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THE present note ProDoses monotonic schemes. uniformly convergent at a 
rate 0(h2), for a non-selfadjofnt second order elliptic equation in an 
arbitrary region, and also monotonic locally one-dimensional schemes, 
uniformly convergent at a rate 0(h2 + T) for a parabolic equation with 
non-selfadjoint elliptic operator. 

1. le take the first boundary value problem in the domain G i r of 
p-dimensional space x = (xl, . . . , *,I for an elliptic equation contain- 
ing first derivatives 

Lu=-f, XEG, BIF = fl, 0) 

where k,= k,f=) 2 Cl > 0, n=g(rf3*0,r==r=(zf, f=f(s), f,=f*(q,c,=kd 
cl is a constant. 

We consider as usual a mesh oh(G) in the region G, formed by the 
intersection of the hy9ernlanes I.. = i,h,, icr = 0, fl, AZ, . . . . a = i, ..,, p, 
where ho is the interval of the mesh; the base-points Xi = (ilhl. . . . . 
iphp) E G are interior. the boundary yh of the mesh 0% consists of the 
points of intersection of the hyperplanes xo = i,ha with the boundary r 
of G. The set ah* of interior base-points adjacent to the base-points 

%i E Yh will be termed the boundary zone, and the set $, of remaining 
base-points the fundamental region of the mesh. 
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Let us now write the scheme for Problem (1). As usual, the term con- 
taining the second derivative with respect to xo in Loo is replaced by 
a three-Point uniform scheme. The natural replacement of the first de- 
rivative &I/&, by a two-sided difference ratio gives a scheme of the 
second order of aPProximation. This scheme is monotonic only for suffi- 

ciently small mesh intervals ho (a = 1, . . . . p). It is clear from the 
one-dimensional example (p = 1) that the formulae are applicable for 
sufficiently small ha, when haIral < k,. If we use one-sided differences 

(the right-hand for ro > 0 and the left-hand for ro < O), we obtain a 
monotonic scheme, for which the maximum Principle always holds. It has 
the first order of accuracy, however. 

Let us construct a monotonic scheme of the second order of accuracy, 
containing one-sided difference derivatives taking account of the sign 

of ra 

a 
Let hcx*u be a three-Point scheme of the second order for z 

a 
: 

i.e. 

where ii XQ is the left-hand, and uxa the right-hand difference ratio with 

respect to the direction xfx. The coefficient aa approximates k,. in 
accordance with [13 

The simplest expression for a, is 

a, = &&+0.5a>* 

where k, (-o.sa) is the value of La at the mid-Point of the left-hand 

mesh interval, directed along xa. 

We raglace ra by the sum 

r, = r,+ _t r,-, 
r c_ r=+lro’ 
0 - - > 0, 

2 

and approximate ro(&/axo) by the expression 

r,- = 
ra - lr-4 ( o 

--. 
2 

(3) 

where 6-z = r2 / kc+ and a,ffta) is the value of aa at the right-hand 

adjacent base-Point in the direction of xa. 
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To obtain a monotonic scheme of the second order of accuracy for 
equation (l), we have to write a monotonic scheme with one-sided first 

difference derivatives for the equation with disturbed coefficients 

where 

f;u = i L&u-pa----f, 
o-i (41 

and & = 05h&e/ ,’ kB is the *Reynolds’ difference AUAber”. We obtain 

as a result the scheme 

Aay=xa(aa~;,)za + b +a (+la) a a ysa + ba-aaY;ol. 

since b,+ 3 0, b,-- G 0, the maximum principle must hold for this scheme, 

Xt is easily verified that it has the second 

the solution u = U(X) of equation (1) 

ur = A~-L~ = o(lk[*) for 

where /L12= i M. fA the case of COAStaAt 

a-1 

order of approximation on 

coefficients AOAOtOAiC 

schemes of a bigher order of accuracy can be constructed. 

The boundary conditions are specified by one of the methods guarantee- 
ing the second order of accuracy for a (2~ + l)-point scheae in the case 
of Laplace* s ecluation. A good method is y = fl on yh, while the differ- 
ence scheae Ay = - f. alloulng for the non-unifornity of the zesb. ie 

written in the boundary zone Ok** 

We have thus obtained a monotonic scheme, uniformly convergent at a 
rate 0(/h)*), provided condftlons ensuring uniform approximation are 
satisfied. 

2. We now conslder the mixed problem for the parabolic euuation IA 
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where tu hw the far@ (2), and k, = k,(x, t1. q = g(r, t?, f = fcx, t>. 

TO obtain a scheme of the second order in space, we have to Write a 

scheme of the second order of approximation at rC( = 0 for the equation 

and repfact? the terms in the first derivatfve In accordance with (3). 

We write i as 

The idea for obtaining a Iocaflg on~~d~~~s~ona~ s&eltre ftoer f23 

aeounts to the following, The mesh f+ = itj = j? E 10, 7’1) is intra- 

duced and each interval (tj, tj”) Ls divided into p parts by the points 

&Szs ” th* 4 WE, 0% > 4 
O-i 

e.g. on = I/p (see [21). The one-dimensional probfem 

is solved fn the interval ha_& t$), 

The initial conditions for u(a) sre specified for t = ta_li, and the 

boundary conditions on the part r, of r which consists of points of 

intersection of I- by arbitrary straight lines parall% to 0~~ and pass- 

ing throagfi points x E G. It is easily verified that, for as3 ea. we 

have Ccf. 1211 

max/u--u/=0(~). 
Q, 
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It is even possible to quote examples when the strict equality wj=uj 
holds for t = tj. For instance, this is the case for the Cauchy problem 
or the first mixed problem with zero boundary conditions for the equa- 
tions for the equation of heat conduction &/at = AU, G = CO, where A 

is the Laplace operator, and Go is a parallelepiped. Various two-layer 
or even three-layer schemes can be used for the numerical solution of 
(101. We prefer (especially in the present case) purely implicit schemes, 
for which the maximum principle holds for any f. h,, For vi = uj schemes 
0(h4 + s2) may be used. 

Let us write a locally-one-dimensional scheme for problem (6) Let 

ho = h,(t’), t* ~ (tj, tj+l = scheme (6’). Then a locally-one-dimen- 
sional scheme for (8) is 

uft=o = uow, 

where y(,,i = yj+I, ycO,j = yj. The boundary conditions for y(o)j = 

v(x, ta**> are taken on the part yh which belongs to f,. In the bound- 
ary zone Oh+ the value of y(o) j is defined either in accordance with [21 
(deflection by means of linear interpolation in the direction of xo), or 
in accordance with [21 (an equation allowing for the non-uniformity of 
the three-dimensional mesh is written at the base-points Oh*, see above). 
We recall that ta* E [tj, tj+J, tci** ~[tf, tj+i]. We can recommend, e. 8. ta* = 

ta** = tj+ls The method of choosing ta* and to** within the limits in- 
dicated does not affect the order of accuracy in T. 

With both methods of specifying the boundary conditions the maximum 
principle is satisfied and 

provided the approximation conditions indicated in [21 are satisfied. 
Thus the locally-one-dimensional scheme (11) is uniformly convergent at 
the rate 0(lh12 + 5). 

The above method can be used in the construction of monotonic schemes 
of the 2nd order of accuracy in h for quasilinear parabolic equations, 
and also for certain systems of differential equations (e.g. for an 
analogue of the Nevier - Stokes equations). 

The case of non-uniform meshes and discontinuous coefficients requires 
further investigation. 

Translated by D.E. Brown 



A non-sclfadjoint elliptic operator 217 

REFERENCES 

1. TIKlfONOV, A. N. and SAMARSKII, A. A. Homogeneous difference schemes, 
Zh. uychisl. Mat. mat. Fiz., 1, 1, 5 - 63, 1961. 

2. SAMARSKII, A.A. An economic method of solving the multi-dimensional 
parabolic equation in an arbitrary region, Zh. vy’chisl. Mat. mat. 
Fiz., 2, 5, ‘787 - 811, 1962. 

3. SAMARSKII, A.A. Locally-one-dimensional schemes on non-uniform 
meshes, Zh. vychisl. Mat. mat. Fiz., 3, 3, 431 - 466, 1962. 


