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1. IN this section we consider first of all additive difference schemes 
(see [I] - [51) for a system of second order hyperbolic equations which 
contain compound derivatives. There are schemes with variable directions 
which are absolutely stable and convergent at least with a speed 

O( lhlz -j- z), where lhl2 = $ ha2, h, is the step in the variable ao 
a=1 

and p is the number of dimensions. The numerical algorithm consists of 

the conversion of a three-point triangular operator, which reduces to 
the successive application of known formulae. The number of operations 
to determine a solution for a new time layer is proportional to the 
number of nodes of the space network and is a quantity of the same order 
as the number of operations for a purely explicit scheme. Thus the 
schemes put forward below are economic. 

To construct economic schemes for an equation of the form 

we use the common property of the operator 

a, B-1 

l Zh. uychisl. Mat. mat. Fiz. 5, 1, 34 - 43, 1965. 
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i.e. its representation in the form of the sum of operators Aab of 
simpler structure. 

Additive economic schemes for a general second order hyperbolic system 
are then used to describe economic schemes for a system of equations in 
the theory of elasticity in the case of two or three space variables 

(P = 2, p = 3). 

A resolving scheme is also constructed for equations of elasticity, 
which is absolutely stable and converges with a speed O( IhI* + -r*J. With 
regard to economy the resolving scheme is comparable with additive 
schemes, but for convergence it requires more smoothness for the solu- 
tion of the differential equation. 

In Section ‘7 an iteration scheme with alternating directions for the 
solution of a difference problem, corresponding to a stationary problem 
in the theory of elasticity, is considered. 

The convergence of this scheme is proved for p = 2, 3, and it is 

shown that the number of iterations v = 0(k2(p+‘p In (1 / E)), where E 
is the required accuracy. 

Economic schemes of another type are considered in the two-dimensional 
case (p = 2) for a dynamic problem of the theory of elasticity in [sI 
and for a static problem in the theory of elasticity in [Al. 

2. Let G = G + I’ = (0 < xa < I,, a = 1, . . ., p} be a p-dimensional 

parallelepiped with boundary r. In the cylinder Qr = f? X [0 < t < T] 
there is a solution of the problem 

8% 
-= 

at2 
i JLSU + f(x, q, La3u (1) 

a, fi=i 

=~(kadx& , 
a B ) 

U 

Here z = (xi, 

r = v(x, t), O<t<T, u(x, 0) = Ye(X), 

2 (z, 0) = Vi(X), 5 E G. 
(2) 

*-, xp); u = u(x, t) = (d, . . . , us, . . . ) LP), f, v, vg, vi 

are vectors of dimensionaly n, and k = (k,s) = (korpm), s, m = 1, . . . , n, 

is a partitioned p x p matrix with n x n submatrices, which satisfies the 
symmetry condition 

k$ (x, t) = kg (5, t) (3) 
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and the condition of positive definiteness 

fx, t, = QT, (4) 
8, m=i a, +i x=1 a=i 

where Ea = (gori, . . ., gas, . . ., gan) + 0 is an arbitrary real vector and 

cl is a positive constant. 

We shall assume that the problem (1) - (2) has a unique solution 

u = u(x, t), which is continuous in Qr and differentiable as many times 
as necessary for this work. To infer the a priori evaluations it is 
assumed that kag(z, t) satisfies a Lipschitz condition with respect to 

t and ta’, a’ = 1, . . ., p. 

The system of equations in the theory of elasticity 

6% 
-= pAu+(I.+p)graddivu+f(qt), 
df2 

where Au = i tPu/ dxa2 is the Laplace operator, u = (ni, . . ., up), 
L7=1 

h = const > 0 and u = const > are Lam6’s coefficients, is obviously a 
particular case of the system of equations (1) with rz = p and 

h = 
I, i = j, 

0, i # i, (6) 

where 6ij is the Kronecker delta. Condition (3) is satisfied automatic- 
ally. We shall show that condition (4) is also satisfied if cl = ~1. In 
fact 

a. a=i 

= P Ii (%a8j2 $_th + P) ( 5 %aa)‘> p i (%a8)2. 
&. S==i CC=1 a, s=i 

3. Let us introduce the difference networks at = {tj = j7E [0, ?"I, 

j = 0, I, . . .> and & = {xi = (irh,,. . ., iah,, . . . , i&J E-6 = G t r; 

i,=o, 1 . . .) N,, h, = 1,/N,, a = 1, 2,. . ., p} with steps 7 for the 
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variable t and ho for the variable xo, a = 1, . . . , p: let Th = {q E r} 

be the boundary of the network oh, &\Th = (x(EG) be the set of inner 

nodes, Following [II: we snall introduce the notation 

y = y(zt, tj+l) = yj+l, $ = yj, 

(*la) - i h 
21 -( 1 1,. ‘ *, i,&-l,(i, f 1) L4z+&a+1,* * ., iP&J, 

y(*lJ 
= y(~~*"), tj+l), Y;& = (y - y’-“‘) / h,, yxa = (y(+Q - y) / h,. 

We shall replace the operator 

(7) 

in the difference network oh by the same scheme of the second order of 
approximation as in [21, assuming that 

Ly = (allaY&,, 

where (aclp) is a matrix-functional of the matrix 

(-1 < sp< 0, /3 = 1,. . ., p}. The coefficients 

the conditions 

ai; =. aE, 

for sufficiently small Ih\ <he, the condition 

n P P 7% 

(8) 

(k=p) with pattern 

a,p = (u$) satisfy 

(9) 

where cl’< cl is a positive constant which does not depend on the net- 

work, and the condition obtained from (IO) after replacing a$ by the 

coefficinet (u81;f)(%) at the point xi+l 8). 

In the case of constant coefficients, kab = const., obviously 
aab = kaB and instead of (8) we obtain 

(11) 
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condition (10) is satisfied on any network. 

IVote. For &EY instead of (8) we can consider other rePreSt?ntatiOnS 

also, e.g. 

where v D 
ToL = &+ vxa) is the central difference derivative. In all 

cases the condition (IO) will be satisfied for a sufficiently small step 

IhI < ho and 1 a 1 the subsequent conclusions retain their validity. 

4. Let us introduce the “triangular” operators L- and L+. For this we 

write the symmetrical matrix ka, = (kz) in the form of the sum of 

two triangular matrices kaa = k& + k& k;a = (kzm), kza = (kzim), 

+ss 
assuming k,-,"" = kaa = $k~~,k&!m=== kaz k,+""= 0 if m <s, kazm= 

am 
k ka,sm= aa 9 0 with m > s and any a = 1, . . . , p. The matrix k,r is a 

diagonal p x p matrix with submatrices which are triangular n x R 

matrices, conjugate to each other 

k 
-sm 
aa = k;r (&,m=ar). (13) 

In accordance with the representation kaa = kla + kza we obtain 

Laa=La>+L&, Raa=AcG+lG, 

where 

LazU =a;[ k:ay&) 
a\ a 

etc. In view of condition (13) the operators Aaa- and Aaa+ are con- 

jugate to each other on the network Oh in the sense of the scalar product 

(Y, v,=r, Y(“i)V(“i)H, H=hi...hr, 

Oph 

i. e. 

(Gay, V) = (daV9 Y) 7 OJ= 1 ) . . . P9 (14) 
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where y and v are arbitrary network functions, vanishing on the boundary 
yh of the network q,, 

We shall put the operator 

in the form of the sum of two triangular operators 

a, 8-i a=1 fi=i 

L2Zs=LZa if p=u, Lcqt=Las, (15) 

La+e = 0 if fi < a, L& = Lap, 

L ail=0 if @>a, La-=Lau+~LafX, La=Laa+i Lug. 

B=* 8=a+i 

By virtue of the principle of additivity of El - 51 the solution of the 
system of equations 

reduces to the successive solution, on an q, x C+ network with step r/p1 
of the simpler equations 

18% 
--=L;u+L:u+f~. 
p at2 (16) 

The case where Las = Sap&, i.e. compound derivatives are absent, is 

considered in cl], 

We now introduce the values yj*'P = y<a), intermediate between 

yj = ; 8nd p++i = y assuming that y(j-i)+olP = &, and use for the 

determination of ~(~1 8 difference scheme which approximates equation 

(16) with number a. BY analogy with El], for the approximation of aZu/ at2 
we use the (p + l)-th time layer 
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I (u(a) - 2U(a-1) + ;(a)) / za. 6p=2, U(O) = &I), p=2 

u_ioia = her) - qa-1) ---u(a-2)+ &z))/C 6, = +-, U(0) = &3), 

i 

” 
q-1) = U(I)? p = 3. 

The additive scheme of alternating directions for the problem (1) - (2) 
will have the form 

y= = Y (2, ti) with xi = 0, I,, a = 1,. . ., p; y (x,0) = vo (x)9 (19) 

where cpa = %(z, tj”) is a second order approximation on the network 

oh of the function fa (5, t), tj’ E [tj, tj+i], e. g. tj* = tj+ I/, = tj f 0.5 7. 

The coefficients aas = aas(x, t&) are taken at the middle moment 

t(a)' = t,++o.5s (cf. [II,. 

The second initial condition can be approximated by analogy with [11, 
or more simply by assuming 

y”p = vi (x) + 
at- 
pn(4, a= ,...,p 1 - 1, p = 2, 3. (20) 

Such a condition is sufficient for an accuracy O(r + IhI 2). Let us re- 
write (18) in the form 

where 

fia (Y) = 2Y(a-1) - i(a) if p = 2, Ra(Y) = Y(a-i) + Y(a-2) - icar) if P = 3 

and E is the operator of identity. 

Here it is obvious that to determined ~(~1 (all y(e) for p < a and all 
” 
~(6) for $ = 1, . . . , p are already known) we obtain a system of three- 
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point equations with a triangular matrix for their coefficients. Its 

solution reduces to an inversion of the operator E - (T? / c+)A& , 
which is attained by an n-fold use of the ordinary formulae for each 
chain y(o) (see [II) for fixed a = 1, . . . , p. To realize the algorithm 
(21) we must bear in mind the values of J’(a) on p layers. 

Let us write the equation for the s-th components y(a)* of the vector 

Y(a) 

W) 

Here @a” is known, since the calculation takes place in the direction 
from a to a + 1, a = 1, . . . . p; the second term is also known if we de- 

termine successively &a)‘, . . ., y(a)‘, . . ., y(af’, i.e. carry out the calcu- 

lation from s to s + 1. Hence it is obvious that we can find y(a)’ by 
solving the first boundary value problems for the three-point equations 
on segments parallel to the axis Ox,. 

If we interchange the roles of La- ad La’, respectively, 

we obtain a second additive scheme 

(23) 

with the same initial and boundary conditions as in the first scheme. 
Here to determine yo we must invert the triangular three-point operator 

E - (+ / (Jo)&za+. Here the calculation proceeds from a + 1 to a and 

from s + 1 to s. 

The alternation of these two schemes gives a third scheme. Introduc- 

ing the intermediate value yf*P, a = 1, . . ., 2p - 1, we obtain (cf. 
[2. 51) 
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a’=2p+1-a, p’=2p+1-43; 

where a’=p+l,. . ., 2p, ‘p,,=‘p,, a=p, p--l,. . ., 2, 1. 

5. Schemes (18) and (23) are stable for sufficiently small Ihl <ho, 
ensuring that the requirement (IO) of the positive definiteness of the 

matrices (a,~) and (k&+*8)) for any T is satisfied, and converge at 

least with a speed O( IhI 2 + -0. The proof of these statements is carried 
out by analogy with [l, 41 by the method of energy inequalities. 

Here the basic part is played by an identity of the form 

5 ~G-&, Ea - k4 + (dde, L - g,, = J- 1 (1 + 0 (z)) + R, 
a=1 

where 

Using (3) it is not difficult to see that 8 = 0. 

Note. In the case of constant coefficients. k=b = const., the given 
values of the accuracy of the schemes considered, (18) and (23), are 
valid for any h, and T. 

6. We now turn to the equations of elasticity (5). In this case as 

we have seen in Section 2, n = p, and kz = const., 

k$ = @J&L,, + (h + P) b$,n, 6, = 
1, s=m, 

0, s#m. (25) 

For the equations of elasticity (5) we can use any of the schemes 
considered in Section 4. bearing in mind that a,$ = kae, where kora is 
determined by formula (25). 

We shall write in more detail the difference equations (18) in the 
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We must remember that here the upper index means the number of the 

component and the lower one the number of the vector (I&{ = (y”))i+‘i’, 

yf;; = (~(l))~+l = +11, q;] = (~(~))~+l = ;a etc. ). Using (18) and (25) it 

is not difficult to write down the scheme for p = 3. 

7. For the equations of elasticity we can also construct a series of 
resolving schemes which are absolutely stable, economic and convergent 

with speed O(z+ lh12) or O(++ /h12). 

Let us first consider the twomultidimensional schemes 

yrr = A-y f A$#-$ (yrr = (y”’ _ zyj + yj--l)/Za 1; G-7 
yTi zh+y+ A-“Y+$, (I+) 

where A- and A+ are triangular operators, which approximate the tri- 

angular differential operator I,’ and L’, y = 3i’, $ = y”, y’= yi. 

Let xay=y;axb, and x8k denote the difference approximation of the 

compound derivative ~2u/8x,dx~, e. g. Kay = t(y;,, + y+) or 

&KY = + (Y;,& + Y,,J. Then the expressions for the triangular oper- 

ators A’ and At can be written in the form (the upper index s or k is 

the number of the component) 

(A-y)S = + 5 %k%!P + (h + P) 7 &A Xsa = P + (h + CL) fhaz (26) 
a=1 k=l 

th+YIS = + i %=kaY’ + ln f IL) * $+l Lkyk* (27) 
R_=l- E 

The boundary conditions on Yh are exactly satisfied 
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and the initial conditions have the form 

y (x, 0) = 90 (x)9 YF h r) = N(X) + G lx), 

where vi(z) is chosen so that the initial condition au/at = vi is 
approximated with accuracy O(T~); for this, for instance, it is suffi- 

cient to assume that vi = - (Lu + f) lt=o. 

Each of the schemes I- and I+ is absolutely stable and has an accuracy 

O(r + ) h2 I). Applying these schemes alternately (e.g. scheme (28) on odd 

and scheme (27) on even layers), we obtain an accuracy 0(-r2 + [II/~). 

Following the principle given in 
scheme II- for the scheme I- 

(8), we shall write the generating 

A’y; = df + F”, A* = f A:, A: = E - O.~T~X,,&,, I 
(z=l 

df=s;+z 
[ 

(A’;)” + 0.5 5 X8&ji8 + 6’ ( 
a=1 

I t 

(28) 
S-1 

Similarly the generating scheme II+ is written for the scheme I+. In 

this case only the. formulae for ~$8 and F8 are changed 

(2% 

&J = if + IT (fej)” + 0.5 
[ 

To determine y8 on a new 
for alternating directions. 
which we put forward in [81 
algorithm has the form 

lsyer we can write some numerical algorithms 
We give for scheme II- only the algorithm 
for the equation of heat conduction: this 

A:v;l) = af + P8, A,& = v&, a = 1, 2, . . ., p, s = 1, . . ., p; 
ys = p*+ rz&. (30) 

We shall take the boundary conditions with xa = 0, xa = la for qar)* in 
the form 
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& = A:+l. . . Ap'vf for x==O, x,,=lo(, a=1 ,..., p-l, v&=vi*. 

(31) 

The order of calculation is as follows: the components y”), . . . , tip) = 
y j+i are determined in turn. 

For the algorithm which corresponds to scheme II+ the formulae (30) 
remain unchanged. but the order of calculation is reversed: the com- 

ponents y’p), . . . , yti) are determined successively. 

Alternating the schemes II- and II+ we find the solution of the prob- 

lem with accuracy to within 0( lhi2 -i- I?). This evaluation is obtained 
by the method of cl, 2, 81. 

From the formulae for u(& it is obvious that the solution ys of the 
difference problem is determined by me8118 of successive inversion of the 
triangular matrices (according to the formulae given in c91). Therefore 
the resolving schemes are economic: to calculate the vector 1 yjtl opera- 
tions of the order 0(p2 / hP1 are required. 

8. We turn now to a stationary problem of the theory of elasticity 

Lu = ~Au + (h + p) gaddivu = -f(x), x E G, ulr = V(X). (32) 

Its solution reduces to the solution of the difference problem for 
establishing the parabolic system of equations 

g= Lu+f(x), ulr = v (x) 

with arbitrary initial data 

u (X90) = vo(x). 

For this we make use of the resolving scheme. Let the difference 
scheme for (32) take the form 

Ay+A+v=cp, vlv, = v&r). 

We write the generating scheme for the determination of y = y(xi, 
(j + 1)~). where j + 1 is the number of the iteration and T the itera- 
tion parameter, as 
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In this case the numerical algorithm for alternating directions of 
Section 6 takes the form 

i.e. for w(~$ the boundary conditions are always zero. 

For comparison we quote one more numerical algorithm (two-layered) 

Ai*br(i,s = r(ti + Fe) + A+, Ad&-i, = Y&, a > 1, 

y~~f = A&q. . . AF*vd for G = 0, L&z = I a9 a=l,Z,...,p-4: 

Y(P18 I YJ$ = vs. 

The order of the computation is t&e same as before: initially the 
first component y( l) is determined, then the second y*(s = 2) etc. 

To find yss at all nodes of the network ah operations of the order 
O( r/h,h, . . . h,) are required. The iteration process converges for 
T = O(h,), h, = min hm The rate of convergence is determined by the 

number of iterations v = O((l/h,)X In (l/e)) for p = 2 and 

O((l/h,va) In (l/e)) for p = 3, where E is the required accuracy. 

The evaluation for the number of iterations is obtained by the method 
of energy inequalities by analogy with [IO, 7, 41. 

Switching the roles of the operators I\- and At, we obtain the second 
iteration scheme II+. The same value is obtained for the rate of con- 
vergence of the iterations with it as for the scheme II- described above. 
It is hoped that this is the basis which the interchange of these two 
iteration algorithms II- and II+ can bring to speeding up to convergence. 

Translated by H.F. Cleaves 



A hyperbolic rystea of equations with conpound derivatives 57 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

REFERENCES 

SAYARSKII, A. A., Local one-dimensional difference schemes for multi- 
dimensional hyperbolic equations in an arbitrary region. Zh. vychisl. 

Mat. mat. Fit. 4, 4. 638 - 649, 1964. 

SAMARSKII, A. A., Economic difference schemes for parabolic equations 
with compound derivatives. Zh. vychisl. Mat. mat. Fiz. 4. 4, 753 - 
759, 1964. 

SAMARSKII. A. A. , Economic difference method for the solution of a 
multi-dimensional parabolic equation in an arbitrary region. Zh. 

vychiol. Mat. nat. Fiz., 2, 5. 787 - 811, 1962. 

SAMARSKII, A. A., Local one-dimensional schemes on non-uniform net- 
works. Zh. vlchisl. Uat. mat. Fiz. 3, 3, 431 - 466. 1963. 

SAYARSKII. A. A. , Economic difference schemes for systems of parabolic 
equations. Zh. vychisl. Mat. rat. Fiz., 4, 5, 927 - 930, 1964. 

KONOVALOV. A. N. , Application of resolving methods to the numerical 
solution of dynamic problems in the theory of elasticity. Zh. 

vychisl. Mat. mat. Fiz., 4, 4, 760 - 764, 1964. 

KONOVALOV. A. N. , Iteration scheme for the solution of static prob- 
lems in the theory of elasticity. Zh. vychisl. Mat. nat. Fiz., 4. 

5. 942 - 945, 1964. 

SAMARSKII. A. A., Schemes for increasing the order of accuracy for a 
multi-dimensional equation of heat conduction. Zh. vychisl. Mat. 

rat. Fiz., 3. 5, 812 - 840. 1963. 

BEREZIN, I.& and ZRIDKOV. N.P., Numerical Methods (Metody vychis- 
lenii), Vol. 2, Fizmatgiz, Moscow, 1960. 

LEES, Y., A note on the convergence of alternating direction methods. 
Math. Conput., 16. 77, 70 - 75, 1962. 


