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1.‘ WHEN difference schemes are used for the equations 
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for an arbitrary space region G of change in x = (xl, x2, -. ., rp) 
difrlculties arise associated with the approximation of mixed deriva- 

tives on the net (see [I]). 

If the coefficients k,+ = const., then we can always get rid of the 

mixed derivatives by introducing the new variables 

SG = cc= 1,2 ,..., p, x’, = (3) 
p= 1. S=i 

P 
and reducing the quadratic form z: kasE& to diagonal form over the 

a ,I)=1 

whole region G. The operator Lu will take the form 

* Zh. uychisl. Mot. mat. Fiz. 5, 4, 773 - 776, 1955. 
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(4) 

where ra and q may be variables. The operator Lu contains derivatives 
with respect to certain directions so. It is natural to introduce the 

net ah in G for the variables si(, 
(i..$) 

drawing the hyperplanes s 1( = i,h,, 

ia = 0, * 1, 4 2, . . . , such that ah = {sj = (~(fr),~($), . . . , ~2))). 

We agree to call this an oblique net. If the transformation (3) is not 
orthogonal, then oh is oblique - angled (when p = 2 it is a parallelo- 

gram) + On Oh the operator (4) can be approximated to USiW ordinary 
difference schemes. 

2, For two space variables (p = 2) the operator (2) can be reduced to 
the canonical form 

in the whole 

provided the 

region G and when the coefficients k 
M 

are variables 

kre = kes(zt, z2), a, B = 1, 2, kop = kaa, 

additional condition 

where p is an arbitrary constant, is satisfied. 

For, consider the orthogonal transformation (3) for p = 2 which re- 
duces the quadratic form with matrix (ko+) to the principal axes. Let 

2 
za = Z ~,sg--be the inverse transformation, with cl1 = c2g = e, cl2 = 

P=i . 

- c21 = c. We calculate the derivatives 
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a 
L22u = - 

asu 

+cz[$(bt+3++-( b2Z)] ’ 

where bl and b2 are as yet unknown. 

Equating the expressions 

2 
a 

2 ( 
au 

L;llU + L22u = __ kLze(x) - 1 

a, @=l 
ax, ax6 ) 

we obtain conditions to find c, c, bI and b2 

k,, = c2b, + Fbz, kzz = E2b, + c2bz. 

(7) 

kiz = cC(bz - bj), 3 + c2 = 1. 

It is clear from this that condition (6) is necessary and sufficient 
for c and c to be independent of x. Solving equations (7) and taking the 

roots 

I+ 11 - 4!7 I-II-49 1 
c= 

2 
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vhere q =-, 

4+ p 

we find 

b, = 
kii + kzz kiz 

--Y>O, 
b 

2 
2 2)‘q 

Note 1. Let kll = ;:~2. Then ~1 = 0, 9 = l/4 and 

b, = kll - k12, b2 = kil + k12. 

2. Let k,,k,, - k12 2 = 0. Then 

Using the orthogonal transformation mentioned above to reduce (2) to 
the form (51 we can reduce the solution of the first boundary problem 

Ln = -f, x E G, u I r = v(x) (9) 

to the solution of the same problem in the variables (~1, ~21 with the 
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operator (5) containing no mixed derivative. The difference scheme can 
be constructed on the oblique net oh = (si E C> as in [21. It is mono- 

tonic and converges uniformly at the rate G(lh1*). 

If the coefficients k+ are variable, then condition (6) must be 
satisfied. If $3 = const., then (3) is satisfied autouatically. 

3. Let us consider the mixed problem in the cylinder & = (G-k l?) X 
[O < t < T] for the quasflinear parabolic equation 

for any (I, t) es & I a I SZ M0, where Me is sn arbitrary constant. 

If condition (6) is satisfied, then using the rotation of axes 
mentioned above we can transform equation (10) to the form 

d 
L,u = - 

h% c ws, 4 16) + )+ Fa(s, 4 u) -“, f(s, t, u) = f(t, :, q, b 3 0; 
a a 

and b, can be expressed in terms of ko.+ using formulae (8). 

To solve equation (12) with the conditions (11) we use local one- 
dimensional schemes E31, [A on the oblique space net oh = Is2 E G> and 
the net (Jo = {tj E (0, T), j = 0, 1, . . . ). The corresponding schemes 

are given in [31, E41 and there is no need to write them out here. 

When the operator L, is not selfconjugate. i.e. when r, # 0, besides 
the schemes described in [31, [d, as in C21 we construct a monotonic 
local one-dimensional scheme which is uniformly stable with respect to 
the right-hand side, the boundary and the initial data. This scheme con- 
verges uniformly at a rate O(~!I/~ + 7). lh\* = h12 + $*, where h2 is 
the step in the direction sX, and -r the step with respect to t. 

The stability and convergence can be proved with the help of the 
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maxiaum principle. 

The boundary conditions on the net 61h will be set by one of the 
methods described in [31, [41 which give second order accuracy with re- 
spect to h (with or without deflexion with respect to sX). 

The argument u in the coefficients b,(x, t, n) , pals , t, ul and the 

right-hand side 7(x, t, LL) is taken either with u = yo (see E41) or with 
the known value a = ~(~-1). 

In the latter case the scheme is linear with respect to y(=), and in 
the former an iterational method is used to solve the system of oon- 
linear equations. 

4. Let us consider the case of an arbitrary number of measurements. 
If the coefficients kg3 = oonst., then (2) can be reduced to the normal 

form (4) over the whole region by the transformation (3). This makes it 
possible to solve the first boundary problem on the oblique net Oh = 
{Si E Cl using monotonic schemes of order O( Ih( 2), the mixed problem 
for the parabolic equation &/3t = Lu + f and for the hyperbolic equa- 
tiana2u/3t2 = Lu f f using the local one-dimensional schemes studied 

earlier in 131 - t51. 

gben p > 2 it is, generally speaking, very difficult to calculate the 
coefficients of the orthogonal transformation (3). Therefore, in practice, 
we can use any transformation (31 (which reduces (2) to the canonical 
form (4)) with easily calculated coefficients. However by doing this we 
obtain oblique - angled nets which “flatten out” as the discriminant of 

the quadratic form k&&e- becomes smaller. For an orthogonal 

transformation the net @h is rectangular and the resulting difference 
schemes are suitable even in the degenerate case (kllk,. - k122 = 0). 

Translated by R. Feinstein 
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