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1. DIFFERENCE schemes for solving various problems of mathematical
physics have appeared in recent years. Economic methods for solving
multidimensional problems have been particularly developed (alternating
direction schemes, decomposition schemes, locally one-dimensional schemes
etc.). A large number of different algorithms is now available for solv-
ing a given problem. Special interest is thus aroused by the theoretical
and experimental comparison of difference schemes, the development of
general principles for constructing families of difference schemes
possessing given properties, and finding the schemes in the family that
satisfy auxiliary optimality requirements (as regards accuracy, economy
ete.).

There are various schemes which give the same results (are algebrai-
cally identical) provided the right-hand sides and boundary conditions
are matched in a certain way. In this case our choice of one scheme
rather than another must be based on practical convenience. This situ-
ation is typical for economic methods of solving multidimensional prob-
lems. Several papers [l, 2, 3, 4] have been concerned with comparing
economic methods.

A comparison in [1, 2] with the operator decomposition method (for
the equation of heat conduction in a rectangular region), to which the
methods of [5 - 7] are reducible after eliminating the intermediate
values, showed that the order of approximation of these methods depends,
in the case of non-stationary boundary conditions (and for [7], in the
case of stationary conditions also) on the method of specifying the
boundary conditions at the intermediate step. It is shown that, by vary-
ing the right-hand side at the boundary base-points of the mesh, we can
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arrange for method [5] to be the same as the operator decomposition
method O(t2 + h2). In [7], boundary conditions are written for the
method of [5] for the intermediate value y"+%, leading to the same re-
sult. If the right-hand sides or boundary conditions are suitably
matched, the methods of [2, 5, 7] and certain others can be treated, as
shown in [3, 4], as computational algorithms realizing the same scheme
with split operator. All these schemes are algebraically identical.

Additive (locally one-dimensional) schemes forming a sequence of
intermediate (in the elementary case one-dimensional) schemes were con-
sidered in [8] for the parabolic equation in Banach space with the oper-
ator

p [+
A= Y4, or A= Ag,

a=1 o==1

where 4,, A 5 are operators of simpler structure than A. For the additive
scheme, the error of approximation is the sum of the approximation errors
[9] for all the intermediate schemes (additivity of the approximation).
From this point of view, the alternating-direction-implicit (ADI) scheme
of [5] is a locally one-dimensional sclieme of a special kind.

2. A basic problem in difference scheme theory is to find sufficient
conditions for stability.

If we investigate difference schemes as operator equations in abstract
space H with a scalar product, we can use the method of energy inequal-
ities [10] to obtain sufficient conditions for two-layer and multi-layer
schemes in a form that can easily be checked. We only make use here of
general information on the operators such as positiveness (semibounded-
ness from below) and selfadjointness. For instance, the the two-layer
scheme

By +Ay=0, O0<t=jr, y{0) =y, yr=W—y)ln
y=y*, y=y
where A and B are linear operators in H, and 7 > 0 is a constant, the
sufficient conditions for stability, with which llyilla << ligella (lylle =
V(Ay,y), A is independent of t), are

(By,y) = 05t(4y,y), (4y,y) =0, (By,y) =0,
if A is selfadjoint. Hence, in particular, we obtain for the scheme

yrtA(y+(1—0)y) =0, O0<t=j,..., ¥(0) =y
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the sufficient condition for stability o == 0.5 — 1 /7|lA|l, since B =
E + otA.

More exact stability conditions involving the initial data are re-
quired to prove the convergence of iterational schemes.

3. In the present paper, we illustrate the above topics of the general
theory (algebraic identity and stability) from the example of the itera-
tional schemes for solving the stationary equation (A, + Ay)v = f, where
A;, A, are linear positive-definite operators in real Hilbert space f.

We show in Section 1 that the ADI scheme is algebraically identical
with three extremely simple locally one-dimensional schemes.

The rate of convergence of the ADI scheme was investigated in [11]
for the case when A; and A, are arbitrary positive definite operators.

In Section 2, which is a development of [11], we obtain new estimates
of the rate of convergence of the ADI scheme. In addition to assuming
that A, and A, are positive definite,

(Ay, y) = dllyllz, b = const > 0,
we use the condition
lAylz < A(Ay,y), A= const >0,
which involves no loss of generality, since, for any positive definite
operator A4,
1 " .
A<F"A“ (A=||A|]if A* = A).

In Section 3, we show by examples that A is easily evaluated for
certain non-selfadjoint operators.

When assessing the rate of convergence of the LTS, the main role is
played by a bound on the norm of the transition operator (Theorem 5):

I(E +otA) {E— (1 —0)v4)|< ¥p,

1—2(1—0)W8+ (1 —o0) A
p= 1 2070 + 6**0A ’

which implies, in particular, the stability condition ¢ >=>0.5 - 1/14
for the above-mentioned schemes with weights, without the assumption



Some problems of difference scheme theory ki)

that A is selfadjoint.

We show that, when using the ADI scheme, the initial error can be re-
duced in the ratio 1/e (e > 0 is the given accuracy) simply by perform-
ing

- q-1
vm>mimiiﬁl
el 1—Vn
iterations, where n = 8/4 (8 = min(5,, 5;), A = max(d;, A,) with
T= l/]ﬁi&.

Notice that other authors (e.g. [14, 15, 17, 18]) studied the con-
vergence of the ADI scheme on the assumption that A; and A, are finite-
dimensional, positive definite, selfadjoint and commutative.

Some applications of the general theory of Section 2 are also con-
sidered in Section 3.

We show that the ADI scheme is convergent for the Dirichlet differ-
ence problem in an arbitrary region, whether the elliptic operator with
variable coefficients on arbitrary meshes is selfadjoint or not. It
follows from the bound for v(e) that v(e) = 1/h In 1/¢ as h — 0, where
h is the mesh interval.

We also consider the application of the general theory to the trans-
port equation. An iterational scheme was proposed in [12, 13] which may
be seen from Section 1 to be algebraically identical with the ADI scheme.
Hence its convergence for any T, and the estimate of its rate of con-
vergence, follow from [11] (we only need to use the fact that 4 and 4,
are positive definite, and evaluate ll44ll, Il42]]). The convergence rate
estimate of [11] can be improved by using Theorem 5 (of Section 1) while
recalling that A, is selfadjoint.

Comparison with the method of simple iteration shows that extra study
is needed before we can say that the ADI scheme is worth using as an
economic algorithm for the radiation transport equation.

In paragraph 4 of Section 3 we consider the ADI scheme for solving
the Dirichlet difference problem in an arbitary p-dimensional region,
obtained by splitting the Laplace difference operator into a sum of non-
selfadjoint operators. V.K. Saul’ ev used this scheme (with p = 2 and
a rectangular region) for the equation of heat conduction (alternating
method). We show that, in this case also, v(g) = O(1/h 1n 1/¢).
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We have confined ourselves to a few examples in order to illustrate
how the convergence rate estimates of Section 2 should be applied
(though the results of Section 3 are of independent interest).

1. Comparison of various iterational schemes

Given the equation
(A1+A2)U =f1 (1)

where A;, A, are linear operators in real Hilbert space H. We can solve
it by using the iterational ADI scheme

(£ + 4§ = (E — t4)y* +1f,
(E 4+ t4p)ytt = (E — <Ay + f, £k=01,2,..., (2)
yO = yoEH,
where E is the unit operator, k the number of iterationms, ; = yk+” the
intermediate value (subiteration), and 7 the relaxation parameter

(T = 71} is in general dependent on k). In addition to (2), we consider
the scheme

yoy = (E —tdo)y* + tf, (E+tA)ye =yo+ 3 —f),

vo = (E—td)ye+1h, (E+1d)pt =ya+t(f—f), ©)
k=0,1,..., Y=y,

where f, and f, are arbitrary elements of f.

Whatever f,, f,, scheme (3) is algebraically identical with scheme

(2), i.e. the yk+1 found from (2) and (3) are the same. For, if we add
the first to the second of equations (3), and the third to the fourth,
we can eliminate y(;), y(3) and obtain equation (2) with ¥ = y(9).

We show that the schemes

oy = (E —tA2) J* + s, (E + 74§ = (E —td)Jo + 2t(f —f1),

(4)
(E + )t = oy +fsy, k=0,1,2,..., FP =y
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and
Joy= (E — <) J* +<f, For= (E —tA)§n + f,
(5)
(£ +4)fo=Fo+l2(f—f) —F], (B + td)*H = §u + th

7= v

are algebralcally identical with scheme (2). For this, we only need to
show that (4) and (5) are equivalent to scheme (3) with f, = f;, provided

yk = yk, yk = yk Comparing (4) and (3), we see that the first and last
equations of (3) and (4) are the same, y(;) = y(). We show that

Y(2) = ¥(3)- Introducing y = 0.5(y(;y + y(2))., We can replace the second
equation of (4) by the two equations

o= (E—A)g++(f—1f) (E+74)§ = o+ (f—f). (6)

The resulting §(2) is the same as obtained from the second of equations
(4). For, subtracting the second of equations (6) from the first, we get

y = 0.5(y(1) +¥(2)). After substituting this expression in the first of
equations (8), we get the second of equations (4).

We have thus proved the algebraic identity of (4) with (3), and hence
with the ADI scheme (2).*

Adding the second and third of equations (5), we get
(E + t4)§e = (E — A1) o + 2v(f — fr).
Since §(1) = y(l) we have 5(3) = 5(2) and schemes (5), (4) are identical.
Schemes (3), (4) and (5) are thus algebraically identical with scheme
(2), whatever the linear operators A,, A, (this linearity was used in
passing from (8) to the second of equations (4)). We are assuming here

that (E + 7Ap)~1, @ =1, 2 exist. This is the only restriction on 4.

On the other hand, the solution of problem (2) satisfies
(E + t4,) (E + t4s) y*+ = (E —14y) (E — 143) y* + 21f. (7)

* The equivalence of schemes (3) and (4) can be proved by eliminating
the intermediate points y(1). y(2), ¥(3) in (3) and y(3), ¥(2) in
(4). Our present method of proof, proposed by I1I.V. Fryazinov, is
simpler.
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To prove this, we obtain from (2)

2§ = (E + t4z)y** + (E — ©4o)y* t)

and substitute this in the first or second of equations (2). If (7) has
a unique solution, then (7), (2) are algebraically identical. For sub-
stituting (E + tdp)y** = 2§ — (E —t4z)y* in (7), we obtain the first
of equations (2); the second of equations (2) follows from this and from
(8).

It was shown in [1, 4] that the decomposing operator scheme (7) is
equivalent to several other schemes, in particular the ADI scheme. If
A,, A, are commutative, (7) is equivalent to the scheme [3], [1, 2]

(E + 7497 = (E — <4, (9)
(B + tAg)yrtt = (E —ady)y + 219, k=04,..., y=y, (10)
where ¢ is the solution of the equation
(E+d)o=f (11)
(1, 4].
Thus there are many schemes equivalent to the ADI scheme (2).

When writing schemes in operator form, the question of non-homogene-
ous boundary conditions for the intermediate values }, y; etc. does not
arise, since the difference operators A,, A, are now defined in the space
of functions satisfying homogeneous boundary conditions, while the non-
homogeneous conditions are taken into account by the right-hand side.

The schemes considered above can also be used for solving non-station-
ary equations, e.g. the equation of heat conduction (with interval 27T).

Depending on the method of specifying the boundary conditions for
the intermediate values (y, y(1), ¥(2) etc.), we obtain different

schemes, which are only equivalent when the boundary conditions are
matched [1 - 4].

2. Convergence of the iterational scheme

1. Let v be a solution of the initial problem (1), y"+1 a solution of
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problem (2). For the difference z¥t! = yk*1 _ 4 the Cauchy problem

(E + t41)z = (E — t45) 7, z=y§—uv, =y, —v,
(E 4+ 1As)zH = (E — <40z, k=01..., (12)
2% = zp = yo— v.

is obtained. To assess the rate of convergence of method (12), we need
to know how fast the initial discrepancy zy = yo — v is damped as the
number of iterations increases. For this, we have to investigate the
stability of problem (12) with respect to its initial data.

Let (,) be the scalar product, while [lyll = ¥(y,y) is the norm in
real Hilbert space H.

We shall assume everywhere that the operators A, are positive definite

(Aday,y) = 8allyllz, a=1,2, Sa=const>0, ye=H  (13)

The convergence of the ADI scheme was investigated in [14 - 15] in
complex finite - dimensional space fdy. By a theorem of functional
analysis [16, Chap. V], if a linear operator specified in complex Hilbert
space is positive, it must be selfadjoint.

The ADI scheme was applied in [11] as an economic method of solving
systems of differential and algebraic equations. It was assumed that the
matrix A of the system can be written as A =4, + 4,, where 4;, A, are
triangular matrices satisfying condition (13) only. The method of energy
inequalities was used to prove the convergence, using only the fact that
A, and A, are operators in a space with a scalar product satisfying (13).

Theorem 3 of [11] shows that the iterational scheme (2) is convergent
at the rate of a geometric progression whatever v > 0, the ratio p of

the progression being dependent on &,, 5, and || 4; I, Il 45 |l. It was shown

how T can be chosen so as to minimize p. The proof of Thecorem 3 was per-
formed for the case D = E/t, when equation (23) of [11] becomes (12).

To assist our future treatment, we state a corollary to Theorem 3 of
[11] as a separate theorem, with a change of notation.

Theorem 1

If Aa are positive definite operators, then scheme (2) is convergent
for any * > 0, so that the bound

I le<elsla, &=012..., (1%)
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holds for the solution of problem (12), where

1_xa

lzka® =12+ 1 4az’,  o*=pilsd,  p’=g7==-  (15)
2vd '
i e 7 A (16)

The proof given in [11] is as follows. We evaluate the square of the
norm of both sides of (12) and recall that

{E & t4a)zl1? = lIzll@? % 2v(4ez, 2), 21(Aaz, 2) = %a |l 2 ll?
(Lemma 3 of {11]), since
1
Izl = 2P+ v?] daz P < (1 + [ AalP) [ 2* < 5 (1 + 72| 4q[?) (Aqz, 2).
We now get

4 1) | 2[® < (1 —%a) |22 [® (1 4 %) [ 22 g)? < (1 — %) | 2%,

- 1—x% 1—x
lzho? < o 12 he®s 12*te® <o l2ka® orlestl 2 o™

From (14), |lz¥le <<'p*llzolle. Let & > 0 be the required accuracy, so
that || 2V |l << ell 20 ll). It follows from this and the previous inequal-

ity that, to reduce the initial error in the ratio 1/e, v(e) iterations
are needed, where

v(e) >1n —1- In % . 7

Corollary. Let 6 = min (84, 82), | 4 | = max (Il A¢|l, | 42 1l). Then
min p(t) = p(z*) =p, T =1/l4], where p = (1 —1) /(1 +n),
n=58/14l.

2. We now assume the following conditions in addition to (13):

| Aey 12 < Aa(Aay, y), Aa=const>0, a=1,2, yH. (18)

Lemma 1

For a linear positive ((Ay, y)>>0) and selfadjoint operator A4,
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Iyl < 4l (43, y), y<H. (19)

In fact, putting z = Ay in the generalized Cauch inequality:
(Ay, 2)? < (Ay, y) (43,2), we get

lAyllt = (4y, 2)2 < (4y, y) (43, 2) < l4lllizl2(4y, y) =
= || 4 [lll 4y I*(Ay, ).

Cancelling byll Ay |[2, (19) follows.

Comparing (19) and (18), we see that, for a selfadjoint operator* Aa,

Aa = || Ae .

If Ay is any positive definite operator, then Aq <<l Ag 2/ 8q,
since

1
Ay P <I 4aPly P <[ 4cf? &—(Aay. y):
Condition (18) is thus satisfied for any positive definite operator.
Theorem 2

Let A;, A, satisfy conditions (13), (18). Formulae (14), (15) now
hold, provided

2184

"a=‘1—'+m, a=1,2 (20)

It is sufficient to show that 2t(Aqz,2) == %allzll@@? where xy is given
by (20). For,

1
Izka® = 2P+ v daz P <| 2|} + 7*Ad (442, 2) < (E_ + TaAa) (442, 2)
and
(4az,2) = 8a(l + eba) ! || 2 I3,
Theorem 3

Let conditions (13) and (18) be satisfied. Then the iteratidnal pro-
cess (2) with parameter T equal to

T=1"=1/}384, 8 = min (6, 82), A = max (A, A),
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is convergent at the rate of the geometric progression with ratio

o 1—V 8
p=—-=>=, =, (2t
1+ ¥n =3 )
so that
lyr=t — vl < p*Hllyo — vllex. (22)

To prove this theorem, we only need to observe that

p<p=1—%)/(1+x), %=2w/1+4),
min § (v) = p (max %), maxx =% (v°) = V1.

Given a small characteristic parameter 7, the numoer of iterations
v(e) satisfies

v(s) =~ ——ln—-i-—-

Va

Notice that, given 8y, Ay, « = 1, 2, the value T = 7 minimizing
p = pypy can be found either graphically or by using tables of the func-
tions p2(T).

It is clear from (14) that scheme (12) is convergent provided one of
the operators, say A;, is non-negative (5, = 0), while the second is
positive definite (5, > 0); then

p=V¥po=(1—10)/(1+Vn), n=20/A with v=1/V5A.

3. We obtain bounds for the solution of the Cauchy problem(12) by an-
other method.

In some cases convergence rate estimates can be improved. We shall
assume that the parameter T = 71 > 0 depends on k, so that

(E + tp1di)Z = (E — tapad2) 2k,  (E + tppade) 28 = (E — tpudy)Z,
k=0,12,..., (23)
29 = 2.

We obtain from this [15]
zht = T2k,
(24)
T R = (E + ‘t),.HAz) — (E —_ Th-HAi) (E +‘l’h+1A1) -1 (E -_ ThﬂAz) .
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The operators (E 4+ ©1d)~! u (£ — 134) are obviously commutable:
(E + 1nd)(E — 1d) = (E —1d) (E + 14)~*. In fact,

(E—1d)(E4+ 1A= [(% + 1) E‘—-E:- (E + 'clA)] (E 4+ vwA)t=
- (-2_ + 1) (E + 1 d)™ —:—:(E+1:1A)‘1 (E + 1,4) = (25)

= E+uaft [ (B 4 1) E— B Et )| = E+ad (E—nd)

(t,, Ty > 0 arbitrary). Hence [15]

Thir = (E 4 tapsd2) " 1H(E + ti1ds) U E — ta4sds) (E — trads),

26
£t = (E + tr4142) 1By (Thit, Thi) Ba(Tr, Tays) Ba(tr, ta) - .. (26)
...By (‘ti, 1.'1) (E - nAz)z",
where
Ba(tm, Tn) = (E + tmda)1(E — tada), a==1,2. (27)
From (26)

k41 k
KE-+Trnda) 222 | ﬁ 181 (v, v3) IIjH 1Ba (%5, T2) || (B — v144) 2°. (28)
=]

i=1

We thus require a bound for the norm of the operator

B(ty, 12) = (E + vid){(E — .4) (29)

under the conditions
(4y, y) = sliyll,, (30)
Ayl < A(4, y). (30)

This operator is the transition operator for the scheme
(F+vd)yitt = (E —1A) Y. (31)

Putting v =1, + 15, T, = o7, Ty = (1 -~ 0)7, where o = 7,/7, we can re-
write the equation as
¥y—y

ry 1 S ; = — e
yy+A@+(A—o)y) =0, Y; - 32)
y=y1, y=y, j=01,2....

v
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We utilize the following equations, which can be verified directly:

oy + (1 —0)y == 05(y + y) + (o — 0.5) 75, (33)
e oy + (1 — 0)y) =05(llyllH) 7+ (o — 0.5)Tlyz 11, (34)
v 1 v i
WE+IIP =51y + v P + 5yl (35)
Lemma 2
We have

loy + (1 — o)ylz = ollyliz + (1 — o) gl + (0® — o)yl (36)

Using (33) and (35), we get

lloy+ (1 — )yle =Gy + (A —0) 5, oy + (1 —e)j)= 1|y + JP +
+(6—05)T(y + 5, ¥;) + (65— 0.5) Py P = (o— 0.5) (y P — 7 ) +
1 /1 v 1
+@—o) ey + 5 (5 ly + IP+ 5 1y k) =

= (c—0.5) (Jy | —|y[?) + (*—o) | y; | +
+ 05yl +1yP) =olyP+ 1A — )| FP + (*—o) e ]y; P

We form the scalar product of (32) with 2y = 2(oy + (1 — o)!;), and
recall (30), (34) and (36)

lyllz + 2v2(c — 0.5) gz 112 + 2wdLollyliz + (1 — o) liyli2 +
+ (02— o)2lly;12] <O.

Hence follows the first energy inequality

(1 4 20t8) llyll2 + 220llyzl* < (1 - 2(1 — o) w) iyl (37)
1—2(1—o0)d ,~ .
e < =20 i for @ >0, (38)
where
o =0—0.5—160(1 — o). (39)

Notice that w =0 implies

0 > e [ — 14 YT 7] = £ (xd), whers 0.5 < f (x8) < 1.
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Now let o < 0.

In this case we need a second energy inequality. We apply the operator
A-1 to (32)

Atyr+ oy + (1 — o)y = 0. (40)

We form the scalar product of (40) with 2Ty? and recall (34)

.

2u(Atyy, ¥;) + 2(0 — 0.5)ly7l2 + Iyl = gl (41)

Lemma 3
If A satisfies (30) and (30'), then
(A, 9> vk yeH. (42)
For, putting y = Av, v = A-ly and using condition (30"), i.e.|Av|2 <<
A(Av, v), we get
lyllz = il4vli2 < AlAv, v) = A(4~1y, ).

Using (42), we obtain from (41) the second energy inequality

2¢ (3 + (0 — 05)7) ly; P + Iy P <P @3)

Hence follows at once
Theorem 4

The difference scheme (32) is stable with respect to its initial data,
so that {9 << lly°l with

1
0’>0.5—'a"

We consider (37) with o < 0 and (43) with
6>0.5— . (44)
TA

It is easily observed that the condition w < 0 and (44) are satisfied
if
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1 W—1 4+ YT+ % (45
05— <o< 218 ) )

We multiply (43) by Cr and add the resulting inequality to (37)

(1 + 20t + Cr) Iyl < (1 — 2(1 — 0)vd + C) iyl (46)
where
. WTA _ (0—05)tTA+0o(1—0)T®A
Cr= T 1+ (6—05)7A 1+ (0c—05)7A @47)

After substituting (47) in (46), we get

1—2(1—0)78+ (1 —0)2 %A

Iyl < T T 9678 T oi0h Iy le. (48)

From this, and the equation y = B(t, )y = (E+ nd) (£ —wd)y
we getl

1 — 2750 + 74%0A |
uB (1'1, Tz)u P (Tl, Ta) = l/ i T 2‘:‘16 T rlgéA (49)

In particular, with v, = 19 = T we have

HE+eAr =)</ o= %= ooy OO

The bound (49) is obtained under conditions (45) or with o > 0.5 -
1/7A and ® = o - 0.5 - 1850(1 ~ ¢) < 0. It follows from this that

+ 2‘t T 2,0 (1)
We have now proved
Theorem 5
Let conditions (30), (30") and (5') be satisfied. Then
HE + 11d)~HE — vd)ll < p (7, ©), (52)

where

_ 1 — 27,8 4 120A 53
P (T, 12)_1/1+2716+‘§1’6A <t 9
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We now return to inequality (28). Recalling that

H(E + trisde) 28 H0% = (1 4 % (taea) ) 125413,
I(E — wda) 212 << (1 —oa(n0)) 12001 3, 1121 G = N12°12 + 72l a2 2,
we get
. T—xa(w)
12E* 0 < T 01 (%52 T3) P2 (%5s Ti01) P1 (Tatas Tow) l/ 1 - = 20y, (94)

=1 %3 (Tr1)

where [[Z*lg = (lIz*]2 4 w?lld2z*l), & =0, 1, 2,

With 7, = v = const., this gives us

| 2541 oy << P¥*1)) 2° 2y, p= th_{’z»

1 1—% (55)
p“ = 11+ x, + %q Ko = 276(1/(1 + TsaaAa), a==1, 2,

which we obtained earlier (Theorem 2).

Noticing that (1 + 282} lIzli2 <T'llzll ) << (1 + @ll4:ll?) [|z)%; we obtain
from (55)
1 4 2| 4,2
I zauﬂ < "?;-{—-—'!—332%" prHi] 20|, (56)

The bound (54) shows that iterations in accordance with scheme (2)
are convergent for T, =Tp.1, Or Tp<ITp_), provided that +,_;(1 +
275.18)"} <1, < 1,_; +2/A. But the fastest convergence can be obtained
for 13 = 1.1 = T by a suitable choice of T.

Note. An alternative, equivalent statement of Theorem 5 is: if condi-
tions (30), (30") and (45) are satisfied, then

HE+ owd)~1(E —( — o)ed)I<p, p= ( 1 -2 — o) +(1 — 0)**84 \%

4 + 2070 4 0%1%0A

4. We consider some special cases.

Let H = Hy be an N-dimensional space, and A a linear positive definite,
selfadjoint operator in Hy. Then we have the familiar limit (57)

{—dy TAy—1 1
-t — 1 N N
J(E 4+ t4)(E—74)|< max (1’—}»47}“’ TA.N+1) for P \<\1:-<—}v1 )
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where A; = 8 and Ay = HA Il are the minimum and maximum eigenvalues re-
spectively of A. For, let A, = AE,, s =1, 2, ..., V, where {A,, &}

N
is the system of eigenvalues and eigenfunctions of A4, and A,g ___.2 ek,
Then =t
& 1 —1h
= “L(E e )y == STl
y=(E+ 4y (E—1d)y El T oo
1 — 1, {— 1y ﬂ.N—-i)
l9I< max |\ <max 4 T w1

1 1
for K<T<-—x—;—'

Teking v° = 1/ VYMAn, we get

* 4y\~-1 -t U . _ 1"—-‘/7—] ___A 5
IE+ A (E—7"4)I<e" o TTve " (58)

In this case, Theorem 5 gives us

I(E + v 4)HE — ) < Vo© (59)

with the same value T = 1", M = 8, A = [|4]l = Ay. Let 4;, A, be com-
mutable., Now, (26) gives us

kA1
zhtl = H Bl (Tj, T,) Bg (Tj, 1.'5) 2%,

Je=
1f H = y and at least the operator A, is selfadjoint, we have to use
a cyclical system of parameters T;2>7y=>... =Tr Thtnky = Tk with
1< k< ky, n =1, 2, ..., ng. Let 4 be positive. We can now employ a
one~dimensional version of the {Tk}. We obtain for v(e)

1 1 A,®
v(a)zln—;}lnﬁ;—, n2=m,

(2) (2)

where A ) and A y 8re the minimum and maximum eigenvalues of A,.

The case when H = Hy, A;* = A4, Ay* = A, and A4, = AyA; has been
fully investigated [17, 18], and we shall not dwell on it.
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A theorem follows from the above that we shall utilize in Section 3,
paragraph 3.

Theorem 6

Let H = Hy, A, and A, be positive - definite operators, and A, self-
adjoint. The following limit now holds for the solution of problem (12):

1
VAT (60)

where |zfg?® = z[ + (v°)2| dez?s P =p102"s 0" =1 — V)L + V)
pr=VY({ —x})/ (1 +x7), =%]=2"0:/ (14 (z")26:A).

|25 <ol 222y for v=7"=

3. Examples

We consider some examples of the application of the limits obtained
in Section 2. We use a standard method of investigation: we construct
the mesh, then introduce the scalar product on the set of mesh functions
and determine the operators A, A,; using the difference ahalogues of
Green’s formulae and other simple devices, we then find the character-
istic parameters 5, Ay. After this, we apply Theorem 2 or Theorem 8
(if e.g. A, is selfadjoint).

1. The Dirichlet difference problem for the selfconjugate elliptic
equation in an arbitrary region.

We consider the Dirichlet problem
L+ L)u = —f(x), z=(2,%) <G, u|p=p);
6 6u 6
hau = — | ko(z) m— ), 0<er<Ckalz) < 0oy a=1, 2; (61)
0z 0z
¢1, ¢3 = const > 0.
in an arbitrary region G + I of the (%1, x39) plane.
We construct in G = G + T the mesh Bh,q = ®p,q * Yn by dividing the

plane by the straight lines xg = ighy, where the interval hy in x4 is
uniform.
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The mesh boundary y, consists of the points of intersection of the
straignt lines xy = ighy with the boundary I' of region G. We impose the
condition

ha" = qha, (62)

where g is a positive constant, independent of h,, in the interval hg*
close to the boundary I, Such a mesh can always be obtained e.g. by
discarding the base-points at which condition (62) is violated (we
assume as always that the set of base-points of this mesh wp, , is con-
nected). It is in general non-uniform close to the boundary.

We write the second order difference scheme for problem (61)
(As + Ag)v = —f(2), Z & On, g V[v, = n(2). (63)
Here, Aav = (2a(2)vz )z, =1, 2, 0<ci<aa(z) <o (see [19]

for the notation).

This system of equations is solved by means of ADI iterations

-y——TAig=yk+TA2yk+Tfy k=07 1s2-°°’
PH— Attt =G4 TAG +f, TS onq (64)
¥ = u(z), y*H = p(z) for z & ya.

We obtain problem (12) for the error z¥*l = yk*l _ 4 4 =_ A, a =1, 2,
are operators in the space Q of mesh functions specified at w; 4 and
vanishing on the boundary y,. The scalar product in Q is

(y, v) = E Yy (z) v (a:) H, H = Fis ks, g = 0.5 (ha + hc(ﬂ“)).
©h, g

To utilize Theorems 1 and 2, we have to prove that the A, are positive -
definite and selfadjoint. Green’s difference formulae give

A ) >8lyP Sa=pk, (o) = ) (65)

Further, we obtain

4c, _ . S, c1ghg?
BA““<W=AG’ a—i, 2, so that. na=ﬁ=;b:a’—o (66)

Here Dy is the diameter of region G in the xy direction. By Theorem 6,
the convergence of the ADI scheme (64) follows at once from (65), (66).
The parameter T is obtained from the minimization condition for
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1—1’A3

o |45 ) 0

A cruder method of fixing v* is as follows. Let h = min(h,, hy), D =
max(D;, D), & = min(8;, 8y) = 4c1/D?, A = 4cy/qh?, A)C A, By <AL We
now get from (67)

1 -"TA]_
1 +TA1

{—1d
1—'}-161

1

p=max(

- (1—VgwD\
p<p= (—"‘L,Z,L—) with T‘=———1?_hDVE,

L+ VahD 4V ercs (68)

a=aq 5L

q=q c&v

while for v(e) we have*
Ca D 1

~1/ & ln—- 69
v(e) N e (69)

A formula v(e) = O(1/h ln 1/¢) is also obtained when «p is any non- _
uniform mesh whose intervals hy(x;) satisfy at all base-points x; e
the condition hg{x;) >=h, where h = const. > 0. Here, A = (agv= )y

a *a
everywhere.

2. We now consider the Dirichlet problem for a non-selfadjoint
elliptic operator with constant coefficients

(70)

T, T - 2
hitlju=—fGk), =2€6 afr=p@) fmu=;§:fs‘+ra'§£.

To solve this on the mesh v, ,, we use a monotonic scheme of the second
order of accuracy [20]
Ai+R)o=—Ff(z), zE0n, v=p() for 2SSy
A —_— + -~ - ~
Ay = Va?z 3, 4 by vs 4 by 3y (1)

b+="a+2|"a| >0, ba-="a_2'ra!<0,

a

* N.S. Bakhvalov kindly informed me that he previously obtained formula
(69) for boundary conditions without drift (scheme O(h)) and ky =
const.
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R
v“:—-—i—I—_'_—aE, quo-sha’ral, a=1,2:R=R1+R2'
The operators Zu = - 7\a, defined on Q are positive - definite
(Aats 2) > i |zP, 269, 8= or (72)
avr Dag + 3 +4 -Das ’

and they satisfy

~ 4(1 he) ,~
| Aap< 2EMD G o), o= max (il |l

4 (1 + cshq) _
Au ——-—E’;‘;—, (1—1: 2.

(73)

Property (72) can be proved by using Green’s first difference formula
{19]

(Aoz, 2) = (— Kat 2) = va (1, 22 ]u+ 7 Ga" — b ha (4, 28 1 =
4
=t RO (2 Je> (1= {28 + Ra) s lsP > s 2P, s€0,

2
since [zi2 g%llz; 2 (for notation see [19]).
-3

We prove (73) by means of the triangle inequality

Azl < vallzz g, |+ ba" h 2z |+ 00”1125, 1/_ 12 B+

Iral 3 g, 1 (2vg e — 2(Va+ Ra) .
+ Vé (1’ zxa]é - V'q' ( +| Bl) (1’ zga]é ~—(ng(1 Z .]/’

If we now recall the identity (A4qz,2z) = (va -+ Ra) (4, 7 ]a, we get

4
n A“z "2 \<:\ qhaz Vo + Ra) (A(zz, Z).

From (72), (73), the ADI scheme for (71) is convergent for any T > 0.
If hy = hy = h, D = max(D;, Dy), then
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- 1-—Vn _ gk

with T=1" = (74)

1
oA’

where 5 = 4/D2, A = 4(1 + cah)/qh2. The number of iterations obeys the
asymptotic formula

v(a)—-ln—/l ]/thn—e—. (75)

A similar formula can be obtained for the Dirichlet difference prob-
lem in the case of the non-selfadjoint elliptic operator with variable
coefficients

3 [5% (ka (x)%) +ra(:c);—:z]—-¢h(1)u= — 1),

a=1
90 () > &1’ >0.

However, extra restrictions have to be imposed here on the coeffi-
cients and the mesh interval.

3. As our third example illustrating the application of the general
theory of Section 2, we consider iterational schemes for solving the
integro-differential equation for radiation transport in a layer

9 1 ¢ N
p%+0¢=7035¢(17u)du+f(x’p')’ 0<x<H’ —1<p<1'
-1
(76)

o0, pn) =8(), w>0 @Hp =n({), uv<o0
(77)

(0> 0, > 0, >0).

This problem was considered in [12, 13]. Following [13], we introduce
the mesh wpy = {(z; =ik, pj=1jl),i=0,1,...,n, —1<j<m, j+0,
h=H/n l=1/m} and approximate the operators

, 1 ¢ )
Lo = pop| oz, chp=0q>—7osscp(x,u)d
-1

by means of operators A;, A,:

Ao = {lwx’ S (Asv)ij = 05— 2 Habd

woz, 1 <0; VI;Om
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where (v-)i; = (viy — Vi, 5) [ B, (Vx)s5 = (Vigs, 5 —vis5) [ B .

We associate problem {(76) - (77) with the equation Ayv + Ay = f with
boundary conditions (77). Let Q be the space of functions specified on
the mesh wp; and vanishing on its boundary, i.e. with i =0, I m
and i =n, - m< j<< - 1. We introduce the operators A;v = Ay, Ayv =
Ayv with v & Q. The difference scheme for problem (76) - (77) can be
written as

(A1 + 4A)v = 7§, veQ (78)
(the right-hand side j~’ takes account of the boundary conditions).
The scalar product
(z,v) = (2,v)~ + (2, v)* and the norm |izll = ¥(z,3), (79)

can be introduced naturally into space Q, where

n—1 —1 n m
(Z, v)" = 2 Z Zuv{jhl, (Z, v)* = Z Z zi,-vi,-hl.
i=0 j=—m =1 j==1

The operators A;, A, are positive definite in Q. If the ¢, are fixed
in accordance with [13] (e.g. ¢, = 1), then 4, is selfadjoint.

It can easily be shown that
2
(412, 2) > 6| z]", |4z <A(4iz,2), & = g A=+.60

ocllzll? < (A22,2) < olzl?, oc=0—0,>0. (81)

The bounds (81) are obtained in [13]. we prove (80). Using the identities
3z == 0.5(z%) ;= 0.5hz 2, 2z, = 0.5(z%)x — 0.5hz,® and the inequalities

n fi—1 n
. He—h
Z;g\<\1h Z hzik, E Z{2h< H( 2——-) Z hz;., kY
k=1 i=1 k=1

we get

. - ) h Al (82)
Bz, 2)* = 0.5 X py(24)% + 0.5k (4, 23" > W 2 >, )

=1
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and similarly

—1

(B22r 27 =—05 2 p;(207)"l — 0.5 (1, 2.3 > 75 oy @)

j=—m

Combining (82) and (83), we get (Aiz, z) = 8:llzl[% If we recall that
(412, 2) = 0.5h[ (p, 2.2)* — (u, 2:?)~], we obtain at once

| A1z “2 = (n?, 252)+ + 1% 2" <
2
<@z e s <EED oA (45,0, M=Z,

The scheme (5) with f; =0, f, =0 is used in [13] to solve problem
(78). As shown in Section 1, this scheme is algebraically identical with
the ADI scheme (2). Its convergence for any T therefore follows from
[11]. We estimate its rate of convergence. The estimate of [11] is too
crude, since it takes no account of the fact that A, is selfadjoint.
Theorem 5 gives

-"Z""(z) < pv||Zo||(2), ||Z||(z)2 = ||z|2 + Ta“AzZHZ,
where

1 — 2l
p = p1p21 1 = Vi + :i H1 = 2611:, 61A1 = F ’
Al A1) N = 2 with T =
2 = g = — =
1+ Ve + ]/ Mo o

Hence it follows that

A
Yoo,

ve)=ln - 1o (ot — V) L+ Vo).

By Theorem 2, the ADI scheme is also convergent with o, = 0. In this
case p=p;= ((1 —¥n) /(14 Vo))", m = h?l/2H?, so thut, as
h—~0, 1->Q we have v(e) =~ H/h}I. For comparison, we mention that

the special methods used in [13] only enabled a bound to be obtained
for the spectral radius p(T) of the non-selfadjoint transition operator
= (E 4+ TAg)? (E + 1:A1)"1 (E—<A,)(E— TAs),
1—Vm
p(TN < —F=.
14 V"lz
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The economy of a method is characterized by the amount of computa-
tional work needed to obtain a solution to a given accuracy.

Prom this point of view, it is interesting to compare the scieme of
[13] with the simple iterational scieme

(Al -+ UE) yk+l/’ = K?.l/k f (szk)ﬁ = O; Z‘l cvyivmv
v=—m
- (85)

(A1 + 0F) g+t = Royh+¥s + §.

Using the fact that the maximum principle anplies for A, + of, we can
easily show that scheme (85) is convergent in a uniform metric with
ratio pg = (0,/0)2, so that

et — vl <eolt* =l [¥h=maxivsl o= (a/).

Following [13], we take as the chnaracteristic convergence rate of the

scheme of [13] the ratio p* = (1 —Vnz) /1 +Vn2), 2= o0c/0 =1—
o,/0. Comparing p* and pg, we see that there exists a region of vari-
ation of the parameter n = (0,/0) with 4n3 + 4n - n? > 4, in which

po < p*.

Of course it would be premature to draw any final conclusion regard-
ing the advantage of one method over another from majorant bouads. How-
ever, our comparison shows that further investigation is needed (experi-
mental as well as theoretical) into whether the ADI scheme is worth while
for the transport equation. We need a more precise concept of the economy
of a scheme for this equation. In any case, the "economy of a scheme of
the first order in T discussed in Section 5 of [13] is not economy in
the sense of minimizing the computational work: in this case, the formula
for the number of iterations is v(e) = (1/¢) 1n (1/e), since T = J(e).

4. Theorems 2 and 6 offer an estimate of the convergence of the ADI
scheme (12) of Section 1 and enable optimal (more precisely, p-minimiz-
ing) values to be obtained for the relaxation parameter T for many other
problems.

Decomposition of the operator 4 of the initial stationary problem
into a sum of two positive definite operators A;, A, can be performed in
various ways. We illustrate this by the example of the Dirichlet differ-
ence problem for the Poisson equation
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B

*u
Au = Z Fzgs =—f

=1

in an arbitrary p-dimensional region G =& + [ on the mesh Wp, 4 (see
paragraph 1, Section 3). We write the operator

P
Ay=— 2 ¥; 3
=1 *a%a

as the sum A = A- + AT, where

1 o
Ay=——uz, Au=2—u. (86)
a1 o e @

=1 kg

In this case the iterational ADI scheme is

7 — tA7 = y* + tAryE 4 1, Z € @p, g 7 = p(z) for z ey,
(87)
Yyt — Aty = § + tAy 4+ 1f, ZEwh, g, Y= plz) for z <y

This scheme was first proposed by V.XK. Saul’ ev for solving the egquation
of heat conduction (with p =1, 2); he called it the alternating method
[21]. 1t is economic, since O(1/hP) arithmetical operations are required
for transition from y* to yk*l,

Introducing the operators Ay = —A~y, Ay = —Aty into the space
of mesh functions specified on @p,, 8nd vanishing on the mesh boundary
Yy, We can rewrite (87) as

(E + 141§ = (E — t42)y* + 1, (E + tdy)y*™ = (E — t41)§ + +f.

The right-hand side ? takes account of the non-homogeneous boundary con-
ditions and only differs from f at boundary base-points of the mesh.

The operators 4;, A, are non-seltadjoint and positive - definite in
Q. We evaluate § and A for them.

Using Green’s difference formula as in paragraph 3, Section 3, we
get (Agy, y) = 0.5(dy, y), « =1, 2. After simple working similar to
that of paragraph 1, Section 3, we get

2p : 2
ﬂAay"%<E§;;{(Aayv y), i.e. A=
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Since (4y,y) = (4p/D?)llyll?, we have

2p 2
(4, ) > prlvll, 8= 7z,
where D is the diameter of the region G. Hence it follows that

8 g%h?
N"=xps"
We now apply Theorem 2

i-}/i:i“qh}D 1:1‘—29.@
1.—]—]/1] 1+qh/D' - 2p
Thus the same asymptotic formula as in paragraphs 1, 2 (for scheme (64))

holds for the number of iterations v(e) in the case of scheme (868) -
(87), namely,

P

. (88)

v(e)=0 (% In %—) (89)

which is independent of the number of dimensions (p does not appear in
the expression for p, see (88)). The total amount of computation for

scheme (87) is 0(;‘%5111 —i—) .

Given any p, we can define A;, A, by analogy with (86) for the non-
selfadjoint problem

P P
— Ne b - S R S
aw= 3 (Grue, =) Aw= 3 (= 5n,—ts) 0

»

The bound (88) still holds in this case. If the mesh wp is non-uniform
at regular base-points and hy(x;) = h(h = const. > 0) everywhere in w,
the bound (88) holds if qh is replaced by h.

Note. When comparing different iterational methods, in addition to
the number of iterations, we need to consider the error resulting from
rounding-off errors when determining each iteration. For instance, the
method of successive substitutions is used for realizing scheme (64).
Hence, as follows from N.S. Bakhvalov’'s bounds, an error O(ey/h?) occurs
when finding yk+1, where €9 is the rounding-off error. In the case of
scheme (87), this error obviously does not exceed O(eo/h). As we have
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seen, schemes (64) and (87) are similar as regards the number of itera-
tions. The iterational ADI scheme can be used to solve equations with
variable coefficients.

Acknowledgement. The author takes this opportunity to thank E.G.
D’ yakonov for editorial comment.

Trans lated by D.E. Brown
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