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IN this paper an economic continuous difference calculation scheme is 
put forward for the numerical solution of the Stefan problem in the case 
of several space variables and any number of phases.** 

The continuous calculation scheme is characterized by the fact that 
the boundary of the phase division is not explicitly selected and uni- 
form difference schemes are used. The principle of the “smearing” of the 
thermal capacity with temperature which in the same way does not depend 
on the number of dimensions plays an important part here. An explicit 
scheme for the one-dimensional problem has been considered in [II. R.P. 
Fedorenko used another explicit scheme for the one-dimensional problem. 
Non-uniform implicit schemes have been used in [21. For the one-dimen- 
sional Stefan problem a smearing algorithm using implicit schemes was 
tested by the authors with the cooperation of L.A. Vladimirov. 

To solve the multidimensional quasilinear equation of heat conduction 
with smeared coefficients of thermal capacity and thermal conductivity 
a locally one-dimensional method is used which was put forward and proved 
in [31 and [41. It consists of a stage by stage solution with different 
space variables of one-dimensional equations of heat conduction by means 
of unconditionally stable implicit schemes, The method is suitable for 

l Zh. uy’chisl. Mat. mat. Fiz. 5, 5, 816 - 827, 1965. 

l * The basic content of the present paper was given at the Second All 
Union Congress on Theoretical and Applied Mechanics (February 1964 
in Moscow). It was pointed out that similar work was being carried 
out by B.M. Budak, E.N. Sobol’eva and A.B. Uspenskii. 
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arbitrary regions in the case of boundary conditions of the first kind, 
and in the case of boundary conditions of the third kind for regions of 
special form bl. 

The continuous calculation scheme for the Stefan problem was verified 
with selfmodelling solutions in the case of one and two space dimensions. 
We have not touched on those problems which are most favourable for the 
difference scheme. Thus, for example, we consider the problem with 
cylindrical symmetry (the boundary of the phase transition is circular) 
on a rectangular network. In all cases the method enables us to obtain a 
solution with sufficient accuracy. 

1. Tbe Stefan problem 

1. In the study of thermal processes with phase transitions of a sub- 
stance from one state to another we happen to encounter the following 
problem. In each of two or more phases we have the equation of heat con- 
duction 

C(U) g= div(k(u)gradu)+f, 

where u = u(r, t) is the temperature at the instant t at the point with 
radius vector r(xl, . . . , xp), k = k(u) is the thermal conductivity, c = 
c(u) the tnermal capacity (per unit volume), and f = f(r, t) the density 
of the thermal sources. The boundary of the phase division is determined 
by the condition that the temperature along this boundary is equal to 
the temperature u* of the phase transition, i.e. 0, t) = u*. This rela- 
tion is the equation for determining R(t) - the position of the boundary 
of the phase transition at the instant t. In the general form we can con- 
sider that the equation of the boundary of the phase transition takes the 
form O(u) = 0, where u(r, t) must be substituted as the argument. We 
shall also write 40, t) = 0. We now formulate the condition on the 
boundary of the phase transition. Let 1 be the phase index for which 
u < u* , and 2 be the second phase index (for which u > u’). Since grad @ 
is directed along the normal to the surface 1 of the phase division, the 
normal component of the heat flux Q = - k grad u on 2 is given by 

QL z = - , k grad u, f ,Tait, ) 
1.2 

The difference between the heat fluxes QP - ‘21 is equal to the pro- 
duct of the enthalpy of the phase transition A and the normal component 
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of the velocity dR/dt of motion of the boundary of the phase division 

(2) 

Using the fact that along 2 

-&R(t), t) = 

we can write (2) in the form 

u = UC, 

(2’) 

((kgradu)f-((kgradu)z,grad@)+hG= 0 where r = R(t). 

We shall assume that there are only 2 phases so that 

c(u) = 
t 

c~(u) if u < u*, J+i(U), 

Q(U) if u> u’; k(u) = { kz(u), 

u < u*, 

u > u*. (3) 

The functions c,(u) and k,(u), s = 1, 2, are differentiable a sufficient 
number of times and bounded below by the constants ml and m2: cs (u) 2 

ml > 0, k (u) > m2 > 0. 

2. The physical requirement, from which the boundary condition (2 ‘) 
follows, consists of the fact that with the temperature of the phase 
transition u = u* the energy IV as a function of the temperature under- 
goes a jump of magnitude h, which is called the heat (or enthalpy) of the 
phase transition. We can therefore write 

w= Uc(U)du+hq(U-u*), s rl(E) = { ;; 
E 3 0; 
5 < 0. 

(4) 
0 

Substituting expression (4) in the energy equation 

ilW 
- = div(kgradu)+f 

ai! 

and taking into consideration the fact that dq(<)/dc = S(c) is the Dirac 
delta-function, we obtain 

(c(u)+ M(u - u*))% = div (k grad u) + f. (6) 

This equation includes equation (1) and condition (2) on the phase 
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surface. For the application of the continuous calculation method (with- 
out explicit choice of the boundary of the phase division) we find it 
convenient to use the equation in the form (6). 

We can show that (2) follows from (6). 

FIG. 1. 

Let us consider the point P on the surface @ = 0 (see Fig. 1) and 
construct a cylinder which is symmetrical with respect to @ = 0, of 
sufficiently small volume with centre at the point P and with generator 
parallel to the normal n(P) to Q, = 0 at the point P. Let ul be the 
lateral surface, crZ- the lower and aZt the upper bases of the cylinder; 
their areas will be lo1 1, Ia2 1 = (cJ~- 1 = lag+\, respectively. We inte- 

rate (fi) over the volume 

f I 

i’ of the cylinder and let lo1 1 -+ 0, and then 

o2 + 0 also. The integrals of c&fit and f in the limit give zero. The 
volume integrals 

JZ = 1 div (k grad u) dv 
v 

are transformed into surface integrals over the cross-sections of the 
cylinder. We shall assume that d@/du > 0; then q(u - u*) = q(o) and 

a+,) /at = 6(C)) (&D/at). The element of volume dv = dudn, where 

da is an element of the area of the plane sections parallel to a~*; 
integration along the normal can be replaced by inte ration with respect 
to 0, since (24, = (grad 0, dnl = Igrad Oldn. Then as (~1 + 0 f I 

3\. a!% do La 1021 
dt Igrad@] 

+A-----* 
at 

V 
)gradO,I ' 
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where 02(0) is the average cross-section of the cylinder (on @ = 0). 

Ostrogradskii’ s formula Ial 1 -) 0 gives 

12 = f kGdcs+ 1 ( (kgradu)a-((kgradu)i, ,;;;;;I ) do = 
(T U,(O) 

=((kgradu)z - (k grad u) i, grad @) 
loal 

Igrad@\ * 

Considering that lim (1, j- Jz) = 0, after dividing by lo2 1 / [grad $1 

PJ, I+@ 
and letting /a~ 1 -) 0 we obtain (2 ‘). 

3. We now give a mathematical statement of the multidimensional 
Stefan problem in the case of boundary conditions of the first kind. Let 
G be a p-dimensional region of the space x = (~1, . . . , xp) with boundary 

r, Qr = (G + I’) x [O<t<T], Qr = G x (0 < t < T], u;, A, 

(S = 1, 2, ..*, so) be constants. It is required to find a function 
u(x, t) in Qr and a vector function R,(t) with t E [O,’ Tl from the 
following conditions 

rc(uf+ 5 h,a(u-.J]+= div (k grad u) + j (z, t) in Qr; 
s=i (I) 

m(z, 0) =UO(Z) if zpG+P, u = p(z, t) if seEI?, t E [O, Tl, 
22 = id&.* if r = R,(t), s = 1, 2, . . . , so. 

Here se is the number of phases. 

4. We shall limit ourselves to consideration of the two-phase prob- 
lem. As is obvious from (6). c(u) and h6(u - u*) enter into the equation 
uniquely; A6(u - u*) represents the concentrated thermal capacity (on 
the surface u = u*). For transition to the difference scheme we replace 
the delta-function by the approximately deltaform, or smeared, delta- 
function S(u. - a*, AI ‘&O, where A is the value of the semi-interval on 
which 6(u - u*, A) is different from zero. This smearing or smoothing is 
equivalent to the replacement in the interval (us - A, u* f A) of the 
discontinuous function q(u - u*)’ by the continuous function I-&U - u*, A>, 
which is such that q ‘(5. A) = SC!& A). 

Thus we introduce a smoothed, or effective, thermal capacity E(u) = 
c(u) + A5(u - u’, A) from the conditions: 
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(1) c”(u) = c*(u) if u < u* - a, c”(u) = Q(U) if u > u* + A 

(i.e. E(u) = c(u) outside the interval (u* - A, u* + A)), 

(2) the change of enthalpy in the interval (u* - A, u* + A) is re- 
tained, i.e. 

u++A 

1 (?(U)du=h+ 1: 

u. *+A 

Ci(U)dU + \ ca(u)du, (7) 
U”-A U’-A ;* 

or G(zz* + A) - Z(u* - A) = w(u* +A) - V(U* - A), where V(U) is 

defined by formula (4). Here is a very simple example. Suppose that cl 
and c:! do not depend on u. Then in the interval (u* - A, u’ + A) we can 
take 2: = h/2A + (cl + c2)/2, which corresponds to a linear interpolation 
of w. We have also considered other interpolations of the thermal capa- 
city (linear and quadratic with the condition of symmetry E’(u*) = 0, 
etc.). 

In the same interval (u* - A, u* t A) the smoothing of the thermal 
capacity is also carried out (e.g. by means of a polynomial); an effect- 
ive, or smoothed, coefficient i;(u) is introduced which is the same as 

kl(u) if u < u* -Aandas kq(u) if u>u*+A. 

5. As a result, instead of (I) we obtain a problem for the equation 
of heat conduction with smoothed coefficients 

dU 

c”(U) at -= div(k(u)gradu)+f(t, r), (r, t) E Qr, 

(3 
u(r ,O) = uo(r), u/r = CL(?9, t E 10, T]. 

2. The difference scheme 

1. For problem (II) we can now construct an algorithm for continuous 

calculation, since there are now no singular elements in the conditions 
of the problem; there is only one smearing parameter A. Such a formula- 
tion of the problem does not depend on the number of dimensions. or on 
the number of phases. 

The question of the convergence of the solution of problem (1) to the 
solution of problem (I) as A + 0 has been considered in [51, and we shall 
not touch on it here. We shall assume that the prciblem has a unique 
solution u = u(x, t), which is continuous in Qr and possesses the 
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derivatives necessary for further work. 

We rewrite equation (I”, in the form 

au 
E(zz)- = 

at i Lau+f, L,u = -5 1 
CC=1 

axa ( I;(u)& . 
a 
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(8) 

Its solution on the difference network in the cylinder Or, as is shown 
in [3, 41 can be reduced to the successive solution of the one-dimen- 
sional equations of heat conduction 

1 au 

P 
E(u) __ = 

at ~(w~)+fa(l,t), i fa=f. (9) 
a=: 

Therefore it is natural to begin with difference schemes for the solu- 
tion of the one-dimensional quasilinear equations (9). 

2. Thus we shall consider in tne region O< x <l, 0 < t < 7 the one- 
dimensional equation of the form (we omit the index a) 

dU au 
c”(u) dt = ;F Z(u) ax 

i -, +f(t,x), i R(u) 3 Cl > 0, Z(u) >Cz>O 

(Cl, c2 = const) (10) 

with boundary conditions of tile first kind and initial condition 
u(x, 0) = Q(Z). The difference schemes for this case have been con- 
sidered in hl and [Al. Let us dwell on one method of solving (10). We 
introduce a network tih = {Xi, i = 0, 1, . . . , A’) in the segment O& x&l 
and ‘3~ = {t, = no, II = 0, 1, . ..) 
O<t<“. 

a network with step -r in the segment 

We now introduce a new function 

V = YH(u)dU, s 
0 

so that 
U 

s c”(u)&2 = cp(v), cp’(v) = c(u)/k(u) > 0. 
0 

Then (10) assumes the form 

@(v) d2V 

----=,,,+f(t,5). 
at 

(11) 
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For its solution we shall consider the scheme (see [sj) 

9(Yin+*)- 4p(Yin) -_ 

7 
= A(aYP+‘+(1- O)Yi”)+f(% b&/i), O<OSgl, 

(12) 

where I\ is the difference approximation of the operator L: on the uni- 
form network wh = {xi = ih E in, 11) 

nyi = fyi-i - 2yi + yiti) I h2, 

and on the non-uniform network Oh 

yi+i - yi _ yi - yi-i 
, where hi = xi - Xi__*, hi = +(k + hi+-t). 

($3) 

If u 20.5, scheme (12) is unconditionally stable and converges uni- 
formly as h + 0, T + 0 on an arbitrary sequence of networks. We have 
shown that if o = 0.5 scheme (12) can attain an accuracy of %h2 + ~~1. 
Tie three-point equation which is non-linear in yin+’ is solved by some 
iteration method such as Newton’s; each of the iterations is found by 
the formulae of successive substitutions. We shall not dwell on the con- 
ditions which ensure the maximum order of accuracy and the convergence 
of the iterations. 

In this work we make use of a purely implicit scheme, which is written 
for equation (101 as 

Yi 
?t+f 

C(yp+‘) 
- Yin 

T 
= A’YP+’ + f(Ll_l, Xi), 

n7Yi = & a(yi-%> (Yi - h-i) , (14) 
z E ,l%(Yi+%) (yi+i - yi) - + 

L+i 1 I 

Yi + Yi-i 
yi-‘/z = T--- 

To determine yi = yin+’ by the iteration method the coefficients S and E 

can be taken from the Previous iteration. 

3. We now turn to the multidimensional problem (I”, for an arbitrary 
region. Following hl we use constructively only one assumption about G: 
the intersection with the region G of the line L,, drawn through any 
inner point of G, parallel to the coordinate axis ,%&, consists of a 
finite number of intervals. It is not necessary to give a detailed 

account of the locally one-dimensional scheme for equation (?I in the 
general case. It is sufficient to refer to [f(l and [41, where two types 
of space network ~h( ‘) and ah(* ) are considered in the region G: on 
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~k( l) tile noundary conditions are given ny means of linear interpolation 

in the direction in which the one-dimensional equation (91 is beina 

solved at the given instant; on Dh c2 ) t,le 30undary conditions are given 
without deflection. 

We now give a locally one-dimensional scheme and computational 
formulae for nroblem <I”) in the case where G is a rectangle (i.e. 0 < 

x < 11, 0-c v -==L iz, . . . where we have assumed that x1 = x2, x2 = y). ye now 
introduce the aroitrary non-uniform network 

Ol~={(Xi,pj),i=l,2 ,..., Ni,j=1,2 ,...., iLI2,Xo=O,yo=O, 

XIV, = h, YN2 = 12) 

and denote by vij” the value of tne required function at the point (Xi, 

y;) at the instant t, = no. Let vi = Vi n’X be an intermediate value 

which is determined by the numerical solution of equation (9) with xc=x. 

Tne locally one-dimensional scheme for the proolem (i) is constructed 

from uniform schemes of tne form (14) and has the form 

cij - Vij n 

c”(5i.j) a = Al&j + fi (Xi7 Yj7 tn+‘h 7 ) (xi, Yj)EG; 

Vij = p 1 t==tn+,,* if i = 0, i = Ni, 0 <i < Nt; 

[ k(ci+%, j) 
Vi+i, j - Vi, j 

hx, i+i 
_ g ( ui_ll,, j) 

E(Uij"+') 
vij 

n+i - Vij 

= A2Uijn+' + fi(Xi, Yj, tn+%)~ (XiYj) E G; 
T 

Vij n+i = p 1 t=t ,~+i if j = 0, j = n’2 , O<i<Ni; 

1 
A2Vij = -__ R(Ui, i+%) 

Vi; j-l-1 - Vi, j 

h Y, J [ hi> .iil 

_~(ui,j_,,T)!3j; vi,j-i 1: 

?I. I 2 

Here Vi+%, j = 0.5 (ui, j + Vi+i, j), vi, j+% = 0.5(Vi, j + Vi, j+i), k, i, &, j - 

are network steps in x and y and fix, i =:O.S(h,, i + h,, i+i), h,, j = 

0.5 (h, j + h. j+i) ; the network is non-uniform and so h, and h, depend 

on the nodes of the network. 

In the examples considered below cl, ~2, kl and k2 _do not depend on 
the temperature but the smoothed coefficients E and k always depend on 
the temperature. Therefore, to determine v from the equations written 
above, iterations are necessary. 
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4. We have used the simplest iteration method: to calculate the 

(s f l)-th iteration 

coefficients 2: and $ 

s+1 
of the required function --- or 

V 

are calculated from the values of 

preceding iteration. 
St1 .s+t 

For -- and n+1 we obtain 
V u 

s+1 
,+l the 

V 
S s 
- or - at the 
1) vn+l 

linear three-point 

equations which are solved by the same standard programme of successive 
substitutions. 

s+1 s+1 St1 
We now give equations for G and u =&I. 

Using the notation 

we obtain 

his i - - 
=-z z c(vij) v; + tax &‘+;k 

I . 

with boundary conditions for i = 0 and i = iv,, and 

9 s+1 
J?3ijVi, j-1 - 

[ 

iij +ii, j+l + y S(;ij)] “ifj + ii, ji.2, j+l zZ 

i&j- s =-_..?_ 
z ( 1 C Vij Vij + lip, jfiyij 

with boundary conditions for i = 0 and i = ,V,, 

3. The solution of the problem with a plane 
boundary for the phase division 

Let us consider the known (see [?I) one-dimensional Stefan problem of 
freezing. In the region (O,( x < 33, t 200, a solution of the equations 

dU 
cs -dt = 8x q-g) 7 

s = 1,2, 

is sought, with constant coefficients (c, and k, do not depend on u) and 
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constant initial and boundary data; phase I occurs in the region 0 < 
x < t(t), pilase 2 in the region x > e(t). If x = E(t) the given condi- 
tions are 

(16) 

The problem has a selfmodelling solution 

s=1,2, 1/ ks 
a,= -, (17) 

CS 

where a is a constant determined from some transcendental equation (see 

Es1 )I and A, and 2, are constants whose expressions are given in [g, 
p. 2641. 

FIG. 2. FIG. 3. 

We shall consider this problem in the plane (x, y) choosing tile co- 
ordinate axes such that the boundary of the division of tne regions is 
not parallel to either of the axes (see Fig. 2). To solve it numerically 
we shall use tne method put forward in Section 2. As the region ;’ we 
shall choose the rectangle (0 < x < 11, O< y < /2). The initial (with 
t = tin) and boundary data for the difference problem will be taken to 
coincide with the selfmodelling solution (17). 

In the variant considered 1, = 1, = 2, h, = h, = 0.1; T = 1, the 
number of points 21 X 21, tin = 4, U* = 0, h = 1, k(l) = 1.25, kc” = 2, 
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c(l) = 0.75, ,c2) = 0.5, u,, = 1, a = 0.2, A = 0.0s. 

For each row j = ju, where j, is the number of some row, we can find 

xcu*, t) by means of linear interpolation, and then by the formula for 

transformation of coordinates by rotations calculate e(t). 

In Table 1 exact and computed values of the function c(t) are given 

for ju = 11. 

TABLE 1. 

t 

10 

ii 
40 

- 

Exact 
values 

0.633 
0.894 
1.095 
1.265 

- 

I 
-I- 

0.640 
0.903 
1.110 70 
1.277 80 

1.414 1.422 
1.549 
l.673- 

1.563 
1.684 

1.789 ! .798 

TABLE 2. 

Exact 
values 

- 

- 

Computed 
values 

1.897 1 ,911 
2.000 2.01X 
2.191 2.202 

t=70 
I 0 7294 II 

t= 125 
0.1944 1 0.1975 i 0.7974 0.7974 0.7294 

0.6756 
0.6215 
0.5677 
0.5140 
0.4604 
0.4069 
0.3536 
0.3004 
0.2473 

0.6758 0.1417 
0.6223 0.0892 
0.5688 0.036Q 
0.5154 --0.0097 
0.4621 --0.0430 
0.4089 -0.0762 
0.3559 --0.1094 
0.3029 --0.1425 
0.2501 --0.1755 

--0.2084 

0.1456 0.7570 
0.0927 0.7166 
0.0406 0.6762 

-0.0088 0.6358 
--0.0426 0.5955 
-0.0761 0.5553 
--0.1093 0.5151 
--0.1424 0.4750 
--0.1754 0.4349 
--0.2084 

0.7571 
0.7168 
0.6765 
0.6363 
0.5960 
0.5558 
0.5158 
0.4757 
0.4357 

1.681% - 8 
1.687 -- 
1.684 -- 1; 
1.687 -- 11 
1.684 12 
1.686 13 
1.683 -- 14 

1.686 
1.683 
I .686 17 
1.683 2-236 
1.687 2.247 1’: 
1.684 2.246 
1.687 2.248 

TABLE 3. 

t = 70 t = 125 
5 = 1.673 5 = 2.36 

1.684 2.247 
I .688 2.250 
1.685 2.248 
1.689 2.253 
1.686 2.249 
1.690 2.250 
1.675 2.237 

Exact 

i 
Computed 

values values 

0.3949 
0.3550 
0.3151 
0.2754 

:%% 
0: 1567 
0.1173 
0.0781 
0.0390 
0.0000 

0.3957 
0.3558 
0.3159 
0.2761 
0.2363 
0.1967 
0.1571 
0.1175 
0.0780 
0.0388 
0.0000 
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In Table 2 values of 5 are given which were calculated for .jo = 1, 

2, . ..) 21, for two instants t = ‘70 and 125. They characterize the value 
of the deviatioil of the boundary of t;le section from the plane. 

In Table 3, for the same instants t, profiles of the function u, ob- 
tained from the selfmodelling solution and in the process of computation 
of jo = 11, are given. 

In conclusion we note that in tne region 2(u > u*) 

ks 
- = 400. 
czh2 

4. The solution of the problem with a cylindrical 
boundary for the phase division 

We shall consider the case where the boundary of the division of the 
two phases is a circle of radius c(t). The temperature distribution is 
given in the form 

7-2 
u, = B,--AA,---- 

to - t 
(s = 

and so the function E(i) = a7jto - t. 

We relate the values s = 
this phase u < u’; then s = 
circle for which II > IL*. 

1 to the points r > c(t). Suppose that for 
2 corresponds to the inner points of the 

I, 2); t < to, T-2 = (z - x0)2 _t(y - Y”)“, 

(18) 

From the conditions of the equality of temperature and fluxes, which 
for our case are of the form 

&+o = +o = u*, 
(I!)) 

we can obtain an expression for A, and ZS in terms of kl, k,, a, h and 

ug (the temperature when r = 0) 

uo - u* 
&c-- 

a2 ’ 
Bi = u* + azAi, Bz= ug 

The temperature distribution in the form (15) satisfies the following 
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differential equations in polar coordinates 

dU 

” at -=t$(hJ$)+a,(&.- (to”l”,,2), (20) 

0 < r < rm’m35, 0 < t d tmax < to, 
s= 1 if !J < u*, s=2 if u > u=. 

We shall consider this problem in the variables (x, y) and choose as 
the region 12 a square with side 1 (see Fig. 3) such that the circle is 
wholly situated inside it and the origin of the coordinates is at one of 
its vertices. fle shall rewrite equation (293) in a rectangular system of 
coordinates and use the difference approximation of the equation obtained 
together with boundary conditions (19). The values of the required net- 
work function on the boundary of the square and at the initial instant 
are calculated bv formula (18). 

For j = je (je is a number of the row y, yjo = const.) the value of 

X(U*, t) and from it t(t) is determined by linear interpolation with re- 
spect to the temperature. The calculation of a series of variants of this 
problem was carried out with various parameters. Common elements for the 
variants were to = 64, u* = 0, u. = 1, a = 0.2, I = 4, h, = h, = h, 

Cl = 2, c2 = 1.25, kl = 0.5, k2 = 0.75. 

In Table 4 exact and calculated values (three iterations) of c are 
given for j, = I6 for a variant with h = 1, A = 0.15, h = 4/30, T = 0.5. 

t 
Exact 
values 

TABLE 4. 

Exact Computed Computed 
values II 

t values values 

:oo 1.4697 I .327 1.4690 1.324 2: 0.980 0.748 0.968 0.724 
30 1.166 1.158 

In Table 5 the value of e is given for all rows-j = 1, 2, . . . , 31 at 
time t = 30 for the same variant. 

TABLE 5. 

- 

CT&M / 6 / 9 1 10 1 il ) 12 1 13 1 14 / 15 1 16' 

c 1 1.161 Il.1601 I.1571 1.161 il.1581 1.1591 1.1511 1.155) 1.158 
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Tne picture is symmetrical with respect to ,j = Ifi, i = 16, i.e. with 
respect to the lines parallel to the axes and passing through the centre 
of the circle. 

5. Conclusions 

From the given tables it is obvious that tne method is entirely suit- 
able for practical purposes. Distinctive features of this method are its 
logical simplicity and the possibility of using a large time step. 

From the analysis of the results, which are not quoted in the present 
paper, we can make more remarks about this method. This first of all 
touches on the choice of some S-form function (in the form of a “step”, 
“peak” or parabola etc. ). The results depended slightly on the method of 

TABLE 6. 

I -I 
Variant 

t=33 Exact ~~~~~~t Intera- Intera- 

tion tion 1 tion 

choosing the functions; it is best to choose the E-form functions, naving 
no sharp maximum as, for instance, in the case of the “peak”. From our 
point of view it is simpler and more natural to choose the “step”. The 
region of definition of the S-form function is chosen so that it embraces 
2 - 3 calculational points. We must supplement this after evaluating the 
characteristic temperature gradients. Thus in our variants of the prob- 
lems with cylindrical boundaries to the phase division for preference 
A = 0.15, since for too small A non-monotonicity in the smoothing may 
occur and with too large A strong divergence from the original problem. 
Tne process of choosing A can be made automatic. In our examples the co- 
efficients in tne equation of heat conduction were constant. We do not 
necessarily require this, however, and no complications of the method 
arise here. 

The iterations which are used to solve the problems converge rapidly. 
In Table 6 values of < and !! are given for one row and one instant of 
time in a variant without iterations, and with three and seven iterations. 
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The decrease of the space step by a factor of 1.5 gave better results 
than the decrease of the time step by a factor of two. In general 
analysis shows that, as is obvious, the scheme has an order of accuracy 
of O(T) •t 0(h2). 

In conclusion we wish to thank I.V. Fryazinov for his valuable help 
and advice. 

Translated by H.F. Cleaves 
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