctness can he developed for three-layer 
schemes. 

Returning to scheme (1.21, it is solvable if the inverse operator 
3-l exists. In this case, 

Hence 

y^’ B-Y+/ + zB-lcp, S=B--A. 

llyil < IIB-‘SII llyll + dlB-‘VII. 

The existence of 0-l and the condition 

lIB-‘SII < 1 A- ci’t, ci = con& > 0, 

are obviously sufficient for stability 02 scheme (1.2) provided 

II&, = llyll, llq$z) = IIB-‘dl. 

For, from (1.101, (1. ll), 
A 

llyll sz (I+ w) llyll + z IIB-WI, 

llyjll 4 exp(citj) [ IIYPII + & 7 IIB-i~llf]. 
p=i 

(1.10) 

(1.11) 

(1.12) 
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comparison with (1.o) shows that (1 

& = exp (c&3), 

If it is required that llB-ijl: 

9) is satisfied, where 

(1.12) gives 

llyjll < exp(cttj) [llydl + c2 i a IWII 1. 
y=i 

(1.14) 

The definitions of correctness and the sufficient conditions (I.Z3), 
(I. 14) hold whatever the normed spaces. 

The basic question is: what properties ;nust the operators ,1, R have, 
in order for scheme (1.2) to be correct? An effective answer can be 
obtained by considering schemes in real Hilbert space (see Section 2). 

Before considering the idea of approximation for schemes, and the 

abstract space !IN with the norm II -!IN, consider space if0 with norm II * 110. 

We assume the existence of a linear operator PN, associating a vector 
u E ‘3, with a vector ZiN = P;vu of space !&I and that the norms are 
matched 

k.n IIRv~IIN = Ilullo. 
N-h-a 

(1.15) 

Given the set V E ife (say the set of solutions of the initial prob- 
lem), consider the difference 

Z=~-P&?, 

where v(t) E V, y(t) E !fN is 

z(t) E H;v for t E OS, 

the solution of equation (1.2). Substitut- 
ing,y =z tPw in (1.2). weget Ilz =Rzt +4z =y, whereyi=cp- 
(~Ut,N + .&N), V&I = P&U, 8# E f&v. The vector y = q(t; U) of set I”rN is 
called the error of the approximation for scheme (1.2) on the set VC 
With each IfN we associate a number h,~ > 0 such that the seqnence {h,v) 
convergent to zero as Y 4 0 : 

:i,. 
iS 

Scheme (1.2) will be said to have an approximation C)(rk + hN&) in the 

norm II - 11~2) on V if, given any v 0: V and any VA vo<.‘l~ <ie) and 7 < lo 
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Consider two schemes: lTiy = q, l&y” = G. 

Let V(V) and F(V) be the corresponding approximation errors on v. 

The schemes ni and R2 will be said to belong to the class of schemes 
.S(k, m) or to be equivalent in the sense of the approximation O(lk + h,ym) 
on V in the norm 11 - !1(31, if 

where Ml 20, ;f2 20 are independent .of T and hN; if 51, = 0, n,, 112 be- 
long to the class S(k, m), or with vi = 0, to the class S(m, m). 

Various classes S(k, m) of schemes equivalent in their order of 
approximation will be considered. 

2. Sufficient conditions for stability 

1. LINEAR OPERATORS IN HILBERT SPACE 

Let I1 = [$v be real unitary space with scalar product ( , ),qr and the 

norm IlyllN = l/(y, y)N (the subscript Y will be omitted in future). We 

shall consider linear operators A(t), B(t), R(t) etc. dependent on the 

parameter t E 07 (and T, V) and mapping H into 4 for each t E &. 

We recall some elementary properties of linear operators [41. Let u, 
z be vectors of H. We shall write 

A > B, if (Au, U) > (Bu, c) *‘; 

A = B, if Av = Bu for all u E H. 

The operator A is selfadjoint: A* = A, if (Au, z) = (v, ‘4.2); posit:ve: 
I > 0, if (4u, U) > 0. v # 3; positive definite: 4>SE, if (.4v, v) 2 

6 II u II” (6 is the unit operator, 6 is a positive number); semibounded 

from below: ,4> - I%!?, if (Au, v) > 611 u 112. (Note: if (Au, v) = @u, u) 

for all u E !i, the operator form of the condition Aa .? will not be 
used. ) 
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A positive operator 4 = 4( t ), dependent on t e &. will be termed 
Lipschitz continuous in t if 

((A+ v)[\(Q&, u), (2.1) 

where q = con& > 0, AI L=: (A - k)/t, A = A (t), A’ = A (t -r), t = tjE CDT. 

The necessary and sufficient condition for the existence of the in- 
verse operator 1-l is that 4v = 0 only if v = 0. Hence, if .1 is positive 
(i! > O), 4-l exists. 

2. TWO-LAYRR SCHEMES 

Consider the set of all two-lsyer schemes 

Byt + AY ==s,(O, OGtE@r, Y(O) =!/o, (2.2) 

where B = R(t), 4 = .1(t) are linear operators given on II. 

Suppose that, for all t E G: 

1) A = A(t) is 

self~~oint, 4* = 4: (2.31 

Dositive, A > 0; 

Lipschitz continuous in t : 1 (Apz, z) 1 < cz(dz, z), z E 11; 

(2.4) 

(2.5) 

2) the operator B = B(t) is 

positive, R > 0. (2.6) 

The set of two-layer schemes (2.21, whose operators A = A(t) and 
R = R(t) satisfy conditions (2.3) - (2.69 will be termed the initial 
family of two-layer schemes and denoted by IF2. 

It is always assumed in future that conditions (2.3) - (2.6) are 
satisfied, i.e. only schemes belonging to the initial family are con- 
sidered. 

Recalling the definition of correctness of scheme (1.2) given in 8 4 
of Section 1, the solution of problem (1.2) will be estimated in the 
energy norm 
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!I Y II(l) = II Y Ila = WW& !I). (2.7) 

For the right-hand ‘:ide WI- use the norms 

Since !3 > 0, problem (.A. 2) is solvable whatever so E ‘I, q(t) E I. 

The sufficient conditions for two-layer schemes (2.2) of IF2 can now 
be formulated. Everywhere, c 1, c2, . . . denote positive numbers independ- 
ent of V and T. 

Theorem 1 

If 

B > ‘/2T( 1 - qz)A, (2.9) 

scheme (2.2) Of IF2 iS stable for sufficiently Small T<TO, To < l/2 cl, 

so that the solution of problem (1.2) satisfies 

II y @) ia < Ml II Yn Ila + Mz “o”,” [v-%9 cp)“’ + W’(Pr7 ~,-)“I~ (2.10) 

where !!1, M2 are positive constants dependent only on c 1, c 2 and i o. 

Coro 1 lary 

scheme (1.2) is stable whatever T > 0 and N,, ,M, depend only on c2 and to. 

Theorem 2 

If 

B 2 EE + '/zt(l - w)A, e = const > 0, (2.12) 

then the a priori inequality holds: 

for (2.13) 
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Coro 1lar.y 

With 

B 2 q2tA + EE, 0 < E < 1, 

(2.13) holds for all T > 9. 

Conditions (2.9) and (2.12) distinguish the classes 
from the initial family of two-layer schemes (2.2). 

(2.14) 

of stable schemes 

As a rule, (2.9) and (2.12) with cl = 0, i.e. (2.11) and (2.14), will 
be used as sufficient conditions for stability. 

Putting R = E t TR, we write scheme (2.2) in the second canonical 
form 

From (ll), 

yt + TRilt + A y = q. (2.15) 

E+TR+A .or Ra$A-LE. 
z 

This condition will be satisfied for 

1 
R > a& where @I=~---. 

z IIA II 
(2.16) 

(If A is an unbounded operator, we formally put 1/ IIAII = 0. everywhere in 
(2.161, (2.17) etc. ). 

For, if R 2 04, i.e. (Ry, y) 2 oo(&, Y), then 

(BY, y)+z~(Ay, Y) = ((E+z.@- ‘M))Y, Y) = [ Ilrll’-&AYJ)] + 

since (AY, Y) < II A III y l12. The writing in the proof can be simplified 

by using the operator inequalities and recalling that E < (1 /II A ll)A 

and E + TR > (1/ llAll)A + zR. The condition E-j- TR > ‘/gA will be 

satisfied if (1/IlAll)A + TR > ~/zTA, i.e. R 3 o,pI. 

Similarly, condition (2.14) can be seen to be satisfied for 

R>oeA, 
1 l-e 

ue = -z- 
-- 

zllAll ’ 
O<E<‘. (2.17j 
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From Theorem 1, scheme (2.2) is stable with respect to its initial 
conditions with 82 ~04. Tbe difference between conditfons (2.16) and 
(2.17) is due to the different types of right-hand side stability. Com- 
paring (2.16) and (2.17), both can be seen to be satisfied with 

h’ 2 ‘/zA. (2.18) 

In this case, (2.19) and (2.23) are satisfied simult~~usly whatever 
T 7 0. As an example, consider the scheme with weights 

Yt + Ay”) = q), y(U) Z 

Since “y = y + agt, it reduces to the 

Comparing with (2.15), WC find that 

4 + (1 - +/. 

canonical form 

Ay = cp. 

R = ud. 

The sufficient conditions (2.16). (2.17) give [II 

o 2 (50, (2.16’) 

(T > au. (2.17’) 

In particular, according to (2.16’)‘ the explicit scheme (o = 0) 

yt+Ay=cp 

is stable under the auxiliary condition z < 2 / 11 A 11. 

A priori estimates are obtained in [‘?I for schemes with weights when 
the operator A is not selfadjoint. 

3. THREE-LAYER SCHEMES 

We specify the initial family of three-layer schemes (IF3) 

BYI f zaRysi + &I = cp, O<tEoT, Y (0) = YOY Y (7) = fh (2.19) 

by means of the conditions: the operators A = A(t) and R = R(t) are 
selfadjoint, positive and Lipschitz continuous in t (see (2.1)). 

Only schemes (2.19) belonging to the initial family will be con- 
sidered. 
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Theorem 3 

If 

B > -&A, ci = const > 0, 

R>qzA,’ e=const, O<e<l, 

(2.20) 

(2.21) 

scheme (2.19) is CUL’I’ . I (c?r sufficiently small r 6 to, ‘to < i /4ci and 
the solution of problem (2.19) satisfies 

/jyf~,=1/4(A(~+$9), ~+8)+~2 (R--/~J~)Y~_JT)~ (2.23) 

where VI, cl, are positive numbers depending only on c 1, ~2, a, arid co. 

Notice that B + 2zR > ((1 + e)/2 - W)TA > 0 for ‘t < 1/2c1. 

Scheme (2.19) is therefore solvable. 

Theorem 4 

Let 

B > 6E, 6 = const > 0, R > ‘/&(I + e)A, 0 ( E < 1. (2.24) 

Then 

Ily(t) II(i) < Mi IIy(z) II(i) + J429= IW) IL (2.25) 
T 

holds for (2.19) (whatever T > 0). where ,Jf, = Y(c2, to, c2/s), If2 = 

M(1/6, C2, to, C&h 

vote 1. If the operator R - ‘A A 2 0 is Lipechitz continuous in t, 
Theorems 3 and 4 hold provided the condition S> [(l + e)/414 is re- 
placed by 

R > %A. (2.26) 

In particular, this is true for constant operators R and .4. 

Consider as an example the scheme with weights 

Yt + A (61; + (I- a” - 02) Y + 428) = cp. (2.27) 
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Writing it in the canonical form (2.19). we get 

B =E+(or--2)d, R= ;(oi + o2)A. 

In view of Theorem 3 and Note 1, the scheme (2.27) is stable with 

The condition B>6E is satisfied for 

(2.28) 

(2.29) 

In this case (2.25) holds. 

The symmetric scheme (cri 

Note 2. Putting R = 0 in 

= 
02 = u) is stable if 

o > 1f4. 

(2.19), we get the explicit scheme 

(2.31) 

BY! + AY=W 

which is unstable whatever the operator B > 0. 

IS conditionally stable for z < 2 / II A II. 

We recall that the two-layer explicit scheme (R G 0) 

Yt+AY=cp 

While the stability of the three-layer scheme is determined by the 
operator R only, that of the two-layer scheme is determined by R + E/r. 

3. Regulerization of schemes 

We now turn to some general methods of regularization. 

1. BASIC REQULARIZATION PRINCIPLE 

The sufficient conditions for stability 
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1 1 
R~OoA, O” = 3 -- for the two-layer scheme 

ITllAII ’ (3.1) 

R> ‘1 LA, E > 0, for the three-layer scheme (3.2) 

impose very weak restrictions on the selection of the operator 11. In 
consequence, it becomes possible to transform (regularize) a scheme by 
modifying R In such a way that conditions (3.1) - (3.2) are still satis- 
fied. In future, ,7 will be termed a regularixer. 

Consider, for instance, the scheme 

(E’ +-zR) yt + AY = cp, 0 g t E ‘us, Y (0) = Yo. (3.3) 

Let condition (1) be satisfzed, I.e. scheme (3) is stable. Any other 
scheme (3.3) with regularizer R >R will now also be stable. The aim of 
regularization is to remain within the class of stable schemes and to 
select R in each concrete case so as to satisfy extra requirements such 
as economy (i.e. minimum amount of computatian for finding the solution 
of the difference problem) or a given order of approximatfon. These re- 
quirements compete with one another, and it is far from easy to satisfy 
both simultaneously. Since solving problem (3.3) amounts to inverting 

the operator E + TR: y^ = (E+zR)“(E--((A-R))y+ (E+TR)-‘rp, 

R must be selected so as to minimize the number of operations q(E) re- 
quired for inversion of E + TR. Concrete methods of selecting R will be 
found in Section 4, as well as in $9 2 and 3 of the present section. The 
basic principle of regularlzation consists in selecting en. eq. oper- 
ators as regularlaers. (The case when the operator 4 also changes during 
regulariaation will not be considered. ) 

The positive operators .4 = A(Y, T; t) and 13 = B(Y, t; t) will be 
termed en. eq. operators if 

YiPY, Y) =z (AY, Y) G WPY, Y) (3.4) 

for any y E H,v and t 5 r+, where yl, y2 are positive numbers, in 
general dependent on 7 and V; if they are not dependent on T, Y, we call 
4, B uniformly en. eq. operators (with respect to -r, Y).* 

l In [151, the difference operator B satisfying (4) is called majorant with re- 
spect to A: in [IS], A and B for which (3.4) is satisfied are termed spec- 
trally equivalent. A, R are assumed selfadjolnt. and H a finite-dimensional 
space. Neither of these assumptions is made here, nor do we use any inform- 
ation about the spectra of A and B. 
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Uniformly en. ea. operators will always be considered, except in 5 2. 
Conditions (3.4) are written as the operator inequalities 

9 G A 6 y& 

Theorem 5 

Let 4 = A(t) be positive, eelfadjoint, and let it satisfy the 
Lipschitz continuity condition 

I (A, (t) Y, Y) I <cQ(~(~)Y, Y), i(O) I=: A’“’ (t - z), 

where .4(O)~t) is unifo~ly en. eq. with A(t), so that 

y,A(O) < A < yyl(*). 

(3.5) 

(3.6) 

(3.7) 

Scheme (3.3) with regularizer R = 0.4 (0) is stable, and Theorems 1, 2 
hold for it, with T > 0 arbitrary and 

0 b ll2y2. (3.8) 

Proof. From (3.6) and (3. +I), 

i.e. (3.3) belongs to IF2. The conditions of Theorems 1, 2 are satisfied, 

since B = E + ZR > E + */pqwi(O) 2 E f l/z~A_ The theorem is proved. 

Vote 1. Theorem 5 remains in force in any of the following cases: 

(1) u = uoy2, uo = ‘la - 1 I (Pilate); i 2 A is inde~nd~t of t, aad in- ) 

stead of (3.7),0 < A < yzA(O). 

Vote 2. The operator A to) mar be non-selfadjoint. 

Now consider the three-layer scheme 

By1 + xsRyii -!- AY = q, O<tE@*, y(O), y(r) given (3.9) 

Theorem ‘i 

bet (3.6) and (3.7) be satisfied, A(t) > 0 and A*(t) = A(t). If 
4 (o)(t) is selfadjoint and Lipschitz continuous in t, i.e. 

I (&(O) (q y, Y) I < c4 (J’“‘y, y), (3.10) 
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then the a priori estimates (2..22) and (2.25) for 

a> l+E 4 Y.% C<EGl. (3.11) 

hold for scheme (3.9) with regularizer 

a = o&o, 

This theorem is proved simply by showing that scheme (3.9) belongs 
to IF3. We just observe that condition (3.2) is satisfied, since 

)vo’ote 3. The constants Wr, Wz in the a priori estimates depend on yr 
but not on ~2. The requirement that y1 be independent of T and Y is 
therefore natural, If A, 4 (0) are constant operators, (3.7) can be re- 
placed by the weaker condition 

Y2 
iS 

be 

0 < A < yzA(O’. 

Theorems 5 and 6 also remain in force when y2 depends on T and Y. If 
depends on T and Y, only the error of the approximation of the scheme 
affected. The case when y2 depends on 11 A 11, and hence on V, I, will 
considered in 8 2, 

The choice of a suitable en. eq. operator is of basic importance in 
constructing stable schemes for concrete problems. Several en. eq. oper- 
ators A(o) will be listed in Section 4 for the case when A = - A, h be- 
ing the elliptic difference operator. 

Two elementary examples of difference scheme regularization will be- 
considered here, and each will be shown to correspond to a specific 
method of selecting the en. eq. operator (by Theorems 5 and 6, the 
regularizer R is then taken as R = OA (0)). 

2. EXPLICIT THREE-LAYER SCHRMES 

The simplest en. eq. operator is the unit operator 

Since A < 11 A II E, the condition A < y&O) will be satisfied with 

y2 = (1 A 11. We shall assume for simplicity that 4 is a constant operator 
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(independent of t). Consider the three-layer scheme. For this, N =.4(O), 
cr>-% yg. Recalling that y2 = )I 4 I), we get i? =aE, where aa*4 II 4 Il. 
The corresponding three-layer scheme is 

BY; + at2ytt + AY = cp. 

This regularization is meaningful if F is either the unit operator or is 
such that inversion of .S t 2o-rE can be performed with a small number of 
operations. With R = E, we get the explicit three-layer scheme 

Y; + at2ytl + A y = cp, (3.13) 

which is unconditionally stable with 

o > l/4 II n II. (3.13) 

In the introduction we mentioned the rhombus scheme for the equation 

of heat conduction 

au d2U 

dt- ax2 --++(~,t),~ O<x<l, 0 d t < to. (3.14) 

We specify boundary conditions of the 1st kind with x = 0 and x = 1. Let 

U)/, = {Xi = ih, i = 0, 1, . . . , N,h= I/N} be a mesh on O<n&l, & = 

(Lj = jT, j = 0, 1, . . . ) No,‘t. = t,,/Ro} be a mesh on 0 <t&to, & = 

3, X & = {(Xi, ti)) be a mesh on 

(0<2:<1, O<‘<q, 

Ff be the space of mesh functions specified on & and vanishing for i =O, 

y, 

N-i 
-- 

(Y,U) = 2 Yid, IIYII =I(Y:Y) 
i-1 

are the scalar product and norm in !f. 

The rhombus scheme is 

j+i j-i 

Yi _yi = YA - (Yi’+i+ Y?) + Yij+l 
22 h2 

+ Cpij. 

To reduce it to the canonical form, we recall that 
yij.*r + yi+l = j, + i = (i - 2Y + g) + %I = &i + r2yn, 

yi-l- 2yi + Yi+l = hays i’ 
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which gives 

Y; + + zaYit = AY + cp, AY = Y,,. (3.15) 

Comparison of (3.15) and (3.9) shows that -4.y = - Ay, R,y = ,y/hz. Since 

!I A II = (4 / hZ) co9 (nh / 2) < 4 / P, then R = E/h2 > A/4, i.e. the sta- 

bility condition is satisfied. The a priori estimates (2.22) and (2.25) 
hold for the rhombus scheme whatever T and h. 

Next, comparison of (3.15) and (3.12) shows that the rhombus scheme 
belongs to the class of three-layer schemes with regularizer R =uE, 
where a satisfies (3.13). 

The analogue of scheme (3.15) is easily written for the equation of 
heat conduction with variable coefficients when one or more space vari- 
ables Xi, x2, . . . . np are involved. In (3.15) A,y has to be replaced by 
a difference operator approximating the elliptic operator, and u has to 
satisfy a> ‘4 I( 4 II. It only remains to evaluate 

lMll= Ml < cz i 4k2, 

api 

where c2 is the maximum of the thermal conductivity, and to put 

P 

(T = cp 2 h,-2 (it is assumed for simplicity that the region of vari- 
a==1 

ation of x1, , . ., xp is a p-dimensional parallelepiped and the mesh Oh 
is uniform with respect to each xo; these restrictions can easily be 
lifted). 

The explicit three-layer scheme is well known to involve an approxi- 
mation error O(rzh-2 t h2) and to converge at the rate 3(-r + h2) pro- 
vided th-2 <co = const. It can be shown to be uniformly convergent for 
p<3. 

3. ASYMMETRIC SCHEMES 

R does not need to be selfadjoint for 
the case when 1(e) is expressible as the 
operators 

Then 
/l(O) = Ai + Al, 

a two-layer scheme. Consider 
sum of two mutually adj oint 

A2 = A,‘. 
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(Aiy, y) = (Azy, y) = 0.5W”)y, y). 

The regularizer 17 can be 

Rt = y2A1 or Rz = ~~42, Rz = Ri’. (3.16) 

Since (Aiy, y) = (Azy, Y) = 0.5 (A(O)y, y), Y~(A(~)Y, Y) 2 (41, ~1, 

(&A Y) = (R2y, y) = 0.5y2(Afo)y, y) 2 0.5(Ay, y), the resulting schemes 

are stable and satisfy Theorem 5. 

In particular, with A(O)y = Ay (ri = y2 = 1) we have 

R& = AN, R2y = Azy, R2 = Ri’. (3.17) 

Schemes with regularizers (3.16) will be termed asymmetric or tri- 

8ngulsr. 

Take 8s sn example the asymmetric scheme of [sI for the equation of 

heat conduction (3.14) with boundary conditions of the 1st kind. Here, 

Ay = -Ay, Ay = YG (see 9 21. Noting that (y, yz) = 0.5hllyEl12, 

- (y, yx) = 0.5hl15~l12 = (y, yz-), AY = - yrx = -_yr / 12 + 3% / h, we can 

writeA as.4 =A1 tA2, where A+y = y-, / h, A2y = -y, / h. Putting 

R = A 1 and R = A, next, two asymmetric schemes are obtained (written in 

the canonical form, [Sl: 

Yr++Y&= Y&S% f&y = ; Y;, (3.18) 

Yt-$Yxt = y;.+cp, Rzy = -3~“. (3.19) 

Each of these is unconditlonslly stable, since (R1.y, y) = (R,y, y) = 

0.5(Ay, .y). The stability is achieved at the expense of poor 8pprOXima- 

tion: schemes (f. 18) and (3.19) give 8n approximation O(T/!I + h2), 
whereas the explicit scheme yt = yir t Q gives 0(-r t h2). Altern8tiOn of 
schemes (3.18) and (3.19) from layer to layer was proposed in M for 
improving the accuracy. The resulting mixed scheme has the accuracy [I?] 

O(T2h-2 + h2) = O(h2) for th-2Gc0 = const. 

Asymmetric schemes can easily be written for the equation of heat 

conduction with Variable coefficients by means of Theorem 5: 

(3.20) 
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Here A,y = - (a~;)%, say, a(x, t) = k(x - 0.5 h, t), 

Yl = Cl, Ya = cz, A’O’y = - y;;x, Rly= xy;, Rpy=+yy,. 

More asymmetric schemes (4 for p = 2 end 8 for p = 3) can be written for 
the multidimensional equation of heat conduction 

lh 
-= 

5 8% 
-++f%t), 

at csid5,2 
P> 1, iz=(q...,~~)~G, 

0 < t s to, 

Let p = 2. Possible regularizers are 

&y = $Y;, + $yf,’ Ray = - h yr, - h yx,, 
1 2 

RSY = ; Y,, - &Y.,, J&Y = ;Y;,- 
2 

& YX,, 

(3.21) 

X2 = R:, (3.22) 

R4 = R;, (3.23) 

where h,, h, are the Intervals of the mesh oh(G) relative to x1, x2. We 
shall assume for simplicity that G = Gc is a p-dimensional parallele- 
piped. If Oh Is non-uniform, ha in (3.22) snd (3.23) must be replaced 

by ti, = 0.5(ha f&Pa)). The operators R, and H,, R, and R, are mutually 

adjolnt. All 4 schemes are unconditionally stable. Hy alternating 8, and 
92, h and 2, from layer to layer, alternating schemes are obtained 
(explicit schemes with alternating directions) with the accuracy 
0(12h-2 t hz), where h = min(hl, h2). Such schemes were proposed in hl . 
The ssme regularlzers, multiplied by c2, where c2 is the maximum of the 
thermal conductivity, can be used for the equation of heat conduction 
when the coefficient Is variable. Extension to any number of dimensions 
involves no difficulties. We can take 

&Y = 5 ; Y;,, 
p a 

a=1 a 

ROY = - 2 r~xa 

a=1 a 

and so on. The resuliing schemes are economic, since explicit formulae 
are used to compute ,y at a new layer, 

4. METHOD OF FACTORIZATION. FACTORIZED TWO-LAYER 
SCHEMES 

Many economic schemes have been proposed (see Introduction) for the 
numerical solut Ion of the multidimensional problems of mathematical 
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physics. After reduction to the canonical fom (in the case of two-layer 
schemes), most give schemes (3.3), in which fI is the product of several 
operators. The terminology for these schemes has not yet been entirely 
settled (method of alternating directions, splitting schemes, splitting 
operator schemes, method of fractional steps, etc. ). Without pretending 
that there is anything final about it, we shall use the term factorized 
schemes (Fs) to describe those in which the ooerator on the upper layer, 
R in the case of two-layer, and 0 + ZTR in the case of three-layer 
schemes, is the product of a finite number of operators, e.g. 

l3=&,=B i... L? ‘... B,, (3.24) 
8-i 

This term does have the advantage of indicating the particular nature of 
the regularization procedure, i.e. factorization of the operator on the 
upper layer. 

The formal method of constructing FS [lo, 121 is as follows.* 

Given a scheme having a definite order of approximation; it it is un- 
stable, we transform It, in accordance with 6 1, to a stable scheme by 
means of a suitable choice of R. Generally speaking, this involves a 
change in the order of approximation (better or worse). 

Take the case when If is 

R=%R, 
e-1 

and satisfies the stability condition 

(3.25) 

(3.26) 

so that the initial scheme is 

(E+r&++&~=q 
cad 

(3.27) 

. FS were considered as initial schemes in [81. It was noted in [201 
that an earlier h1I economic algorithm for solving the multidlmen- 
sional equation of heat conduction (with constant coefficients in 
the parallelepiped) can be obtained by a formal method of .approxi- 
mate’t factorization of the operator on the upper layer, as a result 
of which the natural multidimensional scheme is replaced by a factor- 
ized scheme (see also 1111). 
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Consider the scheme 

yt+~fbt+Ay=Icp, (3.28) 

which belongs to the same class of stable schemes (a> ad). Choose i 

so that B = E -I- cl? can be factorized, e.g. 

E+d=; (E+zRa 
a=i 

Scheme (28) now becomes 

?i (E+v%)yt+Ay =;, 
a=i 

Comparieon of (3.28) snd (3.30) shows that 

(3.29) 

Y (0) = Yo. (3.30) 

R=R+xQ, B = E + TR = E-j- zR’+ T?Q (3.31) 

Q= ~R,&+T 2 Rtx.R&f...+~~-~~Ra. (3.32) 

a-=6 atf+CV cr=i 

Turning to the stability conditions for FS (3.30), since /? =E + 
rR t ~9, the sufficient condition for stability 

El > 0.5 T (81 - 2~2) A (3.33) 

will be satisfied if 

where c1 is an arbitrary positive constant independent of v and Y. We 
have thus proved 

Theorem 7 

Let the initial scheme (3.2’7) be stable, i.e. R 2 cd. Ihen the FS 

(3.30) will be stable in the norm llylla = J!(Ay, y) for small r< TV, 

TO < l/4 cl, provided (3.33) is satisfied. The estimate (2.10) holds for 
the solution of problem (3.30). 

Vote I. If 

Q >, -46 R > 0.5A, (3.34) 



104 A.A. Samarskii 

the FS (3.30) is stable for T G l/cl and (2.10). (2.12) hold for it 
(with E = 1). 

For,B = E + zR+z2Q>E + ~(4 - cir)R>0.5’t(l - cir)A + E, i.e. 

6aE, since PaO.5 4, 1 - ~~~20. 

Convergence of a scheme only requires that it approximate a differ- 
ential equation and be asymptotically stable, I.e. on a finite enough 
mesh. For a scheme to be realizable, it must be stable on a practically 
acceptable mesh (1. e. a ncoarsen mesh). This requirement becomes speci- 
ally important in the case of variable coefficients. The condition for 
the mesh intervals to be small, T< lo end h&ho. where vo, ho depend 
on the coefficients of the differential equation, is too onerous and 
can lead to the scheme being unrealizable in practice. 

Let us distinguish the class of FS which is free from this defect, 
i.e. FS which are stable whatever T. 

Theorem 9 

Let II,, . . . . R, be selfadjoint (R,* = R,), non-negative (R, >O) and 
commutable (R,Rk = RkRs for all S, k = 1, . . . , m). Then scheme (3.30) is 
stable whatever T, provtded 

R=; R,>o,,A. (3.35) 
8-i 

PFOOf. By the Theorems of [22, 231, we have RJ,>,O, if R, 20, 

Rk>O, i.e. Q,)O. Since R>aoA(E+6R>0.5tA), whereR”=R + 
TQ > R > ad whatever 1. Scheme (3.30) is uncondlt ionally stable. 

Note 2. When speaking of unconditional stability, all the conditions 
are understood to be satisfied for the operators A (see Section 2. 9 2) 
and Rs whatever T and Y(hN). 

Vote 3. If m = 2, the theorem Is still true if, instead of being 
selfadjoint, R, and R, are adjoint to one another (R, = RI*, see 6 4) 

and R = Ri + R2 > wl. For, 81= E -I- TR i-22RiR2 > E + TR > O&A, 

since (RtRzy, y) = (&‘R2y, y) = IlR~ll~ > 0. 

TWO conditions need to be observed when factorizing: 

(1) FS (3.30) belongs to the same class of stable schemes a8 the 
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initial scheme (3.27). 

(2) FS (3.30) and the initial scheme (3.27) are equivalent in order 
of approximation on a set of smooth functions V c ‘10 in the sense of 
the definition of Section 1, 8 4. 

The right-hand side sometimes has to be changed in order to retain 
the order of approximation. This applies, in particular, when the bound- 
ary conditions are inhomogeneous [81. In the operator form of the differ- 
ence equation, the boundary conditions are taken care of by varying the 
right-hand side at the mesh base-points immediately adjacent to the 
boundary. In an auxiliary operator 729 is introduced, 9 has to be changed 
to $ at these base-points [21. 

The following problem is obtained for the error z = ,y - 4~: 

(E + TR + T”Q)Zt + AZ = $, 0 < t E oz, z(0) = 0, (3.36) 

where $i is the approximation error for scheme (3.30). Let ‘p = $. Then 
we can write 

‘3;=++*, $=Q,, 11 = T2PNvt, 

where v is the approximation error for the initial scheme (3.27). To 
judge whether (3.27) and (3.30) are equivalent in order of approximation, 

we save to estimate $ = Qq in some norm 11. 11s). This norm is 

if Q is a selfsdjoint 

Qrl= 

Ili43) = llqll q = I(Qrlvrl), 

positive operator. We write 3 as 

m 

2 vQarl) q = ~52-r;, c=PNvt, 

s=2 

and introduce the notation 

(assuming the 3, to be positive selfadjoint operators). 

Theorem 9 

Let 
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R= &i,g, R,‘=R,>O, R,Rk=RkR, 
84 

for all s, k = 1. 2, . . . . m, R>od. 

Then P’S (3.36) with right-hod side 

$=Qrl+$ (3.37) 

satisfies for any T > 0 the a priori estimates 

IIs@) II, < ~~~~~~1~~11~ + ~l~lll, (3-W 

lb(t)lh <Mm p [ i ~s+“%i(~) llq, + IIW)+ z2Q;;;ll 1, (3.39) 
J 

:VoVote 4. Let 

Q 2 ~oQ-w& 80 > 0, a > 0, 

I(Qm9 1~ s(~,~~u)+~~M'(n,y,y),, 

where 

(3.40) 

(3.41) 

(3.42) 

R,, s = 1, 2, . ..* m are operators satisfying the conditions of Theorem 

9. Now, if we replace Il{lls by Ill)liq and Il~llq, by !hi! is. in (3.38) 

and (3.39), these latter hold for small T<TO. Conditions (3.40) and 
(3.41) are satisfied for a number of FS’s approximating a parabolic 
equation in the parallelepiped (0 < sa < I,, a = 1, 2, . . . , p). Eeti- 
mates similar to the above were obtained for them in [91. 

There is not space here to dwell in detail on more complex types of 
estimate. For instance, if the conditions of Theorem 9 are satisfied 
and v, has the form 
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the solution of problem (3.3G) satisfies 

where 

A$% a = 1 t 2 3 ..‘I m, are selfadjoint positive operators, 

(3.43) 

(3.44) 

and 

A@) = is en. eq. to 4 operators (ygW 4 A < ygf(O)). 

a=4 

5. THREE-PAYER FACTORX~ED SCHEMES 

Three-layer schemes can be factorized by several methods. Three 
methods will be considered here for the scheme 

g + +RYT, -t AY = VP, O<tE% Y (O), Yt (@given, (3.45) 

belonging to IF3, assuming that 

m 

R = XRa. 
asi 

Using the relations 

Yp = “12 (Yt + Y& TYTt =Yt -Yp 

(3.45) can be rewritten as 

(E + 2zR) yt f= - 2511, F, = (E - 2tR) yT+ 2Ay - 29. (3.46) 

Substitution of fyi, = 2% - 2yi- in (3.45) gives 
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(B + 2zR) yp = - FP, Fz = Ay - 2zRyi- - cp. (3.47) 

Since yg Yc + ll!ZrYi* 7 it follows from (3.45) that 

(E + 2rR) yit = - Fsc F,=;(Y~+ AY -9). (3.48) 

The right-hand sides F,, F2 and F3 are known. Determination of 7 amounts 
to inversion of the operator E + 27R. Replacing it by E + ~TR and 
putting 

E+2zH=fi (E+~TR~)=E+~~R+~GQ, (3.49) 
a-i 

Q= zR&+2~ 2 RaRBR,+...+(2~$~-~fiRcr, 
atS atB<y a=! 

(3.50) 

three FS’ s are obtained, which can be written after simple manipulations 
as 

(E + 49Q)yq + ~~ (R + 224) gsi + AY = @, (3.51) 

(E + ~T’Q) YI+ z2Ryrt + Ay = 6, (3.52) 

Y~+W?+~~Q)Y~; +AY =:. (3.53) 

Some sufficient conditions for the stability of these schemes will 
be stated. 

Theorem 10 

Let 

Rs* = R,, RJ& = RkR, for all S, k = 1, 2, . . . , m, (3.54) 

(3.55) 

where R, are independent of t . Then each of schemes (3.51) - (3.53) is 
stable whatever T > 0. and their solutions satisfy (2.22) and (2.25), 
in which we have to put 

llill& = ;( A 6 + Y), y + Y) + z2 (@ + 2zQ - $4) yr, i/t) (3.56) 
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for schemes (3.51) and (3.53), and 

for scheme (3.52). 

This is proved simply by showing that the conditions of Theorems 3 
and 4 are satisfied. Notice that the present conditions (3.54) are of a 
constructional type. For instance, there is no difficulty in selecting 
the operators R, for systems of parabolic equations. It is easily shown 
that Theorems 3 and 4 imply 

Theorem 11 

If 

then (2.22) snd (2.2.5) hold for schemes (3.51) - (3.53) when 7 is small: 
v< fo(C1). 

m 

We write z2Q as 2 $9,. 

The order of accuracy of schemes (3.51) - (3.53) csn be estimated 
from 

Theorem 12 

The solution of any one of equations (3.51) - (3.53) with right-hand 
side 

; = ZeQrq (3.59) 
J 

and homogeneous initial conditions ,y(O) = ~~(0) = 0 satisfies 

provided the conditions of Theorem 10 are satisfied, Ilyll(~) nelng de- 
fined by (3.56) and (3.57). 
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When the order of accuracy of an FS is estimated, the approximation 
error is generally written as the sum of several terms: (q~ = yll + .., 
+ vk), each of which is estimated in its own norm. Combining Theorems 
11 and 12, the estimate 

is obtained for the error z = y - PNU, where u is the solution of the 
initial problem (8 4). Various algorithms csn be suggested for solving 
each equation. They all amount to successive inversion of the operators 

E + 2~Ra. For instance, we rewrite scheme (3.51) as 

” (E + 2rRa) yt = -Fi. 
d 

Denoting w = yt, we find ,T by solving successively 

(E + 2~Ri) wi = -Fi, (E + 2~Ra) war = Wa--i, 

y^ =y+xwm. 

Schemes (3.52) and (3.53) are written as 

fi (E + 2d?,) y,-, = - Fs. 
a-1 

If we then put w = yi , w = yZ, we get 

(3.61) 

the equations [lOI 

1 < a < m, (3.62) 

(3.63) 

(3.64) 

(E + 2xRi) wi = -Fz, (E + 2TRa) wa = wa-1, l<Ct<m, 

i = ; + 2zw,, (3.65) 

(E + 2~Ri) wi = -F,, (E + 2TRa) wa = wa-i, 1 < u < TTZ, 

i = 2y - ; + +w,. (3.66) 

To realize algorithms (3.55) wd (7. ‘X), storage of three v& ri’,i is re- 

quired, while for algorithm (3.62), two vectors (y, w,,~) must ;:<J stored. 
But the total volume of computation is the ssme for all three algorithms. 
They were used in [lo, 141 to solve the multidimensional equation of 
heat conduction in a parallelepiped. 
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Consider two cases when the scheme 

BY; + @RY, + 4 = cp, O<tE&, y (O), y (z)iiciven, (3.67) 

can be factorized, without assuming that 13 is the unit operator. 

1. Let R, R,, R,, . . ., R, be selfadjoint, constant, positive and 
commutable, and 

R=iR.,FA. 

a=i 

Replacing R + 27 R by 

B fi (E + 2~ B-IRa) = B + 2zR + 4+‘Q, 

a factorized scheme similar to (3.51) is obtained: 

(B+4~2Q)yt'+~~(R+2zQ)i/ti + AY = cp, Y(O) = YO, y (‘t) = yi (3.68) 

which is stable, since 0 > 0, (I* = Q. Problem (3.68) can be solved by 
using the algorithm 

(B + 2zRi) wi = -Fi, (B + 2~Ra) wa = Bwa_i, a > 1, (3.69) 

;= y+zw,. 

2. Let A(O) = i A,, BW = i Ba be constant operators en. eq. to 
a=1 tii 

A and 8, so that 

We put 

O<A < ylA(O), 0 < B < y&O). (3.70) 

Ra=R’,“‘+RE’, 
a==1 

Rm_ i+e 
a - 4 yda, RLb’ = ; y2Ba, E > 0. 
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Recalling that yto - ‘fizy-,,= yit (3.67) can be rewritten as 

rjE+~R.)m+By;+&=~p, Y(O) = !/o, Y(T) = Yi. (3.71) 
a+==f 

This scheme can be factorized by replacing Ej- xRa by the product 

fi (E-f-R,): 
ad 

(3.72) 

We reduce FS (3.72) to the canonical form 

The conditions under which this scheme is stable are: (1) R* = !1 > 0, 

A,’ = Au > 0, Ba’= B,> 0; (2) A,, A2,.-.,A,, Bi, Bz,...,B, 

are nutually ~~utable. The condition R = R + Q i a Z (1 i- e) A 14 is 

satisfied, since Q > 0, R b E 1% -k ‘14 (1 i- E) A by construction. Scheme 

(3.73) belongs to IFS, and Theorems 3 and 4 hold for it, with 

The solution of (3.72) is found by successive inversion of the operators 

E + Ra, a = 1, 2, . . . , m (cf. (3.65)). FS (3.73) can be used for solving 
problems of mathematical physics that lead to the abstract Cauchy problem 

cs(tg +4w = f(f) (3.75) 

in real Hilbert space. The relevant FS (3.73) has the first order of 
accuracy in v. By considering schemes with a larger number of layers, 
economic schemes of the second order of accuracy in r can be constructed. 

Three-layer schemes of the type 
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Yi, + +R&+ -4Y = cp, 0 < t E 05, y (0) = Yo, Yt (0) = go, R = s Ra, 
a=1 

(3.76) 

are factorized sjmilarly to scheme (3.45); E + 2tR in (3.46) - (3.48) 
has to be replaced by E +r2R. The resulting factorized schemes are 

(E + taR + V~T~Q) yit + zSQya -t- Ay = cp, (3.77) 

(E + .c~R) yst + ~‘Qyg + A y = cp, (3.78) 

(E + ,c2R + ~“0) y-it + Ay = ‘p, (3.79) 

similar to schemes (3.51 - (3.53). Here, 

Q= xRRo,Rp+~2 2 Rc&~R,+...+=~-~fiRa. 
ace a<tXv a=i 

(3.80) 

The sufficient conditions for stability are similar to the conditions 
for (3.51) - (3.53); their statement must be omitted for lack of space. 

4. Examples 

I.. The regularization methods described 
trated by examples for parabolic equations 

dU 
-=LU+f(z,t), 

at 
u=zz(5,t), 

in Section 3 will be illus- 

z=(zt,...,q,)~G, (4.1) 

and hyperbolic equations 

f&Z 
- = J5.2 + f(s, t), 

at2 
(4.2) 

where Lu is a 2nd order elliptic operator. 

Let C; be a region of p-dimensional Euclidean space, with boundary I-. 
Only boundary conditions of the 1st kind, specified on r, will be con- 
sidered. 

To apply the theory of Section 3, difference operators A, approximat- 
ing the differential operators L, must first be obtained. Let G,(E) ne 
a rectangular mesh in the region G + r = E.We consider the set of mesh 
functions specified at interior base-points Oh of the mesh .&, and 



114 A.A. Samarskii 

introduce into it the scalar product [241 

(Y, v) = z Y(“PP)K H = fib,, h, = i/* (ha + h(p)), 

Oh add 

where h, is the mesh interval relative to no (the mesh may be non-uni- 

form). and the norm l/Y]1 = v(Y, Y). The result is a space :J. Let (4 be 

an operator mapping .‘I into 7. The values of Ay are the same as the 
values of - A.y on the set $0 of mesh functions which vanish on the 
boundary yh of the mesh. Using Green’s difference formulae, the operator 
4 (0) en. eq. with A is easily found. As a rule, the Laplace difference 
operator 

do)!/ = -$ YGaGa, A’O’y = - py 

U-=1 

or the operator without mixed derivatives 

ACO)Y = a$1 (a, @a) Y,ak+aY A (O)y = - py . (4.4) 

is taken as the similitude operator. Once .4(O) is found, Theorems 5 and 

6 can be employed. 

2. We start with the elementary operator 

AY = (a(~)ti~)x, o<cr< a<% 

on the mesh Wh = {xi = ih, i = 0, 1, . . . , N, h = 1 IN}, corresponding 

to the differential operator ‘LIZ.= (k(z)u’)‘. In this case (using the 
notation of [121) 

(Y, V) = FYiuih, 
i=i 

The difference formula gives 

IlYll = 1(Y, Y). 

(- AY, y) = (a, Y$ < ~2 (1, Y-,“) = ~2 (- A”‘Y, z/h 

whence 

cl(A’O’y, y)< (Ay,y)<~cz(A'~'yv ~1, Ay.= 

A’O’y = - zJ&. 

(4.5) 

A’“‘y = y;;, 

(4.6) 

(4.7) 
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3. Now consider the selfadjoint elliptic operator 

AY = 5 (aa(NY,);a? o< Cl< a,(2)<% 
a=1 

(4.8) 

corresponding to the differential operator 

Lu = 5 & (k,(s);). 
a=i a a 

By using Green’ s difference formula, it can be seen that 

ci (-Aqj, y) < (-Ay, y) < c:! (--R(O)!/, Y) 7 y E %, 

where 

ACO)Y = glY;a;a. 

In this case, therefore, 

Ay=--Any, A'O'y = _py = - 

(4.9) 

(4.10) 

If a,(x) satisfies 

ciiza (&j 

the operator en. eq. 

A”‘y 

< ~cc(~) < cz~a@a) , a= ,...,p, 1 (4.11) 

with A can be the operator with separable variables 

=&LX% Ac,y = - (aa(sa)Y;,);a. (4.12) 
a=1 

4. Consider the elliptic difference operator with mixed derivatives 

Ay = + i 
a, is=1 

[(kas (zj Y;,),, + (kas (z) Yx,kaI 9 

corresponding to the differential operator 

(4.13) 

(4.14) 
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Suppose: (1) that 

(21 that G = G, is the p-dimensional parallelepiped (O< xo < I,, a = 

1, 2, . . . , p); (3) the mesh Ok = {(ilhl, . . . . iphp), ia = 0, 1, . . . . No, 

ha = lo/vo, a = 1, . . . . p) is uniform relative to each of the no. 

The operator en. eq. with 4.y = - I\y is 

A’O’Y = i A,Y, AaY = - Y;,,,, YEGO, (4.15) 
a=1 

so that c&O) & A < cd(o). Comparison of (4.15) and (4.10) shows that 

operator (4.15) is en. eq. with the operators (4.8) and (4.13). 

5. Consider the operator of the system of elliptic equations 

hyi= - $ a$ jI [(G (4 y;Jxa + (C3 @I y&J? i = 1, 2, . . . . n, (4.16) 
I = . 

Cl 5 5 (%k)” < i 5 k$%;%k c2$ 5 (%k)“. (4.17) 
i=la=l i, j=la,P=l i=l0=1 

Denoting by y = (y,, . . . , Ynj the vector, and by kap = (kasij) the 

II x n matrix, (4.16) can be written as 

^y-+ i 
a, p=1 

ilka3 (4 Y;b)xa + tka3(z) Yxa);al- (4.18) 

G = G;o is a parallelepiped, while the mesh ok is uniform relative to n, 

Recalling (4.17). an operator A (0) with a diagonal matrix of coeffi- 
cients can be taken as en. eq. with 4y = - A,y, so that 

A’?‘y = 5 Ad, (Ad = - Y&, (4.19) 
a=1 

~i(A(~)_u, Y) < (Ay, Y) d cz(A(O)y, y). 

The operator without mixed derivatives 
P n 

Ayi = 2 2 (ua’jy$;, ( 
a=1 j=l 

(4.20) 
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i=l i, j=l i=l 

can be considered on a non-uniform mesh in an arbitrary region G. For 
this, 

A”$ = $ A,y, 
a=1 

(Adf = - y;,;,. (4.21) 

6. After finding the en. eq. operators A(O), the regularizers H for 
the two- and three-layer schemes can be obtained from Theorems 5 and 6: 

where a 2% c2 for a two-lwer scheme, and (3 > ((1 f E) 14)~ for a 
three-layer scheme. All the operators 4 and Ato) written above are self- 
adjoint and positive definite. 

Let G = CO = (0 < Za < Za, cz = 1, 2,. . . ,p) be a p-dimensional 

R = crA(O), 

parallelepiped. Then the operators 4,, a = 1, 2, . . . , p commute with one 
another. The parabolic equations (4.1) and systems of equations (u = 
(Ul, . . . . un) is a vector) can then be solved by means of the factorized 
schemes of Section 3, $0 3 and 4, after putting R, = aA,. As a result, 
economic schemes are obtained for solving the first boundary value prob- 
lem; they are stable whatever T > 0 on any mesh Oh under a natural para- 
bolicity condition, and have the accuracy a( IhI* + t) in the case of two- 
layer schemes, or O(lh12 + l2 in the case of three-layer schemes. In- 
dependently of whether a single equation without mixed derivatives is 
considered, or a system of equations with mixed derivatives, the trensi- 
tion from layer to layer Is always realized by inversion of three-point 
difference operators of the 2nd order in accordance with the usual 
successive substitution formulae. 

The resulting factorized schemes are convergent when the coefficfents 
of the multidimensional parabolic equation have a finite number of dis- 
continuities of the 1st kind on hyperplsnes parallel to the coordinate 
hyperplanes. The approximation error of en FS is Investigated in the 
neighbourhood of a discontinuity in the seme way as for ordinary multi- 
dimensional schemes [lg. 241. For instance, in the cese of a two-layer 
scheme, the main role is played by the a priori estimate for the problem 

with right-hand side $ = --rRq, q = ut. The estimate will not be 
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written down, in view of its analogy with the estimates of [M, 191. 
Analogues of Theorems 9 end 12 can be used for weakening the smoothness 
conditions for the coefficients and solution, even in the case of con- 
tinuous /2,(x, t). 

The results of the general theory can readily be used for construct- 
ing economic FS in the case of boundary conditions of the 3rd kind. 

Since the szme regularizers are used for schemes apDroximating equa- 
tions of the hyperbolic type (4.2) as for a three-layer scheme corre- 
sponding to equation (4.1). there is no need for a separate description 
of the FS for (4.2); they follow easily from the general theory of 
Section 3. 

Acknowledgements. The author thanks AN. Tikhonov for discussion and 
B.V. Andreev for comments at the editing stage. 

Translated by D.E. Brown 
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