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1. IN this section we consider first of all additive difference schemes
(see [1] -[5]) for a system of second order hyperbolic equations which
contain compound derivatives. There are schemes with variable directions
which are absolutely stable and convergent at least with a speed

p
O(|k]|2+ 7), where |h|2=z ho?, he 1is the step in the variable ay

a=1

and p is the number of dimensions. The numerical algorithm consists of
the conversion of a three-point triangular operator, which reduces to
the successive application of known formulae. The number of operations
to determine a solution for a new time layer is proportional to the
number of nodes of the space network and is a quantity of the same order
as the number of operations for a purely explicit scheme. Thus the
schemes put forward below are economic.

To construct economic schemes for an equation of the form

#u

P
ot D Aw(tu=]

o, B=1

we use the common property of the operator

»
A == 2 Aaﬁ,

@, B==1
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i.e. its representation in the form of the sum of operators Aag of
simpler structure.

Additive economic schemes for a general second order hyperbolic system
are then used to describe economic schemes for a system of equations in
the theory of elasticity in the case of two or three space variables
(p =2, p=3).

A resolving scheme is also constructed for equations of elasticity,
which is absolutely stable and converges with a speed O(\hl2 + 12y, With
regard to economy the resolving scheme is comparable with additive
schemes, but for convergence it requires more smoothness for the solu-
tion of the differential sequation.

In Section 7 an iteration scheme with alternating directions for the
solution of a difference problem, corresponding to a stationary problem
in the theory of elasticity, is considered.

The convergence of this scheme is proved for p = 2, 3, and it is

shown that the number of iterations v = O (A %P—0?ln (1/e)), where ¢
is the required accuracy.

Economic schemes of another type are considered in the two-dimensional
case (p = 2) for a dynamic problem of the theory of elasticity in (6]
and for a static problem in the theory of elasticity in 7].

2. ket G=G+T={0<2a<la, a=1, ..., p} be a p-dimensional

parallelepiped with boundary I'. In the cylinder Qr =G X [0 < i< T]
there is a solution of the problem

u ? 9 du
T2 — 3 Leu+i(zt), Lepu= ——( , ——)
ot m%——i o+ 151) =t 0zq Fag (,1) ozp /' A

ulr=vw(zt), 0<t<<T, u(z,0) =w(x),

du (2)
—(z,0)=w(z), =ze0G.
ot
Here z = (21, ..., Zp);u=u(z, t) = (u!, ..., us, ..., u"), I, v, vo, v1
are vectors of dimensionaly n, and k = (keg) = (kep™), s, m=1,...,n,

is a partitioned p x p matrix with n x n submatrices, which satisfies the
symmetry condition

kap (z,t) = Kpa (2,1) @)
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and the condition of positive definiteness

n P n P
S Y kap(ztEmEn =0 ) N (EA)E (@0)eln (4)

s, m=1 a,f=1 s=1 a=1

where &z = (!, ..., &% ... E«®) =0 1is an arbitrary real vector and

¢) is a positive constant.

We shall assume that the problem (1) - (2) has a unique solution

u = u(x, t), which is continuous in Q and differentiable as many times
as necessary for this work. To infer the a priori evaluations it is
assumed that Kkqp(r,t) satisfies a Lipschitz condition with respect to

t and za,a'=1,..., p.

The system of equations in the theory of elasticity

02
a: — pAu + (A + p)grad divu + f(z, ), (5)
P
where Au= >} d%u/0dzs® is the Laplace operator, u= (u!, ..., u?),
a=]1

A = const > 0 and u = const > are Lamé’ s coefficients, is obviously a
particular case of the system of equations (1) with n =p and

=i,

sm 1,
kaB = H‘Saﬁﬁsm + (}V + Il«) 60&368m7 61‘]‘ = {O i

(6)

where §;; is the Kronecker delta. Condition (3) is satisfied automatic-
ally. We shall show that condition (4) is also satisfied if c¢; = u. In
fact

p p 14 P
303 kapbtm=p D) (&) (A+p) D) Eerks =

8, m=1 a, f=1 o, s=1 o 8==1

p P 2 P
=u Z (E“S)Z'IL(}"’}'P')(E §aa) =R Z (Ea2)2

a, s==1 @, s=—1

3. Let us introduce the difference networks .= {¢;=jr<[0,T],
]'= O, 1,...} and 6h={x¢=(i1h1,...,i¢h,,... ,iphp)E—G=G—;—F;
ia=0,1..., Noy by = 1o/ Ny, a=1,2,..., p} with steps 7 for the
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variable t and hy for the variable x4, a =1, ..., p: let Tn= {ri & I'}
be the boundary of the network Gh, o\ 1r = {z; =G) be the set of inner

p
nodes, |h|?= M ho®. Following [1], we shall introduce the notation

==l
Y=Y t) =y*, y=V¥,
(1:11) = (ithy,- « «, la—tha-1y(ia £ 1) Rayiasrhasss - -5 Dphy),

(tlg) y (z(ila) tin), ya—ca = (y— y(—la)) /hm Ve, = (yH‘la) —y) /ha-

y

We shall replace the operator
a du
Legn = 5= (kes @, 72 ")

in the difference network wx by the same scheme of the second order of
approximation as in [2], assuming that

Agpy = % [(aaﬁke)xa + ( altl® ¥ ) ] for B=a,
| 8)
Agay = (aaay;a)x_ar

where (@.s) is a matrix-functional of the matrix (k,s) with pattern
{(— < s3<<0, B=1,..., p}). The coefficients a.s = (ays) satisfy
the conditions

dap = g, (9)
for sufficiently small |h| <Chq, the condition
n D
22 anE St > ZZ G2 (@) Eon X o (10)
s,m=1a,B=1 a=1 8==1

where ¢y < c; is a positive constant which does not depend on the net-
work, and the condition obtained from (10) after replacing aaB by the

coefficinet (a"j)"'e) at the point z{*!el.

In the case of constant coefficients, kqp = const., obviously
g = kap and instead of (8) we obtain

Amﬁ.y = —é kap (Y;Bxa + y;axﬂ)» Aaay = kaaygaxa; (11)
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condition (10) is satisfied on any network.
Note. Por A.py instead of (8) we can consider other representations
also, e.g.

1

Agpy = - [(aaﬁya-cﬁ);a+ <a:;13))’x3)xu],
(12)
Aoy = 7 [(aards,)z, + (603925) 2, ]

where v. = ‘;‘(V,‘c + vx,) is the central difference derivative. In all
Xg -2

cases the condition (10) will be satisfied for a sufficiently small step

'hl < hy and all the subsequent conclusions retain their validity.

4, Let us introduce the "triangular" operators L~ and L*. For this we
write the symmetrical matrix Kkgoq = (kg) in the form of the sum of

two triangular matrices kaa == Kag + Kaw, kaw = (kaa ), ke = (k2a™),
assuning kua = kia = %k;‘f, koo = kaz': koa=0 if m< s, kop ™=
ka;",'ka;sm=0 with m > s and any « =1, ..., p. The matrix k7T is a
diagonal p x p matrix with submatrices which are triangular n x n
matrices, conjugate to each other

kaa"=kas® = (Gaa"=daa" ). (13)

In accordance with the representation kgg = kag + k:a we obtain
- + - +
Laa = Laa + La.a, Aaa - Acm + Aaa,

where

* /. F du
Lagu—=—(% __)
aa 0xa( ae 0z

etc. In view of condition (13) the operators Awe~ and Aeet are con-
jugate to each other on the network @, in the sense of the scalar product

(v, VI=2 y(z)v(z)H, H=h...hy,

®)

(Azay, v) = (Asa¥, ¥), P, (14)

Q|
I
-~
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where y and v are arbitrary network functions, vanishing on the boundary
yx of the network wp.

We shall put the operator

b4
L= 2 Lq,ﬁ

a, f==1

in the form of the sum of two triangular operators

F 2 oF P x
L=L_+L+1 L = 2 L“B=ZLG! La;::Z Lﬂﬁg
=i a=1

F ¥ =
Lab = Lao if B=a, Laﬁ == Lab, (15)
Liz=0 if p<a, Lip=Lap, »
Lip=0 if >0, Lo =Loa+ NLat, La=Loat Las.
p=t p=aH

By virtue of the principle of additivity of [1 - 5] the solution of the
system of equations

d%a

r p
= AQlLat+Liyu+1s), Da=t
a==1

reduces to the successive solution, on an @y X w, network with step t/p,
of the simpler equations

1 #u - +
—— =Lt Leu f .
p o a4 Leu+fa (16)
The case where Lgg = 84glaq, i.€. compound derivatives are absent, is
considered in (1],

We now introduce the values YyH+%P = vyq,, intermediate between
yi=7y and yH =y assuming that yU-1H%p =y, and use for the
determination of y, a difference scheme which approximates equation
(16) with number «. By analogy with [1], for the approximation of otu [ 012
we use the (p + 1)-th time layer

1 9%
7 e o1, *=1...p (17)
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(Wa) — 2U(a-1) + W) / 2, Sp=2, WUg=1Uy, p=2
Ui, 7e = ] (8@ — 1) —Ug-g) + W) [T Op= 5 W = W),

| 2
( “(_1) - u(’), p = 3.

The additive scheme of alternating directions for the problem (1) - (2)
will have the form

a 4
OpY 1,0, = 92' Auye + 2 AdsYer + 9 a=1,....0 (5, ) Son Xy,
=1 =
(18)

Yo = ¥(z, ;') with 4 =0, Lo, a=1,...,p; y(z,0) =w(z), (19)

where @« = @a(z,t;") is a second order approximation on the network
o of the function fx(z,t), ;" € [t 4], e.& " =tjpy, =t;+ 057
The coefficients Gap == Gap(T, %@ ) are taken at the middle moment
tay' = tj+%r~ 0.5t (ct. [1]).

The second initial condition can be approximated by analogy with [1],
or more simply by assuming

y°‘/P=v1(x)+‘%~§i(z), a=1,...,p—1, p=2 3. (20)

Such a condition is sufficient for an accuracy O(v + Ih| 2). Let us re-
write (18) in the form
a—1

p 2 2
(E_‘ = A;a\)ym) =R (y) + A 2 AaBy‘ﬂ) + Fa = @y, (1)
O O p=1

where

Ro(Y) = 2oy — Y@ if p =2, Ra(Y) = Yo + Yo — Yo if p =3
and E is the operator of identity.

Here it is obvious that to determined Yy (a8ll y@ for B < « and all
y@ for @ =1, ..., p are already known) we obtain a system of three-
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point equations with a triangular matrix for their coefficients. Its
solution reduces to an inversion of the operator E — (+3/o0p)Asa ,

which is attained by an n-fold use of the ordinary formulae for each
chain y(o) (see [1]) for fixed =1, ..., p. To realize the algorithm
(21) we must bear in mind the values of Y@ on p layers.

Let us write the equation for the s-th components yq® of the vector
Y

T’ s—1
Vi — 52 (@52005 )y = Ol + 5 =) (e s, (22)
P Pm-—l a«
Here ®,* is known, since the calculation takes place in the direction
from a to o+ 1, a =1, ..., p; the second term is also known if we de-
termine successively ya!, ..., Y@® ..., YP, i.e. carry out the calcu-

lation from s to s + 1. Hence it is obvious that we can find y@® by
solving the first boundary value problems for the three-point equations
on segments parallel to the axis Oxg.

If we interchange the roles of Lo~ and Lgt, respectively,

a—1
Au. = Aaa"l“ 2 AaB = 2 AaB and A = A:a‘*’ 2+ AaB = BZ Aal%
=a-+1
we obtain a second additive scheme
. S
GPY'?E—(“ = ﬂga AaBY(p) + 821 AaBy(B) + ?. (23)

with the same initial and boundary conditions as in the first scheme.
Here to determine yy we must invert the triangular three-point operator

E — (v2/ op)Aaxt. Here the calculation proceeds from a« + 1 to « and
from s + 1 to s.

The alternation of these two schemes gives a third scheme. Introduc-

ing the intermediate value y#to2p g=1, ... 2p —1, we obtain (cf.
(2, 5])

a P . (24)
- +
cpy?a'ta = 2 Aaﬁy(a) + B§a Aaﬁy(p) + .. a=1,..., p;

B=1
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D

a
— + - ’ b
opy.?a'_ia’ - Ea AaﬂY(B’) + QZ—_]_ AGB y(B’) + ?a"

@ =2p+1—a, [ =2p+1—0;

where o’'=p+1,...,2p, ¢, .=¢,, a=p, p—1,...,2,1.

5. Schemes (18) and (23) are stable for sufficiently small lnl < < hy,
ensuring that the requirement (10) of the positive definiteness of the

matrices (aqp) and (aep™!8)) for any T is satisfied, and converge at

least with a speed O(Ihl2 + 7). The proof of these statements is carried
out by analogy with [1, 4] by the method of energy inequalities.

Here the basic part is played by an identity of the form

g«a;aep, fa— o) + (a2, §a—8) =7 —T (1 +0() +R,

where

II

DM G ubdu

a P P
2___3 9§Bs Ea) = a§1 B§a (‘12553» Ea)r

R= {Z(aw, £ — (80, 8]

[

1
Using (3) it is not difficult to see that R = 0.
Note. In the case of constant coefficients. k. = const., the given
values of the accuracy of the schemes considered, (18) and (23), are

valid for any hy and T.

6. We now turn to the equations of elasticity (5). In this case as

we have seen in Section 2, n = p, and k:g = const.,
o 1, s=m,
kap = p'baﬁbam + M +p) éasaﬁmy By = 0, s +m. (25)

For the equations of elasticity (5) we can use any of the schemes
considered in Section 4, bearing in mind that aap = kup, where Fkqp is
determined by formula (25).

We shall write in more detail the difference equations (18) in the
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case where p = 2; here y= (y®, y®) and

298 = -+ (b4 20) U 2, + 922 + 5 O+ B 0B+ V2) + 01

t:t

! 2) .. 37(2) _ 2)
2 @ = T2 B (yzlg XXy + ygl) Ixxt) + (pgl)’

Itl

1
2y§t)’ - p‘ (y(") XyXg 221%; Xy xt) + (P{?;’

298 = = 0 20 0, W) + F W OB g+ 92+ 9
We must remember that here the upper index means the number of the
component and the lower one the number of the vector (y{) = (y

ya = =y% P = (y(a))m: y®  etc.). Using (18) and (25) it
is not difficult to write down the scheme for p = 3.

Q) )j+'/'s
’

{1} )3+1

7. For the equations of elasticity we can also construct a series of
resolving schemes which are absolutely stable, economic and convergent

with speed O(t + |k]%) or O(x2 -+ |R|?).
Let us first consider the two multidimensional schemes
- % v - -
Vi =AY+ AY+e (v =" -2y + ¥R 1)
-¥ v
Yir =AY+ AV 4o, I
where A~ and A* are triangular operators, which approximate the tri-
angular differential operator L™ and L*, y=y", § =4, J=1¢.
Let Kay——«y;axa, and .7&,,, denote the difference approximation of the
. . 1
compound derivative d%u/dz0%y, e.g. Agy= T(y%xk +¥.,5)

Asky x%—(y;s;k -4 yx‘xk). Then the expressions ifor the triangular oper-

ators A~ and A* can be written in the form (the upper index s or k is
the number of the component)

P 8—1

(A”y)s = ‘—;‘ Z%sa}kays + (A‘ -+ p‘) 2 Aukyky Usa = Wb -+ ()" -+ Pv) +6ms (26)
a==} k=1

(A%y) = zxm B O4n Y Aut (27)

k==8-4-1

The boundary conditions on yj, are exactly satisfied
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yl‘V.h = v(x, t)’
and the initial conditions have the form

y (I, 0) =Y (23), Y (z, T) =w(z)+ 7;1 (22),

where ;1(1:) is chosen so that the initial condition du/dt =, is
approximated with accuracy 0(v2); for this, for instance, it is suffi-

cient to assume that vy = — (Lu = f)|=o.

Each of the schemes I~ and I* is absolutely stable and has an accuracy
o(r + Ih"’l). Applying these schemes alternately (e.g. scheme (2€) on odd
and scheme (27) on even layers), we obtain an accuracy 0(-r2 + |h|2).

Following the principle given in (8), we shall write the generating
scheme II~ for the scheme I~

Aty:_ =@ + F°, A = ﬁ AZ, A= E— 0_572%“]\“’
a=1
p
O =g+ r[ (A*9)" + 0.5 X xaahal’ +q>'].  (28)

§—1

Fr=v(A+p kgl Auyr.

Similarly the generating scheme II' is written for the scheme I*. In
this case only the formulae for (Iv)a and F¢ are changed
(29)
~ ¥ p [-3 v D o
D = g; + T[(A-g)s + 0.5 ElnsaAay’ +q’s] ’ Fl=x (A' + n) X 2+1 Askyk'
a= =§

To determine y on a new layer we can write some numerical algorithms
for alternating directions. We give for scheme II~ only the algorithm
which we put forward in (8] for the equation of heat conduction: this
algorithm has the form

A, = O+ F, Agvia) = v:a_g), a=1,2,...,p, s=1,...,p; (30)
g = gt .

We shall take the boundary conditions with xq = 0, To =l for vg)® in
the form
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3]:1)=A;+1--.Ap.vf‘ for z,=0, Za=l, a=1,.., p—L vfp):EE.i
(31

The order of calculation is as follows: the components y®, ..., y(P =
yiH  are determined in turn.

For the algorithm which corresponds to scheme II* the formulae (30)
remain unchanged, but the order of calculation is reversed: the com-

ponents ¥ P, ..., y® are determined successively.

Alternating the schemes II~ and IT* we find the solution of the prob-

lem with accuracy to within O(|h}2 <+ t?). This evaluation is obtained
by the method of (1, 2, 8.

From the formulae for v®* it is obvious that the solution y® of the
difference problem is determined by means of successive inversion of the
triangular matrices (according to the formulae given in [9]). Therefore
the resolving schemes are economic: to calculate the vector | yJ *1 opera-
tions of the order O(p2?/ hP) are required.

8. We turn now to a stationary problem of the theory of elasticity

Lu = pAu + (A 4 p) graddive = —f(z), z€ G, ujr=v(z). (32)
Its solution reduces to the solution of the difference problem for
establishing the parabolic system of equations

NIt f(2), ulr=v(

with arbitrary initial data
u(z, 0) = wo(z).

For this we make use of the resolving scheme. Let the difference
scheme for (32) take the form

A v+ Aty =g, v]|y, = ().

We write the generating scheme for the determination of y =y(z
(j * 1)7), where j + 1 is the number of the iteration and T the itera-
tion parameter, as

P
Ay =+ F, A=14r,  AI=FE—05wm.A,

a==1
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a=1

v P . P o .
D = D) neuhRaif® + (A +p) . §+1As::y" + 9,

81

F = +p) 3 Auys

In this case the numerical algorithm for alternating directions of
Section 6 takes the form

81p g8 == (D‘Q Fe 8 8
A1 @ + i Aa Y w(‘a‘-ﬂ! a > 19

=yt e, Wwtly,=0,
i.e. for wg® the boundary conditions are always zero.

For comparison we quote one more numerical algorithm (two-layered)
Aryg = t(Os+Fo)+ A%y, A= Y-y a>1,

y(a)" == A(:H—i) .. .Ap"'V‘ for Lo == 0, Ta == lCh Q== 1, 2’ e P i:

Y|y, = v

The order of the computation is the same as before: initially the
first component y!1) is determined, then the second y%(s = 2) etc.

To find y® at all nodes of the network wy operations of the order
O@1/hihy ... hp) are required. The iteration process converges for
T =0(h,), h, =min hy. The rate of convergence is determined by the

number of iterations v =~ O((1/hk.)X In(1/¢)) for p =2 and
O((1/h,"») In{(1/e)) for p =3, where e is the required accuracy.

The evaluation for the number of iterations is obtained by the method
of energy inequalities by analogy with [10, 7, 4.

Switching the roles of the operators A~ and A*, we obtain the second
iteration scheme II*. The same value is obtained for the rate of con-
vergence of the iterations with it as for the scheme II  described above.
It is hoped that this is the basis which the interchange of these two
iteration algorithms II~ and II* can bring to speeding up to convergence.

Translated by H.F. Cleaves
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