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1. DIFFERENCE schemes for solving various problems of mathematical 
physics have appeared in recent years. Economic methods for solving 
multidimensional problems have been particularly developed (alternating 
direction schemes, decomposition schemes, locally one-dimensional schemes 
etc.). A large number of different algorithms is now available for solv- 
ing a given problem. Special interest is thus aroused by the theoretical 
and experimental comparison of difference schemes, the development of 
general principles for constructing families of difference schemes 
possessing given properties, and finding the schemes in the family that 
satisfy auxiliary optimality requirements (as regards accuracy, economy 
etc. 1. 

There are various schemes which give the same results (are algebrai- 
cally identical) provided the right-hand sides and boundary conditions 
are matched in a certain way. In this case our choice of one scheme 
rather than another must be based on practical convenience. This situ- 
ation is typical for economic methods of solving multidimensional prob- 
lems. Several papers 11, 2, 3, 41 have been concerned with comparing 
economic methods. 

A comparison in [l, 21 with the operator decomposition method (for 
the equation of heat conduction in a rectangular region), to which the 
methods of [5 - 71 are reducible after eliminating the intermediate 
values, showed that the order of approximation of these methods depends, 
in the case of non-stationary boundary conditions (and for [71, in the 
case of stationary conditions also) on the method of specifying the 
boundary conditions at the intermediate step. It is shown that, by vary- 
ing the right-hand side at the boundary base-points of the mesh, we can 
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arrange for method [5] to be the same as the operator decomposition 
method 0(-r2 + h2). In CT], boundary conditions are written for the 
method of [51 for the intermediate value yntx, leading to the same re- 
sult. If the right-hand sides or boundary conditions are suitably 
matched, _the methods of [2, 5, 71 and certain others can be treated, as 
shown in [3, 41, as computational algorithms realizing the same scheme 
with split operator. All these schemes are algebraically identical. 

Additive (locally one-dimensional) schemes forming a sequence of 
intermediate (in the elementary case one-dimensional) schemes were con- 
sidered in [81 for the parabolic equation in Banach space with the oper- 
ator 

A = i A, or A = $J Aag, 
u=1 a-1 

where A,, Acrt3 are operators of simpler structure than A. For the additive 
scheme, the error of approximation is the sum of the approxiaation errors 
[91 for all the intermediate schemes (additivity of the approximation). 

From this point of view, the alternating-direction-implicit (ADI) scheme 
of [51 is a locally one-dimensional scheme of a special kind. 

2. A basic problem in difference scheme theory is to find sufficient 
conditions for stability. 

If we investigate difference schemes as operator equations in abstract 
space H with a scalar product, we can use the method of energy inequal- 
ities [IO3 to obtain sufficient conditions for two-layer and multi-layer 
schemes in a form that can easily be checked. We only make use here of 
general information on the operators such as positiveness (semibounded- 
ness from below) and selfadjointness. For instance, the the two-layer 
scheme 

@i_ +-&=o, 0 < t = j%, Y(O) = Yo, 6’ b-i;) I% 
Y = $+i , i = yj, 

where A and B are linear operators in H, and T > 0 is a constant, the 

sufficient conditions for stability, with which Ilujlf, < Ilg,J, ([ylla = 
J’(Ay, y), A is independent of t), are 

(&A Y) 2 O.WA& Y) 7 h/7 Y) 1 0, (BY, Y) z 0, 
if A is selfadjoint. Hence, in particular, we obtain for the scheme 

VI + A fW + (1 - 0) y’> = 0, 0-K t=fc,...7 St(O) = i&h 
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the sufficient condition for stability u > 0.5 - 1/~11All, since B = 
E +mA. 

More exact stability conditions involving the initial data are re- 
quired to prove the convergence of iterational schemes. 

3. In the present paper, we illustrate the above topics of the general 
theory (algebraic identity and stability) from the example of the itera- 
tional schemes for solving the stationary equation (A, t A2)v = f, where 
A,, A, are linear positive-definite operators in real Bilbert space R. 

We show in Section 1 that the AD1 scheme is algebraically identical 
with three extremely simple locally one-dimensional schemes. 

The rate of convergence of the AD1 scheme was investigated in cl11 
for the case when A, and A2 are arbitrary positive definite operators. 

In Section 2, which is a development of [ll]. we obtain new estimates 
of the rate of convergence of the AD1 scheme. In addition to assuming 
that A, and A, are positive definite, 

(A& y) 2 ~6llyll~, 6 = const > 0, 

we use the condition 

114/112 G A w/9 I/) 9 A = const > 0, 

which involves no loss of generality, since, for any Positive definite 
operator A, 

A < + II A II” @+4/J if A*=A). 

In Section 3, we show by examples that A is easily evaluated for 
certain non-selfadj oint operators. 

When assessing the rate of convergence of the LTS, the main role is 
played by a bound on the norm of the transition operator (Theorem 5): 

p _ i-2((1-0)zd+(4-u)~z~6A , - 
1+ 2md + oWA_ 

which implies, in particular, the stability condition aaO.5 - X/-rA 
for the above-mentioned schemes with weights, without the assumption 
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that A is selfadjoint. 

We show that, when using the AD1 scheme, the initial error can be re- 
duced in the ratio l/~ (E > 0 is the given accuracy) simply by perform- 
iug 

iterations, where q = 5 /A (5 = min(61, 521, A = max(Al, 821 with 

7 = l/JQL 

Notice that other authors (e.g. [l4, 15, 17, 181) studied the con- 
vergence of the AD1 scheme on the assumption that A, and A2 are finite- 
dimensional, positive definite, selfsdjoint and commutative. 

Some applications of the general theory of Section 2 are also con- 
sidered in Section 3. 

We show that the AD1 scheme is convergent for the Dirichlet differ- 
ence problem in an arbitrars region, whether the elliptic operator with 
variable coefficients on arbitrary meshes is selfadjoint or not. It 
follows from the bound for V(E) that V(E) J l/h In t/e as h - 0, where 
h is the mesh interval. 

We also consider the application of the general theory to the trans- 
port equation. An iterational scheme was proposed ?n 112, 133 which may 
be seen from Section 1 to be algebraically identical with the ADI scheme. 
Hence its convergence for any T, and the estimate of its rate of con- 
vergence, follow from [ll] (we only need to use the fact that A, and A2 
are positive definite, and evaluate i&ll, ll&11). The convergence rate 
estimate of 1111 can be improved by using Theorem 5 (of Section 1) while 
recalling that A2 is selfadjoint. 

Comparison with the method of simple iteration shows that extra study 
is needed before we can say that the AD1 scheme is worth using as an 
economic algorithm for the radiation transport equation. 

In paragraph 4 of Section 3 we consider the AD1 scheme for solving 
the Dirichlet difference problem in an arbitary p-dimensional region, 
obtained by splitting the Laplace difference operator into a sum of oon- 
selfadjoint operators. V.K. Saul’ev used this scheme (with p = 2 and 
a rectangular region) for the equation of heat conduction (alternating 
method). We show that, in this case also, V(E) = 0(1/h In l/e). 
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We have confined ourselves to a few examples in order to illustrate 
how the convergence rate estimates of Section 2 should be applied 
(though the results of Section 3 are of independent interest). 

1. Comparison of various iterational schemes 

Given the equation 

(Ai + 4 u = f, (0 

where A,, A, are linear operators in real Hilbert space H. We can solve 
it by using the iterational AD1 scheme 

P + a) y = (E - T-42) yk + Tf, 

(E + z-42)yh+’ = (E - d&j + zf, k = 0. 1, 2, . . . , 

Y0 = go E H, 

(2) 

where E is the unit operator, k the number of iterations, 7 = ykfH the 
intermediate value (subiteration), and T the relaxation parameter 
(T = Tk is in general dependent on k). In addition to (2), we consider 
the scheme 

Y(i) = (E - 542) !P -+ ‘Gfi, (E + %A) !I@, = Yti, + IJ (f - A), 

Y(S) = (E -w&4 + 42, (E + zA2) Yk+’ = Y(31 + z (f - f2) , (3) 

k = 0,1, , . . , yo = Yo, 

where fr and fz are arbitrary elements of H. 

Wnatever f 1, f2, scheme (3) is algebraically identical with scheme 

(2), i.e. the y k+l found from (2) and (3) are the same. For, if we add 
the first to the second of equations (3), and the third to the fourth, 
we can eliminate ytl), yt3) and obtain equation (2) with .y’ = yt2 ). 

We show that the schemes 

Y(i) = (E - ‘GA2) p + Zfi, (E + wycz, = (E ---+mJ(i, + 2z(f - fi), 

(4) 

(E + Z-42) Pi = Y(2) + ‘Gfl, k = 0, 1, 2,. . . , y” = yo, 
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and 

g!(i) = (E - =42)Fk + Zfi, pa = of - &)ihi,, + +2, 

(5) 
(12 + 4)g(a, = y”(2) + 212 (f - h) - f21, (E + z&)$+’ = &a, + Zfi, 

p = %. 

are algebraically identical with scheme (2). For this, we only need to 
show that (4) and (5) are equivalent to scheme (3) with fZ = fl, provided 

yk = Yk, y” k = yk. Comparing (4) and (3), we see that the first and last 
equations of (3) and (4) are the ssme, y(r) = ytl). We show that 

yt2) =yf3). Intr~ucing y = O.fj(y(ib +iC2)), we can replace the second 
equation of (4) by the two equations 

The resulting yC2) is the same as obtained from the second of equations 
(4). For, subtracting the second of equations (6) from the first, we get 

y’ = O.“(Y(l, + ?(2)). After substituting this expression in the first of 
equations (6), we get the second of equations (4). 

We have thus proved the algebraic identity of (4) with (31, and hence 
with the AD1 scheme (2).* 

Adding the second and third of equations (5), we get 

(E + ~mj(S, = (E - z.&)g(i) + 27(f - fi). 

Since i(l) = y(r) we have i(3) = y(z) and schemes (5), (4) are identical. 

Schemes (3), (4) and (5) are thus algebraically identical with scheme 
(Z), whatever the linear operators A,, A, (this linearity was used in 
passing from (6) to the second of equations (4)). We are assuming here 
that (E + ?Aa)-I, a = 1, 2 exist. This is the only restriction on A,. 

On the other hand, the solution of problem (2) satisfies 

(E + Z/ii) (E + ztlz) &Pi = (E - ZAJ (E - ZAZ) yk + 275 (3 

* The equivalence of schemes (3) and (4) can be proved br eliminating 
the intermediate points y(r), y(2), y(g) in (3) and y(r), J’(2) in 
(4). Our present method of proof, proposed by I.V. Fryazinov, is 
simpler. 
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To prove this, we obtain from (2) 

2jj = (E + zA2) p+i + (E - TAZ) p (8) 

and substitute this in the first or second of equations (2). If (7) nas 
a unique solution, then (71, (2) are a1gehraicall.v identical. For sub- 
stituting (E + zAz)yk+’ = 2y - (E - ~A2)yk in (7). we obtain the first 
of equations (2); the second of equations (2) follows from this and from 
(3). 

It was shown in [l, 41 that the decomposing operator scheme (‘7) is 
equivalent to several other schemes, in particular the AD1 scheme. If 
A,, A, are commutative, (7) is equivalent to the scheme [31, [l, 21 

(E + z&) ji = (E - zAi) brk, (9) 

(E + zAn) yh+’ = (E - zAz) y + 2~41, k=01 9 ,***, $0 = PO, (10) 

where cp is the solution of the equation 

(E+=WP =f (11) 

[l, 41. 

Thus there are many schemes equivalent to the AD1 scheme (2). 

When writing schemes in operator form, the question of non-homogene- 
ous boundary conditions for the intermediate values y, y1 etc. does not 
arise, since the difference operators A,, A, are now defined in the space 
of functions satisfying homogeneous boundary conditions, while the non- 
homogeneous conditions are taken into account by the right-hand side. 

The schemes considered above can also be used for solving non-station- 
ary equations, e.g. the equation of heat conduction (with interval 2-r). 

Depending on the method of specifying the boundary conditfons for 
the intermediate values (y, y ( 1 ), yt2) etc. 1, we obtain different 
schemes, which are only equivalent when the boundary conditions are 
matched [l - 41. 

2. Convergence of the iterational scheme 

1. Let u be a solution of the initial problem (11, yktl a SOlUtiOn of 
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problem (2). For the difference zk’l = yk” - zf the Csuchv problem 

(E + Td,)Z = (E - &)zk, z=ij-27, 20 = $4) - v, 

(E + Td,)zk+i = (E - zd*)Z, k = 0,1. . . , 

zo = 20 = yo - v. 

is obtained. To assess the rate of convergence of method (121, we need 
to know how fast the initial discrepancy z. = y. - v is damped as the 
number of iterations increases. For this, we have to investigate the 
stability of problem (12) with respect to its initial data. 

Let (, ) be the scalar product, while /y/l = #(y, y) is the norm in 
real Hilbert space ki. 

We shall assume everywhere that the operators A, are positive definite 

(Aay, y) > 6ally112, a = 1,2, 6, = const > 0, y E H. (d3) 

The convergence of the AD1 scheme_ was investigated in [14 - X5] in 
complex finite - dimensional space Hm Dy a theorem of functional 
analysis [16, Chap. VI, if a linear operator specified in complex Hilbert 
space is positive, it must be selfadjoidt. 

The AD1 scheme was applied in Cl11 as an economic method of solving 
systems of differential and algebraic equations. It was assumed that the 
matrix A of the system can be written as A = Al + AZ, where A,, A, are 
triangular matrices satisfying condition (13) only. The method of energy 
inequalities was used to prove the convergence, using only the fact that 
A, and A2 are operators in a space with a scalar product satisfying (X3). 

Theorem 3 of cl11 shows that the iterational scheme (2) is convergent 
at the rate of a geometric progression whatever 1 > 0. the ratio p of 

the progression being dependent on S1, 6, and II & fl, II Aa II. It w&s shown 
how T can be chosen so as to minimize p. The proof of Theorem 3 was per- 
formed for the case D = E/T, wnen equation (23) of Cl11 becomes (12). 

To assist our future treatment, we state a corollary to Theorem 3 of 
[ll] as a separate theorem, with a change of notation. 

Theorem 1 

ff A, are positive definite operators, then scheme (2) is convergent 
for any T > 0, so that the bound 

II Zr+i ll(2) G p II Zk IICL,, k = 0, 1, 2, . . . , (14) 
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holds for the solution of problem (121, where 

II 2 lIta? = II 2 u” + T” II Aaz IIT pa = ~2~2, pa2 = 2 7 

2t6, 
Xa=If~allAal12 ’ 

a= ?,2. 

(45) 

(46) 

The proof given in [ill is as follows. We evaluate the square of the 
norm of both sides of (12) and recall that 

(Lemma 3 of ![lll), since 

II 2 II(a)’ = ll 2 II2 + f2 II Aaz II2 < (I+ 7’ II Aa II”) II 2 II” < & (1 + T’ II Aa II”) (Aaz, 2). 

We now get 

(1 + Xl) II i 110)2 < (1 - X2) (I 9 lk2)2c (1 + x2) II Zk+vl(2J2 < (1 - %)I[ &)? 

II i Iha < 1 + %l 1- II 79 II(a)“, II zk+l lh2 < 3 II i Ild < P&Q II Zk Il(2)2. 

From (141, lkAl(2) <I ~%r0ll~2). Let E > 0 be the required accuracy. so 

that II .P lip) G ,e II zo N(2). It follows from this and the previous inequal- 

ity that, to reduce the initial error in the ratio I/E, V(E) iterations 
are needed, where 

v(e) > In + 
I 

In + . .(17) 

Corollary. Let lj = min (Si, 62)) II A II = max (II Ai II. II A2 II). Then 

min p(z) = p(r’) =p, T* = 1/ IIA II, where p = (i- rl) / (1 -I- rl), 

l-l = 6 / II A II. 

2. We now assume the following conditions in addition to (13): 

II Azy. II2 Q A~(&Y, Y), Aa=const>o, cl= 1,2, y=:EI. (18) 

Lemma 1 

For a linear positive ((Ay, y) >,O> and selfadjoint operator A, 
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I!4A12 < IIAII (A!/, Y), Y E a., 

83 

W) 

In fact, putting z = Ay in the generalized Cauch inequality: 

(Ay, 2)” < MY, 4r) (As, s), we get 

IIAvll‘ = (4, d2 G (4, II) (AZ, z) < llAllll~i12(Ay, y) = 
= II A II II 4 l12(Ar/, ~1. 

Cancelling by/ Ay 112, (19) follows. 

Comparing (19) and (18)) we see that, for a selfadjoint operator A,, 

b = II -& Ii. 

If A, is any positive definite operator, then Aa < II Aa 112/ iSa, 

since 

Condition (13) is thus satisfied for any positive definite operator. 

Theorem 2 

Let A,, A, satisfy conditions (131, (18). Formulae (141, (151 now 
hold, provided 

2da 

xa= lf.r88,A,’ 
a=l,2. 

It is sufficient to show that 22(A,z, z) 2 ~~JIzII~~~, where K~ is given 
by (20). For, 

Theorem 3 

(As, 2) >, 6,( 1 + r%&) -i II 2 It&). 

Let conditions (13) and (18) be satisfied. Then the iteratidnal pro- 
cess (2) with parameter T equal to 

r = r* =1/v?& 8=min(&,&), A=max(Ai,At), 
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is convergent at the rate of the geometric progression with ratio 

so that 

IlIP-’ - r&J \( ;;k+‘ll&l- nll(!+ 

To Prove this theorem, we only need to observe that 

(21) 

(22) 

P < i = (i- $/(i + 3, % = 2dj( 1 + +&A), 
min 6 (w) = p (max n), maxk =X (z’) = v/11. 

Given a small characteristic parameter q, the number of iterations 
V(E) satisfies 

Notice that, given 5,, A,, a = I, 2, the value T = -r* minimizing 

P = plpz cau be found either graphically or by using tables of the func- 
tions p2(r). 

It is clear from (14) that scheme (12) is convergent provided one 
the operators, say A,, is non-negative (6, = O), while the second is 
positive definite (5, > 0); then 

3. We obtain bounds for the solution of the Cauchy problem(l2) by 
other method. 

In some cases convergence rate estimates can be improved. We shall 
assume that the parameter v = Tk > 0 depends on k, so that 

of 

(E + TA+i&)Z = (E’ - 7A+l‘42)ZA, (E + zA+ifi2)zA+’ = (E - rA+ik)% 

k = 0, 1, 2, , . . , (231 

eO=so. 

We obtain from this cl51 
&+i = TJ,+~z~ , 

(24) 
TA+i = (E + rA+iA2)-i (E - %A+& (E +TA+i‘h) -‘(E - rA+iJ42). 
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The operators (e + 71-4)-l B (E - ~4) are obviously commutable: 

(E + %q-l(E’ - 4) = (E -7*K) (E + T*A)-‘. In fact. 

(E--r.A)(E+~,A)-l=[($-+~)~--$(~+~l~)](~+~l~)~= 

= ($-+l)(E+i,~)-1 - z (E + hA)-l (E + tlA) = (29 

=(E+T~A)-~[(~+~)E-~(E+~~A)]=(E+~~A)-~(E-~,A) 

(Tl. 12 > 0 arbitrary). Hence [ISI 

Tk+i = (E + '~k+iA2)-~(E + ~k+i-%)-~(E -zR+A)(E - a+iA2), 

zk+’ = (E + Tk+iA2) -‘& (zk+i, zk+i)&(rk, zk+i) &(rk, %k) . . . 

. . . Bi (zi, zi) (E - ~42) z”, 

where 

B&m, z,) = (E + ~rnAa)-~(E - mAa), 

From (26) 

a = 1,2. 

IIW+G+IA,) zk+lF r!G(‘is rj)lfi II%(qj, ~~+~)Il~(E--lA,)zO(l. 
j=l J=l 

We thus require a bound for the norm of the operator 

qn, T2) = (E + sA)-‘(E 

under the conditions 

This operator is the 

(4, Y) a a/112, 

ll4ll2 < AU, v). 

transition operator for the scheme 

(E + d) yf+’ = (E _ T2~)yjs 

(29) 

(30) 
(30’) 

(31) 

Putting T = 71 + -f2, Tl = m, T2 = (1 - U)T, where cf = T1/~, we can re- 

-ZzA) 

(26) 

(27) 

write the equation as 

~~+A(s~++--o)yj =O, 

y =: E/f+‘, i = yj, j = 0, 1, 2, .‘. . . 
(32) 
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We utilize the following equations, which can be verified directly: 

oy+ (1-&=0Lqy+~) + ((T-0.5)typ (33) 

(yi_, oy + (1 - a);;) =0.5(11y112) j-+ (a - 0.5)sllY#, (34) 

II Y 11% + II i Ila = f II Y + i II” + 5 z2 II Yi_Ill”. (35) 

Lemma 2 

We have 

llay + (1 - o)i~~2 = dyii2 + (1 - 0) ii,‘112 + (02 - +2lb,-112. (36) 

Using (33) and (35). we get 

.Ilw+ (1--)vyll2=(ay+(1--a)yV, oy+~~-o~Y~=$I/y+YI1~+ 

+ (a- 0.5) t (Y + $9 &) + (0 - 0.5) + II Yy II” = (0 - 0.5) (II Y II” - II i II”) + 

+ (~2-~)~211YS.112 +; ($lIY + illa+ ;+llYiII1) = 

= (a- 0.5) (II Y II” - Il i II”) + (a2 - a) f2 II YF II2 + 

4 Ow5 (II Y II” + II i II21 = d II Y H” + (’ - a) II i II2 + taa - O) + 1 Yi_ I/‘* 

We form the scalar product of (32) with 2y@) = a(oy -/- (1 -CT);), and 
recall (301, (34) and (36) 

lly112 + 2d(o - 0.5) IIy# + 2261dl~l12 + (1 - 0) llvyl12 + 

+ (a2- +-7l!/~ll”1 < 0. 

Hence follows the first energy inequality 

where 

(1 + Bozb) IlylP + 2l%ollgs_ll2 < (1 -- 2(1 - a)76) IlklIZ, 

IIY II2 < 
!I-2(1--(3)d ” 

1+24dJ Ij Y II2 fbr 0 > 0, 

(37) 

(38) 

o=o-0.5-T&s(l--CT). (39) 

Notice that o 30 implies 

a >&IT&- 1 + v-1 =f(&), where0.5<f(TQ<i. 
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Now let u < 0. 

In this case we need a second energy inequality. We apply the operator 
A-’ to (32) 

A-‘yi_+ cry + (1 - u)yy = 0. (40) 

We form the scalar product of (40) with 27yt and recall (34) 

Lemma 3 

wA-ly& y7) -t 263 - o.5)zzlly~l12 + IIYIP = llyyl/? (41) 

If A satisfies (30) and (30’). then 

(A-%, Y) > $ II y II21 YEH. (42) 

For, putting y = Au, v = A -ly and using condition (30’), i.e.11Avl12 < 
A(Av, ~1, we get 

lly112 = jlA# < AfAv, V) = A(A-‘y, b). 

Using (42). we obtain from (41) the second energy inequality 

22(++(u- 0.5)r) IIY~IP + IIY 1124112- (43) 

Hence follows at once 

Theorem 4 

The difference scheme (32) is stable with respect to its initial data, 

so that jlyjll < I\yoll with 

We consider (37) with o < 0 and (43) with 

0,0.5--& l (44) 

It is easily observed that the conditiob w < 0 and (44) are satisfied 
if 
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We multiply (43) by CT and add the resulting inequality to (371 

where 

cz= - 
OZA 

1+((~--00.5)76.= 
(a-0.5)zA + ~(1 -a)zVJA , 

1 + (a-0.5)zA 

After substituting (47) in (46), we get 

From this, and the equation y = B(T~, z2)i = (E + x$A)-~(E 
we get 

- 

In particular, with ~1 = -r2 = r we have 

The bound (49) is obtained under conditions (45) or with u > 0.5 - 
X/TA and o = u - 0.5 - ?6u(l - CT) < 0. It follows from this that 

We have now proved 

Theorem 5 

Eet conditions (30), (30’) and /Fj*) be satisfied. Then 

il W + ~4) -i (El - ~2.4 II < P (ZI, ~2)) 

where 

(52) 

(53) 
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We now return to inequality (28). Recalling that 

89 

ll(E + v4++42)~~+~11~ 3 (1 + ~(~~+i))ll~~+~ll~, 

II (E: - m42)~112 G (1 - X2(%)) llq& Iboll 2 (2) = ll~“l12 -I- ~?11&w, 

we get 

where l(zkllo = (~~~~~~2 + ~~2ll~~~llz)‘/~, k = 0, 1, 2, , . . . 

With T& = T = const., this gives us 

l-xx, f55) 
PC? =qYg+ x0 = 24&i + +d,A.,), a= 1,2, 

which we obtained earlier (Theorem 2). 

Noticing that (1 + ~262~) 11~112 < ll~ll& < (1 + dIhI12) 11412~ we obtain 
from (55) 

(56) 

The bound (54) shows that iterations in accordance with scheme (2) 
are convergent for Tk>vk_l, or vk<-rk_l, provided that vk_l(l + 
29_$)- ’ vk ’ vk_1 + 2/A. But the fastest convergence can be obtained 
for vk = v&-l = T by a suitable choice of T. 

Note. An alternative, equivalent statement of Theorem 5 is: if condi- 
tions (30). (30’) and (45) are satisfied, then 

If (W + uul) -i (E -_(i - a) yi) II G p, 
t -o’(i - o)rb +(I - a)%%A ‘12 

It= i + 2ur& + 04% \ 

4. We consider some special cases. 

Let H = HN be sn N-dimensional space, and A a linear positive definite, 
selfadjoint operator in HR. Then we have the familiar limit (571 
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where Al = 6 and AH = l}AII are the minimum and m~imum eigenvalues re- 
spectively of A. For, let A$, = h,&, s = 1, 2, . . . , V, where fh,, 5,) 

N 
is the system of eigenvalues and eigenfunctions of A, and A, i = 2 C E * (I* 

84 
Then 

II(E+z’A)-l(E--*A)n~p’, pm= 1’T 2, q=$ (58) 

In this case, Theorem 5 gives us 

II (E + z”A)-‘(E - hl) II sg 1/F (59) 

with the same value z = z*, & = 6, A = ItAIl = AN. Let A,, A2 be com- 

mutable. Now, (26) gives us 

Zk+l = n B,(Tj, Tj)Ba(Tj, Zj)Z'. 

j=+ 

If H = ff~ and at least the operator A2 is selfadjoint, we have to use 
a cyclical system of parameters rl 2~~ 3.. . aTko, Tktnko = Tk with 

1s k&k,,, n = 1, 2, . . . . no. Let 4I be positive. We can now employ a 

one-dimensional VerSiOn of the {?k). We obtain for V(E) 

where A’;’ and A’:’ are the minimum and maximum eigenvalues of A,. 

The case when H = ~~, A,* = Al, A,+ = A2 and AlAz = A2A1 has been 
fully investigated [l?, 181, and we shall not dwell on it. 
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A theorem follows from the above that we shall utilize in Section 3, 
paragraph 3. 

Theorem 6 

Let H = tin, A, and A, be positive - definite operators, and AZ self- 
adjoint. The following limit now holds for the solution of problem (12) : 

(60) 
where H 2 Ild = II 2 II” + W II & ll? P = ~6, pa* = (I- f/rlz)/(l f ‘t/G& 

pi = 7/p .- q / (1 + xi), X; = 22’&/ (1 + (C)VI,&). 

3. Example8 

We consider some examples of the application of the limits obtained 
in Section 2. We use a standard method of investigation: we construct 
the mesh, then introduce the scalar product on the set of mesh functions 
and determine the operators A,, A,; using the difference analogues of 
Green’s formulae and other simple devices, we then find the character- 
istic parameters 6,, Ao. After this, we apply Theorem 2 or Theorem 6 
(if e.g. A, is selfadjoint). 

1. The Dirichlet difference problem for the selfconjugate elliptic 
equation in an arbitrary region. 

We consider the Dirichlet problem 

G + JL)u = -f(x), 2 = (a 4) E G, ulr= Pm; 

Cl, c2 = const > 0. 

in an arbitrary region G + r of the (~1, x2) plane. 

We construct in G = G + i- the mesh oh,q = Oh,g + yh by dividing the 
plane by the straight lines Xo = ioIza, where the interval ha in x, is 
uniform. 
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The mesh boundary yA consists of the points of intersection of the 
straight lines no = &ha with the boundary r of region G. We impose the 
condition 

(62) 

where q is a positive constant, independent of h,, in the interval ha* 
close to the boundary r. Such a mesh can alwqvys be obtained e.g. by 
discarding the base-points at which condition (62) is violated (we 
assume as always that the set of base-points of this mesh Oh,g is con- 
nected). It is in general non-uniform close to the boundary. 

We write the second order difference scheme for problem (61) 

(Ai + AZ) v = --j(z), 5 = @h, q, d’ph = P(X). (63) 

Here, Ad = (a,(x) ~~3; d , a = 1, 2, 0 < ci < h(x) < 9 (see hl 
for the notation). 

This system of equations is solved by means of AD1 iterations 

g-- ‘F&j = Yh + hYh + ff, k=,O, 1, 2..., 

yk+’ - ZA,yk+’ = jj + z&j + zf t 3 = ah. q, (W 

Y - = P(X), yk+’ = p(x) for x E yw. 

We obtain problem (12) for the error t k+l = yk+l - u A, = - Aa, a = 1, 2, 
are OperatOrS in the space R of mesh functions specified at Oh, 9 and 
vanishing on the boundary Yh. The scalar product in Q is 

H = ri,&, fi, = 0.5 (ha + Q’“‘). 

To utilize Theorems 1 and 2, we have to prove that the A, are positive - 
definite and selfadjoint. Green’s difference formulae give 

Further, we obtain 

Here Da is the diameter of region G in the x, direction. By Theorem 6, 
the convergence of the AD1 scheme (64) follows at once from (65), (66). 
The parameter 7 is obtained from the minimization condition for 



Same problems of difference scheme theory 93 

A cruder method of fixing T* is as follows. Let h = minthI, hz), D = 
max(D1, D2), 6 = min(61. 6,) = 4cJD2, A = 4c2/qh2, 81~ A, A2 <A. We 
now get from (67) 

while for V(E) we have* 

(69) 

A formula V(E) = 0(1/h In l/e) is also obtained when Oh .is any non- 
uniform mesh whose intervals h,(zi) satisfy at all base-points ni E Oh 
the condition k,(xi) > h, where h = oonst. > 0. Here. I\arv = (q-p ) ,, 

everywhere. 
51 %a 

2. We now consider the Dirichlet problem for a non-selfadjoint 
elliptic operator with constant coefficients 

(70) 

To solve this on the mesh @h,g, we use a monotonic scheme of the 
order of accuracy 1201 

&au = v*v- xu;u + bu+v; + bu-v;u, 

bu+ = h+pl >o, &, = ‘u-p’ go, 

second 

* N.S. Bakhvalov kindly informed me that he previously obtained formula 
(69) for boundary cond,itions without drift (scheme O(h)) and k, = 

conet. 
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vu = 1 R” 7-q?’ R a = 0.5h, I ro It cz=1,2; R=Ri+Ra* 

The operators A”, = - ii,, defined on Q are positive - definite 

and they satisfy 

11 xa2 /Ia < 4 o+ cd4 
c?@ (;;iuz, $9 ~8 = max (I rll, 1 ~2 I), 

A u= 
4 0+ c&o) 

she= ’ 
a = 1, 2. 

(73) 

Property (72) can be proved by using Green’s first difference formula 
t191 

(&z, 2) = (-X0& 2) = vq (1, z~ulo + ; (b,+-bo-)ho (i, d;], = 

since lIzi/* < !!j i/z;= ;I$ (for notation see 1193). 

We prove (73) by means of the triangle inequality 

Ipsil< %II z;ol;o II + bo+ II z;J + I ba- I II %oll < va -j& (1, $Jk + 

If we now recall the identity {Aa.& z) = (0, + Ro$ (1, .z$ ]a, we get 

II AozlP < 
4 

a iva + Ro) f&z, 2). 
9h 

From (72). (73), the AD1 scheme for (71) iS converkmt for W 7 > 0. 
If hl = h, = h, D = max(l D,), then 
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Pf;P= 4-e qha 
i+W ’ = (1 + csh) Da 

with z = x* = q=& , (74) 

where 6 = 4/D2, A = 4(1 + c3h)/qh2. The number of 
asymptotic formula 

iterations obeys the 

v(e) = ln$ In fz I 1 
-bl$. 
l&h (75) 

A similar formula can be obtained for the Dirichlet difference prob- 
lem in the case of the non-selfadjoint elliptic operator with variable 
coefficients 

j,[&(ha(z)g.) +ra(x)~]-qo(x)U=-f(5), 
a a 

!I0 (4 > Cl' > 0. 

However, extra restrictions have to be imposed here on the coeffi- 
cients and the mesh interval. 

3. As our third example illustrating the application of the general 
theory of Section 2, we consider iterational schemes for solving the 
integro-differential equation for radiation transport in a lwer 

1 l 
P~+o,=y* 

5 cp (x9 P’) W + f (59 P)t o<x<H, --1<r_l<L 
-1 

(76) 

v(O, CL) = W)9 P > 0; TM9 P) = rl(P)> p<o 

(77) 

(a > 0, (3 > a, > 0). 

This problem was considered in [12, 131. Following [131, we introduce 
the mesh oh2 = {(iri = iI2, pj = jZ), i = 0, 1,. . . , n, -1 < j < m, j # 0, 
h=l$ln,l= 1 /m) and approximate the operators 

1 

L,cp= Pa(PJk Lacp=op+ 5 cp (5, P’) w 
-1 

by means of operators Al, h2: 
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where 

We 

(Q& = (Uif - ui-i, j) lb, (G)tj = (u*+f, j - Wj) 

associate problem <76) - (77) with the equation 
boundary conditions (77). Let Q be the space of functions specified on 
the mesh 6~1 and vanishing on its boundary, i.e. with i = 0, l< j < m 
and i =n, - w<j&- 1. We introduce the operators ALU = Alv, .$I -= 
h2v with v E Q. The difference scheme for problem (76) - (77) cau be 
written as 

(&$_Az)V=f, VEQ 

(the right-hand side ? takes account of the boundary conditions). 

The scalar product 

(z, V) = (z, v)- + (z, v)+ and the norm l/z11 = )/(x 

can be introduced naturally into space 8, where 

in 

(78) 

(79) 

‘i’he operators A,, A2 are positive definite in Q. If the cV are fixed 
accordance with 1131 (e.g. cV = t), then A, is selfadjoint. 

It can easily be shown that 

The bounds (611 are obtained in E133. We prove (60). Using the identities 

za = 0.5(z2)g= O.$hz 2, zz, = 0.5(~2)~ - 0.5hzzr2 and the inequalities 

we get 

n 

z?<ih 2 hzi,,, 
k=l 
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and similarly 

(Cc%* z)- = - 0.5 i pj (Zoj)“l - 0.5h (/.&, Zza)- > #% (1, z4)-; (83) 
jr-m 

Combining (82) and (831, we get (Aiz, z) > S&l12. If we recall that 

(Aiz, z) > 0.5h[ (p, z$)+ - (p, z,2)-_I, we obtain at once 

The scheme (5) with fl =O, fi =O is used in [131 to solve problem 
(‘78). As shown in Section 1, this scheme is algebraically identical with 
the AD1 scheme (2). Its convergence for any T therefore follows from 
[ill. We estimate its rate of convergence. The estimate of [ill is too 
crude, since it takes no account of the fact that A, is selfadjoint. 
Theorem 5 gives 

where 

Jl~Vllrz, <’ pvll~&2,, 11~11~2)2 = lM12 + ~%4z41~, 

l-X1 21 

P = f-w29 P1= 
!i-qTl+ 

XI = 2612, &A1 = ~a, 

% 
= 2 !with f = 

Hence it follows that 

By Theorem 2, the AD1 scheme is also convergent with uc = 0. In this 

case p = pi = ((1 - j’%) i (1 + 17;;)) ‘k7 qi = h2Z/ 2Hz, so that, as 

h-+0, Z-+Q we have y(s) = H / hli. For comparison, we mention that 

the special methods used in [131 only enabled a bound to be obtained 
for the spectral radius p(T) of the non-selfadjoint transition operator 

T = (E + %A$-l (E + ~Al)-l (E - %A,) (E - %A$), 
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The economy of a method is characterized by the amount of computa- 
tional work needed to obtain a solution to a given accuracy. 

From this point of view, it is interesting to compare the scheme of 
[IYI with the simple iterational scheme 

(Al + GE) yk+"' = &yk + f, 

(A, + crE) yk+l = &yk+“z + f . 

IJsing the fact that the maximum principle aaplies 

“Z--m 

vzo (85) 

for A, + cr!?, we can 
easily show that scheme (85) is convergent in a uniform metric with 
ratio p. = (a,/~)~, so that 

lb k+l - 2, II0 < PO II Yk - 8 Ilot lb Ilo = max 1 yij 1, i j PO = (0s /q. 

Following [131, we take as the cnaracteristic convergence rate of the 
- 

scheme of [131 the ratio p* = (I - 1;~) / 1 + IQ), q2 = ac/ (I = 1 - 

o,/a. Comparing p* and po, we see that there exists a region of vari- 

ation of the parameter JJ = (~,/a) with 4r~~ + 4n - n2 > 4, in which 

PO < lo*. 

Of course it would be premature to draw rtlly final conclusion regard- 
ing the advantage of one method over another from majorsnt bounds. How- 
ever, our comparison shows that further investigation is needed (experi- 
mental as well as theoretical) into whether the AD1 scheme is worth while 
for the transport equation. We need a more precise concept of the economy 
of a scheme for this equation. In any case, the “economy of a scheme of 
the first order in T” discussed in Section 5 of [t31 is not economy in 
the sense of minimizing the computational work: in this case, the formula 
for the number 

4. Theorems 
scheme (12) of 
ing) values to 
problems. 

of iterations is v(e) = (l/~) In (l/.e), since T = !)(e). 

2 and 6 offer an estimate of the convergence of the AD1 
Section 1 and enable optimal (more precisely, p-minimiz- 
be obtained for the relaxation parameter T for many other 

Decomposition of the operator A of the initial stationary problem 
into a sum of two positive definite operators A,, A2 can be performed in 
various ways. ‘INe illustrate this by the example of the Dirichlet differ- 
ence problem for the Poisson equation 
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in sn arbitrary p-dimensional region G = il; + r on the mesh Oh,q (see 
paragraph I, Section 3). We write the operator 

as the sum A = I\- + I\+. where 

In this case the iterational AD1 scheme is 

This scheme was first proposed by V.K. Saul’ ev for solving the equation 
of heat conduction (with p = I, 2); he called it the alternating method 
[211. It is economic, since O(l/hp) arithmetical operations are required 
for transition from yK to .yk+i. 

Introducing the operators Aig = ---A-y, A2g = -A+y into the space 
of mesn functions specified on Oh,* and ~nis~~ing on the mesh boundary 
Yh, we can rewrite (87) as 

The right-hand side j takes account of the non-homogeneous boundary con- 
boundary base-points of the mesh. ditions and only differs from f at 

The operators Al, A, are non-se 
R. iYe evaluate 6 and A for them. 

lfadjoint and positive - definite in 

frsing Green’s difference formula as in paragraph 3, Section 3, we 
get fAoy, Y) = o.~i(Ay, y), a = 1, 2. After simple working similar to 
that of paragraph I, Section 3, we get 
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Since (Ay, g) 2 (4~ ID) ljg112, we have 

where I) is the diameter of the region G. Hence it follows that 

8 qaha 
‘Ij’== KD”’ 

We now apply Theorem 2 

Thus the same asymptotic formula as in paragraphs 1, 2 (for scheme (64)) 
holds for the number of iterations V(E) in the case of scheme (88) - 
(871, navels, 

which is independent of the number of dimensions (n does not appear in 
the expression for p, see (88)). The total amount of computation for 

scheme (87) is O($ln+) . 

Given any p, we can define A,, A2 by analogy with (86) for the non- 
selfadjoint problen 

The bound (88) still holds in this case. If the mesh ok is non-uniform 
at regular base-points and h,(ri) = h(h = con&. > 0) everywhere in ok, 
the bound (88) holds if qh is replaced by h. 

Note. iPhen comparing different iterational methods, in addition to 
the number of iterations, we need to consider the error resulting from 
rounding-off errors when determining each iteration. For instance, the 
method of successive substitutions is used for realizing scheme (84). 
Hence, as follows from N.S. Bakhvalov’s bounds, an error O(~e/h*) occurs 
when finding yktl, where EO is the rounding-off error. In the csse of 
scheme (871, this error obviously does not exceed O(E&). As we have 
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seen, schemes (64) and (8’7) are similar as regards the number of iters- 
tions. The iterational AD1 scheme can be used to solve equations with 
variable coefficients. 

Acknolo ledgement . The author takes this opportunity to thank E.G. 
D’ yakonov for editorial comment. 

Translated by D.E. Rrowtl 
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