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THE present pote proposes monotonic schemes, uniformly convergent at a
rate O(h?), for a non-selfadjoint second order elliptic equation in an
arbitrary region, and also monotonic locally one-dimensional schemes,
uniformly convergent at & rate O(h2 + 1) for a parabolic equation with
non-selfadjoint elliptic operator.

1, We take the first boundary value problem in the domain G + [ of
p-dimensional space x = (x;, ..., zp) for an elliptic equation contain-
ing first derivatives

Lu=—f z&G, ujr=Hh, 1)
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where ka=ka(z) 2 61 >0, ¢=1q(2) 2 0,ra =ra(z), f=f(z), } = f1(2), ¢, 80d
¢y is a constant.

We consider as usual a mesh wn(G) in the region G, formed by the
intersection of the hyperplanes zq == iaha, ia=0, 1, +2, ...,a=1, ..., p,
where hy is the interval of the mesh; the base-points x; = (ijhy;, ...,
iphp) € G are interior, the boundary yj of the mesh o consists of the
points of intersection of the hyperplanes xg = ighy with the boundary I
of G. The set w,* of interior base-points adjacent to the base-points
x; € yj will be termed the boundary zone, and the set &y of remaining
base-points the fundamental region of the mesh.
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Let us now write the scheme for problem (1). As usual, the term con-
taining the second derivative with respect to =y in Ly 1s replaced by
a three-point uniform scheme. The natural replacement of the first de-
rivative au/axcx by a two-sided difference ratio gives a scheme of the
second order of approximation. This scheme is monotonic only for suffi-
ciently small mesh intervals hy (a =1, ..., p). It is clear from the
one-dimensional example (p = 1) that the formulae are applicable for
sufficiently small hy, when hq}rql < ky. If we use one-sided differences
(the right-hand for ry > 0 and the left-hand for ro < 0), we obtain a
monotonic scheme, for which the maximum principle always holds. It has
the first order of accuracy, however.

Let us construct a monotonic sScheme of the second order of accuracy,
containing one-sided difference derivatives taking account of the sign
of rq.

) ou

Let Ay*u be a three-point scheme of the second order for —— ka— ):
824 Oza

4 ¢ ou

i.e,
P

Aatu == (auuza):a=

)+ 0 (ha?),
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where ﬁ”a is the left-hand, and Uy the right-hand difference ratio with

respect to the direction x4 The coefficlent ay approximates k,, in
accordance with (1)

ko
o == Ka — O.Sha 5‘;;"" O(huz)’

The simplest expression for ay is
Qg =< k“(‘“‘lﬁu)‘

where ko(~0-5®) {s the value of ky st the mid-point of the left-hand
mesh interval, directed along =xq.

We replace rg by the sum

ra | re ! To = |Fal
— 20 1= <0

2 2

rg = Fo¥t 4 rs¢—, rgt ==

and approximate rq(Ou/Oxy) by the expression

ou _ Ta (k a_“) = b, e, u, 4 braguz

®3x, kg \ *oz, atxg? @

where ba= ==ra*/Ka, and au(+'@ is the value of ay at the right-hand
adjacent base-point in the direction of =x,.
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To obtain a monotonic scheme of the second order of accuracy for
equation (1), we have to write a monotonic scheme with one-sided first
difference derivatives for the equation with disturbed coefficients

»
Iu= N Luw—gqu=—
= ' @
a a 8
Lo = % (ka 3\+7a 2 '
where Gy 8za / dza

m=(1+§fu)/(1+éfa). (3)

and Hp = 05ks|rg| /kp 18 the "Reynolds’ difference number"”. We obtain
as a result the scheme

r
Ay = DAy —gqy=—14,
azg: (6

+ -
Aayzua(aay;d)xa + ba a¢(+1a) yxa + ba aayia‘ (61)

Since bet =0, ba~ =<0, the maximum principle must hold for this schenme.

It is easily verified that it has the second order of approximation on
the solution u = u(x) of equation (1)

¥ — Au—Lu = O(|k[?) fOF ze o,
»
where |R]2= Eghal In the case of constant coefficients monotonic

G

schemes of a higher order of accuracy can be constructed.

The boundary conditions are specified by one of the methods guarantee-
ing the second order of accuracy for a (2p + 1)-point scheme in the case
of Laplace’s equation. A good method is y = f, on y;, while the differ-
ence scheme Ay = - f, allowing for the non-uniformity of the mesh, is
written in the boundary Zone w;°.

We have thus obtained a monotonic scheme, uniformly convergent at a
rate 0(|h|2). provided conditions ensuring uniform approximation are
satisfied.

2. ¥e now consider the mixed problem for the parabholic equation in
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the cylinder Jr=(G+TIXPOL T

.‘ff’: Lu+f, a}r=\"($, t)t
at M

u(z, 0) == uo(z),

where Lu has the form (2), and kg = kolx, ), ¢ = glx, t), f = f(x, t}.
To obtain @& Scheme of the second order in space, we have to write s
scheme of the second order of approximation at ry = 0 for the equation

ou
Y Lu+f (8)

and replace the terms in the first derivative in accordance with (3).

We write L as

»
é
Ea m Zﬁsu, Egﬂ El )ﬂc“—?‘x—a(ka{ftg i)

Koz g
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)+ ral®, 1) - — ga(z, BB, (9
3.%; 5335

b
where Qu%0,245=q, e.8 gg = g/p. 8nd kg are given by (3).

"‘.:=i

The idea for obtaining & locally one-dimensional scheme from {2}
amounts to the following. The mesh w, = {¢t/ = j1 € [0, 7]} 1s intro-
duced and each interval (tJ, ¢/¥}) is divided into p parts by the points

b4
tod == !a:.i -+ Oqt, e >0, 2‘3& ==,

e

e.g. 0y = 1/p (see [2]). The one-dimensional problem

) p
at"-":zuu"*"i&, 2]&""’7 a"'ia"'v p (10)

gt

Ta

is solved in the interval (g y/, tod).

The initial conditions for v(g) are specified for t = ty_ 1/, and the
boundary conditions on the part I'g of " which consists of points of
intersection of | by arbitrary straight lines parallel to Oxg, and pass-
ing through points x € G, It is easily verified that, for any g, we
have (cf. [2D)

max|v—u] == 0(1).
QT
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It is even possible to quote examples when the strict equality o/ =uJf
holds for ¢ = tJ. For instance, this is the case for the Cauchy problem
or the first mixed problem with zero boundary conditions for the equa-
tions for the equation of heat conduction Ju/d¢t = Au, G = G, where A
is the Laplace operator, and Gy is a parallelepiped. Various two-layer
or even three-layer schemes can be used for the numerical solution of
(10). We prefer (especially in the present case) purely implicit schemes,
for which the maximum principle holds for any T, hy For »J = uJ schemes
O(k* + 72) may be used.

Let us write a locally-one-dimensional scheme for problem (8) Let
Ax = Ag(t®), t* & (tj, tj4) = scheme (6'). Then a locally-one-dimen-
sional scheme for (8) is

i
3 —
Mi Aa(tﬂ‘)yic}j + fa(x, ta.)’ Q= i’ 2, e By ] = 07 1'- *s (11)

Ul o = uo(z},

where y(,)/ = y/*l, y(g)/ = yJ. The boundary conditions for y(q)/ =

v(z, to**) are taken on the part yj, which belongs to [y. In the bound-
ary zone w,* the value of y(y)j 18 defined either in accordance with (2]
(deflection by means of linear interpolation in the direction of x4), or
in accordance with [3] {an equation allowing for the non-uniformity of
the three-dimensional mesh is written at the base-points @j*, see above).
We recall that &’ & [t;, tj14], t** [t tj41]. We can recommend, e.g. to* =

ta®* = tj+). The method of choosing ty* and ty** within the limits in-
dicated does not affect the order of accuracy in T,

With both methods of specifying the boundary conditions the maximum
principle is satisfied and

max yi—ul|=0(h[*+7),
h

provided the approximation conditions indicated in [2] are satisfied.
Thus the locally-one-dimensional scheme (11) is uniformly convergent at
the rate O('hlz + 1),

The above method can be used in the construction of monotonic schemes
of the 2nd order of accuracy in h for quasilinear parabolic equations,
and also for certain systems of differential equations (e.g. for an
analogue of the Navier - Stokes equations).

The case of non~uniform meshes and discontinuous coefficients requires

further investigation.
Trenslated by D.E. Brown
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